]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/trace/ring_buffer.c
Merge branch 'kvm-ppc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus...
[mirror_ubuntu-artful-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
e6017571 9#include <linux/sched/clock.h>
0b07436d 10#include <linux/trace_seq.h>
7a8e76a3 11#include <linux/spinlock.h>
15693458 12#include <linux/irq_work.h>
7a8e76a3 13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3 26
79615760 27#include <asm/local.h>
182e9f5f 28
83f40318
VN
29static void update_pages_handler(struct work_struct *work);
30
d1b182a8
SR
31/*
32 * The ring buffer header is special. We must manually up keep it.
33 */
34int ring_buffer_print_entry_header(struct trace_seq *s)
35{
c0cd93aa
SRRH
36 trace_seq_puts(s, "# compressed entry header\n");
37 trace_seq_puts(s, "\ttype_len : 5 bits\n");
38 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
39 trace_seq_puts(s, "\tarray : 32 bits\n");
40 trace_seq_putc(s, '\n');
41 trace_seq_printf(s, "\tpadding : type == %d\n",
42 RINGBUF_TYPE_PADDING);
43 trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 RINGBUF_TYPE_TIME_EXTEND);
45 trace_seq_printf(s, "\tdata max type_len == %d\n",
46 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47
48 return !trace_seq_has_overflowed(s);
d1b182a8
SR
49}
50
5cc98548
SR
51/*
52 * The ring buffer is made up of a list of pages. A separate list of pages is
53 * allocated for each CPU. A writer may only write to a buffer that is
54 * associated with the CPU it is currently executing on. A reader may read
55 * from any per cpu buffer.
56 *
57 * The reader is special. For each per cpu buffer, the reader has its own
58 * reader page. When a reader has read the entire reader page, this reader
59 * page is swapped with another page in the ring buffer.
60 *
61 * Now, as long as the writer is off the reader page, the reader can do what
62 * ever it wants with that page. The writer will never write to that page
63 * again (as long as it is out of the ring buffer).
64 *
65 * Here's some silly ASCII art.
66 *
67 * +------+
68 * |reader| RING BUFFER
69 * |page |
70 * +------+ +---+ +---+ +---+
71 * | |-->| |-->| |
72 * +---+ +---+ +---+
73 * ^ |
74 * | |
75 * +---------------+
76 *
77 *
78 * +------+
79 * |reader| RING BUFFER
80 * |page |------------------v
81 * +------+ +---+ +---+ +---+
82 * | |-->| |-->| |
83 * +---+ +---+ +---+
84 * ^ |
85 * | |
86 * +---------------+
87 *
88 *
89 * +------+
90 * |reader| RING BUFFER
91 * |page |------------------v
92 * +------+ +---+ +---+ +---+
93 * ^ | |-->| |-->| |
94 * | +---+ +---+ +---+
95 * | |
96 * | |
97 * +------------------------------+
98 *
99 *
100 * +------+
101 * |buffer| RING BUFFER
102 * |page |------------------v
103 * +------+ +---+ +---+ +---+
104 * ^ | | | |-->| |
105 * | New +---+ +---+ +---+
106 * | Reader------^ |
107 * | page |
108 * +------------------------------+
109 *
110 *
111 * After we make this swap, the reader can hand this page off to the splice
112 * code and be done with it. It can even allocate a new page if it needs to
113 * and swap that into the ring buffer.
114 *
115 * We will be using cmpxchg soon to make all this lockless.
116 *
117 */
118
499e5470
SR
119/* Used for individual buffers (after the counter) */
120#define RB_BUFFER_OFF (1 << 20)
a3583244 121
499e5470 122#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 123
e3d6bf0a 124#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 125#define RB_ALIGNMENT 4U
334d4169 126#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 127#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 128
649508f6 129#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
130# define RB_FORCE_8BYTE_ALIGNMENT 0
131# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132#else
133# define RB_FORCE_8BYTE_ALIGNMENT 1
134# define RB_ARCH_ALIGNMENT 8U
135#endif
136
649508f6
JH
137#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138
334d4169
LJ
139/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
140#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
141
142enum {
143 RB_LEN_TIME_EXTEND = 8,
144 RB_LEN_TIME_STAMP = 16,
145};
146
69d1b839
SR
147#define skip_time_extend(event) \
148 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149
2d622719
TZ
150static inline int rb_null_event(struct ring_buffer_event *event)
151{
a1863c21 152 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
153}
154
155static void rb_event_set_padding(struct ring_buffer_event *event)
156{
a1863c21 157 /* padding has a NULL time_delta */
334d4169 158 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
159 event->time_delta = 0;
160}
161
34a148bf 162static unsigned
2d622719 163rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
164{
165 unsigned length;
166
334d4169
LJ
167 if (event->type_len)
168 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
169 else
170 length = event->array[0];
171 return length + RB_EVNT_HDR_SIZE;
172}
173
69d1b839
SR
174/*
175 * Return the length of the given event. Will return
176 * the length of the time extend if the event is a
177 * time extend.
178 */
179static inline unsigned
2d622719
TZ
180rb_event_length(struct ring_buffer_event *event)
181{
334d4169 182 switch (event->type_len) {
7a8e76a3 183 case RINGBUF_TYPE_PADDING:
2d622719
TZ
184 if (rb_null_event(event))
185 /* undefined */
186 return -1;
334d4169 187 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
188
189 case RINGBUF_TYPE_TIME_EXTEND:
190 return RB_LEN_TIME_EXTEND;
191
192 case RINGBUF_TYPE_TIME_STAMP:
193 return RB_LEN_TIME_STAMP;
194
195 case RINGBUF_TYPE_DATA:
2d622719 196 return rb_event_data_length(event);
7a8e76a3
SR
197 default:
198 BUG();
199 }
200 /* not hit */
201 return 0;
202}
203
69d1b839
SR
204/*
205 * Return total length of time extend and data,
206 * or just the event length for all other events.
207 */
208static inline unsigned
209rb_event_ts_length(struct ring_buffer_event *event)
210{
211 unsigned len = 0;
212
213 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
214 /* time extends include the data event after it */
215 len = RB_LEN_TIME_EXTEND;
216 event = skip_time_extend(event);
217 }
218 return len + rb_event_length(event);
219}
220
7a8e76a3
SR
221/**
222 * ring_buffer_event_length - return the length of the event
223 * @event: the event to get the length of
69d1b839
SR
224 *
225 * Returns the size of the data load of a data event.
226 * If the event is something other than a data event, it
227 * returns the size of the event itself. With the exception
228 * of a TIME EXTEND, where it still returns the size of the
229 * data load of the data event after it.
7a8e76a3
SR
230 */
231unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232{
69d1b839
SR
233 unsigned length;
234
235 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
236 event = skip_time_extend(event);
237
238 length = rb_event_length(event);
334d4169 239 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
240 return length;
241 length -= RB_EVNT_HDR_SIZE;
242 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
243 length -= sizeof(event->array[0]);
244 return length;
7a8e76a3 245}
c4f50183 246EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
247
248/* inline for ring buffer fast paths */
929ddbf3 249static __always_inline void *
7a8e76a3
SR
250rb_event_data(struct ring_buffer_event *event)
251{
69d1b839
SR
252 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
253 event = skip_time_extend(event);
334d4169 254 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 255 /* If length is in len field, then array[0] has the data */
334d4169 256 if (event->type_len)
7a8e76a3
SR
257 return (void *)&event->array[0];
258 /* Otherwise length is in array[0] and array[1] has the data */
259 return (void *)&event->array[1];
260}
261
262/**
263 * ring_buffer_event_data - return the data of the event
264 * @event: the event to get the data from
265 */
266void *ring_buffer_event_data(struct ring_buffer_event *event)
267{
268 return rb_event_data(event);
269}
c4f50183 270EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
271
272#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 273 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
274
275#define TS_SHIFT 27
276#define TS_MASK ((1ULL << TS_SHIFT) - 1)
277#define TS_DELTA_TEST (~TS_MASK)
278
66a8cb95
SR
279/* Flag when events were overwritten */
280#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
281/* Missed count stored at end */
282#define RB_MISSED_STORED (1 << 30)
66a8cb95 283
abc9b56d 284struct buffer_data_page {
e4c2ce82 285 u64 time_stamp; /* page time stamp */
c3706f00 286 local_t commit; /* write committed index */
649508f6 287 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
288};
289
77ae365e
SR
290/*
291 * Note, the buffer_page list must be first. The buffer pages
292 * are allocated in cache lines, which means that each buffer
293 * page will be at the beginning of a cache line, and thus
294 * the least significant bits will be zero. We use this to
295 * add flags in the list struct pointers, to make the ring buffer
296 * lockless.
297 */
abc9b56d 298struct buffer_page {
778c55d4 299 struct list_head list; /* list of buffer pages */
abc9b56d 300 local_t write; /* index for next write */
6f807acd 301 unsigned read; /* index for next read */
778c55d4 302 local_t entries; /* entries on this page */
ff0ff84a 303 unsigned long real_end; /* real end of data */
abc9b56d 304 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
305};
306
77ae365e
SR
307/*
308 * The buffer page counters, write and entries, must be reset
309 * atomically when crossing page boundaries. To synchronize this
310 * update, two counters are inserted into the number. One is
311 * the actual counter for the write position or count on the page.
312 *
313 * The other is a counter of updaters. Before an update happens
314 * the update partition of the counter is incremented. This will
315 * allow the updater to update the counter atomically.
316 *
317 * The counter is 20 bits, and the state data is 12.
318 */
319#define RB_WRITE_MASK 0xfffff
320#define RB_WRITE_INTCNT (1 << 20)
321
044fa782 322static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 323{
044fa782 324 local_set(&bpage->commit, 0);
abc9b56d
SR
325}
326
474d32b6
SR
327/**
328 * ring_buffer_page_len - the size of data on the page.
329 * @page: The page to read
330 *
331 * Returns the amount of data on the page, including buffer page header.
332 */
ef7a4a16
SR
333size_t ring_buffer_page_len(void *page)
334{
474d32b6
SR
335 return local_read(&((struct buffer_data_page *)page)->commit)
336 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
337}
338
ed56829c
SR
339/*
340 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
341 * this issue out.
342 */
34a148bf 343static void free_buffer_page(struct buffer_page *bpage)
ed56829c 344{
34a148bf 345 free_page((unsigned long)bpage->page);
e4c2ce82 346 kfree(bpage);
ed56829c
SR
347}
348
7a8e76a3
SR
349/*
350 * We need to fit the time_stamp delta into 27 bits.
351 */
352static inline int test_time_stamp(u64 delta)
353{
354 if (delta & TS_DELTA_TEST)
355 return 1;
356 return 0;
357}
358
474d32b6 359#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 360
be957c44
SR
361/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
362#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363
d1b182a8
SR
364int ring_buffer_print_page_header(struct trace_seq *s)
365{
366 struct buffer_data_page field;
c0cd93aa
SRRH
367
368 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
369 "offset:0;\tsize:%u;\tsigned:%u;\n",
370 (unsigned int)sizeof(field.time_stamp),
371 (unsigned int)is_signed_type(u64));
372
373 trace_seq_printf(s, "\tfield: local_t commit;\t"
374 "offset:%u;\tsize:%u;\tsigned:%u;\n",
375 (unsigned int)offsetof(typeof(field), commit),
376 (unsigned int)sizeof(field.commit),
377 (unsigned int)is_signed_type(long));
378
379 trace_seq_printf(s, "\tfield: int overwrite;\t"
380 "offset:%u;\tsize:%u;\tsigned:%u;\n",
381 (unsigned int)offsetof(typeof(field), commit),
382 1,
383 (unsigned int)is_signed_type(long));
384
385 trace_seq_printf(s, "\tfield: char data;\t"
386 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)offsetof(typeof(field), data),
388 (unsigned int)BUF_PAGE_SIZE,
389 (unsigned int)is_signed_type(char));
390
391 return !trace_seq_has_overflowed(s);
d1b182a8
SR
392}
393
15693458
SRRH
394struct rb_irq_work {
395 struct irq_work work;
396 wait_queue_head_t waiters;
1e0d6714 397 wait_queue_head_t full_waiters;
15693458 398 bool waiters_pending;
1e0d6714
SRRH
399 bool full_waiters_pending;
400 bool wakeup_full;
15693458
SRRH
401};
402
fcc742ea
SRRH
403/*
404 * Structure to hold event state and handle nested events.
405 */
406struct rb_event_info {
407 u64 ts;
408 u64 delta;
409 unsigned long length;
410 struct buffer_page *tail_page;
411 int add_timestamp;
412};
413
a497adb4
SRRH
414/*
415 * Used for which event context the event is in.
416 * NMI = 0
417 * IRQ = 1
418 * SOFTIRQ = 2
419 * NORMAL = 3
420 *
421 * See trace_recursive_lock() comment below for more details.
422 */
423enum {
424 RB_CTX_NMI,
425 RB_CTX_IRQ,
426 RB_CTX_SOFTIRQ,
427 RB_CTX_NORMAL,
428 RB_CTX_MAX
429};
430
7a8e76a3
SR
431/*
432 * head_page == tail_page && head == tail then buffer is empty.
433 */
434struct ring_buffer_per_cpu {
435 int cpu;
985023de 436 atomic_t record_disabled;
7a8e76a3 437 struct ring_buffer *buffer;
5389f6fa 438 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 439 arch_spinlock_t lock;
7a8e76a3 440 struct lock_class_key lock_key;
73a757e6 441 struct buffer_data_page *free_page;
9b94a8fb 442 unsigned long nr_pages;
58a09ec6 443 unsigned int current_context;
3adc54fa 444 struct list_head *pages;
6f807acd
SR
445 struct buffer_page *head_page; /* read from head */
446 struct buffer_page *tail_page; /* write to tail */
c3706f00 447 struct buffer_page *commit_page; /* committed pages */
d769041f 448 struct buffer_page *reader_page;
66a8cb95
SR
449 unsigned long lost_events;
450 unsigned long last_overrun;
c64e148a 451 local_t entries_bytes;
e4906eff 452 local_t entries;
884bfe89
SP
453 local_t overrun;
454 local_t commit_overrun;
455 local_t dropped_events;
fa743953
SR
456 local_t committing;
457 local_t commits;
77ae365e 458 unsigned long read;
c64e148a 459 unsigned long read_bytes;
7a8e76a3
SR
460 u64 write_stamp;
461 u64 read_stamp;
438ced17 462 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 463 long nr_pages_to_update;
438ced17 464 struct list_head new_pages; /* new pages to add */
83f40318 465 struct work_struct update_pages_work;
05fdd70d 466 struct completion update_done;
15693458
SRRH
467
468 struct rb_irq_work irq_work;
7a8e76a3
SR
469};
470
471struct ring_buffer {
7a8e76a3
SR
472 unsigned flags;
473 int cpus;
7a8e76a3 474 atomic_t record_disabled;
83f40318 475 atomic_t resize_disabled;
00f62f61 476 cpumask_var_t cpumask;
7a8e76a3 477
1f8a6a10
PZ
478 struct lock_class_key *reader_lock_key;
479
7a8e76a3
SR
480 struct mutex mutex;
481
482 struct ring_buffer_per_cpu **buffers;
554f786e 483
b32614c0 484 struct hlist_node node;
37886f6a 485 u64 (*clock)(void);
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
492a74f4
SR
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
7a8e76a3
SR
496 u64 read_stamp;
497};
498
15693458
SRRH
499/*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505static void rb_wake_up_waiters(struct irq_work *work)
506{
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
15693458
SRRH
514}
515
516/**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
e30f53aa 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
e30f53aa 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 527{
e30f53aa 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
e30f53aa 531 int ret = 0;
15693458
SRRH
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
1e0d6714 538 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 539 work = &buffer->irq_work;
1e0d6714
SRRH
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
8b8b3683
SRRH
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
15693458
SRRH
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
e30f53aa 550 while (true) {
1e0d6714
SRRH
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
1e0d6714
SRRH
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
e30f53aa
RV
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
15693458 604
15693458 605 schedule();
e30f53aa 606 }
15693458 607
1e0d6714
SRRH
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
e30f53aa
RV
612
613 return ret;
15693458
SRRH
614}
615
616/**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632{
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
15693458
SRRH
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
6721cb60
SRRH
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
15693458
SRRH
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
15693458 646 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
15693458
SRRH
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667}
668
f536aafc 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
670#define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
3e89c7bb 683 })
f536aafc 684
37886f6a
SR
685/* Up this if you want to test the TIME_EXTENTS and normalization */
686#define DEBUG_SHIFT 0
687
6d3f1e12 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
689{
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692}
693
37886f6a
SR
694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695{
696 u64 time;
697
698 preempt_disable_notrace();
6d3f1e12 699 time = rb_time_stamp(buffer);
37886f6a
SR
700 preempt_enable_no_resched_notrace();
701
702 return time;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708{
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711}
712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
77ae365e
SR
714/*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783#define RB_PAGE_NORMAL 0UL
784#define RB_PAGE_HEAD 1UL
785#define RB_PAGE_UPDATE 2UL
786
787
788#define RB_FLAG_MASK 3UL
789
790/* PAGE_MOVED is not part of the mask */
791#define RB_PAGE_MOVED 4UL
792
793/*
794 * rb_list_head - remove any bit
795 */
796static struct list_head *rb_list_head(struct list_head *list)
797{
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801}
802
803/*
6d3f1e12 804 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
42b16b3f 811static inline int
77ae365e
SR
812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814{
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823}
824
825/*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
06ca3209 832static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
833{
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837}
838
839/*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844{
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850}
851
852/*
853 * rb_head_page_activate - sets up head page
854 */
855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856{
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867}
868
869static void rb_list_head_clear(struct list_head *list)
870{
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874}
875
876/*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879static void
880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881{
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889}
890
891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895{
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
08a40816
SR
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
77ae365e
SR
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912}
913
914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918{
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921}
922
923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927{
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930}
931
932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936{
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939}
940
941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943{
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947}
948
949static struct buffer_page *
950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985}
986
987static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989{
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
08a40816 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
998
999 return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
77ae365e 1004 */
70004986 1005static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1006 struct buffer_page *tail_page,
1007 struct buffer_page *next_page)
1008{
77ae365e
SR
1009 unsigned long old_entries;
1010 unsigned long old_write;
77ae365e
SR
1011
1012 /*
1013 * The tail page now needs to be moved forward.
1014 *
1015 * We need to reset the tail page, but without messing
1016 * with possible erasing of data brought in by interrupts
1017 * that have moved the tail page and are currently on it.
1018 *
1019 * We add a counter to the write field to denote this.
1020 */
1021 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024 /*
1025 * Just make sure we have seen our old_write and synchronize
1026 * with any interrupts that come in.
1027 */
1028 barrier();
1029
1030 /*
1031 * If the tail page is still the same as what we think
1032 * it is, then it is up to us to update the tail
1033 * pointer.
1034 */
8573636e 1035 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1036 /* Zero the write counter */
1037 unsigned long val = old_write & ~RB_WRITE_MASK;
1038 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040 /*
1041 * This will only succeed if an interrupt did
1042 * not come in and change it. In which case, we
1043 * do not want to modify it.
da706d8b
LJ
1044 *
1045 * We add (void) to let the compiler know that we do not care
1046 * about the return value of these functions. We use the
1047 * cmpxchg to only update if an interrupt did not already
1048 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1049 */
da706d8b
LJ
1050 (void)local_cmpxchg(&next_page->write, old_write, val);
1051 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1052
1053 /*
1054 * No need to worry about races with clearing out the commit.
1055 * it only can increment when a commit takes place. But that
1056 * only happens in the outer most nested commit.
1057 */
1058 local_set(&next_page->page->commit, 0);
1059
70004986
SRRH
1060 /* Again, either we update tail_page or an interrupt does */
1061 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1062 }
77ae365e
SR
1063}
1064
1065static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066 struct buffer_page *bpage)
1067{
1068 unsigned long val = (unsigned long)bpage;
1069
1070 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071 return 1;
1072
1073 return 0;
1074}
1075
1076/**
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1078 */
1079static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080 struct list_head *list)
1081{
1082 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083 return 1;
1084 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085 return 1;
1086 return 0;
1087}
1088
7a8e76a3 1089/**
d611851b 1090 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1091 * @cpu_buffer: CPU buffer with pages to test
1092 *
c3706f00 1093 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1094 * been corrupted.
1095 */
1096static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097{
3adc54fa 1098 struct list_head *head = cpu_buffer->pages;
044fa782 1099 struct buffer_page *bpage, *tmp;
7a8e76a3 1100
308f7eeb
SR
1101 /* Reset the head page if it exists */
1102 if (cpu_buffer->head_page)
1103 rb_set_head_page(cpu_buffer);
1104
77ae365e
SR
1105 rb_head_page_deactivate(cpu_buffer);
1106
3e89c7bb
SR
1107 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108 return -1;
1109 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110 return -1;
7a8e76a3 1111
77ae365e
SR
1112 if (rb_check_list(cpu_buffer, head))
1113 return -1;
1114
044fa782 1115 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1116 if (RB_WARN_ON(cpu_buffer,
044fa782 1117 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1118 return -1;
1119 if (RB_WARN_ON(cpu_buffer,
044fa782 1120 bpage->list.prev->next != &bpage->list))
3e89c7bb 1121 return -1;
77ae365e
SR
1122 if (rb_check_list(cpu_buffer, &bpage->list))
1123 return -1;
7a8e76a3
SR
1124 }
1125
77ae365e
SR
1126 rb_head_page_activate(cpu_buffer);
1127
7a8e76a3
SR
1128 return 0;
1129}
1130
9b94a8fb 1131static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1132{
044fa782 1133 struct buffer_page *bpage, *tmp;
9b94a8fb 1134 long i;
3adc54fa 1135
7a8e76a3 1136 for (i = 0; i < nr_pages; i++) {
7ea59064 1137 struct page *page;
d7ec4bfe
VN
1138 /*
1139 * __GFP_NORETRY flag makes sure that the allocation fails
1140 * gracefully without invoking oom-killer and the system is
1141 * not destabilized.
1142 */
044fa782 1143 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1144 GFP_KERNEL | __GFP_NORETRY,
438ced17 1145 cpu_to_node(cpu));
044fa782 1146 if (!bpage)
e4c2ce82 1147 goto free_pages;
77ae365e 1148
438ced17 1149 list_add(&bpage->list, pages);
77ae365e 1150
438ced17 1151 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1152 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1153 if (!page)
7a8e76a3 1154 goto free_pages;
7ea59064 1155 bpage->page = page_address(page);
044fa782 1156 rb_init_page(bpage->page);
7a8e76a3
SR
1157 }
1158
438ced17
VN
1159 return 0;
1160
1161free_pages:
1162 list_for_each_entry_safe(bpage, tmp, pages, list) {
1163 list_del_init(&bpage->list);
1164 free_buffer_page(bpage);
1165 }
1166
1167 return -ENOMEM;
1168}
1169
1170static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1171 unsigned long nr_pages)
438ced17
VN
1172{
1173 LIST_HEAD(pages);
1174
1175 WARN_ON(!nr_pages);
1176
1177 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178 return -ENOMEM;
1179
3adc54fa
SR
1180 /*
1181 * The ring buffer page list is a circular list that does not
1182 * start and end with a list head. All page list items point to
1183 * other pages.
1184 */
1185 cpu_buffer->pages = pages.next;
1186 list_del(&pages);
7a8e76a3 1187
438ced17
VN
1188 cpu_buffer->nr_pages = nr_pages;
1189
7a8e76a3
SR
1190 rb_check_pages(cpu_buffer);
1191
1192 return 0;
7a8e76a3
SR
1193}
1194
1195static struct ring_buffer_per_cpu *
9b94a8fb 1196rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1197{
1198 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1199 struct buffer_page *bpage;
7ea59064 1200 struct page *page;
7a8e76a3
SR
1201 int ret;
1202
1203 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204 GFP_KERNEL, cpu_to_node(cpu));
1205 if (!cpu_buffer)
1206 return NULL;
1207
1208 cpu_buffer->cpu = cpu;
1209 cpu_buffer->buffer = buffer;
5389f6fa 1210 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1211 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1212 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1213 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1214 init_completion(&cpu_buffer->update_done);
15693458 1215 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1216 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1217 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1218
044fa782 1219 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1220 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1221 if (!bpage)
e4c2ce82
SR
1222 goto fail_free_buffer;
1223
77ae365e
SR
1224 rb_check_bpage(cpu_buffer, bpage);
1225
044fa782 1226 cpu_buffer->reader_page = bpage;
7ea59064
VN
1227 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228 if (!page)
e4c2ce82 1229 goto fail_free_reader;
7ea59064 1230 bpage->page = page_address(page);
044fa782 1231 rb_init_page(bpage->page);
e4c2ce82 1232
d769041f 1233 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1234 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1235
438ced17 1236 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1237 if (ret < 0)
d769041f 1238 goto fail_free_reader;
7a8e76a3
SR
1239
1240 cpu_buffer->head_page
3adc54fa 1241 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1242 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1243
77ae365e
SR
1244 rb_head_page_activate(cpu_buffer);
1245
7a8e76a3
SR
1246 return cpu_buffer;
1247
d769041f
SR
1248 fail_free_reader:
1249 free_buffer_page(cpu_buffer->reader_page);
1250
7a8e76a3
SR
1251 fail_free_buffer:
1252 kfree(cpu_buffer);
1253 return NULL;
1254}
1255
1256static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257{
3adc54fa 1258 struct list_head *head = cpu_buffer->pages;
044fa782 1259 struct buffer_page *bpage, *tmp;
7a8e76a3 1260
d769041f
SR
1261 free_buffer_page(cpu_buffer->reader_page);
1262
77ae365e
SR
1263 rb_head_page_deactivate(cpu_buffer);
1264
3adc54fa
SR
1265 if (head) {
1266 list_for_each_entry_safe(bpage, tmp, head, list) {
1267 list_del_init(&bpage->list);
1268 free_buffer_page(bpage);
1269 }
1270 bpage = list_entry(head, struct buffer_page, list);
044fa782 1271 free_buffer_page(bpage);
7a8e76a3 1272 }
3adc54fa 1273
7a8e76a3
SR
1274 kfree(cpu_buffer);
1275}
1276
1277/**
d611851b 1278 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1279 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1280 * @flags: attributes to set for the ring buffer.
1281 *
1282 * Currently the only flag that is available is the RB_FL_OVERWRITE
1283 * flag. This flag means that the buffer will overwrite old data
1284 * when the buffer wraps. If this flag is not set, the buffer will
1285 * drop data when the tail hits the head.
1286 */
1f8a6a10
PZ
1287struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1288 struct lock_class_key *key)
7a8e76a3
SR
1289{
1290 struct ring_buffer *buffer;
9b94a8fb 1291 long nr_pages;
7a8e76a3 1292 int bsize;
9b94a8fb 1293 int cpu;
b32614c0 1294 int ret;
7a8e76a3
SR
1295
1296 /* keep it in its own cache line */
1297 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1298 GFP_KERNEL);
1299 if (!buffer)
1300 return NULL;
1301
b18cc3de 1302 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1303 goto fail_free_buffer;
1304
438ced17 1305 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1306 buffer->flags = flags;
37886f6a 1307 buffer->clock = trace_clock_local;
1f8a6a10 1308 buffer->reader_lock_key = key;
7a8e76a3 1309
15693458 1310 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1311 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1312
7a8e76a3 1313 /* need at least two pages */
438ced17
VN
1314 if (nr_pages < 2)
1315 nr_pages = 2;
7a8e76a3 1316
7a8e76a3
SR
1317 buffer->cpus = nr_cpu_ids;
1318
1319 bsize = sizeof(void *) * nr_cpu_ids;
1320 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1321 GFP_KERNEL);
1322 if (!buffer->buffers)
9e01c1b7 1323 goto fail_free_cpumask;
7a8e76a3 1324
b32614c0
SAS
1325 cpu = raw_smp_processor_id();
1326 cpumask_set_cpu(cpu, buffer->cpumask);
1327 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1328 if (!buffer->buffers[cpu])
1329 goto fail_free_buffers;
7a8e76a3 1330
b32614c0
SAS
1331 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1332 if (ret < 0)
1333 goto fail_free_buffers;
554f786e 1334
7a8e76a3
SR
1335 mutex_init(&buffer->mutex);
1336
1337 return buffer;
1338
1339 fail_free_buffers:
1340 for_each_buffer_cpu(buffer, cpu) {
1341 if (buffer->buffers[cpu])
1342 rb_free_cpu_buffer(buffer->buffers[cpu]);
1343 }
1344 kfree(buffer->buffers);
1345
9e01c1b7
RR
1346 fail_free_cpumask:
1347 free_cpumask_var(buffer->cpumask);
1348
7a8e76a3
SR
1349 fail_free_buffer:
1350 kfree(buffer);
1351 return NULL;
1352}
1f8a6a10 1353EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1354
1355/**
1356 * ring_buffer_free - free a ring buffer.
1357 * @buffer: the buffer to free.
1358 */
1359void
1360ring_buffer_free(struct ring_buffer *buffer)
1361{
1362 int cpu;
1363
b32614c0 1364 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1365
7a8e76a3
SR
1366 for_each_buffer_cpu(buffer, cpu)
1367 rb_free_cpu_buffer(buffer->buffers[cpu]);
1368
bd3f0221 1369 kfree(buffer->buffers);
9e01c1b7
RR
1370 free_cpumask_var(buffer->cpumask);
1371
7a8e76a3
SR
1372 kfree(buffer);
1373}
c4f50183 1374EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1375
37886f6a
SR
1376void ring_buffer_set_clock(struct ring_buffer *buffer,
1377 u64 (*clock)(void))
1378{
1379 buffer->clock = clock;
1380}
1381
7a8e76a3
SR
1382static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1383
83f40318
VN
1384static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1385{
1386 return local_read(&bpage->entries) & RB_WRITE_MASK;
1387}
1388
1389static inline unsigned long rb_page_write(struct buffer_page *bpage)
1390{
1391 return local_read(&bpage->write) & RB_WRITE_MASK;
1392}
1393
5040b4b7 1394static int
9b94a8fb 1395rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1396{
83f40318
VN
1397 struct list_head *tail_page, *to_remove, *next_page;
1398 struct buffer_page *to_remove_page, *tmp_iter_page;
1399 struct buffer_page *last_page, *first_page;
9b94a8fb 1400 unsigned long nr_removed;
83f40318
VN
1401 unsigned long head_bit;
1402 int page_entries;
1403
1404 head_bit = 0;
7a8e76a3 1405
5389f6fa 1406 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1407 atomic_inc(&cpu_buffer->record_disabled);
1408 /*
1409 * We don't race with the readers since we have acquired the reader
1410 * lock. We also don't race with writers after disabling recording.
1411 * This makes it easy to figure out the first and the last page to be
1412 * removed from the list. We unlink all the pages in between including
1413 * the first and last pages. This is done in a busy loop so that we
1414 * lose the least number of traces.
1415 * The pages are freed after we restart recording and unlock readers.
1416 */
1417 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1418
83f40318
VN
1419 /*
1420 * tail page might be on reader page, we remove the next page
1421 * from the ring buffer
1422 */
1423 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1424 tail_page = rb_list_head(tail_page->next);
1425 to_remove = tail_page;
1426
1427 /* start of pages to remove */
1428 first_page = list_entry(rb_list_head(to_remove->next),
1429 struct buffer_page, list);
1430
1431 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1432 to_remove = rb_list_head(to_remove)->next;
1433 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1434 }
7a8e76a3 1435
83f40318 1436 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1437
83f40318
VN
1438 /*
1439 * Now we remove all pages between tail_page and next_page.
1440 * Make sure that we have head_bit value preserved for the
1441 * next page
1442 */
1443 tail_page->next = (struct list_head *)((unsigned long)next_page |
1444 head_bit);
1445 next_page = rb_list_head(next_page);
1446 next_page->prev = tail_page;
1447
1448 /* make sure pages points to a valid page in the ring buffer */
1449 cpu_buffer->pages = next_page;
1450
1451 /* update head page */
1452 if (head_bit)
1453 cpu_buffer->head_page = list_entry(next_page,
1454 struct buffer_page, list);
1455
1456 /*
1457 * change read pointer to make sure any read iterators reset
1458 * themselves
1459 */
1460 cpu_buffer->read = 0;
1461
1462 /* pages are removed, resume tracing and then free the pages */
1463 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1464 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1465
1466 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1467
1468 /* last buffer page to remove */
1469 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1470 list);
1471 tmp_iter_page = first_page;
1472
1473 do {
1474 to_remove_page = tmp_iter_page;
1475 rb_inc_page(cpu_buffer, &tmp_iter_page);
1476
1477 /* update the counters */
1478 page_entries = rb_page_entries(to_remove_page);
1479 if (page_entries) {
1480 /*
1481 * If something was added to this page, it was full
1482 * since it is not the tail page. So we deduct the
1483 * bytes consumed in ring buffer from here.
48fdc72f 1484 * Increment overrun to account for the lost events.
83f40318 1485 */
48fdc72f 1486 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1487 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1488 }
1489
1490 /*
1491 * We have already removed references to this list item, just
1492 * free up the buffer_page and its page
1493 */
1494 free_buffer_page(to_remove_page);
1495 nr_removed--;
1496
1497 } while (to_remove_page != last_page);
1498
1499 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1500
1501 return nr_removed == 0;
7a8e76a3
SR
1502}
1503
5040b4b7
VN
1504static int
1505rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1506{
5040b4b7
VN
1507 struct list_head *pages = &cpu_buffer->new_pages;
1508 int retries, success;
7a8e76a3 1509
5389f6fa 1510 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1511 /*
1512 * We are holding the reader lock, so the reader page won't be swapped
1513 * in the ring buffer. Now we are racing with the writer trying to
1514 * move head page and the tail page.
1515 * We are going to adapt the reader page update process where:
1516 * 1. We first splice the start and end of list of new pages between
1517 * the head page and its previous page.
1518 * 2. We cmpxchg the prev_page->next to point from head page to the
1519 * start of new pages list.
1520 * 3. Finally, we update the head->prev to the end of new list.
1521 *
1522 * We will try this process 10 times, to make sure that we don't keep
1523 * spinning.
1524 */
1525 retries = 10;
1526 success = 0;
1527 while (retries--) {
1528 struct list_head *head_page, *prev_page, *r;
1529 struct list_head *last_page, *first_page;
1530 struct list_head *head_page_with_bit;
77ae365e 1531
5040b4b7 1532 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1533 if (!head_page)
1534 break;
5040b4b7
VN
1535 prev_page = head_page->prev;
1536
1537 first_page = pages->next;
1538 last_page = pages->prev;
1539
1540 head_page_with_bit = (struct list_head *)
1541 ((unsigned long)head_page | RB_PAGE_HEAD);
1542
1543 last_page->next = head_page_with_bit;
1544 first_page->prev = prev_page;
1545
1546 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1547
1548 if (r == head_page_with_bit) {
1549 /*
1550 * yay, we replaced the page pointer to our new list,
1551 * now, we just have to update to head page's prev
1552 * pointer to point to end of list
1553 */
1554 head_page->prev = last_page;
1555 success = 1;
1556 break;
1557 }
7a8e76a3 1558 }
7a8e76a3 1559
5040b4b7
VN
1560 if (success)
1561 INIT_LIST_HEAD(pages);
1562 /*
1563 * If we weren't successful in adding in new pages, warn and stop
1564 * tracing
1565 */
1566 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1567 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1568
1569 /* free pages if they weren't inserted */
1570 if (!success) {
1571 struct buffer_page *bpage, *tmp;
1572 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1573 list) {
1574 list_del_init(&bpage->list);
1575 free_buffer_page(bpage);
1576 }
1577 }
1578 return success;
7a8e76a3
SR
1579}
1580
83f40318 1581static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1582{
5040b4b7
VN
1583 int success;
1584
438ced17 1585 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1586 success = rb_insert_pages(cpu_buffer);
438ced17 1587 else
5040b4b7
VN
1588 success = rb_remove_pages(cpu_buffer,
1589 -cpu_buffer->nr_pages_to_update);
83f40318 1590
5040b4b7
VN
1591 if (success)
1592 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1593}
1594
1595static void update_pages_handler(struct work_struct *work)
1596{
1597 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1598 struct ring_buffer_per_cpu, update_pages_work);
1599 rb_update_pages(cpu_buffer);
05fdd70d 1600 complete(&cpu_buffer->update_done);
438ced17
VN
1601}
1602
7a8e76a3
SR
1603/**
1604 * ring_buffer_resize - resize the ring buffer
1605 * @buffer: the buffer to resize.
1606 * @size: the new size.
d611851b 1607 * @cpu_id: the cpu buffer to resize
7a8e76a3 1608 *
7a8e76a3
SR
1609 * Minimum size is 2 * BUF_PAGE_SIZE.
1610 *
83f40318 1611 * Returns 0 on success and < 0 on failure.
7a8e76a3 1612 */
438ced17
VN
1613int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1614 int cpu_id)
7a8e76a3
SR
1615{
1616 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1617 unsigned long nr_pages;
83f40318 1618 int cpu, err = 0;
7a8e76a3 1619
ee51a1de
IM
1620 /*
1621 * Always succeed at resizing a non-existent buffer:
1622 */
1623 if (!buffer)
1624 return size;
1625
6a31e1f1
SR
1626 /* Make sure the requested buffer exists */
1627 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1628 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1629 return size;
1630
59643d15 1631 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1632
1633 /* we need a minimum of two pages */
59643d15
SRRH
1634 if (nr_pages < 2)
1635 nr_pages = 2;
7a8e76a3 1636
59643d15 1637 size = nr_pages * BUF_PAGE_SIZE;
18421015 1638
83f40318
VN
1639 /*
1640 * Don't succeed if resizing is disabled, as a reader might be
1641 * manipulating the ring buffer and is expecting a sane state while
1642 * this is true.
1643 */
1644 if (atomic_read(&buffer->resize_disabled))
1645 return -EBUSY;
18421015 1646
83f40318 1647 /* prevent another thread from changing buffer sizes */
7a8e76a3 1648 mutex_lock(&buffer->mutex);
7a8e76a3 1649
438ced17
VN
1650 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1651 /* calculate the pages to update */
7a8e76a3
SR
1652 for_each_buffer_cpu(buffer, cpu) {
1653 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1654
438ced17
VN
1655 cpu_buffer->nr_pages_to_update = nr_pages -
1656 cpu_buffer->nr_pages;
438ced17
VN
1657 /*
1658 * nothing more to do for removing pages or no update
1659 */
1660 if (cpu_buffer->nr_pages_to_update <= 0)
1661 continue;
d7ec4bfe 1662 /*
438ced17
VN
1663 * to add pages, make sure all new pages can be
1664 * allocated without receiving ENOMEM
d7ec4bfe 1665 */
438ced17
VN
1666 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1667 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1668 &cpu_buffer->new_pages, cpu)) {
438ced17 1669 /* not enough memory for new pages */
83f40318
VN
1670 err = -ENOMEM;
1671 goto out_err;
1672 }
1673 }
1674
1675 get_online_cpus();
1676 /*
1677 * Fire off all the required work handlers
05fdd70d 1678 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1679 * since we can change their buffer sizes without any race.
1680 */
1681 for_each_buffer_cpu(buffer, cpu) {
1682 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1683 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1684 continue;
1685
021c5b34
CM
1686 /* Can't run something on an offline CPU. */
1687 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1688 rb_update_pages(cpu_buffer);
1689 cpu_buffer->nr_pages_to_update = 0;
1690 } else {
05fdd70d
VN
1691 schedule_work_on(cpu,
1692 &cpu_buffer->update_pages_work);
f5eb5588 1693 }
7a8e76a3 1694 }
7a8e76a3 1695
438ced17
VN
1696 /* wait for all the updates to complete */
1697 for_each_buffer_cpu(buffer, cpu) {
1698 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1699 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1700 continue;
1701
05fdd70d
VN
1702 if (cpu_online(cpu))
1703 wait_for_completion(&cpu_buffer->update_done);
83f40318 1704 cpu_buffer->nr_pages_to_update = 0;
438ced17 1705 }
83f40318
VN
1706
1707 put_online_cpus();
438ced17 1708 } else {
8e49f418
VN
1709 /* Make sure this CPU has been intitialized */
1710 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1711 goto out;
1712
438ced17 1713 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1714
438ced17
VN
1715 if (nr_pages == cpu_buffer->nr_pages)
1716 goto out;
7a8e76a3 1717
438ced17
VN
1718 cpu_buffer->nr_pages_to_update = nr_pages -
1719 cpu_buffer->nr_pages;
1720
1721 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1722 if (cpu_buffer->nr_pages_to_update > 0 &&
1723 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1724 &cpu_buffer->new_pages, cpu_id)) {
1725 err = -ENOMEM;
1726 goto out_err;
1727 }
438ced17 1728
83f40318
VN
1729 get_online_cpus();
1730
021c5b34
CM
1731 /* Can't run something on an offline CPU. */
1732 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1733 rb_update_pages(cpu_buffer);
1734 else {
83f40318
VN
1735 schedule_work_on(cpu_id,
1736 &cpu_buffer->update_pages_work);
05fdd70d 1737 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1738 }
83f40318 1739
83f40318 1740 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1741 put_online_cpus();
438ced17 1742 }
7a8e76a3
SR
1743
1744 out:
659f451f
SR
1745 /*
1746 * The ring buffer resize can happen with the ring buffer
1747 * enabled, so that the update disturbs the tracing as little
1748 * as possible. But if the buffer is disabled, we do not need
1749 * to worry about that, and we can take the time to verify
1750 * that the buffer is not corrupt.
1751 */
1752 if (atomic_read(&buffer->record_disabled)) {
1753 atomic_inc(&buffer->record_disabled);
1754 /*
1755 * Even though the buffer was disabled, we must make sure
1756 * that it is truly disabled before calling rb_check_pages.
1757 * There could have been a race between checking
1758 * record_disable and incrementing it.
1759 */
1760 synchronize_sched();
1761 for_each_buffer_cpu(buffer, cpu) {
1762 cpu_buffer = buffer->buffers[cpu];
1763 rb_check_pages(cpu_buffer);
1764 }
1765 atomic_dec(&buffer->record_disabled);
1766 }
1767
7a8e76a3 1768 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1769 return size;
1770
83f40318 1771 out_err:
438ced17
VN
1772 for_each_buffer_cpu(buffer, cpu) {
1773 struct buffer_page *bpage, *tmp;
83f40318 1774
438ced17 1775 cpu_buffer = buffer->buffers[cpu];
438ced17 1776 cpu_buffer->nr_pages_to_update = 0;
83f40318 1777
438ced17
VN
1778 if (list_empty(&cpu_buffer->new_pages))
1779 continue;
83f40318 1780
438ced17
VN
1781 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1782 list) {
1783 list_del_init(&bpage->list);
1784 free_buffer_page(bpage);
1785 }
7a8e76a3 1786 }
641d2f63 1787 mutex_unlock(&buffer->mutex);
83f40318 1788 return err;
7a8e76a3 1789}
c4f50183 1790EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1791
750912fa
DS
1792void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1793{
1794 mutex_lock(&buffer->mutex);
1795 if (val)
1796 buffer->flags |= RB_FL_OVERWRITE;
1797 else
1798 buffer->flags &= ~RB_FL_OVERWRITE;
1799 mutex_unlock(&buffer->mutex);
1800}
1801EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1802
2289d567 1803static __always_inline void *
044fa782 1804__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1805{
044fa782 1806 return bpage->data + index;
8789a9e7
SR
1807}
1808
2289d567 1809static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1810{
044fa782 1811 return bpage->page->data + index;
7a8e76a3
SR
1812}
1813
2289d567 1814static __always_inline struct ring_buffer_event *
d769041f 1815rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1816{
6f807acd
SR
1817 return __rb_page_index(cpu_buffer->reader_page,
1818 cpu_buffer->reader_page->read);
1819}
1820
2289d567 1821static __always_inline struct ring_buffer_event *
7a8e76a3
SR
1822rb_iter_head_event(struct ring_buffer_iter *iter)
1823{
6f807acd 1824 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1825}
1826
2289d567 1827static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
bf41a158 1828{
abc9b56d 1829 return local_read(&bpage->page->commit);
bf41a158
SR
1830}
1831
25985edc 1832/* Size is determined by what has been committed */
2289d567 1833static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
1834{
1835 return rb_page_commit(bpage);
1836}
1837
2289d567 1838static __always_inline unsigned
bf41a158
SR
1839rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1840{
1841 return rb_page_commit(cpu_buffer->commit_page);
1842}
1843
2289d567 1844static __always_inline unsigned
bf41a158
SR
1845rb_event_index(struct ring_buffer_event *event)
1846{
1847 unsigned long addr = (unsigned long)event;
1848
22f470f8 1849 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1850}
1851
34a148bf 1852static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1853{
1854 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1855
1856 /*
1857 * The iterator could be on the reader page (it starts there).
1858 * But the head could have moved, since the reader was
1859 * found. Check for this case and assign the iterator
1860 * to the head page instead of next.
1861 */
1862 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1863 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1864 else
1865 rb_inc_page(cpu_buffer, &iter->head_page);
1866
abc9b56d 1867 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1868 iter->head = 0;
1869}
1870
77ae365e
SR
1871/*
1872 * rb_handle_head_page - writer hit the head page
1873 *
1874 * Returns: +1 to retry page
1875 * 0 to continue
1876 * -1 on error
1877 */
1878static int
1879rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1880 struct buffer_page *tail_page,
1881 struct buffer_page *next_page)
1882{
1883 struct buffer_page *new_head;
1884 int entries;
1885 int type;
1886 int ret;
1887
1888 entries = rb_page_entries(next_page);
1889
1890 /*
1891 * The hard part is here. We need to move the head
1892 * forward, and protect against both readers on
1893 * other CPUs and writers coming in via interrupts.
1894 */
1895 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1896 RB_PAGE_HEAD);
1897
1898 /*
1899 * type can be one of four:
1900 * NORMAL - an interrupt already moved it for us
1901 * HEAD - we are the first to get here.
1902 * UPDATE - we are the interrupt interrupting
1903 * a current move.
1904 * MOVED - a reader on another CPU moved the next
1905 * pointer to its reader page. Give up
1906 * and try again.
1907 */
1908
1909 switch (type) {
1910 case RB_PAGE_HEAD:
1911 /*
1912 * We changed the head to UPDATE, thus
1913 * it is our responsibility to update
1914 * the counters.
1915 */
1916 local_add(entries, &cpu_buffer->overrun);
c64e148a 1917 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1918
1919 /*
1920 * The entries will be zeroed out when we move the
1921 * tail page.
1922 */
1923
1924 /* still more to do */
1925 break;
1926
1927 case RB_PAGE_UPDATE:
1928 /*
1929 * This is an interrupt that interrupt the
1930 * previous update. Still more to do.
1931 */
1932 break;
1933 case RB_PAGE_NORMAL:
1934 /*
1935 * An interrupt came in before the update
1936 * and processed this for us.
1937 * Nothing left to do.
1938 */
1939 return 1;
1940 case RB_PAGE_MOVED:
1941 /*
1942 * The reader is on another CPU and just did
1943 * a swap with our next_page.
1944 * Try again.
1945 */
1946 return 1;
1947 default:
1948 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1949 return -1;
1950 }
1951
1952 /*
1953 * Now that we are here, the old head pointer is
1954 * set to UPDATE. This will keep the reader from
1955 * swapping the head page with the reader page.
1956 * The reader (on another CPU) will spin till
1957 * we are finished.
1958 *
1959 * We just need to protect against interrupts
1960 * doing the job. We will set the next pointer
1961 * to HEAD. After that, we set the old pointer
1962 * to NORMAL, but only if it was HEAD before.
1963 * otherwise we are an interrupt, and only
1964 * want the outer most commit to reset it.
1965 */
1966 new_head = next_page;
1967 rb_inc_page(cpu_buffer, &new_head);
1968
1969 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1970 RB_PAGE_NORMAL);
1971
1972 /*
1973 * Valid returns are:
1974 * HEAD - an interrupt came in and already set it.
1975 * NORMAL - One of two things:
1976 * 1) We really set it.
1977 * 2) A bunch of interrupts came in and moved
1978 * the page forward again.
1979 */
1980 switch (ret) {
1981 case RB_PAGE_HEAD:
1982 case RB_PAGE_NORMAL:
1983 /* OK */
1984 break;
1985 default:
1986 RB_WARN_ON(cpu_buffer, 1);
1987 return -1;
1988 }
1989
1990 /*
1991 * It is possible that an interrupt came in,
1992 * set the head up, then more interrupts came in
1993 * and moved it again. When we get back here,
1994 * the page would have been set to NORMAL but we
1995 * just set it back to HEAD.
1996 *
1997 * How do you detect this? Well, if that happened
1998 * the tail page would have moved.
1999 */
2000 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2001 struct buffer_page *buffer_tail_page;
2002
2003 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2004 /*
2005 * If the tail had moved passed next, then we need
2006 * to reset the pointer.
2007 */
8573636e
SRRH
2008 if (buffer_tail_page != tail_page &&
2009 buffer_tail_page != next_page)
77ae365e
SR
2010 rb_head_page_set_normal(cpu_buffer, new_head,
2011 next_page,
2012 RB_PAGE_HEAD);
2013 }
2014
2015 /*
2016 * If this was the outer most commit (the one that
2017 * changed the original pointer from HEAD to UPDATE),
2018 * then it is up to us to reset it to NORMAL.
2019 */
2020 if (type == RB_PAGE_HEAD) {
2021 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2022 tail_page,
2023 RB_PAGE_UPDATE);
2024 if (RB_WARN_ON(cpu_buffer,
2025 ret != RB_PAGE_UPDATE))
2026 return -1;
2027 }
2028
2029 return 0;
2030}
2031
c7b09308
SR
2032static inline void
2033rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2034 unsigned long tail, struct rb_event_info *info)
c7b09308 2035{
fcc742ea 2036 struct buffer_page *tail_page = info->tail_page;
c7b09308 2037 struct ring_buffer_event *event;
fcc742ea 2038 unsigned long length = info->length;
c7b09308
SR
2039
2040 /*
2041 * Only the event that crossed the page boundary
2042 * must fill the old tail_page with padding.
2043 */
2044 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2045 /*
2046 * If the page was filled, then we still need
2047 * to update the real_end. Reset it to zero
2048 * and the reader will ignore it.
2049 */
2050 if (tail == BUF_PAGE_SIZE)
2051 tail_page->real_end = 0;
2052
c7b09308
SR
2053 local_sub(length, &tail_page->write);
2054 return;
2055 }
2056
2057 event = __rb_page_index(tail_page, tail);
b0b7065b 2058 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2059
c64e148a
VN
2060 /* account for padding bytes */
2061 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2062
ff0ff84a
SR
2063 /*
2064 * Save the original length to the meta data.
2065 * This will be used by the reader to add lost event
2066 * counter.
2067 */
2068 tail_page->real_end = tail;
2069
c7b09308
SR
2070 /*
2071 * If this event is bigger than the minimum size, then
2072 * we need to be careful that we don't subtract the
2073 * write counter enough to allow another writer to slip
2074 * in on this page.
2075 * We put in a discarded commit instead, to make sure
2076 * that this space is not used again.
2077 *
2078 * If we are less than the minimum size, we don't need to
2079 * worry about it.
2080 */
2081 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2082 /* No room for any events */
2083
2084 /* Mark the rest of the page with padding */
2085 rb_event_set_padding(event);
2086
2087 /* Set the write back to the previous setting */
2088 local_sub(length, &tail_page->write);
2089 return;
2090 }
2091
2092 /* Put in a discarded event */
2093 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2094 event->type_len = RINGBUF_TYPE_PADDING;
2095 /* time delta must be non zero */
2096 event->time_delta = 1;
c7b09308
SR
2097
2098 /* Set write to end of buffer */
2099 length = (tail + length) - BUF_PAGE_SIZE;
2100 local_sub(length, &tail_page->write);
2101}
6634ff26 2102
4239c38f
SRRH
2103static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2104
747e94ae
SR
2105/*
2106 * This is the slow path, force gcc not to inline it.
2107 */
2108static noinline struct ring_buffer_event *
6634ff26 2109rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2110 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2111{
fcc742ea 2112 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2113 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2114 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2115 struct buffer_page *next_page;
2116 int ret;
aa20ae84
SR
2117
2118 next_page = tail_page;
2119
aa20ae84
SR
2120 rb_inc_page(cpu_buffer, &next_page);
2121
aa20ae84
SR
2122 /*
2123 * If for some reason, we had an interrupt storm that made
2124 * it all the way around the buffer, bail, and warn
2125 * about it.
2126 */
2127 if (unlikely(next_page == commit_page)) {
77ae365e 2128 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2129 goto out_reset;
2130 }
2131
77ae365e
SR
2132 /*
2133 * This is where the fun begins!
2134 *
2135 * We are fighting against races between a reader that
2136 * could be on another CPU trying to swap its reader
2137 * page with the buffer head.
2138 *
2139 * We are also fighting against interrupts coming in and
2140 * moving the head or tail on us as well.
2141 *
2142 * If the next page is the head page then we have filled
2143 * the buffer, unless the commit page is still on the
2144 * reader page.
2145 */
2146 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2147
77ae365e
SR
2148 /*
2149 * If the commit is not on the reader page, then
2150 * move the header page.
2151 */
2152 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2153 /*
2154 * If we are not in overwrite mode,
2155 * this is easy, just stop here.
2156 */
884bfe89
SP
2157 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2158 local_inc(&cpu_buffer->dropped_events);
77ae365e 2159 goto out_reset;
884bfe89 2160 }
77ae365e
SR
2161
2162 ret = rb_handle_head_page(cpu_buffer,
2163 tail_page,
2164 next_page);
2165 if (ret < 0)
2166 goto out_reset;
2167 if (ret)
2168 goto out_again;
2169 } else {
2170 /*
2171 * We need to be careful here too. The
2172 * commit page could still be on the reader
2173 * page. We could have a small buffer, and
2174 * have filled up the buffer with events
2175 * from interrupts and such, and wrapped.
2176 *
2177 * Note, if the tail page is also the on the
2178 * reader_page, we let it move out.
2179 */
2180 if (unlikely((cpu_buffer->commit_page !=
2181 cpu_buffer->tail_page) &&
2182 (cpu_buffer->commit_page ==
2183 cpu_buffer->reader_page))) {
2184 local_inc(&cpu_buffer->commit_overrun);
2185 goto out_reset;
2186 }
aa20ae84
SR
2187 }
2188 }
2189
70004986 2190 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2191
77ae365e 2192 out_again:
aa20ae84 2193
fcc742ea 2194 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2195
4239c38f
SRRH
2196 /* Commit what we have for now. */
2197 rb_end_commit(cpu_buffer);
2198 /* rb_end_commit() decs committing */
2199 local_inc(&cpu_buffer->committing);
2200
aa20ae84
SR
2201 /* fail and let the caller try again */
2202 return ERR_PTR(-EAGAIN);
2203
45141d46 2204 out_reset:
6f3b3440 2205 /* reset write */
fcc742ea 2206 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2207
bf41a158 2208 return NULL;
7a8e76a3
SR
2209}
2210
d90fd774
SRRH
2211/* Slow path, do not inline */
2212static noinline struct ring_buffer_event *
2213rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2214{
d90fd774 2215 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2216
d90fd774
SRRH
2217 /* Not the first event on the page? */
2218 if (rb_event_index(event)) {
2219 event->time_delta = delta & TS_MASK;
2220 event->array[0] = delta >> TS_SHIFT;
2221 } else {
2222 /* nope, just zero it */
2223 event->time_delta = 0;
2224 event->array[0] = 0;
2225 }
a4543a2f 2226
d90fd774
SRRH
2227 return skip_time_extend(event);
2228}
a4543a2f 2229
cdb2a0a9 2230static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2231 struct ring_buffer_event *event);
2232
d90fd774
SRRH
2233/**
2234 * rb_update_event - update event type and data
2235 * @event: the event to update
2236 * @type: the type of event
2237 * @length: the size of the event field in the ring buffer
2238 *
2239 * Update the type and data fields of the event. The length
2240 * is the actual size that is written to the ring buffer,
2241 * and with this, we can determine what to place into the
2242 * data field.
2243 */
b7dc42fd 2244static void
d90fd774
SRRH
2245rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2246 struct ring_buffer_event *event,
2247 struct rb_event_info *info)
2248{
2249 unsigned length = info->length;
2250 u64 delta = info->delta;
a4543a2f 2251
b7dc42fd
SRRH
2252 /* Only a commit updates the timestamp */
2253 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2254 delta = 0;
2255
a4543a2f 2256 /*
d90fd774
SRRH
2257 * If we need to add a timestamp, then we
2258 * add it to the start of the resevered space.
a4543a2f 2259 */
d90fd774
SRRH
2260 if (unlikely(info->add_timestamp)) {
2261 event = rb_add_time_stamp(event, delta);
2262 length -= RB_LEN_TIME_EXTEND;
2263 delta = 0;
a4543a2f
SRRH
2264 }
2265
d90fd774
SRRH
2266 event->time_delta = delta;
2267 length -= RB_EVNT_HDR_SIZE;
2268 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2269 event->type_len = 0;
2270 event->array[0] = length;
2271 } else
2272 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2273}
2274
2275static unsigned rb_calculate_event_length(unsigned length)
2276{
2277 struct ring_buffer_event event; /* Used only for sizeof array */
2278
2279 /* zero length can cause confusions */
2280 if (!length)
2281 length++;
2282
2283 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2284 length += sizeof(event.array[0]);
2285
2286 length += RB_EVNT_HDR_SIZE;
2287 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2288
2289 /*
2290 * In case the time delta is larger than the 27 bits for it
2291 * in the header, we need to add a timestamp. If another
2292 * event comes in when trying to discard this one to increase
2293 * the length, then the timestamp will be added in the allocated
2294 * space of this event. If length is bigger than the size needed
2295 * for the TIME_EXTEND, then padding has to be used. The events
2296 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2297 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2298 * As length is a multiple of 4, we only need to worry if it
2299 * is 12 (RB_LEN_TIME_EXTEND + 4).
2300 */
2301 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2302 length += RB_ALIGNMENT;
2303
2304 return length;
2305}
2306
2307#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2308static inline bool sched_clock_stable(void)
2309{
2310 return true;
2311}
2312#endif
2313
2314static inline int
2315rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2316 struct ring_buffer_event *event)
2317{
2318 unsigned long new_index, old_index;
2319 struct buffer_page *bpage;
2320 unsigned long index;
2321 unsigned long addr;
2322
2323 new_index = rb_event_index(event);
2324 old_index = new_index + rb_event_ts_length(event);
2325 addr = (unsigned long)event;
2326 addr &= PAGE_MASK;
2327
8573636e 2328 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2329
2330 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2331 unsigned long write_mask =
2332 local_read(&bpage->write) & ~RB_WRITE_MASK;
2333 unsigned long event_length = rb_event_length(event);
2334 /*
2335 * This is on the tail page. It is possible that
2336 * a write could come in and move the tail page
2337 * and write to the next page. That is fine
2338 * because we just shorten what is on this page.
2339 */
2340 old_index += write_mask;
2341 new_index += write_mask;
2342 index = local_cmpxchg(&bpage->write, old_index, new_index);
2343 if (index == old_index) {
2344 /* update counters */
2345 local_sub(event_length, &cpu_buffer->entries_bytes);
2346 return 1;
2347 }
2348 }
2349
2350 /* could not discard */
2351 return 0;
2352}
2353
2354static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2355{
2356 local_inc(&cpu_buffer->committing);
2357 local_inc(&cpu_buffer->commits);
2358}
2359
38e11df1 2360static __always_inline void
d90fd774
SRRH
2361rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2362{
2363 unsigned long max_count;
2364
2365 /*
2366 * We only race with interrupts and NMIs on this CPU.
2367 * If we own the commit event, then we can commit
2368 * all others that interrupted us, since the interruptions
2369 * are in stack format (they finish before they come
2370 * back to us). This allows us to do a simple loop to
2371 * assign the commit to the tail.
2372 */
2373 again:
2374 max_count = cpu_buffer->nr_pages * 100;
2375
8573636e 2376 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2377 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2378 return;
2379 if (RB_WARN_ON(cpu_buffer,
2380 rb_is_reader_page(cpu_buffer->tail_page)))
2381 return;
2382 local_set(&cpu_buffer->commit_page->page->commit,
2383 rb_page_write(cpu_buffer->commit_page));
2384 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
70004986
SRRH
2385 /* Only update the write stamp if the page has an event */
2386 if (rb_page_write(cpu_buffer->commit_page))
2387 cpu_buffer->write_stamp =
2388 cpu_buffer->commit_page->page->time_stamp;
d90fd774
SRRH
2389 /* add barrier to keep gcc from optimizing too much */
2390 barrier();
2391 }
2392 while (rb_commit_index(cpu_buffer) !=
2393 rb_page_write(cpu_buffer->commit_page)) {
2394
2395 local_set(&cpu_buffer->commit_page->page->commit,
2396 rb_page_write(cpu_buffer->commit_page));
2397 RB_WARN_ON(cpu_buffer,
2398 local_read(&cpu_buffer->commit_page->page->commit) &
2399 ~RB_WRITE_MASK);
2400 barrier();
2401 }
2402
2403 /* again, keep gcc from optimizing */
2404 barrier();
2405
2406 /*
2407 * If an interrupt came in just after the first while loop
2408 * and pushed the tail page forward, we will be left with
2409 * a dangling commit that will never go forward.
2410 */
8573636e 2411 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2412 goto again;
2413}
2414
38e11df1 2415static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2416{
2417 unsigned long commits;
2418
2419 if (RB_WARN_ON(cpu_buffer,
2420 !local_read(&cpu_buffer->committing)))
2421 return;
2422
2423 again:
2424 commits = local_read(&cpu_buffer->commits);
2425 /* synchronize with interrupts */
2426 barrier();
2427 if (local_read(&cpu_buffer->committing) == 1)
2428 rb_set_commit_to_write(cpu_buffer);
2429
2430 local_dec(&cpu_buffer->committing);
2431
2432 /* synchronize with interrupts */
2433 barrier();
2434
2435 /*
2436 * Need to account for interrupts coming in between the
2437 * updating of the commit page and the clearing of the
2438 * committing counter.
2439 */
2440 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2441 !local_read(&cpu_buffer->committing)) {
2442 local_inc(&cpu_buffer->committing);
2443 goto again;
2444 }
2445}
2446
2447static inline void rb_event_discard(struct ring_buffer_event *event)
2448{
2449 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2450 event = skip_time_extend(event);
2451
2452 /* array[0] holds the actual length for the discarded event */
2453 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2454 event->type_len = RINGBUF_TYPE_PADDING;
2455 /* time delta must be non zero */
2456 if (!event->time_delta)
2457 event->time_delta = 1;
2458}
2459
babe3fce 2460static __always_inline bool
d90fd774
SRRH
2461rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2462 struct ring_buffer_event *event)
2463{
2464 unsigned long addr = (unsigned long)event;
2465 unsigned long index;
2466
2467 index = rb_event_index(event);
2468 addr &= PAGE_MASK;
2469
2470 return cpu_buffer->commit_page->page == (void *)addr &&
2471 rb_commit_index(cpu_buffer) == index;
2472}
2473
babe3fce 2474static __always_inline void
d90fd774
SRRH
2475rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2476 struct ring_buffer_event *event)
2477{
2478 u64 delta;
2479
2480 /*
2481 * The event first in the commit queue updates the
2482 * time stamp.
2483 */
2484 if (rb_event_is_commit(cpu_buffer, event)) {
2485 /*
2486 * A commit event that is first on a page
2487 * updates the write timestamp with the page stamp
2488 */
2489 if (!rb_event_index(event))
2490 cpu_buffer->write_stamp =
2491 cpu_buffer->commit_page->page->time_stamp;
2492 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2493 delta = event->array[0];
2494 delta <<= TS_SHIFT;
2495 delta += event->time_delta;
2496 cpu_buffer->write_stamp += delta;
2497 } else
2498 cpu_buffer->write_stamp += event->time_delta;
2499 }
2500}
2501
2502static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503 struct ring_buffer_event *event)
2504{
2505 local_inc(&cpu_buffer->entries);
2506 rb_update_write_stamp(cpu_buffer, event);
2507 rb_end_commit(cpu_buffer);
2508}
2509
2510static __always_inline void
2511rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2512{
2513 bool pagebusy;
2514
2515 if (buffer->irq_work.waiters_pending) {
2516 buffer->irq_work.waiters_pending = false;
2517 /* irq_work_queue() supplies it's own memory barriers */
2518 irq_work_queue(&buffer->irq_work.work);
2519 }
2520
2521 if (cpu_buffer->irq_work.waiters_pending) {
2522 cpu_buffer->irq_work.waiters_pending = false;
2523 /* irq_work_queue() supplies it's own memory barriers */
2524 irq_work_queue(&cpu_buffer->irq_work.work);
2525 }
2526
2527 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2528
2529 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2530 cpu_buffer->irq_work.wakeup_full = true;
2531 cpu_buffer->irq_work.full_waiters_pending = false;
2532 /* irq_work_queue() supplies it's own memory barriers */
2533 irq_work_queue(&cpu_buffer->irq_work.work);
2534 }
2535}
2536
2537/*
2538 * The lock and unlock are done within a preempt disable section.
2539 * The current_context per_cpu variable can only be modified
2540 * by the current task between lock and unlock. But it can
2541 * be modified more than once via an interrupt. To pass this
2542 * information from the lock to the unlock without having to
2543 * access the 'in_interrupt()' functions again (which do show
2544 * a bit of overhead in something as critical as function tracing,
2545 * we use a bitmask trick.
2546 *
2547 * bit 0 = NMI context
2548 * bit 1 = IRQ context
2549 * bit 2 = SoftIRQ context
2550 * bit 3 = normal context.
2551 *
2552 * This works because this is the order of contexts that can
2553 * preempt other contexts. A SoftIRQ never preempts an IRQ
2554 * context.
2555 *
2556 * When the context is determined, the corresponding bit is
2557 * checked and set (if it was set, then a recursion of that context
2558 * happened).
2559 *
2560 * On unlock, we need to clear this bit. To do so, just subtract
2561 * 1 from the current_context and AND it to itself.
2562 *
2563 * (binary)
2564 * 101 - 1 = 100
2565 * 101 & 100 = 100 (clearing bit zero)
2566 *
2567 * 1010 - 1 = 1001
2568 * 1010 & 1001 = 1000 (clearing bit 1)
2569 *
2570 * The least significant bit can be cleared this way, and it
2571 * just so happens that it is the same bit corresponding to
2572 * the current context.
2573 */
2574
2575static __always_inline int
2576trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2577{
2578 unsigned int val = cpu_buffer->current_context;
2579 int bit;
2580
2581 if (in_interrupt()) {
2582 if (in_nmi())
2583 bit = RB_CTX_NMI;
2584 else if (in_irq())
2585 bit = RB_CTX_IRQ;
2586 else
2587 bit = RB_CTX_SOFTIRQ;
2588 } else
2589 bit = RB_CTX_NORMAL;
2590
2591 if (unlikely(val & (1 << bit)))
2592 return 1;
2593
2594 val |= (1 << bit);
2595 cpu_buffer->current_context = val;
2596
2597 return 0;
2598}
2599
2600static __always_inline void
2601trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2602{
2603 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2604}
2605
2606/**
2607 * ring_buffer_unlock_commit - commit a reserved
2608 * @buffer: The buffer to commit to
2609 * @event: The event pointer to commit.
2610 *
2611 * This commits the data to the ring buffer, and releases any locks held.
2612 *
2613 * Must be paired with ring_buffer_lock_reserve.
2614 */
2615int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2616 struct ring_buffer_event *event)
2617{
2618 struct ring_buffer_per_cpu *cpu_buffer;
2619 int cpu = raw_smp_processor_id();
2620
2621 cpu_buffer = buffer->buffers[cpu];
2622
2623 rb_commit(cpu_buffer, event);
2624
2625 rb_wakeups(buffer, cpu_buffer);
2626
2627 trace_recursive_unlock(cpu_buffer);
2628
2629 preempt_enable_notrace();
2630
2631 return 0;
2632}
2633EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2634
2635static noinline void
2636rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2637 struct rb_event_info *info)
2638{
d90fd774
SRRH
2639 WARN_ONCE(info->delta > (1ULL << 59),
2640 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2641 (unsigned long long)info->delta,
2642 (unsigned long long)info->ts,
2643 (unsigned long long)cpu_buffer->write_stamp,
2644 sched_clock_stable() ? "" :
2645 "If you just came from a suspend/resume,\n"
2646 "please switch to the trace global clock:\n"
2647 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
b7dc42fd 2648 info->add_timestamp = 1;
9826b273
SRRH
2649}
2650
6634ff26
SR
2651static struct ring_buffer_event *
2652__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2653 struct rb_event_info *info)
6634ff26 2654{
6634ff26 2655 struct ring_buffer_event *event;
fcc742ea 2656 struct buffer_page *tail_page;
6634ff26 2657 unsigned long tail, write;
b7dc42fd
SRRH
2658
2659 /*
2660 * If the time delta since the last event is too big to
2661 * hold in the time field of the event, then we append a
2662 * TIME EXTEND event ahead of the data event.
2663 */
2664 if (unlikely(info->add_timestamp))
2665 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2666
8573636e
SRRH
2667 /* Don't let the compiler play games with cpu_buffer->tail_page */
2668 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2669 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2670
2671 /* set write to only the index of the write */
2672 write &= RB_WRITE_MASK;
fcc742ea 2673 tail = write - info->length;
6634ff26 2674
6634ff26 2675 /*
a4543a2f 2676 * If this is the first commit on the page, then it has the same
b7dc42fd 2677 * timestamp as the page itself.
6634ff26 2678 */
b7dc42fd 2679 if (!tail)
a4543a2f
SRRH
2680 info->delta = 0;
2681
b7dc42fd
SRRH
2682 /* See if we shot pass the end of this buffer page */
2683 if (unlikely(write > BUF_PAGE_SIZE))
2684 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2685
b7dc42fd
SRRH
2686 /* We reserved something on the buffer */
2687
2688 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2689 kmemcheck_annotate_bitfield(event, bitfield);
2690 rb_update_event(cpu_buffer, event, info);
2691
2692 local_inc(&tail_page->entries);
6634ff26 2693
b7dc42fd
SRRH
2694 /*
2695 * If this is the first commit on the page, then update
2696 * its timestamp.
2697 */
2698 if (!tail)
2699 tail_page->page->time_stamp = info->ts;
2700
c64e148a 2701 /* account for these added bytes */
fcc742ea 2702 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2703
6634ff26
SR
2704 return event;
2705}
2706
fa7ffb39 2707static __always_inline struct ring_buffer_event *
62f0b3eb
SR
2708rb_reserve_next_event(struct ring_buffer *buffer,
2709 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2710 unsigned long length)
7a8e76a3
SR
2711{
2712 struct ring_buffer_event *event;
fcc742ea 2713 struct rb_event_info info;
818e3dd3 2714 int nr_loops = 0;
b7dc42fd 2715 u64 diff;
7a8e76a3 2716
fa743953
SR
2717 rb_start_commit(cpu_buffer);
2718
85bac32c 2719#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2720 /*
2721 * Due to the ability to swap a cpu buffer from a buffer
2722 * it is possible it was swapped before we committed.
2723 * (committing stops a swap). We check for it here and
2724 * if it happened, we have to fail the write.
2725 */
2726 barrier();
2727 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2728 local_dec(&cpu_buffer->committing);
2729 local_dec(&cpu_buffer->commits);
2730 return NULL;
2731 }
85bac32c 2732#endif
b7dc42fd 2733
fcc742ea 2734 info.length = rb_calculate_event_length(length);
a4543a2f 2735 again:
b7dc42fd
SRRH
2736 info.add_timestamp = 0;
2737 info.delta = 0;
2738
818e3dd3
SR
2739 /*
2740 * We allow for interrupts to reenter here and do a trace.
2741 * If one does, it will cause this original code to loop
2742 * back here. Even with heavy interrupts happening, this
2743 * should only happen a few times in a row. If this happens
2744 * 1000 times in a row, there must be either an interrupt
2745 * storm or we have something buggy.
2746 * Bail!
2747 */
3e89c7bb 2748 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2749 goto out_fail;
818e3dd3 2750
b7dc42fd
SRRH
2751 info.ts = rb_time_stamp(cpu_buffer->buffer);
2752 diff = info.ts - cpu_buffer->write_stamp;
2753
2754 /* make sure this diff is calculated here */
2755 barrier();
2756
2757 /* Did the write stamp get updated already? */
2758 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2759 info.delta = diff;
2760 if (unlikely(test_time_stamp(info.delta)))
2761 rb_handle_timestamp(cpu_buffer, &info);
2762 }
2763
fcc742ea
SRRH
2764 event = __rb_reserve_next(cpu_buffer, &info);
2765
bd1b7cd3
SRRH
2766 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2767 if (info.add_timestamp)
2768 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2769 goto again;
bd1b7cd3 2770 }
bf41a158 2771
fa743953
SR
2772 if (!event)
2773 goto out_fail;
7a8e76a3 2774
7a8e76a3 2775 return event;
fa743953
SR
2776
2777 out_fail:
2778 rb_end_commit(cpu_buffer);
2779 return NULL;
7a8e76a3
SR
2780}
2781
2782/**
2783 * ring_buffer_lock_reserve - reserve a part of the buffer
2784 * @buffer: the ring buffer to reserve from
2785 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2786 *
2787 * Returns a reseverd event on the ring buffer to copy directly to.
2788 * The user of this interface will need to get the body to write into
2789 * and can use the ring_buffer_event_data() interface.
2790 *
2791 * The length is the length of the data needed, not the event length
2792 * which also includes the event header.
2793 *
2794 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2795 * If NULL is returned, then nothing has been allocated or locked.
2796 */
2797struct ring_buffer_event *
0a987751 2798ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2799{
2800 struct ring_buffer_per_cpu *cpu_buffer;
2801 struct ring_buffer_event *event;
5168ae50 2802 int cpu;
7a8e76a3 2803
bf41a158 2804 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2805 preempt_disable_notrace();
bf41a158 2806
3205f806 2807 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2808 goto out;
261842b7 2809
7a8e76a3
SR
2810 cpu = raw_smp_processor_id();
2811
3205f806 2812 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2813 goto out;
7a8e76a3
SR
2814
2815 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2816
3205f806 2817 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2818 goto out;
7a8e76a3 2819
3205f806 2820 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2821 goto out;
7a8e76a3 2822
58a09ec6
SRRH
2823 if (unlikely(trace_recursive_lock(cpu_buffer)))
2824 goto out;
2825
62f0b3eb 2826 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2827 if (!event)
58a09ec6 2828 goto out_unlock;
7a8e76a3
SR
2829
2830 return event;
2831
58a09ec6
SRRH
2832 out_unlock:
2833 trace_recursive_unlock(cpu_buffer);
d769041f 2834 out:
5168ae50 2835 preempt_enable_notrace();
7a8e76a3
SR
2836 return NULL;
2837}
c4f50183 2838EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2839
a1863c21
SR
2840/*
2841 * Decrement the entries to the page that an event is on.
2842 * The event does not even need to exist, only the pointer
2843 * to the page it is on. This may only be called before the commit
2844 * takes place.
2845 */
2846static inline void
2847rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2848 struct ring_buffer_event *event)
2849{
2850 unsigned long addr = (unsigned long)event;
2851 struct buffer_page *bpage = cpu_buffer->commit_page;
2852 struct buffer_page *start;
2853
2854 addr &= PAGE_MASK;
2855
2856 /* Do the likely case first */
2857 if (likely(bpage->page == (void *)addr)) {
2858 local_dec(&bpage->entries);
2859 return;
2860 }
2861
2862 /*
2863 * Because the commit page may be on the reader page we
2864 * start with the next page and check the end loop there.
2865 */
2866 rb_inc_page(cpu_buffer, &bpage);
2867 start = bpage;
2868 do {
2869 if (bpage->page == (void *)addr) {
2870 local_dec(&bpage->entries);
2871 return;
2872 }
2873 rb_inc_page(cpu_buffer, &bpage);
2874 } while (bpage != start);
2875
2876 /* commit not part of this buffer?? */
2877 RB_WARN_ON(cpu_buffer, 1);
2878}
2879
fa1b47dd
SR
2880/**
2881 * ring_buffer_commit_discard - discard an event that has not been committed
2882 * @buffer: the ring buffer
2883 * @event: non committed event to discard
2884 *
dc892f73
SR
2885 * Sometimes an event that is in the ring buffer needs to be ignored.
2886 * This function lets the user discard an event in the ring buffer
2887 * and then that event will not be read later.
2888 *
2889 * This function only works if it is called before the the item has been
2890 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2891 * if another event has not been added behind it.
2892 *
2893 * If another event has been added behind it, it will set the event
2894 * up as discarded, and perform the commit.
2895 *
2896 * If this function is called, do not call ring_buffer_unlock_commit on
2897 * the event.
2898 */
2899void ring_buffer_discard_commit(struct ring_buffer *buffer,
2900 struct ring_buffer_event *event)
2901{
2902 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2903 int cpu;
2904
2905 /* The event is discarded regardless */
f3b9aae1 2906 rb_event_discard(event);
fa1b47dd 2907
fa743953
SR
2908 cpu = smp_processor_id();
2909 cpu_buffer = buffer->buffers[cpu];
2910
fa1b47dd
SR
2911 /*
2912 * This must only be called if the event has not been
2913 * committed yet. Thus we can assume that preemption
2914 * is still disabled.
2915 */
fa743953 2916 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2917
a1863c21 2918 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2919 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2920 goto out;
fa1b47dd
SR
2921
2922 /*
2923 * The commit is still visible by the reader, so we
a1863c21 2924 * must still update the timestamp.
fa1b47dd 2925 */
a1863c21 2926 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2927 out:
fa743953 2928 rb_end_commit(cpu_buffer);
fa1b47dd 2929
58a09ec6 2930 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2931
5168ae50 2932 preempt_enable_notrace();
fa1b47dd
SR
2933
2934}
2935EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2936
7a8e76a3
SR
2937/**
2938 * ring_buffer_write - write data to the buffer without reserving
2939 * @buffer: The ring buffer to write to.
2940 * @length: The length of the data being written (excluding the event header)
2941 * @data: The data to write to the buffer.
2942 *
2943 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2944 * one function. If you already have the data to write to the buffer, it
2945 * may be easier to simply call this function.
2946 *
2947 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2948 * and not the length of the event which would hold the header.
2949 */
2950int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2951 unsigned long length,
2952 void *data)
7a8e76a3
SR
2953{
2954 struct ring_buffer_per_cpu *cpu_buffer;
2955 struct ring_buffer_event *event;
7a8e76a3
SR
2956 void *body;
2957 int ret = -EBUSY;
5168ae50 2958 int cpu;
7a8e76a3 2959
5168ae50 2960 preempt_disable_notrace();
bf41a158 2961
52fbe9cd
LJ
2962 if (atomic_read(&buffer->record_disabled))
2963 goto out;
2964
7a8e76a3
SR
2965 cpu = raw_smp_processor_id();
2966
9e01c1b7 2967 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2968 goto out;
7a8e76a3
SR
2969
2970 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2971
2972 if (atomic_read(&cpu_buffer->record_disabled))
2973 goto out;
2974
be957c44
SR
2975 if (length > BUF_MAX_DATA_SIZE)
2976 goto out;
2977
985e871b
SRRH
2978 if (unlikely(trace_recursive_lock(cpu_buffer)))
2979 goto out;
2980
62f0b3eb 2981 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2982 if (!event)
985e871b 2983 goto out_unlock;
7a8e76a3
SR
2984
2985 body = rb_event_data(event);
2986
2987 memcpy(body, data, length);
2988
2989 rb_commit(cpu_buffer, event);
2990
15693458
SRRH
2991 rb_wakeups(buffer, cpu_buffer);
2992
7a8e76a3 2993 ret = 0;
985e871b
SRRH
2994
2995 out_unlock:
2996 trace_recursive_unlock(cpu_buffer);
2997
7a8e76a3 2998 out:
5168ae50 2999 preempt_enable_notrace();
7a8e76a3
SR
3000
3001 return ret;
3002}
c4f50183 3003EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3004
da58834c 3005static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3006{
3007 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3008 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3009 struct buffer_page *commit = cpu_buffer->commit_page;
3010
77ae365e
SR
3011 /* In case of error, head will be NULL */
3012 if (unlikely(!head))
da58834c 3013 return true;
77ae365e 3014
bf41a158
SR
3015 return reader->read == rb_page_commit(reader) &&
3016 (commit == reader ||
3017 (commit == head &&
3018 head->read == rb_page_commit(commit)));
3019}
3020
7a8e76a3
SR
3021/**
3022 * ring_buffer_record_disable - stop all writes into the buffer
3023 * @buffer: The ring buffer to stop writes to.
3024 *
3025 * This prevents all writes to the buffer. Any attempt to write
3026 * to the buffer after this will fail and return NULL.
3027 *
3028 * The caller should call synchronize_sched() after this.
3029 */
3030void ring_buffer_record_disable(struct ring_buffer *buffer)
3031{
3032 atomic_inc(&buffer->record_disabled);
3033}
c4f50183 3034EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3035
3036/**
3037 * ring_buffer_record_enable - enable writes to the buffer
3038 * @buffer: The ring buffer to enable writes
3039 *
3040 * Note, multiple disables will need the same number of enables
c41b20e7 3041 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3042 */
3043void ring_buffer_record_enable(struct ring_buffer *buffer)
3044{
3045 atomic_dec(&buffer->record_disabled);
3046}
c4f50183 3047EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3048
499e5470
SR
3049/**
3050 * ring_buffer_record_off - stop all writes into the buffer
3051 * @buffer: The ring buffer to stop writes to.
3052 *
3053 * This prevents all writes to the buffer. Any attempt to write
3054 * to the buffer after this will fail and return NULL.
3055 *
3056 * This is different than ring_buffer_record_disable() as
87abb3b1 3057 * it works like an on/off switch, where as the disable() version
499e5470
SR
3058 * must be paired with a enable().
3059 */
3060void ring_buffer_record_off(struct ring_buffer *buffer)
3061{
3062 unsigned int rd;
3063 unsigned int new_rd;
3064
3065 do {
3066 rd = atomic_read(&buffer->record_disabled);
3067 new_rd = rd | RB_BUFFER_OFF;
3068 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069}
3070EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3071
3072/**
3073 * ring_buffer_record_on - restart writes into the buffer
3074 * @buffer: The ring buffer to start writes to.
3075 *
3076 * This enables all writes to the buffer that was disabled by
3077 * ring_buffer_record_off().
3078 *
3079 * This is different than ring_buffer_record_enable() as
87abb3b1 3080 * it works like an on/off switch, where as the enable() version
499e5470
SR
3081 * must be paired with a disable().
3082 */
3083void ring_buffer_record_on(struct ring_buffer *buffer)
3084{
3085 unsigned int rd;
3086 unsigned int new_rd;
3087
3088 do {
3089 rd = atomic_read(&buffer->record_disabled);
3090 new_rd = rd & ~RB_BUFFER_OFF;
3091 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3092}
3093EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3094
3095/**
3096 * ring_buffer_record_is_on - return true if the ring buffer can write
3097 * @buffer: The ring buffer to see if write is enabled
3098 *
3099 * Returns true if the ring buffer is in a state that it accepts writes.
3100 */
3101int ring_buffer_record_is_on(struct ring_buffer *buffer)
3102{
3103 return !atomic_read(&buffer->record_disabled);
3104}
3105
7a8e76a3
SR
3106/**
3107 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3108 * @buffer: The ring buffer to stop writes to.
3109 * @cpu: The CPU buffer to stop
3110 *
3111 * This prevents all writes to the buffer. Any attempt to write
3112 * to the buffer after this will fail and return NULL.
3113 *
3114 * The caller should call synchronize_sched() after this.
3115 */
3116void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3117{
3118 struct ring_buffer_per_cpu *cpu_buffer;
3119
9e01c1b7 3120 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3121 return;
7a8e76a3
SR
3122
3123 cpu_buffer = buffer->buffers[cpu];
3124 atomic_inc(&cpu_buffer->record_disabled);
3125}
c4f50183 3126EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3127
3128/**
3129 * ring_buffer_record_enable_cpu - enable writes to the buffer
3130 * @buffer: The ring buffer to enable writes
3131 * @cpu: The CPU to enable.
3132 *
3133 * Note, multiple disables will need the same number of enables
c41b20e7 3134 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3135 */
3136void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3137{
3138 struct ring_buffer_per_cpu *cpu_buffer;
3139
9e01c1b7 3140 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3141 return;
7a8e76a3
SR
3142
3143 cpu_buffer = buffer->buffers[cpu];
3144 atomic_dec(&cpu_buffer->record_disabled);
3145}
c4f50183 3146EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3147
f6195aa0
SR
3148/*
3149 * The total entries in the ring buffer is the running counter
3150 * of entries entered into the ring buffer, minus the sum of
3151 * the entries read from the ring buffer and the number of
3152 * entries that were overwritten.
3153 */
3154static inline unsigned long
3155rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3156{
3157 return local_read(&cpu_buffer->entries) -
3158 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3159}
3160
c64e148a
VN
3161/**
3162 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3163 * @buffer: The ring buffer
3164 * @cpu: The per CPU buffer to read from.
3165 */
50ecf2c3 3166u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3167{
3168 unsigned long flags;
3169 struct ring_buffer_per_cpu *cpu_buffer;
3170 struct buffer_page *bpage;
da830e58 3171 u64 ret = 0;
c64e148a
VN
3172
3173 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3174 return 0;
3175
3176 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3177 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3178 /*
3179 * if the tail is on reader_page, oldest time stamp is on the reader
3180 * page
3181 */
3182 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3183 bpage = cpu_buffer->reader_page;
3184 else
3185 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3186 if (bpage)
3187 ret = bpage->page->time_stamp;
7115e3fc 3188 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3189
3190 return ret;
3191}
3192EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3193
3194/**
3195 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3196 * @buffer: The ring buffer
3197 * @cpu: The per CPU buffer to read from.
3198 */
3199unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3200{
3201 struct ring_buffer_per_cpu *cpu_buffer;
3202 unsigned long ret;
3203
3204 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205 return 0;
3206
3207 cpu_buffer = buffer->buffers[cpu];
3208 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3209
3210 return ret;
3211}
3212EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3213
7a8e76a3
SR
3214/**
3215 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3216 * @buffer: The ring buffer
3217 * @cpu: The per CPU buffer to get the entries from.
3218 */
3219unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3220{
3221 struct ring_buffer_per_cpu *cpu_buffer;
3222
9e01c1b7 3223 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3224 return 0;
7a8e76a3
SR
3225
3226 cpu_buffer = buffer->buffers[cpu];
554f786e 3227
f6195aa0 3228 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3229}
c4f50183 3230EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3231
3232/**
884bfe89
SP
3233 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3234 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3235 * @buffer: The ring buffer
3236 * @cpu: The per CPU buffer to get the number of overruns from
3237 */
3238unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239{
3240 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3241 unsigned long ret;
7a8e76a3 3242
9e01c1b7 3243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3244 return 0;
7a8e76a3
SR
3245
3246 cpu_buffer = buffer->buffers[cpu];
77ae365e 3247 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3248
3249 return ret;
7a8e76a3 3250}
c4f50183 3251EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3252
f0d2c681 3253/**
884bfe89
SP
3254 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3255 * commits failing due to the buffer wrapping around while there are uncommitted
3256 * events, such as during an interrupt storm.
f0d2c681
SR
3257 * @buffer: The ring buffer
3258 * @cpu: The per CPU buffer to get the number of overruns from
3259 */
3260unsigned long
3261ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3262{
3263 struct ring_buffer_per_cpu *cpu_buffer;
3264 unsigned long ret;
3265
3266 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267 return 0;
3268
3269 cpu_buffer = buffer->buffers[cpu];
77ae365e 3270 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3271
3272 return ret;
3273}
3274EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3275
884bfe89
SP
3276/**
3277 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3278 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3279 * @buffer: The ring buffer
3280 * @cpu: The per CPU buffer to get the number of overruns from
3281 */
3282unsigned long
3283ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3284{
3285 struct ring_buffer_per_cpu *cpu_buffer;
3286 unsigned long ret;
3287
3288 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3289 return 0;
3290
3291 cpu_buffer = buffer->buffers[cpu];
3292 ret = local_read(&cpu_buffer->dropped_events);
3293
3294 return ret;
3295}
3296EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3297
ad964704
SRRH
3298/**
3299 * ring_buffer_read_events_cpu - get the number of events successfully read
3300 * @buffer: The ring buffer
3301 * @cpu: The per CPU buffer to get the number of events read
3302 */
3303unsigned long
3304ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3305{
3306 struct ring_buffer_per_cpu *cpu_buffer;
3307
3308 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3309 return 0;
3310
3311 cpu_buffer = buffer->buffers[cpu];
3312 return cpu_buffer->read;
3313}
3314EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3315
7a8e76a3
SR
3316/**
3317 * ring_buffer_entries - get the number of entries in a buffer
3318 * @buffer: The ring buffer
3319 *
3320 * Returns the total number of entries in the ring buffer
3321 * (all CPU entries)
3322 */
3323unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3324{
3325 struct ring_buffer_per_cpu *cpu_buffer;
3326 unsigned long entries = 0;
3327 int cpu;
3328
3329 /* if you care about this being correct, lock the buffer */
3330 for_each_buffer_cpu(buffer, cpu) {
3331 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3332 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3333 }
3334
3335 return entries;
3336}
c4f50183 3337EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3338
3339/**
67b394f7 3340 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3341 * @buffer: The ring buffer
3342 *
3343 * Returns the total number of overruns in the ring buffer
3344 * (all CPU entries)
3345 */
3346unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3347{
3348 struct ring_buffer_per_cpu *cpu_buffer;
3349 unsigned long overruns = 0;
3350 int cpu;
3351
3352 /* if you care about this being correct, lock the buffer */
3353 for_each_buffer_cpu(buffer, cpu) {
3354 cpu_buffer = buffer->buffers[cpu];
77ae365e 3355 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3356 }
3357
3358 return overruns;
3359}
c4f50183 3360EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3361
642edba5 3362static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3363{
3364 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3365
d769041f 3366 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3367 iter->head_page = cpu_buffer->reader_page;
3368 iter->head = cpu_buffer->reader_page->read;
3369
3370 iter->cache_reader_page = iter->head_page;
24607f11 3371 iter->cache_read = cpu_buffer->read;
651e22f2 3372
d769041f
SR
3373 if (iter->head)
3374 iter->read_stamp = cpu_buffer->read_stamp;
3375 else
abc9b56d 3376 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3377}
f83c9d0f 3378
642edba5
SR
3379/**
3380 * ring_buffer_iter_reset - reset an iterator
3381 * @iter: The iterator to reset
3382 *
3383 * Resets the iterator, so that it will start from the beginning
3384 * again.
3385 */
3386void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3387{
554f786e 3388 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3389 unsigned long flags;
3390
554f786e
SR
3391 if (!iter)
3392 return;
3393
3394 cpu_buffer = iter->cpu_buffer;
3395
5389f6fa 3396 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3397 rb_iter_reset(iter);
5389f6fa 3398 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3399}
c4f50183 3400EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3401
3402/**
3403 * ring_buffer_iter_empty - check if an iterator has no more to read
3404 * @iter: The iterator to check
3405 */
3406int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3407{
3408 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
3409 struct buffer_page *reader;
3410 struct buffer_page *head_page;
3411 struct buffer_page *commit_page;
3412 unsigned commit;
7a8e76a3
SR
3413
3414 cpu_buffer = iter->cpu_buffer;
3415
78f7a45d
SRV
3416 /* Remember, trace recording is off when iterator is in use */
3417 reader = cpu_buffer->reader_page;
3418 head_page = cpu_buffer->head_page;
3419 commit_page = cpu_buffer->commit_page;
3420 commit = rb_page_commit(commit_page);
3421
3422 return ((iter->head_page == commit_page && iter->head == commit) ||
3423 (iter->head_page == reader && commit_page == head_page &&
3424 head_page->read == commit &&
3425 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 3426}
c4f50183 3427EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3428
3429static void
3430rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3431 struct ring_buffer_event *event)
3432{
3433 u64 delta;
3434
334d4169 3435 switch (event->type_len) {
7a8e76a3
SR
3436 case RINGBUF_TYPE_PADDING:
3437 return;
3438
3439 case RINGBUF_TYPE_TIME_EXTEND:
3440 delta = event->array[0];
3441 delta <<= TS_SHIFT;
3442 delta += event->time_delta;
3443 cpu_buffer->read_stamp += delta;
3444 return;
3445
3446 case RINGBUF_TYPE_TIME_STAMP:
3447 /* FIXME: not implemented */
3448 return;
3449
3450 case RINGBUF_TYPE_DATA:
3451 cpu_buffer->read_stamp += event->time_delta;
3452 return;
3453
3454 default:
3455 BUG();
3456 }
3457 return;
3458}
3459
3460static void
3461rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3462 struct ring_buffer_event *event)
3463{
3464 u64 delta;
3465
334d4169 3466 switch (event->type_len) {
7a8e76a3
SR
3467 case RINGBUF_TYPE_PADDING:
3468 return;
3469
3470 case RINGBUF_TYPE_TIME_EXTEND:
3471 delta = event->array[0];
3472 delta <<= TS_SHIFT;
3473 delta += event->time_delta;
3474 iter->read_stamp += delta;
3475 return;
3476
3477 case RINGBUF_TYPE_TIME_STAMP:
3478 /* FIXME: not implemented */
3479 return;
3480
3481 case RINGBUF_TYPE_DATA:
3482 iter->read_stamp += event->time_delta;
3483 return;
3484
3485 default:
3486 BUG();
3487 }
3488 return;
3489}
3490
d769041f
SR
3491static struct buffer_page *
3492rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3493{
d769041f 3494 struct buffer_page *reader = NULL;
66a8cb95 3495 unsigned long overwrite;
d769041f 3496 unsigned long flags;
818e3dd3 3497 int nr_loops = 0;
77ae365e 3498 int ret;
d769041f 3499
3e03fb7f 3500 local_irq_save(flags);
0199c4e6 3501 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3502
3503 again:
818e3dd3
SR
3504 /*
3505 * This should normally only loop twice. But because the
3506 * start of the reader inserts an empty page, it causes
3507 * a case where we will loop three times. There should be no
3508 * reason to loop four times (that I know of).
3509 */
3e89c7bb 3510 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3511 reader = NULL;
3512 goto out;
3513 }
3514
d769041f
SR
3515 reader = cpu_buffer->reader_page;
3516
3517 /* If there's more to read, return this page */
bf41a158 3518 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3519 goto out;
3520
3521 /* Never should we have an index greater than the size */
3e89c7bb
SR
3522 if (RB_WARN_ON(cpu_buffer,
3523 cpu_buffer->reader_page->read > rb_page_size(reader)))
3524 goto out;
d769041f
SR
3525
3526 /* check if we caught up to the tail */
3527 reader = NULL;
bf41a158 3528 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3529 goto out;
7a8e76a3 3530
a5fb8331
SR
3531 /* Don't bother swapping if the ring buffer is empty */
3532 if (rb_num_of_entries(cpu_buffer) == 0)
3533 goto out;
3534
7a8e76a3 3535 /*
d769041f 3536 * Reset the reader page to size zero.
7a8e76a3 3537 */
77ae365e
SR
3538 local_set(&cpu_buffer->reader_page->write, 0);
3539 local_set(&cpu_buffer->reader_page->entries, 0);
3540 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3541 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3542
77ae365e
SR
3543 spin:
3544 /*
3545 * Splice the empty reader page into the list around the head.
3546 */
3547 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3548 if (!reader)
3549 goto out;
0e1ff5d7 3550 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3551 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3552
3adc54fa
SR
3553 /*
3554 * cpu_buffer->pages just needs to point to the buffer, it
3555 * has no specific buffer page to point to. Lets move it out
25985edc 3556 * of our way so we don't accidentally swap it.
3adc54fa
SR
3557 */
3558 cpu_buffer->pages = reader->list.prev;
3559
77ae365e
SR
3560 /* The reader page will be pointing to the new head */
3561 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3562
66a8cb95
SR
3563 /*
3564 * We want to make sure we read the overruns after we set up our
3565 * pointers to the next object. The writer side does a
3566 * cmpxchg to cross pages which acts as the mb on the writer
3567 * side. Note, the reader will constantly fail the swap
3568 * while the writer is updating the pointers, so this
3569 * guarantees that the overwrite recorded here is the one we
3570 * want to compare with the last_overrun.
3571 */
3572 smp_mb();
3573 overwrite = local_read(&(cpu_buffer->overrun));
3574
77ae365e
SR
3575 /*
3576 * Here's the tricky part.
3577 *
3578 * We need to move the pointer past the header page.
3579 * But we can only do that if a writer is not currently
3580 * moving it. The page before the header page has the
3581 * flag bit '1' set if it is pointing to the page we want.
3582 * but if the writer is in the process of moving it
3583 * than it will be '2' or already moved '0'.
3584 */
3585
3586 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3587
3588 /*
77ae365e 3589 * If we did not convert it, then we must try again.
7a8e76a3 3590 */
77ae365e
SR
3591 if (!ret)
3592 goto spin;
7a8e76a3 3593
77ae365e
SR
3594 /*
3595 * Yeah! We succeeded in replacing the page.
3596 *
3597 * Now make the new head point back to the reader page.
3598 */
5ded3dc6 3599 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3600 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3601
3602 /* Finally update the reader page to the new head */
3603 cpu_buffer->reader_page = reader;
b81f472a 3604 cpu_buffer->reader_page->read = 0;
d769041f 3605
66a8cb95
SR
3606 if (overwrite != cpu_buffer->last_overrun) {
3607 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3608 cpu_buffer->last_overrun = overwrite;
3609 }
3610
d769041f
SR
3611 goto again;
3612
3613 out:
b81f472a
SRRH
3614 /* Update the read_stamp on the first event */
3615 if (reader && reader->read == 0)
3616 cpu_buffer->read_stamp = reader->page->time_stamp;
3617
0199c4e6 3618 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3619 local_irq_restore(flags);
d769041f
SR
3620
3621 return reader;
3622}
3623
3624static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3625{
3626 struct ring_buffer_event *event;
3627 struct buffer_page *reader;
3628 unsigned length;
3629
3630 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3631
d769041f 3632 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3633 if (RB_WARN_ON(cpu_buffer, !reader))
3634 return;
7a8e76a3 3635
d769041f
SR
3636 event = rb_reader_event(cpu_buffer);
3637
a1863c21 3638 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3639 cpu_buffer->read++;
d769041f
SR
3640
3641 rb_update_read_stamp(cpu_buffer, event);
3642
3643 length = rb_event_length(event);
6f807acd 3644 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3645}
3646
3647static void rb_advance_iter(struct ring_buffer_iter *iter)
3648{
7a8e76a3
SR
3649 struct ring_buffer_per_cpu *cpu_buffer;
3650 struct ring_buffer_event *event;
3651 unsigned length;
3652
3653 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3654
3655 /*
3656 * Check if we are at the end of the buffer.
3657 */
bf41a158 3658 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3659 /* discarded commits can make the page empty */
3660 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3661 return;
d769041f 3662 rb_inc_iter(iter);
7a8e76a3
SR
3663 return;
3664 }
3665
3666 event = rb_iter_head_event(iter);
3667
3668 length = rb_event_length(event);
3669
3670 /*
3671 * This should not be called to advance the header if we are
3672 * at the tail of the buffer.
3673 */
3e89c7bb 3674 if (RB_WARN_ON(cpu_buffer,
f536aafc 3675 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3676 (iter->head + length > rb_commit_index(cpu_buffer))))
3677 return;
7a8e76a3
SR
3678
3679 rb_update_iter_read_stamp(iter, event);
3680
3681 iter->head += length;
3682
3683 /* check for end of page padding */
bf41a158
SR
3684 if ((iter->head >= rb_page_size(iter->head_page)) &&
3685 (iter->head_page != cpu_buffer->commit_page))
771e0384 3686 rb_inc_iter(iter);
7a8e76a3
SR
3687}
3688
66a8cb95
SR
3689static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3690{
3691 return cpu_buffer->lost_events;
3692}
3693
f83c9d0f 3694static struct ring_buffer_event *
66a8cb95
SR
3695rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3696 unsigned long *lost_events)
7a8e76a3 3697{
7a8e76a3 3698 struct ring_buffer_event *event;
d769041f 3699 struct buffer_page *reader;
818e3dd3 3700 int nr_loops = 0;
7a8e76a3 3701
7a8e76a3 3702 again:
818e3dd3 3703 /*
69d1b839
SR
3704 * We repeat when a time extend is encountered.
3705 * Since the time extend is always attached to a data event,
3706 * we should never loop more than once.
3707 * (We never hit the following condition more than twice).
818e3dd3 3708 */
69d1b839 3709 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3710 return NULL;
818e3dd3 3711
d769041f
SR
3712 reader = rb_get_reader_page(cpu_buffer);
3713 if (!reader)
7a8e76a3
SR
3714 return NULL;
3715
d769041f 3716 event = rb_reader_event(cpu_buffer);
7a8e76a3 3717
334d4169 3718 switch (event->type_len) {
7a8e76a3 3719 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3720 if (rb_null_event(event))
3721 RB_WARN_ON(cpu_buffer, 1);
3722 /*
3723 * Because the writer could be discarding every
3724 * event it creates (which would probably be bad)
3725 * if we were to go back to "again" then we may never
3726 * catch up, and will trigger the warn on, or lock
3727 * the box. Return the padding, and we will release
3728 * the current locks, and try again.
3729 */
2d622719 3730 return event;
7a8e76a3
SR
3731
3732 case RINGBUF_TYPE_TIME_EXTEND:
3733 /* Internal data, OK to advance */
d769041f 3734 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3735 goto again;
3736
3737 case RINGBUF_TYPE_TIME_STAMP:
3738 /* FIXME: not implemented */
d769041f 3739 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3740 goto again;
3741
3742 case RINGBUF_TYPE_DATA:
3743 if (ts) {
3744 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3745 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3746 cpu_buffer->cpu, ts);
7a8e76a3 3747 }
66a8cb95
SR
3748 if (lost_events)
3749 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3750 return event;
3751
3752 default:
3753 BUG();
3754 }
3755
3756 return NULL;
3757}
c4f50183 3758EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3759
f83c9d0f
SR
3760static struct ring_buffer_event *
3761rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3762{
3763 struct ring_buffer *buffer;
3764 struct ring_buffer_per_cpu *cpu_buffer;
3765 struct ring_buffer_event *event;
818e3dd3 3766 int nr_loops = 0;
7a8e76a3 3767
7a8e76a3
SR
3768 cpu_buffer = iter->cpu_buffer;
3769 buffer = cpu_buffer->buffer;
3770
492a74f4
SR
3771 /*
3772 * Check if someone performed a consuming read to
3773 * the buffer. A consuming read invalidates the iterator
3774 * and we need to reset the iterator in this case.
3775 */
3776 if (unlikely(iter->cache_read != cpu_buffer->read ||
3777 iter->cache_reader_page != cpu_buffer->reader_page))
3778 rb_iter_reset(iter);
3779
7a8e76a3 3780 again:
3c05d748
SR
3781 if (ring_buffer_iter_empty(iter))
3782 return NULL;
3783
818e3dd3 3784 /*
021de3d9
SRRH
3785 * We repeat when a time extend is encountered or we hit
3786 * the end of the page. Since the time extend is always attached
3787 * to a data event, we should never loop more than three times.
3788 * Once for going to next page, once on time extend, and
3789 * finally once to get the event.
3790 * (We never hit the following condition more than thrice).
818e3dd3 3791 */
021de3d9 3792 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3793 return NULL;
818e3dd3 3794
7a8e76a3
SR
3795 if (rb_per_cpu_empty(cpu_buffer))
3796 return NULL;
3797
10e83fd0 3798 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3799 rb_inc_iter(iter);
3800 goto again;
3801 }
3802
7a8e76a3
SR
3803 event = rb_iter_head_event(iter);
3804
334d4169 3805 switch (event->type_len) {
7a8e76a3 3806 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3807 if (rb_null_event(event)) {
3808 rb_inc_iter(iter);
3809 goto again;
3810 }
3811 rb_advance_iter(iter);
3812 return event;
7a8e76a3
SR
3813
3814 case RINGBUF_TYPE_TIME_EXTEND:
3815 /* Internal data, OK to advance */
3816 rb_advance_iter(iter);
3817 goto again;
3818
3819 case RINGBUF_TYPE_TIME_STAMP:
3820 /* FIXME: not implemented */
3821 rb_advance_iter(iter);
3822 goto again;
3823
3824 case RINGBUF_TYPE_DATA:
3825 if (ts) {
3826 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3827 ring_buffer_normalize_time_stamp(buffer,
3828 cpu_buffer->cpu, ts);
7a8e76a3
SR
3829 }
3830 return event;
3831
3832 default:
3833 BUG();
3834 }
3835
3836 return NULL;
3837}
c4f50183 3838EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3839
289a5a25 3840static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3841{
289a5a25
SRRH
3842 if (likely(!in_nmi())) {
3843 raw_spin_lock(&cpu_buffer->reader_lock);
3844 return true;
3845 }
3846
8d707e8e
SR
3847 /*
3848 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3849 * trylock must be used to prevent a deadlock if the NMI
3850 * preempted a task that holds the ring buffer locks. If
3851 * we get the lock then all is fine, if not, then continue
3852 * to do the read, but this can corrupt the ring buffer,
3853 * so it must be permanently disabled from future writes.
3854 * Reading from NMI is a oneshot deal.
8d707e8e 3855 */
289a5a25
SRRH
3856 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3857 return true;
8d707e8e 3858
289a5a25
SRRH
3859 /* Continue without locking, but disable the ring buffer */
3860 atomic_inc(&cpu_buffer->record_disabled);
3861 return false;
3862}
3863
3864static inline void
3865rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3866{
3867 if (likely(locked))
3868 raw_spin_unlock(&cpu_buffer->reader_lock);
3869 return;
8d707e8e
SR
3870}
3871
f83c9d0f
SR
3872/**
3873 * ring_buffer_peek - peek at the next event to be read
3874 * @buffer: The ring buffer to read
3875 * @cpu: The cpu to peak at
3876 * @ts: The timestamp counter of this event.
66a8cb95 3877 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3878 *
3879 * This will return the event that will be read next, but does
3880 * not consume the data.
3881 */
3882struct ring_buffer_event *
66a8cb95
SR
3883ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3884 unsigned long *lost_events)
f83c9d0f
SR
3885{
3886 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3887 struct ring_buffer_event *event;
f83c9d0f 3888 unsigned long flags;
289a5a25 3889 bool dolock;
f83c9d0f 3890
554f786e 3891 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3892 return NULL;
554f786e 3893
2d622719 3894 again:
8d707e8e 3895 local_irq_save(flags);
289a5a25 3896 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3897 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3898 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3899 rb_advance_reader(cpu_buffer);
289a5a25 3900 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3901 local_irq_restore(flags);
f83c9d0f 3902
1b959e18 3903 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3904 goto again;
2d622719 3905
f83c9d0f
SR
3906 return event;
3907}
3908
3909/**
3910 * ring_buffer_iter_peek - peek at the next event to be read
3911 * @iter: The ring buffer iterator
3912 * @ts: The timestamp counter of this event.
3913 *
3914 * This will return the event that will be read next, but does
3915 * not increment the iterator.
3916 */
3917struct ring_buffer_event *
3918ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3919{
3920 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3921 struct ring_buffer_event *event;
3922 unsigned long flags;
3923
2d622719 3924 again:
5389f6fa 3925 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3926 event = rb_iter_peek(iter, ts);
5389f6fa 3927 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3928
1b959e18 3929 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3930 goto again;
2d622719 3931
f83c9d0f
SR
3932 return event;
3933}
3934
7a8e76a3
SR
3935/**
3936 * ring_buffer_consume - return an event and consume it
3937 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3938 * @cpu: the cpu to read the buffer from
3939 * @ts: a variable to store the timestamp (may be NULL)
3940 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3941 *
3942 * Returns the next event in the ring buffer, and that event is consumed.
3943 * Meaning, that sequential reads will keep returning a different event,
3944 * and eventually empty the ring buffer if the producer is slower.
3945 */
3946struct ring_buffer_event *
66a8cb95
SR
3947ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3948 unsigned long *lost_events)
7a8e76a3 3949{
554f786e
SR
3950 struct ring_buffer_per_cpu *cpu_buffer;
3951 struct ring_buffer_event *event = NULL;
f83c9d0f 3952 unsigned long flags;
289a5a25 3953 bool dolock;
7a8e76a3 3954
2d622719 3955 again:
554f786e
SR
3956 /* might be called in atomic */
3957 preempt_disable();
3958
9e01c1b7 3959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3960 goto out;
7a8e76a3 3961
554f786e 3962 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3963 local_irq_save(flags);
289a5a25 3964 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3965
66a8cb95
SR
3966 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3967 if (event) {
3968 cpu_buffer->lost_events = 0;
469535a5 3969 rb_advance_reader(cpu_buffer);
66a8cb95 3970 }
7a8e76a3 3971
289a5a25 3972 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3973 local_irq_restore(flags);
f83c9d0f 3974
554f786e
SR
3975 out:
3976 preempt_enable();
3977
1b959e18 3978 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3979 goto again;
2d622719 3980
7a8e76a3
SR
3981 return event;
3982}
c4f50183 3983EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3984
3985/**
72c9ddfd 3986 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3987 * @buffer: The ring buffer to read from
3988 * @cpu: The cpu buffer to iterate over
3989 *
72c9ddfd
DM
3990 * This performs the initial preparations necessary to iterate
3991 * through the buffer. Memory is allocated, buffer recording
3992 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3993 *
72c9ddfd
DM
3994 * Disabling buffer recordng prevents the reading from being
3995 * corrupted. This is not a consuming read, so a producer is not
3996 * expected.
3997 *
3998 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3999 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4000 * Afterwards, ring_buffer_read_start is invoked to get things going
4001 * for real.
4002 *
d611851b 4003 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4004 */
4005struct ring_buffer_iter *
72c9ddfd 4006ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4007{
4008 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4009 struct ring_buffer_iter *iter;
7a8e76a3 4010
9e01c1b7 4011 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4012 return NULL;
7a8e76a3
SR
4013
4014 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4015 if (!iter)
8aabee57 4016 return NULL;
7a8e76a3
SR
4017
4018 cpu_buffer = buffer->buffers[cpu];
4019
4020 iter->cpu_buffer = cpu_buffer;
4021
83f40318 4022 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4023 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4024
4025 return iter;
4026}
4027EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4028
4029/**
4030 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4031 *
4032 * All previously invoked ring_buffer_read_prepare calls to prepare
4033 * iterators will be synchronized. Afterwards, read_buffer_read_start
4034 * calls on those iterators are allowed.
4035 */
4036void
4037ring_buffer_read_prepare_sync(void)
4038{
7a8e76a3 4039 synchronize_sched();
72c9ddfd
DM
4040}
4041EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4042
4043/**
4044 * ring_buffer_read_start - start a non consuming read of the buffer
4045 * @iter: The iterator returned by ring_buffer_read_prepare
4046 *
4047 * This finalizes the startup of an iteration through the buffer.
4048 * The iterator comes from a call to ring_buffer_read_prepare and
4049 * an intervening ring_buffer_read_prepare_sync must have been
4050 * performed.
4051 *
d611851b 4052 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4053 */
4054void
4055ring_buffer_read_start(struct ring_buffer_iter *iter)
4056{
4057 struct ring_buffer_per_cpu *cpu_buffer;
4058 unsigned long flags;
4059
4060 if (!iter)
4061 return;
4062
4063 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4064
5389f6fa 4065 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4066 arch_spin_lock(&cpu_buffer->lock);
642edba5 4067 rb_iter_reset(iter);
0199c4e6 4068 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4069 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4070}
c4f50183 4071EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4072
4073/**
d611851b 4074 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4075 * @iter: The iterator retrieved by ring_buffer_start
4076 *
4077 * This re-enables the recording to the buffer, and frees the
4078 * iterator.
4079 */
4080void
4081ring_buffer_read_finish(struct ring_buffer_iter *iter)
4082{
4083 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4084 unsigned long flags;
7a8e76a3 4085
659f451f
SR
4086 /*
4087 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4088 * to check the integrity of the ring buffer.
4089 * Must prevent readers from trying to read, as the check
4090 * clears the HEAD page and readers require it.
659f451f 4091 */
9366c1ba 4092 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4093 rb_check_pages(cpu_buffer);
9366c1ba 4094 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4095
7a8e76a3 4096 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4097 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4098 kfree(iter);
4099}
c4f50183 4100EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4101
4102/**
4103 * ring_buffer_read - read the next item in the ring buffer by the iterator
4104 * @iter: The ring buffer iterator
4105 * @ts: The time stamp of the event read.
4106 *
4107 * This reads the next event in the ring buffer and increments the iterator.
4108 */
4109struct ring_buffer_event *
4110ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4111{
4112 struct ring_buffer_event *event;
f83c9d0f
SR
4113 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4114 unsigned long flags;
7a8e76a3 4115
5389f6fa 4116 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4117 again:
f83c9d0f 4118 event = rb_iter_peek(iter, ts);
7a8e76a3 4119 if (!event)
f83c9d0f 4120 goto out;
7a8e76a3 4121
7e9391cf
SR
4122 if (event->type_len == RINGBUF_TYPE_PADDING)
4123 goto again;
4124
7a8e76a3 4125 rb_advance_iter(iter);
f83c9d0f 4126 out:
5389f6fa 4127 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4128
4129 return event;
4130}
c4f50183 4131EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4132
4133/**
4134 * ring_buffer_size - return the size of the ring buffer (in bytes)
4135 * @buffer: The ring buffer.
4136 */
438ced17 4137unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4138{
438ced17
VN
4139 /*
4140 * Earlier, this method returned
4141 * BUF_PAGE_SIZE * buffer->nr_pages
4142 * Since the nr_pages field is now removed, we have converted this to
4143 * return the per cpu buffer value.
4144 */
4145 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4146 return 0;
4147
4148 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4149}
c4f50183 4150EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4151
4152static void
4153rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4154{
77ae365e
SR
4155 rb_head_page_deactivate(cpu_buffer);
4156
7a8e76a3 4157 cpu_buffer->head_page
3adc54fa 4158 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4159 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4160 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4161 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4162
6f807acd 4163 cpu_buffer->head_page->read = 0;
bf41a158
SR
4164
4165 cpu_buffer->tail_page = cpu_buffer->head_page;
4166 cpu_buffer->commit_page = cpu_buffer->head_page;
4167
4168 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4169 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4170 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4171 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4172 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4173 cpu_buffer->reader_page->read = 0;
7a8e76a3 4174
c64e148a 4175 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4176 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4177 local_set(&cpu_buffer->commit_overrun, 0);
4178 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4179 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4180 local_set(&cpu_buffer->committing, 0);
4181 local_set(&cpu_buffer->commits, 0);
77ae365e 4182 cpu_buffer->read = 0;
c64e148a 4183 cpu_buffer->read_bytes = 0;
69507c06
SR
4184
4185 cpu_buffer->write_stamp = 0;
4186 cpu_buffer->read_stamp = 0;
77ae365e 4187
66a8cb95
SR
4188 cpu_buffer->lost_events = 0;
4189 cpu_buffer->last_overrun = 0;
4190
77ae365e 4191 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4192}
4193
4194/**
4195 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4196 * @buffer: The ring buffer to reset a per cpu buffer of
4197 * @cpu: The CPU buffer to be reset
4198 */
4199void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4200{
4201 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4202 unsigned long flags;
4203
9e01c1b7 4204 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4205 return;
7a8e76a3 4206
83f40318 4207 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4208 atomic_inc(&cpu_buffer->record_disabled);
4209
83f40318
VN
4210 /* Make sure all commits have finished */
4211 synchronize_sched();
4212
5389f6fa 4213 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4214
41b6a95d
SR
4215 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4216 goto out;
4217
0199c4e6 4218 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4219
4220 rb_reset_cpu(cpu_buffer);
4221
0199c4e6 4222 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4223
41b6a95d 4224 out:
5389f6fa 4225 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4226
4227 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4228 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4229}
c4f50183 4230EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4231
4232/**
4233 * ring_buffer_reset - reset a ring buffer
4234 * @buffer: The ring buffer to reset all cpu buffers
4235 */
4236void ring_buffer_reset(struct ring_buffer *buffer)
4237{
7a8e76a3
SR
4238 int cpu;
4239
7a8e76a3 4240 for_each_buffer_cpu(buffer, cpu)
d769041f 4241 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4242}
c4f50183 4243EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4244
4245/**
4246 * rind_buffer_empty - is the ring buffer empty?
4247 * @buffer: The ring buffer to test
4248 */
3d4e204d 4249bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4250{
4251 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4252 unsigned long flags;
289a5a25 4253 bool dolock;
7a8e76a3 4254 int cpu;
d4788207 4255 int ret;
7a8e76a3
SR
4256
4257 /* yes this is racy, but if you don't like the race, lock the buffer */
4258 for_each_buffer_cpu(buffer, cpu) {
4259 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4260 local_irq_save(flags);
289a5a25 4261 dolock = rb_reader_lock(cpu_buffer);
d4788207 4262 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4263 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4264 local_irq_restore(flags);
4265
d4788207 4266 if (!ret)
3d4e204d 4267 return false;
7a8e76a3 4268 }
554f786e 4269
3d4e204d 4270 return true;
7a8e76a3 4271}
c4f50183 4272EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4273
4274/**
4275 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4276 * @buffer: The ring buffer
4277 * @cpu: The CPU buffer to test
4278 */
3d4e204d 4279bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4280{
4281 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4282 unsigned long flags;
289a5a25 4283 bool dolock;
8aabee57 4284 int ret;
7a8e76a3 4285
9e01c1b7 4286 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4287 return true;
7a8e76a3
SR
4288
4289 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4290 local_irq_save(flags);
289a5a25 4291 dolock = rb_reader_lock(cpu_buffer);
554f786e 4292 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4293 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4294 local_irq_restore(flags);
554f786e
SR
4295
4296 return ret;
7a8e76a3 4297}
c4f50183 4298EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4299
85bac32c 4300#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4301/**
4302 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303 * @buffer_a: One buffer to swap with
4304 * @buffer_b: The other buffer to swap with
4305 *
4306 * This function is useful for tracers that want to take a "snapshot"
4307 * of a CPU buffer and has another back up buffer lying around.
4308 * it is expected that the tracer handles the cpu buffer not being
4309 * used at the moment.
4310 */
4311int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312 struct ring_buffer *buffer_b, int cpu)
4313{
4314 struct ring_buffer_per_cpu *cpu_buffer_a;
4315 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4316 int ret = -EINVAL;
4317
9e01c1b7
RR
4318 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4320 goto out;
7a8e76a3 4321
438ced17
VN
4322 cpu_buffer_a = buffer_a->buffers[cpu];
4323 cpu_buffer_b = buffer_b->buffers[cpu];
4324
7a8e76a3 4325 /* At least make sure the two buffers are somewhat the same */
438ced17 4326 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4327 goto out;
4328
4329 ret = -EAGAIN;
7a8e76a3 4330
97b17efe 4331 if (atomic_read(&buffer_a->record_disabled))
554f786e 4332 goto out;
97b17efe
SR
4333
4334 if (atomic_read(&buffer_b->record_disabled))
554f786e 4335 goto out;
97b17efe 4336
97b17efe 4337 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4338 goto out;
97b17efe
SR
4339
4340 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4341 goto out;
97b17efe 4342
7a8e76a3
SR
4343 /*
4344 * We can't do a synchronize_sched here because this
4345 * function can be called in atomic context.
4346 * Normally this will be called from the same CPU as cpu.
4347 * If not it's up to the caller to protect this.
4348 */
4349 atomic_inc(&cpu_buffer_a->record_disabled);
4350 atomic_inc(&cpu_buffer_b->record_disabled);
4351
98277991
SR
4352 ret = -EBUSY;
4353 if (local_read(&cpu_buffer_a->committing))
4354 goto out_dec;
4355 if (local_read(&cpu_buffer_b->committing))
4356 goto out_dec;
4357
7a8e76a3
SR
4358 buffer_a->buffers[cpu] = cpu_buffer_b;
4359 buffer_b->buffers[cpu] = cpu_buffer_a;
4360
4361 cpu_buffer_b->buffer = buffer_a;
4362 cpu_buffer_a->buffer = buffer_b;
4363
98277991
SR
4364 ret = 0;
4365
4366out_dec:
7a8e76a3
SR
4367 atomic_dec(&cpu_buffer_a->record_disabled);
4368 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4369out:
554f786e 4370 return ret;
7a8e76a3 4371}
c4f50183 4372EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4373#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4374
8789a9e7
SR
4375/**
4376 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377 * @buffer: the buffer to allocate for.
d611851b 4378 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4379 *
4380 * This function is used in conjunction with ring_buffer_read_page.
4381 * When reading a full page from the ring buffer, these functions
4382 * can be used to speed up the process. The calling function should
4383 * allocate a few pages first with this function. Then when it
4384 * needs to get pages from the ring buffer, it passes the result
4385 * of this function into ring_buffer_read_page, which will swap
4386 * the page that was allocated, with the read page of the buffer.
4387 *
4388 * Returns:
4389 * The page allocated, or NULL on error.
4390 */
7ea59064 4391void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4392{
73a757e6
SRV
4393 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4394 struct buffer_data_page *bpage = NULL;
4395 unsigned long flags;
7ea59064 4396 struct page *page;
8789a9e7 4397
73a757e6
SRV
4398 local_irq_save(flags);
4399 arch_spin_lock(&cpu_buffer->lock);
4400
4401 if (cpu_buffer->free_page) {
4402 bpage = cpu_buffer->free_page;
4403 cpu_buffer->free_page = NULL;
4404 }
4405
4406 arch_spin_unlock(&cpu_buffer->lock);
4407 local_irq_restore(flags);
4408
4409 if (bpage)
4410 goto out;
4411
d7ec4bfe
VN
4412 page = alloc_pages_node(cpu_to_node(cpu),
4413 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4414 if (!page)
8789a9e7
SR
4415 return NULL;
4416
7ea59064 4417 bpage = page_address(page);
8789a9e7 4418
73a757e6 4419 out:
ef7a4a16
SR
4420 rb_init_page(bpage);
4421
044fa782 4422 return bpage;
8789a9e7 4423}
d6ce96da 4424EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4425
4426/**
4427 * ring_buffer_free_read_page - free an allocated read page
4428 * @buffer: the buffer the page was allocate for
73a757e6 4429 * @cpu: the cpu buffer the page came from
8789a9e7
SR
4430 * @data: the page to free
4431 *
4432 * Free a page allocated from ring_buffer_alloc_read_page.
4433 */
73a757e6 4434void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
8789a9e7 4435{
73a757e6
SRV
4436 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4437 struct buffer_data_page *bpage = data;
4438 unsigned long flags;
4439
4440 local_irq_save(flags);
4441 arch_spin_lock(&cpu_buffer->lock);
4442
4443 if (!cpu_buffer->free_page) {
4444 cpu_buffer->free_page = bpage;
4445 bpage = NULL;
4446 }
4447
4448 arch_spin_unlock(&cpu_buffer->lock);
4449 local_irq_restore(flags);
4450
4451 free_page((unsigned long)bpage);
8789a9e7 4452}
d6ce96da 4453EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4454
4455/**
4456 * ring_buffer_read_page - extract a page from the ring buffer
4457 * @buffer: buffer to extract from
4458 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4459 * @len: amount to extract
8789a9e7
SR
4460 * @cpu: the cpu of the buffer to extract
4461 * @full: should the extraction only happen when the page is full.
4462 *
4463 * This function will pull out a page from the ring buffer and consume it.
4464 * @data_page must be the address of the variable that was returned
4465 * from ring_buffer_alloc_read_page. This is because the page might be used
4466 * to swap with a page in the ring buffer.
4467 *
4468 * for example:
d611851b 4469 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4470 * if (!rpage)
4471 * return error;
ef7a4a16 4472 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4473 * if (ret >= 0)
4474 * process_page(rpage, ret);
8789a9e7
SR
4475 *
4476 * When @full is set, the function will not return true unless
4477 * the writer is off the reader page.
4478 *
4479 * Note: it is up to the calling functions to handle sleeps and wakeups.
4480 * The ring buffer can be used anywhere in the kernel and can not
4481 * blindly call wake_up. The layer that uses the ring buffer must be
4482 * responsible for that.
4483 *
4484 * Returns:
667d2412
LJ
4485 * >=0 if data has been transferred, returns the offset of consumed data.
4486 * <0 if no data has been transferred.
8789a9e7
SR
4487 */
4488int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4489 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4490{
4491 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4492 struct ring_buffer_event *event;
044fa782 4493 struct buffer_data_page *bpage;
ef7a4a16 4494 struct buffer_page *reader;
ff0ff84a 4495 unsigned long missed_events;
8789a9e7 4496 unsigned long flags;
ef7a4a16 4497 unsigned int commit;
667d2412 4498 unsigned int read;
4f3640f8 4499 u64 save_timestamp;
667d2412 4500 int ret = -1;
8789a9e7 4501
554f786e
SR
4502 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4503 goto out;
4504
474d32b6
SR
4505 /*
4506 * If len is not big enough to hold the page header, then
4507 * we can not copy anything.
4508 */
4509 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4510 goto out;
474d32b6
SR
4511
4512 len -= BUF_PAGE_HDR_SIZE;
4513
8789a9e7 4514 if (!data_page)
554f786e 4515 goto out;
8789a9e7 4516
044fa782
SR
4517 bpage = *data_page;
4518 if (!bpage)
554f786e 4519 goto out;
8789a9e7 4520
5389f6fa 4521 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4522
ef7a4a16
SR
4523 reader = rb_get_reader_page(cpu_buffer);
4524 if (!reader)
554f786e 4525 goto out_unlock;
8789a9e7 4526
ef7a4a16
SR
4527 event = rb_reader_event(cpu_buffer);
4528
4529 read = reader->read;
4530 commit = rb_page_commit(reader);
667d2412 4531
66a8cb95 4532 /* Check if any events were dropped */
ff0ff84a 4533 missed_events = cpu_buffer->lost_events;
66a8cb95 4534
8789a9e7 4535 /*
474d32b6
SR
4536 * If this page has been partially read or
4537 * if len is not big enough to read the rest of the page or
4538 * a writer is still on the page, then
4539 * we must copy the data from the page to the buffer.
4540 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4541 */
474d32b6 4542 if (read || (len < (commit - read)) ||
ef7a4a16 4543 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4544 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4545 unsigned int rpos = read;
4546 unsigned int pos = 0;
ef7a4a16 4547 unsigned int size;
8789a9e7
SR
4548
4549 if (full)
554f786e 4550 goto out_unlock;
8789a9e7 4551
ef7a4a16
SR
4552 if (len > (commit - read))
4553 len = (commit - read);
4554
69d1b839
SR
4555 /* Always keep the time extend and data together */
4556 size = rb_event_ts_length(event);
ef7a4a16
SR
4557
4558 if (len < size)
554f786e 4559 goto out_unlock;
ef7a4a16 4560
4f3640f8
SR
4561 /* save the current timestamp, since the user will need it */
4562 save_timestamp = cpu_buffer->read_stamp;
4563
ef7a4a16
SR
4564 /* Need to copy one event at a time */
4565 do {
e1e35927
DS
4566 /* We need the size of one event, because
4567 * rb_advance_reader only advances by one event,
4568 * whereas rb_event_ts_length may include the size of
4569 * one or two events.
4570 * We have already ensured there's enough space if this
4571 * is a time extend. */
4572 size = rb_event_length(event);
474d32b6 4573 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4574
4575 len -= size;
4576
4577 rb_advance_reader(cpu_buffer);
474d32b6
SR
4578 rpos = reader->read;
4579 pos += size;
ef7a4a16 4580
18fab912
HY
4581 if (rpos >= commit)
4582 break;
4583
ef7a4a16 4584 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4585 /* Always keep the time extend and data together */
4586 size = rb_event_ts_length(event);
e1e35927 4587 } while (len >= size);
667d2412
LJ
4588
4589 /* update bpage */
ef7a4a16 4590 local_set(&bpage->commit, pos);
4f3640f8 4591 bpage->time_stamp = save_timestamp;
ef7a4a16 4592
474d32b6
SR
4593 /* we copied everything to the beginning */
4594 read = 0;
8789a9e7 4595 } else {
afbab76a 4596 /* update the entry counter */
77ae365e 4597 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4598 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4599
8789a9e7 4600 /* swap the pages */
044fa782 4601 rb_init_page(bpage);
ef7a4a16
SR
4602 bpage = reader->page;
4603 reader->page = *data_page;
4604 local_set(&reader->write, 0);
778c55d4 4605 local_set(&reader->entries, 0);
ef7a4a16 4606 reader->read = 0;
044fa782 4607 *data_page = bpage;
ff0ff84a
SR
4608
4609 /*
4610 * Use the real_end for the data size,
4611 * This gives us a chance to store the lost events
4612 * on the page.
4613 */
4614 if (reader->real_end)
4615 local_set(&bpage->commit, reader->real_end);
8789a9e7 4616 }
667d2412 4617 ret = read;
8789a9e7 4618
66a8cb95 4619 cpu_buffer->lost_events = 0;
2711ca23
SR
4620
4621 commit = local_read(&bpage->commit);
66a8cb95
SR
4622 /*
4623 * Set a flag in the commit field if we lost events
4624 */
ff0ff84a 4625 if (missed_events) {
ff0ff84a
SR
4626 /* If there is room at the end of the page to save the
4627 * missed events, then record it there.
4628 */
4629 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4630 memcpy(&bpage->data[commit], &missed_events,
4631 sizeof(missed_events));
4632 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4633 commit += sizeof(missed_events);
ff0ff84a 4634 }
66a8cb95 4635 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4636 }
66a8cb95 4637
2711ca23
SR
4638 /*
4639 * This page may be off to user land. Zero it out here.
4640 */
4641 if (commit < BUF_PAGE_SIZE)
4642 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4643
554f786e 4644 out_unlock:
5389f6fa 4645 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4646
554f786e 4647 out:
8789a9e7
SR
4648 return ret;
4649}
d6ce96da 4650EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4651
b32614c0
SAS
4652/*
4653 * We only allocate new buffers, never free them if the CPU goes down.
4654 * If we were to free the buffer, then the user would lose any trace that was in
4655 * the buffer.
4656 */
4657int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 4658{
b32614c0 4659 struct ring_buffer *buffer;
9b94a8fb
SRRH
4660 long nr_pages_same;
4661 int cpu_i;
4662 unsigned long nr_pages;
554f786e 4663
b32614c0
SAS
4664 buffer = container_of(node, struct ring_buffer, node);
4665 if (cpumask_test_cpu(cpu, buffer->cpumask))
4666 return 0;
4667
4668 nr_pages = 0;
4669 nr_pages_same = 1;
4670 /* check if all cpu sizes are same */
4671 for_each_buffer_cpu(buffer, cpu_i) {
4672 /* fill in the size from first enabled cpu */
4673 if (nr_pages == 0)
4674 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4675 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4676 nr_pages_same = 0;
4677 break;
554f786e 4678 }
554f786e 4679 }
b32614c0
SAS
4680 /* allocate minimum pages, user can later expand it */
4681 if (!nr_pages_same)
4682 nr_pages = 2;
4683 buffer->buffers[cpu] =
4684 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4685 if (!buffer->buffers[cpu]) {
4686 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4687 cpu);
4688 return -ENOMEM;
4689 }
4690 smp_wmb();
4691 cpumask_set_cpu(cpu, buffer->cpumask);
4692 return 0;
554f786e 4693}
6c43e554
SRRH
4694
4695#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4696/*
4697 * This is a basic integrity check of the ring buffer.
4698 * Late in the boot cycle this test will run when configured in.
4699 * It will kick off a thread per CPU that will go into a loop
4700 * writing to the per cpu ring buffer various sizes of data.
4701 * Some of the data will be large items, some small.
4702 *
4703 * Another thread is created that goes into a spin, sending out
4704 * IPIs to the other CPUs to also write into the ring buffer.
4705 * this is to test the nesting ability of the buffer.
4706 *
4707 * Basic stats are recorded and reported. If something in the
4708 * ring buffer should happen that's not expected, a big warning
4709 * is displayed and all ring buffers are disabled.
4710 */
4711static struct task_struct *rb_threads[NR_CPUS] __initdata;
4712
4713struct rb_test_data {
4714 struct ring_buffer *buffer;
4715 unsigned long events;
4716 unsigned long bytes_written;
4717 unsigned long bytes_alloc;
4718 unsigned long bytes_dropped;
4719 unsigned long events_nested;
4720 unsigned long bytes_written_nested;
4721 unsigned long bytes_alloc_nested;
4722 unsigned long bytes_dropped_nested;
4723 int min_size_nested;
4724 int max_size_nested;
4725 int max_size;
4726 int min_size;
4727 int cpu;
4728 int cnt;
4729};
4730
4731static struct rb_test_data rb_data[NR_CPUS] __initdata;
4732
4733/* 1 meg per cpu */
4734#define RB_TEST_BUFFER_SIZE 1048576
4735
4736static char rb_string[] __initdata =
4737 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4738 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4739 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4740
4741static bool rb_test_started __initdata;
4742
4743struct rb_item {
4744 int size;
4745 char str[];
4746};
4747
4748static __init int rb_write_something(struct rb_test_data *data, bool nested)
4749{
4750 struct ring_buffer_event *event;
4751 struct rb_item *item;
4752 bool started;
4753 int event_len;
4754 int size;
4755 int len;
4756 int cnt;
4757
4758 /* Have nested writes different that what is written */
4759 cnt = data->cnt + (nested ? 27 : 0);
4760
4761 /* Multiply cnt by ~e, to make some unique increment */
4762 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4763
4764 len = size + sizeof(struct rb_item);
4765
4766 started = rb_test_started;
4767 /* read rb_test_started before checking buffer enabled */
4768 smp_rmb();
4769
4770 event = ring_buffer_lock_reserve(data->buffer, len);
4771 if (!event) {
4772 /* Ignore dropped events before test starts. */
4773 if (started) {
4774 if (nested)
4775 data->bytes_dropped += len;
4776 else
4777 data->bytes_dropped_nested += len;
4778 }
4779 return len;
4780 }
4781
4782 event_len = ring_buffer_event_length(event);
4783
4784 if (RB_WARN_ON(data->buffer, event_len < len))
4785 goto out;
4786
4787 item = ring_buffer_event_data(event);
4788 item->size = size;
4789 memcpy(item->str, rb_string, size);
4790
4791 if (nested) {
4792 data->bytes_alloc_nested += event_len;
4793 data->bytes_written_nested += len;
4794 data->events_nested++;
4795 if (!data->min_size_nested || len < data->min_size_nested)
4796 data->min_size_nested = len;
4797 if (len > data->max_size_nested)
4798 data->max_size_nested = len;
4799 } else {
4800 data->bytes_alloc += event_len;
4801 data->bytes_written += len;
4802 data->events++;
4803 if (!data->min_size || len < data->min_size)
4804 data->max_size = len;
4805 if (len > data->max_size)
4806 data->max_size = len;
4807 }
4808
4809 out:
4810 ring_buffer_unlock_commit(data->buffer, event);
4811
4812 return 0;
4813}
4814
4815static __init int rb_test(void *arg)
4816{
4817 struct rb_test_data *data = arg;
4818
4819 while (!kthread_should_stop()) {
4820 rb_write_something(data, false);
4821 data->cnt++;
4822
4823 set_current_state(TASK_INTERRUPTIBLE);
4824 /* Now sleep between a min of 100-300us and a max of 1ms */
4825 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4826 }
4827
4828 return 0;
4829}
4830
4831static __init void rb_ipi(void *ignore)
4832{
4833 struct rb_test_data *data;
4834 int cpu = smp_processor_id();
4835
4836 data = &rb_data[cpu];
4837 rb_write_something(data, true);
4838}
4839
4840static __init int rb_hammer_test(void *arg)
4841{
4842 while (!kthread_should_stop()) {
4843
4844 /* Send an IPI to all cpus to write data! */
4845 smp_call_function(rb_ipi, NULL, 1);
4846 /* No sleep, but for non preempt, let others run */
4847 schedule();
4848 }
4849
4850 return 0;
4851}
4852
4853static __init int test_ringbuffer(void)
4854{
4855 struct task_struct *rb_hammer;
4856 struct ring_buffer *buffer;
4857 int cpu;
4858 int ret = 0;
4859
4860 pr_info("Running ring buffer tests...\n");
4861
4862 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4863 if (WARN_ON(!buffer))
4864 return 0;
4865
4866 /* Disable buffer so that threads can't write to it yet */
4867 ring_buffer_record_off(buffer);
4868
4869 for_each_online_cpu(cpu) {
4870 rb_data[cpu].buffer = buffer;
4871 rb_data[cpu].cpu = cpu;
4872 rb_data[cpu].cnt = cpu;
4873 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4874 "rbtester/%d", cpu);
62277de7 4875 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 4876 pr_cont("FAILED\n");
62277de7 4877 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
4878 goto out_free;
4879 }
4880
4881 kthread_bind(rb_threads[cpu], cpu);
4882 wake_up_process(rb_threads[cpu]);
4883 }
4884
4885 /* Now create the rb hammer! */
4886 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 4887 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 4888 pr_cont("FAILED\n");
62277de7 4889 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
4890 goto out_free;
4891 }
4892
4893 ring_buffer_record_on(buffer);
4894 /*
4895 * Show buffer is enabled before setting rb_test_started.
4896 * Yes there's a small race window where events could be
4897 * dropped and the thread wont catch it. But when a ring
4898 * buffer gets enabled, there will always be some kind of
4899 * delay before other CPUs see it. Thus, we don't care about
4900 * those dropped events. We care about events dropped after
4901 * the threads see that the buffer is active.
4902 */
4903 smp_wmb();
4904 rb_test_started = true;
4905
4906 set_current_state(TASK_INTERRUPTIBLE);
4907 /* Just run for 10 seconds */;
4908 schedule_timeout(10 * HZ);
4909
4910 kthread_stop(rb_hammer);
4911
4912 out_free:
4913 for_each_online_cpu(cpu) {
4914 if (!rb_threads[cpu])
4915 break;
4916 kthread_stop(rb_threads[cpu]);
4917 }
4918 if (ret) {
4919 ring_buffer_free(buffer);
4920 return ret;
4921 }
4922
4923 /* Report! */
4924 pr_info("finished\n");
4925 for_each_online_cpu(cpu) {
4926 struct ring_buffer_event *event;
4927 struct rb_test_data *data = &rb_data[cpu];
4928 struct rb_item *item;
4929 unsigned long total_events;
4930 unsigned long total_dropped;
4931 unsigned long total_written;
4932 unsigned long total_alloc;
4933 unsigned long total_read = 0;
4934 unsigned long total_size = 0;
4935 unsigned long total_len = 0;
4936 unsigned long total_lost = 0;
4937 unsigned long lost;
4938 int big_event_size;
4939 int small_event_size;
4940
4941 ret = -1;
4942
4943 total_events = data->events + data->events_nested;
4944 total_written = data->bytes_written + data->bytes_written_nested;
4945 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4946 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4947
4948 big_event_size = data->max_size + data->max_size_nested;
4949 small_event_size = data->min_size + data->min_size_nested;
4950
4951 pr_info("CPU %d:\n", cpu);
4952 pr_info(" events: %ld\n", total_events);
4953 pr_info(" dropped bytes: %ld\n", total_dropped);
4954 pr_info(" alloced bytes: %ld\n", total_alloc);
4955 pr_info(" written bytes: %ld\n", total_written);
4956 pr_info(" biggest event: %d\n", big_event_size);
4957 pr_info(" smallest event: %d\n", small_event_size);
4958
4959 if (RB_WARN_ON(buffer, total_dropped))
4960 break;
4961
4962 ret = 0;
4963
4964 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4965 total_lost += lost;
4966 item = ring_buffer_event_data(event);
4967 total_len += ring_buffer_event_length(event);
4968 total_size += item->size + sizeof(struct rb_item);
4969 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4970 pr_info("FAILED!\n");
4971 pr_info("buffer had: %.*s\n", item->size, item->str);
4972 pr_info("expected: %.*s\n", item->size, rb_string);
4973 RB_WARN_ON(buffer, 1);
4974 ret = -1;
4975 break;
4976 }
4977 total_read++;
4978 }
4979 if (ret)
4980 break;
4981
4982 ret = -1;
4983
4984 pr_info(" read events: %ld\n", total_read);
4985 pr_info(" lost events: %ld\n", total_lost);
4986 pr_info(" total events: %ld\n", total_lost + total_read);
4987 pr_info(" recorded len bytes: %ld\n", total_len);
4988 pr_info(" recorded size bytes: %ld\n", total_size);
4989 if (total_lost)
4990 pr_info(" With dropped events, record len and size may not match\n"
4991 " alloced and written from above\n");
4992 if (!total_lost) {
4993 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4994 total_size != total_written))
4995 break;
4996 }
4997 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4998 break;
4999
5000 ret = 0;
5001 }
5002 if (!ret)
5003 pr_info("Ring buffer PASSED!\n");
5004
5005 ring_buffer_free(buffer);
5006 return 0;
5007}
5008
5009late_initcall(test_ringbuffer);
5010#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */