]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
ftracetest: Add instance create and delete test
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3 12#include <linux/uaccess.h>
a81bd80a 13#include <linux/hardirq.h>
6c43e554 14#include <linux/kthread.h> /* for self test */
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
499e5470
SR
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
a3583244 120
499e5470 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 122
e3d6bf0a 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 124#define RB_ALIGNMENT 4U
334d4169 125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 127
649508f6 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
649508f6
JH
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
334d4169
LJ
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
69d1b839
SR
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
2d622719
TZ
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
a1863c21 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
a1863c21 156 /* padding has a NULL time_delta */
334d4169 157 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
158 event->time_delta = 0;
159}
160
34a148bf 161static unsigned
2d622719 162rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
163{
164 unsigned length;
165
334d4169
LJ
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
69d1b839
SR
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
2d622719
TZ
179rb_event_length(struct ring_buffer_event *event)
180{
334d4169 181 switch (event->type_len) {
7a8e76a3 182 case RINGBUF_TYPE_PADDING:
2d622719
TZ
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
334d4169 186 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
2d622719 195 return rb_event_data_length(event);
7a8e76a3
SR
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
69d1b839
SR
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
7a8e76a3
SR
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
69d1b839
SR
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
7a8e76a3
SR
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
69d1b839
SR
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
334d4169 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
7a8e76a3 244}
c4f50183 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
246
247/* inline for ring buffer fast paths */
34a148bf 248static void *
7a8e76a3
SR
249rb_event_data(struct ring_buffer_event *event)
250{
69d1b839
SR
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
334d4169 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 254 /* If length is in len field, then array[0] has the data */
334d4169 255 if (event->type_len)
7a8e76a3
SR
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
c4f50183 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
270
271#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 272 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
66a8cb95
SR
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
66a8cb95 282
abc9b56d 283struct buffer_data_page {
e4c2ce82 284 u64 time_stamp; /* page time stamp */
c3706f00 285 local_t commit; /* write committed index */
649508f6 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
287};
288
77ae365e
SR
289/*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
abc9b56d 297struct buffer_page {
778c55d4 298 struct list_head list; /* list of buffer pages */
abc9b56d 299 local_t write; /* index for next write */
6f807acd 300 unsigned read; /* index for next read */
778c55d4 301 local_t entries; /* entries on this page */
ff0ff84a 302 unsigned long real_end; /* real end of data */
abc9b56d 303 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
304};
305
77ae365e
SR
306/*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318#define RB_WRITE_MASK 0xfffff
319#define RB_WRITE_INTCNT (1 << 20)
320
044fa782 321static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 322{
044fa782 323 local_set(&bpage->commit, 0);
abc9b56d
SR
324}
325
474d32b6
SR
326/**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
ef7a4a16
SR
332size_t ring_buffer_page_len(void *page)
333{
474d32b6
SR
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
336}
337
ed56829c
SR
338/*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
34a148bf 342static void free_buffer_page(struct buffer_page *bpage)
ed56829c 343{
34a148bf 344 free_page((unsigned long)bpage->page);
e4c2ce82 345 kfree(bpage);
ed56829c
SR
346}
347
7a8e76a3
SR
348/*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351static inline int test_time_stamp(u64 delta)
352{
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356}
357
474d32b6 358#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 359
be957c44
SR
360/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
d1b182a8
SR
363int ring_buffer_print_page_header(struct trace_seq *s)
364{
365 struct buffer_data_page field;
c0cd93aa
SRRH
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
d1b182a8
SR
391}
392
15693458
SRRH
393struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
1e0d6714 396 wait_queue_head_t full_waiters;
15693458 397 bool waiters_pending;
1e0d6714
SRRH
398 bool full_waiters_pending;
399 bool wakeup_full;
15693458
SRRH
400};
401
fcc742ea
SRRH
402/*
403 * Structure to hold event state and handle nested events.
404 */
405struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411};
412
a497adb4
SRRH
413/*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428};
429
7a8e76a3
SR
430/*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433struct ring_buffer_per_cpu {
434 int cpu;
985023de 435 atomic_t record_disabled;
7a8e76a3 436 struct ring_buffer *buffer;
5389f6fa 437 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 438 arch_spinlock_t lock;
7a8e76a3 439 struct lock_class_key lock_key;
438ced17 440 unsigned int nr_pages;
58a09ec6 441 unsigned int current_context;
3adc54fa 442 struct list_head *pages;
6f807acd
SR
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
c3706f00 445 struct buffer_page *commit_page; /* committed pages */
d769041f 446 struct buffer_page *reader_page;
66a8cb95
SR
447 unsigned long lost_events;
448 unsigned long last_overrun;
c64e148a 449 local_t entries_bytes;
e4906eff 450 local_t entries;
884bfe89
SP
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
fa743953
SR
454 local_t committing;
455 local_t commits;
77ae365e 456 unsigned long read;
c64e148a 457 unsigned long read_bytes;
7a8e76a3
SR
458 u64 write_stamp;
459 u64 read_stamp;
438ced17
VN
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
83f40318 463 struct work_struct update_pages_work;
05fdd70d 464 struct completion update_done;
15693458
SRRH
465
466 struct rb_irq_work irq_work;
7a8e76a3
SR
467};
468
469struct ring_buffer {
7a8e76a3
SR
470 unsigned flags;
471 int cpus;
7a8e76a3 472 atomic_t record_disabled;
83f40318 473 atomic_t resize_disabled;
00f62f61 474 cpumask_var_t cpumask;
7a8e76a3 475
1f8a6a10
PZ
476 struct lock_class_key *reader_lock_key;
477
7a8e76a3
SR
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
554f786e 481
59222efe 482#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
483 struct notifier_block cpu_notify;
484#endif
37886f6a 485 u64 (*clock)(void);
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
492a74f4
SR
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
7a8e76a3
SR
496 u64 read_stamp;
497};
498
15693458
SRRH
499/*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505static void rb_wake_up_waiters(struct irq_work *work)
506{
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
15693458
SRRH
514}
515
516/**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
e30f53aa 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
e30f53aa 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 527{
e30f53aa 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
e30f53aa 531 int ret = 0;
15693458
SRRH
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
1e0d6714 538 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 539 work = &buffer->irq_work;
1e0d6714
SRRH
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
8b8b3683
SRRH
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
15693458
SRRH
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
e30f53aa 550 while (true) {
1e0d6714
SRRH
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
1e0d6714
SRRH
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
e30f53aa
RV
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
15693458 604
15693458 605 schedule();
e30f53aa 606 }
15693458 607
1e0d6714
SRRH
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
e30f53aa
RV
612
613 return ret;
15693458
SRRH
614}
615
616/**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632{
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
15693458
SRRH
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
6721cb60
SRRH
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
15693458
SRRH
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
15693458 646 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
15693458
SRRH
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667}
668
f536aafc 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
670#define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
3e89c7bb 683 })
f536aafc 684
37886f6a
SR
685/* Up this if you want to test the TIME_EXTENTS and normalization */
686#define DEBUG_SHIFT 0
687
6d3f1e12 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
689{
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692}
693
37886f6a
SR
694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695{
696 u64 time;
697
698 preempt_disable_notrace();
6d3f1e12 699 time = rb_time_stamp(buffer);
37886f6a
SR
700 preempt_enable_no_resched_notrace();
701
702 return time;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708{
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711}
712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
77ae365e
SR
714/*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783#define RB_PAGE_NORMAL 0UL
784#define RB_PAGE_HEAD 1UL
785#define RB_PAGE_UPDATE 2UL
786
787
788#define RB_FLAG_MASK 3UL
789
790/* PAGE_MOVED is not part of the mask */
791#define RB_PAGE_MOVED 4UL
792
793/*
794 * rb_list_head - remove any bit
795 */
796static struct list_head *rb_list_head(struct list_head *list)
797{
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801}
802
803/*
6d3f1e12 804 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
42b16b3f 811static inline int
77ae365e
SR
812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814{
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823}
824
825/*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
06ca3209 832static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
833{
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837}
838
839/*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844{
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850}
851
852/*
853 * rb_head_page_activate - sets up head page
854 */
855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856{
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867}
868
869static void rb_list_head_clear(struct list_head *list)
870{
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874}
875
876/*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879static void
880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881{
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889}
890
891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895{
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
08a40816
SR
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
77ae365e
SR
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912}
913
914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918{
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921}
922
923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927{
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930}
931
932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936{
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939}
940
941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943{
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947}
948
949static struct buffer_page *
950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985}
986
987static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989{
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
08a40816 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
998
999 return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
1004 *
1005 * Returns 1 if moved tail page, 0 if someone else did.
1006 */
1007static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 struct buffer_page *tail_page,
1009 struct buffer_page *next_page)
1010{
1011 struct buffer_page *old_tail;
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014 int ret = 0;
1015
1016 /*
1017 * The tail page now needs to be moved forward.
1018 *
1019 * We need to reset the tail page, but without messing
1020 * with possible erasing of data brought in by interrupts
1021 * that have moved the tail page and are currently on it.
1022 *
1023 * We add a counter to the write field to denote this.
1024 */
1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028 /*
1029 * Just make sure we have seen our old_write and synchronize
1030 * with any interrupts that come in.
1031 */
1032 barrier();
1033
1034 /*
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1037 * pointer.
1038 */
1039 if (tail_page == cpu_buffer->tail_page) {
1040 /* Zero the write counter */
1041 unsigned long val = old_write & ~RB_WRITE_MASK;
1042 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044 /*
1045 * This will only succeed if an interrupt did
1046 * not come in and change it. In which case, we
1047 * do not want to modify it.
da706d8b
LJ
1048 *
1049 * We add (void) to let the compiler know that we do not care
1050 * about the return value of these functions. We use the
1051 * cmpxchg to only update if an interrupt did not already
1052 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1053 */
da706d8b
LJ
1054 (void)local_cmpxchg(&next_page->write, old_write, val);
1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1056
1057 /*
1058 * No need to worry about races with clearing out the commit.
1059 * it only can increment when a commit takes place. But that
1060 * only happens in the outer most nested commit.
1061 */
1062 local_set(&next_page->page->commit, 0);
1063
1064 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 tail_page, next_page);
1066
1067 if (old_tail == tail_page)
1068 ret = 1;
1069 }
1070
1071 return ret;
1072}
1073
1074static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 struct buffer_page *bpage)
1076{
1077 unsigned long val = (unsigned long)bpage;
1078
1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 return 1;
1081
1082 return 0;
1083}
1084
1085/**
1086 * rb_check_list - make sure a pointer to a list has the last bits zero
1087 */
1088static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 struct list_head *list)
1090{
1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 return 1;
1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 return 1;
1095 return 0;
1096}
1097
7a8e76a3 1098/**
d611851b 1099 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1100 * @cpu_buffer: CPU buffer with pages to test
1101 *
c3706f00 1102 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1103 * been corrupted.
1104 */
1105static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106{
3adc54fa 1107 struct list_head *head = cpu_buffer->pages;
044fa782 1108 struct buffer_page *bpage, *tmp;
7a8e76a3 1109
308f7eeb
SR
1110 /* Reset the head page if it exists */
1111 if (cpu_buffer->head_page)
1112 rb_set_head_page(cpu_buffer);
1113
77ae365e
SR
1114 rb_head_page_deactivate(cpu_buffer);
1115
3e89c7bb
SR
1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 return -1;
7a8e76a3 1120
77ae365e
SR
1121 if (rb_check_list(cpu_buffer, head))
1122 return -1;
1123
044fa782 1124 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1125 if (RB_WARN_ON(cpu_buffer,
044fa782 1126 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1127 return -1;
1128 if (RB_WARN_ON(cpu_buffer,
044fa782 1129 bpage->list.prev->next != &bpage->list))
3e89c7bb 1130 return -1;
77ae365e
SR
1131 if (rb_check_list(cpu_buffer, &bpage->list))
1132 return -1;
7a8e76a3
SR
1133 }
1134
77ae365e
SR
1135 rb_head_page_activate(cpu_buffer);
1136
7a8e76a3
SR
1137 return 0;
1138}
1139
438ced17 1140static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1141{
438ced17 1142 int i;
044fa782 1143 struct buffer_page *bpage, *tmp;
3adc54fa 1144
7a8e76a3 1145 for (i = 0; i < nr_pages; i++) {
7ea59064 1146 struct page *page;
d7ec4bfe
VN
1147 /*
1148 * __GFP_NORETRY flag makes sure that the allocation fails
1149 * gracefully without invoking oom-killer and the system is
1150 * not destabilized.
1151 */
044fa782 1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1153 GFP_KERNEL | __GFP_NORETRY,
438ced17 1154 cpu_to_node(cpu));
044fa782 1155 if (!bpage)
e4c2ce82 1156 goto free_pages;
77ae365e 1157
438ced17 1158 list_add(&bpage->list, pages);
77ae365e 1159
438ced17 1160 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1161 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1162 if (!page)
7a8e76a3 1163 goto free_pages;
7ea59064 1164 bpage->page = page_address(page);
044fa782 1165 rb_init_page(bpage->page);
7a8e76a3
SR
1166 }
1167
438ced17
VN
1168 return 0;
1169
1170free_pages:
1171 list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 list_del_init(&bpage->list);
1173 free_buffer_page(bpage);
1174 }
1175
1176 return -ENOMEM;
1177}
1178
1179static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 unsigned nr_pages)
1181{
1182 LIST_HEAD(pages);
1183
1184 WARN_ON(!nr_pages);
1185
1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 return -ENOMEM;
1188
3adc54fa
SR
1189 /*
1190 * The ring buffer page list is a circular list that does not
1191 * start and end with a list head. All page list items point to
1192 * other pages.
1193 */
1194 cpu_buffer->pages = pages.next;
1195 list_del(&pages);
7a8e76a3 1196
438ced17
VN
1197 cpu_buffer->nr_pages = nr_pages;
1198
7a8e76a3
SR
1199 rb_check_pages(cpu_buffer);
1200
1201 return 0;
7a8e76a3
SR
1202}
1203
1204static struct ring_buffer_per_cpu *
438ced17 1205rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1206{
1207 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1208 struct buffer_page *bpage;
7ea59064 1209 struct page *page;
7a8e76a3
SR
1210 int ret;
1211
1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 GFP_KERNEL, cpu_to_node(cpu));
1214 if (!cpu_buffer)
1215 return NULL;
1216
1217 cpu_buffer->cpu = cpu;
1218 cpu_buffer->buffer = buffer;
5389f6fa 1219 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1223 init_completion(&cpu_buffer->update_done);
15693458 1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1227
044fa782 1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1229 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1230 if (!bpage)
e4c2ce82
SR
1231 goto fail_free_buffer;
1232
77ae365e
SR
1233 rb_check_bpage(cpu_buffer, bpage);
1234
044fa782 1235 cpu_buffer->reader_page = bpage;
7ea59064
VN
1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 if (!page)
e4c2ce82 1238 goto fail_free_reader;
7ea59064 1239 bpage->page = page_address(page);
044fa782 1240 rb_init_page(bpage->page);
e4c2ce82 1241
d769041f 1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1243 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1244
438ced17 1245 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1246 if (ret < 0)
d769041f 1247 goto fail_free_reader;
7a8e76a3
SR
1248
1249 cpu_buffer->head_page
3adc54fa 1250 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1252
77ae365e
SR
1253 rb_head_page_activate(cpu_buffer);
1254
7a8e76a3
SR
1255 return cpu_buffer;
1256
d769041f
SR
1257 fail_free_reader:
1258 free_buffer_page(cpu_buffer->reader_page);
1259
7a8e76a3
SR
1260 fail_free_buffer:
1261 kfree(cpu_buffer);
1262 return NULL;
1263}
1264
1265static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266{
3adc54fa 1267 struct list_head *head = cpu_buffer->pages;
044fa782 1268 struct buffer_page *bpage, *tmp;
7a8e76a3 1269
d769041f
SR
1270 free_buffer_page(cpu_buffer->reader_page);
1271
77ae365e
SR
1272 rb_head_page_deactivate(cpu_buffer);
1273
3adc54fa
SR
1274 if (head) {
1275 list_for_each_entry_safe(bpage, tmp, head, list) {
1276 list_del_init(&bpage->list);
1277 free_buffer_page(bpage);
1278 }
1279 bpage = list_entry(head, struct buffer_page, list);
044fa782 1280 free_buffer_page(bpage);
7a8e76a3 1281 }
3adc54fa 1282
7a8e76a3
SR
1283 kfree(cpu_buffer);
1284}
1285
59222efe 1286#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1287static int rb_cpu_notify(struct notifier_block *self,
1288 unsigned long action, void *hcpu);
554f786e
SR
1289#endif
1290
7a8e76a3 1291/**
d611851b 1292 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1293 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1294 * @flags: attributes to set for the ring buffer.
1295 *
1296 * Currently the only flag that is available is the RB_FL_OVERWRITE
1297 * flag. This flag means that the buffer will overwrite old data
1298 * when the buffer wraps. If this flag is not set, the buffer will
1299 * drop data when the tail hits the head.
1300 */
1f8a6a10
PZ
1301struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 struct lock_class_key *key)
7a8e76a3
SR
1303{
1304 struct ring_buffer *buffer;
1305 int bsize;
438ced17 1306 int cpu, nr_pages;
7a8e76a3
SR
1307
1308 /* keep it in its own cache line */
1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 GFP_KERNEL);
1311 if (!buffer)
1312 return NULL;
1313
9e01c1b7
RR
1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 goto fail_free_buffer;
1316
438ced17 1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1318 buffer->flags = flags;
37886f6a 1319 buffer->clock = trace_clock_local;
1f8a6a10 1320 buffer->reader_lock_key = key;
7a8e76a3 1321
15693458 1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1323 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1324
7a8e76a3 1325 /* need at least two pages */
438ced17
VN
1326 if (nr_pages < 2)
1327 nr_pages = 2;
7a8e76a3 1328
3bf832ce
FW
1329 /*
1330 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 * in early initcall, it will not be notified of secondary cpus.
1332 * In that off case, we need to allocate for all possible cpus.
1333 */
1334#ifdef CONFIG_HOTPLUG_CPU
d39ad278 1335 cpu_notifier_register_begin();
554f786e 1336 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1337#else
1338 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339#endif
7a8e76a3
SR
1340 buffer->cpus = nr_cpu_ids;
1341
1342 bsize = sizeof(void *) * nr_cpu_ids;
1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 GFP_KERNEL);
1345 if (!buffer->buffers)
9e01c1b7 1346 goto fail_free_cpumask;
7a8e76a3
SR
1347
1348 for_each_buffer_cpu(buffer, cpu) {
1349 buffer->buffers[cpu] =
438ced17 1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1351 if (!buffer->buffers[cpu])
1352 goto fail_free_buffers;
1353 }
1354
59222efe 1355#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1356 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 buffer->cpu_notify.priority = 0;
d39ad278
SB
1358 __register_cpu_notifier(&buffer->cpu_notify);
1359 cpu_notifier_register_done();
554f786e
SR
1360#endif
1361
7a8e76a3
SR
1362 mutex_init(&buffer->mutex);
1363
1364 return buffer;
1365
1366 fail_free_buffers:
1367 for_each_buffer_cpu(buffer, cpu) {
1368 if (buffer->buffers[cpu])
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 }
1371 kfree(buffer->buffers);
1372
9e01c1b7
RR
1373 fail_free_cpumask:
1374 free_cpumask_var(buffer->cpumask);
d39ad278
SB
1375#ifdef CONFIG_HOTPLUG_CPU
1376 cpu_notifier_register_done();
1377#endif
9e01c1b7 1378
7a8e76a3
SR
1379 fail_free_buffer:
1380 kfree(buffer);
1381 return NULL;
1382}
1f8a6a10 1383EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1384
1385/**
1386 * ring_buffer_free - free a ring buffer.
1387 * @buffer: the buffer to free.
1388 */
1389void
1390ring_buffer_free(struct ring_buffer *buffer)
1391{
1392 int cpu;
1393
59222efe 1394#ifdef CONFIG_HOTPLUG_CPU
d39ad278
SB
1395 cpu_notifier_register_begin();
1396 __unregister_cpu_notifier(&buffer->cpu_notify);
554f786e
SR
1397#endif
1398
7a8e76a3
SR
1399 for_each_buffer_cpu(buffer, cpu)
1400 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
d39ad278
SB
1402#ifdef CONFIG_HOTPLUG_CPU
1403 cpu_notifier_register_done();
1404#endif
554f786e 1405
bd3f0221 1406 kfree(buffer->buffers);
9e01c1b7
RR
1407 free_cpumask_var(buffer->cpumask);
1408
7a8e76a3
SR
1409 kfree(buffer);
1410}
c4f50183 1411EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1412
37886f6a
SR
1413void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 u64 (*clock)(void))
1415{
1416 buffer->clock = clock;
1417}
1418
7a8e76a3
SR
1419static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
83f40318
VN
1421static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422{
1423 return local_read(&bpage->entries) & RB_WRITE_MASK;
1424}
1425
1426static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427{
1428 return local_read(&bpage->write) & RB_WRITE_MASK;
1429}
1430
5040b4b7 1431static int
83f40318 1432rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1433{
83f40318
VN
1434 struct list_head *tail_page, *to_remove, *next_page;
1435 struct buffer_page *to_remove_page, *tmp_iter_page;
1436 struct buffer_page *last_page, *first_page;
1437 unsigned int nr_removed;
1438 unsigned long head_bit;
1439 int page_entries;
1440
1441 head_bit = 0;
7a8e76a3 1442
5389f6fa 1443 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1444 atomic_inc(&cpu_buffer->record_disabled);
1445 /*
1446 * We don't race with the readers since we have acquired the reader
1447 * lock. We also don't race with writers after disabling recording.
1448 * This makes it easy to figure out the first and the last page to be
1449 * removed from the list. We unlink all the pages in between including
1450 * the first and last pages. This is done in a busy loop so that we
1451 * lose the least number of traces.
1452 * The pages are freed after we restart recording and unlock readers.
1453 */
1454 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1455
83f40318
VN
1456 /*
1457 * tail page might be on reader page, we remove the next page
1458 * from the ring buffer
1459 */
1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 tail_page = rb_list_head(tail_page->next);
1462 to_remove = tail_page;
1463
1464 /* start of pages to remove */
1465 first_page = list_entry(rb_list_head(to_remove->next),
1466 struct buffer_page, list);
1467
1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 to_remove = rb_list_head(to_remove)->next;
1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1471 }
7a8e76a3 1472
83f40318 1473 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1474
83f40318
VN
1475 /*
1476 * Now we remove all pages between tail_page and next_page.
1477 * Make sure that we have head_bit value preserved for the
1478 * next page
1479 */
1480 tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 head_bit);
1482 next_page = rb_list_head(next_page);
1483 next_page->prev = tail_page;
1484
1485 /* make sure pages points to a valid page in the ring buffer */
1486 cpu_buffer->pages = next_page;
1487
1488 /* update head page */
1489 if (head_bit)
1490 cpu_buffer->head_page = list_entry(next_page,
1491 struct buffer_page, list);
1492
1493 /*
1494 * change read pointer to make sure any read iterators reset
1495 * themselves
1496 */
1497 cpu_buffer->read = 0;
1498
1499 /* pages are removed, resume tracing and then free the pages */
1500 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1502
1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505 /* last buffer page to remove */
1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 list);
1508 tmp_iter_page = first_page;
1509
1510 do {
1511 to_remove_page = tmp_iter_page;
1512 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514 /* update the counters */
1515 page_entries = rb_page_entries(to_remove_page);
1516 if (page_entries) {
1517 /*
1518 * If something was added to this page, it was full
1519 * since it is not the tail page. So we deduct the
1520 * bytes consumed in ring buffer from here.
48fdc72f 1521 * Increment overrun to account for the lost events.
83f40318 1522 */
48fdc72f 1523 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 }
1526
1527 /*
1528 * We have already removed references to this list item, just
1529 * free up the buffer_page and its page
1530 */
1531 free_buffer_page(to_remove_page);
1532 nr_removed--;
1533
1534 } while (to_remove_page != last_page);
1535
1536 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1537
1538 return nr_removed == 0;
7a8e76a3
SR
1539}
1540
5040b4b7
VN
1541static int
1542rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1543{
5040b4b7
VN
1544 struct list_head *pages = &cpu_buffer->new_pages;
1545 int retries, success;
7a8e76a3 1546
5389f6fa 1547 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1548 /*
1549 * We are holding the reader lock, so the reader page won't be swapped
1550 * in the ring buffer. Now we are racing with the writer trying to
1551 * move head page and the tail page.
1552 * We are going to adapt the reader page update process where:
1553 * 1. We first splice the start and end of list of new pages between
1554 * the head page and its previous page.
1555 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 * start of new pages list.
1557 * 3. Finally, we update the head->prev to the end of new list.
1558 *
1559 * We will try this process 10 times, to make sure that we don't keep
1560 * spinning.
1561 */
1562 retries = 10;
1563 success = 0;
1564 while (retries--) {
1565 struct list_head *head_page, *prev_page, *r;
1566 struct list_head *last_page, *first_page;
1567 struct list_head *head_page_with_bit;
77ae365e 1568
5040b4b7 1569 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1570 if (!head_page)
1571 break;
5040b4b7
VN
1572 prev_page = head_page->prev;
1573
1574 first_page = pages->next;
1575 last_page = pages->prev;
1576
1577 head_page_with_bit = (struct list_head *)
1578 ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580 last_page->next = head_page_with_bit;
1581 first_page->prev = prev_page;
1582
1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585 if (r == head_page_with_bit) {
1586 /*
1587 * yay, we replaced the page pointer to our new list,
1588 * now, we just have to update to head page's prev
1589 * pointer to point to end of list
1590 */
1591 head_page->prev = last_page;
1592 success = 1;
1593 break;
1594 }
7a8e76a3 1595 }
7a8e76a3 1596
5040b4b7
VN
1597 if (success)
1598 INIT_LIST_HEAD(pages);
1599 /*
1600 * If we weren't successful in adding in new pages, warn and stop
1601 * tracing
1602 */
1603 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1605
1606 /* free pages if they weren't inserted */
1607 if (!success) {
1608 struct buffer_page *bpage, *tmp;
1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 list) {
1611 list_del_init(&bpage->list);
1612 free_buffer_page(bpage);
1613 }
1614 }
1615 return success;
7a8e76a3
SR
1616}
1617
83f40318 1618static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1619{
5040b4b7
VN
1620 int success;
1621
438ced17 1622 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1623 success = rb_insert_pages(cpu_buffer);
438ced17 1624 else
5040b4b7
VN
1625 success = rb_remove_pages(cpu_buffer,
1626 -cpu_buffer->nr_pages_to_update);
83f40318 1627
5040b4b7
VN
1628 if (success)
1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1630}
1631
1632static void update_pages_handler(struct work_struct *work)
1633{
1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 struct ring_buffer_per_cpu, update_pages_work);
1636 rb_update_pages(cpu_buffer);
05fdd70d 1637 complete(&cpu_buffer->update_done);
438ced17
VN
1638}
1639
7a8e76a3
SR
1640/**
1641 * ring_buffer_resize - resize the ring buffer
1642 * @buffer: the buffer to resize.
1643 * @size: the new size.
d611851b 1644 * @cpu_id: the cpu buffer to resize
7a8e76a3 1645 *
7a8e76a3
SR
1646 * Minimum size is 2 * BUF_PAGE_SIZE.
1647 *
83f40318 1648 * Returns 0 on success and < 0 on failure.
7a8e76a3 1649 */
438ced17
VN
1650int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 int cpu_id)
7a8e76a3
SR
1652{
1653 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1654 unsigned nr_pages;
83f40318 1655 int cpu, err = 0;
7a8e76a3 1656
ee51a1de
IM
1657 /*
1658 * Always succeed at resizing a non-existent buffer:
1659 */
1660 if (!buffer)
1661 return size;
1662
6a31e1f1
SR
1663 /* Make sure the requested buffer exists */
1664 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 return size;
1667
7a8e76a3
SR
1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1670
1671 /* we need a minimum of two pages */
1672 if (size < BUF_PAGE_SIZE * 2)
1673 size = BUF_PAGE_SIZE * 2;
1674
83f40318 1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1676
83f40318
VN
1677 /*
1678 * Don't succeed if resizing is disabled, as a reader might be
1679 * manipulating the ring buffer and is expecting a sane state while
1680 * this is true.
1681 */
1682 if (atomic_read(&buffer->resize_disabled))
1683 return -EBUSY;
18421015 1684
83f40318 1685 /* prevent another thread from changing buffer sizes */
7a8e76a3 1686 mutex_lock(&buffer->mutex);
7a8e76a3 1687
438ced17
VN
1688 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 /* calculate the pages to update */
7a8e76a3
SR
1690 for_each_buffer_cpu(buffer, cpu) {
1691 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1692
438ced17
VN
1693 cpu_buffer->nr_pages_to_update = nr_pages -
1694 cpu_buffer->nr_pages;
438ced17
VN
1695 /*
1696 * nothing more to do for removing pages or no update
1697 */
1698 if (cpu_buffer->nr_pages_to_update <= 0)
1699 continue;
d7ec4bfe 1700 /*
438ced17
VN
1701 * to add pages, make sure all new pages can be
1702 * allocated without receiving ENOMEM
d7ec4bfe 1703 */
438ced17
VN
1704 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1706 &cpu_buffer->new_pages, cpu)) {
438ced17 1707 /* not enough memory for new pages */
83f40318
VN
1708 err = -ENOMEM;
1709 goto out_err;
1710 }
1711 }
1712
1713 get_online_cpus();
1714 /*
1715 * Fire off all the required work handlers
05fdd70d 1716 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1717 * since we can change their buffer sizes without any race.
1718 */
1719 for_each_buffer_cpu(buffer, cpu) {
1720 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1721 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1722 continue;
1723
021c5b34
CM
1724 /* Can't run something on an offline CPU. */
1725 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1726 rb_update_pages(cpu_buffer);
1727 cpu_buffer->nr_pages_to_update = 0;
1728 } else {
05fdd70d
VN
1729 schedule_work_on(cpu,
1730 &cpu_buffer->update_pages_work);
f5eb5588 1731 }
7a8e76a3 1732 }
7a8e76a3 1733
438ced17
VN
1734 /* wait for all the updates to complete */
1735 for_each_buffer_cpu(buffer, cpu) {
1736 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1737 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1738 continue;
1739
05fdd70d
VN
1740 if (cpu_online(cpu))
1741 wait_for_completion(&cpu_buffer->update_done);
83f40318 1742 cpu_buffer->nr_pages_to_update = 0;
438ced17 1743 }
83f40318
VN
1744
1745 put_online_cpus();
438ced17 1746 } else {
8e49f418
VN
1747 /* Make sure this CPU has been intitialized */
1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 goto out;
1750
438ced17 1751 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1752
438ced17
VN
1753 if (nr_pages == cpu_buffer->nr_pages)
1754 goto out;
7a8e76a3 1755
438ced17
VN
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
1758
1759 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 if (cpu_buffer->nr_pages_to_update > 0 &&
1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1762 &cpu_buffer->new_pages, cpu_id)) {
1763 err = -ENOMEM;
1764 goto out_err;
1765 }
438ced17 1766
83f40318
VN
1767 get_online_cpus();
1768
021c5b34
CM
1769 /* Can't run something on an offline CPU. */
1770 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1771 rb_update_pages(cpu_buffer);
1772 else {
83f40318
VN
1773 schedule_work_on(cpu_id,
1774 &cpu_buffer->update_pages_work);
05fdd70d 1775 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1776 }
83f40318 1777
83f40318 1778 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1779 put_online_cpus();
438ced17 1780 }
7a8e76a3
SR
1781
1782 out:
659f451f
SR
1783 /*
1784 * The ring buffer resize can happen with the ring buffer
1785 * enabled, so that the update disturbs the tracing as little
1786 * as possible. But if the buffer is disabled, we do not need
1787 * to worry about that, and we can take the time to verify
1788 * that the buffer is not corrupt.
1789 */
1790 if (atomic_read(&buffer->record_disabled)) {
1791 atomic_inc(&buffer->record_disabled);
1792 /*
1793 * Even though the buffer was disabled, we must make sure
1794 * that it is truly disabled before calling rb_check_pages.
1795 * There could have been a race between checking
1796 * record_disable and incrementing it.
1797 */
1798 synchronize_sched();
1799 for_each_buffer_cpu(buffer, cpu) {
1800 cpu_buffer = buffer->buffers[cpu];
1801 rb_check_pages(cpu_buffer);
1802 }
1803 atomic_dec(&buffer->record_disabled);
1804 }
1805
7a8e76a3 1806 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1807 return size;
1808
83f40318 1809 out_err:
438ced17
VN
1810 for_each_buffer_cpu(buffer, cpu) {
1811 struct buffer_page *bpage, *tmp;
83f40318 1812
438ced17 1813 cpu_buffer = buffer->buffers[cpu];
438ced17 1814 cpu_buffer->nr_pages_to_update = 0;
83f40318 1815
438ced17
VN
1816 if (list_empty(&cpu_buffer->new_pages))
1817 continue;
83f40318 1818
438ced17
VN
1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 list) {
1821 list_del_init(&bpage->list);
1822 free_buffer_page(bpage);
1823 }
7a8e76a3 1824 }
641d2f63 1825 mutex_unlock(&buffer->mutex);
83f40318 1826 return err;
7a8e76a3 1827}
c4f50183 1828EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1829
750912fa
DS
1830void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831{
1832 mutex_lock(&buffer->mutex);
1833 if (val)
1834 buffer->flags |= RB_FL_OVERWRITE;
1835 else
1836 buffer->flags &= ~RB_FL_OVERWRITE;
1837 mutex_unlock(&buffer->mutex);
1838}
1839EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
8789a9e7 1841static inline void *
044fa782 1842__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1843{
044fa782 1844 return bpage->data + index;
8789a9e7
SR
1845}
1846
044fa782 1847static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1848{
044fa782 1849 return bpage->page->data + index;
7a8e76a3
SR
1850}
1851
1852static inline struct ring_buffer_event *
d769041f 1853rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1854{
6f807acd
SR
1855 return __rb_page_index(cpu_buffer->reader_page,
1856 cpu_buffer->reader_page->read);
1857}
1858
7a8e76a3
SR
1859static inline struct ring_buffer_event *
1860rb_iter_head_event(struct ring_buffer_iter *iter)
1861{
6f807acd 1862 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1863}
1864
bf41a158
SR
1865static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866{
abc9b56d 1867 return local_read(&bpage->page->commit);
bf41a158
SR
1868}
1869
25985edc 1870/* Size is determined by what has been committed */
bf41a158
SR
1871static inline unsigned rb_page_size(struct buffer_page *bpage)
1872{
1873 return rb_page_commit(bpage);
1874}
1875
1876static inline unsigned
1877rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878{
1879 return rb_page_commit(cpu_buffer->commit_page);
1880}
1881
bf41a158
SR
1882static inline unsigned
1883rb_event_index(struct ring_buffer_event *event)
1884{
1885 unsigned long addr = (unsigned long)event;
1886
22f470f8 1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1888}
1889
34a148bf 1890static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1891{
1892 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1893
1894 /*
1895 * The iterator could be on the reader page (it starts there).
1896 * But the head could have moved, since the reader was
1897 * found. Check for this case and assign the iterator
1898 * to the head page instead of next.
1899 */
1900 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1901 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1902 else
1903 rb_inc_page(cpu_buffer, &iter->head_page);
1904
abc9b56d 1905 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1906 iter->head = 0;
1907}
1908
77ae365e
SR
1909/*
1910 * rb_handle_head_page - writer hit the head page
1911 *
1912 * Returns: +1 to retry page
1913 * 0 to continue
1914 * -1 on error
1915 */
1916static int
1917rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1918 struct buffer_page *tail_page,
1919 struct buffer_page *next_page)
1920{
1921 struct buffer_page *new_head;
1922 int entries;
1923 int type;
1924 int ret;
1925
1926 entries = rb_page_entries(next_page);
1927
1928 /*
1929 * The hard part is here. We need to move the head
1930 * forward, and protect against both readers on
1931 * other CPUs and writers coming in via interrupts.
1932 */
1933 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1934 RB_PAGE_HEAD);
1935
1936 /*
1937 * type can be one of four:
1938 * NORMAL - an interrupt already moved it for us
1939 * HEAD - we are the first to get here.
1940 * UPDATE - we are the interrupt interrupting
1941 * a current move.
1942 * MOVED - a reader on another CPU moved the next
1943 * pointer to its reader page. Give up
1944 * and try again.
1945 */
1946
1947 switch (type) {
1948 case RB_PAGE_HEAD:
1949 /*
1950 * We changed the head to UPDATE, thus
1951 * it is our responsibility to update
1952 * the counters.
1953 */
1954 local_add(entries, &cpu_buffer->overrun);
c64e148a 1955 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1956
1957 /*
1958 * The entries will be zeroed out when we move the
1959 * tail page.
1960 */
1961
1962 /* still more to do */
1963 break;
1964
1965 case RB_PAGE_UPDATE:
1966 /*
1967 * This is an interrupt that interrupt the
1968 * previous update. Still more to do.
1969 */
1970 break;
1971 case RB_PAGE_NORMAL:
1972 /*
1973 * An interrupt came in before the update
1974 * and processed this for us.
1975 * Nothing left to do.
1976 */
1977 return 1;
1978 case RB_PAGE_MOVED:
1979 /*
1980 * The reader is on another CPU and just did
1981 * a swap with our next_page.
1982 * Try again.
1983 */
1984 return 1;
1985 default:
1986 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1987 return -1;
1988 }
1989
1990 /*
1991 * Now that we are here, the old head pointer is
1992 * set to UPDATE. This will keep the reader from
1993 * swapping the head page with the reader page.
1994 * The reader (on another CPU) will spin till
1995 * we are finished.
1996 *
1997 * We just need to protect against interrupts
1998 * doing the job. We will set the next pointer
1999 * to HEAD. After that, we set the old pointer
2000 * to NORMAL, but only if it was HEAD before.
2001 * otherwise we are an interrupt, and only
2002 * want the outer most commit to reset it.
2003 */
2004 new_head = next_page;
2005 rb_inc_page(cpu_buffer, &new_head);
2006
2007 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2008 RB_PAGE_NORMAL);
2009
2010 /*
2011 * Valid returns are:
2012 * HEAD - an interrupt came in and already set it.
2013 * NORMAL - One of two things:
2014 * 1) We really set it.
2015 * 2) A bunch of interrupts came in and moved
2016 * the page forward again.
2017 */
2018 switch (ret) {
2019 case RB_PAGE_HEAD:
2020 case RB_PAGE_NORMAL:
2021 /* OK */
2022 break;
2023 default:
2024 RB_WARN_ON(cpu_buffer, 1);
2025 return -1;
2026 }
2027
2028 /*
2029 * It is possible that an interrupt came in,
2030 * set the head up, then more interrupts came in
2031 * and moved it again. When we get back here,
2032 * the page would have been set to NORMAL but we
2033 * just set it back to HEAD.
2034 *
2035 * How do you detect this? Well, if that happened
2036 * the tail page would have moved.
2037 */
2038 if (ret == RB_PAGE_NORMAL) {
2039 /*
2040 * If the tail had moved passed next, then we need
2041 * to reset the pointer.
2042 */
2043 if (cpu_buffer->tail_page != tail_page &&
2044 cpu_buffer->tail_page != next_page)
2045 rb_head_page_set_normal(cpu_buffer, new_head,
2046 next_page,
2047 RB_PAGE_HEAD);
2048 }
2049
2050 /*
2051 * If this was the outer most commit (the one that
2052 * changed the original pointer from HEAD to UPDATE),
2053 * then it is up to us to reset it to NORMAL.
2054 */
2055 if (type == RB_PAGE_HEAD) {
2056 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2057 tail_page,
2058 RB_PAGE_UPDATE);
2059 if (RB_WARN_ON(cpu_buffer,
2060 ret != RB_PAGE_UPDATE))
2061 return -1;
2062 }
2063
2064 return 0;
2065}
2066
c7b09308
SR
2067static inline void
2068rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2069 unsigned long tail, struct rb_event_info *info)
c7b09308 2070{
fcc742ea 2071 struct buffer_page *tail_page = info->tail_page;
c7b09308 2072 struct ring_buffer_event *event;
fcc742ea 2073 unsigned long length = info->length;
c7b09308
SR
2074
2075 /*
2076 * Only the event that crossed the page boundary
2077 * must fill the old tail_page with padding.
2078 */
2079 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2080 /*
2081 * If the page was filled, then we still need
2082 * to update the real_end. Reset it to zero
2083 * and the reader will ignore it.
2084 */
2085 if (tail == BUF_PAGE_SIZE)
2086 tail_page->real_end = 0;
2087
c7b09308
SR
2088 local_sub(length, &tail_page->write);
2089 return;
2090 }
2091
2092 event = __rb_page_index(tail_page, tail);
b0b7065b 2093 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2094
c64e148a
VN
2095 /* account for padding bytes */
2096 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2097
ff0ff84a
SR
2098 /*
2099 * Save the original length to the meta data.
2100 * This will be used by the reader to add lost event
2101 * counter.
2102 */
2103 tail_page->real_end = tail;
2104
c7b09308
SR
2105 /*
2106 * If this event is bigger than the minimum size, then
2107 * we need to be careful that we don't subtract the
2108 * write counter enough to allow another writer to slip
2109 * in on this page.
2110 * We put in a discarded commit instead, to make sure
2111 * that this space is not used again.
2112 *
2113 * If we are less than the minimum size, we don't need to
2114 * worry about it.
2115 */
2116 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2117 /* No room for any events */
2118
2119 /* Mark the rest of the page with padding */
2120 rb_event_set_padding(event);
2121
2122 /* Set the write back to the previous setting */
2123 local_sub(length, &tail_page->write);
2124 return;
2125 }
2126
2127 /* Put in a discarded event */
2128 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2129 event->type_len = RINGBUF_TYPE_PADDING;
2130 /* time delta must be non zero */
2131 event->time_delta = 1;
c7b09308
SR
2132
2133 /* Set write to end of buffer */
2134 length = (tail + length) - BUF_PAGE_SIZE;
2135 local_sub(length, &tail_page->write);
2136}
6634ff26 2137
747e94ae
SR
2138/*
2139 * This is the slow path, force gcc not to inline it.
2140 */
2141static noinline struct ring_buffer_event *
6634ff26 2142rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2143 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2144{
fcc742ea 2145 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2146 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2147 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2148 struct buffer_page *next_page;
2149 int ret;
fcc742ea 2150 u64 ts;
aa20ae84
SR
2151
2152 next_page = tail_page;
2153
aa20ae84
SR
2154 rb_inc_page(cpu_buffer, &next_page);
2155
aa20ae84
SR
2156 /*
2157 * If for some reason, we had an interrupt storm that made
2158 * it all the way around the buffer, bail, and warn
2159 * about it.
2160 */
2161 if (unlikely(next_page == commit_page)) {
77ae365e 2162 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2163 goto out_reset;
2164 }
2165
77ae365e
SR
2166 /*
2167 * This is where the fun begins!
2168 *
2169 * We are fighting against races between a reader that
2170 * could be on another CPU trying to swap its reader
2171 * page with the buffer head.
2172 *
2173 * We are also fighting against interrupts coming in and
2174 * moving the head or tail on us as well.
2175 *
2176 * If the next page is the head page then we have filled
2177 * the buffer, unless the commit page is still on the
2178 * reader page.
2179 */
2180 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2181
77ae365e
SR
2182 /*
2183 * If the commit is not on the reader page, then
2184 * move the header page.
2185 */
2186 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2187 /*
2188 * If we are not in overwrite mode,
2189 * this is easy, just stop here.
2190 */
884bfe89
SP
2191 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2192 local_inc(&cpu_buffer->dropped_events);
77ae365e 2193 goto out_reset;
884bfe89 2194 }
77ae365e
SR
2195
2196 ret = rb_handle_head_page(cpu_buffer,
2197 tail_page,
2198 next_page);
2199 if (ret < 0)
2200 goto out_reset;
2201 if (ret)
2202 goto out_again;
2203 } else {
2204 /*
2205 * We need to be careful here too. The
2206 * commit page could still be on the reader
2207 * page. We could have a small buffer, and
2208 * have filled up the buffer with events
2209 * from interrupts and such, and wrapped.
2210 *
2211 * Note, if the tail page is also the on the
2212 * reader_page, we let it move out.
2213 */
2214 if (unlikely((cpu_buffer->commit_page !=
2215 cpu_buffer->tail_page) &&
2216 (cpu_buffer->commit_page ==
2217 cpu_buffer->reader_page))) {
2218 local_inc(&cpu_buffer->commit_overrun);
2219 goto out_reset;
2220 }
aa20ae84
SR
2221 }
2222 }
2223
77ae365e
SR
2224 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2225 if (ret) {
2226 /*
2227 * Nested commits always have zero deltas, so
2228 * just reread the time stamp
2229 */
e8bc43e8
SR
2230 ts = rb_time_stamp(buffer);
2231 next_page->page->time_stamp = ts;
aa20ae84
SR
2232 }
2233
77ae365e 2234 out_again:
aa20ae84 2235
fcc742ea 2236 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84
SR
2237
2238 /* fail and let the caller try again */
2239 return ERR_PTR(-EAGAIN);
2240
45141d46 2241 out_reset:
6f3b3440 2242 /* reset write */
fcc742ea 2243 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2244
bf41a158 2245 return NULL;
7a8e76a3
SR
2246}
2247
d90fd774
SRRH
2248/* Slow path, do not inline */
2249static noinline struct ring_buffer_event *
2250rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2251{
d90fd774 2252 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2253
d90fd774
SRRH
2254 /* Not the first event on the page? */
2255 if (rb_event_index(event)) {
2256 event->time_delta = delta & TS_MASK;
2257 event->array[0] = delta >> TS_SHIFT;
2258 } else {
2259 /* nope, just zero it */
2260 event->time_delta = 0;
2261 event->array[0] = 0;
2262 }
a4543a2f 2263
d90fd774
SRRH
2264 return skip_time_extend(event);
2265}
a4543a2f 2266
cdb2a0a9 2267static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2268 struct ring_buffer_event *event);
2269
d90fd774
SRRH
2270/**
2271 * rb_update_event - update event type and data
2272 * @event: the event to update
2273 * @type: the type of event
2274 * @length: the size of the event field in the ring buffer
2275 *
2276 * Update the type and data fields of the event. The length
2277 * is the actual size that is written to the ring buffer,
2278 * and with this, we can determine what to place into the
2279 * data field.
2280 */
b7dc42fd 2281static void
d90fd774
SRRH
2282rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2283 struct ring_buffer_event *event,
2284 struct rb_event_info *info)
2285{
2286 unsigned length = info->length;
2287 u64 delta = info->delta;
a4543a2f 2288
b7dc42fd
SRRH
2289 /* Only a commit updates the timestamp */
2290 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2291 delta = 0;
2292
a4543a2f 2293 /*
d90fd774
SRRH
2294 * If we need to add a timestamp, then we
2295 * add it to the start of the resevered space.
a4543a2f 2296 */
d90fd774
SRRH
2297 if (unlikely(info->add_timestamp)) {
2298 event = rb_add_time_stamp(event, delta);
2299 length -= RB_LEN_TIME_EXTEND;
2300 delta = 0;
a4543a2f
SRRH
2301 }
2302
d90fd774
SRRH
2303 event->time_delta = delta;
2304 length -= RB_EVNT_HDR_SIZE;
2305 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2306 event->type_len = 0;
2307 event->array[0] = length;
2308 } else
2309 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2310}
2311
2312static unsigned rb_calculate_event_length(unsigned length)
2313{
2314 struct ring_buffer_event event; /* Used only for sizeof array */
2315
2316 /* zero length can cause confusions */
2317 if (!length)
2318 length++;
2319
2320 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2321 length += sizeof(event.array[0]);
2322
2323 length += RB_EVNT_HDR_SIZE;
2324 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2325
2326 /*
2327 * In case the time delta is larger than the 27 bits for it
2328 * in the header, we need to add a timestamp. If another
2329 * event comes in when trying to discard this one to increase
2330 * the length, then the timestamp will be added in the allocated
2331 * space of this event. If length is bigger than the size needed
2332 * for the TIME_EXTEND, then padding has to be used. The events
2333 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2334 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2335 * As length is a multiple of 4, we only need to worry if it
2336 * is 12 (RB_LEN_TIME_EXTEND + 4).
2337 */
2338 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2339 length += RB_ALIGNMENT;
2340
2341 return length;
2342}
2343
2344#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2345static inline bool sched_clock_stable(void)
2346{
2347 return true;
2348}
2349#endif
2350
2351static inline int
2352rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2353 struct ring_buffer_event *event)
2354{
2355 unsigned long new_index, old_index;
2356 struct buffer_page *bpage;
2357 unsigned long index;
2358 unsigned long addr;
2359
2360 new_index = rb_event_index(event);
2361 old_index = new_index + rb_event_ts_length(event);
2362 addr = (unsigned long)event;
2363 addr &= PAGE_MASK;
2364
2365 bpage = cpu_buffer->tail_page;
2366
2367 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2368 unsigned long write_mask =
2369 local_read(&bpage->write) & ~RB_WRITE_MASK;
2370 unsigned long event_length = rb_event_length(event);
2371 /*
2372 * This is on the tail page. It is possible that
2373 * a write could come in and move the tail page
2374 * and write to the next page. That is fine
2375 * because we just shorten what is on this page.
2376 */
2377 old_index += write_mask;
2378 new_index += write_mask;
2379 index = local_cmpxchg(&bpage->write, old_index, new_index);
2380 if (index == old_index) {
2381 /* update counters */
2382 local_sub(event_length, &cpu_buffer->entries_bytes);
2383 return 1;
2384 }
2385 }
2386
2387 /* could not discard */
2388 return 0;
2389}
2390
2391static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2392{
2393 local_inc(&cpu_buffer->committing);
2394 local_inc(&cpu_buffer->commits);
2395}
2396
2397static void
2398rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2399{
2400 unsigned long max_count;
2401
2402 /*
2403 * We only race with interrupts and NMIs on this CPU.
2404 * If we own the commit event, then we can commit
2405 * all others that interrupted us, since the interruptions
2406 * are in stack format (they finish before they come
2407 * back to us). This allows us to do a simple loop to
2408 * assign the commit to the tail.
2409 */
2410 again:
2411 max_count = cpu_buffer->nr_pages * 100;
2412
2413 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2414 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2415 return;
2416 if (RB_WARN_ON(cpu_buffer,
2417 rb_is_reader_page(cpu_buffer->tail_page)))
2418 return;
2419 local_set(&cpu_buffer->commit_page->page->commit,
2420 rb_page_write(cpu_buffer->commit_page));
2421 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2422 cpu_buffer->write_stamp =
2423 cpu_buffer->commit_page->page->time_stamp;
2424 /* add barrier to keep gcc from optimizing too much */
2425 barrier();
2426 }
2427 while (rb_commit_index(cpu_buffer) !=
2428 rb_page_write(cpu_buffer->commit_page)) {
2429
2430 local_set(&cpu_buffer->commit_page->page->commit,
2431 rb_page_write(cpu_buffer->commit_page));
2432 RB_WARN_ON(cpu_buffer,
2433 local_read(&cpu_buffer->commit_page->page->commit) &
2434 ~RB_WRITE_MASK);
2435 barrier();
2436 }
2437
2438 /* again, keep gcc from optimizing */
2439 barrier();
2440
2441 /*
2442 * If an interrupt came in just after the first while loop
2443 * and pushed the tail page forward, we will be left with
2444 * a dangling commit that will never go forward.
2445 */
2446 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2447 goto again;
2448}
2449
2450static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2451{
2452 unsigned long commits;
2453
2454 if (RB_WARN_ON(cpu_buffer,
2455 !local_read(&cpu_buffer->committing)))
2456 return;
2457
2458 again:
2459 commits = local_read(&cpu_buffer->commits);
2460 /* synchronize with interrupts */
2461 barrier();
2462 if (local_read(&cpu_buffer->committing) == 1)
2463 rb_set_commit_to_write(cpu_buffer);
2464
2465 local_dec(&cpu_buffer->committing);
2466
2467 /* synchronize with interrupts */
2468 barrier();
2469
2470 /*
2471 * Need to account for interrupts coming in between the
2472 * updating of the commit page and the clearing of the
2473 * committing counter.
2474 */
2475 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2476 !local_read(&cpu_buffer->committing)) {
2477 local_inc(&cpu_buffer->committing);
2478 goto again;
2479 }
2480}
2481
2482static inline void rb_event_discard(struct ring_buffer_event *event)
2483{
2484 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2485 event = skip_time_extend(event);
2486
2487 /* array[0] holds the actual length for the discarded event */
2488 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2489 event->type_len = RINGBUF_TYPE_PADDING;
2490 /* time delta must be non zero */
2491 if (!event->time_delta)
2492 event->time_delta = 1;
2493}
2494
cdb2a0a9 2495static inline bool
d90fd774
SRRH
2496rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2497 struct ring_buffer_event *event)
2498{
2499 unsigned long addr = (unsigned long)event;
2500 unsigned long index;
2501
2502 index = rb_event_index(event);
2503 addr &= PAGE_MASK;
2504
2505 return cpu_buffer->commit_page->page == (void *)addr &&
2506 rb_commit_index(cpu_buffer) == index;
2507}
2508
2509static void
2510rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2511 struct ring_buffer_event *event)
2512{
2513 u64 delta;
2514
2515 /*
2516 * The event first in the commit queue updates the
2517 * time stamp.
2518 */
2519 if (rb_event_is_commit(cpu_buffer, event)) {
2520 /*
2521 * A commit event that is first on a page
2522 * updates the write timestamp with the page stamp
2523 */
2524 if (!rb_event_index(event))
2525 cpu_buffer->write_stamp =
2526 cpu_buffer->commit_page->page->time_stamp;
2527 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2528 delta = event->array[0];
2529 delta <<= TS_SHIFT;
2530 delta += event->time_delta;
2531 cpu_buffer->write_stamp += delta;
2532 } else
2533 cpu_buffer->write_stamp += event->time_delta;
2534 }
2535}
2536
2537static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2538 struct ring_buffer_event *event)
2539{
2540 local_inc(&cpu_buffer->entries);
2541 rb_update_write_stamp(cpu_buffer, event);
2542 rb_end_commit(cpu_buffer);
2543}
2544
2545static __always_inline void
2546rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2547{
2548 bool pagebusy;
2549
2550 if (buffer->irq_work.waiters_pending) {
2551 buffer->irq_work.waiters_pending = false;
2552 /* irq_work_queue() supplies it's own memory barriers */
2553 irq_work_queue(&buffer->irq_work.work);
2554 }
2555
2556 if (cpu_buffer->irq_work.waiters_pending) {
2557 cpu_buffer->irq_work.waiters_pending = false;
2558 /* irq_work_queue() supplies it's own memory barriers */
2559 irq_work_queue(&cpu_buffer->irq_work.work);
2560 }
2561
2562 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2563
2564 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2565 cpu_buffer->irq_work.wakeup_full = true;
2566 cpu_buffer->irq_work.full_waiters_pending = false;
2567 /* irq_work_queue() supplies it's own memory barriers */
2568 irq_work_queue(&cpu_buffer->irq_work.work);
2569 }
2570}
2571
2572/*
2573 * The lock and unlock are done within a preempt disable section.
2574 * The current_context per_cpu variable can only be modified
2575 * by the current task between lock and unlock. But it can
2576 * be modified more than once via an interrupt. To pass this
2577 * information from the lock to the unlock without having to
2578 * access the 'in_interrupt()' functions again (which do show
2579 * a bit of overhead in something as critical as function tracing,
2580 * we use a bitmask trick.
2581 *
2582 * bit 0 = NMI context
2583 * bit 1 = IRQ context
2584 * bit 2 = SoftIRQ context
2585 * bit 3 = normal context.
2586 *
2587 * This works because this is the order of contexts that can
2588 * preempt other contexts. A SoftIRQ never preempts an IRQ
2589 * context.
2590 *
2591 * When the context is determined, the corresponding bit is
2592 * checked and set (if it was set, then a recursion of that context
2593 * happened).
2594 *
2595 * On unlock, we need to clear this bit. To do so, just subtract
2596 * 1 from the current_context and AND it to itself.
2597 *
2598 * (binary)
2599 * 101 - 1 = 100
2600 * 101 & 100 = 100 (clearing bit zero)
2601 *
2602 * 1010 - 1 = 1001
2603 * 1010 & 1001 = 1000 (clearing bit 1)
2604 *
2605 * The least significant bit can be cleared this way, and it
2606 * just so happens that it is the same bit corresponding to
2607 * the current context.
2608 */
2609
2610static __always_inline int
2611trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2612{
2613 unsigned int val = cpu_buffer->current_context;
2614 int bit;
2615
2616 if (in_interrupt()) {
2617 if (in_nmi())
2618 bit = RB_CTX_NMI;
2619 else if (in_irq())
2620 bit = RB_CTX_IRQ;
2621 else
2622 bit = RB_CTX_SOFTIRQ;
2623 } else
2624 bit = RB_CTX_NORMAL;
2625
2626 if (unlikely(val & (1 << bit)))
2627 return 1;
2628
2629 val |= (1 << bit);
2630 cpu_buffer->current_context = val;
2631
2632 return 0;
2633}
2634
2635static __always_inline void
2636trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2637{
2638 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2639}
2640
2641/**
2642 * ring_buffer_unlock_commit - commit a reserved
2643 * @buffer: The buffer to commit to
2644 * @event: The event pointer to commit.
2645 *
2646 * This commits the data to the ring buffer, and releases any locks held.
2647 *
2648 * Must be paired with ring_buffer_lock_reserve.
2649 */
2650int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2651 struct ring_buffer_event *event)
2652{
2653 struct ring_buffer_per_cpu *cpu_buffer;
2654 int cpu = raw_smp_processor_id();
2655
2656 cpu_buffer = buffer->buffers[cpu];
2657
2658 rb_commit(cpu_buffer, event);
2659
2660 rb_wakeups(buffer, cpu_buffer);
2661
2662 trace_recursive_unlock(cpu_buffer);
2663
2664 preempt_enable_notrace();
2665
2666 return 0;
2667}
2668EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2669
2670static noinline void
2671rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2672 struct rb_event_info *info)
2673{
d90fd774
SRRH
2674 WARN_ONCE(info->delta > (1ULL << 59),
2675 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2676 (unsigned long long)info->delta,
2677 (unsigned long long)info->ts,
2678 (unsigned long long)cpu_buffer->write_stamp,
2679 sched_clock_stable() ? "" :
2680 "If you just came from a suspend/resume,\n"
2681 "please switch to the trace global clock:\n"
2682 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
b7dc42fd 2683 info->add_timestamp = 1;
9826b273
SRRH
2684}
2685
6634ff26
SR
2686static struct ring_buffer_event *
2687__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2688 struct rb_event_info *info)
6634ff26 2689{
6634ff26 2690 struct ring_buffer_event *event;
fcc742ea 2691 struct buffer_page *tail_page;
6634ff26 2692 unsigned long tail, write;
b7dc42fd
SRRH
2693
2694 /*
2695 * If the time delta since the last event is too big to
2696 * hold in the time field of the event, then we append a
2697 * TIME EXTEND event ahead of the data event.
2698 */
2699 if (unlikely(info->add_timestamp))
2700 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2701
fcc742ea
SRRH
2702 tail_page = info->tail_page = cpu_buffer->tail_page;
2703 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2704
2705 /* set write to only the index of the write */
2706 write &= RB_WRITE_MASK;
fcc742ea 2707 tail = write - info->length;
6634ff26 2708
6634ff26 2709 /*
a4543a2f 2710 * If this is the first commit on the page, then it has the same
b7dc42fd 2711 * timestamp as the page itself.
6634ff26 2712 */
b7dc42fd 2713 if (!tail)
a4543a2f
SRRH
2714 info->delta = 0;
2715
b7dc42fd
SRRH
2716 /* See if we shot pass the end of this buffer page */
2717 if (unlikely(write > BUF_PAGE_SIZE))
2718 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2719
b7dc42fd
SRRH
2720 /* We reserved something on the buffer */
2721
2722 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2723 kmemcheck_annotate_bitfield(event, bitfield);
2724 rb_update_event(cpu_buffer, event, info);
2725
2726 local_inc(&tail_page->entries);
6634ff26 2727
b7dc42fd
SRRH
2728 /*
2729 * If this is the first commit on the page, then update
2730 * its timestamp.
2731 */
2732 if (!tail)
2733 tail_page->page->time_stamp = info->ts;
2734
c64e148a 2735 /* account for these added bytes */
fcc742ea 2736 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2737
6634ff26
SR
2738 return event;
2739}
2740
7a8e76a3 2741static struct ring_buffer_event *
62f0b3eb
SR
2742rb_reserve_next_event(struct ring_buffer *buffer,
2743 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2744 unsigned long length)
7a8e76a3
SR
2745{
2746 struct ring_buffer_event *event;
fcc742ea 2747 struct rb_event_info info;
818e3dd3 2748 int nr_loops = 0;
b7dc42fd 2749 u64 diff;
7a8e76a3 2750
fa743953
SR
2751 rb_start_commit(cpu_buffer);
2752
85bac32c 2753#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2754 /*
2755 * Due to the ability to swap a cpu buffer from a buffer
2756 * it is possible it was swapped before we committed.
2757 * (committing stops a swap). We check for it here and
2758 * if it happened, we have to fail the write.
2759 */
2760 barrier();
2761 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2762 local_dec(&cpu_buffer->committing);
2763 local_dec(&cpu_buffer->commits);
2764 return NULL;
2765 }
85bac32c 2766#endif
b7dc42fd 2767
fcc742ea 2768 info.length = rb_calculate_event_length(length);
a4543a2f 2769 again:
b7dc42fd
SRRH
2770 info.add_timestamp = 0;
2771 info.delta = 0;
2772
818e3dd3
SR
2773 /*
2774 * We allow for interrupts to reenter here and do a trace.
2775 * If one does, it will cause this original code to loop
2776 * back here. Even with heavy interrupts happening, this
2777 * should only happen a few times in a row. If this happens
2778 * 1000 times in a row, there must be either an interrupt
2779 * storm or we have something buggy.
2780 * Bail!
2781 */
3e89c7bb 2782 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2783 goto out_fail;
818e3dd3 2784
b7dc42fd
SRRH
2785 info.ts = rb_time_stamp(cpu_buffer->buffer);
2786 diff = info.ts - cpu_buffer->write_stamp;
2787
2788 /* make sure this diff is calculated here */
2789 barrier();
2790
2791 /* Did the write stamp get updated already? */
2792 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2793 info.delta = diff;
2794 if (unlikely(test_time_stamp(info.delta)))
2795 rb_handle_timestamp(cpu_buffer, &info);
2796 }
2797
fcc742ea
SRRH
2798 event = __rb_reserve_next(cpu_buffer, &info);
2799
bd1b7cd3
SRRH
2800 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2801 if (info.add_timestamp)
2802 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2803 goto again;
bd1b7cd3 2804 }
bf41a158 2805
fa743953
SR
2806 if (!event)
2807 goto out_fail;
7a8e76a3 2808
7a8e76a3 2809 return event;
fa743953
SR
2810
2811 out_fail:
2812 rb_end_commit(cpu_buffer);
2813 return NULL;
7a8e76a3
SR
2814}
2815
2816/**
2817 * ring_buffer_lock_reserve - reserve a part of the buffer
2818 * @buffer: the ring buffer to reserve from
2819 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2820 *
2821 * Returns a reseverd event on the ring buffer to copy directly to.
2822 * The user of this interface will need to get the body to write into
2823 * and can use the ring_buffer_event_data() interface.
2824 *
2825 * The length is the length of the data needed, not the event length
2826 * which also includes the event header.
2827 *
2828 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2829 * If NULL is returned, then nothing has been allocated or locked.
2830 */
2831struct ring_buffer_event *
0a987751 2832ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2833{
2834 struct ring_buffer_per_cpu *cpu_buffer;
2835 struct ring_buffer_event *event;
5168ae50 2836 int cpu;
7a8e76a3 2837
bf41a158 2838 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2839 preempt_disable_notrace();
bf41a158 2840
3205f806 2841 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2842 goto out;
261842b7 2843
7a8e76a3
SR
2844 cpu = raw_smp_processor_id();
2845
3205f806 2846 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2847 goto out;
7a8e76a3
SR
2848
2849 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2850
3205f806 2851 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2852 goto out;
7a8e76a3 2853
3205f806 2854 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2855 goto out;
7a8e76a3 2856
58a09ec6
SRRH
2857 if (unlikely(trace_recursive_lock(cpu_buffer)))
2858 goto out;
2859
62f0b3eb 2860 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2861 if (!event)
58a09ec6 2862 goto out_unlock;
7a8e76a3
SR
2863
2864 return event;
2865
58a09ec6
SRRH
2866 out_unlock:
2867 trace_recursive_unlock(cpu_buffer);
d769041f 2868 out:
5168ae50 2869 preempt_enable_notrace();
7a8e76a3
SR
2870 return NULL;
2871}
c4f50183 2872EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2873
a1863c21
SR
2874/*
2875 * Decrement the entries to the page that an event is on.
2876 * The event does not even need to exist, only the pointer
2877 * to the page it is on. This may only be called before the commit
2878 * takes place.
2879 */
2880static inline void
2881rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2882 struct ring_buffer_event *event)
2883{
2884 unsigned long addr = (unsigned long)event;
2885 struct buffer_page *bpage = cpu_buffer->commit_page;
2886 struct buffer_page *start;
2887
2888 addr &= PAGE_MASK;
2889
2890 /* Do the likely case first */
2891 if (likely(bpage->page == (void *)addr)) {
2892 local_dec(&bpage->entries);
2893 return;
2894 }
2895
2896 /*
2897 * Because the commit page may be on the reader page we
2898 * start with the next page and check the end loop there.
2899 */
2900 rb_inc_page(cpu_buffer, &bpage);
2901 start = bpage;
2902 do {
2903 if (bpage->page == (void *)addr) {
2904 local_dec(&bpage->entries);
2905 return;
2906 }
2907 rb_inc_page(cpu_buffer, &bpage);
2908 } while (bpage != start);
2909
2910 /* commit not part of this buffer?? */
2911 RB_WARN_ON(cpu_buffer, 1);
2912}
2913
fa1b47dd
SR
2914/**
2915 * ring_buffer_commit_discard - discard an event that has not been committed
2916 * @buffer: the ring buffer
2917 * @event: non committed event to discard
2918 *
dc892f73
SR
2919 * Sometimes an event that is in the ring buffer needs to be ignored.
2920 * This function lets the user discard an event in the ring buffer
2921 * and then that event will not be read later.
2922 *
2923 * This function only works if it is called before the the item has been
2924 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2925 * if another event has not been added behind it.
2926 *
2927 * If another event has been added behind it, it will set the event
2928 * up as discarded, and perform the commit.
2929 *
2930 * If this function is called, do not call ring_buffer_unlock_commit on
2931 * the event.
2932 */
2933void ring_buffer_discard_commit(struct ring_buffer *buffer,
2934 struct ring_buffer_event *event)
2935{
2936 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2937 int cpu;
2938
2939 /* The event is discarded regardless */
f3b9aae1 2940 rb_event_discard(event);
fa1b47dd 2941
fa743953
SR
2942 cpu = smp_processor_id();
2943 cpu_buffer = buffer->buffers[cpu];
2944
fa1b47dd
SR
2945 /*
2946 * This must only be called if the event has not been
2947 * committed yet. Thus we can assume that preemption
2948 * is still disabled.
2949 */
fa743953 2950 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2951
a1863c21 2952 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2953 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2954 goto out;
fa1b47dd
SR
2955
2956 /*
2957 * The commit is still visible by the reader, so we
a1863c21 2958 * must still update the timestamp.
fa1b47dd 2959 */
a1863c21 2960 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2961 out:
fa743953 2962 rb_end_commit(cpu_buffer);
fa1b47dd 2963
58a09ec6 2964 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2965
5168ae50 2966 preempt_enable_notrace();
fa1b47dd
SR
2967
2968}
2969EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2970
7a8e76a3
SR
2971/**
2972 * ring_buffer_write - write data to the buffer without reserving
2973 * @buffer: The ring buffer to write to.
2974 * @length: The length of the data being written (excluding the event header)
2975 * @data: The data to write to the buffer.
2976 *
2977 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2978 * one function. If you already have the data to write to the buffer, it
2979 * may be easier to simply call this function.
2980 *
2981 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2982 * and not the length of the event which would hold the header.
2983 */
2984int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2985 unsigned long length,
2986 void *data)
7a8e76a3
SR
2987{
2988 struct ring_buffer_per_cpu *cpu_buffer;
2989 struct ring_buffer_event *event;
7a8e76a3
SR
2990 void *body;
2991 int ret = -EBUSY;
5168ae50 2992 int cpu;
7a8e76a3 2993
5168ae50 2994 preempt_disable_notrace();
bf41a158 2995
52fbe9cd
LJ
2996 if (atomic_read(&buffer->record_disabled))
2997 goto out;
2998
7a8e76a3
SR
2999 cpu = raw_smp_processor_id();
3000
9e01c1b7 3001 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3002 goto out;
7a8e76a3
SR
3003
3004 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3005
3006 if (atomic_read(&cpu_buffer->record_disabled))
3007 goto out;
3008
be957c44
SR
3009 if (length > BUF_MAX_DATA_SIZE)
3010 goto out;
3011
985e871b
SRRH
3012 if (unlikely(trace_recursive_lock(cpu_buffer)))
3013 goto out;
3014
62f0b3eb 3015 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3016 if (!event)
985e871b 3017 goto out_unlock;
7a8e76a3
SR
3018
3019 body = rb_event_data(event);
3020
3021 memcpy(body, data, length);
3022
3023 rb_commit(cpu_buffer, event);
3024
15693458
SRRH
3025 rb_wakeups(buffer, cpu_buffer);
3026
7a8e76a3 3027 ret = 0;
985e871b
SRRH
3028
3029 out_unlock:
3030 trace_recursive_unlock(cpu_buffer);
3031
7a8e76a3 3032 out:
5168ae50 3033 preempt_enable_notrace();
7a8e76a3
SR
3034
3035 return ret;
3036}
c4f50183 3037EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3038
da58834c 3039static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3040{
3041 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3042 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3043 struct buffer_page *commit = cpu_buffer->commit_page;
3044
77ae365e
SR
3045 /* In case of error, head will be NULL */
3046 if (unlikely(!head))
da58834c 3047 return true;
77ae365e 3048
bf41a158
SR
3049 return reader->read == rb_page_commit(reader) &&
3050 (commit == reader ||
3051 (commit == head &&
3052 head->read == rb_page_commit(commit)));
3053}
3054
7a8e76a3
SR
3055/**
3056 * ring_buffer_record_disable - stop all writes into the buffer
3057 * @buffer: The ring buffer to stop writes to.
3058 *
3059 * This prevents all writes to the buffer. Any attempt to write
3060 * to the buffer after this will fail and return NULL.
3061 *
3062 * The caller should call synchronize_sched() after this.
3063 */
3064void ring_buffer_record_disable(struct ring_buffer *buffer)
3065{
3066 atomic_inc(&buffer->record_disabled);
3067}
c4f50183 3068EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3069
3070/**
3071 * ring_buffer_record_enable - enable writes to the buffer
3072 * @buffer: The ring buffer to enable writes
3073 *
3074 * Note, multiple disables will need the same number of enables
c41b20e7 3075 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3076 */
3077void ring_buffer_record_enable(struct ring_buffer *buffer)
3078{
3079 atomic_dec(&buffer->record_disabled);
3080}
c4f50183 3081EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3082
499e5470
SR
3083/**
3084 * ring_buffer_record_off - stop all writes into the buffer
3085 * @buffer: The ring buffer to stop writes to.
3086 *
3087 * This prevents all writes to the buffer. Any attempt to write
3088 * to the buffer after this will fail and return NULL.
3089 *
3090 * This is different than ring_buffer_record_disable() as
87abb3b1 3091 * it works like an on/off switch, where as the disable() version
499e5470
SR
3092 * must be paired with a enable().
3093 */
3094void ring_buffer_record_off(struct ring_buffer *buffer)
3095{
3096 unsigned int rd;
3097 unsigned int new_rd;
3098
3099 do {
3100 rd = atomic_read(&buffer->record_disabled);
3101 new_rd = rd | RB_BUFFER_OFF;
3102 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3103}
3104EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3105
3106/**
3107 * ring_buffer_record_on - restart writes into the buffer
3108 * @buffer: The ring buffer to start writes to.
3109 *
3110 * This enables all writes to the buffer that was disabled by
3111 * ring_buffer_record_off().
3112 *
3113 * This is different than ring_buffer_record_enable() as
87abb3b1 3114 * it works like an on/off switch, where as the enable() version
499e5470
SR
3115 * must be paired with a disable().
3116 */
3117void ring_buffer_record_on(struct ring_buffer *buffer)
3118{
3119 unsigned int rd;
3120 unsigned int new_rd;
3121
3122 do {
3123 rd = atomic_read(&buffer->record_disabled);
3124 new_rd = rd & ~RB_BUFFER_OFF;
3125 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3126}
3127EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3128
3129/**
3130 * ring_buffer_record_is_on - return true if the ring buffer can write
3131 * @buffer: The ring buffer to see if write is enabled
3132 *
3133 * Returns true if the ring buffer is in a state that it accepts writes.
3134 */
3135int ring_buffer_record_is_on(struct ring_buffer *buffer)
3136{
3137 return !atomic_read(&buffer->record_disabled);
3138}
3139
7a8e76a3
SR
3140/**
3141 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3142 * @buffer: The ring buffer to stop writes to.
3143 * @cpu: The CPU buffer to stop
3144 *
3145 * This prevents all writes to the buffer. Any attempt to write
3146 * to the buffer after this will fail and return NULL.
3147 *
3148 * The caller should call synchronize_sched() after this.
3149 */
3150void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3151{
3152 struct ring_buffer_per_cpu *cpu_buffer;
3153
9e01c1b7 3154 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3155 return;
7a8e76a3
SR
3156
3157 cpu_buffer = buffer->buffers[cpu];
3158 atomic_inc(&cpu_buffer->record_disabled);
3159}
c4f50183 3160EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3161
3162/**
3163 * ring_buffer_record_enable_cpu - enable writes to the buffer
3164 * @buffer: The ring buffer to enable writes
3165 * @cpu: The CPU to enable.
3166 *
3167 * Note, multiple disables will need the same number of enables
c41b20e7 3168 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3169 */
3170void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3171{
3172 struct ring_buffer_per_cpu *cpu_buffer;
3173
9e01c1b7 3174 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3175 return;
7a8e76a3
SR
3176
3177 cpu_buffer = buffer->buffers[cpu];
3178 atomic_dec(&cpu_buffer->record_disabled);
3179}
c4f50183 3180EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3181
f6195aa0
SR
3182/*
3183 * The total entries in the ring buffer is the running counter
3184 * of entries entered into the ring buffer, minus the sum of
3185 * the entries read from the ring buffer and the number of
3186 * entries that were overwritten.
3187 */
3188static inline unsigned long
3189rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3190{
3191 return local_read(&cpu_buffer->entries) -
3192 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3193}
3194
c64e148a
VN
3195/**
3196 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3197 * @buffer: The ring buffer
3198 * @cpu: The per CPU buffer to read from.
3199 */
50ecf2c3 3200u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3201{
3202 unsigned long flags;
3203 struct ring_buffer_per_cpu *cpu_buffer;
3204 struct buffer_page *bpage;
da830e58 3205 u64 ret = 0;
c64e148a
VN
3206
3207 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3208 return 0;
3209
3210 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3211 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3212 /*
3213 * if the tail is on reader_page, oldest time stamp is on the reader
3214 * page
3215 */
3216 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3217 bpage = cpu_buffer->reader_page;
3218 else
3219 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3220 if (bpage)
3221 ret = bpage->page->time_stamp;
7115e3fc 3222 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3223
3224 return ret;
3225}
3226EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3227
3228/**
3229 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3230 * @buffer: The ring buffer
3231 * @cpu: The per CPU buffer to read from.
3232 */
3233unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3234{
3235 struct ring_buffer_per_cpu *cpu_buffer;
3236 unsigned long ret;
3237
3238 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3239 return 0;
3240
3241 cpu_buffer = buffer->buffers[cpu];
3242 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3243
3244 return ret;
3245}
3246EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3247
7a8e76a3
SR
3248/**
3249 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the entries from.
3252 */
3253unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3254{
3255 struct ring_buffer_per_cpu *cpu_buffer;
3256
9e01c1b7 3257 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3258 return 0;
7a8e76a3
SR
3259
3260 cpu_buffer = buffer->buffers[cpu];
554f786e 3261
f6195aa0 3262 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3263}
c4f50183 3264EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3265
3266/**
884bfe89
SP
3267 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3268 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3269 * @buffer: The ring buffer
3270 * @cpu: The per CPU buffer to get the number of overruns from
3271 */
3272unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3273{
3274 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3275 unsigned long ret;
7a8e76a3 3276
9e01c1b7 3277 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3278 return 0;
7a8e76a3
SR
3279
3280 cpu_buffer = buffer->buffers[cpu];
77ae365e 3281 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3282
3283 return ret;
7a8e76a3 3284}
c4f50183 3285EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3286
f0d2c681 3287/**
884bfe89
SP
3288 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3289 * commits failing due to the buffer wrapping around while there are uncommitted
3290 * events, such as during an interrupt storm.
f0d2c681
SR
3291 * @buffer: The ring buffer
3292 * @cpu: The per CPU buffer to get the number of overruns from
3293 */
3294unsigned long
3295ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3296{
3297 struct ring_buffer_per_cpu *cpu_buffer;
3298 unsigned long ret;
3299
3300 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301 return 0;
3302
3303 cpu_buffer = buffer->buffers[cpu];
77ae365e 3304 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3305
3306 return ret;
3307}
3308EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3309
884bfe89
SP
3310/**
3311 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3312 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3313 * @buffer: The ring buffer
3314 * @cpu: The per CPU buffer to get the number of overruns from
3315 */
3316unsigned long
3317ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3318{
3319 struct ring_buffer_per_cpu *cpu_buffer;
3320 unsigned long ret;
3321
3322 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3323 return 0;
3324
3325 cpu_buffer = buffer->buffers[cpu];
3326 ret = local_read(&cpu_buffer->dropped_events);
3327
3328 return ret;
3329}
3330EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3331
ad964704
SRRH
3332/**
3333 * ring_buffer_read_events_cpu - get the number of events successfully read
3334 * @buffer: The ring buffer
3335 * @cpu: The per CPU buffer to get the number of events read
3336 */
3337unsigned long
3338ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3339{
3340 struct ring_buffer_per_cpu *cpu_buffer;
3341
3342 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3343 return 0;
3344
3345 cpu_buffer = buffer->buffers[cpu];
3346 return cpu_buffer->read;
3347}
3348EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3349
7a8e76a3
SR
3350/**
3351 * ring_buffer_entries - get the number of entries in a buffer
3352 * @buffer: The ring buffer
3353 *
3354 * Returns the total number of entries in the ring buffer
3355 * (all CPU entries)
3356 */
3357unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3358{
3359 struct ring_buffer_per_cpu *cpu_buffer;
3360 unsigned long entries = 0;
3361 int cpu;
3362
3363 /* if you care about this being correct, lock the buffer */
3364 for_each_buffer_cpu(buffer, cpu) {
3365 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3366 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3367 }
3368
3369 return entries;
3370}
c4f50183 3371EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3372
3373/**
67b394f7 3374 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3375 * @buffer: The ring buffer
3376 *
3377 * Returns the total number of overruns in the ring buffer
3378 * (all CPU entries)
3379 */
3380unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3381{
3382 struct ring_buffer_per_cpu *cpu_buffer;
3383 unsigned long overruns = 0;
3384 int cpu;
3385
3386 /* if you care about this being correct, lock the buffer */
3387 for_each_buffer_cpu(buffer, cpu) {
3388 cpu_buffer = buffer->buffers[cpu];
77ae365e 3389 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3390 }
3391
3392 return overruns;
3393}
c4f50183 3394EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3395
642edba5 3396static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3397{
3398 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3399
d769041f 3400 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3401 iter->head_page = cpu_buffer->reader_page;
3402 iter->head = cpu_buffer->reader_page->read;
3403
3404 iter->cache_reader_page = iter->head_page;
24607f11 3405 iter->cache_read = cpu_buffer->read;
651e22f2 3406
d769041f
SR
3407 if (iter->head)
3408 iter->read_stamp = cpu_buffer->read_stamp;
3409 else
abc9b56d 3410 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3411}
f83c9d0f 3412
642edba5
SR
3413/**
3414 * ring_buffer_iter_reset - reset an iterator
3415 * @iter: The iterator to reset
3416 *
3417 * Resets the iterator, so that it will start from the beginning
3418 * again.
3419 */
3420void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3421{
554f786e 3422 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3423 unsigned long flags;
3424
554f786e
SR
3425 if (!iter)
3426 return;
3427
3428 cpu_buffer = iter->cpu_buffer;
3429
5389f6fa 3430 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3431 rb_iter_reset(iter);
5389f6fa 3432 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3433}
c4f50183 3434EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3435
3436/**
3437 * ring_buffer_iter_empty - check if an iterator has no more to read
3438 * @iter: The iterator to check
3439 */
3440int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3441{
3442 struct ring_buffer_per_cpu *cpu_buffer;
3443
3444 cpu_buffer = iter->cpu_buffer;
3445
bf41a158
SR
3446 return iter->head_page == cpu_buffer->commit_page &&
3447 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3448}
c4f50183 3449EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3450
3451static void
3452rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3453 struct ring_buffer_event *event)
3454{
3455 u64 delta;
3456
334d4169 3457 switch (event->type_len) {
7a8e76a3
SR
3458 case RINGBUF_TYPE_PADDING:
3459 return;
3460
3461 case RINGBUF_TYPE_TIME_EXTEND:
3462 delta = event->array[0];
3463 delta <<= TS_SHIFT;
3464 delta += event->time_delta;
3465 cpu_buffer->read_stamp += delta;
3466 return;
3467
3468 case RINGBUF_TYPE_TIME_STAMP:
3469 /* FIXME: not implemented */
3470 return;
3471
3472 case RINGBUF_TYPE_DATA:
3473 cpu_buffer->read_stamp += event->time_delta;
3474 return;
3475
3476 default:
3477 BUG();
3478 }
3479 return;
3480}
3481
3482static void
3483rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3484 struct ring_buffer_event *event)
3485{
3486 u64 delta;
3487
334d4169 3488 switch (event->type_len) {
7a8e76a3
SR
3489 case RINGBUF_TYPE_PADDING:
3490 return;
3491
3492 case RINGBUF_TYPE_TIME_EXTEND:
3493 delta = event->array[0];
3494 delta <<= TS_SHIFT;
3495 delta += event->time_delta;
3496 iter->read_stamp += delta;
3497 return;
3498
3499 case RINGBUF_TYPE_TIME_STAMP:
3500 /* FIXME: not implemented */
3501 return;
3502
3503 case RINGBUF_TYPE_DATA:
3504 iter->read_stamp += event->time_delta;
3505 return;
3506
3507 default:
3508 BUG();
3509 }
3510 return;
3511}
3512
d769041f
SR
3513static struct buffer_page *
3514rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3515{
d769041f 3516 struct buffer_page *reader = NULL;
66a8cb95 3517 unsigned long overwrite;
d769041f 3518 unsigned long flags;
818e3dd3 3519 int nr_loops = 0;
77ae365e 3520 int ret;
d769041f 3521
3e03fb7f 3522 local_irq_save(flags);
0199c4e6 3523 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3524
3525 again:
818e3dd3
SR
3526 /*
3527 * This should normally only loop twice. But because the
3528 * start of the reader inserts an empty page, it causes
3529 * a case where we will loop three times. There should be no
3530 * reason to loop four times (that I know of).
3531 */
3e89c7bb 3532 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3533 reader = NULL;
3534 goto out;
3535 }
3536
d769041f
SR
3537 reader = cpu_buffer->reader_page;
3538
3539 /* If there's more to read, return this page */
bf41a158 3540 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3541 goto out;
3542
3543 /* Never should we have an index greater than the size */
3e89c7bb
SR
3544 if (RB_WARN_ON(cpu_buffer,
3545 cpu_buffer->reader_page->read > rb_page_size(reader)))
3546 goto out;
d769041f
SR
3547
3548 /* check if we caught up to the tail */
3549 reader = NULL;
bf41a158 3550 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3551 goto out;
7a8e76a3 3552
a5fb8331
SR
3553 /* Don't bother swapping if the ring buffer is empty */
3554 if (rb_num_of_entries(cpu_buffer) == 0)
3555 goto out;
3556
7a8e76a3 3557 /*
d769041f 3558 * Reset the reader page to size zero.
7a8e76a3 3559 */
77ae365e
SR
3560 local_set(&cpu_buffer->reader_page->write, 0);
3561 local_set(&cpu_buffer->reader_page->entries, 0);
3562 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3563 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3564
77ae365e
SR
3565 spin:
3566 /*
3567 * Splice the empty reader page into the list around the head.
3568 */
3569 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3570 if (!reader)
3571 goto out;
0e1ff5d7 3572 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3573 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3574
3adc54fa
SR
3575 /*
3576 * cpu_buffer->pages just needs to point to the buffer, it
3577 * has no specific buffer page to point to. Lets move it out
25985edc 3578 * of our way so we don't accidentally swap it.
3adc54fa
SR
3579 */
3580 cpu_buffer->pages = reader->list.prev;
3581
77ae365e
SR
3582 /* The reader page will be pointing to the new head */
3583 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3584
66a8cb95
SR
3585 /*
3586 * We want to make sure we read the overruns after we set up our
3587 * pointers to the next object. The writer side does a
3588 * cmpxchg to cross pages which acts as the mb on the writer
3589 * side. Note, the reader will constantly fail the swap
3590 * while the writer is updating the pointers, so this
3591 * guarantees that the overwrite recorded here is the one we
3592 * want to compare with the last_overrun.
3593 */
3594 smp_mb();
3595 overwrite = local_read(&(cpu_buffer->overrun));
3596
77ae365e
SR
3597 /*
3598 * Here's the tricky part.
3599 *
3600 * We need to move the pointer past the header page.
3601 * But we can only do that if a writer is not currently
3602 * moving it. The page before the header page has the
3603 * flag bit '1' set if it is pointing to the page we want.
3604 * but if the writer is in the process of moving it
3605 * than it will be '2' or already moved '0'.
3606 */
3607
3608 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3609
3610 /*
77ae365e 3611 * If we did not convert it, then we must try again.
7a8e76a3 3612 */
77ae365e
SR
3613 if (!ret)
3614 goto spin;
7a8e76a3 3615
77ae365e
SR
3616 /*
3617 * Yeah! We succeeded in replacing the page.
3618 *
3619 * Now make the new head point back to the reader page.
3620 */
5ded3dc6 3621 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3622 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3623
3624 /* Finally update the reader page to the new head */
3625 cpu_buffer->reader_page = reader;
b81f472a 3626 cpu_buffer->reader_page->read = 0;
d769041f 3627
66a8cb95
SR
3628 if (overwrite != cpu_buffer->last_overrun) {
3629 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3630 cpu_buffer->last_overrun = overwrite;
3631 }
3632
d769041f
SR
3633 goto again;
3634
3635 out:
b81f472a
SRRH
3636 /* Update the read_stamp on the first event */
3637 if (reader && reader->read == 0)
3638 cpu_buffer->read_stamp = reader->page->time_stamp;
3639
0199c4e6 3640 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3641 local_irq_restore(flags);
d769041f
SR
3642
3643 return reader;
3644}
3645
3646static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3647{
3648 struct ring_buffer_event *event;
3649 struct buffer_page *reader;
3650 unsigned length;
3651
3652 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3653
d769041f 3654 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3655 if (RB_WARN_ON(cpu_buffer, !reader))
3656 return;
7a8e76a3 3657
d769041f
SR
3658 event = rb_reader_event(cpu_buffer);
3659
a1863c21 3660 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3661 cpu_buffer->read++;
d769041f
SR
3662
3663 rb_update_read_stamp(cpu_buffer, event);
3664
3665 length = rb_event_length(event);
6f807acd 3666 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3667}
3668
3669static void rb_advance_iter(struct ring_buffer_iter *iter)
3670{
7a8e76a3
SR
3671 struct ring_buffer_per_cpu *cpu_buffer;
3672 struct ring_buffer_event *event;
3673 unsigned length;
3674
3675 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3676
3677 /*
3678 * Check if we are at the end of the buffer.
3679 */
bf41a158 3680 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3681 /* discarded commits can make the page empty */
3682 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3683 return;
d769041f 3684 rb_inc_iter(iter);
7a8e76a3
SR
3685 return;
3686 }
3687
3688 event = rb_iter_head_event(iter);
3689
3690 length = rb_event_length(event);
3691
3692 /*
3693 * This should not be called to advance the header if we are
3694 * at the tail of the buffer.
3695 */
3e89c7bb 3696 if (RB_WARN_ON(cpu_buffer,
f536aafc 3697 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3698 (iter->head + length > rb_commit_index(cpu_buffer))))
3699 return;
7a8e76a3
SR
3700
3701 rb_update_iter_read_stamp(iter, event);
3702
3703 iter->head += length;
3704
3705 /* check for end of page padding */
bf41a158
SR
3706 if ((iter->head >= rb_page_size(iter->head_page)) &&
3707 (iter->head_page != cpu_buffer->commit_page))
771e0384 3708 rb_inc_iter(iter);
7a8e76a3
SR
3709}
3710
66a8cb95
SR
3711static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3712{
3713 return cpu_buffer->lost_events;
3714}
3715
f83c9d0f 3716static struct ring_buffer_event *
66a8cb95
SR
3717rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3718 unsigned long *lost_events)
7a8e76a3 3719{
7a8e76a3 3720 struct ring_buffer_event *event;
d769041f 3721 struct buffer_page *reader;
818e3dd3 3722 int nr_loops = 0;
7a8e76a3 3723
7a8e76a3 3724 again:
818e3dd3 3725 /*
69d1b839
SR
3726 * We repeat when a time extend is encountered.
3727 * Since the time extend is always attached to a data event,
3728 * we should never loop more than once.
3729 * (We never hit the following condition more than twice).
818e3dd3 3730 */
69d1b839 3731 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3732 return NULL;
818e3dd3 3733
d769041f
SR
3734 reader = rb_get_reader_page(cpu_buffer);
3735 if (!reader)
7a8e76a3
SR
3736 return NULL;
3737
d769041f 3738 event = rb_reader_event(cpu_buffer);
7a8e76a3 3739
334d4169 3740 switch (event->type_len) {
7a8e76a3 3741 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3742 if (rb_null_event(event))
3743 RB_WARN_ON(cpu_buffer, 1);
3744 /*
3745 * Because the writer could be discarding every
3746 * event it creates (which would probably be bad)
3747 * if we were to go back to "again" then we may never
3748 * catch up, and will trigger the warn on, or lock
3749 * the box. Return the padding, and we will release
3750 * the current locks, and try again.
3751 */
2d622719 3752 return event;
7a8e76a3
SR
3753
3754 case RINGBUF_TYPE_TIME_EXTEND:
3755 /* Internal data, OK to advance */
d769041f 3756 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3757 goto again;
3758
3759 case RINGBUF_TYPE_TIME_STAMP:
3760 /* FIXME: not implemented */
d769041f 3761 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3762 goto again;
3763
3764 case RINGBUF_TYPE_DATA:
3765 if (ts) {
3766 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3767 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3768 cpu_buffer->cpu, ts);
7a8e76a3 3769 }
66a8cb95
SR
3770 if (lost_events)
3771 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3772 return event;
3773
3774 default:
3775 BUG();
3776 }
3777
3778 return NULL;
3779}
c4f50183 3780EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3781
f83c9d0f
SR
3782static struct ring_buffer_event *
3783rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3784{
3785 struct ring_buffer *buffer;
3786 struct ring_buffer_per_cpu *cpu_buffer;
3787 struct ring_buffer_event *event;
818e3dd3 3788 int nr_loops = 0;
7a8e76a3 3789
7a8e76a3
SR
3790 cpu_buffer = iter->cpu_buffer;
3791 buffer = cpu_buffer->buffer;
3792
492a74f4
SR
3793 /*
3794 * Check if someone performed a consuming read to
3795 * the buffer. A consuming read invalidates the iterator
3796 * and we need to reset the iterator in this case.
3797 */
3798 if (unlikely(iter->cache_read != cpu_buffer->read ||
3799 iter->cache_reader_page != cpu_buffer->reader_page))
3800 rb_iter_reset(iter);
3801
7a8e76a3 3802 again:
3c05d748
SR
3803 if (ring_buffer_iter_empty(iter))
3804 return NULL;
3805
818e3dd3 3806 /*
021de3d9
SRRH
3807 * We repeat when a time extend is encountered or we hit
3808 * the end of the page. Since the time extend is always attached
3809 * to a data event, we should never loop more than three times.
3810 * Once for going to next page, once on time extend, and
3811 * finally once to get the event.
3812 * (We never hit the following condition more than thrice).
818e3dd3 3813 */
021de3d9 3814 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3815 return NULL;
818e3dd3 3816
7a8e76a3
SR
3817 if (rb_per_cpu_empty(cpu_buffer))
3818 return NULL;
3819
10e83fd0 3820 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3821 rb_inc_iter(iter);
3822 goto again;
3823 }
3824
7a8e76a3
SR
3825 event = rb_iter_head_event(iter);
3826
334d4169 3827 switch (event->type_len) {
7a8e76a3 3828 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3829 if (rb_null_event(event)) {
3830 rb_inc_iter(iter);
3831 goto again;
3832 }
3833 rb_advance_iter(iter);
3834 return event;
7a8e76a3
SR
3835
3836 case RINGBUF_TYPE_TIME_EXTEND:
3837 /* Internal data, OK to advance */
3838 rb_advance_iter(iter);
3839 goto again;
3840
3841 case RINGBUF_TYPE_TIME_STAMP:
3842 /* FIXME: not implemented */
3843 rb_advance_iter(iter);
3844 goto again;
3845
3846 case RINGBUF_TYPE_DATA:
3847 if (ts) {
3848 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3849 ring_buffer_normalize_time_stamp(buffer,
3850 cpu_buffer->cpu, ts);
7a8e76a3
SR
3851 }
3852 return event;
3853
3854 default:
3855 BUG();
3856 }
3857
3858 return NULL;
3859}
c4f50183 3860EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3861
289a5a25 3862static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3863{
289a5a25
SRRH
3864 if (likely(!in_nmi())) {
3865 raw_spin_lock(&cpu_buffer->reader_lock);
3866 return true;
3867 }
3868
8d707e8e
SR
3869 /*
3870 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3871 * trylock must be used to prevent a deadlock if the NMI
3872 * preempted a task that holds the ring buffer locks. If
3873 * we get the lock then all is fine, if not, then continue
3874 * to do the read, but this can corrupt the ring buffer,
3875 * so it must be permanently disabled from future writes.
3876 * Reading from NMI is a oneshot deal.
8d707e8e 3877 */
289a5a25
SRRH
3878 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3879 return true;
8d707e8e 3880
289a5a25
SRRH
3881 /* Continue without locking, but disable the ring buffer */
3882 atomic_inc(&cpu_buffer->record_disabled);
3883 return false;
3884}
3885
3886static inline void
3887rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3888{
3889 if (likely(locked))
3890 raw_spin_unlock(&cpu_buffer->reader_lock);
3891 return;
8d707e8e
SR
3892}
3893
f83c9d0f
SR
3894/**
3895 * ring_buffer_peek - peek at the next event to be read
3896 * @buffer: The ring buffer to read
3897 * @cpu: The cpu to peak at
3898 * @ts: The timestamp counter of this event.
66a8cb95 3899 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3900 *
3901 * This will return the event that will be read next, but does
3902 * not consume the data.
3903 */
3904struct ring_buffer_event *
66a8cb95
SR
3905ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3906 unsigned long *lost_events)
f83c9d0f
SR
3907{
3908 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3909 struct ring_buffer_event *event;
f83c9d0f 3910 unsigned long flags;
289a5a25 3911 bool dolock;
f83c9d0f 3912
554f786e 3913 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3914 return NULL;
554f786e 3915
2d622719 3916 again:
8d707e8e 3917 local_irq_save(flags);
289a5a25 3918 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3919 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3920 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921 rb_advance_reader(cpu_buffer);
289a5a25 3922 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3923 local_irq_restore(flags);
f83c9d0f 3924
1b959e18 3925 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3926 goto again;
2d622719 3927
f83c9d0f
SR
3928 return event;
3929}
3930
3931/**
3932 * ring_buffer_iter_peek - peek at the next event to be read
3933 * @iter: The ring buffer iterator
3934 * @ts: The timestamp counter of this event.
3935 *
3936 * This will return the event that will be read next, but does
3937 * not increment the iterator.
3938 */
3939struct ring_buffer_event *
3940ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3941{
3942 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3943 struct ring_buffer_event *event;
3944 unsigned long flags;
3945
2d622719 3946 again:
5389f6fa 3947 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3948 event = rb_iter_peek(iter, ts);
5389f6fa 3949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3950
1b959e18 3951 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3952 goto again;
2d622719 3953
f83c9d0f
SR
3954 return event;
3955}
3956
7a8e76a3
SR
3957/**
3958 * ring_buffer_consume - return an event and consume it
3959 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3960 * @cpu: the cpu to read the buffer from
3961 * @ts: a variable to store the timestamp (may be NULL)
3962 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3963 *
3964 * Returns the next event in the ring buffer, and that event is consumed.
3965 * Meaning, that sequential reads will keep returning a different event,
3966 * and eventually empty the ring buffer if the producer is slower.
3967 */
3968struct ring_buffer_event *
66a8cb95
SR
3969ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3970 unsigned long *lost_events)
7a8e76a3 3971{
554f786e
SR
3972 struct ring_buffer_per_cpu *cpu_buffer;
3973 struct ring_buffer_event *event = NULL;
f83c9d0f 3974 unsigned long flags;
289a5a25 3975 bool dolock;
7a8e76a3 3976
2d622719 3977 again:
554f786e
SR
3978 /* might be called in atomic */
3979 preempt_disable();
3980
9e01c1b7 3981 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3982 goto out;
7a8e76a3 3983
554f786e 3984 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3985 local_irq_save(flags);
289a5a25 3986 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3987
66a8cb95
SR
3988 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3989 if (event) {
3990 cpu_buffer->lost_events = 0;
469535a5 3991 rb_advance_reader(cpu_buffer);
66a8cb95 3992 }
7a8e76a3 3993
289a5a25 3994 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3995 local_irq_restore(flags);
f83c9d0f 3996
554f786e
SR
3997 out:
3998 preempt_enable();
3999
1b959e18 4000 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4001 goto again;
2d622719 4002
7a8e76a3
SR
4003 return event;
4004}
c4f50183 4005EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4006
4007/**
72c9ddfd 4008 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4009 * @buffer: The ring buffer to read from
4010 * @cpu: The cpu buffer to iterate over
4011 *
72c9ddfd
DM
4012 * This performs the initial preparations necessary to iterate
4013 * through the buffer. Memory is allocated, buffer recording
4014 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4015 *
72c9ddfd
DM
4016 * Disabling buffer recordng prevents the reading from being
4017 * corrupted. This is not a consuming read, so a producer is not
4018 * expected.
4019 *
4020 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4021 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4022 * Afterwards, ring_buffer_read_start is invoked to get things going
4023 * for real.
4024 *
d611851b 4025 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4026 */
4027struct ring_buffer_iter *
72c9ddfd 4028ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4029{
4030 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4031 struct ring_buffer_iter *iter;
7a8e76a3 4032
9e01c1b7 4033 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4034 return NULL;
7a8e76a3
SR
4035
4036 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4037 if (!iter)
8aabee57 4038 return NULL;
7a8e76a3
SR
4039
4040 cpu_buffer = buffer->buffers[cpu];
4041
4042 iter->cpu_buffer = cpu_buffer;
4043
83f40318 4044 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4045 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4046
4047 return iter;
4048}
4049EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4050
4051/**
4052 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4053 *
4054 * All previously invoked ring_buffer_read_prepare calls to prepare
4055 * iterators will be synchronized. Afterwards, read_buffer_read_start
4056 * calls on those iterators are allowed.
4057 */
4058void
4059ring_buffer_read_prepare_sync(void)
4060{
7a8e76a3 4061 synchronize_sched();
72c9ddfd
DM
4062}
4063EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4064
4065/**
4066 * ring_buffer_read_start - start a non consuming read of the buffer
4067 * @iter: The iterator returned by ring_buffer_read_prepare
4068 *
4069 * This finalizes the startup of an iteration through the buffer.
4070 * The iterator comes from a call to ring_buffer_read_prepare and
4071 * an intervening ring_buffer_read_prepare_sync must have been
4072 * performed.
4073 *
d611851b 4074 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4075 */
4076void
4077ring_buffer_read_start(struct ring_buffer_iter *iter)
4078{
4079 struct ring_buffer_per_cpu *cpu_buffer;
4080 unsigned long flags;
4081
4082 if (!iter)
4083 return;
4084
4085 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4086
5389f6fa 4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4088 arch_spin_lock(&cpu_buffer->lock);
642edba5 4089 rb_iter_reset(iter);
0199c4e6 4090 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4091 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4092}
c4f50183 4093EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4094
4095/**
d611851b 4096 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4097 * @iter: The iterator retrieved by ring_buffer_start
4098 *
4099 * This re-enables the recording to the buffer, and frees the
4100 * iterator.
4101 */
4102void
4103ring_buffer_read_finish(struct ring_buffer_iter *iter)
4104{
4105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4106 unsigned long flags;
7a8e76a3 4107
659f451f
SR
4108 /*
4109 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4110 * to check the integrity of the ring buffer.
4111 * Must prevent readers from trying to read, as the check
4112 * clears the HEAD page and readers require it.
659f451f 4113 */
9366c1ba 4114 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4115 rb_check_pages(cpu_buffer);
9366c1ba 4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4117
7a8e76a3 4118 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4119 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4120 kfree(iter);
4121}
c4f50183 4122EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4123
4124/**
4125 * ring_buffer_read - read the next item in the ring buffer by the iterator
4126 * @iter: The ring buffer iterator
4127 * @ts: The time stamp of the event read.
4128 *
4129 * This reads the next event in the ring buffer and increments the iterator.
4130 */
4131struct ring_buffer_event *
4132ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4133{
4134 struct ring_buffer_event *event;
f83c9d0f
SR
4135 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4136 unsigned long flags;
7a8e76a3 4137
5389f6fa 4138 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4139 again:
f83c9d0f 4140 event = rb_iter_peek(iter, ts);
7a8e76a3 4141 if (!event)
f83c9d0f 4142 goto out;
7a8e76a3 4143
7e9391cf
SR
4144 if (event->type_len == RINGBUF_TYPE_PADDING)
4145 goto again;
4146
7a8e76a3 4147 rb_advance_iter(iter);
f83c9d0f 4148 out:
5389f6fa 4149 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4150
4151 return event;
4152}
c4f50183 4153EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4154
4155/**
4156 * ring_buffer_size - return the size of the ring buffer (in bytes)
4157 * @buffer: The ring buffer.
4158 */
438ced17 4159unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4160{
438ced17
VN
4161 /*
4162 * Earlier, this method returned
4163 * BUF_PAGE_SIZE * buffer->nr_pages
4164 * Since the nr_pages field is now removed, we have converted this to
4165 * return the per cpu buffer value.
4166 */
4167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168 return 0;
4169
4170 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4171}
c4f50183 4172EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4173
4174static void
4175rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4176{
77ae365e
SR
4177 rb_head_page_deactivate(cpu_buffer);
4178
7a8e76a3 4179 cpu_buffer->head_page
3adc54fa 4180 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4181 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4182 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4183 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4184
6f807acd 4185 cpu_buffer->head_page->read = 0;
bf41a158
SR
4186
4187 cpu_buffer->tail_page = cpu_buffer->head_page;
4188 cpu_buffer->commit_page = cpu_buffer->head_page;
4189
4190 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4191 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4192 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4193 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4194 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4195 cpu_buffer->reader_page->read = 0;
7a8e76a3 4196
c64e148a 4197 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4198 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4199 local_set(&cpu_buffer->commit_overrun, 0);
4200 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4201 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4202 local_set(&cpu_buffer->committing, 0);
4203 local_set(&cpu_buffer->commits, 0);
77ae365e 4204 cpu_buffer->read = 0;
c64e148a 4205 cpu_buffer->read_bytes = 0;
69507c06
SR
4206
4207 cpu_buffer->write_stamp = 0;
4208 cpu_buffer->read_stamp = 0;
77ae365e 4209
66a8cb95
SR
4210 cpu_buffer->lost_events = 0;
4211 cpu_buffer->last_overrun = 0;
4212
77ae365e 4213 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4214}
4215
4216/**
4217 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4218 * @buffer: The ring buffer to reset a per cpu buffer of
4219 * @cpu: The CPU buffer to be reset
4220 */
4221void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4222{
4223 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4224 unsigned long flags;
4225
9e01c1b7 4226 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4227 return;
7a8e76a3 4228
83f40318 4229 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4230 atomic_inc(&cpu_buffer->record_disabled);
4231
83f40318
VN
4232 /* Make sure all commits have finished */
4233 synchronize_sched();
4234
5389f6fa 4235 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4236
41b6a95d
SR
4237 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4238 goto out;
4239
0199c4e6 4240 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4241
4242 rb_reset_cpu(cpu_buffer);
4243
0199c4e6 4244 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4245
41b6a95d 4246 out:
5389f6fa 4247 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4248
4249 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4250 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4251}
c4f50183 4252EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4253
4254/**
4255 * ring_buffer_reset - reset a ring buffer
4256 * @buffer: The ring buffer to reset all cpu buffers
4257 */
4258void ring_buffer_reset(struct ring_buffer *buffer)
4259{
7a8e76a3
SR
4260 int cpu;
4261
7a8e76a3 4262 for_each_buffer_cpu(buffer, cpu)
d769041f 4263 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4264}
c4f50183 4265EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4266
4267/**
4268 * rind_buffer_empty - is the ring buffer empty?
4269 * @buffer: The ring buffer to test
4270 */
3d4e204d 4271bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4272{
4273 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4274 unsigned long flags;
289a5a25 4275 bool dolock;
7a8e76a3 4276 int cpu;
d4788207 4277 int ret;
7a8e76a3
SR
4278
4279 /* yes this is racy, but if you don't like the race, lock the buffer */
4280 for_each_buffer_cpu(buffer, cpu) {
4281 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4282 local_irq_save(flags);
289a5a25 4283 dolock = rb_reader_lock(cpu_buffer);
d4788207 4284 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4285 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4286 local_irq_restore(flags);
4287
d4788207 4288 if (!ret)
3d4e204d 4289 return false;
7a8e76a3 4290 }
554f786e 4291
3d4e204d 4292 return true;
7a8e76a3 4293}
c4f50183 4294EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4295
4296/**
4297 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4298 * @buffer: The ring buffer
4299 * @cpu: The CPU buffer to test
4300 */
3d4e204d 4301bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4302{
4303 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4304 unsigned long flags;
289a5a25 4305 bool dolock;
8aabee57 4306 int ret;
7a8e76a3 4307
9e01c1b7 4308 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4309 return true;
7a8e76a3
SR
4310
4311 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4312 local_irq_save(flags);
289a5a25 4313 dolock = rb_reader_lock(cpu_buffer);
554f786e 4314 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4315 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4316 local_irq_restore(flags);
554f786e
SR
4317
4318 return ret;
7a8e76a3 4319}
c4f50183 4320EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4321
85bac32c 4322#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4323/**
4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325 * @buffer_a: One buffer to swap with
4326 * @buffer_b: The other buffer to swap with
4327 *
4328 * This function is useful for tracers that want to take a "snapshot"
4329 * of a CPU buffer and has another back up buffer lying around.
4330 * it is expected that the tracer handles the cpu buffer not being
4331 * used at the moment.
4332 */
4333int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334 struct ring_buffer *buffer_b, int cpu)
4335{
4336 struct ring_buffer_per_cpu *cpu_buffer_a;
4337 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4338 int ret = -EINVAL;
4339
9e01c1b7
RR
4340 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4342 goto out;
7a8e76a3 4343
438ced17
VN
4344 cpu_buffer_a = buffer_a->buffers[cpu];
4345 cpu_buffer_b = buffer_b->buffers[cpu];
4346
7a8e76a3 4347 /* At least make sure the two buffers are somewhat the same */
438ced17 4348 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4349 goto out;
4350
4351 ret = -EAGAIN;
7a8e76a3 4352
97b17efe 4353 if (atomic_read(&buffer_a->record_disabled))
554f786e 4354 goto out;
97b17efe
SR
4355
4356 if (atomic_read(&buffer_b->record_disabled))
554f786e 4357 goto out;
97b17efe 4358
97b17efe 4359 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4360 goto out;
97b17efe
SR
4361
4362 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4363 goto out;
97b17efe 4364
7a8e76a3
SR
4365 /*
4366 * We can't do a synchronize_sched here because this
4367 * function can be called in atomic context.
4368 * Normally this will be called from the same CPU as cpu.
4369 * If not it's up to the caller to protect this.
4370 */
4371 atomic_inc(&cpu_buffer_a->record_disabled);
4372 atomic_inc(&cpu_buffer_b->record_disabled);
4373
98277991
SR
4374 ret = -EBUSY;
4375 if (local_read(&cpu_buffer_a->committing))
4376 goto out_dec;
4377 if (local_read(&cpu_buffer_b->committing))
4378 goto out_dec;
4379
7a8e76a3
SR
4380 buffer_a->buffers[cpu] = cpu_buffer_b;
4381 buffer_b->buffers[cpu] = cpu_buffer_a;
4382
4383 cpu_buffer_b->buffer = buffer_a;
4384 cpu_buffer_a->buffer = buffer_b;
4385
98277991
SR
4386 ret = 0;
4387
4388out_dec:
7a8e76a3
SR
4389 atomic_dec(&cpu_buffer_a->record_disabled);
4390 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4391out:
554f786e 4392 return ret;
7a8e76a3 4393}
c4f50183 4394EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4395#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4396
8789a9e7
SR
4397/**
4398 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4399 * @buffer: the buffer to allocate for.
d611851b 4400 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4401 *
4402 * This function is used in conjunction with ring_buffer_read_page.
4403 * When reading a full page from the ring buffer, these functions
4404 * can be used to speed up the process. The calling function should
4405 * allocate a few pages first with this function. Then when it
4406 * needs to get pages from the ring buffer, it passes the result
4407 * of this function into ring_buffer_read_page, which will swap
4408 * the page that was allocated, with the read page of the buffer.
4409 *
4410 * Returns:
4411 * The page allocated, or NULL on error.
4412 */
7ea59064 4413void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4414{
044fa782 4415 struct buffer_data_page *bpage;
7ea59064 4416 struct page *page;
8789a9e7 4417
d7ec4bfe
VN
4418 page = alloc_pages_node(cpu_to_node(cpu),
4419 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4420 if (!page)
8789a9e7
SR
4421 return NULL;
4422
7ea59064 4423 bpage = page_address(page);
8789a9e7 4424
ef7a4a16
SR
4425 rb_init_page(bpage);
4426
044fa782 4427 return bpage;
8789a9e7 4428}
d6ce96da 4429EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4430
4431/**
4432 * ring_buffer_free_read_page - free an allocated read page
4433 * @buffer: the buffer the page was allocate for
4434 * @data: the page to free
4435 *
4436 * Free a page allocated from ring_buffer_alloc_read_page.
4437 */
4438void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4439{
4440 free_page((unsigned long)data);
4441}
d6ce96da 4442EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4443
4444/**
4445 * ring_buffer_read_page - extract a page from the ring buffer
4446 * @buffer: buffer to extract from
4447 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4448 * @len: amount to extract
8789a9e7
SR
4449 * @cpu: the cpu of the buffer to extract
4450 * @full: should the extraction only happen when the page is full.
4451 *
4452 * This function will pull out a page from the ring buffer and consume it.
4453 * @data_page must be the address of the variable that was returned
4454 * from ring_buffer_alloc_read_page. This is because the page might be used
4455 * to swap with a page in the ring buffer.
4456 *
4457 * for example:
d611851b 4458 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4459 * if (!rpage)
4460 * return error;
ef7a4a16 4461 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4462 * if (ret >= 0)
4463 * process_page(rpage, ret);
8789a9e7
SR
4464 *
4465 * When @full is set, the function will not return true unless
4466 * the writer is off the reader page.
4467 *
4468 * Note: it is up to the calling functions to handle sleeps and wakeups.
4469 * The ring buffer can be used anywhere in the kernel and can not
4470 * blindly call wake_up. The layer that uses the ring buffer must be
4471 * responsible for that.
4472 *
4473 * Returns:
667d2412
LJ
4474 * >=0 if data has been transferred, returns the offset of consumed data.
4475 * <0 if no data has been transferred.
8789a9e7
SR
4476 */
4477int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4478 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4479{
4480 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4481 struct ring_buffer_event *event;
044fa782 4482 struct buffer_data_page *bpage;
ef7a4a16 4483 struct buffer_page *reader;
ff0ff84a 4484 unsigned long missed_events;
8789a9e7 4485 unsigned long flags;
ef7a4a16 4486 unsigned int commit;
667d2412 4487 unsigned int read;
4f3640f8 4488 u64 save_timestamp;
667d2412 4489 int ret = -1;
8789a9e7 4490
554f786e
SR
4491 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4492 goto out;
4493
474d32b6
SR
4494 /*
4495 * If len is not big enough to hold the page header, then
4496 * we can not copy anything.
4497 */
4498 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4499 goto out;
474d32b6
SR
4500
4501 len -= BUF_PAGE_HDR_SIZE;
4502
8789a9e7 4503 if (!data_page)
554f786e 4504 goto out;
8789a9e7 4505
044fa782
SR
4506 bpage = *data_page;
4507 if (!bpage)
554f786e 4508 goto out;
8789a9e7 4509
5389f6fa 4510 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4511
ef7a4a16
SR
4512 reader = rb_get_reader_page(cpu_buffer);
4513 if (!reader)
554f786e 4514 goto out_unlock;
8789a9e7 4515
ef7a4a16
SR
4516 event = rb_reader_event(cpu_buffer);
4517
4518 read = reader->read;
4519 commit = rb_page_commit(reader);
667d2412 4520
66a8cb95 4521 /* Check if any events were dropped */
ff0ff84a 4522 missed_events = cpu_buffer->lost_events;
66a8cb95 4523
8789a9e7 4524 /*
474d32b6
SR
4525 * If this page has been partially read or
4526 * if len is not big enough to read the rest of the page or
4527 * a writer is still on the page, then
4528 * we must copy the data from the page to the buffer.
4529 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4530 */
474d32b6 4531 if (read || (len < (commit - read)) ||
ef7a4a16 4532 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4533 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4534 unsigned int rpos = read;
4535 unsigned int pos = 0;
ef7a4a16 4536 unsigned int size;
8789a9e7
SR
4537
4538 if (full)
554f786e 4539 goto out_unlock;
8789a9e7 4540
ef7a4a16
SR
4541 if (len > (commit - read))
4542 len = (commit - read);
4543
69d1b839
SR
4544 /* Always keep the time extend and data together */
4545 size = rb_event_ts_length(event);
ef7a4a16
SR
4546
4547 if (len < size)
554f786e 4548 goto out_unlock;
ef7a4a16 4549
4f3640f8
SR
4550 /* save the current timestamp, since the user will need it */
4551 save_timestamp = cpu_buffer->read_stamp;
4552
ef7a4a16
SR
4553 /* Need to copy one event at a time */
4554 do {
e1e35927
DS
4555 /* We need the size of one event, because
4556 * rb_advance_reader only advances by one event,
4557 * whereas rb_event_ts_length may include the size of
4558 * one or two events.
4559 * We have already ensured there's enough space if this
4560 * is a time extend. */
4561 size = rb_event_length(event);
474d32b6 4562 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4563
4564 len -= size;
4565
4566 rb_advance_reader(cpu_buffer);
474d32b6
SR
4567 rpos = reader->read;
4568 pos += size;
ef7a4a16 4569
18fab912
HY
4570 if (rpos >= commit)
4571 break;
4572
ef7a4a16 4573 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4574 /* Always keep the time extend and data together */
4575 size = rb_event_ts_length(event);
e1e35927 4576 } while (len >= size);
667d2412
LJ
4577
4578 /* update bpage */
ef7a4a16 4579 local_set(&bpage->commit, pos);
4f3640f8 4580 bpage->time_stamp = save_timestamp;
ef7a4a16 4581
474d32b6
SR
4582 /* we copied everything to the beginning */
4583 read = 0;
8789a9e7 4584 } else {
afbab76a 4585 /* update the entry counter */
77ae365e 4586 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4587 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4588
8789a9e7 4589 /* swap the pages */
044fa782 4590 rb_init_page(bpage);
ef7a4a16
SR
4591 bpage = reader->page;
4592 reader->page = *data_page;
4593 local_set(&reader->write, 0);
778c55d4 4594 local_set(&reader->entries, 0);
ef7a4a16 4595 reader->read = 0;
044fa782 4596 *data_page = bpage;
ff0ff84a
SR
4597
4598 /*
4599 * Use the real_end for the data size,
4600 * This gives us a chance to store the lost events
4601 * on the page.
4602 */
4603 if (reader->real_end)
4604 local_set(&bpage->commit, reader->real_end);
8789a9e7 4605 }
667d2412 4606 ret = read;
8789a9e7 4607
66a8cb95 4608 cpu_buffer->lost_events = 0;
2711ca23
SR
4609
4610 commit = local_read(&bpage->commit);
66a8cb95
SR
4611 /*
4612 * Set a flag in the commit field if we lost events
4613 */
ff0ff84a 4614 if (missed_events) {
ff0ff84a
SR
4615 /* If there is room at the end of the page to save the
4616 * missed events, then record it there.
4617 */
4618 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4619 memcpy(&bpage->data[commit], &missed_events,
4620 sizeof(missed_events));
4621 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4622 commit += sizeof(missed_events);
ff0ff84a 4623 }
66a8cb95 4624 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4625 }
66a8cb95 4626
2711ca23
SR
4627 /*
4628 * This page may be off to user land. Zero it out here.
4629 */
4630 if (commit < BUF_PAGE_SIZE)
4631 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4632
554f786e 4633 out_unlock:
5389f6fa 4634 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4635
554f786e 4636 out:
8789a9e7
SR
4637 return ret;
4638}
d6ce96da 4639EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4640
59222efe 4641#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4642static int rb_cpu_notify(struct notifier_block *self,
4643 unsigned long action, void *hcpu)
554f786e
SR
4644{
4645 struct ring_buffer *buffer =
4646 container_of(self, struct ring_buffer, cpu_notify);
4647 long cpu = (long)hcpu;
438ced17
VN
4648 int cpu_i, nr_pages_same;
4649 unsigned int nr_pages;
554f786e
SR
4650
4651 switch (action) {
4652 case CPU_UP_PREPARE:
4653 case CPU_UP_PREPARE_FROZEN:
3f237a79 4654 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4655 return NOTIFY_OK;
4656
438ced17
VN
4657 nr_pages = 0;
4658 nr_pages_same = 1;
4659 /* check if all cpu sizes are same */
4660 for_each_buffer_cpu(buffer, cpu_i) {
4661 /* fill in the size from first enabled cpu */
4662 if (nr_pages == 0)
4663 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4664 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4665 nr_pages_same = 0;
4666 break;
4667 }
4668 }
4669 /* allocate minimum pages, user can later expand it */
4670 if (!nr_pages_same)
4671 nr_pages = 2;
554f786e 4672 buffer->buffers[cpu] =
438ced17 4673 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4674 if (!buffer->buffers[cpu]) {
4675 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4676 cpu);
4677 return NOTIFY_OK;
4678 }
4679 smp_wmb();
3f237a79 4680 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4681 break;
4682 case CPU_DOWN_PREPARE:
4683 case CPU_DOWN_PREPARE_FROZEN:
4684 /*
4685 * Do nothing.
4686 * If we were to free the buffer, then the user would
4687 * lose any trace that was in the buffer.
4688 */
4689 break;
4690 default:
4691 break;
4692 }
4693 return NOTIFY_OK;
4694}
4695#endif
6c43e554
SRRH
4696
4697#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4698/*
4699 * This is a basic integrity check of the ring buffer.
4700 * Late in the boot cycle this test will run when configured in.
4701 * It will kick off a thread per CPU that will go into a loop
4702 * writing to the per cpu ring buffer various sizes of data.
4703 * Some of the data will be large items, some small.
4704 *
4705 * Another thread is created that goes into a spin, sending out
4706 * IPIs to the other CPUs to also write into the ring buffer.
4707 * this is to test the nesting ability of the buffer.
4708 *
4709 * Basic stats are recorded and reported. If something in the
4710 * ring buffer should happen that's not expected, a big warning
4711 * is displayed and all ring buffers are disabled.
4712 */
4713static struct task_struct *rb_threads[NR_CPUS] __initdata;
4714
4715struct rb_test_data {
4716 struct ring_buffer *buffer;
4717 unsigned long events;
4718 unsigned long bytes_written;
4719 unsigned long bytes_alloc;
4720 unsigned long bytes_dropped;
4721 unsigned long events_nested;
4722 unsigned long bytes_written_nested;
4723 unsigned long bytes_alloc_nested;
4724 unsigned long bytes_dropped_nested;
4725 int min_size_nested;
4726 int max_size_nested;
4727 int max_size;
4728 int min_size;
4729 int cpu;
4730 int cnt;
4731};
4732
4733static struct rb_test_data rb_data[NR_CPUS] __initdata;
4734
4735/* 1 meg per cpu */
4736#define RB_TEST_BUFFER_SIZE 1048576
4737
4738static char rb_string[] __initdata =
4739 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4742
4743static bool rb_test_started __initdata;
4744
4745struct rb_item {
4746 int size;
4747 char str[];
4748};
4749
4750static __init int rb_write_something(struct rb_test_data *data, bool nested)
4751{
4752 struct ring_buffer_event *event;
4753 struct rb_item *item;
4754 bool started;
4755 int event_len;
4756 int size;
4757 int len;
4758 int cnt;
4759
4760 /* Have nested writes different that what is written */
4761 cnt = data->cnt + (nested ? 27 : 0);
4762
4763 /* Multiply cnt by ~e, to make some unique increment */
4764 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4765
4766 len = size + sizeof(struct rb_item);
4767
4768 started = rb_test_started;
4769 /* read rb_test_started before checking buffer enabled */
4770 smp_rmb();
4771
4772 event = ring_buffer_lock_reserve(data->buffer, len);
4773 if (!event) {
4774 /* Ignore dropped events before test starts. */
4775 if (started) {
4776 if (nested)
4777 data->bytes_dropped += len;
4778 else
4779 data->bytes_dropped_nested += len;
4780 }
4781 return len;
4782 }
4783
4784 event_len = ring_buffer_event_length(event);
4785
4786 if (RB_WARN_ON(data->buffer, event_len < len))
4787 goto out;
4788
4789 item = ring_buffer_event_data(event);
4790 item->size = size;
4791 memcpy(item->str, rb_string, size);
4792
4793 if (nested) {
4794 data->bytes_alloc_nested += event_len;
4795 data->bytes_written_nested += len;
4796 data->events_nested++;
4797 if (!data->min_size_nested || len < data->min_size_nested)
4798 data->min_size_nested = len;
4799 if (len > data->max_size_nested)
4800 data->max_size_nested = len;
4801 } else {
4802 data->bytes_alloc += event_len;
4803 data->bytes_written += len;
4804 data->events++;
4805 if (!data->min_size || len < data->min_size)
4806 data->max_size = len;
4807 if (len > data->max_size)
4808 data->max_size = len;
4809 }
4810
4811 out:
4812 ring_buffer_unlock_commit(data->buffer, event);
4813
4814 return 0;
4815}
4816
4817static __init int rb_test(void *arg)
4818{
4819 struct rb_test_data *data = arg;
4820
4821 while (!kthread_should_stop()) {
4822 rb_write_something(data, false);
4823 data->cnt++;
4824
4825 set_current_state(TASK_INTERRUPTIBLE);
4826 /* Now sleep between a min of 100-300us and a max of 1ms */
4827 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4828 }
4829
4830 return 0;
4831}
4832
4833static __init void rb_ipi(void *ignore)
4834{
4835 struct rb_test_data *data;
4836 int cpu = smp_processor_id();
4837
4838 data = &rb_data[cpu];
4839 rb_write_something(data, true);
4840}
4841
4842static __init int rb_hammer_test(void *arg)
4843{
4844 while (!kthread_should_stop()) {
4845
4846 /* Send an IPI to all cpus to write data! */
4847 smp_call_function(rb_ipi, NULL, 1);
4848 /* No sleep, but for non preempt, let others run */
4849 schedule();
4850 }
4851
4852 return 0;
4853}
4854
4855static __init int test_ringbuffer(void)
4856{
4857 struct task_struct *rb_hammer;
4858 struct ring_buffer *buffer;
4859 int cpu;
4860 int ret = 0;
4861
4862 pr_info("Running ring buffer tests...\n");
4863
4864 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4865 if (WARN_ON(!buffer))
4866 return 0;
4867
4868 /* Disable buffer so that threads can't write to it yet */
4869 ring_buffer_record_off(buffer);
4870
4871 for_each_online_cpu(cpu) {
4872 rb_data[cpu].buffer = buffer;
4873 rb_data[cpu].cpu = cpu;
4874 rb_data[cpu].cnt = cpu;
4875 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4876 "rbtester/%d", cpu);
4877 if (WARN_ON(!rb_threads[cpu])) {
4878 pr_cont("FAILED\n");
4879 ret = -1;
4880 goto out_free;
4881 }
4882
4883 kthread_bind(rb_threads[cpu], cpu);
4884 wake_up_process(rb_threads[cpu]);
4885 }
4886
4887 /* Now create the rb hammer! */
4888 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4889 if (WARN_ON(!rb_hammer)) {
4890 pr_cont("FAILED\n");
4891 ret = -1;
4892 goto out_free;
4893 }
4894
4895 ring_buffer_record_on(buffer);
4896 /*
4897 * Show buffer is enabled before setting rb_test_started.
4898 * Yes there's a small race window where events could be
4899 * dropped and the thread wont catch it. But when a ring
4900 * buffer gets enabled, there will always be some kind of
4901 * delay before other CPUs see it. Thus, we don't care about
4902 * those dropped events. We care about events dropped after
4903 * the threads see that the buffer is active.
4904 */
4905 smp_wmb();
4906 rb_test_started = true;
4907
4908 set_current_state(TASK_INTERRUPTIBLE);
4909 /* Just run for 10 seconds */;
4910 schedule_timeout(10 * HZ);
4911
4912 kthread_stop(rb_hammer);
4913
4914 out_free:
4915 for_each_online_cpu(cpu) {
4916 if (!rb_threads[cpu])
4917 break;
4918 kthread_stop(rb_threads[cpu]);
4919 }
4920 if (ret) {
4921 ring_buffer_free(buffer);
4922 return ret;
4923 }
4924
4925 /* Report! */
4926 pr_info("finished\n");
4927 for_each_online_cpu(cpu) {
4928 struct ring_buffer_event *event;
4929 struct rb_test_data *data = &rb_data[cpu];
4930 struct rb_item *item;
4931 unsigned long total_events;
4932 unsigned long total_dropped;
4933 unsigned long total_written;
4934 unsigned long total_alloc;
4935 unsigned long total_read = 0;
4936 unsigned long total_size = 0;
4937 unsigned long total_len = 0;
4938 unsigned long total_lost = 0;
4939 unsigned long lost;
4940 int big_event_size;
4941 int small_event_size;
4942
4943 ret = -1;
4944
4945 total_events = data->events + data->events_nested;
4946 total_written = data->bytes_written + data->bytes_written_nested;
4947 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4948 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4949
4950 big_event_size = data->max_size + data->max_size_nested;
4951 small_event_size = data->min_size + data->min_size_nested;
4952
4953 pr_info("CPU %d:\n", cpu);
4954 pr_info(" events: %ld\n", total_events);
4955 pr_info(" dropped bytes: %ld\n", total_dropped);
4956 pr_info(" alloced bytes: %ld\n", total_alloc);
4957 pr_info(" written bytes: %ld\n", total_written);
4958 pr_info(" biggest event: %d\n", big_event_size);
4959 pr_info(" smallest event: %d\n", small_event_size);
4960
4961 if (RB_WARN_ON(buffer, total_dropped))
4962 break;
4963
4964 ret = 0;
4965
4966 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4967 total_lost += lost;
4968 item = ring_buffer_event_data(event);
4969 total_len += ring_buffer_event_length(event);
4970 total_size += item->size + sizeof(struct rb_item);
4971 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4972 pr_info("FAILED!\n");
4973 pr_info("buffer had: %.*s\n", item->size, item->str);
4974 pr_info("expected: %.*s\n", item->size, rb_string);
4975 RB_WARN_ON(buffer, 1);
4976 ret = -1;
4977 break;
4978 }
4979 total_read++;
4980 }
4981 if (ret)
4982 break;
4983
4984 ret = -1;
4985
4986 pr_info(" read events: %ld\n", total_read);
4987 pr_info(" lost events: %ld\n", total_lost);
4988 pr_info(" total events: %ld\n", total_lost + total_read);
4989 pr_info(" recorded len bytes: %ld\n", total_len);
4990 pr_info(" recorded size bytes: %ld\n", total_size);
4991 if (total_lost)
4992 pr_info(" With dropped events, record len and size may not match\n"
4993 " alloced and written from above\n");
4994 if (!total_lost) {
4995 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4996 total_size != total_written))
4997 break;
4998 }
4999 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5000 break;
5001
5002 ret = 0;
5003 }
5004 if (!ret)
5005 pr_info("Ring buffer PASSED!\n");
5006
5007 ring_buffer_free(buffer);
5008 return 0;
5009}
5010
5011late_initcall(test_ringbuffer);
5012#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */