]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: Fix possible double free on failure of allocating trace buffer
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
e6017571 9#include <linux/sched/clock.h>
0b07436d 10#include <linux/trace_seq.h>
7a8e76a3 11#include <linux/spinlock.h>
15693458 12#include <linux/irq_work.h>
7a8e76a3 13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
499e5470
SR
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
a3583244 120
499e5470 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 122
e3d6bf0a 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 124#define RB_ALIGNMENT 4U
334d4169 125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 127
649508f6 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
649508f6
JH
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
334d4169
LJ
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
69d1b839
SR
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
2d622719
TZ
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
a1863c21 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
a1863c21 156 /* padding has a NULL time_delta */
334d4169 157 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
158 event->time_delta = 0;
159}
160
34a148bf 161static unsigned
2d622719 162rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
163{
164 unsigned length;
165
334d4169
LJ
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
69d1b839
SR
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
2d622719
TZ
179rb_event_length(struct ring_buffer_event *event)
180{
334d4169 181 switch (event->type_len) {
7a8e76a3 182 case RINGBUF_TYPE_PADDING:
2d622719
TZ
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
334d4169 186 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
2d622719 195 return rb_event_data_length(event);
7a8e76a3
SR
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
69d1b839
SR
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
7a8e76a3
SR
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
69d1b839
SR
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
7a8e76a3
SR
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
69d1b839
SR
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
334d4169 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
7a8e76a3 244}
c4f50183 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
246
247/* inline for ring buffer fast paths */
929ddbf3 248static __always_inline void *
7a8e76a3
SR
249rb_event_data(struct ring_buffer_event *event)
250{
69d1b839
SR
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
334d4169 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 254 /* If length is in len field, then array[0] has the data */
334d4169 255 if (event->type_len)
7a8e76a3
SR
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
c4f50183 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
270
271#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 272 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
66a8cb95
SR
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
66a8cb95 282
45d8b80c
SRV
283#define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
abc9b56d 285struct buffer_data_page {
e4c2ce82 286 u64 time_stamp; /* page time stamp */
c3706f00 287 local_t commit; /* write committed index */
649508f6 288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
289};
290
77ae365e
SR
291/*
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
298 */
abc9b56d 299struct buffer_page {
778c55d4 300 struct list_head list; /* list of buffer pages */
abc9b56d 301 local_t write; /* index for next write */
6f807acd 302 unsigned read; /* index for next read */
778c55d4 303 local_t entries; /* entries on this page */
ff0ff84a 304 unsigned long real_end; /* real end of data */
abc9b56d 305 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
306};
307
77ae365e
SR
308/*
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
313 *
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
317 *
318 * The counter is 20 bits, and the state data is 12.
319 */
320#define RB_WRITE_MASK 0xfffff
321#define RB_WRITE_INTCNT (1 << 20)
322
044fa782 323static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 324{
044fa782 325 local_set(&bpage->commit, 0);
abc9b56d
SR
326}
327
474d32b6
SR
328/**
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
331 *
332 * Returns the amount of data on the page, including buffer page header.
333 */
ef7a4a16
SR
334size_t ring_buffer_page_len(void *page)
335{
45d8b80c
SRV
336 struct buffer_data_page *bpage = page;
337
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
474d32b6 339 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
340}
341
ed56829c
SR
342/*
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
345 */
34a148bf 346static void free_buffer_page(struct buffer_page *bpage)
ed56829c 347{
34a148bf 348 free_page((unsigned long)bpage->page);
e4c2ce82 349 kfree(bpage);
ed56829c
SR
350}
351
7a8e76a3
SR
352/*
353 * We need to fit the time_stamp delta into 27 bits.
354 */
355static inline int test_time_stamp(u64 delta)
356{
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
360}
361
474d32b6 362#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 363
be957c44
SR
364/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
d1b182a8
SR
367int ring_buffer_print_page_header(struct trace_seq *s)
368{
369 struct buffer_data_page field;
c0cd93aa
SRRH
370
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
375
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
381
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 1,
386 (unsigned int)is_signed_type(long));
387
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
393
394 return !trace_seq_has_overflowed(s);
d1b182a8
SR
395}
396
15693458
SRRH
397struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
1e0d6714 400 wait_queue_head_t full_waiters;
15693458 401 bool waiters_pending;
1e0d6714
SRRH
402 bool full_waiters_pending;
403 bool wakeup_full;
15693458
SRRH
404};
405
fcc742ea
SRRH
406/*
407 * Structure to hold event state and handle nested events.
408 */
409struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
415};
416
a497adb4
SRRH
417/*
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
423 *
424 * See trace_recursive_lock() comment below for more details.
425 */
426enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
432};
433
7a8e76a3
SR
434/*
435 * head_page == tail_page && head == tail then buffer is empty.
436 */
437struct ring_buffer_per_cpu {
438 int cpu;
985023de 439 atomic_t record_disabled;
7a8e76a3 440 struct ring_buffer *buffer;
5389f6fa 441 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 442 arch_spinlock_t lock;
7a8e76a3 443 struct lock_class_key lock_key;
73a757e6 444 struct buffer_data_page *free_page;
9b94a8fb 445 unsigned long nr_pages;
58a09ec6 446 unsigned int current_context;
3adc54fa 447 struct list_head *pages;
6f807acd
SR
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
c3706f00 450 struct buffer_page *commit_page; /* committed pages */
d769041f 451 struct buffer_page *reader_page;
66a8cb95
SR
452 unsigned long lost_events;
453 unsigned long last_overrun;
c64e148a 454 local_t entries_bytes;
e4906eff 455 local_t entries;
884bfe89
SP
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
fa743953
SR
459 local_t committing;
460 local_t commits;
77ae365e 461 unsigned long read;
c64e148a 462 unsigned long read_bytes;
7a8e76a3
SR
463 u64 write_stamp;
464 u64 read_stamp;
438ced17 465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 466 long nr_pages_to_update;
438ced17 467 struct list_head new_pages; /* new pages to add */
83f40318 468 struct work_struct update_pages_work;
05fdd70d 469 struct completion update_done;
15693458
SRRH
470
471 struct rb_irq_work irq_work;
7a8e76a3
SR
472};
473
474struct ring_buffer {
7a8e76a3
SR
475 unsigned flags;
476 int cpus;
7a8e76a3 477 atomic_t record_disabled;
83f40318 478 atomic_t resize_disabled;
00f62f61 479 cpumask_var_t cpumask;
7a8e76a3 480
1f8a6a10
PZ
481 struct lock_class_key *reader_lock_key;
482
7a8e76a3
SR
483 struct mutex mutex;
484
485 struct ring_buffer_per_cpu **buffers;
554f786e 486
b32614c0 487 struct hlist_node node;
37886f6a 488 u64 (*clock)(void);
15693458
SRRH
489
490 struct rb_irq_work irq_work;
7a8e76a3
SR
491};
492
493struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
492a74f4
SR
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
7a8e76a3
SR
499 u64 read_stamp;
500};
501
15693458
SRRH
502/*
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504 *
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
507 */
508static void rb_wake_up_waiters(struct irq_work *work)
509{
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
516 }
15693458
SRRH
517}
518
519/**
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
e30f53aa 523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
524 *
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
528 */
e30f53aa 529int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 530{
e30f53aa 531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
e30f53aa 534 int ret = 0;
15693458
SRRH
535
536 /*
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
540 */
1e0d6714 541 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 542 work = &buffer->irq_work;
1e0d6714
SRRH
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
8b8b3683
SRRH
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
15693458
SRRH
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
550 }
551
552
e30f53aa 553 while (true) {
1e0d6714
SRRH
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
558
559 /*
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
565 *
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
572 *
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
578 */
1e0d6714
SRRH
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
e30f53aa
RV
583
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
587 }
588
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
591
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
596
597 if (!full)
598 break;
599
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604 if (!pagebusy)
605 break;
606 }
15693458 607
15693458 608 schedule();
e30f53aa 609 }
15693458 610
1e0d6714
SRRH
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
e30f53aa
RV
615
616 return ret;
15693458
SRRH
617}
618
619/**
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
625 *
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
629 *
630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631 * zero otherwise.
632 */
633int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
635{
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
638
15693458
SRRH
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
6721cb60
SRRH
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
644
15693458
SRRH
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
647 }
648
15693458 649 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
650 work->waiters_pending = true;
651 /*
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
656 *
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
663 */
664 smp_mb();
15693458
SRRH
665
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return POLLIN | POLLRDNORM;
669 return 0;
670}
671
f536aafc 672/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
673#define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
684 } \
685 _____ret; \
3e89c7bb 686 })
f536aafc 687
37886f6a
SR
688/* Up this if you want to test the TIME_EXTENTS and normalization */
689#define DEBUG_SHIFT 0
690
6d3f1e12 691static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
692{
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
695}
696
37886f6a
SR
697u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698{
699 u64 time;
700
701 preempt_disable_notrace();
6d3f1e12 702 time = rb_time_stamp(buffer);
37886f6a
SR
703 preempt_enable_no_resched_notrace();
704
705 return time;
706}
707EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
709void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
711{
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
714}
715EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
77ae365e
SR
717/*
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
722 *
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
728 *
729 * Here lies the problem.
730 *
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
737 *
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
740 *
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
744 *
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
748 *
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
754 *
755 * Note we can not trust the prev pointer of the head page, because:
756 *
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
766 *
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
771 *
772 * (see __rb_reserve_next() to see where this happens)
773 *
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
780 *
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
784 */
785
786#define RB_PAGE_NORMAL 0UL
787#define RB_PAGE_HEAD 1UL
788#define RB_PAGE_UPDATE 2UL
789
790
791#define RB_FLAG_MASK 3UL
792
793/* PAGE_MOVED is not part of the mask */
794#define RB_PAGE_MOVED 4UL
795
796/*
797 * rb_list_head - remove any bit
798 */
799static struct list_head *rb_list_head(struct list_head *list)
800{
801 unsigned long val = (unsigned long)list;
802
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
804}
805
806/*
6d3f1e12 807 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
808 *
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
813 */
42b16b3f 814static inline int
77ae365e
SR
815rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
817{
818 unsigned long val;
819
820 val = (unsigned long)list->next;
821
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
824
825 return val & RB_FLAG_MASK;
826}
827
828/*
829 * rb_is_reader_page
830 *
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
834 */
06ca3209 835static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
836{
837 struct list_head *list = page->list.prev;
838
839 return rb_list_head(list->next) != &page->list;
840}
841
842/*
843 * rb_set_list_to_head - set a list_head to be pointing to head.
844 */
845static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
847{
848 unsigned long *ptr;
849
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
853}
854
855/*
856 * rb_head_page_activate - sets up head page
857 */
858static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859{
860 struct buffer_page *head;
861
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
865
866 /*
867 * Set the previous list pointer to have the HEAD flag.
868 */
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
870}
871
872static void rb_list_head_clear(struct list_head *list)
873{
874 unsigned long *ptr = (unsigned long *)&list->next;
875
876 *ptr &= ~RB_FLAG_MASK;
877}
878
879/*
880 * rb_head_page_dactivate - clears head page ptr (for free list)
881 */
882static void
883rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884{
885 struct list_head *hd;
886
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
889
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
892}
893
894static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
898{
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
902
903 list = &prev->list;
904
905 val &= ~RB_FLAG_MASK;
906
08a40816
SR
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
77ae365e
SR
909
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
913
914 return ret & RB_FLAG_MASK;
915}
916
917static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
921{
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
924}
925
926static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
930{
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
933}
934
935static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
939{
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
942}
943
944static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
946{
947 struct list_head *p = rb_list_head((*bpage)->list.next);
948
949 *bpage = list_entry(p, struct buffer_page, list);
950}
951
952static struct buffer_page *
953rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954{
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
959
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
962
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
967
968 page = head = cpu_buffer->head_page;
969 /*
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
974 */
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
980 }
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
983 }
984
985 RB_WARN_ON(cpu_buffer, 1);
986
987 return NULL;
988}
989
990static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
992{
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
996
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
999
08a40816 1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1001
1002 return ret == val;
1003}
1004
1005/*
1006 * rb_tail_page_update - move the tail page forward
77ae365e 1007 */
70004986 1008static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1011{
77ae365e
SR
1012 unsigned long old_entries;
1013 unsigned long old_write;
77ae365e
SR
1014
1015 /*
1016 * The tail page now needs to be moved forward.
1017 *
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1021 *
1022 * We add a counter to the write field to denote this.
1023 */
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027 /*
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1030 */
1031 barrier();
1032
1033 /*
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1037 */
8573636e 1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043 /*
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
da706d8b
LJ
1047 *
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1052 */
da706d8b
LJ
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1055
1056 /*
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1060 */
1061 local_set(&next_page->page->commit, 0);
1062
70004986
SRRH
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1065 }
77ae365e
SR
1066}
1067
1068static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1070{
1071 unsigned long val = (unsigned long)bpage;
1072
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1075
1076 return 0;
1077}
1078
1079/**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
1082static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1084{
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1090}
1091
7a8e76a3 1092/**
d611851b 1093 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
c3706f00 1096 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1097 * been corrupted.
1098 */
1099static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100{
3adc54fa 1101 struct list_head *head = cpu_buffer->pages;
044fa782 1102 struct buffer_page *bpage, *tmp;
7a8e76a3 1103
308f7eeb
SR
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1107
77ae365e
SR
1108 rb_head_page_deactivate(cpu_buffer);
1109
3e89c7bb
SR
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
7a8e76a3 1114
77ae365e
SR
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1117
044fa782 1118 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1119 if (RB_WARN_ON(cpu_buffer,
044fa782 1120 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
044fa782 1123 bpage->list.prev->next != &bpage->list))
3e89c7bb 1124 return -1;
77ae365e
SR
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
7a8e76a3
SR
1127 }
1128
77ae365e
SR
1129 rb_head_page_activate(cpu_buffer);
1130
7a8e76a3
SR
1131 return 0;
1132}
1133
9b94a8fb 1134static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1135{
044fa782 1136 struct buffer_page *bpage, *tmp;
9b94a8fb 1137 long i;
3adc54fa 1138
7a8e76a3 1139 for (i = 0; i < nr_pages; i++) {
7ea59064 1140 struct page *page;
d7ec4bfe 1141 /*
84861885
JF
1142 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1143 * gracefully without invoking oom-killer and the system is not
1144 * destabilized.
d7ec4bfe 1145 */
044fa782 1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
84861885 1147 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
438ced17 1148 cpu_to_node(cpu));
044fa782 1149 if (!bpage)
e4c2ce82 1150 goto free_pages;
77ae365e 1151
438ced17 1152 list_add(&bpage->list, pages);
77ae365e 1153
438ced17 1154 page = alloc_pages_node(cpu_to_node(cpu),
84861885 1155 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
7ea59064 1156 if (!page)
7a8e76a3 1157 goto free_pages;
7ea59064 1158 bpage->page = page_address(page);
044fa782 1159 rb_init_page(bpage->page);
7a8e76a3
SR
1160 }
1161
438ced17
VN
1162 return 0;
1163
1164free_pages:
1165 list_for_each_entry_safe(bpage, tmp, pages, list) {
1166 list_del_init(&bpage->list);
1167 free_buffer_page(bpage);
1168 }
1169
1170 return -ENOMEM;
1171}
1172
1173static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1174 unsigned long nr_pages)
438ced17
VN
1175{
1176 LIST_HEAD(pages);
1177
1178 WARN_ON(!nr_pages);
1179
1180 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1181 return -ENOMEM;
1182
3adc54fa
SR
1183 /*
1184 * The ring buffer page list is a circular list that does not
1185 * start and end with a list head. All page list items point to
1186 * other pages.
1187 */
1188 cpu_buffer->pages = pages.next;
1189 list_del(&pages);
7a8e76a3 1190
438ced17
VN
1191 cpu_buffer->nr_pages = nr_pages;
1192
7a8e76a3
SR
1193 rb_check_pages(cpu_buffer);
1194
1195 return 0;
7a8e76a3
SR
1196}
1197
1198static struct ring_buffer_per_cpu *
9b94a8fb 1199rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1200{
1201 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1202 struct buffer_page *bpage;
7ea59064 1203 struct page *page;
7a8e76a3
SR
1204 int ret;
1205
1206 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1207 GFP_KERNEL, cpu_to_node(cpu));
1208 if (!cpu_buffer)
1209 return NULL;
1210
1211 cpu_buffer->cpu = cpu;
1212 cpu_buffer->buffer = buffer;
5389f6fa 1213 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1214 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1215 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1216 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1217 init_completion(&cpu_buffer->update_done);
15693458 1218 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1219 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1220 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1221
044fa782 1222 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1223 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1224 if (!bpage)
e4c2ce82
SR
1225 goto fail_free_buffer;
1226
77ae365e
SR
1227 rb_check_bpage(cpu_buffer, bpage);
1228
044fa782 1229 cpu_buffer->reader_page = bpage;
7ea59064
VN
1230 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1231 if (!page)
e4c2ce82 1232 goto fail_free_reader;
7ea59064 1233 bpage->page = page_address(page);
044fa782 1234 rb_init_page(bpage->page);
e4c2ce82 1235
d769041f 1236 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1237 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1238
438ced17 1239 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1240 if (ret < 0)
d769041f 1241 goto fail_free_reader;
7a8e76a3
SR
1242
1243 cpu_buffer->head_page
3adc54fa 1244 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1245 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1246
77ae365e
SR
1247 rb_head_page_activate(cpu_buffer);
1248
7a8e76a3
SR
1249 return cpu_buffer;
1250
d769041f
SR
1251 fail_free_reader:
1252 free_buffer_page(cpu_buffer->reader_page);
1253
7a8e76a3
SR
1254 fail_free_buffer:
1255 kfree(cpu_buffer);
1256 return NULL;
1257}
1258
1259static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1260{
3adc54fa 1261 struct list_head *head = cpu_buffer->pages;
044fa782 1262 struct buffer_page *bpage, *tmp;
7a8e76a3 1263
d769041f
SR
1264 free_buffer_page(cpu_buffer->reader_page);
1265
77ae365e
SR
1266 rb_head_page_deactivate(cpu_buffer);
1267
3adc54fa
SR
1268 if (head) {
1269 list_for_each_entry_safe(bpage, tmp, head, list) {
1270 list_del_init(&bpage->list);
1271 free_buffer_page(bpage);
1272 }
1273 bpage = list_entry(head, struct buffer_page, list);
044fa782 1274 free_buffer_page(bpage);
7a8e76a3 1275 }
3adc54fa 1276
7a8e76a3
SR
1277 kfree(cpu_buffer);
1278}
1279
1280/**
d611851b 1281 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1282 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1283 * @flags: attributes to set for the ring buffer.
1284 *
1285 * Currently the only flag that is available is the RB_FL_OVERWRITE
1286 * flag. This flag means that the buffer will overwrite old data
1287 * when the buffer wraps. If this flag is not set, the buffer will
1288 * drop data when the tail hits the head.
1289 */
1f8a6a10
PZ
1290struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1291 struct lock_class_key *key)
7a8e76a3
SR
1292{
1293 struct ring_buffer *buffer;
9b94a8fb 1294 long nr_pages;
7a8e76a3 1295 int bsize;
9b94a8fb 1296 int cpu;
b32614c0 1297 int ret;
7a8e76a3
SR
1298
1299 /* keep it in its own cache line */
1300 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301 GFP_KERNEL);
1302 if (!buffer)
1303 return NULL;
1304
b18cc3de 1305 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1306 goto fail_free_buffer;
1307
438ced17 1308 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1309 buffer->flags = flags;
37886f6a 1310 buffer->clock = trace_clock_local;
1f8a6a10 1311 buffer->reader_lock_key = key;
7a8e76a3 1312
15693458 1313 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1314 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1315
7a8e76a3 1316 /* need at least two pages */
438ced17
VN
1317 if (nr_pages < 2)
1318 nr_pages = 2;
7a8e76a3 1319
7a8e76a3
SR
1320 buffer->cpus = nr_cpu_ids;
1321
1322 bsize = sizeof(void *) * nr_cpu_ids;
1323 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1324 GFP_KERNEL);
1325 if (!buffer->buffers)
9e01c1b7 1326 goto fail_free_cpumask;
7a8e76a3 1327
b32614c0
SAS
1328 cpu = raw_smp_processor_id();
1329 cpumask_set_cpu(cpu, buffer->cpumask);
1330 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1331 if (!buffer->buffers[cpu])
1332 goto fail_free_buffers;
7a8e76a3 1333
b32614c0
SAS
1334 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1335 if (ret < 0)
1336 goto fail_free_buffers;
554f786e 1337
7a8e76a3
SR
1338 mutex_init(&buffer->mutex);
1339
1340 return buffer;
1341
1342 fail_free_buffers:
1343 for_each_buffer_cpu(buffer, cpu) {
1344 if (buffer->buffers[cpu])
1345 rb_free_cpu_buffer(buffer->buffers[cpu]);
1346 }
1347 kfree(buffer->buffers);
1348
9e01c1b7
RR
1349 fail_free_cpumask:
1350 free_cpumask_var(buffer->cpumask);
1351
7a8e76a3
SR
1352 fail_free_buffer:
1353 kfree(buffer);
1354 return NULL;
1355}
1f8a6a10 1356EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1357
1358/**
1359 * ring_buffer_free - free a ring buffer.
1360 * @buffer: the buffer to free.
1361 */
1362void
1363ring_buffer_free(struct ring_buffer *buffer)
1364{
1365 int cpu;
1366
b32614c0 1367 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1368
7a8e76a3
SR
1369 for_each_buffer_cpu(buffer, cpu)
1370 rb_free_cpu_buffer(buffer->buffers[cpu]);
1371
bd3f0221 1372 kfree(buffer->buffers);
9e01c1b7
RR
1373 free_cpumask_var(buffer->cpumask);
1374
7a8e76a3
SR
1375 kfree(buffer);
1376}
c4f50183 1377EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1378
37886f6a
SR
1379void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 u64 (*clock)(void))
1381{
1382 buffer->clock = clock;
1383}
1384
7a8e76a3
SR
1385static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
83f40318
VN
1387static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388{
1389 return local_read(&bpage->entries) & RB_WRITE_MASK;
1390}
1391
1392static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393{
1394 return local_read(&bpage->write) & RB_WRITE_MASK;
1395}
1396
5040b4b7 1397static int
9b94a8fb 1398rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1399{
83f40318
VN
1400 struct list_head *tail_page, *to_remove, *next_page;
1401 struct buffer_page *to_remove_page, *tmp_iter_page;
1402 struct buffer_page *last_page, *first_page;
9b94a8fb 1403 unsigned long nr_removed;
83f40318
VN
1404 unsigned long head_bit;
1405 int page_entries;
1406
1407 head_bit = 0;
7a8e76a3 1408
5389f6fa 1409 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1410 atomic_inc(&cpu_buffer->record_disabled);
1411 /*
1412 * We don't race with the readers since we have acquired the reader
1413 * lock. We also don't race with writers after disabling recording.
1414 * This makes it easy to figure out the first and the last page to be
1415 * removed from the list. We unlink all the pages in between including
1416 * the first and last pages. This is done in a busy loop so that we
1417 * lose the least number of traces.
1418 * The pages are freed after we restart recording and unlock readers.
1419 */
1420 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1421
83f40318
VN
1422 /*
1423 * tail page might be on reader page, we remove the next page
1424 * from the ring buffer
1425 */
1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 tail_page = rb_list_head(tail_page->next);
1428 to_remove = tail_page;
1429
1430 /* start of pages to remove */
1431 first_page = list_entry(rb_list_head(to_remove->next),
1432 struct buffer_page, list);
1433
1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 to_remove = rb_list_head(to_remove)->next;
1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1437 }
7a8e76a3 1438
83f40318 1439 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1440
83f40318
VN
1441 /*
1442 * Now we remove all pages between tail_page and next_page.
1443 * Make sure that we have head_bit value preserved for the
1444 * next page
1445 */
1446 tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 head_bit);
1448 next_page = rb_list_head(next_page);
1449 next_page->prev = tail_page;
1450
1451 /* make sure pages points to a valid page in the ring buffer */
1452 cpu_buffer->pages = next_page;
1453
1454 /* update head page */
1455 if (head_bit)
1456 cpu_buffer->head_page = list_entry(next_page,
1457 struct buffer_page, list);
1458
1459 /*
1460 * change read pointer to make sure any read iterators reset
1461 * themselves
1462 */
1463 cpu_buffer->read = 0;
1464
1465 /* pages are removed, resume tracing and then free the pages */
1466 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1468
1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471 /* last buffer page to remove */
1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 list);
1474 tmp_iter_page = first_page;
1475
1476 do {
1477 to_remove_page = tmp_iter_page;
1478 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480 /* update the counters */
1481 page_entries = rb_page_entries(to_remove_page);
1482 if (page_entries) {
1483 /*
1484 * If something was added to this page, it was full
1485 * since it is not the tail page. So we deduct the
1486 * bytes consumed in ring buffer from here.
48fdc72f 1487 * Increment overrun to account for the lost events.
83f40318 1488 */
48fdc72f 1489 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 }
1492
1493 /*
1494 * We have already removed references to this list item, just
1495 * free up the buffer_page and its page
1496 */
1497 free_buffer_page(to_remove_page);
1498 nr_removed--;
1499
1500 } while (to_remove_page != last_page);
1501
1502 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1503
1504 return nr_removed == 0;
7a8e76a3
SR
1505}
1506
5040b4b7
VN
1507static int
1508rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1509{
5040b4b7
VN
1510 struct list_head *pages = &cpu_buffer->new_pages;
1511 int retries, success;
7a8e76a3 1512
5389f6fa 1513 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1514 /*
1515 * We are holding the reader lock, so the reader page won't be swapped
1516 * in the ring buffer. Now we are racing with the writer trying to
1517 * move head page and the tail page.
1518 * We are going to adapt the reader page update process where:
1519 * 1. We first splice the start and end of list of new pages between
1520 * the head page and its previous page.
1521 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 * start of new pages list.
1523 * 3. Finally, we update the head->prev to the end of new list.
1524 *
1525 * We will try this process 10 times, to make sure that we don't keep
1526 * spinning.
1527 */
1528 retries = 10;
1529 success = 0;
1530 while (retries--) {
1531 struct list_head *head_page, *prev_page, *r;
1532 struct list_head *last_page, *first_page;
1533 struct list_head *head_page_with_bit;
77ae365e 1534
5040b4b7 1535 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1536 if (!head_page)
1537 break;
5040b4b7
VN
1538 prev_page = head_page->prev;
1539
1540 first_page = pages->next;
1541 last_page = pages->prev;
1542
1543 head_page_with_bit = (struct list_head *)
1544 ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546 last_page->next = head_page_with_bit;
1547 first_page->prev = prev_page;
1548
1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551 if (r == head_page_with_bit) {
1552 /*
1553 * yay, we replaced the page pointer to our new list,
1554 * now, we just have to update to head page's prev
1555 * pointer to point to end of list
1556 */
1557 head_page->prev = last_page;
1558 success = 1;
1559 break;
1560 }
7a8e76a3 1561 }
7a8e76a3 1562
5040b4b7
VN
1563 if (success)
1564 INIT_LIST_HEAD(pages);
1565 /*
1566 * If we weren't successful in adding in new pages, warn and stop
1567 * tracing
1568 */
1569 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1571
1572 /* free pages if they weren't inserted */
1573 if (!success) {
1574 struct buffer_page *bpage, *tmp;
1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 list) {
1577 list_del_init(&bpage->list);
1578 free_buffer_page(bpage);
1579 }
1580 }
1581 return success;
7a8e76a3
SR
1582}
1583
83f40318 1584static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1585{
5040b4b7
VN
1586 int success;
1587
438ced17 1588 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1589 success = rb_insert_pages(cpu_buffer);
438ced17 1590 else
5040b4b7
VN
1591 success = rb_remove_pages(cpu_buffer,
1592 -cpu_buffer->nr_pages_to_update);
83f40318 1593
5040b4b7
VN
1594 if (success)
1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1596}
1597
1598static void update_pages_handler(struct work_struct *work)
1599{
1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 struct ring_buffer_per_cpu, update_pages_work);
1602 rb_update_pages(cpu_buffer);
05fdd70d 1603 complete(&cpu_buffer->update_done);
438ced17
VN
1604}
1605
7a8e76a3
SR
1606/**
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
d611851b 1610 * @cpu_id: the cpu buffer to resize
7a8e76a3 1611 *
7a8e76a3
SR
1612 * Minimum size is 2 * BUF_PAGE_SIZE.
1613 *
83f40318 1614 * Returns 0 on success and < 0 on failure.
7a8e76a3 1615 */
438ced17
VN
1616int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617 int cpu_id)
7a8e76a3
SR
1618{
1619 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1620 unsigned long nr_pages;
83f40318 1621 int cpu, err = 0;
7a8e76a3 1622
ee51a1de
IM
1623 /*
1624 * Always succeed at resizing a non-existent buffer:
1625 */
1626 if (!buffer)
1627 return size;
1628
6a31e1f1
SR
1629 /* Make sure the requested buffer exists */
1630 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632 return size;
1633
59643d15 1634 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1635
1636 /* we need a minimum of two pages */
59643d15
SRRH
1637 if (nr_pages < 2)
1638 nr_pages = 2;
7a8e76a3 1639
59643d15 1640 size = nr_pages * BUF_PAGE_SIZE;
18421015 1641
83f40318
VN
1642 /*
1643 * Don't succeed if resizing is disabled, as a reader might be
1644 * manipulating the ring buffer and is expecting a sane state while
1645 * this is true.
1646 */
1647 if (atomic_read(&buffer->resize_disabled))
1648 return -EBUSY;
18421015 1649
83f40318 1650 /* prevent another thread from changing buffer sizes */
7a8e76a3 1651 mutex_lock(&buffer->mutex);
7a8e76a3 1652
438ced17
VN
1653 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 /* calculate the pages to update */
7a8e76a3
SR
1655 for_each_buffer_cpu(buffer, cpu) {
1656 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1657
438ced17
VN
1658 cpu_buffer->nr_pages_to_update = nr_pages -
1659 cpu_buffer->nr_pages;
438ced17
VN
1660 /*
1661 * nothing more to do for removing pages or no update
1662 */
1663 if (cpu_buffer->nr_pages_to_update <= 0)
1664 continue;
d7ec4bfe 1665 /*
438ced17
VN
1666 * to add pages, make sure all new pages can be
1667 * allocated without receiving ENOMEM
d7ec4bfe 1668 */
438ced17
VN
1669 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1671 &cpu_buffer->new_pages, cpu)) {
438ced17 1672 /* not enough memory for new pages */
83f40318
VN
1673 err = -ENOMEM;
1674 goto out_err;
1675 }
1676 }
1677
1678 get_online_cpus();
1679 /*
1680 * Fire off all the required work handlers
05fdd70d 1681 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1682 * since we can change their buffer sizes without any race.
1683 */
1684 for_each_buffer_cpu(buffer, cpu) {
1685 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1686 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1687 continue;
1688
021c5b34
CM
1689 /* Can't run something on an offline CPU. */
1690 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1691 rb_update_pages(cpu_buffer);
1692 cpu_buffer->nr_pages_to_update = 0;
1693 } else {
05fdd70d
VN
1694 schedule_work_on(cpu,
1695 &cpu_buffer->update_pages_work);
f5eb5588 1696 }
7a8e76a3 1697 }
7a8e76a3 1698
438ced17
VN
1699 /* wait for all the updates to complete */
1700 for_each_buffer_cpu(buffer, cpu) {
1701 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1702 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1703 continue;
1704
05fdd70d
VN
1705 if (cpu_online(cpu))
1706 wait_for_completion(&cpu_buffer->update_done);
83f40318 1707 cpu_buffer->nr_pages_to_update = 0;
438ced17 1708 }
83f40318
VN
1709
1710 put_online_cpus();
438ced17 1711 } else {
8e49f418
VN
1712 /* Make sure this CPU has been intitialized */
1713 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1714 goto out;
1715
438ced17 1716 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1717
438ced17
VN
1718 if (nr_pages == cpu_buffer->nr_pages)
1719 goto out;
7a8e76a3 1720
438ced17
VN
1721 cpu_buffer->nr_pages_to_update = nr_pages -
1722 cpu_buffer->nr_pages;
1723
1724 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1725 if (cpu_buffer->nr_pages_to_update > 0 &&
1726 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1727 &cpu_buffer->new_pages, cpu_id)) {
1728 err = -ENOMEM;
1729 goto out_err;
1730 }
438ced17 1731
83f40318
VN
1732 get_online_cpus();
1733
021c5b34
CM
1734 /* Can't run something on an offline CPU. */
1735 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1736 rb_update_pages(cpu_buffer);
1737 else {
83f40318
VN
1738 schedule_work_on(cpu_id,
1739 &cpu_buffer->update_pages_work);
05fdd70d 1740 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1741 }
83f40318 1742
83f40318 1743 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1744 put_online_cpus();
438ced17 1745 }
7a8e76a3
SR
1746
1747 out:
659f451f
SR
1748 /*
1749 * The ring buffer resize can happen with the ring buffer
1750 * enabled, so that the update disturbs the tracing as little
1751 * as possible. But if the buffer is disabled, we do not need
1752 * to worry about that, and we can take the time to verify
1753 * that the buffer is not corrupt.
1754 */
1755 if (atomic_read(&buffer->record_disabled)) {
1756 atomic_inc(&buffer->record_disabled);
1757 /*
1758 * Even though the buffer was disabled, we must make sure
1759 * that it is truly disabled before calling rb_check_pages.
1760 * There could have been a race between checking
1761 * record_disable and incrementing it.
1762 */
1763 synchronize_sched();
1764 for_each_buffer_cpu(buffer, cpu) {
1765 cpu_buffer = buffer->buffers[cpu];
1766 rb_check_pages(cpu_buffer);
1767 }
1768 atomic_dec(&buffer->record_disabled);
1769 }
1770
7a8e76a3 1771 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1772 return size;
1773
83f40318 1774 out_err:
438ced17
VN
1775 for_each_buffer_cpu(buffer, cpu) {
1776 struct buffer_page *bpage, *tmp;
83f40318 1777
438ced17 1778 cpu_buffer = buffer->buffers[cpu];
438ced17 1779 cpu_buffer->nr_pages_to_update = 0;
83f40318 1780
438ced17
VN
1781 if (list_empty(&cpu_buffer->new_pages))
1782 continue;
83f40318 1783
438ced17
VN
1784 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1785 list) {
1786 list_del_init(&bpage->list);
1787 free_buffer_page(bpage);
1788 }
7a8e76a3 1789 }
641d2f63 1790 mutex_unlock(&buffer->mutex);
83f40318 1791 return err;
7a8e76a3 1792}
c4f50183 1793EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1794
750912fa
DS
1795void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1796{
1797 mutex_lock(&buffer->mutex);
1798 if (val)
1799 buffer->flags |= RB_FL_OVERWRITE;
1800 else
1801 buffer->flags &= ~RB_FL_OVERWRITE;
1802 mutex_unlock(&buffer->mutex);
1803}
1804EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1805
2289d567 1806static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1807{
044fa782 1808 return bpage->page->data + index;
7a8e76a3
SR
1809}
1810
2289d567 1811static __always_inline struct ring_buffer_event *
d769041f 1812rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1813{
6f807acd
SR
1814 return __rb_page_index(cpu_buffer->reader_page,
1815 cpu_buffer->reader_page->read);
1816}
1817
2289d567 1818static __always_inline struct ring_buffer_event *
7a8e76a3
SR
1819rb_iter_head_event(struct ring_buffer_iter *iter)
1820{
6f807acd 1821 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1822}
1823
2289d567 1824static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
bf41a158 1825{
abc9b56d 1826 return local_read(&bpage->page->commit);
bf41a158
SR
1827}
1828
25985edc 1829/* Size is determined by what has been committed */
2289d567 1830static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
1831{
1832 return rb_page_commit(bpage);
1833}
1834
2289d567 1835static __always_inline unsigned
bf41a158
SR
1836rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1837{
1838 return rb_page_commit(cpu_buffer->commit_page);
1839}
1840
2289d567 1841static __always_inline unsigned
bf41a158
SR
1842rb_event_index(struct ring_buffer_event *event)
1843{
1844 unsigned long addr = (unsigned long)event;
1845
22f470f8 1846 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1847}
1848
34a148bf 1849static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1850{
1851 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1852
1853 /*
1854 * The iterator could be on the reader page (it starts there).
1855 * But the head could have moved, since the reader was
1856 * found. Check for this case and assign the iterator
1857 * to the head page instead of next.
1858 */
1859 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1860 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1861 else
1862 rb_inc_page(cpu_buffer, &iter->head_page);
1863
abc9b56d 1864 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1865 iter->head = 0;
1866}
1867
77ae365e
SR
1868/*
1869 * rb_handle_head_page - writer hit the head page
1870 *
1871 * Returns: +1 to retry page
1872 * 0 to continue
1873 * -1 on error
1874 */
1875static int
1876rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1877 struct buffer_page *tail_page,
1878 struct buffer_page *next_page)
1879{
1880 struct buffer_page *new_head;
1881 int entries;
1882 int type;
1883 int ret;
1884
1885 entries = rb_page_entries(next_page);
1886
1887 /*
1888 * The hard part is here. We need to move the head
1889 * forward, and protect against both readers on
1890 * other CPUs and writers coming in via interrupts.
1891 */
1892 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1893 RB_PAGE_HEAD);
1894
1895 /*
1896 * type can be one of four:
1897 * NORMAL - an interrupt already moved it for us
1898 * HEAD - we are the first to get here.
1899 * UPDATE - we are the interrupt interrupting
1900 * a current move.
1901 * MOVED - a reader on another CPU moved the next
1902 * pointer to its reader page. Give up
1903 * and try again.
1904 */
1905
1906 switch (type) {
1907 case RB_PAGE_HEAD:
1908 /*
1909 * We changed the head to UPDATE, thus
1910 * it is our responsibility to update
1911 * the counters.
1912 */
1913 local_add(entries, &cpu_buffer->overrun);
c64e148a 1914 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1915
1916 /*
1917 * The entries will be zeroed out when we move the
1918 * tail page.
1919 */
1920
1921 /* still more to do */
1922 break;
1923
1924 case RB_PAGE_UPDATE:
1925 /*
1926 * This is an interrupt that interrupt the
1927 * previous update. Still more to do.
1928 */
1929 break;
1930 case RB_PAGE_NORMAL:
1931 /*
1932 * An interrupt came in before the update
1933 * and processed this for us.
1934 * Nothing left to do.
1935 */
1936 return 1;
1937 case RB_PAGE_MOVED:
1938 /*
1939 * The reader is on another CPU and just did
1940 * a swap with our next_page.
1941 * Try again.
1942 */
1943 return 1;
1944 default:
1945 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1946 return -1;
1947 }
1948
1949 /*
1950 * Now that we are here, the old head pointer is
1951 * set to UPDATE. This will keep the reader from
1952 * swapping the head page with the reader page.
1953 * The reader (on another CPU) will spin till
1954 * we are finished.
1955 *
1956 * We just need to protect against interrupts
1957 * doing the job. We will set the next pointer
1958 * to HEAD. After that, we set the old pointer
1959 * to NORMAL, but only if it was HEAD before.
1960 * otherwise we are an interrupt, and only
1961 * want the outer most commit to reset it.
1962 */
1963 new_head = next_page;
1964 rb_inc_page(cpu_buffer, &new_head);
1965
1966 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1967 RB_PAGE_NORMAL);
1968
1969 /*
1970 * Valid returns are:
1971 * HEAD - an interrupt came in and already set it.
1972 * NORMAL - One of two things:
1973 * 1) We really set it.
1974 * 2) A bunch of interrupts came in and moved
1975 * the page forward again.
1976 */
1977 switch (ret) {
1978 case RB_PAGE_HEAD:
1979 case RB_PAGE_NORMAL:
1980 /* OK */
1981 break;
1982 default:
1983 RB_WARN_ON(cpu_buffer, 1);
1984 return -1;
1985 }
1986
1987 /*
1988 * It is possible that an interrupt came in,
1989 * set the head up, then more interrupts came in
1990 * and moved it again. When we get back here,
1991 * the page would have been set to NORMAL but we
1992 * just set it back to HEAD.
1993 *
1994 * How do you detect this? Well, if that happened
1995 * the tail page would have moved.
1996 */
1997 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
1998 struct buffer_page *buffer_tail_page;
1999
2000 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2001 /*
2002 * If the tail had moved passed next, then we need
2003 * to reset the pointer.
2004 */
8573636e
SRRH
2005 if (buffer_tail_page != tail_page &&
2006 buffer_tail_page != next_page)
77ae365e
SR
2007 rb_head_page_set_normal(cpu_buffer, new_head,
2008 next_page,
2009 RB_PAGE_HEAD);
2010 }
2011
2012 /*
2013 * If this was the outer most commit (the one that
2014 * changed the original pointer from HEAD to UPDATE),
2015 * then it is up to us to reset it to NORMAL.
2016 */
2017 if (type == RB_PAGE_HEAD) {
2018 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2019 tail_page,
2020 RB_PAGE_UPDATE);
2021 if (RB_WARN_ON(cpu_buffer,
2022 ret != RB_PAGE_UPDATE))
2023 return -1;
2024 }
2025
2026 return 0;
2027}
2028
c7b09308
SR
2029static inline void
2030rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2031 unsigned long tail, struct rb_event_info *info)
c7b09308 2032{
fcc742ea 2033 struct buffer_page *tail_page = info->tail_page;
c7b09308 2034 struct ring_buffer_event *event;
fcc742ea 2035 unsigned long length = info->length;
c7b09308
SR
2036
2037 /*
2038 * Only the event that crossed the page boundary
2039 * must fill the old tail_page with padding.
2040 */
2041 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2042 /*
2043 * If the page was filled, then we still need
2044 * to update the real_end. Reset it to zero
2045 * and the reader will ignore it.
2046 */
2047 if (tail == BUF_PAGE_SIZE)
2048 tail_page->real_end = 0;
2049
c7b09308
SR
2050 local_sub(length, &tail_page->write);
2051 return;
2052 }
2053
2054 event = __rb_page_index(tail_page, tail);
2055
c64e148a
VN
2056 /* account for padding bytes */
2057 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2058
ff0ff84a
SR
2059 /*
2060 * Save the original length to the meta data.
2061 * This will be used by the reader to add lost event
2062 * counter.
2063 */
2064 tail_page->real_end = tail;
2065
c7b09308
SR
2066 /*
2067 * If this event is bigger than the minimum size, then
2068 * we need to be careful that we don't subtract the
2069 * write counter enough to allow another writer to slip
2070 * in on this page.
2071 * We put in a discarded commit instead, to make sure
2072 * that this space is not used again.
2073 *
2074 * If we are less than the minimum size, we don't need to
2075 * worry about it.
2076 */
2077 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2078 /* No room for any events */
2079
2080 /* Mark the rest of the page with padding */
2081 rb_event_set_padding(event);
2082
2083 /* Set the write back to the previous setting */
2084 local_sub(length, &tail_page->write);
2085 return;
2086 }
2087
2088 /* Put in a discarded event */
2089 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2090 event->type_len = RINGBUF_TYPE_PADDING;
2091 /* time delta must be non zero */
2092 event->time_delta = 1;
c7b09308
SR
2093
2094 /* Set write to end of buffer */
2095 length = (tail + length) - BUF_PAGE_SIZE;
2096 local_sub(length, &tail_page->write);
2097}
6634ff26 2098
4239c38f
SRRH
2099static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2100
747e94ae
SR
2101/*
2102 * This is the slow path, force gcc not to inline it.
2103 */
2104static noinline struct ring_buffer_event *
6634ff26 2105rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2106 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2107{
fcc742ea 2108 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2109 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2110 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2111 struct buffer_page *next_page;
2112 int ret;
aa20ae84
SR
2113
2114 next_page = tail_page;
2115
aa20ae84
SR
2116 rb_inc_page(cpu_buffer, &next_page);
2117
aa20ae84
SR
2118 /*
2119 * If for some reason, we had an interrupt storm that made
2120 * it all the way around the buffer, bail, and warn
2121 * about it.
2122 */
2123 if (unlikely(next_page == commit_page)) {
77ae365e 2124 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2125 goto out_reset;
2126 }
2127
77ae365e
SR
2128 /*
2129 * This is where the fun begins!
2130 *
2131 * We are fighting against races between a reader that
2132 * could be on another CPU trying to swap its reader
2133 * page with the buffer head.
2134 *
2135 * We are also fighting against interrupts coming in and
2136 * moving the head or tail on us as well.
2137 *
2138 * If the next page is the head page then we have filled
2139 * the buffer, unless the commit page is still on the
2140 * reader page.
2141 */
2142 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2143
77ae365e
SR
2144 /*
2145 * If the commit is not on the reader page, then
2146 * move the header page.
2147 */
2148 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2149 /*
2150 * If we are not in overwrite mode,
2151 * this is easy, just stop here.
2152 */
884bfe89
SP
2153 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2154 local_inc(&cpu_buffer->dropped_events);
77ae365e 2155 goto out_reset;
884bfe89 2156 }
77ae365e
SR
2157
2158 ret = rb_handle_head_page(cpu_buffer,
2159 tail_page,
2160 next_page);
2161 if (ret < 0)
2162 goto out_reset;
2163 if (ret)
2164 goto out_again;
2165 } else {
2166 /*
2167 * We need to be careful here too. The
2168 * commit page could still be on the reader
2169 * page. We could have a small buffer, and
2170 * have filled up the buffer with events
2171 * from interrupts and such, and wrapped.
2172 *
2173 * Note, if the tail page is also the on the
2174 * reader_page, we let it move out.
2175 */
2176 if (unlikely((cpu_buffer->commit_page !=
2177 cpu_buffer->tail_page) &&
2178 (cpu_buffer->commit_page ==
2179 cpu_buffer->reader_page))) {
2180 local_inc(&cpu_buffer->commit_overrun);
2181 goto out_reset;
2182 }
aa20ae84
SR
2183 }
2184 }
2185
70004986 2186 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2187
77ae365e 2188 out_again:
aa20ae84 2189
fcc742ea 2190 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2191
4239c38f
SRRH
2192 /* Commit what we have for now. */
2193 rb_end_commit(cpu_buffer);
2194 /* rb_end_commit() decs committing */
2195 local_inc(&cpu_buffer->committing);
2196
aa20ae84
SR
2197 /* fail and let the caller try again */
2198 return ERR_PTR(-EAGAIN);
2199
45141d46 2200 out_reset:
6f3b3440 2201 /* reset write */
fcc742ea 2202 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2203
bf41a158 2204 return NULL;
7a8e76a3
SR
2205}
2206
d90fd774
SRRH
2207/* Slow path, do not inline */
2208static noinline struct ring_buffer_event *
2209rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2210{
d90fd774 2211 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2212
d90fd774
SRRH
2213 /* Not the first event on the page? */
2214 if (rb_event_index(event)) {
2215 event->time_delta = delta & TS_MASK;
2216 event->array[0] = delta >> TS_SHIFT;
2217 } else {
2218 /* nope, just zero it */
2219 event->time_delta = 0;
2220 event->array[0] = 0;
2221 }
a4543a2f 2222
d90fd774
SRRH
2223 return skip_time_extend(event);
2224}
a4543a2f 2225
cdb2a0a9 2226static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2227 struct ring_buffer_event *event);
2228
d90fd774
SRRH
2229/**
2230 * rb_update_event - update event type and data
2231 * @event: the event to update
2232 * @type: the type of event
2233 * @length: the size of the event field in the ring buffer
2234 *
2235 * Update the type and data fields of the event. The length
2236 * is the actual size that is written to the ring buffer,
2237 * and with this, we can determine what to place into the
2238 * data field.
2239 */
b7dc42fd 2240static void
d90fd774
SRRH
2241rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2242 struct ring_buffer_event *event,
2243 struct rb_event_info *info)
2244{
2245 unsigned length = info->length;
2246 u64 delta = info->delta;
a4543a2f 2247
b7dc42fd
SRRH
2248 /* Only a commit updates the timestamp */
2249 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2250 delta = 0;
2251
a4543a2f 2252 /*
d90fd774
SRRH
2253 * If we need to add a timestamp, then we
2254 * add it to the start of the resevered space.
a4543a2f 2255 */
d90fd774
SRRH
2256 if (unlikely(info->add_timestamp)) {
2257 event = rb_add_time_stamp(event, delta);
2258 length -= RB_LEN_TIME_EXTEND;
2259 delta = 0;
a4543a2f
SRRH
2260 }
2261
d90fd774
SRRH
2262 event->time_delta = delta;
2263 length -= RB_EVNT_HDR_SIZE;
2264 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2265 event->type_len = 0;
2266 event->array[0] = length;
2267 } else
2268 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2269}
2270
2271static unsigned rb_calculate_event_length(unsigned length)
2272{
2273 struct ring_buffer_event event; /* Used only for sizeof array */
2274
2275 /* zero length can cause confusions */
2276 if (!length)
2277 length++;
2278
2279 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2280 length += sizeof(event.array[0]);
2281
2282 length += RB_EVNT_HDR_SIZE;
2283 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2284
2285 /*
2286 * In case the time delta is larger than the 27 bits for it
2287 * in the header, we need to add a timestamp. If another
2288 * event comes in when trying to discard this one to increase
2289 * the length, then the timestamp will be added in the allocated
2290 * space of this event. If length is bigger than the size needed
2291 * for the TIME_EXTEND, then padding has to be used. The events
2292 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2293 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2294 * As length is a multiple of 4, we only need to worry if it
2295 * is 12 (RB_LEN_TIME_EXTEND + 4).
2296 */
2297 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2298 length += RB_ALIGNMENT;
2299
2300 return length;
2301}
2302
2303#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2304static inline bool sched_clock_stable(void)
2305{
2306 return true;
2307}
2308#endif
2309
2310static inline int
2311rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2312 struct ring_buffer_event *event)
2313{
2314 unsigned long new_index, old_index;
2315 struct buffer_page *bpage;
2316 unsigned long index;
2317 unsigned long addr;
2318
2319 new_index = rb_event_index(event);
2320 old_index = new_index + rb_event_ts_length(event);
2321 addr = (unsigned long)event;
2322 addr &= PAGE_MASK;
2323
8573636e 2324 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2325
2326 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2327 unsigned long write_mask =
2328 local_read(&bpage->write) & ~RB_WRITE_MASK;
2329 unsigned long event_length = rb_event_length(event);
2330 /*
2331 * This is on the tail page. It is possible that
2332 * a write could come in and move the tail page
2333 * and write to the next page. That is fine
2334 * because we just shorten what is on this page.
2335 */
2336 old_index += write_mask;
2337 new_index += write_mask;
2338 index = local_cmpxchg(&bpage->write, old_index, new_index);
2339 if (index == old_index) {
2340 /* update counters */
2341 local_sub(event_length, &cpu_buffer->entries_bytes);
2342 return 1;
2343 }
2344 }
2345
2346 /* could not discard */
2347 return 0;
2348}
2349
2350static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2351{
2352 local_inc(&cpu_buffer->committing);
2353 local_inc(&cpu_buffer->commits);
2354}
2355
38e11df1 2356static __always_inline void
d90fd774
SRRH
2357rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2358{
2359 unsigned long max_count;
2360
2361 /*
2362 * We only race with interrupts and NMIs on this CPU.
2363 * If we own the commit event, then we can commit
2364 * all others that interrupted us, since the interruptions
2365 * are in stack format (they finish before they come
2366 * back to us). This allows us to do a simple loop to
2367 * assign the commit to the tail.
2368 */
2369 again:
2370 max_count = cpu_buffer->nr_pages * 100;
2371
8573636e 2372 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2373 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2374 return;
2375 if (RB_WARN_ON(cpu_buffer,
2376 rb_is_reader_page(cpu_buffer->tail_page)))
2377 return;
2378 local_set(&cpu_buffer->commit_page->page->commit,
2379 rb_page_write(cpu_buffer->commit_page));
2380 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
70004986
SRRH
2381 /* Only update the write stamp if the page has an event */
2382 if (rb_page_write(cpu_buffer->commit_page))
2383 cpu_buffer->write_stamp =
2384 cpu_buffer->commit_page->page->time_stamp;
d90fd774
SRRH
2385 /* add barrier to keep gcc from optimizing too much */
2386 barrier();
2387 }
2388 while (rb_commit_index(cpu_buffer) !=
2389 rb_page_write(cpu_buffer->commit_page)) {
2390
2391 local_set(&cpu_buffer->commit_page->page->commit,
2392 rb_page_write(cpu_buffer->commit_page));
2393 RB_WARN_ON(cpu_buffer,
2394 local_read(&cpu_buffer->commit_page->page->commit) &
2395 ~RB_WRITE_MASK);
2396 barrier();
2397 }
2398
2399 /* again, keep gcc from optimizing */
2400 barrier();
2401
2402 /*
2403 * If an interrupt came in just after the first while loop
2404 * and pushed the tail page forward, we will be left with
2405 * a dangling commit that will never go forward.
2406 */
8573636e 2407 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2408 goto again;
2409}
2410
38e11df1 2411static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2412{
2413 unsigned long commits;
2414
2415 if (RB_WARN_ON(cpu_buffer,
2416 !local_read(&cpu_buffer->committing)))
2417 return;
2418
2419 again:
2420 commits = local_read(&cpu_buffer->commits);
2421 /* synchronize with interrupts */
2422 barrier();
2423 if (local_read(&cpu_buffer->committing) == 1)
2424 rb_set_commit_to_write(cpu_buffer);
2425
2426 local_dec(&cpu_buffer->committing);
2427
2428 /* synchronize with interrupts */
2429 barrier();
2430
2431 /*
2432 * Need to account for interrupts coming in between the
2433 * updating of the commit page and the clearing of the
2434 * committing counter.
2435 */
2436 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2437 !local_read(&cpu_buffer->committing)) {
2438 local_inc(&cpu_buffer->committing);
2439 goto again;
2440 }
2441}
2442
2443static inline void rb_event_discard(struct ring_buffer_event *event)
2444{
2445 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2446 event = skip_time_extend(event);
2447
2448 /* array[0] holds the actual length for the discarded event */
2449 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2450 event->type_len = RINGBUF_TYPE_PADDING;
2451 /* time delta must be non zero */
2452 if (!event->time_delta)
2453 event->time_delta = 1;
2454}
2455
babe3fce 2456static __always_inline bool
d90fd774
SRRH
2457rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2458 struct ring_buffer_event *event)
2459{
2460 unsigned long addr = (unsigned long)event;
2461 unsigned long index;
2462
2463 index = rb_event_index(event);
2464 addr &= PAGE_MASK;
2465
2466 return cpu_buffer->commit_page->page == (void *)addr &&
2467 rb_commit_index(cpu_buffer) == index;
2468}
2469
babe3fce 2470static __always_inline void
d90fd774
SRRH
2471rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2472 struct ring_buffer_event *event)
2473{
2474 u64 delta;
2475
2476 /*
2477 * The event first in the commit queue updates the
2478 * time stamp.
2479 */
2480 if (rb_event_is_commit(cpu_buffer, event)) {
2481 /*
2482 * A commit event that is first on a page
2483 * updates the write timestamp with the page stamp
2484 */
2485 if (!rb_event_index(event))
2486 cpu_buffer->write_stamp =
2487 cpu_buffer->commit_page->page->time_stamp;
2488 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2489 delta = event->array[0];
2490 delta <<= TS_SHIFT;
2491 delta += event->time_delta;
2492 cpu_buffer->write_stamp += delta;
2493 } else
2494 cpu_buffer->write_stamp += event->time_delta;
2495 }
2496}
2497
2498static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2499 struct ring_buffer_event *event)
2500{
2501 local_inc(&cpu_buffer->entries);
2502 rb_update_write_stamp(cpu_buffer, event);
2503 rb_end_commit(cpu_buffer);
2504}
2505
2506static __always_inline void
2507rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2508{
2509 bool pagebusy;
2510
2511 if (buffer->irq_work.waiters_pending) {
2512 buffer->irq_work.waiters_pending = false;
2513 /* irq_work_queue() supplies it's own memory barriers */
2514 irq_work_queue(&buffer->irq_work.work);
2515 }
2516
2517 if (cpu_buffer->irq_work.waiters_pending) {
2518 cpu_buffer->irq_work.waiters_pending = false;
2519 /* irq_work_queue() supplies it's own memory barriers */
2520 irq_work_queue(&cpu_buffer->irq_work.work);
2521 }
2522
2523 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2524
2525 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2526 cpu_buffer->irq_work.wakeup_full = true;
2527 cpu_buffer->irq_work.full_waiters_pending = false;
2528 /* irq_work_queue() supplies it's own memory barriers */
2529 irq_work_queue(&cpu_buffer->irq_work.work);
2530 }
2531}
2532
2533/*
2534 * The lock and unlock are done within a preempt disable section.
2535 * The current_context per_cpu variable can only be modified
2536 * by the current task between lock and unlock. But it can
1a149d7d
SRV
2537 * be modified more than once via an interrupt. There are four
2538 * different contexts that we need to consider.
d90fd774 2539 *
1a149d7d
SRV
2540 * Normal context.
2541 * SoftIRQ context
2542 * IRQ context
2543 * NMI context
d90fd774 2544 *
1a149d7d
SRV
2545 * If for some reason the ring buffer starts to recurse, we
2546 * only allow that to happen at most 4 times (one for each
2547 * context). If it happens 5 times, then we consider this a
2548 * recusive loop and do not let it go further.
d90fd774
SRRH
2549 */
2550
2551static __always_inline int
2552trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2553{
1a149d7d 2554 if (cpu_buffer->current_context >= 4)
d90fd774
SRRH
2555 return 1;
2556
1a149d7d
SRV
2557 cpu_buffer->current_context++;
2558 /* Interrupts must see this update */
2559 barrier();
d90fd774
SRRH
2560
2561 return 0;
2562}
2563
2564static __always_inline void
2565trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2566{
1a149d7d
SRV
2567 /* Don't let the dec leak out */
2568 barrier();
2569 cpu_buffer->current_context--;
d90fd774
SRRH
2570}
2571
2572/**
2573 * ring_buffer_unlock_commit - commit a reserved
2574 * @buffer: The buffer to commit to
2575 * @event: The event pointer to commit.
2576 *
2577 * This commits the data to the ring buffer, and releases any locks held.
2578 *
2579 * Must be paired with ring_buffer_lock_reserve.
2580 */
2581int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2582 struct ring_buffer_event *event)
2583{
2584 struct ring_buffer_per_cpu *cpu_buffer;
2585 int cpu = raw_smp_processor_id();
2586
2587 cpu_buffer = buffer->buffers[cpu];
2588
2589 rb_commit(cpu_buffer, event);
2590
2591 rb_wakeups(buffer, cpu_buffer);
2592
2593 trace_recursive_unlock(cpu_buffer);
2594
2595 preempt_enable_notrace();
2596
2597 return 0;
2598}
2599EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2600
2601static noinline void
2602rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2603 struct rb_event_info *info)
2604{
d90fd774
SRRH
2605 WARN_ONCE(info->delta > (1ULL << 59),
2606 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2607 (unsigned long long)info->delta,
2608 (unsigned long long)info->ts,
2609 (unsigned long long)cpu_buffer->write_stamp,
2610 sched_clock_stable() ? "" :
2611 "If you just came from a suspend/resume,\n"
2612 "please switch to the trace global clock:\n"
2613 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
b7dc42fd 2614 info->add_timestamp = 1;
9826b273
SRRH
2615}
2616
6634ff26
SR
2617static struct ring_buffer_event *
2618__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2619 struct rb_event_info *info)
6634ff26 2620{
6634ff26 2621 struct ring_buffer_event *event;
fcc742ea 2622 struct buffer_page *tail_page;
6634ff26 2623 unsigned long tail, write;
b7dc42fd
SRRH
2624
2625 /*
2626 * If the time delta since the last event is too big to
2627 * hold in the time field of the event, then we append a
2628 * TIME EXTEND event ahead of the data event.
2629 */
2630 if (unlikely(info->add_timestamp))
2631 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2632
8573636e
SRRH
2633 /* Don't let the compiler play games with cpu_buffer->tail_page */
2634 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2635 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2636
2637 /* set write to only the index of the write */
2638 write &= RB_WRITE_MASK;
fcc742ea 2639 tail = write - info->length;
6634ff26 2640
6634ff26 2641 /*
a4543a2f 2642 * If this is the first commit on the page, then it has the same
b7dc42fd 2643 * timestamp as the page itself.
6634ff26 2644 */
b7dc42fd 2645 if (!tail)
a4543a2f
SRRH
2646 info->delta = 0;
2647
b7dc42fd
SRRH
2648 /* See if we shot pass the end of this buffer page */
2649 if (unlikely(write > BUF_PAGE_SIZE))
2650 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2651
b7dc42fd
SRRH
2652 /* We reserved something on the buffer */
2653
2654 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2655 rb_update_event(cpu_buffer, event, info);
2656
2657 local_inc(&tail_page->entries);
6634ff26 2658
b7dc42fd
SRRH
2659 /*
2660 * If this is the first commit on the page, then update
2661 * its timestamp.
2662 */
2663 if (!tail)
2664 tail_page->page->time_stamp = info->ts;
2665
c64e148a 2666 /* account for these added bytes */
fcc742ea 2667 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2668
6634ff26
SR
2669 return event;
2670}
2671
fa7ffb39 2672static __always_inline struct ring_buffer_event *
62f0b3eb
SR
2673rb_reserve_next_event(struct ring_buffer *buffer,
2674 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2675 unsigned long length)
7a8e76a3
SR
2676{
2677 struct ring_buffer_event *event;
fcc742ea 2678 struct rb_event_info info;
818e3dd3 2679 int nr_loops = 0;
b7dc42fd 2680 u64 diff;
7a8e76a3 2681
fa743953
SR
2682 rb_start_commit(cpu_buffer);
2683
85bac32c 2684#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2685 /*
2686 * Due to the ability to swap a cpu buffer from a buffer
2687 * it is possible it was swapped before we committed.
2688 * (committing stops a swap). We check for it here and
2689 * if it happened, we have to fail the write.
2690 */
2691 barrier();
6aa7de05 2692 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
62f0b3eb
SR
2693 local_dec(&cpu_buffer->committing);
2694 local_dec(&cpu_buffer->commits);
2695 return NULL;
2696 }
85bac32c 2697#endif
b7dc42fd 2698
fcc742ea 2699 info.length = rb_calculate_event_length(length);
a4543a2f 2700 again:
b7dc42fd
SRRH
2701 info.add_timestamp = 0;
2702 info.delta = 0;
2703
818e3dd3
SR
2704 /*
2705 * We allow for interrupts to reenter here and do a trace.
2706 * If one does, it will cause this original code to loop
2707 * back here. Even with heavy interrupts happening, this
2708 * should only happen a few times in a row. If this happens
2709 * 1000 times in a row, there must be either an interrupt
2710 * storm or we have something buggy.
2711 * Bail!
2712 */
3e89c7bb 2713 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2714 goto out_fail;
818e3dd3 2715
b7dc42fd
SRRH
2716 info.ts = rb_time_stamp(cpu_buffer->buffer);
2717 diff = info.ts - cpu_buffer->write_stamp;
2718
2719 /* make sure this diff is calculated here */
2720 barrier();
2721
2722 /* Did the write stamp get updated already? */
2723 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2724 info.delta = diff;
2725 if (unlikely(test_time_stamp(info.delta)))
2726 rb_handle_timestamp(cpu_buffer, &info);
2727 }
2728
fcc742ea
SRRH
2729 event = __rb_reserve_next(cpu_buffer, &info);
2730
bd1b7cd3
SRRH
2731 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2732 if (info.add_timestamp)
2733 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2734 goto again;
bd1b7cd3 2735 }
bf41a158 2736
fa743953
SR
2737 if (!event)
2738 goto out_fail;
7a8e76a3 2739
7a8e76a3 2740 return event;
fa743953
SR
2741
2742 out_fail:
2743 rb_end_commit(cpu_buffer);
2744 return NULL;
7a8e76a3
SR
2745}
2746
2747/**
2748 * ring_buffer_lock_reserve - reserve a part of the buffer
2749 * @buffer: the ring buffer to reserve from
2750 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2751 *
2752 * Returns a reseverd event on the ring buffer to copy directly to.
2753 * The user of this interface will need to get the body to write into
2754 * and can use the ring_buffer_event_data() interface.
2755 *
2756 * The length is the length of the data needed, not the event length
2757 * which also includes the event header.
2758 *
2759 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2760 * If NULL is returned, then nothing has been allocated or locked.
2761 */
2762struct ring_buffer_event *
0a987751 2763ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2764{
2765 struct ring_buffer_per_cpu *cpu_buffer;
2766 struct ring_buffer_event *event;
5168ae50 2767 int cpu;
7a8e76a3 2768
bf41a158 2769 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2770 preempt_disable_notrace();
bf41a158 2771
3205f806 2772 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2773 goto out;
261842b7 2774
7a8e76a3
SR
2775 cpu = raw_smp_processor_id();
2776
3205f806 2777 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2778 goto out;
7a8e76a3
SR
2779
2780 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2781
3205f806 2782 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2783 goto out;
7a8e76a3 2784
3205f806 2785 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2786 goto out;
7a8e76a3 2787
58a09ec6
SRRH
2788 if (unlikely(trace_recursive_lock(cpu_buffer)))
2789 goto out;
2790
62f0b3eb 2791 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2792 if (!event)
58a09ec6 2793 goto out_unlock;
7a8e76a3
SR
2794
2795 return event;
2796
58a09ec6
SRRH
2797 out_unlock:
2798 trace_recursive_unlock(cpu_buffer);
d769041f 2799 out:
5168ae50 2800 preempt_enable_notrace();
7a8e76a3
SR
2801 return NULL;
2802}
c4f50183 2803EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2804
a1863c21
SR
2805/*
2806 * Decrement the entries to the page that an event is on.
2807 * The event does not even need to exist, only the pointer
2808 * to the page it is on. This may only be called before the commit
2809 * takes place.
2810 */
2811static inline void
2812rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2813 struct ring_buffer_event *event)
2814{
2815 unsigned long addr = (unsigned long)event;
2816 struct buffer_page *bpage = cpu_buffer->commit_page;
2817 struct buffer_page *start;
2818
2819 addr &= PAGE_MASK;
2820
2821 /* Do the likely case first */
2822 if (likely(bpage->page == (void *)addr)) {
2823 local_dec(&bpage->entries);
2824 return;
2825 }
2826
2827 /*
2828 * Because the commit page may be on the reader page we
2829 * start with the next page and check the end loop there.
2830 */
2831 rb_inc_page(cpu_buffer, &bpage);
2832 start = bpage;
2833 do {
2834 if (bpage->page == (void *)addr) {
2835 local_dec(&bpage->entries);
2836 return;
2837 }
2838 rb_inc_page(cpu_buffer, &bpage);
2839 } while (bpage != start);
2840
2841 /* commit not part of this buffer?? */
2842 RB_WARN_ON(cpu_buffer, 1);
2843}
2844
fa1b47dd
SR
2845/**
2846 * ring_buffer_commit_discard - discard an event that has not been committed
2847 * @buffer: the ring buffer
2848 * @event: non committed event to discard
2849 *
dc892f73
SR
2850 * Sometimes an event that is in the ring buffer needs to be ignored.
2851 * This function lets the user discard an event in the ring buffer
2852 * and then that event will not be read later.
2853 *
2854 * This function only works if it is called before the the item has been
2855 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2856 * if another event has not been added behind it.
2857 *
2858 * If another event has been added behind it, it will set the event
2859 * up as discarded, and perform the commit.
2860 *
2861 * If this function is called, do not call ring_buffer_unlock_commit on
2862 * the event.
2863 */
2864void ring_buffer_discard_commit(struct ring_buffer *buffer,
2865 struct ring_buffer_event *event)
2866{
2867 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2868 int cpu;
2869
2870 /* The event is discarded regardless */
f3b9aae1 2871 rb_event_discard(event);
fa1b47dd 2872
fa743953
SR
2873 cpu = smp_processor_id();
2874 cpu_buffer = buffer->buffers[cpu];
2875
fa1b47dd
SR
2876 /*
2877 * This must only be called if the event has not been
2878 * committed yet. Thus we can assume that preemption
2879 * is still disabled.
2880 */
fa743953 2881 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2882
a1863c21 2883 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2884 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2885 goto out;
fa1b47dd
SR
2886
2887 /*
2888 * The commit is still visible by the reader, so we
a1863c21 2889 * must still update the timestamp.
fa1b47dd 2890 */
a1863c21 2891 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2892 out:
fa743953 2893 rb_end_commit(cpu_buffer);
fa1b47dd 2894
58a09ec6 2895 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2896
5168ae50 2897 preempt_enable_notrace();
fa1b47dd
SR
2898
2899}
2900EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2901
7a8e76a3
SR
2902/**
2903 * ring_buffer_write - write data to the buffer without reserving
2904 * @buffer: The ring buffer to write to.
2905 * @length: The length of the data being written (excluding the event header)
2906 * @data: The data to write to the buffer.
2907 *
2908 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2909 * one function. If you already have the data to write to the buffer, it
2910 * may be easier to simply call this function.
2911 *
2912 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2913 * and not the length of the event which would hold the header.
2914 */
2915int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2916 unsigned long length,
2917 void *data)
7a8e76a3
SR
2918{
2919 struct ring_buffer_per_cpu *cpu_buffer;
2920 struct ring_buffer_event *event;
7a8e76a3
SR
2921 void *body;
2922 int ret = -EBUSY;
5168ae50 2923 int cpu;
7a8e76a3 2924
5168ae50 2925 preempt_disable_notrace();
bf41a158 2926
52fbe9cd
LJ
2927 if (atomic_read(&buffer->record_disabled))
2928 goto out;
2929
7a8e76a3
SR
2930 cpu = raw_smp_processor_id();
2931
9e01c1b7 2932 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2933 goto out;
7a8e76a3
SR
2934
2935 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2936
2937 if (atomic_read(&cpu_buffer->record_disabled))
2938 goto out;
2939
be957c44
SR
2940 if (length > BUF_MAX_DATA_SIZE)
2941 goto out;
2942
985e871b
SRRH
2943 if (unlikely(trace_recursive_lock(cpu_buffer)))
2944 goto out;
2945
62f0b3eb 2946 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2947 if (!event)
985e871b 2948 goto out_unlock;
7a8e76a3
SR
2949
2950 body = rb_event_data(event);
2951
2952 memcpy(body, data, length);
2953
2954 rb_commit(cpu_buffer, event);
2955
15693458
SRRH
2956 rb_wakeups(buffer, cpu_buffer);
2957
7a8e76a3 2958 ret = 0;
985e871b
SRRH
2959
2960 out_unlock:
2961 trace_recursive_unlock(cpu_buffer);
2962
7a8e76a3 2963 out:
5168ae50 2964 preempt_enable_notrace();
7a8e76a3
SR
2965
2966 return ret;
2967}
c4f50183 2968EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2969
da58834c 2970static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2971{
2972 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2973 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2974 struct buffer_page *commit = cpu_buffer->commit_page;
2975
77ae365e
SR
2976 /* In case of error, head will be NULL */
2977 if (unlikely(!head))
da58834c 2978 return true;
77ae365e 2979
bf41a158
SR
2980 return reader->read == rb_page_commit(reader) &&
2981 (commit == reader ||
2982 (commit == head &&
2983 head->read == rb_page_commit(commit)));
2984}
2985
7a8e76a3
SR
2986/**
2987 * ring_buffer_record_disable - stop all writes into the buffer
2988 * @buffer: The ring buffer to stop writes to.
2989 *
2990 * This prevents all writes to the buffer. Any attempt to write
2991 * to the buffer after this will fail and return NULL.
2992 *
2993 * The caller should call synchronize_sched() after this.
2994 */
2995void ring_buffer_record_disable(struct ring_buffer *buffer)
2996{
2997 atomic_inc(&buffer->record_disabled);
2998}
c4f50183 2999EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3000
3001/**
3002 * ring_buffer_record_enable - enable writes to the buffer
3003 * @buffer: The ring buffer to enable writes
3004 *
3005 * Note, multiple disables will need the same number of enables
c41b20e7 3006 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3007 */
3008void ring_buffer_record_enable(struct ring_buffer *buffer)
3009{
3010 atomic_dec(&buffer->record_disabled);
3011}
c4f50183 3012EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3013
499e5470
SR
3014/**
3015 * ring_buffer_record_off - stop all writes into the buffer
3016 * @buffer: The ring buffer to stop writes to.
3017 *
3018 * This prevents all writes to the buffer. Any attempt to write
3019 * to the buffer after this will fail and return NULL.
3020 *
3021 * This is different than ring_buffer_record_disable() as
87abb3b1 3022 * it works like an on/off switch, where as the disable() version
499e5470
SR
3023 * must be paired with a enable().
3024 */
3025void ring_buffer_record_off(struct ring_buffer *buffer)
3026{
3027 unsigned int rd;
3028 unsigned int new_rd;
3029
3030 do {
3031 rd = atomic_read(&buffer->record_disabled);
3032 new_rd = rd | RB_BUFFER_OFF;
3033 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3034}
3035EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3036
3037/**
3038 * ring_buffer_record_on - restart writes into the buffer
3039 * @buffer: The ring buffer to start writes to.
3040 *
3041 * This enables all writes to the buffer that was disabled by
3042 * ring_buffer_record_off().
3043 *
3044 * This is different than ring_buffer_record_enable() as
87abb3b1 3045 * it works like an on/off switch, where as the enable() version
499e5470
SR
3046 * must be paired with a disable().
3047 */
3048void ring_buffer_record_on(struct ring_buffer *buffer)
3049{
3050 unsigned int rd;
3051 unsigned int new_rd;
3052
3053 do {
3054 rd = atomic_read(&buffer->record_disabled);
3055 new_rd = rd & ~RB_BUFFER_OFF;
3056 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3057}
3058EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3059
3060/**
3061 * ring_buffer_record_is_on - return true if the ring buffer can write
3062 * @buffer: The ring buffer to see if write is enabled
3063 *
3064 * Returns true if the ring buffer is in a state that it accepts writes.
3065 */
3066int ring_buffer_record_is_on(struct ring_buffer *buffer)
3067{
3068 return !atomic_read(&buffer->record_disabled);
3069}
3070
7a8e76a3
SR
3071/**
3072 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3073 * @buffer: The ring buffer to stop writes to.
3074 * @cpu: The CPU buffer to stop
3075 *
3076 * This prevents all writes to the buffer. Any attempt to write
3077 * to the buffer after this will fail and return NULL.
3078 *
3079 * The caller should call synchronize_sched() after this.
3080 */
3081void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3082{
3083 struct ring_buffer_per_cpu *cpu_buffer;
3084
9e01c1b7 3085 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3086 return;
7a8e76a3
SR
3087
3088 cpu_buffer = buffer->buffers[cpu];
3089 atomic_inc(&cpu_buffer->record_disabled);
3090}
c4f50183 3091EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3092
3093/**
3094 * ring_buffer_record_enable_cpu - enable writes to the buffer
3095 * @buffer: The ring buffer to enable writes
3096 * @cpu: The CPU to enable.
3097 *
3098 * Note, multiple disables will need the same number of enables
c41b20e7 3099 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3100 */
3101void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3102{
3103 struct ring_buffer_per_cpu *cpu_buffer;
3104
9e01c1b7 3105 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3106 return;
7a8e76a3
SR
3107
3108 cpu_buffer = buffer->buffers[cpu];
3109 atomic_dec(&cpu_buffer->record_disabled);
3110}
c4f50183 3111EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3112
f6195aa0
SR
3113/*
3114 * The total entries in the ring buffer is the running counter
3115 * of entries entered into the ring buffer, minus the sum of
3116 * the entries read from the ring buffer and the number of
3117 * entries that were overwritten.
3118 */
3119static inline unsigned long
3120rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3121{
3122 return local_read(&cpu_buffer->entries) -
3123 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3124}
3125
c64e148a
VN
3126/**
3127 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3128 * @buffer: The ring buffer
3129 * @cpu: The per CPU buffer to read from.
3130 */
50ecf2c3 3131u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3132{
3133 unsigned long flags;
3134 struct ring_buffer_per_cpu *cpu_buffer;
3135 struct buffer_page *bpage;
da830e58 3136 u64 ret = 0;
c64e148a
VN
3137
3138 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139 return 0;
3140
3141 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3142 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3143 /*
3144 * if the tail is on reader_page, oldest time stamp is on the reader
3145 * page
3146 */
3147 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3148 bpage = cpu_buffer->reader_page;
3149 else
3150 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3151 if (bpage)
3152 ret = bpage->page->time_stamp;
7115e3fc 3153 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3154
3155 return ret;
3156}
3157EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3158
3159/**
3160 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3161 * @buffer: The ring buffer
3162 * @cpu: The per CPU buffer to read from.
3163 */
3164unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3165{
3166 struct ring_buffer_per_cpu *cpu_buffer;
3167 unsigned long ret;
3168
3169 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3170 return 0;
3171
3172 cpu_buffer = buffer->buffers[cpu];
3173 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3174
3175 return ret;
3176}
3177EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3178
7a8e76a3
SR
3179/**
3180 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3181 * @buffer: The ring buffer
3182 * @cpu: The per CPU buffer to get the entries from.
3183 */
3184unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3185{
3186 struct ring_buffer_per_cpu *cpu_buffer;
3187
9e01c1b7 3188 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3189 return 0;
7a8e76a3
SR
3190
3191 cpu_buffer = buffer->buffers[cpu];
554f786e 3192
f6195aa0 3193 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3194}
c4f50183 3195EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3196
3197/**
884bfe89
SP
3198 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3199 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3200 * @buffer: The ring buffer
3201 * @cpu: The per CPU buffer to get the number of overruns from
3202 */
3203unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3204{
3205 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3206 unsigned long ret;
7a8e76a3 3207
9e01c1b7 3208 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3209 return 0;
7a8e76a3
SR
3210
3211 cpu_buffer = buffer->buffers[cpu];
77ae365e 3212 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3213
3214 return ret;
7a8e76a3 3215}
c4f50183 3216EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3217
f0d2c681 3218/**
884bfe89
SP
3219 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3220 * commits failing due to the buffer wrapping around while there are uncommitted
3221 * events, such as during an interrupt storm.
f0d2c681
SR
3222 * @buffer: The ring buffer
3223 * @cpu: The per CPU buffer to get the number of overruns from
3224 */
3225unsigned long
3226ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3227{
3228 struct ring_buffer_per_cpu *cpu_buffer;
3229 unsigned long ret;
3230
3231 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3232 return 0;
3233
3234 cpu_buffer = buffer->buffers[cpu];
77ae365e 3235 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3236
3237 return ret;
3238}
3239EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3240
884bfe89
SP
3241/**
3242 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3243 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3244 * @buffer: The ring buffer
3245 * @cpu: The per CPU buffer to get the number of overruns from
3246 */
3247unsigned long
3248ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3249{
3250 struct ring_buffer_per_cpu *cpu_buffer;
3251 unsigned long ret;
3252
3253 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3254 return 0;
3255
3256 cpu_buffer = buffer->buffers[cpu];
3257 ret = local_read(&cpu_buffer->dropped_events);
3258
3259 return ret;
3260}
3261EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3262
ad964704
SRRH
3263/**
3264 * ring_buffer_read_events_cpu - get the number of events successfully read
3265 * @buffer: The ring buffer
3266 * @cpu: The per CPU buffer to get the number of events read
3267 */
3268unsigned long
3269ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3270{
3271 struct ring_buffer_per_cpu *cpu_buffer;
3272
3273 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3274 return 0;
3275
3276 cpu_buffer = buffer->buffers[cpu];
3277 return cpu_buffer->read;
3278}
3279EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3280
7a8e76a3
SR
3281/**
3282 * ring_buffer_entries - get the number of entries in a buffer
3283 * @buffer: The ring buffer
3284 *
3285 * Returns the total number of entries in the ring buffer
3286 * (all CPU entries)
3287 */
3288unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3289{
3290 struct ring_buffer_per_cpu *cpu_buffer;
3291 unsigned long entries = 0;
3292 int cpu;
3293
3294 /* if you care about this being correct, lock the buffer */
3295 for_each_buffer_cpu(buffer, cpu) {
3296 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3297 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3298 }
3299
3300 return entries;
3301}
c4f50183 3302EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3303
3304/**
67b394f7 3305 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3306 * @buffer: The ring buffer
3307 *
3308 * Returns the total number of overruns in the ring buffer
3309 * (all CPU entries)
3310 */
3311unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3312{
3313 struct ring_buffer_per_cpu *cpu_buffer;
3314 unsigned long overruns = 0;
3315 int cpu;
3316
3317 /* if you care about this being correct, lock the buffer */
3318 for_each_buffer_cpu(buffer, cpu) {
3319 cpu_buffer = buffer->buffers[cpu];
77ae365e 3320 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3321 }
3322
3323 return overruns;
3324}
c4f50183 3325EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3326
642edba5 3327static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3328{
3329 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3330
d769041f 3331 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3332 iter->head_page = cpu_buffer->reader_page;
3333 iter->head = cpu_buffer->reader_page->read;
3334
3335 iter->cache_reader_page = iter->head_page;
24607f11 3336 iter->cache_read = cpu_buffer->read;
651e22f2 3337
d769041f
SR
3338 if (iter->head)
3339 iter->read_stamp = cpu_buffer->read_stamp;
3340 else
abc9b56d 3341 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3342}
f83c9d0f 3343
642edba5
SR
3344/**
3345 * ring_buffer_iter_reset - reset an iterator
3346 * @iter: The iterator to reset
3347 *
3348 * Resets the iterator, so that it will start from the beginning
3349 * again.
3350 */
3351void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3352{
554f786e 3353 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3354 unsigned long flags;
3355
554f786e
SR
3356 if (!iter)
3357 return;
3358
3359 cpu_buffer = iter->cpu_buffer;
3360
5389f6fa 3361 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3362 rb_iter_reset(iter);
5389f6fa 3363 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3364}
c4f50183 3365EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3366
3367/**
3368 * ring_buffer_iter_empty - check if an iterator has no more to read
3369 * @iter: The iterator to check
3370 */
3371int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3372{
3373 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
3374 struct buffer_page *reader;
3375 struct buffer_page *head_page;
3376 struct buffer_page *commit_page;
3377 unsigned commit;
7a8e76a3
SR
3378
3379 cpu_buffer = iter->cpu_buffer;
3380
78f7a45d
SRV
3381 /* Remember, trace recording is off when iterator is in use */
3382 reader = cpu_buffer->reader_page;
3383 head_page = cpu_buffer->head_page;
3384 commit_page = cpu_buffer->commit_page;
3385 commit = rb_page_commit(commit_page);
3386
3387 return ((iter->head_page == commit_page && iter->head == commit) ||
3388 (iter->head_page == reader && commit_page == head_page &&
3389 head_page->read == commit &&
3390 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 3391}
c4f50183 3392EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3393
3394static void
3395rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3396 struct ring_buffer_event *event)
3397{
3398 u64 delta;
3399
334d4169 3400 switch (event->type_len) {
7a8e76a3
SR
3401 case RINGBUF_TYPE_PADDING:
3402 return;
3403
3404 case RINGBUF_TYPE_TIME_EXTEND:
3405 delta = event->array[0];
3406 delta <<= TS_SHIFT;
3407 delta += event->time_delta;
3408 cpu_buffer->read_stamp += delta;
3409 return;
3410
3411 case RINGBUF_TYPE_TIME_STAMP:
3412 /* FIXME: not implemented */
3413 return;
3414
3415 case RINGBUF_TYPE_DATA:
3416 cpu_buffer->read_stamp += event->time_delta;
3417 return;
3418
3419 default:
3420 BUG();
3421 }
3422 return;
3423}
3424
3425static void
3426rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3427 struct ring_buffer_event *event)
3428{
3429 u64 delta;
3430
334d4169 3431 switch (event->type_len) {
7a8e76a3
SR
3432 case RINGBUF_TYPE_PADDING:
3433 return;
3434
3435 case RINGBUF_TYPE_TIME_EXTEND:
3436 delta = event->array[0];
3437 delta <<= TS_SHIFT;
3438 delta += event->time_delta;
3439 iter->read_stamp += delta;
3440 return;
3441
3442 case RINGBUF_TYPE_TIME_STAMP:
3443 /* FIXME: not implemented */
3444 return;
3445
3446 case RINGBUF_TYPE_DATA:
3447 iter->read_stamp += event->time_delta;
3448 return;
3449
3450 default:
3451 BUG();
3452 }
3453 return;
3454}
3455
d769041f
SR
3456static struct buffer_page *
3457rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3458{
d769041f 3459 struct buffer_page *reader = NULL;
66a8cb95 3460 unsigned long overwrite;
d769041f 3461 unsigned long flags;
818e3dd3 3462 int nr_loops = 0;
77ae365e 3463 int ret;
d769041f 3464
3e03fb7f 3465 local_irq_save(flags);
0199c4e6 3466 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3467
3468 again:
818e3dd3
SR
3469 /*
3470 * This should normally only loop twice. But because the
3471 * start of the reader inserts an empty page, it causes
3472 * a case where we will loop three times. There should be no
3473 * reason to loop four times (that I know of).
3474 */
3e89c7bb 3475 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3476 reader = NULL;
3477 goto out;
3478 }
3479
d769041f
SR
3480 reader = cpu_buffer->reader_page;
3481
3482 /* If there's more to read, return this page */
bf41a158 3483 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3484 goto out;
3485
3486 /* Never should we have an index greater than the size */
3e89c7bb
SR
3487 if (RB_WARN_ON(cpu_buffer,
3488 cpu_buffer->reader_page->read > rb_page_size(reader)))
3489 goto out;
d769041f
SR
3490
3491 /* check if we caught up to the tail */
3492 reader = NULL;
bf41a158 3493 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3494 goto out;
7a8e76a3 3495
a5fb8331
SR
3496 /* Don't bother swapping if the ring buffer is empty */
3497 if (rb_num_of_entries(cpu_buffer) == 0)
3498 goto out;
3499
7a8e76a3 3500 /*
d769041f 3501 * Reset the reader page to size zero.
7a8e76a3 3502 */
77ae365e
SR
3503 local_set(&cpu_buffer->reader_page->write, 0);
3504 local_set(&cpu_buffer->reader_page->entries, 0);
3505 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3506 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3507
77ae365e
SR
3508 spin:
3509 /*
3510 * Splice the empty reader page into the list around the head.
3511 */
3512 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3513 if (!reader)
3514 goto out;
0e1ff5d7 3515 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3516 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3517
3adc54fa
SR
3518 /*
3519 * cpu_buffer->pages just needs to point to the buffer, it
3520 * has no specific buffer page to point to. Lets move it out
25985edc 3521 * of our way so we don't accidentally swap it.
3adc54fa
SR
3522 */
3523 cpu_buffer->pages = reader->list.prev;
3524
77ae365e
SR
3525 /* The reader page will be pointing to the new head */
3526 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3527
66a8cb95
SR
3528 /*
3529 * We want to make sure we read the overruns after we set up our
3530 * pointers to the next object. The writer side does a
3531 * cmpxchg to cross pages which acts as the mb on the writer
3532 * side. Note, the reader will constantly fail the swap
3533 * while the writer is updating the pointers, so this
3534 * guarantees that the overwrite recorded here is the one we
3535 * want to compare with the last_overrun.
3536 */
3537 smp_mb();
3538 overwrite = local_read(&(cpu_buffer->overrun));
3539
77ae365e
SR
3540 /*
3541 * Here's the tricky part.
3542 *
3543 * We need to move the pointer past the header page.
3544 * But we can only do that if a writer is not currently
3545 * moving it. The page before the header page has the
3546 * flag bit '1' set if it is pointing to the page we want.
3547 * but if the writer is in the process of moving it
3548 * than it will be '2' or already moved '0'.
3549 */
3550
3551 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3552
3553 /*
77ae365e 3554 * If we did not convert it, then we must try again.
7a8e76a3 3555 */
77ae365e
SR
3556 if (!ret)
3557 goto spin;
7a8e76a3 3558
77ae365e
SR
3559 /*
3560 * Yeah! We succeeded in replacing the page.
3561 *
3562 * Now make the new head point back to the reader page.
3563 */
5ded3dc6 3564 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3565 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3566
3567 /* Finally update the reader page to the new head */
3568 cpu_buffer->reader_page = reader;
b81f472a 3569 cpu_buffer->reader_page->read = 0;
d769041f 3570
66a8cb95
SR
3571 if (overwrite != cpu_buffer->last_overrun) {
3572 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3573 cpu_buffer->last_overrun = overwrite;
3574 }
3575
d769041f
SR
3576 goto again;
3577
3578 out:
b81f472a
SRRH
3579 /* Update the read_stamp on the first event */
3580 if (reader && reader->read == 0)
3581 cpu_buffer->read_stamp = reader->page->time_stamp;
3582
0199c4e6 3583 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3584 local_irq_restore(flags);
d769041f
SR
3585
3586 return reader;
3587}
3588
3589static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3590{
3591 struct ring_buffer_event *event;
3592 struct buffer_page *reader;
3593 unsigned length;
3594
3595 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3596
d769041f 3597 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3598 if (RB_WARN_ON(cpu_buffer, !reader))
3599 return;
7a8e76a3 3600
d769041f
SR
3601 event = rb_reader_event(cpu_buffer);
3602
a1863c21 3603 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3604 cpu_buffer->read++;
d769041f
SR
3605
3606 rb_update_read_stamp(cpu_buffer, event);
3607
3608 length = rb_event_length(event);
6f807acd 3609 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3610}
3611
3612static void rb_advance_iter(struct ring_buffer_iter *iter)
3613{
7a8e76a3
SR
3614 struct ring_buffer_per_cpu *cpu_buffer;
3615 struct ring_buffer_event *event;
3616 unsigned length;
3617
3618 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3619
3620 /*
3621 * Check if we are at the end of the buffer.
3622 */
bf41a158 3623 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3624 /* discarded commits can make the page empty */
3625 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3626 return;
d769041f 3627 rb_inc_iter(iter);
7a8e76a3
SR
3628 return;
3629 }
3630
3631 event = rb_iter_head_event(iter);
3632
3633 length = rb_event_length(event);
3634
3635 /*
3636 * This should not be called to advance the header if we are
3637 * at the tail of the buffer.
3638 */
3e89c7bb 3639 if (RB_WARN_ON(cpu_buffer,
f536aafc 3640 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3641 (iter->head + length > rb_commit_index(cpu_buffer))))
3642 return;
7a8e76a3
SR
3643
3644 rb_update_iter_read_stamp(iter, event);
3645
3646 iter->head += length;
3647
3648 /* check for end of page padding */
bf41a158
SR
3649 if ((iter->head >= rb_page_size(iter->head_page)) &&
3650 (iter->head_page != cpu_buffer->commit_page))
771e0384 3651 rb_inc_iter(iter);
7a8e76a3
SR
3652}
3653
66a8cb95
SR
3654static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3655{
3656 return cpu_buffer->lost_events;
3657}
3658
f83c9d0f 3659static struct ring_buffer_event *
66a8cb95
SR
3660rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3661 unsigned long *lost_events)
7a8e76a3 3662{
7a8e76a3 3663 struct ring_buffer_event *event;
d769041f 3664 struct buffer_page *reader;
818e3dd3 3665 int nr_loops = 0;
7a8e76a3 3666
7a8e76a3 3667 again:
818e3dd3 3668 /*
69d1b839
SR
3669 * We repeat when a time extend is encountered.
3670 * Since the time extend is always attached to a data event,
3671 * we should never loop more than once.
3672 * (We never hit the following condition more than twice).
818e3dd3 3673 */
69d1b839 3674 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3675 return NULL;
818e3dd3 3676
d769041f
SR
3677 reader = rb_get_reader_page(cpu_buffer);
3678 if (!reader)
7a8e76a3
SR
3679 return NULL;
3680
d769041f 3681 event = rb_reader_event(cpu_buffer);
7a8e76a3 3682
334d4169 3683 switch (event->type_len) {
7a8e76a3 3684 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3685 if (rb_null_event(event))
3686 RB_WARN_ON(cpu_buffer, 1);
3687 /*
3688 * Because the writer could be discarding every
3689 * event it creates (which would probably be bad)
3690 * if we were to go back to "again" then we may never
3691 * catch up, and will trigger the warn on, or lock
3692 * the box. Return the padding, and we will release
3693 * the current locks, and try again.
3694 */
2d622719 3695 return event;
7a8e76a3
SR
3696
3697 case RINGBUF_TYPE_TIME_EXTEND:
3698 /* Internal data, OK to advance */
d769041f 3699 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3700 goto again;
3701
3702 case RINGBUF_TYPE_TIME_STAMP:
3703 /* FIXME: not implemented */
d769041f 3704 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3705 goto again;
3706
3707 case RINGBUF_TYPE_DATA:
3708 if (ts) {
3709 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3710 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3711 cpu_buffer->cpu, ts);
7a8e76a3 3712 }
66a8cb95
SR
3713 if (lost_events)
3714 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3715 return event;
3716
3717 default:
3718 BUG();
3719 }
3720
3721 return NULL;
3722}
c4f50183 3723EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3724
f83c9d0f
SR
3725static struct ring_buffer_event *
3726rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3727{
3728 struct ring_buffer *buffer;
3729 struct ring_buffer_per_cpu *cpu_buffer;
3730 struct ring_buffer_event *event;
818e3dd3 3731 int nr_loops = 0;
7a8e76a3 3732
7a8e76a3
SR
3733 cpu_buffer = iter->cpu_buffer;
3734 buffer = cpu_buffer->buffer;
3735
492a74f4
SR
3736 /*
3737 * Check if someone performed a consuming read to
3738 * the buffer. A consuming read invalidates the iterator
3739 * and we need to reset the iterator in this case.
3740 */
3741 if (unlikely(iter->cache_read != cpu_buffer->read ||
3742 iter->cache_reader_page != cpu_buffer->reader_page))
3743 rb_iter_reset(iter);
3744
7a8e76a3 3745 again:
3c05d748
SR
3746 if (ring_buffer_iter_empty(iter))
3747 return NULL;
3748
818e3dd3 3749 /*
021de3d9
SRRH
3750 * We repeat when a time extend is encountered or we hit
3751 * the end of the page. Since the time extend is always attached
3752 * to a data event, we should never loop more than three times.
3753 * Once for going to next page, once on time extend, and
3754 * finally once to get the event.
3755 * (We never hit the following condition more than thrice).
818e3dd3 3756 */
021de3d9 3757 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3758 return NULL;
818e3dd3 3759
7a8e76a3
SR
3760 if (rb_per_cpu_empty(cpu_buffer))
3761 return NULL;
3762
10e83fd0 3763 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3764 rb_inc_iter(iter);
3765 goto again;
3766 }
3767
7a8e76a3
SR
3768 event = rb_iter_head_event(iter);
3769
334d4169 3770 switch (event->type_len) {
7a8e76a3 3771 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3772 if (rb_null_event(event)) {
3773 rb_inc_iter(iter);
3774 goto again;
3775 }
3776 rb_advance_iter(iter);
3777 return event;
7a8e76a3
SR
3778
3779 case RINGBUF_TYPE_TIME_EXTEND:
3780 /* Internal data, OK to advance */
3781 rb_advance_iter(iter);
3782 goto again;
3783
3784 case RINGBUF_TYPE_TIME_STAMP:
3785 /* FIXME: not implemented */
3786 rb_advance_iter(iter);
3787 goto again;
3788
3789 case RINGBUF_TYPE_DATA:
3790 if (ts) {
3791 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3792 ring_buffer_normalize_time_stamp(buffer,
3793 cpu_buffer->cpu, ts);
7a8e76a3
SR
3794 }
3795 return event;
3796
3797 default:
3798 BUG();
3799 }
3800
3801 return NULL;
3802}
c4f50183 3803EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3804
289a5a25 3805static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3806{
289a5a25
SRRH
3807 if (likely(!in_nmi())) {
3808 raw_spin_lock(&cpu_buffer->reader_lock);
3809 return true;
3810 }
3811
8d707e8e
SR
3812 /*
3813 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3814 * trylock must be used to prevent a deadlock if the NMI
3815 * preempted a task that holds the ring buffer locks. If
3816 * we get the lock then all is fine, if not, then continue
3817 * to do the read, but this can corrupt the ring buffer,
3818 * so it must be permanently disabled from future writes.
3819 * Reading from NMI is a oneshot deal.
8d707e8e 3820 */
289a5a25
SRRH
3821 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3822 return true;
8d707e8e 3823
289a5a25
SRRH
3824 /* Continue without locking, but disable the ring buffer */
3825 atomic_inc(&cpu_buffer->record_disabled);
3826 return false;
3827}
3828
3829static inline void
3830rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3831{
3832 if (likely(locked))
3833 raw_spin_unlock(&cpu_buffer->reader_lock);
3834 return;
8d707e8e
SR
3835}
3836
f83c9d0f
SR
3837/**
3838 * ring_buffer_peek - peek at the next event to be read
3839 * @buffer: The ring buffer to read
3840 * @cpu: The cpu to peak at
3841 * @ts: The timestamp counter of this event.
66a8cb95 3842 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3843 *
3844 * This will return the event that will be read next, but does
3845 * not consume the data.
3846 */
3847struct ring_buffer_event *
66a8cb95
SR
3848ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3849 unsigned long *lost_events)
f83c9d0f
SR
3850{
3851 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3852 struct ring_buffer_event *event;
f83c9d0f 3853 unsigned long flags;
289a5a25 3854 bool dolock;
f83c9d0f 3855
554f786e 3856 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3857 return NULL;
554f786e 3858
2d622719 3859 again:
8d707e8e 3860 local_irq_save(flags);
289a5a25 3861 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3862 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3863 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3864 rb_advance_reader(cpu_buffer);
289a5a25 3865 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3866 local_irq_restore(flags);
f83c9d0f 3867
1b959e18 3868 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3869 goto again;
2d622719 3870
f83c9d0f
SR
3871 return event;
3872}
3873
3874/**
3875 * ring_buffer_iter_peek - peek at the next event to be read
3876 * @iter: The ring buffer iterator
3877 * @ts: The timestamp counter of this event.
3878 *
3879 * This will return the event that will be read next, but does
3880 * not increment the iterator.
3881 */
3882struct ring_buffer_event *
3883ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3884{
3885 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3886 struct ring_buffer_event *event;
3887 unsigned long flags;
3888
2d622719 3889 again:
5389f6fa 3890 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3891 event = rb_iter_peek(iter, ts);
5389f6fa 3892 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3893
1b959e18 3894 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3895 goto again;
2d622719 3896
f83c9d0f
SR
3897 return event;
3898}
3899
7a8e76a3
SR
3900/**
3901 * ring_buffer_consume - return an event and consume it
3902 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3903 * @cpu: the cpu to read the buffer from
3904 * @ts: a variable to store the timestamp (may be NULL)
3905 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3906 *
3907 * Returns the next event in the ring buffer, and that event is consumed.
3908 * Meaning, that sequential reads will keep returning a different event,
3909 * and eventually empty the ring buffer if the producer is slower.
3910 */
3911struct ring_buffer_event *
66a8cb95
SR
3912ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3913 unsigned long *lost_events)
7a8e76a3 3914{
554f786e
SR
3915 struct ring_buffer_per_cpu *cpu_buffer;
3916 struct ring_buffer_event *event = NULL;
f83c9d0f 3917 unsigned long flags;
289a5a25 3918 bool dolock;
7a8e76a3 3919
2d622719 3920 again:
554f786e
SR
3921 /* might be called in atomic */
3922 preempt_disable();
3923
9e01c1b7 3924 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3925 goto out;
7a8e76a3 3926
554f786e 3927 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3928 local_irq_save(flags);
289a5a25 3929 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3930
66a8cb95
SR
3931 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3932 if (event) {
3933 cpu_buffer->lost_events = 0;
469535a5 3934 rb_advance_reader(cpu_buffer);
66a8cb95 3935 }
7a8e76a3 3936
289a5a25 3937 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3938 local_irq_restore(flags);
f83c9d0f 3939
554f786e
SR
3940 out:
3941 preempt_enable();
3942
1b959e18 3943 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3944 goto again;
2d622719 3945
7a8e76a3
SR
3946 return event;
3947}
c4f50183 3948EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3949
3950/**
72c9ddfd 3951 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3952 * @buffer: The ring buffer to read from
3953 * @cpu: The cpu buffer to iterate over
3954 *
72c9ddfd
DM
3955 * This performs the initial preparations necessary to iterate
3956 * through the buffer. Memory is allocated, buffer recording
3957 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3958 *
72c9ddfd
DM
3959 * Disabling buffer recordng prevents the reading from being
3960 * corrupted. This is not a consuming read, so a producer is not
3961 * expected.
3962 *
3963 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3964 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3965 * Afterwards, ring_buffer_read_start is invoked to get things going
3966 * for real.
3967 *
d611851b 3968 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
3969 */
3970struct ring_buffer_iter *
72c9ddfd 3971ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3972{
3973 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3974 struct ring_buffer_iter *iter;
7a8e76a3 3975
9e01c1b7 3976 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3977 return NULL;
7a8e76a3
SR
3978
3979 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3980 if (!iter)
8aabee57 3981 return NULL;
7a8e76a3
SR
3982
3983 cpu_buffer = buffer->buffers[cpu];
3984
3985 iter->cpu_buffer = cpu_buffer;
3986
83f40318 3987 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3988 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3989
3990 return iter;
3991}
3992EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3993
3994/**
3995 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3996 *
3997 * All previously invoked ring_buffer_read_prepare calls to prepare
3998 * iterators will be synchronized. Afterwards, read_buffer_read_start
3999 * calls on those iterators are allowed.
4000 */
4001void
4002ring_buffer_read_prepare_sync(void)
4003{
7a8e76a3 4004 synchronize_sched();
72c9ddfd
DM
4005}
4006EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4007
4008/**
4009 * ring_buffer_read_start - start a non consuming read of the buffer
4010 * @iter: The iterator returned by ring_buffer_read_prepare
4011 *
4012 * This finalizes the startup of an iteration through the buffer.
4013 * The iterator comes from a call to ring_buffer_read_prepare and
4014 * an intervening ring_buffer_read_prepare_sync must have been
4015 * performed.
4016 *
d611851b 4017 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4018 */
4019void
4020ring_buffer_read_start(struct ring_buffer_iter *iter)
4021{
4022 struct ring_buffer_per_cpu *cpu_buffer;
4023 unsigned long flags;
4024
4025 if (!iter)
4026 return;
4027
4028 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4029
5389f6fa 4030 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4031 arch_spin_lock(&cpu_buffer->lock);
642edba5 4032 rb_iter_reset(iter);
0199c4e6 4033 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4034 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4035}
c4f50183 4036EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4037
4038/**
d611851b 4039 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4040 * @iter: The iterator retrieved by ring_buffer_start
4041 *
4042 * This re-enables the recording to the buffer, and frees the
4043 * iterator.
4044 */
4045void
4046ring_buffer_read_finish(struct ring_buffer_iter *iter)
4047{
4048 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4049 unsigned long flags;
7a8e76a3 4050
659f451f
SR
4051 /*
4052 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4053 * to check the integrity of the ring buffer.
4054 * Must prevent readers from trying to read, as the check
4055 * clears the HEAD page and readers require it.
659f451f 4056 */
9366c1ba 4057 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4058 rb_check_pages(cpu_buffer);
9366c1ba 4059 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4060
7a8e76a3 4061 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4062 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4063 kfree(iter);
4064}
c4f50183 4065EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4066
4067/**
4068 * ring_buffer_read - read the next item in the ring buffer by the iterator
4069 * @iter: The ring buffer iterator
4070 * @ts: The time stamp of the event read.
4071 *
4072 * This reads the next event in the ring buffer and increments the iterator.
4073 */
4074struct ring_buffer_event *
4075ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4076{
4077 struct ring_buffer_event *event;
f83c9d0f
SR
4078 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4079 unsigned long flags;
7a8e76a3 4080
5389f6fa 4081 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4082 again:
f83c9d0f 4083 event = rb_iter_peek(iter, ts);
7a8e76a3 4084 if (!event)
f83c9d0f 4085 goto out;
7a8e76a3 4086
7e9391cf
SR
4087 if (event->type_len == RINGBUF_TYPE_PADDING)
4088 goto again;
4089
7a8e76a3 4090 rb_advance_iter(iter);
f83c9d0f 4091 out:
5389f6fa 4092 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4093
4094 return event;
4095}
c4f50183 4096EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4097
4098/**
4099 * ring_buffer_size - return the size of the ring buffer (in bytes)
4100 * @buffer: The ring buffer.
4101 */
438ced17 4102unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4103{
438ced17
VN
4104 /*
4105 * Earlier, this method returned
4106 * BUF_PAGE_SIZE * buffer->nr_pages
4107 * Since the nr_pages field is now removed, we have converted this to
4108 * return the per cpu buffer value.
4109 */
4110 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4111 return 0;
4112
4113 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4114}
c4f50183 4115EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4116
4117static void
4118rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4119{
77ae365e
SR
4120 rb_head_page_deactivate(cpu_buffer);
4121
7a8e76a3 4122 cpu_buffer->head_page
3adc54fa 4123 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4124 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4125 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4126 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4127
6f807acd 4128 cpu_buffer->head_page->read = 0;
bf41a158
SR
4129
4130 cpu_buffer->tail_page = cpu_buffer->head_page;
4131 cpu_buffer->commit_page = cpu_buffer->head_page;
4132
4133 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4134 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4135 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4136 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4137 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4138 cpu_buffer->reader_page->read = 0;
7a8e76a3 4139
c64e148a 4140 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4141 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4142 local_set(&cpu_buffer->commit_overrun, 0);
4143 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4144 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4145 local_set(&cpu_buffer->committing, 0);
4146 local_set(&cpu_buffer->commits, 0);
77ae365e 4147 cpu_buffer->read = 0;
c64e148a 4148 cpu_buffer->read_bytes = 0;
69507c06
SR
4149
4150 cpu_buffer->write_stamp = 0;
4151 cpu_buffer->read_stamp = 0;
77ae365e 4152
66a8cb95
SR
4153 cpu_buffer->lost_events = 0;
4154 cpu_buffer->last_overrun = 0;
4155
77ae365e 4156 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4157}
4158
4159/**
4160 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4161 * @buffer: The ring buffer to reset a per cpu buffer of
4162 * @cpu: The CPU buffer to be reset
4163 */
4164void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4165{
4166 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4167 unsigned long flags;
4168
9e01c1b7 4169 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4170 return;
7a8e76a3 4171
83f40318 4172 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4173 atomic_inc(&cpu_buffer->record_disabled);
4174
83f40318
VN
4175 /* Make sure all commits have finished */
4176 synchronize_sched();
4177
5389f6fa 4178 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4179
41b6a95d
SR
4180 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4181 goto out;
4182
0199c4e6 4183 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4184
4185 rb_reset_cpu(cpu_buffer);
4186
0199c4e6 4187 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4188
41b6a95d 4189 out:
5389f6fa 4190 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4191
4192 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4193 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4194}
c4f50183 4195EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4196
4197/**
4198 * ring_buffer_reset - reset a ring buffer
4199 * @buffer: The ring buffer to reset all cpu buffers
4200 */
4201void ring_buffer_reset(struct ring_buffer *buffer)
4202{
7a8e76a3
SR
4203 int cpu;
4204
7a8e76a3 4205 for_each_buffer_cpu(buffer, cpu)
d769041f 4206 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4207}
c4f50183 4208EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4209
4210/**
4211 * rind_buffer_empty - is the ring buffer empty?
4212 * @buffer: The ring buffer to test
4213 */
3d4e204d 4214bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4215{
4216 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4217 unsigned long flags;
289a5a25 4218 bool dolock;
7a8e76a3 4219 int cpu;
d4788207 4220 int ret;
7a8e76a3
SR
4221
4222 /* yes this is racy, but if you don't like the race, lock the buffer */
4223 for_each_buffer_cpu(buffer, cpu) {
4224 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4225 local_irq_save(flags);
289a5a25 4226 dolock = rb_reader_lock(cpu_buffer);
d4788207 4227 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4228 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4229 local_irq_restore(flags);
4230
d4788207 4231 if (!ret)
3d4e204d 4232 return false;
7a8e76a3 4233 }
554f786e 4234
3d4e204d 4235 return true;
7a8e76a3 4236}
c4f50183 4237EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4238
4239/**
4240 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4241 * @buffer: The ring buffer
4242 * @cpu: The CPU buffer to test
4243 */
3d4e204d 4244bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4245{
4246 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4247 unsigned long flags;
289a5a25 4248 bool dolock;
8aabee57 4249 int ret;
7a8e76a3 4250
9e01c1b7 4251 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4252 return true;
7a8e76a3
SR
4253
4254 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4255 local_irq_save(flags);
289a5a25 4256 dolock = rb_reader_lock(cpu_buffer);
554f786e 4257 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4258 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4259 local_irq_restore(flags);
554f786e
SR
4260
4261 return ret;
7a8e76a3 4262}
c4f50183 4263EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4264
85bac32c 4265#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4266/**
4267 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4268 * @buffer_a: One buffer to swap with
4269 * @buffer_b: The other buffer to swap with
4270 *
4271 * This function is useful for tracers that want to take a "snapshot"
4272 * of a CPU buffer and has another back up buffer lying around.
4273 * it is expected that the tracer handles the cpu buffer not being
4274 * used at the moment.
4275 */
4276int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4277 struct ring_buffer *buffer_b, int cpu)
4278{
4279 struct ring_buffer_per_cpu *cpu_buffer_a;
4280 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4281 int ret = -EINVAL;
4282
9e01c1b7
RR
4283 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4284 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4285 goto out;
7a8e76a3 4286
438ced17
VN
4287 cpu_buffer_a = buffer_a->buffers[cpu];
4288 cpu_buffer_b = buffer_b->buffers[cpu];
4289
7a8e76a3 4290 /* At least make sure the two buffers are somewhat the same */
438ced17 4291 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4292 goto out;
4293
4294 ret = -EAGAIN;
7a8e76a3 4295
97b17efe 4296 if (atomic_read(&buffer_a->record_disabled))
554f786e 4297 goto out;
97b17efe
SR
4298
4299 if (atomic_read(&buffer_b->record_disabled))
554f786e 4300 goto out;
97b17efe 4301
97b17efe 4302 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4303 goto out;
97b17efe
SR
4304
4305 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4306 goto out;
97b17efe 4307
7a8e76a3
SR
4308 /*
4309 * We can't do a synchronize_sched here because this
4310 * function can be called in atomic context.
4311 * Normally this will be called from the same CPU as cpu.
4312 * If not it's up to the caller to protect this.
4313 */
4314 atomic_inc(&cpu_buffer_a->record_disabled);
4315 atomic_inc(&cpu_buffer_b->record_disabled);
4316
98277991
SR
4317 ret = -EBUSY;
4318 if (local_read(&cpu_buffer_a->committing))
4319 goto out_dec;
4320 if (local_read(&cpu_buffer_b->committing))
4321 goto out_dec;
4322
7a8e76a3
SR
4323 buffer_a->buffers[cpu] = cpu_buffer_b;
4324 buffer_b->buffers[cpu] = cpu_buffer_a;
4325
4326 cpu_buffer_b->buffer = buffer_a;
4327 cpu_buffer_a->buffer = buffer_b;
4328
98277991
SR
4329 ret = 0;
4330
4331out_dec:
7a8e76a3
SR
4332 atomic_dec(&cpu_buffer_a->record_disabled);
4333 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4334out:
554f786e 4335 return ret;
7a8e76a3 4336}
c4f50183 4337EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4338#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4339
8789a9e7
SR
4340/**
4341 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4342 * @buffer: the buffer to allocate for.
d611851b 4343 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4344 *
4345 * This function is used in conjunction with ring_buffer_read_page.
4346 * When reading a full page from the ring buffer, these functions
4347 * can be used to speed up the process. The calling function should
4348 * allocate a few pages first with this function. Then when it
4349 * needs to get pages from the ring buffer, it passes the result
4350 * of this function into ring_buffer_read_page, which will swap
4351 * the page that was allocated, with the read page of the buffer.
4352 *
4353 * Returns:
a7e52ad7 4354 * The page allocated, or ERR_PTR
8789a9e7 4355 */
7ea59064 4356void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4357{
a7e52ad7 4358 struct ring_buffer_per_cpu *cpu_buffer;
73a757e6
SRV
4359 struct buffer_data_page *bpage = NULL;
4360 unsigned long flags;
7ea59064 4361 struct page *page;
8789a9e7 4362
a7e52ad7
SRV
4363 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4364 return ERR_PTR(-ENODEV);
4365
4366 cpu_buffer = buffer->buffers[cpu];
73a757e6
SRV
4367 local_irq_save(flags);
4368 arch_spin_lock(&cpu_buffer->lock);
4369
4370 if (cpu_buffer->free_page) {
4371 bpage = cpu_buffer->free_page;
4372 cpu_buffer->free_page = NULL;
4373 }
4374
4375 arch_spin_unlock(&cpu_buffer->lock);
4376 local_irq_restore(flags);
4377
4378 if (bpage)
4379 goto out;
4380
d7ec4bfe
VN
4381 page = alloc_pages_node(cpu_to_node(cpu),
4382 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4383 if (!page)
a7e52ad7 4384 return ERR_PTR(-ENOMEM);
8789a9e7 4385
7ea59064 4386 bpage = page_address(page);
8789a9e7 4387
73a757e6 4388 out:
ef7a4a16
SR
4389 rb_init_page(bpage);
4390
044fa782 4391 return bpage;
8789a9e7 4392}
d6ce96da 4393EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4394
4395/**
4396 * ring_buffer_free_read_page - free an allocated read page
4397 * @buffer: the buffer the page was allocate for
73a757e6 4398 * @cpu: the cpu buffer the page came from
8789a9e7
SR
4399 * @data: the page to free
4400 *
4401 * Free a page allocated from ring_buffer_alloc_read_page.
4402 */
73a757e6 4403void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
8789a9e7 4404{
73a757e6
SRV
4405 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4406 struct buffer_data_page *bpage = data;
ae415fa4 4407 struct page *page = virt_to_page(bpage);
73a757e6
SRV
4408 unsigned long flags;
4409
ae415fa4
SRV
4410 /* If the page is still in use someplace else, we can't reuse it */
4411 if (page_ref_count(page) > 1)
4412 goto out;
4413
73a757e6
SRV
4414 local_irq_save(flags);
4415 arch_spin_lock(&cpu_buffer->lock);
4416
4417 if (!cpu_buffer->free_page) {
4418 cpu_buffer->free_page = bpage;
4419 bpage = NULL;
4420 }
4421
4422 arch_spin_unlock(&cpu_buffer->lock);
4423 local_irq_restore(flags);
4424
ae415fa4 4425 out:
73a757e6 4426 free_page((unsigned long)bpage);
8789a9e7 4427}
d6ce96da 4428EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4429
4430/**
4431 * ring_buffer_read_page - extract a page from the ring buffer
4432 * @buffer: buffer to extract from
4433 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4434 * @len: amount to extract
8789a9e7
SR
4435 * @cpu: the cpu of the buffer to extract
4436 * @full: should the extraction only happen when the page is full.
4437 *
4438 * This function will pull out a page from the ring buffer and consume it.
4439 * @data_page must be the address of the variable that was returned
4440 * from ring_buffer_alloc_read_page. This is because the page might be used
4441 * to swap with a page in the ring buffer.
4442 *
4443 * for example:
d611851b 4444 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
a7e52ad7
SRV
4445 * if (IS_ERR(rpage))
4446 * return PTR_ERR(rpage);
ef7a4a16 4447 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4448 * if (ret >= 0)
4449 * process_page(rpage, ret);
8789a9e7
SR
4450 *
4451 * When @full is set, the function will not return true unless
4452 * the writer is off the reader page.
4453 *
4454 * Note: it is up to the calling functions to handle sleeps and wakeups.
4455 * The ring buffer can be used anywhere in the kernel and can not
4456 * blindly call wake_up. The layer that uses the ring buffer must be
4457 * responsible for that.
4458 *
4459 * Returns:
667d2412
LJ
4460 * >=0 if data has been transferred, returns the offset of consumed data.
4461 * <0 if no data has been transferred.
8789a9e7
SR
4462 */
4463int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4464 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4465{
4466 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4467 struct ring_buffer_event *event;
044fa782 4468 struct buffer_data_page *bpage;
ef7a4a16 4469 struct buffer_page *reader;
ff0ff84a 4470 unsigned long missed_events;
8789a9e7 4471 unsigned long flags;
ef7a4a16 4472 unsigned int commit;
667d2412 4473 unsigned int read;
4f3640f8 4474 u64 save_timestamp;
667d2412 4475 int ret = -1;
8789a9e7 4476
554f786e
SR
4477 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4478 goto out;
4479
474d32b6
SR
4480 /*
4481 * If len is not big enough to hold the page header, then
4482 * we can not copy anything.
4483 */
4484 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4485 goto out;
474d32b6
SR
4486
4487 len -= BUF_PAGE_HDR_SIZE;
4488
8789a9e7 4489 if (!data_page)
554f786e 4490 goto out;
8789a9e7 4491
044fa782
SR
4492 bpage = *data_page;
4493 if (!bpage)
554f786e 4494 goto out;
8789a9e7 4495
5389f6fa 4496 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4497
ef7a4a16
SR
4498 reader = rb_get_reader_page(cpu_buffer);
4499 if (!reader)
554f786e 4500 goto out_unlock;
8789a9e7 4501
ef7a4a16
SR
4502 event = rb_reader_event(cpu_buffer);
4503
4504 read = reader->read;
4505 commit = rb_page_commit(reader);
667d2412 4506
66a8cb95 4507 /* Check if any events were dropped */
ff0ff84a 4508 missed_events = cpu_buffer->lost_events;
66a8cb95 4509
8789a9e7 4510 /*
474d32b6
SR
4511 * If this page has been partially read or
4512 * if len is not big enough to read the rest of the page or
4513 * a writer is still on the page, then
4514 * we must copy the data from the page to the buffer.
4515 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4516 */
474d32b6 4517 if (read || (len < (commit - read)) ||
ef7a4a16 4518 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4519 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4520 unsigned int rpos = read;
4521 unsigned int pos = 0;
ef7a4a16 4522 unsigned int size;
8789a9e7
SR
4523
4524 if (full)
554f786e 4525 goto out_unlock;
8789a9e7 4526
ef7a4a16
SR
4527 if (len > (commit - read))
4528 len = (commit - read);
4529
69d1b839
SR
4530 /* Always keep the time extend and data together */
4531 size = rb_event_ts_length(event);
ef7a4a16
SR
4532
4533 if (len < size)
554f786e 4534 goto out_unlock;
ef7a4a16 4535
4f3640f8
SR
4536 /* save the current timestamp, since the user will need it */
4537 save_timestamp = cpu_buffer->read_stamp;
4538
ef7a4a16
SR
4539 /* Need to copy one event at a time */
4540 do {
e1e35927
DS
4541 /* We need the size of one event, because
4542 * rb_advance_reader only advances by one event,
4543 * whereas rb_event_ts_length may include the size of
4544 * one or two events.
4545 * We have already ensured there's enough space if this
4546 * is a time extend. */
4547 size = rb_event_length(event);
474d32b6 4548 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4549
4550 len -= size;
4551
4552 rb_advance_reader(cpu_buffer);
474d32b6
SR
4553 rpos = reader->read;
4554 pos += size;
ef7a4a16 4555
18fab912
HY
4556 if (rpos >= commit)
4557 break;
4558
ef7a4a16 4559 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4560 /* Always keep the time extend and data together */
4561 size = rb_event_ts_length(event);
e1e35927 4562 } while (len >= size);
667d2412
LJ
4563
4564 /* update bpage */
ef7a4a16 4565 local_set(&bpage->commit, pos);
4f3640f8 4566 bpage->time_stamp = save_timestamp;
ef7a4a16 4567
474d32b6
SR
4568 /* we copied everything to the beginning */
4569 read = 0;
8789a9e7 4570 } else {
afbab76a 4571 /* update the entry counter */
77ae365e 4572 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4573 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4574
8789a9e7 4575 /* swap the pages */
044fa782 4576 rb_init_page(bpage);
ef7a4a16
SR
4577 bpage = reader->page;
4578 reader->page = *data_page;
4579 local_set(&reader->write, 0);
778c55d4 4580 local_set(&reader->entries, 0);
ef7a4a16 4581 reader->read = 0;
044fa782 4582 *data_page = bpage;
ff0ff84a
SR
4583
4584 /*
4585 * Use the real_end for the data size,
4586 * This gives us a chance to store the lost events
4587 * on the page.
4588 */
4589 if (reader->real_end)
4590 local_set(&bpage->commit, reader->real_end);
8789a9e7 4591 }
667d2412 4592 ret = read;
8789a9e7 4593
66a8cb95 4594 cpu_buffer->lost_events = 0;
2711ca23
SR
4595
4596 commit = local_read(&bpage->commit);
66a8cb95
SR
4597 /*
4598 * Set a flag in the commit field if we lost events
4599 */
ff0ff84a 4600 if (missed_events) {
ff0ff84a
SR
4601 /* If there is room at the end of the page to save the
4602 * missed events, then record it there.
4603 */
4604 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4605 memcpy(&bpage->data[commit], &missed_events,
4606 sizeof(missed_events));
4607 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4608 commit += sizeof(missed_events);
ff0ff84a 4609 }
66a8cb95 4610 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4611 }
66a8cb95 4612
2711ca23
SR
4613 /*
4614 * This page may be off to user land. Zero it out here.
4615 */
4616 if (commit < BUF_PAGE_SIZE)
4617 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4618
554f786e 4619 out_unlock:
5389f6fa 4620 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4621
554f786e 4622 out:
8789a9e7
SR
4623 return ret;
4624}
d6ce96da 4625EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4626
b32614c0
SAS
4627/*
4628 * We only allocate new buffers, never free them if the CPU goes down.
4629 * If we were to free the buffer, then the user would lose any trace that was in
4630 * the buffer.
4631 */
4632int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 4633{
b32614c0 4634 struct ring_buffer *buffer;
9b94a8fb
SRRH
4635 long nr_pages_same;
4636 int cpu_i;
4637 unsigned long nr_pages;
554f786e 4638
b32614c0
SAS
4639 buffer = container_of(node, struct ring_buffer, node);
4640 if (cpumask_test_cpu(cpu, buffer->cpumask))
4641 return 0;
4642
4643 nr_pages = 0;
4644 nr_pages_same = 1;
4645 /* check if all cpu sizes are same */
4646 for_each_buffer_cpu(buffer, cpu_i) {
4647 /* fill in the size from first enabled cpu */
4648 if (nr_pages == 0)
4649 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4650 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4651 nr_pages_same = 0;
4652 break;
554f786e 4653 }
554f786e 4654 }
b32614c0
SAS
4655 /* allocate minimum pages, user can later expand it */
4656 if (!nr_pages_same)
4657 nr_pages = 2;
4658 buffer->buffers[cpu] =
4659 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4660 if (!buffer->buffers[cpu]) {
4661 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4662 cpu);
4663 return -ENOMEM;
4664 }
4665 smp_wmb();
4666 cpumask_set_cpu(cpu, buffer->cpumask);
4667 return 0;
554f786e 4668}
6c43e554
SRRH
4669
4670#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4671/*
4672 * This is a basic integrity check of the ring buffer.
4673 * Late in the boot cycle this test will run when configured in.
4674 * It will kick off a thread per CPU that will go into a loop
4675 * writing to the per cpu ring buffer various sizes of data.
4676 * Some of the data will be large items, some small.
4677 *
4678 * Another thread is created that goes into a spin, sending out
4679 * IPIs to the other CPUs to also write into the ring buffer.
4680 * this is to test the nesting ability of the buffer.
4681 *
4682 * Basic stats are recorded and reported. If something in the
4683 * ring buffer should happen that's not expected, a big warning
4684 * is displayed and all ring buffers are disabled.
4685 */
4686static struct task_struct *rb_threads[NR_CPUS] __initdata;
4687
4688struct rb_test_data {
4689 struct ring_buffer *buffer;
4690 unsigned long events;
4691 unsigned long bytes_written;
4692 unsigned long bytes_alloc;
4693 unsigned long bytes_dropped;
4694 unsigned long events_nested;
4695 unsigned long bytes_written_nested;
4696 unsigned long bytes_alloc_nested;
4697 unsigned long bytes_dropped_nested;
4698 int min_size_nested;
4699 int max_size_nested;
4700 int max_size;
4701 int min_size;
4702 int cpu;
4703 int cnt;
4704};
4705
4706static struct rb_test_data rb_data[NR_CPUS] __initdata;
4707
4708/* 1 meg per cpu */
4709#define RB_TEST_BUFFER_SIZE 1048576
4710
4711static char rb_string[] __initdata =
4712 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4713 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4714 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4715
4716static bool rb_test_started __initdata;
4717
4718struct rb_item {
4719 int size;
4720 char str[];
4721};
4722
4723static __init int rb_write_something(struct rb_test_data *data, bool nested)
4724{
4725 struct ring_buffer_event *event;
4726 struct rb_item *item;
4727 bool started;
4728 int event_len;
4729 int size;
4730 int len;
4731 int cnt;
4732
4733 /* Have nested writes different that what is written */
4734 cnt = data->cnt + (nested ? 27 : 0);
4735
4736 /* Multiply cnt by ~e, to make some unique increment */
4737 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4738
4739 len = size + sizeof(struct rb_item);
4740
4741 started = rb_test_started;
4742 /* read rb_test_started before checking buffer enabled */
4743 smp_rmb();
4744
4745 event = ring_buffer_lock_reserve(data->buffer, len);
4746 if (!event) {
4747 /* Ignore dropped events before test starts. */
4748 if (started) {
4749 if (nested)
4750 data->bytes_dropped += len;
4751 else
4752 data->bytes_dropped_nested += len;
4753 }
4754 return len;
4755 }
4756
4757 event_len = ring_buffer_event_length(event);
4758
4759 if (RB_WARN_ON(data->buffer, event_len < len))
4760 goto out;
4761
4762 item = ring_buffer_event_data(event);
4763 item->size = size;
4764 memcpy(item->str, rb_string, size);
4765
4766 if (nested) {
4767 data->bytes_alloc_nested += event_len;
4768 data->bytes_written_nested += len;
4769 data->events_nested++;
4770 if (!data->min_size_nested || len < data->min_size_nested)
4771 data->min_size_nested = len;
4772 if (len > data->max_size_nested)
4773 data->max_size_nested = len;
4774 } else {
4775 data->bytes_alloc += event_len;
4776 data->bytes_written += len;
4777 data->events++;
4778 if (!data->min_size || len < data->min_size)
4779 data->max_size = len;
4780 if (len > data->max_size)
4781 data->max_size = len;
4782 }
4783
4784 out:
4785 ring_buffer_unlock_commit(data->buffer, event);
4786
4787 return 0;
4788}
4789
4790static __init int rb_test(void *arg)
4791{
4792 struct rb_test_data *data = arg;
4793
4794 while (!kthread_should_stop()) {
4795 rb_write_something(data, false);
4796 data->cnt++;
4797
4798 set_current_state(TASK_INTERRUPTIBLE);
4799 /* Now sleep between a min of 100-300us and a max of 1ms */
4800 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4801 }
4802
4803 return 0;
4804}
4805
4806static __init void rb_ipi(void *ignore)
4807{
4808 struct rb_test_data *data;
4809 int cpu = smp_processor_id();
4810
4811 data = &rb_data[cpu];
4812 rb_write_something(data, true);
4813}
4814
4815static __init int rb_hammer_test(void *arg)
4816{
4817 while (!kthread_should_stop()) {
4818
4819 /* Send an IPI to all cpus to write data! */
4820 smp_call_function(rb_ipi, NULL, 1);
4821 /* No sleep, but for non preempt, let others run */
4822 schedule();
4823 }
4824
4825 return 0;
4826}
4827
4828static __init int test_ringbuffer(void)
4829{
4830 struct task_struct *rb_hammer;
4831 struct ring_buffer *buffer;
4832 int cpu;
4833 int ret = 0;
4834
4835 pr_info("Running ring buffer tests...\n");
4836
4837 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4838 if (WARN_ON(!buffer))
4839 return 0;
4840
4841 /* Disable buffer so that threads can't write to it yet */
4842 ring_buffer_record_off(buffer);
4843
4844 for_each_online_cpu(cpu) {
4845 rb_data[cpu].buffer = buffer;
4846 rb_data[cpu].cpu = cpu;
4847 rb_data[cpu].cnt = cpu;
4848 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4849 "rbtester/%d", cpu);
62277de7 4850 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 4851 pr_cont("FAILED\n");
62277de7 4852 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
4853 goto out_free;
4854 }
4855
4856 kthread_bind(rb_threads[cpu], cpu);
4857 wake_up_process(rb_threads[cpu]);
4858 }
4859
4860 /* Now create the rb hammer! */
4861 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 4862 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 4863 pr_cont("FAILED\n");
62277de7 4864 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
4865 goto out_free;
4866 }
4867
4868 ring_buffer_record_on(buffer);
4869 /*
4870 * Show buffer is enabled before setting rb_test_started.
4871 * Yes there's a small race window where events could be
4872 * dropped and the thread wont catch it. But when a ring
4873 * buffer gets enabled, there will always be some kind of
4874 * delay before other CPUs see it. Thus, we don't care about
4875 * those dropped events. We care about events dropped after
4876 * the threads see that the buffer is active.
4877 */
4878 smp_wmb();
4879 rb_test_started = true;
4880
4881 set_current_state(TASK_INTERRUPTIBLE);
4882 /* Just run for 10 seconds */;
4883 schedule_timeout(10 * HZ);
4884
4885 kthread_stop(rb_hammer);
4886
4887 out_free:
4888 for_each_online_cpu(cpu) {
4889 if (!rb_threads[cpu])
4890 break;
4891 kthread_stop(rb_threads[cpu]);
4892 }
4893 if (ret) {
4894 ring_buffer_free(buffer);
4895 return ret;
4896 }
4897
4898 /* Report! */
4899 pr_info("finished\n");
4900 for_each_online_cpu(cpu) {
4901 struct ring_buffer_event *event;
4902 struct rb_test_data *data = &rb_data[cpu];
4903 struct rb_item *item;
4904 unsigned long total_events;
4905 unsigned long total_dropped;
4906 unsigned long total_written;
4907 unsigned long total_alloc;
4908 unsigned long total_read = 0;
4909 unsigned long total_size = 0;
4910 unsigned long total_len = 0;
4911 unsigned long total_lost = 0;
4912 unsigned long lost;
4913 int big_event_size;
4914 int small_event_size;
4915
4916 ret = -1;
4917
4918 total_events = data->events + data->events_nested;
4919 total_written = data->bytes_written + data->bytes_written_nested;
4920 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4921 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4922
4923 big_event_size = data->max_size + data->max_size_nested;
4924 small_event_size = data->min_size + data->min_size_nested;
4925
4926 pr_info("CPU %d:\n", cpu);
4927 pr_info(" events: %ld\n", total_events);
4928 pr_info(" dropped bytes: %ld\n", total_dropped);
4929 pr_info(" alloced bytes: %ld\n", total_alloc);
4930 pr_info(" written bytes: %ld\n", total_written);
4931 pr_info(" biggest event: %d\n", big_event_size);
4932 pr_info(" smallest event: %d\n", small_event_size);
4933
4934 if (RB_WARN_ON(buffer, total_dropped))
4935 break;
4936
4937 ret = 0;
4938
4939 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4940 total_lost += lost;
4941 item = ring_buffer_event_data(event);
4942 total_len += ring_buffer_event_length(event);
4943 total_size += item->size + sizeof(struct rb_item);
4944 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4945 pr_info("FAILED!\n");
4946 pr_info("buffer had: %.*s\n", item->size, item->str);
4947 pr_info("expected: %.*s\n", item->size, rb_string);
4948 RB_WARN_ON(buffer, 1);
4949 ret = -1;
4950 break;
4951 }
4952 total_read++;
4953 }
4954 if (ret)
4955 break;
4956
4957 ret = -1;
4958
4959 pr_info(" read events: %ld\n", total_read);
4960 pr_info(" lost events: %ld\n", total_lost);
4961 pr_info(" total events: %ld\n", total_lost + total_read);
4962 pr_info(" recorded len bytes: %ld\n", total_len);
4963 pr_info(" recorded size bytes: %ld\n", total_size);
4964 if (total_lost)
4965 pr_info(" With dropped events, record len and size may not match\n"
4966 " alloced and written from above\n");
4967 if (!total_lost) {
4968 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4969 total_size != total_written))
4970 break;
4971 }
4972 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4973 break;
4974
4975 ret = 0;
4976 }
4977 if (!ret)
4978 pr_info("Ring buffer PASSED!\n");
4979
4980 ring_buffer_free(buffer);
4981 return 0;
4982}
4983
4984late_initcall(test_ringbuffer);
4985#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */