]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: kdb: Fix ftdump to not sleep
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
e6017571 9#include <linux/sched/clock.h>
0b07436d 10#include <linux/trace_seq.h>
7a8e76a3 11#include <linux/spinlock.h>
15693458 12#include <linux/irq_work.h>
7a8e76a3 13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
6c43e554 19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
7a8e76a3
SR
21#include <linux/init.h>
22#include <linux/hash.h>
23#include <linux/list.h>
554f786e 24#include <linux/cpu.h>
7a8e76a3 25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
c0cd93aa
SRRH
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
d1b182a8
SR
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
499e5470
SR
118/* Used for individual buffers (after the counter) */
119#define RB_BUFFER_OFF (1 << 20)
a3583244 120
499e5470 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 122
e3d6bf0a 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 124#define RB_ALIGNMENT 4U
334d4169 125#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 126#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 127
649508f6 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
129# define RB_FORCE_8BYTE_ALIGNMENT 0
130# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131#else
132# define RB_FORCE_8BYTE_ALIGNMENT 1
133# define RB_ARCH_ALIGNMENT 8U
134#endif
135
649508f6
JH
136#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
334d4169
LJ
138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
140
141enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144};
145
69d1b839
SR
146#define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
2d622719
TZ
149static inline int rb_null_event(struct ring_buffer_event *event)
150{
a1863c21 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
152}
153
154static void rb_event_set_padding(struct ring_buffer_event *event)
155{
a1863c21 156 /* padding has a NULL time_delta */
334d4169 157 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
158 event->time_delta = 0;
159}
160
34a148bf 161static unsigned
2d622719 162rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
163{
164 unsigned length;
165
334d4169
LJ
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171}
172
69d1b839
SR
173/*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178static inline unsigned
2d622719
TZ
179rb_event_length(struct ring_buffer_event *event)
180{
334d4169 181 switch (event->type_len) {
7a8e76a3 182 case RINGBUF_TYPE_PADDING:
2d622719
TZ
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
334d4169 186 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
2d622719 195 return rb_event_data_length(event);
7a8e76a3
SR
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201}
202
69d1b839
SR
203/*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207static inline unsigned
208rb_event_ts_length(struct ring_buffer_event *event)
209{
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218}
219
7a8e76a3
SR
220/**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
69d1b839
SR
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
7a8e76a3
SR
229 */
230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231{
69d1b839
SR
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
334d4169 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
7a8e76a3 244}
c4f50183 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
246
247/* inline for ring buffer fast paths */
929ddbf3 248static __always_inline void *
7a8e76a3
SR
249rb_event_data(struct ring_buffer_event *event)
250{
69d1b839
SR
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
334d4169 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 254 /* If length is in len field, then array[0] has the data */
334d4169 255 if (event->type_len)
7a8e76a3
SR
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259}
260
261/**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265void *ring_buffer_event_data(struct ring_buffer_event *event)
266{
267 return rb_event_data(event);
268}
c4f50183 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
270
271#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 272 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
273
274#define TS_SHIFT 27
275#define TS_MASK ((1ULL << TS_SHIFT) - 1)
276#define TS_DELTA_TEST (~TS_MASK)
277
66a8cb95
SR
278/* Flag when events were overwritten */
279#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
280/* Missed count stored at end */
281#define RB_MISSED_STORED (1 << 30)
66a8cb95 282
45d8b80c
SRV
283#define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
abc9b56d 285struct buffer_data_page {
e4c2ce82 286 u64 time_stamp; /* page time stamp */
c3706f00 287 local_t commit; /* write committed index */
649508f6 288 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
289};
290
77ae365e
SR
291/*
292 * Note, the buffer_page list must be first. The buffer pages
293 * are allocated in cache lines, which means that each buffer
294 * page will be at the beginning of a cache line, and thus
295 * the least significant bits will be zero. We use this to
296 * add flags in the list struct pointers, to make the ring buffer
297 * lockless.
298 */
abc9b56d 299struct buffer_page {
778c55d4 300 struct list_head list; /* list of buffer pages */
abc9b56d 301 local_t write; /* index for next write */
6f807acd 302 unsigned read; /* index for next read */
778c55d4 303 local_t entries; /* entries on this page */
ff0ff84a 304 unsigned long real_end; /* real end of data */
abc9b56d 305 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
306};
307
77ae365e
SR
308/*
309 * The buffer page counters, write and entries, must be reset
310 * atomically when crossing page boundaries. To synchronize this
311 * update, two counters are inserted into the number. One is
312 * the actual counter for the write position or count on the page.
313 *
314 * The other is a counter of updaters. Before an update happens
315 * the update partition of the counter is incremented. This will
316 * allow the updater to update the counter atomically.
317 *
318 * The counter is 20 bits, and the state data is 12.
319 */
320#define RB_WRITE_MASK 0xfffff
321#define RB_WRITE_INTCNT (1 << 20)
322
044fa782 323static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 324{
044fa782 325 local_set(&bpage->commit, 0);
abc9b56d
SR
326}
327
474d32b6
SR
328/**
329 * ring_buffer_page_len - the size of data on the page.
330 * @page: The page to read
331 *
332 * Returns the amount of data on the page, including buffer page header.
333 */
ef7a4a16
SR
334size_t ring_buffer_page_len(void *page)
335{
45d8b80c
SRV
336 struct buffer_data_page *bpage = page;
337
338 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
474d32b6 339 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
340}
341
ed56829c
SR
342/*
343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344 * this issue out.
345 */
34a148bf 346static void free_buffer_page(struct buffer_page *bpage)
ed56829c 347{
34a148bf 348 free_page((unsigned long)bpage->page);
e4c2ce82 349 kfree(bpage);
ed56829c
SR
350}
351
7a8e76a3
SR
352/*
353 * We need to fit the time_stamp delta into 27 bits.
354 */
355static inline int test_time_stamp(u64 delta)
356{
357 if (delta & TS_DELTA_TEST)
358 return 1;
359 return 0;
360}
361
474d32b6 362#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 363
be957c44
SR
364/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
d1b182a8
SR
367int ring_buffer_print_page_header(struct trace_seq *s)
368{
369 struct buffer_data_page field;
c0cd93aa
SRRH
370
371 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372 "offset:0;\tsize:%u;\tsigned:%u;\n",
373 (unsigned int)sizeof(field.time_stamp),
374 (unsigned int)is_signed_type(u64));
375
376 trace_seq_printf(s, "\tfield: local_t commit;\t"
377 "offset:%u;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)offsetof(typeof(field), commit),
379 (unsigned int)sizeof(field.commit),
380 (unsigned int)is_signed_type(long));
381
382 trace_seq_printf(s, "\tfield: int overwrite;\t"
383 "offset:%u;\tsize:%u;\tsigned:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 1,
386 (unsigned int)is_signed_type(long));
387
388 trace_seq_printf(s, "\tfield: char data;\t"
389 "offset:%u;\tsize:%u;\tsigned:%u;\n",
390 (unsigned int)offsetof(typeof(field), data),
391 (unsigned int)BUF_PAGE_SIZE,
392 (unsigned int)is_signed_type(char));
393
394 return !trace_seq_has_overflowed(s);
d1b182a8
SR
395}
396
15693458
SRRH
397struct rb_irq_work {
398 struct irq_work work;
399 wait_queue_head_t waiters;
1e0d6714 400 wait_queue_head_t full_waiters;
15693458 401 bool waiters_pending;
1e0d6714
SRRH
402 bool full_waiters_pending;
403 bool wakeup_full;
15693458
SRRH
404};
405
fcc742ea
SRRH
406/*
407 * Structure to hold event state and handle nested events.
408 */
409struct rb_event_info {
410 u64 ts;
411 u64 delta;
412 unsigned long length;
413 struct buffer_page *tail_page;
414 int add_timestamp;
415};
416
a497adb4
SRRH
417/*
418 * Used for which event context the event is in.
419 * NMI = 0
420 * IRQ = 1
421 * SOFTIRQ = 2
422 * NORMAL = 3
423 *
424 * See trace_recursive_lock() comment below for more details.
425 */
426enum {
427 RB_CTX_NMI,
428 RB_CTX_IRQ,
429 RB_CTX_SOFTIRQ,
430 RB_CTX_NORMAL,
431 RB_CTX_MAX
432};
433
7a8e76a3
SR
434/*
435 * head_page == tail_page && head == tail then buffer is empty.
436 */
437struct ring_buffer_per_cpu {
438 int cpu;
985023de 439 atomic_t record_disabled;
7a8e76a3 440 struct ring_buffer *buffer;
5389f6fa 441 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 442 arch_spinlock_t lock;
7a8e76a3 443 struct lock_class_key lock_key;
73a757e6 444 struct buffer_data_page *free_page;
9b94a8fb 445 unsigned long nr_pages;
58a09ec6 446 unsigned int current_context;
3adc54fa 447 struct list_head *pages;
6f807acd
SR
448 struct buffer_page *head_page; /* read from head */
449 struct buffer_page *tail_page; /* write to tail */
c3706f00 450 struct buffer_page *commit_page; /* committed pages */
d769041f 451 struct buffer_page *reader_page;
66a8cb95
SR
452 unsigned long lost_events;
453 unsigned long last_overrun;
c64e148a 454 local_t entries_bytes;
e4906eff 455 local_t entries;
884bfe89
SP
456 local_t overrun;
457 local_t commit_overrun;
458 local_t dropped_events;
fa743953
SR
459 local_t committing;
460 local_t commits;
77ae365e 461 unsigned long read;
c64e148a 462 unsigned long read_bytes;
7a8e76a3
SR
463 u64 write_stamp;
464 u64 read_stamp;
438ced17 465 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 466 long nr_pages_to_update;
438ced17 467 struct list_head new_pages; /* new pages to add */
83f40318 468 struct work_struct update_pages_work;
05fdd70d 469 struct completion update_done;
15693458
SRRH
470
471 struct rb_irq_work irq_work;
7a8e76a3
SR
472};
473
474struct ring_buffer {
7a8e76a3
SR
475 unsigned flags;
476 int cpus;
7a8e76a3 477 atomic_t record_disabled;
83f40318 478 atomic_t resize_disabled;
00f62f61 479 cpumask_var_t cpumask;
7a8e76a3 480
1f8a6a10
PZ
481 struct lock_class_key *reader_lock_key;
482
7a8e76a3
SR
483 struct mutex mutex;
484
485 struct ring_buffer_per_cpu **buffers;
554f786e 486
b32614c0 487 struct hlist_node node;
37886f6a 488 u64 (*clock)(void);
15693458
SRRH
489
490 struct rb_irq_work irq_work;
7a8e76a3
SR
491};
492
493struct ring_buffer_iter {
494 struct ring_buffer_per_cpu *cpu_buffer;
495 unsigned long head;
496 struct buffer_page *head_page;
492a74f4
SR
497 struct buffer_page *cache_reader_page;
498 unsigned long cache_read;
7a8e76a3
SR
499 u64 read_stamp;
500};
501
15693458
SRRH
502/*
503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504 *
505 * Schedules a delayed work to wake up any task that is blocked on the
506 * ring buffer waiters queue.
507 */
508static void rb_wake_up_waiters(struct irq_work *work)
509{
510 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
513 if (rbwork->wakeup_full) {
514 rbwork->wakeup_full = false;
515 wake_up_all(&rbwork->full_waiters);
516 }
15693458
SRRH
517}
518
519/**
520 * ring_buffer_wait - wait for input to the ring buffer
521 * @buffer: buffer to wait on
522 * @cpu: the cpu buffer to wait on
e30f53aa 523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
524 *
525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526 * as data is added to any of the @buffer's cpu buffers. Otherwise
527 * it will wait for data to be added to a specific cpu buffer.
528 */
e30f53aa 529int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 530{
e30f53aa 531 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
532 DEFINE_WAIT(wait);
533 struct rb_irq_work *work;
e30f53aa 534 int ret = 0;
15693458
SRRH
535
536 /*
537 * Depending on what the caller is waiting for, either any
538 * data in any cpu buffer, or a specific buffer, put the
539 * caller on the appropriate wait queue.
540 */
1e0d6714 541 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 542 work = &buffer->irq_work;
1e0d6714
SRRH
543 /* Full only makes sense on per cpu reads */
544 full = false;
545 } else {
8b8b3683
SRRH
546 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547 return -ENODEV;
15693458
SRRH
548 cpu_buffer = buffer->buffers[cpu];
549 work = &cpu_buffer->irq_work;
550 }
551
552
e30f53aa 553 while (true) {
1e0d6714
SRRH
554 if (full)
555 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556 else
557 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
558
559 /*
560 * The events can happen in critical sections where
561 * checking a work queue can cause deadlocks.
562 * After adding a task to the queue, this flag is set
563 * only to notify events to try to wake up the queue
564 * using irq_work.
565 *
566 * We don't clear it even if the buffer is no longer
567 * empty. The flag only causes the next event to run
568 * irq_work to do the work queue wake up. The worse
569 * that can happen if we race with !trace_empty() is that
570 * an event will cause an irq_work to try to wake up
571 * an empty queue.
572 *
573 * There's no reason to protect this flag either, as
574 * the work queue and irq_work logic will do the necessary
575 * synchronization for the wake ups. The only thing
576 * that is necessary is that the wake up happens after
577 * a task has been queued. It's OK for spurious wake ups.
578 */
1e0d6714
SRRH
579 if (full)
580 work->full_waiters_pending = true;
581 else
582 work->waiters_pending = true;
e30f53aa
RV
583
584 if (signal_pending(current)) {
585 ret = -EINTR;
586 break;
587 }
588
589 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590 break;
591
592 if (cpu != RING_BUFFER_ALL_CPUS &&
593 !ring_buffer_empty_cpu(buffer, cpu)) {
594 unsigned long flags;
595 bool pagebusy;
596
597 if (!full)
598 break;
599
600 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604 if (!pagebusy)
605 break;
606 }
15693458 607
15693458 608 schedule();
e30f53aa 609 }
15693458 610
1e0d6714
SRRH
611 if (full)
612 finish_wait(&work->full_waiters, &wait);
613 else
614 finish_wait(&work->waiters, &wait);
e30f53aa
RV
615
616 return ret;
15693458
SRRH
617}
618
619/**
620 * ring_buffer_poll_wait - poll on buffer input
621 * @buffer: buffer to wait on
622 * @cpu: the cpu buffer to wait on
623 * @filp: the file descriptor
624 * @poll_table: The poll descriptor
625 *
626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627 * as data is added to any of the @buffer's cpu buffers. Otherwise
628 * it will wait for data to be added to a specific cpu buffer.
629 *
630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631 * zero otherwise.
632 */
633int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634 struct file *filp, poll_table *poll_table)
635{
636 struct ring_buffer_per_cpu *cpu_buffer;
637 struct rb_irq_work *work;
638
15693458
SRRH
639 if (cpu == RING_BUFFER_ALL_CPUS)
640 work = &buffer->irq_work;
641 else {
6721cb60
SRRH
642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643 return -EINVAL;
644
15693458
SRRH
645 cpu_buffer = buffer->buffers[cpu];
646 work = &cpu_buffer->irq_work;
647 }
648
15693458 649 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
650 work->waiters_pending = true;
651 /*
652 * There's a tight race between setting the waiters_pending and
653 * checking if the ring buffer is empty. Once the waiters_pending bit
654 * is set, the next event will wake the task up, but we can get stuck
655 * if there's only a single event in.
656 *
657 * FIXME: Ideally, we need a memory barrier on the writer side as well,
658 * but adding a memory barrier to all events will cause too much of a
659 * performance hit in the fast path. We only need a memory barrier when
660 * the buffer goes from empty to having content. But as this race is
661 * extremely small, and it's not a problem if another event comes in, we
662 * will fix it later.
663 */
664 smp_mb();
15693458
SRRH
665
666 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668 return POLLIN | POLLRDNORM;
669 return 0;
670}
671
f536aafc 672/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
673#define RB_WARN_ON(b, cond) \
674 ({ \
675 int _____ret = unlikely(cond); \
676 if (_____ret) { \
677 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678 struct ring_buffer_per_cpu *__b = \
679 (void *)b; \
680 atomic_inc(&__b->buffer->record_disabled); \
681 } else \
682 atomic_inc(&b->record_disabled); \
683 WARN_ON(1); \
684 } \
685 _____ret; \
3e89c7bb 686 })
f536aafc 687
37886f6a
SR
688/* Up this if you want to test the TIME_EXTENTS and normalization */
689#define DEBUG_SHIFT 0
690
6d3f1e12 691static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
692{
693 /* shift to debug/test normalization and TIME_EXTENTS */
694 return buffer->clock() << DEBUG_SHIFT;
695}
696
37886f6a
SR
697u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698{
699 u64 time;
700
701 preempt_disable_notrace();
6d3f1e12 702 time = rb_time_stamp(buffer);
37886f6a
SR
703 preempt_enable_no_resched_notrace();
704
705 return time;
706}
707EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
709void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710 int cpu, u64 *ts)
711{
712 /* Just stupid testing the normalize function and deltas */
713 *ts >>= DEBUG_SHIFT;
714}
715EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
77ae365e
SR
717/*
718 * Making the ring buffer lockless makes things tricky.
719 * Although writes only happen on the CPU that they are on,
720 * and they only need to worry about interrupts. Reads can
721 * happen on any CPU.
722 *
723 * The reader page is always off the ring buffer, but when the
724 * reader finishes with a page, it needs to swap its page with
725 * a new one from the buffer. The reader needs to take from
726 * the head (writes go to the tail). But if a writer is in overwrite
727 * mode and wraps, it must push the head page forward.
728 *
729 * Here lies the problem.
730 *
731 * The reader must be careful to replace only the head page, and
732 * not another one. As described at the top of the file in the
733 * ASCII art, the reader sets its old page to point to the next
734 * page after head. It then sets the page after head to point to
735 * the old reader page. But if the writer moves the head page
736 * during this operation, the reader could end up with the tail.
737 *
738 * We use cmpxchg to help prevent this race. We also do something
739 * special with the page before head. We set the LSB to 1.
740 *
741 * When the writer must push the page forward, it will clear the
742 * bit that points to the head page, move the head, and then set
743 * the bit that points to the new head page.
744 *
745 * We also don't want an interrupt coming in and moving the head
746 * page on another writer. Thus we use the second LSB to catch
747 * that too. Thus:
748 *
749 * head->list->prev->next bit 1 bit 0
750 * ------- -------
751 * Normal page 0 0
752 * Points to head page 0 1
753 * New head page 1 0
754 *
755 * Note we can not trust the prev pointer of the head page, because:
756 *
757 * +----+ +-----+ +-----+
758 * | |------>| T |---X--->| N |
759 * | |<------| | | |
760 * +----+ +-----+ +-----+
761 * ^ ^ |
762 * | +-----+ | |
763 * +----------| R |----------+ |
764 * | |<-----------+
765 * +-----+
766 *
767 * Key: ---X--> HEAD flag set in pointer
768 * T Tail page
769 * R Reader page
770 * N Next page
771 *
772 * (see __rb_reserve_next() to see where this happens)
773 *
774 * What the above shows is that the reader just swapped out
775 * the reader page with a page in the buffer, but before it
776 * could make the new header point back to the new page added
777 * it was preempted by a writer. The writer moved forward onto
778 * the new page added by the reader and is about to move forward
779 * again.
780 *
781 * You can see, it is legitimate for the previous pointer of
782 * the head (or any page) not to point back to itself. But only
783 * temporarially.
784 */
785
786#define RB_PAGE_NORMAL 0UL
787#define RB_PAGE_HEAD 1UL
788#define RB_PAGE_UPDATE 2UL
789
790
791#define RB_FLAG_MASK 3UL
792
793/* PAGE_MOVED is not part of the mask */
794#define RB_PAGE_MOVED 4UL
795
796/*
797 * rb_list_head - remove any bit
798 */
799static struct list_head *rb_list_head(struct list_head *list)
800{
801 unsigned long val = (unsigned long)list;
802
803 return (struct list_head *)(val & ~RB_FLAG_MASK);
804}
805
806/*
6d3f1e12 807 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
808 *
809 * Because the reader may move the head_page pointer, we can
810 * not trust what the head page is (it may be pointing to
811 * the reader page). But if the next page is a header page,
812 * its flags will be non zero.
813 */
42b16b3f 814static inline int
77ae365e
SR
815rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816 struct buffer_page *page, struct list_head *list)
817{
818 unsigned long val;
819
820 val = (unsigned long)list->next;
821
822 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823 return RB_PAGE_MOVED;
824
825 return val & RB_FLAG_MASK;
826}
827
828/*
829 * rb_is_reader_page
830 *
831 * The unique thing about the reader page, is that, if the
832 * writer is ever on it, the previous pointer never points
833 * back to the reader page.
834 */
06ca3209 835static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
836{
837 struct list_head *list = page->list.prev;
838
839 return rb_list_head(list->next) != &page->list;
840}
841
842/*
843 * rb_set_list_to_head - set a list_head to be pointing to head.
844 */
845static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846 struct list_head *list)
847{
848 unsigned long *ptr;
849
850 ptr = (unsigned long *)&list->next;
851 *ptr |= RB_PAGE_HEAD;
852 *ptr &= ~RB_PAGE_UPDATE;
853}
854
855/*
856 * rb_head_page_activate - sets up head page
857 */
858static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859{
860 struct buffer_page *head;
861
862 head = cpu_buffer->head_page;
863 if (!head)
864 return;
865
866 /*
867 * Set the previous list pointer to have the HEAD flag.
868 */
869 rb_set_list_to_head(cpu_buffer, head->list.prev);
870}
871
872static void rb_list_head_clear(struct list_head *list)
873{
874 unsigned long *ptr = (unsigned long *)&list->next;
875
876 *ptr &= ~RB_FLAG_MASK;
877}
878
879/*
880 * rb_head_page_dactivate - clears head page ptr (for free list)
881 */
882static void
883rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884{
885 struct list_head *hd;
886
887 /* Go through the whole list and clear any pointers found. */
888 rb_list_head_clear(cpu_buffer->pages);
889
890 list_for_each(hd, cpu_buffer->pages)
891 rb_list_head_clear(hd);
892}
893
894static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895 struct buffer_page *head,
896 struct buffer_page *prev,
897 int old_flag, int new_flag)
898{
899 struct list_head *list;
900 unsigned long val = (unsigned long)&head->list;
901 unsigned long ret;
902
903 list = &prev->list;
904
905 val &= ~RB_FLAG_MASK;
906
08a40816
SR
907 ret = cmpxchg((unsigned long *)&list->next,
908 val | old_flag, val | new_flag);
77ae365e
SR
909
910 /* check if the reader took the page */
911 if ((ret & ~RB_FLAG_MASK) != val)
912 return RB_PAGE_MOVED;
913
914 return ret & RB_FLAG_MASK;
915}
916
917static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918 struct buffer_page *head,
919 struct buffer_page *prev,
920 int old_flag)
921{
922 return rb_head_page_set(cpu_buffer, head, prev,
923 old_flag, RB_PAGE_UPDATE);
924}
925
926static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag)
930{
931 return rb_head_page_set(cpu_buffer, head, prev,
932 old_flag, RB_PAGE_HEAD);
933}
934
935static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *head,
937 struct buffer_page *prev,
938 int old_flag)
939{
940 return rb_head_page_set(cpu_buffer, head, prev,
941 old_flag, RB_PAGE_NORMAL);
942}
943
944static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945 struct buffer_page **bpage)
946{
947 struct list_head *p = rb_list_head((*bpage)->list.next);
948
949 *bpage = list_entry(p, struct buffer_page, list);
950}
951
952static struct buffer_page *
953rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954{
955 struct buffer_page *head;
956 struct buffer_page *page;
957 struct list_head *list;
958 int i;
959
960 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961 return NULL;
962
963 /* sanity check */
964 list = cpu_buffer->pages;
965 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966 return NULL;
967
968 page = head = cpu_buffer->head_page;
969 /*
970 * It is possible that the writer moves the header behind
971 * where we started, and we miss in one loop.
972 * A second loop should grab the header, but we'll do
973 * three loops just because I'm paranoid.
974 */
975 for (i = 0; i < 3; i++) {
976 do {
977 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978 cpu_buffer->head_page = page;
979 return page;
980 }
981 rb_inc_page(cpu_buffer, &page);
982 } while (page != head);
983 }
984
985 RB_WARN_ON(cpu_buffer, 1);
986
987 return NULL;
988}
989
990static int rb_head_page_replace(struct buffer_page *old,
991 struct buffer_page *new)
992{
993 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994 unsigned long val;
995 unsigned long ret;
996
997 val = *ptr & ~RB_FLAG_MASK;
998 val |= RB_PAGE_HEAD;
999
08a40816 1000 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1001
1002 return ret == val;
1003}
1004
1005/*
1006 * rb_tail_page_update - move the tail page forward
77ae365e 1007 */
70004986 1008static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1009 struct buffer_page *tail_page,
1010 struct buffer_page *next_page)
1011{
77ae365e
SR
1012 unsigned long old_entries;
1013 unsigned long old_write;
77ae365e
SR
1014
1015 /*
1016 * The tail page now needs to be moved forward.
1017 *
1018 * We need to reset the tail page, but without messing
1019 * with possible erasing of data brought in by interrupts
1020 * that have moved the tail page and are currently on it.
1021 *
1022 * We add a counter to the write field to denote this.
1023 */
1024 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027 /*
1028 * Just make sure we have seen our old_write and synchronize
1029 * with any interrupts that come in.
1030 */
1031 barrier();
1032
1033 /*
1034 * If the tail page is still the same as what we think
1035 * it is, then it is up to us to update the tail
1036 * pointer.
1037 */
8573636e 1038 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1039 /* Zero the write counter */
1040 unsigned long val = old_write & ~RB_WRITE_MASK;
1041 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043 /*
1044 * This will only succeed if an interrupt did
1045 * not come in and change it. In which case, we
1046 * do not want to modify it.
da706d8b
LJ
1047 *
1048 * We add (void) to let the compiler know that we do not care
1049 * about the return value of these functions. We use the
1050 * cmpxchg to only update if an interrupt did not already
1051 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1052 */
da706d8b
LJ
1053 (void)local_cmpxchg(&next_page->write, old_write, val);
1054 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1055
1056 /*
1057 * No need to worry about races with clearing out the commit.
1058 * it only can increment when a commit takes place. But that
1059 * only happens in the outer most nested commit.
1060 */
1061 local_set(&next_page->page->commit, 0);
1062
70004986
SRRH
1063 /* Again, either we update tail_page or an interrupt does */
1064 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1065 }
77ae365e
SR
1066}
1067
1068static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069 struct buffer_page *bpage)
1070{
1071 unsigned long val = (unsigned long)bpage;
1072
1073 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074 return 1;
1075
1076 return 0;
1077}
1078
1079/**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
1082static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083 struct list_head *list)
1084{
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086 return 1;
1087 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088 return 1;
1089 return 0;
1090}
1091
7a8e76a3 1092/**
d611851b 1093 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
c3706f00 1096 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1097 * been corrupted.
1098 */
1099static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100{
3adc54fa 1101 struct list_head *head = cpu_buffer->pages;
044fa782 1102 struct buffer_page *bpage, *tmp;
7a8e76a3 1103
308f7eeb
SR
1104 /* Reset the head page if it exists */
1105 if (cpu_buffer->head_page)
1106 rb_set_head_page(cpu_buffer);
1107
77ae365e
SR
1108 rb_head_page_deactivate(cpu_buffer);
1109
3e89c7bb
SR
1110 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111 return -1;
1112 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113 return -1;
7a8e76a3 1114
77ae365e
SR
1115 if (rb_check_list(cpu_buffer, head))
1116 return -1;
1117
044fa782 1118 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1119 if (RB_WARN_ON(cpu_buffer,
044fa782 1120 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1121 return -1;
1122 if (RB_WARN_ON(cpu_buffer,
044fa782 1123 bpage->list.prev->next != &bpage->list))
3e89c7bb 1124 return -1;
77ae365e
SR
1125 if (rb_check_list(cpu_buffer, &bpage->list))
1126 return -1;
7a8e76a3
SR
1127 }
1128
77ae365e
SR
1129 rb_head_page_activate(cpu_buffer);
1130
7a8e76a3
SR
1131 return 0;
1132}
1133
9b94a8fb 1134static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1135{
044fa782 1136 struct buffer_page *bpage, *tmp;
9b94a8fb 1137 long i;
3adc54fa 1138
891ec1a8
SRV
1139 /* Check if the available memory is there first */
1140 i = si_mem_available();
1141 if (i < nr_pages)
1142 return -ENOMEM;
1143
7a8e76a3 1144 for (i = 0; i < nr_pages; i++) {
7ea59064 1145 struct page *page;
d7ec4bfe 1146 /*
84861885
JF
1147 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1148 * gracefully without invoking oom-killer and the system is not
1149 * destabilized.
d7ec4bfe 1150 */
044fa782 1151 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
84861885 1152 GFP_KERNEL | __GFP_RETRY_MAYFAIL,
438ced17 1153 cpu_to_node(cpu));
044fa782 1154 if (!bpage)
e4c2ce82 1155 goto free_pages;
77ae365e 1156
438ced17 1157 list_add(&bpage->list, pages);
77ae365e 1158
438ced17 1159 page = alloc_pages_node(cpu_to_node(cpu),
84861885 1160 GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
7ea59064 1161 if (!page)
7a8e76a3 1162 goto free_pages;
7ea59064 1163 bpage->page = page_address(page);
044fa782 1164 rb_init_page(bpage->page);
7a8e76a3
SR
1165 }
1166
438ced17
VN
1167 return 0;
1168
1169free_pages:
1170 list_for_each_entry_safe(bpage, tmp, pages, list) {
1171 list_del_init(&bpage->list);
1172 free_buffer_page(bpage);
1173 }
1174
1175 return -ENOMEM;
1176}
1177
1178static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1179 unsigned long nr_pages)
438ced17
VN
1180{
1181 LIST_HEAD(pages);
1182
1183 WARN_ON(!nr_pages);
1184
1185 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1186 return -ENOMEM;
1187
3adc54fa
SR
1188 /*
1189 * The ring buffer page list is a circular list that does not
1190 * start and end with a list head. All page list items point to
1191 * other pages.
1192 */
1193 cpu_buffer->pages = pages.next;
1194 list_del(&pages);
7a8e76a3 1195
438ced17
VN
1196 cpu_buffer->nr_pages = nr_pages;
1197
7a8e76a3
SR
1198 rb_check_pages(cpu_buffer);
1199
1200 return 0;
7a8e76a3
SR
1201}
1202
1203static struct ring_buffer_per_cpu *
9b94a8fb 1204rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1205{
1206 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1207 struct buffer_page *bpage;
7ea59064 1208 struct page *page;
7a8e76a3
SR
1209 int ret;
1210
1211 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1212 GFP_KERNEL, cpu_to_node(cpu));
1213 if (!cpu_buffer)
1214 return NULL;
1215
1216 cpu_buffer->cpu = cpu;
1217 cpu_buffer->buffer = buffer;
5389f6fa 1218 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1219 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1220 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1221 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1222 init_completion(&cpu_buffer->update_done);
15693458 1223 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1224 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1225 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1226
044fa782 1227 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1228 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1229 if (!bpage)
e4c2ce82
SR
1230 goto fail_free_buffer;
1231
77ae365e
SR
1232 rb_check_bpage(cpu_buffer, bpage);
1233
044fa782 1234 cpu_buffer->reader_page = bpage;
7ea59064
VN
1235 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1236 if (!page)
e4c2ce82 1237 goto fail_free_reader;
7ea59064 1238 bpage->page = page_address(page);
044fa782 1239 rb_init_page(bpage->page);
e4c2ce82 1240
d769041f 1241 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1242 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1243
438ced17 1244 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1245 if (ret < 0)
d769041f 1246 goto fail_free_reader;
7a8e76a3
SR
1247
1248 cpu_buffer->head_page
3adc54fa 1249 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1250 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1251
77ae365e
SR
1252 rb_head_page_activate(cpu_buffer);
1253
7a8e76a3
SR
1254 return cpu_buffer;
1255
d769041f
SR
1256 fail_free_reader:
1257 free_buffer_page(cpu_buffer->reader_page);
1258
7a8e76a3
SR
1259 fail_free_buffer:
1260 kfree(cpu_buffer);
1261 return NULL;
1262}
1263
1264static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1265{
3adc54fa 1266 struct list_head *head = cpu_buffer->pages;
044fa782 1267 struct buffer_page *bpage, *tmp;
7a8e76a3 1268
d769041f
SR
1269 free_buffer_page(cpu_buffer->reader_page);
1270
77ae365e
SR
1271 rb_head_page_deactivate(cpu_buffer);
1272
3adc54fa
SR
1273 if (head) {
1274 list_for_each_entry_safe(bpage, tmp, head, list) {
1275 list_del_init(&bpage->list);
1276 free_buffer_page(bpage);
1277 }
1278 bpage = list_entry(head, struct buffer_page, list);
044fa782 1279 free_buffer_page(bpage);
7a8e76a3 1280 }
3adc54fa 1281
7a8e76a3
SR
1282 kfree(cpu_buffer);
1283}
1284
1285/**
d611851b 1286 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1287 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1288 * @flags: attributes to set for the ring buffer.
1289 *
1290 * Currently the only flag that is available is the RB_FL_OVERWRITE
1291 * flag. This flag means that the buffer will overwrite old data
1292 * when the buffer wraps. If this flag is not set, the buffer will
1293 * drop data when the tail hits the head.
1294 */
1f8a6a10
PZ
1295struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1296 struct lock_class_key *key)
7a8e76a3
SR
1297{
1298 struct ring_buffer *buffer;
9b94a8fb 1299 long nr_pages;
7a8e76a3 1300 int bsize;
9b94a8fb 1301 int cpu;
b32614c0 1302 int ret;
7a8e76a3
SR
1303
1304 /* keep it in its own cache line */
1305 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1306 GFP_KERNEL);
1307 if (!buffer)
1308 return NULL;
1309
b18cc3de 1310 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1311 goto fail_free_buffer;
1312
438ced17 1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1314 buffer->flags = flags;
37886f6a 1315 buffer->clock = trace_clock_local;
1f8a6a10 1316 buffer->reader_lock_key = key;
7a8e76a3 1317
15693458 1318 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1319 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1320
7a8e76a3 1321 /* need at least two pages */
438ced17
VN
1322 if (nr_pages < 2)
1323 nr_pages = 2;
7a8e76a3 1324
7a8e76a3
SR
1325 buffer->cpus = nr_cpu_ids;
1326
1327 bsize = sizeof(void *) * nr_cpu_ids;
1328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1329 GFP_KERNEL);
1330 if (!buffer->buffers)
9e01c1b7 1331 goto fail_free_cpumask;
7a8e76a3 1332
b32614c0
SAS
1333 cpu = raw_smp_processor_id();
1334 cpumask_set_cpu(cpu, buffer->cpumask);
1335 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1336 if (!buffer->buffers[cpu])
1337 goto fail_free_buffers;
7a8e76a3 1338
b32614c0
SAS
1339 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1340 if (ret < 0)
1341 goto fail_free_buffers;
554f786e 1342
7a8e76a3
SR
1343 mutex_init(&buffer->mutex);
1344
1345 return buffer;
1346
1347 fail_free_buffers:
1348 for_each_buffer_cpu(buffer, cpu) {
1349 if (buffer->buffers[cpu])
1350 rb_free_cpu_buffer(buffer->buffers[cpu]);
1351 }
1352 kfree(buffer->buffers);
1353
9e01c1b7
RR
1354 fail_free_cpumask:
1355 free_cpumask_var(buffer->cpumask);
1356
7a8e76a3
SR
1357 fail_free_buffer:
1358 kfree(buffer);
1359 return NULL;
1360}
1f8a6a10 1361EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1362
1363/**
1364 * ring_buffer_free - free a ring buffer.
1365 * @buffer: the buffer to free.
1366 */
1367void
1368ring_buffer_free(struct ring_buffer *buffer)
1369{
1370 int cpu;
1371
b32614c0 1372 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1373
7a8e76a3
SR
1374 for_each_buffer_cpu(buffer, cpu)
1375 rb_free_cpu_buffer(buffer->buffers[cpu]);
1376
bd3f0221 1377 kfree(buffer->buffers);
9e01c1b7
RR
1378 free_cpumask_var(buffer->cpumask);
1379
7a8e76a3
SR
1380 kfree(buffer);
1381}
c4f50183 1382EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1383
37886f6a
SR
1384void ring_buffer_set_clock(struct ring_buffer *buffer,
1385 u64 (*clock)(void))
1386{
1387 buffer->clock = clock;
1388}
1389
7a8e76a3
SR
1390static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1391
83f40318
VN
1392static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1393{
1394 return local_read(&bpage->entries) & RB_WRITE_MASK;
1395}
1396
1397static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398{
1399 return local_read(&bpage->write) & RB_WRITE_MASK;
1400}
1401
5040b4b7 1402static int
9b94a8fb 1403rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1404{
83f40318
VN
1405 struct list_head *tail_page, *to_remove, *next_page;
1406 struct buffer_page *to_remove_page, *tmp_iter_page;
1407 struct buffer_page *last_page, *first_page;
9b94a8fb 1408 unsigned long nr_removed;
83f40318
VN
1409 unsigned long head_bit;
1410 int page_entries;
1411
1412 head_bit = 0;
7a8e76a3 1413
5389f6fa 1414 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1415 atomic_inc(&cpu_buffer->record_disabled);
1416 /*
1417 * We don't race with the readers since we have acquired the reader
1418 * lock. We also don't race with writers after disabling recording.
1419 * This makes it easy to figure out the first and the last page to be
1420 * removed from the list. We unlink all the pages in between including
1421 * the first and last pages. This is done in a busy loop so that we
1422 * lose the least number of traces.
1423 * The pages are freed after we restart recording and unlock readers.
1424 */
1425 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1426
83f40318
VN
1427 /*
1428 * tail page might be on reader page, we remove the next page
1429 * from the ring buffer
1430 */
1431 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1432 tail_page = rb_list_head(tail_page->next);
1433 to_remove = tail_page;
1434
1435 /* start of pages to remove */
1436 first_page = list_entry(rb_list_head(to_remove->next),
1437 struct buffer_page, list);
1438
1439 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1440 to_remove = rb_list_head(to_remove)->next;
1441 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1442 }
7a8e76a3 1443
83f40318 1444 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1445
83f40318
VN
1446 /*
1447 * Now we remove all pages between tail_page and next_page.
1448 * Make sure that we have head_bit value preserved for the
1449 * next page
1450 */
1451 tail_page->next = (struct list_head *)((unsigned long)next_page |
1452 head_bit);
1453 next_page = rb_list_head(next_page);
1454 next_page->prev = tail_page;
1455
1456 /* make sure pages points to a valid page in the ring buffer */
1457 cpu_buffer->pages = next_page;
1458
1459 /* update head page */
1460 if (head_bit)
1461 cpu_buffer->head_page = list_entry(next_page,
1462 struct buffer_page, list);
1463
1464 /*
1465 * change read pointer to make sure any read iterators reset
1466 * themselves
1467 */
1468 cpu_buffer->read = 0;
1469
1470 /* pages are removed, resume tracing and then free the pages */
1471 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1472 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1473
1474 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1475
1476 /* last buffer page to remove */
1477 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1478 list);
1479 tmp_iter_page = first_page;
1480
1481 do {
ff4cd648
VN
1482 cond_resched();
1483
83f40318
VN
1484 to_remove_page = tmp_iter_page;
1485 rb_inc_page(cpu_buffer, &tmp_iter_page);
1486
1487 /* update the counters */
1488 page_entries = rb_page_entries(to_remove_page);
1489 if (page_entries) {
1490 /*
1491 * If something was added to this page, it was full
1492 * since it is not the tail page. So we deduct the
1493 * bytes consumed in ring buffer from here.
48fdc72f 1494 * Increment overrun to account for the lost events.
83f40318 1495 */
48fdc72f 1496 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1497 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1498 }
1499
1500 /*
1501 * We have already removed references to this list item, just
1502 * free up the buffer_page and its page
1503 */
1504 free_buffer_page(to_remove_page);
1505 nr_removed--;
1506
1507 } while (to_remove_page != last_page);
1508
1509 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1510
1511 return nr_removed == 0;
7a8e76a3
SR
1512}
1513
5040b4b7
VN
1514static int
1515rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1516{
5040b4b7
VN
1517 struct list_head *pages = &cpu_buffer->new_pages;
1518 int retries, success;
7a8e76a3 1519
5389f6fa 1520 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1521 /*
1522 * We are holding the reader lock, so the reader page won't be swapped
1523 * in the ring buffer. Now we are racing with the writer trying to
1524 * move head page and the tail page.
1525 * We are going to adapt the reader page update process where:
1526 * 1. We first splice the start and end of list of new pages between
1527 * the head page and its previous page.
1528 * 2. We cmpxchg the prev_page->next to point from head page to the
1529 * start of new pages list.
1530 * 3. Finally, we update the head->prev to the end of new list.
1531 *
1532 * We will try this process 10 times, to make sure that we don't keep
1533 * spinning.
1534 */
1535 retries = 10;
1536 success = 0;
1537 while (retries--) {
1538 struct list_head *head_page, *prev_page, *r;
1539 struct list_head *last_page, *first_page;
1540 struct list_head *head_page_with_bit;
77ae365e 1541
5040b4b7 1542 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1543 if (!head_page)
1544 break;
5040b4b7
VN
1545 prev_page = head_page->prev;
1546
1547 first_page = pages->next;
1548 last_page = pages->prev;
1549
1550 head_page_with_bit = (struct list_head *)
1551 ((unsigned long)head_page | RB_PAGE_HEAD);
1552
1553 last_page->next = head_page_with_bit;
1554 first_page->prev = prev_page;
1555
1556 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1557
1558 if (r == head_page_with_bit) {
1559 /*
1560 * yay, we replaced the page pointer to our new list,
1561 * now, we just have to update to head page's prev
1562 * pointer to point to end of list
1563 */
1564 head_page->prev = last_page;
1565 success = 1;
1566 break;
1567 }
7a8e76a3 1568 }
7a8e76a3 1569
5040b4b7
VN
1570 if (success)
1571 INIT_LIST_HEAD(pages);
1572 /*
1573 * If we weren't successful in adding in new pages, warn and stop
1574 * tracing
1575 */
1576 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1577 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1578
1579 /* free pages if they weren't inserted */
1580 if (!success) {
1581 struct buffer_page *bpage, *tmp;
1582 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1583 list) {
1584 list_del_init(&bpage->list);
1585 free_buffer_page(bpage);
1586 }
1587 }
1588 return success;
7a8e76a3
SR
1589}
1590
83f40318 1591static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1592{
5040b4b7
VN
1593 int success;
1594
438ced17 1595 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1596 success = rb_insert_pages(cpu_buffer);
438ced17 1597 else
5040b4b7
VN
1598 success = rb_remove_pages(cpu_buffer,
1599 -cpu_buffer->nr_pages_to_update);
83f40318 1600
5040b4b7
VN
1601 if (success)
1602 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1603}
1604
1605static void update_pages_handler(struct work_struct *work)
1606{
1607 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1608 struct ring_buffer_per_cpu, update_pages_work);
1609 rb_update_pages(cpu_buffer);
05fdd70d 1610 complete(&cpu_buffer->update_done);
438ced17
VN
1611}
1612
7a8e76a3
SR
1613/**
1614 * ring_buffer_resize - resize the ring buffer
1615 * @buffer: the buffer to resize.
1616 * @size: the new size.
d611851b 1617 * @cpu_id: the cpu buffer to resize
7a8e76a3 1618 *
7a8e76a3
SR
1619 * Minimum size is 2 * BUF_PAGE_SIZE.
1620 *
83f40318 1621 * Returns 0 on success and < 0 on failure.
7a8e76a3 1622 */
438ced17
VN
1623int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1624 int cpu_id)
7a8e76a3
SR
1625{
1626 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1627 unsigned long nr_pages;
83f40318 1628 int cpu, err = 0;
7a8e76a3 1629
ee51a1de
IM
1630 /*
1631 * Always succeed at resizing a non-existent buffer:
1632 */
1633 if (!buffer)
1634 return size;
1635
6a31e1f1
SR
1636 /* Make sure the requested buffer exists */
1637 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1638 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1639 return size;
1640
59643d15 1641 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1642
1643 /* we need a minimum of two pages */
59643d15
SRRH
1644 if (nr_pages < 2)
1645 nr_pages = 2;
7a8e76a3 1646
59643d15 1647 size = nr_pages * BUF_PAGE_SIZE;
18421015 1648
83f40318
VN
1649 /*
1650 * Don't succeed if resizing is disabled, as a reader might be
1651 * manipulating the ring buffer and is expecting a sane state while
1652 * this is true.
1653 */
1654 if (atomic_read(&buffer->resize_disabled))
1655 return -EBUSY;
18421015 1656
83f40318 1657 /* prevent another thread from changing buffer sizes */
7a8e76a3 1658 mutex_lock(&buffer->mutex);
7a8e76a3 1659
438ced17
VN
1660 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1661 /* calculate the pages to update */
7a8e76a3
SR
1662 for_each_buffer_cpu(buffer, cpu) {
1663 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1664
438ced17
VN
1665 cpu_buffer->nr_pages_to_update = nr_pages -
1666 cpu_buffer->nr_pages;
438ced17
VN
1667 /*
1668 * nothing more to do for removing pages or no update
1669 */
1670 if (cpu_buffer->nr_pages_to_update <= 0)
1671 continue;
d7ec4bfe 1672 /*
438ced17
VN
1673 * to add pages, make sure all new pages can be
1674 * allocated without receiving ENOMEM
d7ec4bfe 1675 */
438ced17
VN
1676 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1677 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1678 &cpu_buffer->new_pages, cpu)) {
438ced17 1679 /* not enough memory for new pages */
83f40318
VN
1680 err = -ENOMEM;
1681 goto out_err;
1682 }
1683 }
1684
1685 get_online_cpus();
1686 /*
1687 * Fire off all the required work handlers
05fdd70d 1688 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1689 * since we can change their buffer sizes without any race.
1690 */
1691 for_each_buffer_cpu(buffer, cpu) {
1692 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1693 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1694 continue;
1695
021c5b34
CM
1696 /* Can't run something on an offline CPU. */
1697 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1698 rb_update_pages(cpu_buffer);
1699 cpu_buffer->nr_pages_to_update = 0;
1700 } else {
05fdd70d
VN
1701 schedule_work_on(cpu,
1702 &cpu_buffer->update_pages_work);
f5eb5588 1703 }
7a8e76a3 1704 }
7a8e76a3 1705
438ced17
VN
1706 /* wait for all the updates to complete */
1707 for_each_buffer_cpu(buffer, cpu) {
1708 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1709 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1710 continue;
1711
05fdd70d
VN
1712 if (cpu_online(cpu))
1713 wait_for_completion(&cpu_buffer->update_done);
83f40318 1714 cpu_buffer->nr_pages_to_update = 0;
438ced17 1715 }
83f40318
VN
1716
1717 put_online_cpus();
438ced17 1718 } else {
8e49f418
VN
1719 /* Make sure this CPU has been intitialized */
1720 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 goto out;
1722
438ced17 1723 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1724
438ced17
VN
1725 if (nr_pages == cpu_buffer->nr_pages)
1726 goto out;
7a8e76a3 1727
438ced17
VN
1728 cpu_buffer->nr_pages_to_update = nr_pages -
1729 cpu_buffer->nr_pages;
1730
1731 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 if (cpu_buffer->nr_pages_to_update > 0 &&
1733 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1734 &cpu_buffer->new_pages, cpu_id)) {
1735 err = -ENOMEM;
1736 goto out_err;
1737 }
438ced17 1738
83f40318
VN
1739 get_online_cpus();
1740
021c5b34
CM
1741 /* Can't run something on an offline CPU. */
1742 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1743 rb_update_pages(cpu_buffer);
1744 else {
83f40318
VN
1745 schedule_work_on(cpu_id,
1746 &cpu_buffer->update_pages_work);
05fdd70d 1747 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1748 }
83f40318 1749
83f40318 1750 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1751 put_online_cpus();
438ced17 1752 }
7a8e76a3
SR
1753
1754 out:
659f451f
SR
1755 /*
1756 * The ring buffer resize can happen with the ring buffer
1757 * enabled, so that the update disturbs the tracing as little
1758 * as possible. But if the buffer is disabled, we do not need
1759 * to worry about that, and we can take the time to verify
1760 * that the buffer is not corrupt.
1761 */
1762 if (atomic_read(&buffer->record_disabled)) {
1763 atomic_inc(&buffer->record_disabled);
1764 /*
1765 * Even though the buffer was disabled, we must make sure
1766 * that it is truly disabled before calling rb_check_pages.
1767 * There could have been a race between checking
1768 * record_disable and incrementing it.
1769 */
1770 synchronize_sched();
1771 for_each_buffer_cpu(buffer, cpu) {
1772 cpu_buffer = buffer->buffers[cpu];
1773 rb_check_pages(cpu_buffer);
1774 }
1775 atomic_dec(&buffer->record_disabled);
1776 }
1777
7a8e76a3 1778 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1779 return size;
1780
83f40318 1781 out_err:
438ced17
VN
1782 for_each_buffer_cpu(buffer, cpu) {
1783 struct buffer_page *bpage, *tmp;
83f40318 1784
438ced17 1785 cpu_buffer = buffer->buffers[cpu];
438ced17 1786 cpu_buffer->nr_pages_to_update = 0;
83f40318 1787
438ced17
VN
1788 if (list_empty(&cpu_buffer->new_pages))
1789 continue;
83f40318 1790
438ced17
VN
1791 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1792 list) {
1793 list_del_init(&bpage->list);
1794 free_buffer_page(bpage);
1795 }
7a8e76a3 1796 }
641d2f63 1797 mutex_unlock(&buffer->mutex);
83f40318 1798 return err;
7a8e76a3 1799}
c4f50183 1800EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1801
750912fa
DS
1802void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1803{
1804 mutex_lock(&buffer->mutex);
1805 if (val)
1806 buffer->flags |= RB_FL_OVERWRITE;
1807 else
1808 buffer->flags &= ~RB_FL_OVERWRITE;
1809 mutex_unlock(&buffer->mutex);
1810}
1811EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1812
2289d567 1813static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1814{
044fa782 1815 return bpage->page->data + index;
7a8e76a3
SR
1816}
1817
2289d567 1818static __always_inline struct ring_buffer_event *
d769041f 1819rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1820{
6f807acd
SR
1821 return __rb_page_index(cpu_buffer->reader_page,
1822 cpu_buffer->reader_page->read);
1823}
1824
2289d567 1825static __always_inline struct ring_buffer_event *
7a8e76a3
SR
1826rb_iter_head_event(struct ring_buffer_iter *iter)
1827{
6f807acd 1828 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1829}
1830
2289d567 1831static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
bf41a158 1832{
abc9b56d 1833 return local_read(&bpage->page->commit);
bf41a158
SR
1834}
1835
25985edc 1836/* Size is determined by what has been committed */
2289d567 1837static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
1838{
1839 return rb_page_commit(bpage);
1840}
1841
2289d567 1842static __always_inline unsigned
bf41a158
SR
1843rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1844{
1845 return rb_page_commit(cpu_buffer->commit_page);
1846}
1847
2289d567 1848static __always_inline unsigned
bf41a158
SR
1849rb_event_index(struct ring_buffer_event *event)
1850{
1851 unsigned long addr = (unsigned long)event;
1852
22f470f8 1853 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1854}
1855
34a148bf 1856static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1857{
1858 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1859
1860 /*
1861 * The iterator could be on the reader page (it starts there).
1862 * But the head could have moved, since the reader was
1863 * found. Check for this case and assign the iterator
1864 * to the head page instead of next.
1865 */
1866 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1867 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1868 else
1869 rb_inc_page(cpu_buffer, &iter->head_page);
1870
abc9b56d 1871 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1872 iter->head = 0;
1873}
1874
77ae365e
SR
1875/*
1876 * rb_handle_head_page - writer hit the head page
1877 *
1878 * Returns: +1 to retry page
1879 * 0 to continue
1880 * -1 on error
1881 */
1882static int
1883rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1884 struct buffer_page *tail_page,
1885 struct buffer_page *next_page)
1886{
1887 struct buffer_page *new_head;
1888 int entries;
1889 int type;
1890 int ret;
1891
1892 entries = rb_page_entries(next_page);
1893
1894 /*
1895 * The hard part is here. We need to move the head
1896 * forward, and protect against both readers on
1897 * other CPUs and writers coming in via interrupts.
1898 */
1899 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1900 RB_PAGE_HEAD);
1901
1902 /*
1903 * type can be one of four:
1904 * NORMAL - an interrupt already moved it for us
1905 * HEAD - we are the first to get here.
1906 * UPDATE - we are the interrupt interrupting
1907 * a current move.
1908 * MOVED - a reader on another CPU moved the next
1909 * pointer to its reader page. Give up
1910 * and try again.
1911 */
1912
1913 switch (type) {
1914 case RB_PAGE_HEAD:
1915 /*
1916 * We changed the head to UPDATE, thus
1917 * it is our responsibility to update
1918 * the counters.
1919 */
1920 local_add(entries, &cpu_buffer->overrun);
c64e148a 1921 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1922
1923 /*
1924 * The entries will be zeroed out when we move the
1925 * tail page.
1926 */
1927
1928 /* still more to do */
1929 break;
1930
1931 case RB_PAGE_UPDATE:
1932 /*
1933 * This is an interrupt that interrupt the
1934 * previous update. Still more to do.
1935 */
1936 break;
1937 case RB_PAGE_NORMAL:
1938 /*
1939 * An interrupt came in before the update
1940 * and processed this for us.
1941 * Nothing left to do.
1942 */
1943 return 1;
1944 case RB_PAGE_MOVED:
1945 /*
1946 * The reader is on another CPU and just did
1947 * a swap with our next_page.
1948 * Try again.
1949 */
1950 return 1;
1951 default:
1952 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1953 return -1;
1954 }
1955
1956 /*
1957 * Now that we are here, the old head pointer is
1958 * set to UPDATE. This will keep the reader from
1959 * swapping the head page with the reader page.
1960 * The reader (on another CPU) will spin till
1961 * we are finished.
1962 *
1963 * We just need to protect against interrupts
1964 * doing the job. We will set the next pointer
1965 * to HEAD. After that, we set the old pointer
1966 * to NORMAL, but only if it was HEAD before.
1967 * otherwise we are an interrupt, and only
1968 * want the outer most commit to reset it.
1969 */
1970 new_head = next_page;
1971 rb_inc_page(cpu_buffer, &new_head);
1972
1973 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1974 RB_PAGE_NORMAL);
1975
1976 /*
1977 * Valid returns are:
1978 * HEAD - an interrupt came in and already set it.
1979 * NORMAL - One of two things:
1980 * 1) We really set it.
1981 * 2) A bunch of interrupts came in and moved
1982 * the page forward again.
1983 */
1984 switch (ret) {
1985 case RB_PAGE_HEAD:
1986 case RB_PAGE_NORMAL:
1987 /* OK */
1988 break;
1989 default:
1990 RB_WARN_ON(cpu_buffer, 1);
1991 return -1;
1992 }
1993
1994 /*
1995 * It is possible that an interrupt came in,
1996 * set the head up, then more interrupts came in
1997 * and moved it again. When we get back here,
1998 * the page would have been set to NORMAL but we
1999 * just set it back to HEAD.
2000 *
2001 * How do you detect this? Well, if that happened
2002 * the tail page would have moved.
2003 */
2004 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2005 struct buffer_page *buffer_tail_page;
2006
2007 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2008 /*
2009 * If the tail had moved passed next, then we need
2010 * to reset the pointer.
2011 */
8573636e
SRRH
2012 if (buffer_tail_page != tail_page &&
2013 buffer_tail_page != next_page)
77ae365e
SR
2014 rb_head_page_set_normal(cpu_buffer, new_head,
2015 next_page,
2016 RB_PAGE_HEAD);
2017 }
2018
2019 /*
2020 * If this was the outer most commit (the one that
2021 * changed the original pointer from HEAD to UPDATE),
2022 * then it is up to us to reset it to NORMAL.
2023 */
2024 if (type == RB_PAGE_HEAD) {
2025 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2026 tail_page,
2027 RB_PAGE_UPDATE);
2028 if (RB_WARN_ON(cpu_buffer,
2029 ret != RB_PAGE_UPDATE))
2030 return -1;
2031 }
2032
2033 return 0;
2034}
2035
c7b09308
SR
2036static inline void
2037rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2038 unsigned long tail, struct rb_event_info *info)
c7b09308 2039{
fcc742ea 2040 struct buffer_page *tail_page = info->tail_page;
c7b09308 2041 struct ring_buffer_event *event;
fcc742ea 2042 unsigned long length = info->length;
c7b09308
SR
2043
2044 /*
2045 * Only the event that crossed the page boundary
2046 * must fill the old tail_page with padding.
2047 */
2048 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2049 /*
2050 * If the page was filled, then we still need
2051 * to update the real_end. Reset it to zero
2052 * and the reader will ignore it.
2053 */
2054 if (tail == BUF_PAGE_SIZE)
2055 tail_page->real_end = 0;
2056
c7b09308
SR
2057 local_sub(length, &tail_page->write);
2058 return;
2059 }
2060
2061 event = __rb_page_index(tail_page, tail);
2062
c64e148a
VN
2063 /* account for padding bytes */
2064 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2065
ff0ff84a
SR
2066 /*
2067 * Save the original length to the meta data.
2068 * This will be used by the reader to add lost event
2069 * counter.
2070 */
2071 tail_page->real_end = tail;
2072
c7b09308
SR
2073 /*
2074 * If this event is bigger than the minimum size, then
2075 * we need to be careful that we don't subtract the
2076 * write counter enough to allow another writer to slip
2077 * in on this page.
2078 * We put in a discarded commit instead, to make sure
2079 * that this space is not used again.
2080 *
2081 * If we are less than the minimum size, we don't need to
2082 * worry about it.
2083 */
2084 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2085 /* No room for any events */
2086
2087 /* Mark the rest of the page with padding */
2088 rb_event_set_padding(event);
2089
2090 /* Set the write back to the previous setting */
2091 local_sub(length, &tail_page->write);
2092 return;
2093 }
2094
2095 /* Put in a discarded event */
2096 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2097 event->type_len = RINGBUF_TYPE_PADDING;
2098 /* time delta must be non zero */
2099 event->time_delta = 1;
c7b09308
SR
2100
2101 /* Set write to end of buffer */
2102 length = (tail + length) - BUF_PAGE_SIZE;
2103 local_sub(length, &tail_page->write);
2104}
6634ff26 2105
4239c38f
SRRH
2106static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2107
747e94ae
SR
2108/*
2109 * This is the slow path, force gcc not to inline it.
2110 */
2111static noinline struct ring_buffer_event *
6634ff26 2112rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2113 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2114{
fcc742ea 2115 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2116 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2117 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2118 struct buffer_page *next_page;
2119 int ret;
aa20ae84
SR
2120
2121 next_page = tail_page;
2122
aa20ae84
SR
2123 rb_inc_page(cpu_buffer, &next_page);
2124
aa20ae84
SR
2125 /*
2126 * If for some reason, we had an interrupt storm that made
2127 * it all the way around the buffer, bail, and warn
2128 * about it.
2129 */
2130 if (unlikely(next_page == commit_page)) {
77ae365e 2131 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2132 goto out_reset;
2133 }
2134
77ae365e
SR
2135 /*
2136 * This is where the fun begins!
2137 *
2138 * We are fighting against races between a reader that
2139 * could be on another CPU trying to swap its reader
2140 * page with the buffer head.
2141 *
2142 * We are also fighting against interrupts coming in and
2143 * moving the head or tail on us as well.
2144 *
2145 * If the next page is the head page then we have filled
2146 * the buffer, unless the commit page is still on the
2147 * reader page.
2148 */
2149 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2150
77ae365e
SR
2151 /*
2152 * If the commit is not on the reader page, then
2153 * move the header page.
2154 */
2155 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2156 /*
2157 * If we are not in overwrite mode,
2158 * this is easy, just stop here.
2159 */
884bfe89
SP
2160 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2161 local_inc(&cpu_buffer->dropped_events);
77ae365e 2162 goto out_reset;
884bfe89 2163 }
77ae365e
SR
2164
2165 ret = rb_handle_head_page(cpu_buffer,
2166 tail_page,
2167 next_page);
2168 if (ret < 0)
2169 goto out_reset;
2170 if (ret)
2171 goto out_again;
2172 } else {
2173 /*
2174 * We need to be careful here too. The
2175 * commit page could still be on the reader
2176 * page. We could have a small buffer, and
2177 * have filled up the buffer with events
2178 * from interrupts and such, and wrapped.
2179 *
2180 * Note, if the tail page is also the on the
2181 * reader_page, we let it move out.
2182 */
2183 if (unlikely((cpu_buffer->commit_page !=
2184 cpu_buffer->tail_page) &&
2185 (cpu_buffer->commit_page ==
2186 cpu_buffer->reader_page))) {
2187 local_inc(&cpu_buffer->commit_overrun);
2188 goto out_reset;
2189 }
aa20ae84
SR
2190 }
2191 }
2192
70004986 2193 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2194
77ae365e 2195 out_again:
aa20ae84 2196
fcc742ea 2197 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2198
4239c38f
SRRH
2199 /* Commit what we have for now. */
2200 rb_end_commit(cpu_buffer);
2201 /* rb_end_commit() decs committing */
2202 local_inc(&cpu_buffer->committing);
2203
aa20ae84
SR
2204 /* fail and let the caller try again */
2205 return ERR_PTR(-EAGAIN);
2206
45141d46 2207 out_reset:
6f3b3440 2208 /* reset write */
fcc742ea 2209 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2210
bf41a158 2211 return NULL;
7a8e76a3
SR
2212}
2213
d90fd774
SRRH
2214/* Slow path, do not inline */
2215static noinline struct ring_buffer_event *
2216rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2217{
d90fd774 2218 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2219
d90fd774
SRRH
2220 /* Not the first event on the page? */
2221 if (rb_event_index(event)) {
2222 event->time_delta = delta & TS_MASK;
2223 event->array[0] = delta >> TS_SHIFT;
2224 } else {
2225 /* nope, just zero it */
2226 event->time_delta = 0;
2227 event->array[0] = 0;
2228 }
a4543a2f 2229
d90fd774
SRRH
2230 return skip_time_extend(event);
2231}
a4543a2f 2232
cdb2a0a9 2233static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2234 struct ring_buffer_event *event);
2235
d90fd774
SRRH
2236/**
2237 * rb_update_event - update event type and data
2238 * @event: the event to update
2239 * @type: the type of event
2240 * @length: the size of the event field in the ring buffer
2241 *
2242 * Update the type and data fields of the event. The length
2243 * is the actual size that is written to the ring buffer,
2244 * and with this, we can determine what to place into the
2245 * data field.
2246 */
b7dc42fd 2247static void
d90fd774
SRRH
2248rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2249 struct ring_buffer_event *event,
2250 struct rb_event_info *info)
2251{
2252 unsigned length = info->length;
2253 u64 delta = info->delta;
a4543a2f 2254
b7dc42fd
SRRH
2255 /* Only a commit updates the timestamp */
2256 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2257 delta = 0;
2258
a4543a2f 2259 /*
d90fd774
SRRH
2260 * If we need to add a timestamp, then we
2261 * add it to the start of the resevered space.
a4543a2f 2262 */
d90fd774
SRRH
2263 if (unlikely(info->add_timestamp)) {
2264 event = rb_add_time_stamp(event, delta);
2265 length -= RB_LEN_TIME_EXTEND;
2266 delta = 0;
a4543a2f
SRRH
2267 }
2268
d90fd774
SRRH
2269 event->time_delta = delta;
2270 length -= RB_EVNT_HDR_SIZE;
2271 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2272 event->type_len = 0;
2273 event->array[0] = length;
2274 } else
2275 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2276}
2277
2278static unsigned rb_calculate_event_length(unsigned length)
2279{
2280 struct ring_buffer_event event; /* Used only for sizeof array */
2281
2282 /* zero length can cause confusions */
2283 if (!length)
2284 length++;
2285
2286 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2287 length += sizeof(event.array[0]);
2288
2289 length += RB_EVNT_HDR_SIZE;
2290 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2291
2292 /*
2293 * In case the time delta is larger than the 27 bits for it
2294 * in the header, we need to add a timestamp. If another
2295 * event comes in when trying to discard this one to increase
2296 * the length, then the timestamp will be added in the allocated
2297 * space of this event. If length is bigger than the size needed
2298 * for the TIME_EXTEND, then padding has to be used. The events
2299 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2300 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2301 * As length is a multiple of 4, we only need to worry if it
2302 * is 12 (RB_LEN_TIME_EXTEND + 4).
2303 */
2304 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2305 length += RB_ALIGNMENT;
2306
2307 return length;
2308}
2309
2310#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2311static inline bool sched_clock_stable(void)
2312{
2313 return true;
2314}
2315#endif
2316
2317static inline int
2318rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2319 struct ring_buffer_event *event)
2320{
2321 unsigned long new_index, old_index;
2322 struct buffer_page *bpage;
2323 unsigned long index;
2324 unsigned long addr;
2325
2326 new_index = rb_event_index(event);
2327 old_index = new_index + rb_event_ts_length(event);
2328 addr = (unsigned long)event;
2329 addr &= PAGE_MASK;
2330
8573636e 2331 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2332
2333 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2334 unsigned long write_mask =
2335 local_read(&bpage->write) & ~RB_WRITE_MASK;
2336 unsigned long event_length = rb_event_length(event);
2337 /*
2338 * This is on the tail page. It is possible that
2339 * a write could come in and move the tail page
2340 * and write to the next page. That is fine
2341 * because we just shorten what is on this page.
2342 */
2343 old_index += write_mask;
2344 new_index += write_mask;
2345 index = local_cmpxchg(&bpage->write, old_index, new_index);
2346 if (index == old_index) {
2347 /* update counters */
2348 local_sub(event_length, &cpu_buffer->entries_bytes);
2349 return 1;
2350 }
2351 }
2352
2353 /* could not discard */
2354 return 0;
2355}
2356
2357static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2358{
2359 local_inc(&cpu_buffer->committing);
2360 local_inc(&cpu_buffer->commits);
2361}
2362
38e11df1 2363static __always_inline void
d90fd774
SRRH
2364rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2365{
2366 unsigned long max_count;
2367
2368 /*
2369 * We only race with interrupts and NMIs on this CPU.
2370 * If we own the commit event, then we can commit
2371 * all others that interrupted us, since the interruptions
2372 * are in stack format (they finish before they come
2373 * back to us). This allows us to do a simple loop to
2374 * assign the commit to the tail.
2375 */
2376 again:
2377 max_count = cpu_buffer->nr_pages * 100;
2378
8573636e 2379 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2380 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2381 return;
2382 if (RB_WARN_ON(cpu_buffer,
2383 rb_is_reader_page(cpu_buffer->tail_page)))
2384 return;
2385 local_set(&cpu_buffer->commit_page->page->commit,
2386 rb_page_write(cpu_buffer->commit_page));
2387 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
70004986
SRRH
2388 /* Only update the write stamp if the page has an event */
2389 if (rb_page_write(cpu_buffer->commit_page))
2390 cpu_buffer->write_stamp =
2391 cpu_buffer->commit_page->page->time_stamp;
d90fd774
SRRH
2392 /* add barrier to keep gcc from optimizing too much */
2393 barrier();
2394 }
2395 while (rb_commit_index(cpu_buffer) !=
2396 rb_page_write(cpu_buffer->commit_page)) {
2397
2398 local_set(&cpu_buffer->commit_page->page->commit,
2399 rb_page_write(cpu_buffer->commit_page));
2400 RB_WARN_ON(cpu_buffer,
2401 local_read(&cpu_buffer->commit_page->page->commit) &
2402 ~RB_WRITE_MASK);
2403 barrier();
2404 }
2405
2406 /* again, keep gcc from optimizing */
2407 barrier();
2408
2409 /*
2410 * If an interrupt came in just after the first while loop
2411 * and pushed the tail page forward, we will be left with
2412 * a dangling commit that will never go forward.
2413 */
8573636e 2414 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2415 goto again;
2416}
2417
38e11df1 2418static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2419{
2420 unsigned long commits;
2421
2422 if (RB_WARN_ON(cpu_buffer,
2423 !local_read(&cpu_buffer->committing)))
2424 return;
2425
2426 again:
2427 commits = local_read(&cpu_buffer->commits);
2428 /* synchronize with interrupts */
2429 barrier();
2430 if (local_read(&cpu_buffer->committing) == 1)
2431 rb_set_commit_to_write(cpu_buffer);
2432
2433 local_dec(&cpu_buffer->committing);
2434
2435 /* synchronize with interrupts */
2436 barrier();
2437
2438 /*
2439 * Need to account for interrupts coming in between the
2440 * updating of the commit page and the clearing of the
2441 * committing counter.
2442 */
2443 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2444 !local_read(&cpu_buffer->committing)) {
2445 local_inc(&cpu_buffer->committing);
2446 goto again;
2447 }
2448}
2449
2450static inline void rb_event_discard(struct ring_buffer_event *event)
2451{
2452 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2453 event = skip_time_extend(event);
2454
2455 /* array[0] holds the actual length for the discarded event */
2456 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2457 event->type_len = RINGBUF_TYPE_PADDING;
2458 /* time delta must be non zero */
2459 if (!event->time_delta)
2460 event->time_delta = 1;
2461}
2462
babe3fce 2463static __always_inline bool
d90fd774
SRRH
2464rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2465 struct ring_buffer_event *event)
2466{
2467 unsigned long addr = (unsigned long)event;
2468 unsigned long index;
2469
2470 index = rb_event_index(event);
2471 addr &= PAGE_MASK;
2472
2473 return cpu_buffer->commit_page->page == (void *)addr &&
2474 rb_commit_index(cpu_buffer) == index;
2475}
2476
babe3fce 2477static __always_inline void
d90fd774
SRRH
2478rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2479 struct ring_buffer_event *event)
2480{
2481 u64 delta;
2482
2483 /*
2484 * The event first in the commit queue updates the
2485 * time stamp.
2486 */
2487 if (rb_event_is_commit(cpu_buffer, event)) {
2488 /*
2489 * A commit event that is first on a page
2490 * updates the write timestamp with the page stamp
2491 */
2492 if (!rb_event_index(event))
2493 cpu_buffer->write_stamp =
2494 cpu_buffer->commit_page->page->time_stamp;
2495 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2496 delta = event->array[0];
2497 delta <<= TS_SHIFT;
2498 delta += event->time_delta;
2499 cpu_buffer->write_stamp += delta;
2500 } else
2501 cpu_buffer->write_stamp += event->time_delta;
2502 }
2503}
2504
2505static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2506 struct ring_buffer_event *event)
2507{
2508 local_inc(&cpu_buffer->entries);
2509 rb_update_write_stamp(cpu_buffer, event);
2510 rb_end_commit(cpu_buffer);
2511}
2512
2513static __always_inline void
2514rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2515{
2516 bool pagebusy;
2517
2518 if (buffer->irq_work.waiters_pending) {
2519 buffer->irq_work.waiters_pending = false;
2520 /* irq_work_queue() supplies it's own memory barriers */
2521 irq_work_queue(&buffer->irq_work.work);
2522 }
2523
2524 if (cpu_buffer->irq_work.waiters_pending) {
2525 cpu_buffer->irq_work.waiters_pending = false;
2526 /* irq_work_queue() supplies it's own memory barriers */
2527 irq_work_queue(&cpu_buffer->irq_work.work);
2528 }
2529
2530 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2531
2532 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2533 cpu_buffer->irq_work.wakeup_full = true;
2534 cpu_buffer->irq_work.full_waiters_pending = false;
2535 /* irq_work_queue() supplies it's own memory barriers */
2536 irq_work_queue(&cpu_buffer->irq_work.work);
2537 }
2538}
2539
2540/*
2541 * The lock and unlock are done within a preempt disable section.
2542 * The current_context per_cpu variable can only be modified
2543 * by the current task between lock and unlock. But it can
a0e3a18f
SRV
2544 * be modified more than once via an interrupt. To pass this
2545 * information from the lock to the unlock without having to
2546 * access the 'in_interrupt()' functions again (which do show
2547 * a bit of overhead in something as critical as function tracing,
2548 * we use a bitmask trick.
d90fd774 2549 *
a0e3a18f
SRV
2550 * bit 0 = NMI context
2551 * bit 1 = IRQ context
2552 * bit 2 = SoftIRQ context
2553 * bit 3 = normal context.
d90fd774 2554 *
a0e3a18f
SRV
2555 * This works because this is the order of contexts that can
2556 * preempt other contexts. A SoftIRQ never preempts an IRQ
2557 * context.
2558 *
2559 * When the context is determined, the corresponding bit is
2560 * checked and set (if it was set, then a recursion of that context
2561 * happened).
2562 *
2563 * On unlock, we need to clear this bit. To do so, just subtract
2564 * 1 from the current_context and AND it to itself.
2565 *
2566 * (binary)
2567 * 101 - 1 = 100
2568 * 101 & 100 = 100 (clearing bit zero)
2569 *
2570 * 1010 - 1 = 1001
2571 * 1010 & 1001 = 1000 (clearing bit 1)
2572 *
2573 * The least significant bit can be cleared this way, and it
2574 * just so happens that it is the same bit corresponding to
2575 * the current context.
d90fd774
SRRH
2576 */
2577
2578static __always_inline int
2579trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2580{
a0e3a18f
SRV
2581 unsigned int val = cpu_buffer->current_context;
2582 unsigned long pc = preempt_count();
2583 int bit;
2584
2585 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2586 bit = RB_CTX_NORMAL;
2587 else
2588 bit = pc & NMI_MASK ? RB_CTX_NMI :
0164e0d7 2589 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
a0e3a18f
SRV
2590
2591 if (unlikely(val & (1 << bit)))
d90fd774
SRRH
2592 return 1;
2593
a0e3a18f
SRV
2594 val |= (1 << bit);
2595 cpu_buffer->current_context = val;
d90fd774
SRRH
2596
2597 return 0;
2598}
2599
2600static __always_inline void
2601trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2602{
a0e3a18f 2603 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
d90fd774
SRRH
2604}
2605
2606/**
2607 * ring_buffer_unlock_commit - commit a reserved
2608 * @buffer: The buffer to commit to
2609 * @event: The event pointer to commit.
2610 *
2611 * This commits the data to the ring buffer, and releases any locks held.
2612 *
2613 * Must be paired with ring_buffer_lock_reserve.
2614 */
2615int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2616 struct ring_buffer_event *event)
2617{
2618 struct ring_buffer_per_cpu *cpu_buffer;
2619 int cpu = raw_smp_processor_id();
2620
2621 cpu_buffer = buffer->buffers[cpu];
2622
2623 rb_commit(cpu_buffer, event);
2624
2625 rb_wakeups(buffer, cpu_buffer);
2626
2627 trace_recursive_unlock(cpu_buffer);
2628
2629 preempt_enable_notrace();
2630
2631 return 0;
2632}
2633EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2634
2635static noinline void
2636rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2637 struct rb_event_info *info)
2638{
d90fd774
SRRH
2639 WARN_ONCE(info->delta > (1ULL << 59),
2640 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2641 (unsigned long long)info->delta,
2642 (unsigned long long)info->ts,
2643 (unsigned long long)cpu_buffer->write_stamp,
2644 sched_clock_stable() ? "" :
2645 "If you just came from a suspend/resume,\n"
2646 "please switch to the trace global clock:\n"
2647 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
b7dc42fd 2648 info->add_timestamp = 1;
9826b273
SRRH
2649}
2650
6634ff26
SR
2651static struct ring_buffer_event *
2652__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2653 struct rb_event_info *info)
6634ff26 2654{
6634ff26 2655 struct ring_buffer_event *event;
fcc742ea 2656 struct buffer_page *tail_page;
6634ff26 2657 unsigned long tail, write;
b7dc42fd
SRRH
2658
2659 /*
2660 * If the time delta since the last event is too big to
2661 * hold in the time field of the event, then we append a
2662 * TIME EXTEND event ahead of the data event.
2663 */
2664 if (unlikely(info->add_timestamp))
2665 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2666
8573636e
SRRH
2667 /* Don't let the compiler play games with cpu_buffer->tail_page */
2668 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2669 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2670
2671 /* set write to only the index of the write */
2672 write &= RB_WRITE_MASK;
fcc742ea 2673 tail = write - info->length;
6634ff26 2674
6634ff26 2675 /*
a4543a2f 2676 * If this is the first commit on the page, then it has the same
b7dc42fd 2677 * timestamp as the page itself.
6634ff26 2678 */
b7dc42fd 2679 if (!tail)
a4543a2f
SRRH
2680 info->delta = 0;
2681
b7dc42fd
SRRH
2682 /* See if we shot pass the end of this buffer page */
2683 if (unlikely(write > BUF_PAGE_SIZE))
2684 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2685
b7dc42fd
SRRH
2686 /* We reserved something on the buffer */
2687
2688 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2689 rb_update_event(cpu_buffer, event, info);
2690
2691 local_inc(&tail_page->entries);
6634ff26 2692
b7dc42fd
SRRH
2693 /*
2694 * If this is the first commit on the page, then update
2695 * its timestamp.
2696 */
2697 if (!tail)
2698 tail_page->page->time_stamp = info->ts;
2699
c64e148a 2700 /* account for these added bytes */
fcc742ea 2701 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2702
6634ff26
SR
2703 return event;
2704}
2705
fa7ffb39 2706static __always_inline struct ring_buffer_event *
62f0b3eb
SR
2707rb_reserve_next_event(struct ring_buffer *buffer,
2708 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2709 unsigned long length)
7a8e76a3
SR
2710{
2711 struct ring_buffer_event *event;
fcc742ea 2712 struct rb_event_info info;
818e3dd3 2713 int nr_loops = 0;
b7dc42fd 2714 u64 diff;
7a8e76a3 2715
fa743953
SR
2716 rb_start_commit(cpu_buffer);
2717
85bac32c 2718#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2719 /*
2720 * Due to the ability to swap a cpu buffer from a buffer
2721 * it is possible it was swapped before we committed.
2722 * (committing stops a swap). We check for it here and
2723 * if it happened, we have to fail the write.
2724 */
2725 barrier();
6aa7de05 2726 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
62f0b3eb
SR
2727 local_dec(&cpu_buffer->committing);
2728 local_dec(&cpu_buffer->commits);
2729 return NULL;
2730 }
85bac32c 2731#endif
b7dc42fd 2732
fcc742ea 2733 info.length = rb_calculate_event_length(length);
a4543a2f 2734 again:
b7dc42fd
SRRH
2735 info.add_timestamp = 0;
2736 info.delta = 0;
2737
818e3dd3
SR
2738 /*
2739 * We allow for interrupts to reenter here and do a trace.
2740 * If one does, it will cause this original code to loop
2741 * back here. Even with heavy interrupts happening, this
2742 * should only happen a few times in a row. If this happens
2743 * 1000 times in a row, there must be either an interrupt
2744 * storm or we have something buggy.
2745 * Bail!
2746 */
3e89c7bb 2747 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2748 goto out_fail;
818e3dd3 2749
b7dc42fd
SRRH
2750 info.ts = rb_time_stamp(cpu_buffer->buffer);
2751 diff = info.ts - cpu_buffer->write_stamp;
2752
2753 /* make sure this diff is calculated here */
2754 barrier();
2755
2756 /* Did the write stamp get updated already? */
2757 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2758 info.delta = diff;
2759 if (unlikely(test_time_stamp(info.delta)))
2760 rb_handle_timestamp(cpu_buffer, &info);
2761 }
2762
fcc742ea
SRRH
2763 event = __rb_reserve_next(cpu_buffer, &info);
2764
bd1b7cd3
SRRH
2765 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2766 if (info.add_timestamp)
2767 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2768 goto again;
bd1b7cd3 2769 }
bf41a158 2770
fa743953
SR
2771 if (!event)
2772 goto out_fail;
7a8e76a3 2773
7a8e76a3 2774 return event;
fa743953
SR
2775
2776 out_fail:
2777 rb_end_commit(cpu_buffer);
2778 return NULL;
7a8e76a3
SR
2779}
2780
2781/**
2782 * ring_buffer_lock_reserve - reserve a part of the buffer
2783 * @buffer: the ring buffer to reserve from
2784 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2785 *
2786 * Returns a reseverd event on the ring buffer to copy directly to.
2787 * The user of this interface will need to get the body to write into
2788 * and can use the ring_buffer_event_data() interface.
2789 *
2790 * The length is the length of the data needed, not the event length
2791 * which also includes the event header.
2792 *
2793 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2794 * If NULL is returned, then nothing has been allocated or locked.
2795 */
2796struct ring_buffer_event *
0a987751 2797ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2798{
2799 struct ring_buffer_per_cpu *cpu_buffer;
2800 struct ring_buffer_event *event;
5168ae50 2801 int cpu;
7a8e76a3 2802
bf41a158 2803 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2804 preempt_disable_notrace();
bf41a158 2805
3205f806 2806 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2807 goto out;
261842b7 2808
7a8e76a3
SR
2809 cpu = raw_smp_processor_id();
2810
3205f806 2811 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2812 goto out;
7a8e76a3
SR
2813
2814 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2815
3205f806 2816 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2817 goto out;
7a8e76a3 2818
3205f806 2819 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2820 goto out;
7a8e76a3 2821
58a09ec6
SRRH
2822 if (unlikely(trace_recursive_lock(cpu_buffer)))
2823 goto out;
2824
62f0b3eb 2825 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2826 if (!event)
58a09ec6 2827 goto out_unlock;
7a8e76a3
SR
2828
2829 return event;
2830
58a09ec6
SRRH
2831 out_unlock:
2832 trace_recursive_unlock(cpu_buffer);
d769041f 2833 out:
5168ae50 2834 preempt_enable_notrace();
7a8e76a3
SR
2835 return NULL;
2836}
c4f50183 2837EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2838
a1863c21
SR
2839/*
2840 * Decrement the entries to the page that an event is on.
2841 * The event does not even need to exist, only the pointer
2842 * to the page it is on. This may only be called before the commit
2843 * takes place.
2844 */
2845static inline void
2846rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2847 struct ring_buffer_event *event)
2848{
2849 unsigned long addr = (unsigned long)event;
2850 struct buffer_page *bpage = cpu_buffer->commit_page;
2851 struct buffer_page *start;
2852
2853 addr &= PAGE_MASK;
2854
2855 /* Do the likely case first */
2856 if (likely(bpage->page == (void *)addr)) {
2857 local_dec(&bpage->entries);
2858 return;
2859 }
2860
2861 /*
2862 * Because the commit page may be on the reader page we
2863 * start with the next page and check the end loop there.
2864 */
2865 rb_inc_page(cpu_buffer, &bpage);
2866 start = bpage;
2867 do {
2868 if (bpage->page == (void *)addr) {
2869 local_dec(&bpage->entries);
2870 return;
2871 }
2872 rb_inc_page(cpu_buffer, &bpage);
2873 } while (bpage != start);
2874
2875 /* commit not part of this buffer?? */
2876 RB_WARN_ON(cpu_buffer, 1);
2877}
2878
fa1b47dd
SR
2879/**
2880 * ring_buffer_commit_discard - discard an event that has not been committed
2881 * @buffer: the ring buffer
2882 * @event: non committed event to discard
2883 *
dc892f73
SR
2884 * Sometimes an event that is in the ring buffer needs to be ignored.
2885 * This function lets the user discard an event in the ring buffer
2886 * and then that event will not be read later.
2887 *
2888 * This function only works if it is called before the the item has been
2889 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2890 * if another event has not been added behind it.
2891 *
2892 * If another event has been added behind it, it will set the event
2893 * up as discarded, and perform the commit.
2894 *
2895 * If this function is called, do not call ring_buffer_unlock_commit on
2896 * the event.
2897 */
2898void ring_buffer_discard_commit(struct ring_buffer *buffer,
2899 struct ring_buffer_event *event)
2900{
2901 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2902 int cpu;
2903
2904 /* The event is discarded regardless */
f3b9aae1 2905 rb_event_discard(event);
fa1b47dd 2906
fa743953
SR
2907 cpu = smp_processor_id();
2908 cpu_buffer = buffer->buffers[cpu];
2909
fa1b47dd
SR
2910 /*
2911 * This must only be called if the event has not been
2912 * committed yet. Thus we can assume that preemption
2913 * is still disabled.
2914 */
fa743953 2915 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2916
a1863c21 2917 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2918 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2919 goto out;
fa1b47dd
SR
2920
2921 /*
2922 * The commit is still visible by the reader, so we
a1863c21 2923 * must still update the timestamp.
fa1b47dd 2924 */
a1863c21 2925 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2926 out:
fa743953 2927 rb_end_commit(cpu_buffer);
fa1b47dd 2928
58a09ec6 2929 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2930
5168ae50 2931 preempt_enable_notrace();
fa1b47dd
SR
2932
2933}
2934EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2935
7a8e76a3
SR
2936/**
2937 * ring_buffer_write - write data to the buffer without reserving
2938 * @buffer: The ring buffer to write to.
2939 * @length: The length of the data being written (excluding the event header)
2940 * @data: The data to write to the buffer.
2941 *
2942 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2943 * one function. If you already have the data to write to the buffer, it
2944 * may be easier to simply call this function.
2945 *
2946 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2947 * and not the length of the event which would hold the header.
2948 */
2949int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2950 unsigned long length,
2951 void *data)
7a8e76a3
SR
2952{
2953 struct ring_buffer_per_cpu *cpu_buffer;
2954 struct ring_buffer_event *event;
7a8e76a3
SR
2955 void *body;
2956 int ret = -EBUSY;
5168ae50 2957 int cpu;
7a8e76a3 2958
5168ae50 2959 preempt_disable_notrace();
bf41a158 2960
52fbe9cd
LJ
2961 if (atomic_read(&buffer->record_disabled))
2962 goto out;
2963
7a8e76a3
SR
2964 cpu = raw_smp_processor_id();
2965
9e01c1b7 2966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2967 goto out;
7a8e76a3
SR
2968
2969 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2970
2971 if (atomic_read(&cpu_buffer->record_disabled))
2972 goto out;
2973
be957c44
SR
2974 if (length > BUF_MAX_DATA_SIZE)
2975 goto out;
2976
985e871b
SRRH
2977 if (unlikely(trace_recursive_lock(cpu_buffer)))
2978 goto out;
2979
62f0b3eb 2980 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2981 if (!event)
985e871b 2982 goto out_unlock;
7a8e76a3
SR
2983
2984 body = rb_event_data(event);
2985
2986 memcpy(body, data, length);
2987
2988 rb_commit(cpu_buffer, event);
2989
15693458
SRRH
2990 rb_wakeups(buffer, cpu_buffer);
2991
7a8e76a3 2992 ret = 0;
985e871b
SRRH
2993
2994 out_unlock:
2995 trace_recursive_unlock(cpu_buffer);
2996
7a8e76a3 2997 out:
5168ae50 2998 preempt_enable_notrace();
7a8e76a3
SR
2999
3000 return ret;
3001}
c4f50183 3002EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3003
da58834c 3004static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3005{
3006 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3007 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3008 struct buffer_page *commit = cpu_buffer->commit_page;
3009
77ae365e
SR
3010 /* In case of error, head will be NULL */
3011 if (unlikely(!head))
da58834c 3012 return true;
77ae365e 3013
bf41a158
SR
3014 return reader->read == rb_page_commit(reader) &&
3015 (commit == reader ||
3016 (commit == head &&
3017 head->read == rb_page_commit(commit)));
3018}
3019
7a8e76a3
SR
3020/**
3021 * ring_buffer_record_disable - stop all writes into the buffer
3022 * @buffer: The ring buffer to stop writes to.
3023 *
3024 * This prevents all writes to the buffer. Any attempt to write
3025 * to the buffer after this will fail and return NULL.
3026 *
3027 * The caller should call synchronize_sched() after this.
3028 */
3029void ring_buffer_record_disable(struct ring_buffer *buffer)
3030{
3031 atomic_inc(&buffer->record_disabled);
3032}
c4f50183 3033EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3034
3035/**
3036 * ring_buffer_record_enable - enable writes to the buffer
3037 * @buffer: The ring buffer to enable writes
3038 *
3039 * Note, multiple disables will need the same number of enables
c41b20e7 3040 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3041 */
3042void ring_buffer_record_enable(struct ring_buffer *buffer)
3043{
3044 atomic_dec(&buffer->record_disabled);
3045}
c4f50183 3046EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3047
499e5470
SR
3048/**
3049 * ring_buffer_record_off - stop all writes into the buffer
3050 * @buffer: The ring buffer to stop writes to.
3051 *
3052 * This prevents all writes to the buffer. Any attempt to write
3053 * to the buffer after this will fail and return NULL.
3054 *
3055 * This is different than ring_buffer_record_disable() as
87abb3b1 3056 * it works like an on/off switch, where as the disable() version
499e5470
SR
3057 * must be paired with a enable().
3058 */
3059void ring_buffer_record_off(struct ring_buffer *buffer)
3060{
3061 unsigned int rd;
3062 unsigned int new_rd;
3063
3064 do {
3065 rd = atomic_read(&buffer->record_disabled);
3066 new_rd = rd | RB_BUFFER_OFF;
3067 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068}
3069EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3070
3071/**
3072 * ring_buffer_record_on - restart writes into the buffer
3073 * @buffer: The ring buffer to start writes to.
3074 *
3075 * This enables all writes to the buffer that was disabled by
3076 * ring_buffer_record_off().
3077 *
3078 * This is different than ring_buffer_record_enable() as
87abb3b1 3079 * it works like an on/off switch, where as the enable() version
499e5470
SR
3080 * must be paired with a disable().
3081 */
3082void ring_buffer_record_on(struct ring_buffer *buffer)
3083{
3084 unsigned int rd;
3085 unsigned int new_rd;
3086
3087 do {
3088 rd = atomic_read(&buffer->record_disabled);
3089 new_rd = rd & ~RB_BUFFER_OFF;
3090 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3091}
3092EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3093
3094/**
3095 * ring_buffer_record_is_on - return true if the ring buffer can write
3096 * @buffer: The ring buffer to see if write is enabled
3097 *
3098 * Returns true if the ring buffer is in a state that it accepts writes.
3099 */
3100int ring_buffer_record_is_on(struct ring_buffer *buffer)
3101{
3102 return !atomic_read(&buffer->record_disabled);
3103}
3104
1f1cb23b
MH
3105/**
3106 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3107 * @buffer: The ring buffer to see if write is set enabled
3108 *
3109 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3110 * Note that this does NOT mean it is in a writable state.
3111 *
3112 * It may return true when the ring buffer has been disabled by
3113 * ring_buffer_record_disable(), as that is a temporary disabling of
3114 * the ring buffer.
3115 */
3116int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3117{
3118 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3119}
3120
7a8e76a3
SR
3121/**
3122 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3123 * @buffer: The ring buffer to stop writes to.
3124 * @cpu: The CPU buffer to stop
3125 *
3126 * This prevents all writes to the buffer. Any attempt to write
3127 * to the buffer after this will fail and return NULL.
3128 *
3129 * The caller should call synchronize_sched() after this.
3130 */
3131void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3132{
3133 struct ring_buffer_per_cpu *cpu_buffer;
3134
9e01c1b7 3135 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3136 return;
7a8e76a3
SR
3137
3138 cpu_buffer = buffer->buffers[cpu];
3139 atomic_inc(&cpu_buffer->record_disabled);
3140}
c4f50183 3141EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3142
3143/**
3144 * ring_buffer_record_enable_cpu - enable writes to the buffer
3145 * @buffer: The ring buffer to enable writes
3146 * @cpu: The CPU to enable.
3147 *
3148 * Note, multiple disables will need the same number of enables
c41b20e7 3149 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3150 */
3151void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3152{
3153 struct ring_buffer_per_cpu *cpu_buffer;
3154
9e01c1b7 3155 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3156 return;
7a8e76a3
SR
3157
3158 cpu_buffer = buffer->buffers[cpu];
3159 atomic_dec(&cpu_buffer->record_disabled);
3160}
c4f50183 3161EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3162
f6195aa0
SR
3163/*
3164 * The total entries in the ring buffer is the running counter
3165 * of entries entered into the ring buffer, minus the sum of
3166 * the entries read from the ring buffer and the number of
3167 * entries that were overwritten.
3168 */
3169static inline unsigned long
3170rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3171{
3172 return local_read(&cpu_buffer->entries) -
3173 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3174}
3175
c64e148a
VN
3176/**
3177 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3178 * @buffer: The ring buffer
3179 * @cpu: The per CPU buffer to read from.
3180 */
50ecf2c3 3181u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3182{
3183 unsigned long flags;
3184 struct ring_buffer_per_cpu *cpu_buffer;
3185 struct buffer_page *bpage;
da830e58 3186 u64 ret = 0;
c64e148a
VN
3187
3188 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189 return 0;
3190
3191 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3192 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3193 /*
3194 * if the tail is on reader_page, oldest time stamp is on the reader
3195 * page
3196 */
3197 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3198 bpage = cpu_buffer->reader_page;
3199 else
3200 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3201 if (bpage)
3202 ret = bpage->page->time_stamp;
7115e3fc 3203 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3204
3205 return ret;
3206}
3207EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3208
3209/**
3210 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3211 * @buffer: The ring buffer
3212 * @cpu: The per CPU buffer to read from.
3213 */
3214unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3215{
3216 struct ring_buffer_per_cpu *cpu_buffer;
3217 unsigned long ret;
3218
3219 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3220 return 0;
3221
3222 cpu_buffer = buffer->buffers[cpu];
3223 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3224
3225 return ret;
3226}
3227EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3228
7a8e76a3
SR
3229/**
3230 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3231 * @buffer: The ring buffer
3232 * @cpu: The per CPU buffer to get the entries from.
3233 */
3234unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3235{
3236 struct ring_buffer_per_cpu *cpu_buffer;
3237
9e01c1b7 3238 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3239 return 0;
7a8e76a3
SR
3240
3241 cpu_buffer = buffer->buffers[cpu];
554f786e 3242
f6195aa0 3243 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3244}
c4f50183 3245EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3246
3247/**
884bfe89
SP
3248 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3249 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the number of overruns from
3252 */
3253unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254{
3255 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3256 unsigned long ret;
7a8e76a3 3257
9e01c1b7 3258 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3259 return 0;
7a8e76a3
SR
3260
3261 cpu_buffer = buffer->buffers[cpu];
77ae365e 3262 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3263
3264 return ret;
7a8e76a3 3265}
c4f50183 3266EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3267
f0d2c681 3268/**
884bfe89
SP
3269 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3270 * commits failing due to the buffer wrapping around while there are uncommitted
3271 * events, such as during an interrupt storm.
f0d2c681
SR
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3274 */
3275unsigned long
3276ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3277{
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long ret;
3280
3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 return 0;
3283
3284 cpu_buffer = buffer->buffers[cpu];
77ae365e 3285 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3286
3287 return ret;
3288}
3289EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3290
884bfe89
SP
3291/**
3292 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3293 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of overruns from
3296 */
3297unsigned long
3298ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3299{
3300 struct ring_buffer_per_cpu *cpu_buffer;
3301 unsigned long ret;
3302
3303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304 return 0;
3305
3306 cpu_buffer = buffer->buffers[cpu];
3307 ret = local_read(&cpu_buffer->dropped_events);
3308
3309 return ret;
3310}
3311EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3312
ad964704
SRRH
3313/**
3314 * ring_buffer_read_events_cpu - get the number of events successfully read
3315 * @buffer: The ring buffer
3316 * @cpu: The per CPU buffer to get the number of events read
3317 */
3318unsigned long
3319ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3320{
3321 struct ring_buffer_per_cpu *cpu_buffer;
3322
3323 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3324 return 0;
3325
3326 cpu_buffer = buffer->buffers[cpu];
3327 return cpu_buffer->read;
3328}
3329EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3330
7a8e76a3
SR
3331/**
3332 * ring_buffer_entries - get the number of entries in a buffer
3333 * @buffer: The ring buffer
3334 *
3335 * Returns the total number of entries in the ring buffer
3336 * (all CPU entries)
3337 */
3338unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3339{
3340 struct ring_buffer_per_cpu *cpu_buffer;
3341 unsigned long entries = 0;
3342 int cpu;
3343
3344 /* if you care about this being correct, lock the buffer */
3345 for_each_buffer_cpu(buffer, cpu) {
3346 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3347 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3348 }
3349
3350 return entries;
3351}
c4f50183 3352EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3353
3354/**
67b394f7 3355 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3356 * @buffer: The ring buffer
3357 *
3358 * Returns the total number of overruns in the ring buffer
3359 * (all CPU entries)
3360 */
3361unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3362{
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364 unsigned long overruns = 0;
3365 int cpu;
3366
3367 /* if you care about this being correct, lock the buffer */
3368 for_each_buffer_cpu(buffer, cpu) {
3369 cpu_buffer = buffer->buffers[cpu];
77ae365e 3370 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3371 }
3372
3373 return overruns;
3374}
c4f50183 3375EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3376
642edba5 3377static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3378{
3379 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3380
d769041f 3381 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3382 iter->head_page = cpu_buffer->reader_page;
3383 iter->head = cpu_buffer->reader_page->read;
3384
3385 iter->cache_reader_page = iter->head_page;
24607f11 3386 iter->cache_read = cpu_buffer->read;
651e22f2 3387
d769041f
SR
3388 if (iter->head)
3389 iter->read_stamp = cpu_buffer->read_stamp;
3390 else
abc9b56d 3391 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3392}
f83c9d0f 3393
642edba5
SR
3394/**
3395 * ring_buffer_iter_reset - reset an iterator
3396 * @iter: The iterator to reset
3397 *
3398 * Resets the iterator, so that it will start from the beginning
3399 * again.
3400 */
3401void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3402{
554f786e 3403 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3404 unsigned long flags;
3405
554f786e
SR
3406 if (!iter)
3407 return;
3408
3409 cpu_buffer = iter->cpu_buffer;
3410
5389f6fa 3411 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3412 rb_iter_reset(iter);
5389f6fa 3413 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3414}
c4f50183 3415EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3416
3417/**
3418 * ring_buffer_iter_empty - check if an iterator has no more to read
3419 * @iter: The iterator to check
3420 */
3421int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3422{
3423 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
3424 struct buffer_page *reader;
3425 struct buffer_page *head_page;
3426 struct buffer_page *commit_page;
3427 unsigned commit;
7a8e76a3
SR
3428
3429 cpu_buffer = iter->cpu_buffer;
3430
78f7a45d
SRV
3431 /* Remember, trace recording is off when iterator is in use */
3432 reader = cpu_buffer->reader_page;
3433 head_page = cpu_buffer->head_page;
3434 commit_page = cpu_buffer->commit_page;
3435 commit = rb_page_commit(commit_page);
3436
3437 return ((iter->head_page == commit_page && iter->head == commit) ||
3438 (iter->head_page == reader && commit_page == head_page &&
3439 head_page->read == commit &&
3440 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 3441}
c4f50183 3442EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3443
3444static void
3445rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3446 struct ring_buffer_event *event)
3447{
3448 u64 delta;
3449
334d4169 3450 switch (event->type_len) {
7a8e76a3
SR
3451 case RINGBUF_TYPE_PADDING:
3452 return;
3453
3454 case RINGBUF_TYPE_TIME_EXTEND:
3455 delta = event->array[0];
3456 delta <<= TS_SHIFT;
3457 delta += event->time_delta;
3458 cpu_buffer->read_stamp += delta;
3459 return;
3460
3461 case RINGBUF_TYPE_TIME_STAMP:
3462 /* FIXME: not implemented */
3463 return;
3464
3465 case RINGBUF_TYPE_DATA:
3466 cpu_buffer->read_stamp += event->time_delta;
3467 return;
3468
3469 default:
3470 BUG();
3471 }
3472 return;
3473}
3474
3475static void
3476rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3477 struct ring_buffer_event *event)
3478{
3479 u64 delta;
3480
334d4169 3481 switch (event->type_len) {
7a8e76a3
SR
3482 case RINGBUF_TYPE_PADDING:
3483 return;
3484
3485 case RINGBUF_TYPE_TIME_EXTEND:
3486 delta = event->array[0];
3487 delta <<= TS_SHIFT;
3488 delta += event->time_delta;
3489 iter->read_stamp += delta;
3490 return;
3491
3492 case RINGBUF_TYPE_TIME_STAMP:
3493 /* FIXME: not implemented */
3494 return;
3495
3496 case RINGBUF_TYPE_DATA:
3497 iter->read_stamp += event->time_delta;
3498 return;
3499
3500 default:
3501 BUG();
3502 }
3503 return;
3504}
3505
d769041f
SR
3506static struct buffer_page *
3507rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3508{
d769041f 3509 struct buffer_page *reader = NULL;
66a8cb95 3510 unsigned long overwrite;
d769041f 3511 unsigned long flags;
818e3dd3 3512 int nr_loops = 0;
77ae365e 3513 int ret;
d769041f 3514
3e03fb7f 3515 local_irq_save(flags);
0199c4e6 3516 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3517
3518 again:
818e3dd3
SR
3519 /*
3520 * This should normally only loop twice. But because the
3521 * start of the reader inserts an empty page, it causes
3522 * a case where we will loop three times. There should be no
3523 * reason to loop four times (that I know of).
3524 */
3e89c7bb 3525 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3526 reader = NULL;
3527 goto out;
3528 }
3529
d769041f
SR
3530 reader = cpu_buffer->reader_page;
3531
3532 /* If there's more to read, return this page */
bf41a158 3533 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3534 goto out;
3535
3536 /* Never should we have an index greater than the size */
3e89c7bb
SR
3537 if (RB_WARN_ON(cpu_buffer,
3538 cpu_buffer->reader_page->read > rb_page_size(reader)))
3539 goto out;
d769041f
SR
3540
3541 /* check if we caught up to the tail */
3542 reader = NULL;
bf41a158 3543 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3544 goto out;
7a8e76a3 3545
a5fb8331
SR
3546 /* Don't bother swapping if the ring buffer is empty */
3547 if (rb_num_of_entries(cpu_buffer) == 0)
3548 goto out;
3549
7a8e76a3 3550 /*
d769041f 3551 * Reset the reader page to size zero.
7a8e76a3 3552 */
77ae365e
SR
3553 local_set(&cpu_buffer->reader_page->write, 0);
3554 local_set(&cpu_buffer->reader_page->entries, 0);
3555 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3556 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3557
77ae365e
SR
3558 spin:
3559 /*
3560 * Splice the empty reader page into the list around the head.
3561 */
3562 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3563 if (!reader)
3564 goto out;
0e1ff5d7 3565 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3566 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3567
3adc54fa
SR
3568 /*
3569 * cpu_buffer->pages just needs to point to the buffer, it
3570 * has no specific buffer page to point to. Lets move it out
25985edc 3571 * of our way so we don't accidentally swap it.
3adc54fa
SR
3572 */
3573 cpu_buffer->pages = reader->list.prev;
3574
77ae365e
SR
3575 /* The reader page will be pointing to the new head */
3576 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3577
66a8cb95
SR
3578 /*
3579 * We want to make sure we read the overruns after we set up our
3580 * pointers to the next object. The writer side does a
3581 * cmpxchg to cross pages which acts as the mb on the writer
3582 * side. Note, the reader will constantly fail the swap
3583 * while the writer is updating the pointers, so this
3584 * guarantees that the overwrite recorded here is the one we
3585 * want to compare with the last_overrun.
3586 */
3587 smp_mb();
3588 overwrite = local_read(&(cpu_buffer->overrun));
3589
77ae365e
SR
3590 /*
3591 * Here's the tricky part.
3592 *
3593 * We need to move the pointer past the header page.
3594 * But we can only do that if a writer is not currently
3595 * moving it. The page before the header page has the
3596 * flag bit '1' set if it is pointing to the page we want.
3597 * but if the writer is in the process of moving it
3598 * than it will be '2' or already moved '0'.
3599 */
3600
3601 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3602
3603 /*
77ae365e 3604 * If we did not convert it, then we must try again.
7a8e76a3 3605 */
77ae365e
SR
3606 if (!ret)
3607 goto spin;
7a8e76a3 3608
77ae365e
SR
3609 /*
3610 * Yeah! We succeeded in replacing the page.
3611 *
3612 * Now make the new head point back to the reader page.
3613 */
5ded3dc6 3614 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3615 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3616
3617 /* Finally update the reader page to the new head */
3618 cpu_buffer->reader_page = reader;
b81f472a 3619 cpu_buffer->reader_page->read = 0;
d769041f 3620
66a8cb95
SR
3621 if (overwrite != cpu_buffer->last_overrun) {
3622 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3623 cpu_buffer->last_overrun = overwrite;
3624 }
3625
d769041f
SR
3626 goto again;
3627
3628 out:
b81f472a
SRRH
3629 /* Update the read_stamp on the first event */
3630 if (reader && reader->read == 0)
3631 cpu_buffer->read_stamp = reader->page->time_stamp;
3632
0199c4e6 3633 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3634 local_irq_restore(flags);
d769041f
SR
3635
3636 return reader;
3637}
3638
3639static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3640{
3641 struct ring_buffer_event *event;
3642 struct buffer_page *reader;
3643 unsigned length;
3644
3645 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3646
d769041f 3647 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3648 if (RB_WARN_ON(cpu_buffer, !reader))
3649 return;
7a8e76a3 3650
d769041f
SR
3651 event = rb_reader_event(cpu_buffer);
3652
a1863c21 3653 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3654 cpu_buffer->read++;
d769041f
SR
3655
3656 rb_update_read_stamp(cpu_buffer, event);
3657
3658 length = rb_event_length(event);
6f807acd 3659 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3660}
3661
3662static void rb_advance_iter(struct ring_buffer_iter *iter)
3663{
7a8e76a3
SR
3664 struct ring_buffer_per_cpu *cpu_buffer;
3665 struct ring_buffer_event *event;
3666 unsigned length;
3667
3668 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3669
3670 /*
3671 * Check if we are at the end of the buffer.
3672 */
bf41a158 3673 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3674 /* discarded commits can make the page empty */
3675 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3676 return;
d769041f 3677 rb_inc_iter(iter);
7a8e76a3
SR
3678 return;
3679 }
3680
3681 event = rb_iter_head_event(iter);
3682
3683 length = rb_event_length(event);
3684
3685 /*
3686 * This should not be called to advance the header if we are
3687 * at the tail of the buffer.
3688 */
3e89c7bb 3689 if (RB_WARN_ON(cpu_buffer,
f536aafc 3690 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3691 (iter->head + length > rb_commit_index(cpu_buffer))))
3692 return;
7a8e76a3
SR
3693
3694 rb_update_iter_read_stamp(iter, event);
3695
3696 iter->head += length;
3697
3698 /* check for end of page padding */
bf41a158
SR
3699 if ((iter->head >= rb_page_size(iter->head_page)) &&
3700 (iter->head_page != cpu_buffer->commit_page))
771e0384 3701 rb_inc_iter(iter);
7a8e76a3
SR
3702}
3703
66a8cb95
SR
3704static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3705{
3706 return cpu_buffer->lost_events;
3707}
3708
f83c9d0f 3709static struct ring_buffer_event *
66a8cb95
SR
3710rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3711 unsigned long *lost_events)
7a8e76a3 3712{
7a8e76a3 3713 struct ring_buffer_event *event;
d769041f 3714 struct buffer_page *reader;
818e3dd3 3715 int nr_loops = 0;
7a8e76a3 3716
7a8e76a3 3717 again:
818e3dd3 3718 /*
69d1b839
SR
3719 * We repeat when a time extend is encountered.
3720 * Since the time extend is always attached to a data event,
3721 * we should never loop more than once.
3722 * (We never hit the following condition more than twice).
818e3dd3 3723 */
69d1b839 3724 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3725 return NULL;
818e3dd3 3726
d769041f
SR
3727 reader = rb_get_reader_page(cpu_buffer);
3728 if (!reader)
7a8e76a3
SR
3729 return NULL;
3730
d769041f 3731 event = rb_reader_event(cpu_buffer);
7a8e76a3 3732
334d4169 3733 switch (event->type_len) {
7a8e76a3 3734 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3735 if (rb_null_event(event))
3736 RB_WARN_ON(cpu_buffer, 1);
3737 /*
3738 * Because the writer could be discarding every
3739 * event it creates (which would probably be bad)
3740 * if we were to go back to "again" then we may never
3741 * catch up, and will trigger the warn on, or lock
3742 * the box. Return the padding, and we will release
3743 * the current locks, and try again.
3744 */
2d622719 3745 return event;
7a8e76a3
SR
3746
3747 case RINGBUF_TYPE_TIME_EXTEND:
3748 /* Internal data, OK to advance */
d769041f 3749 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3750 goto again;
3751
3752 case RINGBUF_TYPE_TIME_STAMP:
3753 /* FIXME: not implemented */
d769041f 3754 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3755 goto again;
3756
3757 case RINGBUF_TYPE_DATA:
3758 if (ts) {
3759 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3760 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3761 cpu_buffer->cpu, ts);
7a8e76a3 3762 }
66a8cb95
SR
3763 if (lost_events)
3764 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3765 return event;
3766
3767 default:
3768 BUG();
3769 }
3770
3771 return NULL;
3772}
c4f50183 3773EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3774
f83c9d0f
SR
3775static struct ring_buffer_event *
3776rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3777{
3778 struct ring_buffer *buffer;
3779 struct ring_buffer_per_cpu *cpu_buffer;
3780 struct ring_buffer_event *event;
818e3dd3 3781 int nr_loops = 0;
7a8e76a3 3782
7a8e76a3
SR
3783 cpu_buffer = iter->cpu_buffer;
3784 buffer = cpu_buffer->buffer;
3785
492a74f4
SR
3786 /*
3787 * Check if someone performed a consuming read to
3788 * the buffer. A consuming read invalidates the iterator
3789 * and we need to reset the iterator in this case.
3790 */
3791 if (unlikely(iter->cache_read != cpu_buffer->read ||
3792 iter->cache_reader_page != cpu_buffer->reader_page))
3793 rb_iter_reset(iter);
3794
7a8e76a3 3795 again:
3c05d748
SR
3796 if (ring_buffer_iter_empty(iter))
3797 return NULL;
3798
818e3dd3 3799 /*
021de3d9
SRRH
3800 * We repeat when a time extend is encountered or we hit
3801 * the end of the page. Since the time extend is always attached
3802 * to a data event, we should never loop more than three times.
3803 * Once for going to next page, once on time extend, and
3804 * finally once to get the event.
3805 * (We never hit the following condition more than thrice).
818e3dd3 3806 */
021de3d9 3807 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3808 return NULL;
818e3dd3 3809
7a8e76a3
SR
3810 if (rb_per_cpu_empty(cpu_buffer))
3811 return NULL;
3812
10e83fd0 3813 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3814 rb_inc_iter(iter);
3815 goto again;
3816 }
3817
7a8e76a3
SR
3818 event = rb_iter_head_event(iter);
3819
334d4169 3820 switch (event->type_len) {
7a8e76a3 3821 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3822 if (rb_null_event(event)) {
3823 rb_inc_iter(iter);
3824 goto again;
3825 }
3826 rb_advance_iter(iter);
3827 return event;
7a8e76a3
SR
3828
3829 case RINGBUF_TYPE_TIME_EXTEND:
3830 /* Internal data, OK to advance */
3831 rb_advance_iter(iter);
3832 goto again;
3833
3834 case RINGBUF_TYPE_TIME_STAMP:
3835 /* FIXME: not implemented */
3836 rb_advance_iter(iter);
3837 goto again;
3838
3839 case RINGBUF_TYPE_DATA:
3840 if (ts) {
3841 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3842 ring_buffer_normalize_time_stamp(buffer,
3843 cpu_buffer->cpu, ts);
7a8e76a3
SR
3844 }
3845 return event;
3846
3847 default:
3848 BUG();
3849 }
3850
3851 return NULL;
3852}
c4f50183 3853EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3854
289a5a25 3855static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3856{
289a5a25
SRRH
3857 if (likely(!in_nmi())) {
3858 raw_spin_lock(&cpu_buffer->reader_lock);
3859 return true;
3860 }
3861
8d707e8e
SR
3862 /*
3863 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3864 * trylock must be used to prevent a deadlock if the NMI
3865 * preempted a task that holds the ring buffer locks. If
3866 * we get the lock then all is fine, if not, then continue
3867 * to do the read, but this can corrupt the ring buffer,
3868 * so it must be permanently disabled from future writes.
3869 * Reading from NMI is a oneshot deal.
8d707e8e 3870 */
289a5a25
SRRH
3871 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3872 return true;
8d707e8e 3873
289a5a25
SRRH
3874 /* Continue without locking, but disable the ring buffer */
3875 atomic_inc(&cpu_buffer->record_disabled);
3876 return false;
3877}
3878
3879static inline void
3880rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3881{
3882 if (likely(locked))
3883 raw_spin_unlock(&cpu_buffer->reader_lock);
3884 return;
8d707e8e
SR
3885}
3886
f83c9d0f
SR
3887/**
3888 * ring_buffer_peek - peek at the next event to be read
3889 * @buffer: The ring buffer to read
3890 * @cpu: The cpu to peak at
3891 * @ts: The timestamp counter of this event.
66a8cb95 3892 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3893 *
3894 * This will return the event that will be read next, but does
3895 * not consume the data.
3896 */
3897struct ring_buffer_event *
66a8cb95
SR
3898ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3899 unsigned long *lost_events)
f83c9d0f
SR
3900{
3901 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3902 struct ring_buffer_event *event;
f83c9d0f 3903 unsigned long flags;
289a5a25 3904 bool dolock;
f83c9d0f 3905
554f786e 3906 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3907 return NULL;
554f786e 3908
2d622719 3909 again:
8d707e8e 3910 local_irq_save(flags);
289a5a25 3911 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3912 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3913 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3914 rb_advance_reader(cpu_buffer);
289a5a25 3915 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3916 local_irq_restore(flags);
f83c9d0f 3917
1b959e18 3918 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3919 goto again;
2d622719 3920
f83c9d0f
SR
3921 return event;
3922}
3923
3924/**
3925 * ring_buffer_iter_peek - peek at the next event to be read
3926 * @iter: The ring buffer iterator
3927 * @ts: The timestamp counter of this event.
3928 *
3929 * This will return the event that will be read next, but does
3930 * not increment the iterator.
3931 */
3932struct ring_buffer_event *
3933ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3934{
3935 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3936 struct ring_buffer_event *event;
3937 unsigned long flags;
3938
2d622719 3939 again:
5389f6fa 3940 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3941 event = rb_iter_peek(iter, ts);
5389f6fa 3942 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3943
1b959e18 3944 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3945 goto again;
2d622719 3946
f83c9d0f
SR
3947 return event;
3948}
3949
7a8e76a3
SR
3950/**
3951 * ring_buffer_consume - return an event and consume it
3952 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3953 * @cpu: the cpu to read the buffer from
3954 * @ts: a variable to store the timestamp (may be NULL)
3955 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3956 *
3957 * Returns the next event in the ring buffer, and that event is consumed.
3958 * Meaning, that sequential reads will keep returning a different event,
3959 * and eventually empty the ring buffer if the producer is slower.
3960 */
3961struct ring_buffer_event *
66a8cb95
SR
3962ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3963 unsigned long *lost_events)
7a8e76a3 3964{
554f786e
SR
3965 struct ring_buffer_per_cpu *cpu_buffer;
3966 struct ring_buffer_event *event = NULL;
f83c9d0f 3967 unsigned long flags;
289a5a25 3968 bool dolock;
7a8e76a3 3969
2d622719 3970 again:
554f786e
SR
3971 /* might be called in atomic */
3972 preempt_disable();
3973
9e01c1b7 3974 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3975 goto out;
7a8e76a3 3976
554f786e 3977 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3978 local_irq_save(flags);
289a5a25 3979 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3980
66a8cb95
SR
3981 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3982 if (event) {
3983 cpu_buffer->lost_events = 0;
469535a5 3984 rb_advance_reader(cpu_buffer);
66a8cb95 3985 }
7a8e76a3 3986
289a5a25 3987 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3988 local_irq_restore(flags);
f83c9d0f 3989
554f786e
SR
3990 out:
3991 preempt_enable();
3992
1b959e18 3993 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3994 goto again;
2d622719 3995
7a8e76a3
SR
3996 return event;
3997}
c4f50183 3998EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3999
4000/**
72c9ddfd 4001 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4002 * @buffer: The ring buffer to read from
4003 * @cpu: The cpu buffer to iterate over
4a9c43b9 4004 * @flags: gfp flags to use for memory allocation
7a8e76a3 4005 *
72c9ddfd
DM
4006 * This performs the initial preparations necessary to iterate
4007 * through the buffer. Memory is allocated, buffer recording
4008 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4009 *
72c9ddfd
DM
4010 * Disabling buffer recordng prevents the reading from being
4011 * corrupted. This is not a consuming read, so a producer is not
4012 * expected.
4013 *
4014 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4015 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4016 * Afterwards, ring_buffer_read_start is invoked to get things going
4017 * for real.
4018 *
d611851b 4019 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4020 */
4021struct ring_buffer_iter *
4a9c43b9 4022ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
7a8e76a3
SR
4023{
4024 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4025 struct ring_buffer_iter *iter;
7a8e76a3 4026
9e01c1b7 4027 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4028 return NULL;
7a8e76a3 4029
4a9c43b9 4030 iter = kmalloc(sizeof(*iter), flags);
7a8e76a3 4031 if (!iter)
8aabee57 4032 return NULL;
7a8e76a3
SR
4033
4034 cpu_buffer = buffer->buffers[cpu];
4035
4036 iter->cpu_buffer = cpu_buffer;
4037
83f40318 4038 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4039 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4040
4041 return iter;
4042}
4043EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4044
4045/**
4046 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4047 *
4048 * All previously invoked ring_buffer_read_prepare calls to prepare
4049 * iterators will be synchronized. Afterwards, read_buffer_read_start
4050 * calls on those iterators are allowed.
4051 */
4052void
4053ring_buffer_read_prepare_sync(void)
4054{
7a8e76a3 4055 synchronize_sched();
72c9ddfd
DM
4056}
4057EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4058
4059/**
4060 * ring_buffer_read_start - start a non consuming read of the buffer
4061 * @iter: The iterator returned by ring_buffer_read_prepare
4062 *
4063 * This finalizes the startup of an iteration through the buffer.
4064 * The iterator comes from a call to ring_buffer_read_prepare and
4065 * an intervening ring_buffer_read_prepare_sync must have been
4066 * performed.
4067 *
d611851b 4068 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4069 */
4070void
4071ring_buffer_read_start(struct ring_buffer_iter *iter)
4072{
4073 struct ring_buffer_per_cpu *cpu_buffer;
4074 unsigned long flags;
4075
4076 if (!iter)
4077 return;
4078
4079 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4080
5389f6fa 4081 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4082 arch_spin_lock(&cpu_buffer->lock);
642edba5 4083 rb_iter_reset(iter);
0199c4e6 4084 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4085 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4086}
c4f50183 4087EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4088
4089/**
d611851b 4090 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4091 * @iter: The iterator retrieved by ring_buffer_start
4092 *
4093 * This re-enables the recording to the buffer, and frees the
4094 * iterator.
4095 */
4096void
4097ring_buffer_read_finish(struct ring_buffer_iter *iter)
4098{
4099 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4100 unsigned long flags;
7a8e76a3 4101
659f451f
SR
4102 /*
4103 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4104 * to check the integrity of the ring buffer.
4105 * Must prevent readers from trying to read, as the check
4106 * clears the HEAD page and readers require it.
659f451f 4107 */
9366c1ba 4108 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4109 rb_check_pages(cpu_buffer);
9366c1ba 4110 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4111
7a8e76a3 4112 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4113 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4114 kfree(iter);
4115}
c4f50183 4116EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4117
4118/**
4119 * ring_buffer_read - read the next item in the ring buffer by the iterator
4120 * @iter: The ring buffer iterator
4121 * @ts: The time stamp of the event read.
4122 *
4123 * This reads the next event in the ring buffer and increments the iterator.
4124 */
4125struct ring_buffer_event *
4126ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4127{
4128 struct ring_buffer_event *event;
f83c9d0f
SR
4129 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4130 unsigned long flags;
7a8e76a3 4131
5389f6fa 4132 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4133 again:
f83c9d0f 4134 event = rb_iter_peek(iter, ts);
7a8e76a3 4135 if (!event)
f83c9d0f 4136 goto out;
7a8e76a3 4137
7e9391cf
SR
4138 if (event->type_len == RINGBUF_TYPE_PADDING)
4139 goto again;
4140
7a8e76a3 4141 rb_advance_iter(iter);
f83c9d0f 4142 out:
5389f6fa 4143 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4144
4145 return event;
4146}
c4f50183 4147EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4148
4149/**
4150 * ring_buffer_size - return the size of the ring buffer (in bytes)
4151 * @buffer: The ring buffer.
4152 */
438ced17 4153unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4154{
438ced17
VN
4155 /*
4156 * Earlier, this method returned
4157 * BUF_PAGE_SIZE * buffer->nr_pages
4158 * Since the nr_pages field is now removed, we have converted this to
4159 * return the per cpu buffer value.
4160 */
4161 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4162 return 0;
4163
4164 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4165}
c4f50183 4166EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4167
4168static void
4169rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4170{
77ae365e
SR
4171 rb_head_page_deactivate(cpu_buffer);
4172
7a8e76a3 4173 cpu_buffer->head_page
3adc54fa 4174 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4175 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4176 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4177 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4178
6f807acd 4179 cpu_buffer->head_page->read = 0;
bf41a158
SR
4180
4181 cpu_buffer->tail_page = cpu_buffer->head_page;
4182 cpu_buffer->commit_page = cpu_buffer->head_page;
4183
4184 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4185 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4186 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4187 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4188 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4189 cpu_buffer->reader_page->read = 0;
7a8e76a3 4190
c64e148a 4191 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4192 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4193 local_set(&cpu_buffer->commit_overrun, 0);
4194 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4195 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4196 local_set(&cpu_buffer->committing, 0);
4197 local_set(&cpu_buffer->commits, 0);
77ae365e 4198 cpu_buffer->read = 0;
c64e148a 4199 cpu_buffer->read_bytes = 0;
69507c06
SR
4200
4201 cpu_buffer->write_stamp = 0;
4202 cpu_buffer->read_stamp = 0;
77ae365e 4203
66a8cb95
SR
4204 cpu_buffer->lost_events = 0;
4205 cpu_buffer->last_overrun = 0;
4206
77ae365e 4207 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4208}
4209
4210/**
4211 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4212 * @buffer: The ring buffer to reset a per cpu buffer of
4213 * @cpu: The CPU buffer to be reset
4214 */
4215void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4216{
4217 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4218 unsigned long flags;
4219
9e01c1b7 4220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4221 return;
7a8e76a3 4222
83f40318 4223 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4224 atomic_inc(&cpu_buffer->record_disabled);
4225
83f40318
VN
4226 /* Make sure all commits have finished */
4227 synchronize_sched();
4228
5389f6fa 4229 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4230
41b6a95d
SR
4231 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4232 goto out;
4233
0199c4e6 4234 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4235
4236 rb_reset_cpu(cpu_buffer);
4237
0199c4e6 4238 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4239
41b6a95d 4240 out:
5389f6fa 4241 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4242
4243 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4244 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4245}
c4f50183 4246EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4247
4248/**
4249 * ring_buffer_reset - reset a ring buffer
4250 * @buffer: The ring buffer to reset all cpu buffers
4251 */
4252void ring_buffer_reset(struct ring_buffer *buffer)
4253{
7a8e76a3
SR
4254 int cpu;
4255
7a8e76a3 4256 for_each_buffer_cpu(buffer, cpu)
d769041f 4257 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4258}
c4f50183 4259EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4260
4261/**
4262 * rind_buffer_empty - is the ring buffer empty?
4263 * @buffer: The ring buffer to test
4264 */
3d4e204d 4265bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4266{
4267 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4268 unsigned long flags;
289a5a25 4269 bool dolock;
7a8e76a3 4270 int cpu;
d4788207 4271 int ret;
7a8e76a3
SR
4272
4273 /* yes this is racy, but if you don't like the race, lock the buffer */
4274 for_each_buffer_cpu(buffer, cpu) {
4275 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4276 local_irq_save(flags);
289a5a25 4277 dolock = rb_reader_lock(cpu_buffer);
d4788207 4278 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4279 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4280 local_irq_restore(flags);
4281
d4788207 4282 if (!ret)
3d4e204d 4283 return false;
7a8e76a3 4284 }
554f786e 4285
3d4e204d 4286 return true;
7a8e76a3 4287}
c4f50183 4288EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4289
4290/**
4291 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4292 * @buffer: The ring buffer
4293 * @cpu: The CPU buffer to test
4294 */
3d4e204d 4295bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4296{
4297 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4298 unsigned long flags;
289a5a25 4299 bool dolock;
8aabee57 4300 int ret;
7a8e76a3 4301
9e01c1b7 4302 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4303 return true;
7a8e76a3
SR
4304
4305 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4306 local_irq_save(flags);
289a5a25 4307 dolock = rb_reader_lock(cpu_buffer);
554f786e 4308 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4309 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4310 local_irq_restore(flags);
554f786e
SR
4311
4312 return ret;
7a8e76a3 4313}
c4f50183 4314EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4315
85bac32c 4316#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4317/**
4318 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4319 * @buffer_a: One buffer to swap with
4320 * @buffer_b: The other buffer to swap with
4321 *
4322 * This function is useful for tracers that want to take a "snapshot"
4323 * of a CPU buffer and has another back up buffer lying around.
4324 * it is expected that the tracer handles the cpu buffer not being
4325 * used at the moment.
4326 */
4327int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4328 struct ring_buffer *buffer_b, int cpu)
4329{
4330 struct ring_buffer_per_cpu *cpu_buffer_a;
4331 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4332 int ret = -EINVAL;
4333
9e01c1b7
RR
4334 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4335 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4336 goto out;
7a8e76a3 4337
438ced17
VN
4338 cpu_buffer_a = buffer_a->buffers[cpu];
4339 cpu_buffer_b = buffer_b->buffers[cpu];
4340
7a8e76a3 4341 /* At least make sure the two buffers are somewhat the same */
438ced17 4342 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4343 goto out;
4344
4345 ret = -EAGAIN;
7a8e76a3 4346
97b17efe 4347 if (atomic_read(&buffer_a->record_disabled))
554f786e 4348 goto out;
97b17efe
SR
4349
4350 if (atomic_read(&buffer_b->record_disabled))
554f786e 4351 goto out;
97b17efe 4352
97b17efe 4353 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4354 goto out;
97b17efe
SR
4355
4356 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4357 goto out;
97b17efe 4358
7a8e76a3
SR
4359 /*
4360 * We can't do a synchronize_sched here because this
4361 * function can be called in atomic context.
4362 * Normally this will be called from the same CPU as cpu.
4363 * If not it's up to the caller to protect this.
4364 */
4365 atomic_inc(&cpu_buffer_a->record_disabled);
4366 atomic_inc(&cpu_buffer_b->record_disabled);
4367
98277991
SR
4368 ret = -EBUSY;
4369 if (local_read(&cpu_buffer_a->committing))
4370 goto out_dec;
4371 if (local_read(&cpu_buffer_b->committing))
4372 goto out_dec;
4373
7a8e76a3
SR
4374 buffer_a->buffers[cpu] = cpu_buffer_b;
4375 buffer_b->buffers[cpu] = cpu_buffer_a;
4376
4377 cpu_buffer_b->buffer = buffer_a;
4378 cpu_buffer_a->buffer = buffer_b;
4379
98277991
SR
4380 ret = 0;
4381
4382out_dec:
7a8e76a3
SR
4383 atomic_dec(&cpu_buffer_a->record_disabled);
4384 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4385out:
554f786e 4386 return ret;
7a8e76a3 4387}
c4f50183 4388EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4389#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4390
8789a9e7
SR
4391/**
4392 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4393 * @buffer: the buffer to allocate for.
d611851b 4394 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4395 *
4396 * This function is used in conjunction with ring_buffer_read_page.
4397 * When reading a full page from the ring buffer, these functions
4398 * can be used to speed up the process. The calling function should
4399 * allocate a few pages first with this function. Then when it
4400 * needs to get pages from the ring buffer, it passes the result
4401 * of this function into ring_buffer_read_page, which will swap
4402 * the page that was allocated, with the read page of the buffer.
4403 *
4404 * Returns:
a7e52ad7 4405 * The page allocated, or ERR_PTR
8789a9e7 4406 */
7ea59064 4407void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4408{
a7e52ad7 4409 struct ring_buffer_per_cpu *cpu_buffer;
73a757e6
SRV
4410 struct buffer_data_page *bpage = NULL;
4411 unsigned long flags;
7ea59064 4412 struct page *page;
8789a9e7 4413
a7e52ad7
SRV
4414 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4415 return ERR_PTR(-ENODEV);
4416
4417 cpu_buffer = buffer->buffers[cpu];
73a757e6
SRV
4418 local_irq_save(flags);
4419 arch_spin_lock(&cpu_buffer->lock);
4420
4421 if (cpu_buffer->free_page) {
4422 bpage = cpu_buffer->free_page;
4423 cpu_buffer->free_page = NULL;
4424 }
4425
4426 arch_spin_unlock(&cpu_buffer->lock);
4427 local_irq_restore(flags);
4428
4429 if (bpage)
4430 goto out;
4431
d7ec4bfe
VN
4432 page = alloc_pages_node(cpu_to_node(cpu),
4433 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4434 if (!page)
a7e52ad7 4435 return ERR_PTR(-ENOMEM);
8789a9e7 4436
7ea59064 4437 bpage = page_address(page);
8789a9e7 4438
73a757e6 4439 out:
ef7a4a16
SR
4440 rb_init_page(bpage);
4441
044fa782 4442 return bpage;
8789a9e7 4443}
d6ce96da 4444EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4445
4446/**
4447 * ring_buffer_free_read_page - free an allocated read page
4448 * @buffer: the buffer the page was allocate for
73a757e6 4449 * @cpu: the cpu buffer the page came from
8789a9e7
SR
4450 * @data: the page to free
4451 *
4452 * Free a page allocated from ring_buffer_alloc_read_page.
4453 */
73a757e6 4454void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
8789a9e7 4455{
73a757e6
SRV
4456 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4457 struct buffer_data_page *bpage = data;
ae415fa4 4458 struct page *page = virt_to_page(bpage);
73a757e6
SRV
4459 unsigned long flags;
4460
ae415fa4
SRV
4461 /* If the page is still in use someplace else, we can't reuse it */
4462 if (page_ref_count(page) > 1)
4463 goto out;
4464
73a757e6
SRV
4465 local_irq_save(flags);
4466 arch_spin_lock(&cpu_buffer->lock);
4467
4468 if (!cpu_buffer->free_page) {
4469 cpu_buffer->free_page = bpage;
4470 bpage = NULL;
4471 }
4472
4473 arch_spin_unlock(&cpu_buffer->lock);
4474 local_irq_restore(flags);
4475
ae415fa4 4476 out:
73a757e6 4477 free_page((unsigned long)bpage);
8789a9e7 4478}
d6ce96da 4479EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4480
4481/**
4482 * ring_buffer_read_page - extract a page from the ring buffer
4483 * @buffer: buffer to extract from
4484 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4485 * @len: amount to extract
8789a9e7
SR
4486 * @cpu: the cpu of the buffer to extract
4487 * @full: should the extraction only happen when the page is full.
4488 *
4489 * This function will pull out a page from the ring buffer and consume it.
4490 * @data_page must be the address of the variable that was returned
4491 * from ring_buffer_alloc_read_page. This is because the page might be used
4492 * to swap with a page in the ring buffer.
4493 *
4494 * for example:
d611851b 4495 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
a7e52ad7
SRV
4496 * if (IS_ERR(rpage))
4497 * return PTR_ERR(rpage);
ef7a4a16 4498 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4499 * if (ret >= 0)
4500 * process_page(rpage, ret);
8789a9e7
SR
4501 *
4502 * When @full is set, the function will not return true unless
4503 * the writer is off the reader page.
4504 *
4505 * Note: it is up to the calling functions to handle sleeps and wakeups.
4506 * The ring buffer can be used anywhere in the kernel and can not
4507 * blindly call wake_up. The layer that uses the ring buffer must be
4508 * responsible for that.
4509 *
4510 * Returns:
667d2412
LJ
4511 * >=0 if data has been transferred, returns the offset of consumed data.
4512 * <0 if no data has been transferred.
8789a9e7
SR
4513 */
4514int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4515 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4516{
4517 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4518 struct ring_buffer_event *event;
044fa782 4519 struct buffer_data_page *bpage;
ef7a4a16 4520 struct buffer_page *reader;
ff0ff84a 4521 unsigned long missed_events;
8789a9e7 4522 unsigned long flags;
ef7a4a16 4523 unsigned int commit;
667d2412 4524 unsigned int read;
4f3640f8 4525 u64 save_timestamp;
667d2412 4526 int ret = -1;
8789a9e7 4527
554f786e
SR
4528 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4529 goto out;
4530
474d32b6
SR
4531 /*
4532 * If len is not big enough to hold the page header, then
4533 * we can not copy anything.
4534 */
4535 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4536 goto out;
474d32b6
SR
4537
4538 len -= BUF_PAGE_HDR_SIZE;
4539
8789a9e7 4540 if (!data_page)
554f786e 4541 goto out;
8789a9e7 4542
044fa782
SR
4543 bpage = *data_page;
4544 if (!bpage)
554f786e 4545 goto out;
8789a9e7 4546
5389f6fa 4547 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4548
ef7a4a16
SR
4549 reader = rb_get_reader_page(cpu_buffer);
4550 if (!reader)
554f786e 4551 goto out_unlock;
8789a9e7 4552
ef7a4a16
SR
4553 event = rb_reader_event(cpu_buffer);
4554
4555 read = reader->read;
4556 commit = rb_page_commit(reader);
667d2412 4557
66a8cb95 4558 /* Check if any events were dropped */
ff0ff84a 4559 missed_events = cpu_buffer->lost_events;
66a8cb95 4560
8789a9e7 4561 /*
474d32b6
SR
4562 * If this page has been partially read or
4563 * if len is not big enough to read the rest of the page or
4564 * a writer is still on the page, then
4565 * we must copy the data from the page to the buffer.
4566 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4567 */
474d32b6 4568 if (read || (len < (commit - read)) ||
ef7a4a16 4569 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4570 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4571 unsigned int rpos = read;
4572 unsigned int pos = 0;
ef7a4a16 4573 unsigned int size;
8789a9e7
SR
4574
4575 if (full)
554f786e 4576 goto out_unlock;
8789a9e7 4577
ef7a4a16
SR
4578 if (len > (commit - read))
4579 len = (commit - read);
4580
69d1b839
SR
4581 /* Always keep the time extend and data together */
4582 size = rb_event_ts_length(event);
ef7a4a16
SR
4583
4584 if (len < size)
554f786e 4585 goto out_unlock;
ef7a4a16 4586
4f3640f8
SR
4587 /* save the current timestamp, since the user will need it */
4588 save_timestamp = cpu_buffer->read_stamp;
4589
ef7a4a16
SR
4590 /* Need to copy one event at a time */
4591 do {
e1e35927
DS
4592 /* We need the size of one event, because
4593 * rb_advance_reader only advances by one event,
4594 * whereas rb_event_ts_length may include the size of
4595 * one or two events.
4596 * We have already ensured there's enough space if this
4597 * is a time extend. */
4598 size = rb_event_length(event);
474d32b6 4599 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4600
4601 len -= size;
4602
4603 rb_advance_reader(cpu_buffer);
474d32b6
SR
4604 rpos = reader->read;
4605 pos += size;
ef7a4a16 4606
18fab912
HY
4607 if (rpos >= commit)
4608 break;
4609
ef7a4a16 4610 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4611 /* Always keep the time extend and data together */
4612 size = rb_event_ts_length(event);
e1e35927 4613 } while (len >= size);
667d2412
LJ
4614
4615 /* update bpage */
ef7a4a16 4616 local_set(&bpage->commit, pos);
4f3640f8 4617 bpage->time_stamp = save_timestamp;
ef7a4a16 4618
474d32b6
SR
4619 /* we copied everything to the beginning */
4620 read = 0;
8789a9e7 4621 } else {
afbab76a 4622 /* update the entry counter */
77ae365e 4623 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4624 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4625
8789a9e7 4626 /* swap the pages */
044fa782 4627 rb_init_page(bpage);
ef7a4a16
SR
4628 bpage = reader->page;
4629 reader->page = *data_page;
4630 local_set(&reader->write, 0);
778c55d4 4631 local_set(&reader->entries, 0);
ef7a4a16 4632 reader->read = 0;
044fa782 4633 *data_page = bpage;
ff0ff84a
SR
4634
4635 /*
4636 * Use the real_end for the data size,
4637 * This gives us a chance to store the lost events
4638 * on the page.
4639 */
4640 if (reader->real_end)
4641 local_set(&bpage->commit, reader->real_end);
8789a9e7 4642 }
667d2412 4643 ret = read;
8789a9e7 4644
66a8cb95 4645 cpu_buffer->lost_events = 0;
2711ca23
SR
4646
4647 commit = local_read(&bpage->commit);
66a8cb95
SR
4648 /*
4649 * Set a flag in the commit field if we lost events
4650 */
ff0ff84a 4651 if (missed_events) {
ff0ff84a
SR
4652 /* If there is room at the end of the page to save the
4653 * missed events, then record it there.
4654 */
4655 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4656 memcpy(&bpage->data[commit], &missed_events,
4657 sizeof(missed_events));
4658 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4659 commit += sizeof(missed_events);
ff0ff84a 4660 }
66a8cb95 4661 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4662 }
66a8cb95 4663
2711ca23
SR
4664 /*
4665 * This page may be off to user land. Zero it out here.
4666 */
4667 if (commit < BUF_PAGE_SIZE)
4668 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4669
554f786e 4670 out_unlock:
5389f6fa 4671 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4672
554f786e 4673 out:
8789a9e7
SR
4674 return ret;
4675}
d6ce96da 4676EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4677
b32614c0
SAS
4678/*
4679 * We only allocate new buffers, never free them if the CPU goes down.
4680 * If we were to free the buffer, then the user would lose any trace that was in
4681 * the buffer.
4682 */
4683int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 4684{
b32614c0 4685 struct ring_buffer *buffer;
9b94a8fb
SRRH
4686 long nr_pages_same;
4687 int cpu_i;
4688 unsigned long nr_pages;
554f786e 4689
b32614c0
SAS
4690 buffer = container_of(node, struct ring_buffer, node);
4691 if (cpumask_test_cpu(cpu, buffer->cpumask))
4692 return 0;
4693
4694 nr_pages = 0;
4695 nr_pages_same = 1;
4696 /* check if all cpu sizes are same */
4697 for_each_buffer_cpu(buffer, cpu_i) {
4698 /* fill in the size from first enabled cpu */
4699 if (nr_pages == 0)
4700 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4701 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4702 nr_pages_same = 0;
4703 break;
554f786e 4704 }
554f786e 4705 }
b32614c0
SAS
4706 /* allocate minimum pages, user can later expand it */
4707 if (!nr_pages_same)
4708 nr_pages = 2;
4709 buffer->buffers[cpu] =
4710 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4711 if (!buffer->buffers[cpu]) {
4712 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4713 cpu);
4714 return -ENOMEM;
4715 }
4716 smp_wmb();
4717 cpumask_set_cpu(cpu, buffer->cpumask);
4718 return 0;
554f786e 4719}
6c43e554
SRRH
4720
4721#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4722/*
4723 * This is a basic integrity check of the ring buffer.
4724 * Late in the boot cycle this test will run when configured in.
4725 * It will kick off a thread per CPU that will go into a loop
4726 * writing to the per cpu ring buffer various sizes of data.
4727 * Some of the data will be large items, some small.
4728 *
4729 * Another thread is created that goes into a spin, sending out
4730 * IPIs to the other CPUs to also write into the ring buffer.
4731 * this is to test the nesting ability of the buffer.
4732 *
4733 * Basic stats are recorded and reported. If something in the
4734 * ring buffer should happen that's not expected, a big warning
4735 * is displayed and all ring buffers are disabled.
4736 */
4737static struct task_struct *rb_threads[NR_CPUS] __initdata;
4738
4739struct rb_test_data {
4740 struct ring_buffer *buffer;
4741 unsigned long events;
4742 unsigned long bytes_written;
4743 unsigned long bytes_alloc;
4744 unsigned long bytes_dropped;
4745 unsigned long events_nested;
4746 unsigned long bytes_written_nested;
4747 unsigned long bytes_alloc_nested;
4748 unsigned long bytes_dropped_nested;
4749 int min_size_nested;
4750 int max_size_nested;
4751 int max_size;
4752 int min_size;
4753 int cpu;
4754 int cnt;
4755};
4756
4757static struct rb_test_data rb_data[NR_CPUS] __initdata;
4758
4759/* 1 meg per cpu */
4760#define RB_TEST_BUFFER_SIZE 1048576
4761
4762static char rb_string[] __initdata =
4763 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4764 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4765 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4766
4767static bool rb_test_started __initdata;
4768
4769struct rb_item {
4770 int size;
4771 char str[];
4772};
4773
4774static __init int rb_write_something(struct rb_test_data *data, bool nested)
4775{
4776 struct ring_buffer_event *event;
4777 struct rb_item *item;
4778 bool started;
4779 int event_len;
4780 int size;
4781 int len;
4782 int cnt;
4783
4784 /* Have nested writes different that what is written */
4785 cnt = data->cnt + (nested ? 27 : 0);
4786
4787 /* Multiply cnt by ~e, to make some unique increment */
4788 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4789
4790 len = size + sizeof(struct rb_item);
4791
4792 started = rb_test_started;
4793 /* read rb_test_started before checking buffer enabled */
4794 smp_rmb();
4795
4796 event = ring_buffer_lock_reserve(data->buffer, len);
4797 if (!event) {
4798 /* Ignore dropped events before test starts. */
4799 if (started) {
4800 if (nested)
4801 data->bytes_dropped += len;
4802 else
4803 data->bytes_dropped_nested += len;
4804 }
4805 return len;
4806 }
4807
4808 event_len = ring_buffer_event_length(event);
4809
4810 if (RB_WARN_ON(data->buffer, event_len < len))
4811 goto out;
4812
4813 item = ring_buffer_event_data(event);
4814 item->size = size;
4815 memcpy(item->str, rb_string, size);
4816
4817 if (nested) {
4818 data->bytes_alloc_nested += event_len;
4819 data->bytes_written_nested += len;
4820 data->events_nested++;
4821 if (!data->min_size_nested || len < data->min_size_nested)
4822 data->min_size_nested = len;
4823 if (len > data->max_size_nested)
4824 data->max_size_nested = len;
4825 } else {
4826 data->bytes_alloc += event_len;
4827 data->bytes_written += len;
4828 data->events++;
4829 if (!data->min_size || len < data->min_size)
4830 data->max_size = len;
4831 if (len > data->max_size)
4832 data->max_size = len;
4833 }
4834
4835 out:
4836 ring_buffer_unlock_commit(data->buffer, event);
4837
4838 return 0;
4839}
4840
4841static __init int rb_test(void *arg)
4842{
4843 struct rb_test_data *data = arg;
4844
4845 while (!kthread_should_stop()) {
4846 rb_write_something(data, false);
4847 data->cnt++;
4848
4849 set_current_state(TASK_INTERRUPTIBLE);
4850 /* Now sleep between a min of 100-300us and a max of 1ms */
4851 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4852 }
4853
4854 return 0;
4855}
4856
4857static __init void rb_ipi(void *ignore)
4858{
4859 struct rb_test_data *data;
4860 int cpu = smp_processor_id();
4861
4862 data = &rb_data[cpu];
4863 rb_write_something(data, true);
4864}
4865
4866static __init int rb_hammer_test(void *arg)
4867{
4868 while (!kthread_should_stop()) {
4869
4870 /* Send an IPI to all cpus to write data! */
4871 smp_call_function(rb_ipi, NULL, 1);
4872 /* No sleep, but for non preempt, let others run */
4873 schedule();
4874 }
4875
4876 return 0;
4877}
4878
4879static __init int test_ringbuffer(void)
4880{
4881 struct task_struct *rb_hammer;
4882 struct ring_buffer *buffer;
4883 int cpu;
4884 int ret = 0;
4885
4886 pr_info("Running ring buffer tests...\n");
4887
4888 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4889 if (WARN_ON(!buffer))
4890 return 0;
4891
4892 /* Disable buffer so that threads can't write to it yet */
4893 ring_buffer_record_off(buffer);
4894
4895 for_each_online_cpu(cpu) {
4896 rb_data[cpu].buffer = buffer;
4897 rb_data[cpu].cpu = cpu;
4898 rb_data[cpu].cnt = cpu;
4899 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4900 "rbtester/%d", cpu);
62277de7 4901 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 4902 pr_cont("FAILED\n");
62277de7 4903 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
4904 goto out_free;
4905 }
4906
4907 kthread_bind(rb_threads[cpu], cpu);
4908 wake_up_process(rb_threads[cpu]);
4909 }
4910
4911 /* Now create the rb hammer! */
4912 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 4913 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 4914 pr_cont("FAILED\n");
62277de7 4915 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
4916 goto out_free;
4917 }
4918
4919 ring_buffer_record_on(buffer);
4920 /*
4921 * Show buffer is enabled before setting rb_test_started.
4922 * Yes there's a small race window where events could be
4923 * dropped and the thread wont catch it. But when a ring
4924 * buffer gets enabled, there will always be some kind of
4925 * delay before other CPUs see it. Thus, we don't care about
4926 * those dropped events. We care about events dropped after
4927 * the threads see that the buffer is active.
4928 */
4929 smp_wmb();
4930 rb_test_started = true;
4931
4932 set_current_state(TASK_INTERRUPTIBLE);
4933 /* Just run for 10 seconds */;
4934 schedule_timeout(10 * HZ);
4935
4936 kthread_stop(rb_hammer);
4937
4938 out_free:
4939 for_each_online_cpu(cpu) {
4940 if (!rb_threads[cpu])
4941 break;
4942 kthread_stop(rb_threads[cpu]);
4943 }
4944 if (ret) {
4945 ring_buffer_free(buffer);
4946 return ret;
4947 }
4948
4949 /* Report! */
4950 pr_info("finished\n");
4951 for_each_online_cpu(cpu) {
4952 struct ring_buffer_event *event;
4953 struct rb_test_data *data = &rb_data[cpu];
4954 struct rb_item *item;
4955 unsigned long total_events;
4956 unsigned long total_dropped;
4957 unsigned long total_written;
4958 unsigned long total_alloc;
4959 unsigned long total_read = 0;
4960 unsigned long total_size = 0;
4961 unsigned long total_len = 0;
4962 unsigned long total_lost = 0;
4963 unsigned long lost;
4964 int big_event_size;
4965 int small_event_size;
4966
4967 ret = -1;
4968
4969 total_events = data->events + data->events_nested;
4970 total_written = data->bytes_written + data->bytes_written_nested;
4971 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4972 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4973
4974 big_event_size = data->max_size + data->max_size_nested;
4975 small_event_size = data->min_size + data->min_size_nested;
4976
4977 pr_info("CPU %d:\n", cpu);
4978 pr_info(" events: %ld\n", total_events);
4979 pr_info(" dropped bytes: %ld\n", total_dropped);
4980 pr_info(" alloced bytes: %ld\n", total_alloc);
4981 pr_info(" written bytes: %ld\n", total_written);
4982 pr_info(" biggest event: %d\n", big_event_size);
4983 pr_info(" smallest event: %d\n", small_event_size);
4984
4985 if (RB_WARN_ON(buffer, total_dropped))
4986 break;
4987
4988 ret = 0;
4989
4990 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4991 total_lost += lost;
4992 item = ring_buffer_event_data(event);
4993 total_len += ring_buffer_event_length(event);
4994 total_size += item->size + sizeof(struct rb_item);
4995 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4996 pr_info("FAILED!\n");
4997 pr_info("buffer had: %.*s\n", item->size, item->str);
4998 pr_info("expected: %.*s\n", item->size, rb_string);
4999 RB_WARN_ON(buffer, 1);
5000 ret = -1;
5001 break;
5002 }
5003 total_read++;
5004 }
5005 if (ret)
5006 break;
5007
5008 ret = -1;
5009
5010 pr_info(" read events: %ld\n", total_read);
5011 pr_info(" lost events: %ld\n", total_lost);
5012 pr_info(" total events: %ld\n", total_lost + total_read);
5013 pr_info(" recorded len bytes: %ld\n", total_len);
5014 pr_info(" recorded size bytes: %ld\n", total_size);
5015 if (total_lost)
5016 pr_info(" With dropped events, record len and size may not match\n"
5017 " alloced and written from above\n");
5018 if (!total_lost) {
5019 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5020 total_size != total_written))
5021 break;
5022 }
5023 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5024 break;
5025
5026 ret = 0;
5027 }
5028 if (!ret)
5029 pr_info("Ring buffer PASSED!\n");
5030
5031 ring_buffer_free(buffer);
5032 return 0;
5033}
5034
5035late_initcall(test_ringbuffer);
5036#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */