]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: Fix some section mismatch warnings
[mirror_ubuntu-zesty-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
5a0e3ad6 19#include <linux/slab.h>
7a8e76a3
SR
20#include <linux/init.h>
21#include <linux/hash.h>
22#include <linux/list.h>
554f786e 23#include <linux/cpu.h>
7a8e76a3
SR
24#include <linux/fs.h>
25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
35 int ret;
36
334d4169
LJ
37 ret = trace_seq_printf(s, "# compressed entry header\n");
38 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
39 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
40 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
41 ret = trace_seq_printf(s, "\n");
42 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
46 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
47 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
48
49 return ret;
50}
51
5cc98548
SR
52/*
53 * The ring buffer is made up of a list of pages. A separate list of pages is
54 * allocated for each CPU. A writer may only write to a buffer that is
55 * associated with the CPU it is currently executing on. A reader may read
56 * from any per cpu buffer.
57 *
58 * The reader is special. For each per cpu buffer, the reader has its own
59 * reader page. When a reader has read the entire reader page, this reader
60 * page is swapped with another page in the ring buffer.
61 *
62 * Now, as long as the writer is off the reader page, the reader can do what
63 * ever it wants with that page. The writer will never write to that page
64 * again (as long as it is out of the ring buffer).
65 *
66 * Here's some silly ASCII art.
67 *
68 * +------+
69 * |reader| RING BUFFER
70 * |page |
71 * +------+ +---+ +---+ +---+
72 * | |-->| |-->| |
73 * +---+ +---+ +---+
74 * ^ |
75 * | |
76 * +---------------+
77 *
78 *
79 * +------+
80 * |reader| RING BUFFER
81 * |page |------------------v
82 * +------+ +---+ +---+ +---+
83 * | |-->| |-->| |
84 * +---+ +---+ +---+
85 * ^ |
86 * | |
87 * +---------------+
88 *
89 *
90 * +------+
91 * |reader| RING BUFFER
92 * |page |------------------v
93 * +------+ +---+ +---+ +---+
94 * ^ | |-->| |-->| |
95 * | +---+ +---+ +---+
96 * | |
97 * | |
98 * +------------------------------+
99 *
100 *
101 * +------+
102 * |buffer| RING BUFFER
103 * |page |------------------v
104 * +------+ +---+ +---+ +---+
105 * ^ | | | |-->| |
106 * | New +---+ +---+ +---+
107 * | Reader------^ |
108 * | page |
109 * +------------------------------+
110 *
111 *
112 * After we make this swap, the reader can hand this page off to the splice
113 * code and be done with it. It can even allocate a new page if it needs to
114 * and swap that into the ring buffer.
115 *
116 * We will be using cmpxchg soon to make all this lockless.
117 *
118 */
119
033601a3
SR
120/*
121 * A fast way to enable or disable all ring buffers is to
122 * call tracing_on or tracing_off. Turning off the ring buffers
123 * prevents all ring buffers from being recorded to.
124 * Turning this switch on, makes it OK to write to the
125 * ring buffer, if the ring buffer is enabled itself.
126 *
127 * There's three layers that must be on in order to write
128 * to the ring buffer.
129 *
130 * 1) This global flag must be set.
131 * 2) The ring buffer must be enabled for recording.
132 * 3) The per cpu buffer must be enabled for recording.
133 *
134 * In case of an anomaly, this global flag has a bit set that
135 * will permantly disable all ring buffers.
136 */
137
138/*
139 * Global flag to disable all recording to ring buffers
140 * This has two bits: ON, DISABLED
141 *
142 * ON DISABLED
143 * ---- ----------
144 * 0 0 : ring buffers are off
145 * 1 0 : ring buffers are on
146 * X 1 : ring buffers are permanently disabled
147 */
148
149enum {
150 RB_BUFFERS_ON_BIT = 0,
151 RB_BUFFERS_DISABLED_BIT = 1,
152};
153
154enum {
155 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
156 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
157};
158
5e39841c 159static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 160
499e5470
SR
161/* Used for individual buffers (after the counter) */
162#define RB_BUFFER_OFF (1 << 20)
a3583244 163
499e5470 164#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
165
166/**
167 * tracing_off_permanent - permanently disable ring buffers
168 *
169 * This function, once called, will disable all ring buffers
c3706f00 170 * permanently.
033601a3
SR
171 */
172void tracing_off_permanent(void)
173{
174 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
175}
176
e3d6bf0a 177#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 178#define RB_ALIGNMENT 4U
334d4169 179#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 180#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 181
2271048d
SR
182#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
183# define RB_FORCE_8BYTE_ALIGNMENT 0
184# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
185#else
186# define RB_FORCE_8BYTE_ALIGNMENT 1
187# define RB_ARCH_ALIGNMENT 8U
188#endif
189
334d4169
LJ
190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
192
193enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196};
197
69d1b839
SR
198#define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
2d622719
TZ
201static inline int rb_null_event(struct ring_buffer_event *event)
202{
a1863c21 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
204}
205
206static void rb_event_set_padding(struct ring_buffer_event *event)
207{
a1863c21 208 /* padding has a NULL time_delta */
334d4169 209 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
210 event->time_delta = 0;
211}
212
34a148bf 213static unsigned
2d622719 214rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
215{
216 unsigned length;
217
334d4169
LJ
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223}
224
69d1b839
SR
225/*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230static inline unsigned
2d622719
TZ
231rb_event_length(struct ring_buffer_event *event)
232{
334d4169 233 switch (event->type_len) {
7a8e76a3 234 case RINGBUF_TYPE_PADDING:
2d622719
TZ
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
334d4169 238 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
2d622719 247 return rb_event_data_length(event);
7a8e76a3
SR
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253}
254
69d1b839
SR
255/*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259static inline unsigned
260rb_event_ts_length(struct ring_buffer_event *event)
261{
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270}
271
7a8e76a3
SR
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
69d1b839
SR
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
7a8e76a3
SR
281 */
282unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283{
69d1b839
SR
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
334d4169 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
7a8e76a3 296}
c4f50183 297EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
298
299/* inline for ring buffer fast paths */
34a148bf 300static void *
7a8e76a3
SR
301rb_event_data(struct ring_buffer_event *event)
302{
69d1b839
SR
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
334d4169 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 306 /* If length is in len field, then array[0] has the data */
334d4169 307 if (event->type_len)
7a8e76a3
SR
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311}
312
313/**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317void *ring_buffer_event_data(struct ring_buffer_event *event)
318{
319 return rb_event_data(event);
320}
c4f50183 321EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
322
323#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 324 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
325
326#define TS_SHIFT 27
327#define TS_MASK ((1ULL << TS_SHIFT) - 1)
328#define TS_DELTA_TEST (~TS_MASK)
329
66a8cb95
SR
330/* Flag when events were overwritten */
331#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
332/* Missed count stored at end */
333#define RB_MISSED_STORED (1 << 30)
66a8cb95 334
abc9b56d 335struct buffer_data_page {
e4c2ce82 336 u64 time_stamp; /* page time stamp */
c3706f00 337 local_t commit; /* write committed index */
abc9b56d
SR
338 unsigned char data[]; /* data of buffer page */
339};
340
77ae365e
SR
341/*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
abc9b56d 349struct buffer_page {
778c55d4 350 struct list_head list; /* list of buffer pages */
abc9b56d 351 local_t write; /* index for next write */
6f807acd 352 unsigned read; /* index for next read */
778c55d4 353 local_t entries; /* entries on this page */
ff0ff84a 354 unsigned long real_end; /* real end of data */
abc9b56d 355 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
356};
357
77ae365e
SR
358/*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370#define RB_WRITE_MASK 0xfffff
371#define RB_WRITE_INTCNT (1 << 20)
372
044fa782 373static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 374{
044fa782 375 local_set(&bpage->commit, 0);
abc9b56d
SR
376}
377
474d32b6
SR
378/**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
ef7a4a16
SR
384size_t ring_buffer_page_len(void *page)
385{
474d32b6
SR
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
388}
389
ed56829c
SR
390/*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
34a148bf 394static void free_buffer_page(struct buffer_page *bpage)
ed56829c 395{
34a148bf 396 free_page((unsigned long)bpage->page);
e4c2ce82 397 kfree(bpage);
ed56829c
SR
398}
399
7a8e76a3
SR
400/*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403static inline int test_time_stamp(u64 delta)
404{
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408}
409
474d32b6 410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 411
be957c44
SR
412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
d1b182a8
SR
415int ring_buffer_print_page_header(struct trace_seq *s)
416{
417 struct buffer_data_page field;
418 int ret;
419
420 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
421 "offset:0;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)sizeof(field.time_stamp),
423 (unsigned int)is_signed_type(u64));
d1b182a8
SR
424
425 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 426 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 427 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
428 (unsigned int)sizeof(field.commit),
429 (unsigned int)is_signed_type(long));
d1b182a8 430
66a8cb95
SR
431 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
432 "offset:%u;\tsize:%u;\tsigned:%u;\n",
433 (unsigned int)offsetof(typeof(field), commit),
434 1,
435 (unsigned int)is_signed_type(long));
436
d1b182a8 437 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 438 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 439 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
440 (unsigned int)BUF_PAGE_SIZE,
441 (unsigned int)is_signed_type(char));
d1b182a8
SR
442
443 return ret;
444}
445
15693458
SRRH
446struct rb_irq_work {
447 struct irq_work work;
448 wait_queue_head_t waiters;
449 bool waiters_pending;
450};
451
7a8e76a3
SR
452/*
453 * head_page == tail_page && head == tail then buffer is empty.
454 */
455struct ring_buffer_per_cpu {
456 int cpu;
985023de 457 atomic_t record_disabled;
7a8e76a3 458 struct ring_buffer *buffer;
5389f6fa 459 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 460 arch_spinlock_t lock;
7a8e76a3 461 struct lock_class_key lock_key;
438ced17 462 unsigned int nr_pages;
3adc54fa 463 struct list_head *pages;
6f807acd
SR
464 struct buffer_page *head_page; /* read from head */
465 struct buffer_page *tail_page; /* write to tail */
c3706f00 466 struct buffer_page *commit_page; /* committed pages */
d769041f 467 struct buffer_page *reader_page;
66a8cb95
SR
468 unsigned long lost_events;
469 unsigned long last_overrun;
c64e148a 470 local_t entries_bytes;
e4906eff 471 local_t entries;
884bfe89
SP
472 local_t overrun;
473 local_t commit_overrun;
474 local_t dropped_events;
fa743953
SR
475 local_t committing;
476 local_t commits;
77ae365e 477 unsigned long read;
c64e148a 478 unsigned long read_bytes;
7a8e76a3
SR
479 u64 write_stamp;
480 u64 read_stamp;
438ced17
VN
481 /* ring buffer pages to update, > 0 to add, < 0 to remove */
482 int nr_pages_to_update;
483 struct list_head new_pages; /* new pages to add */
83f40318 484 struct work_struct update_pages_work;
05fdd70d 485 struct completion update_done;
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer {
7a8e76a3
SR
491 unsigned flags;
492 int cpus;
7a8e76a3 493 atomic_t record_disabled;
83f40318 494 atomic_t resize_disabled;
00f62f61 495 cpumask_var_t cpumask;
7a8e76a3 496
1f8a6a10
PZ
497 struct lock_class_key *reader_lock_key;
498
7a8e76a3
SR
499 struct mutex mutex;
500
501 struct ring_buffer_per_cpu **buffers;
554f786e 502
59222efe 503#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
504 struct notifier_block cpu_notify;
505#endif
37886f6a 506 u64 (*clock)(void);
15693458
SRRH
507
508 struct rb_irq_work irq_work;
7a8e76a3
SR
509};
510
511struct ring_buffer_iter {
512 struct ring_buffer_per_cpu *cpu_buffer;
513 unsigned long head;
514 struct buffer_page *head_page;
492a74f4
SR
515 struct buffer_page *cache_reader_page;
516 unsigned long cache_read;
7a8e76a3
SR
517 u64 read_stamp;
518};
519
15693458
SRRH
520/*
521 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
522 *
523 * Schedules a delayed work to wake up any task that is blocked on the
524 * ring buffer waiters queue.
525 */
526static void rb_wake_up_waiters(struct irq_work *work)
527{
528 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
529
530 wake_up_all(&rbwork->waiters);
531}
532
533/**
534 * ring_buffer_wait - wait for input to the ring buffer
535 * @buffer: buffer to wait on
536 * @cpu: the cpu buffer to wait on
537 *
538 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
539 * as data is added to any of the @buffer's cpu buffers. Otherwise
540 * it will wait for data to be added to a specific cpu buffer.
541 */
542void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
543{
544 struct ring_buffer_per_cpu *cpu_buffer;
545 DEFINE_WAIT(wait);
546 struct rb_irq_work *work;
547
548 /*
549 * Depending on what the caller is waiting for, either any
550 * data in any cpu buffer, or a specific buffer, put the
551 * caller on the appropriate wait queue.
552 */
553 if (cpu == RING_BUFFER_ALL_CPUS)
554 work = &buffer->irq_work;
555 else {
556 cpu_buffer = buffer->buffers[cpu];
557 work = &cpu_buffer->irq_work;
558 }
559
560
561 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
562
563 /*
564 * The events can happen in critical sections where
565 * checking a work queue can cause deadlocks.
566 * After adding a task to the queue, this flag is set
567 * only to notify events to try to wake up the queue
568 * using irq_work.
569 *
570 * We don't clear it even if the buffer is no longer
571 * empty. The flag only causes the next event to run
572 * irq_work to do the work queue wake up. The worse
573 * that can happen if we race with !trace_empty() is that
574 * an event will cause an irq_work to try to wake up
575 * an empty queue.
576 *
577 * There's no reason to protect this flag either, as
578 * the work queue and irq_work logic will do the necessary
579 * synchronization for the wake ups. The only thing
580 * that is necessary is that the wake up happens after
581 * a task has been queued. It's OK for spurious wake ups.
582 */
583 work->waiters_pending = true;
584
585 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
586 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
587 schedule();
588
589 finish_wait(&work->waiters, &wait);
590}
591
592/**
593 * ring_buffer_poll_wait - poll on buffer input
594 * @buffer: buffer to wait on
595 * @cpu: the cpu buffer to wait on
596 * @filp: the file descriptor
597 * @poll_table: The poll descriptor
598 *
599 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
600 * as data is added to any of the @buffer's cpu buffers. Otherwise
601 * it will wait for data to be added to a specific cpu buffer.
602 *
603 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
604 * zero otherwise.
605 */
606int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
607 struct file *filp, poll_table *poll_table)
608{
609 struct ring_buffer_per_cpu *cpu_buffer;
610 struct rb_irq_work *work;
611
612 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
613 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
614 return POLLIN | POLLRDNORM;
615
616 if (cpu == RING_BUFFER_ALL_CPUS)
617 work = &buffer->irq_work;
618 else {
619 cpu_buffer = buffer->buffers[cpu];
620 work = &cpu_buffer->irq_work;
621 }
622
623 work->waiters_pending = true;
624 poll_wait(filp, &work->waiters, poll_table);
625
626 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
627 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
628 return POLLIN | POLLRDNORM;
629 return 0;
630}
631
f536aafc 632/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
633#define RB_WARN_ON(b, cond) \
634 ({ \
635 int _____ret = unlikely(cond); \
636 if (_____ret) { \
637 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
638 struct ring_buffer_per_cpu *__b = \
639 (void *)b; \
640 atomic_inc(&__b->buffer->record_disabled); \
641 } else \
642 atomic_inc(&b->record_disabled); \
643 WARN_ON(1); \
644 } \
645 _____ret; \
3e89c7bb 646 })
f536aafc 647
37886f6a
SR
648/* Up this if you want to test the TIME_EXTENTS and normalization */
649#define DEBUG_SHIFT 0
650
6d3f1e12 651static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
652{
653 /* shift to debug/test normalization and TIME_EXTENTS */
654 return buffer->clock() << DEBUG_SHIFT;
655}
656
37886f6a
SR
657u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
658{
659 u64 time;
660
661 preempt_disable_notrace();
6d3f1e12 662 time = rb_time_stamp(buffer);
37886f6a
SR
663 preempt_enable_no_resched_notrace();
664
665 return time;
666}
667EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
668
669void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
670 int cpu, u64 *ts)
671{
672 /* Just stupid testing the normalize function and deltas */
673 *ts >>= DEBUG_SHIFT;
674}
675EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
676
77ae365e
SR
677/*
678 * Making the ring buffer lockless makes things tricky.
679 * Although writes only happen on the CPU that they are on,
680 * and they only need to worry about interrupts. Reads can
681 * happen on any CPU.
682 *
683 * The reader page is always off the ring buffer, but when the
684 * reader finishes with a page, it needs to swap its page with
685 * a new one from the buffer. The reader needs to take from
686 * the head (writes go to the tail). But if a writer is in overwrite
687 * mode and wraps, it must push the head page forward.
688 *
689 * Here lies the problem.
690 *
691 * The reader must be careful to replace only the head page, and
692 * not another one. As described at the top of the file in the
693 * ASCII art, the reader sets its old page to point to the next
694 * page after head. It then sets the page after head to point to
695 * the old reader page. But if the writer moves the head page
696 * during this operation, the reader could end up with the tail.
697 *
698 * We use cmpxchg to help prevent this race. We also do something
699 * special with the page before head. We set the LSB to 1.
700 *
701 * When the writer must push the page forward, it will clear the
702 * bit that points to the head page, move the head, and then set
703 * the bit that points to the new head page.
704 *
705 * We also don't want an interrupt coming in and moving the head
706 * page on another writer. Thus we use the second LSB to catch
707 * that too. Thus:
708 *
709 * head->list->prev->next bit 1 bit 0
710 * ------- -------
711 * Normal page 0 0
712 * Points to head page 0 1
713 * New head page 1 0
714 *
715 * Note we can not trust the prev pointer of the head page, because:
716 *
717 * +----+ +-----+ +-----+
718 * | |------>| T |---X--->| N |
719 * | |<------| | | |
720 * +----+ +-----+ +-----+
721 * ^ ^ |
722 * | +-----+ | |
723 * +----------| R |----------+ |
724 * | |<-----------+
725 * +-----+
726 *
727 * Key: ---X--> HEAD flag set in pointer
728 * T Tail page
729 * R Reader page
730 * N Next page
731 *
732 * (see __rb_reserve_next() to see where this happens)
733 *
734 * What the above shows is that the reader just swapped out
735 * the reader page with a page in the buffer, but before it
736 * could make the new header point back to the new page added
737 * it was preempted by a writer. The writer moved forward onto
738 * the new page added by the reader and is about to move forward
739 * again.
740 *
741 * You can see, it is legitimate for the previous pointer of
742 * the head (or any page) not to point back to itself. But only
743 * temporarially.
744 */
745
746#define RB_PAGE_NORMAL 0UL
747#define RB_PAGE_HEAD 1UL
748#define RB_PAGE_UPDATE 2UL
749
750
751#define RB_FLAG_MASK 3UL
752
753/* PAGE_MOVED is not part of the mask */
754#define RB_PAGE_MOVED 4UL
755
756/*
757 * rb_list_head - remove any bit
758 */
759static struct list_head *rb_list_head(struct list_head *list)
760{
761 unsigned long val = (unsigned long)list;
762
763 return (struct list_head *)(val & ~RB_FLAG_MASK);
764}
765
766/*
6d3f1e12 767 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
768 *
769 * Because the reader may move the head_page pointer, we can
770 * not trust what the head page is (it may be pointing to
771 * the reader page). But if the next page is a header page,
772 * its flags will be non zero.
773 */
42b16b3f 774static inline int
77ae365e
SR
775rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
776 struct buffer_page *page, struct list_head *list)
777{
778 unsigned long val;
779
780 val = (unsigned long)list->next;
781
782 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
783 return RB_PAGE_MOVED;
784
785 return val & RB_FLAG_MASK;
786}
787
788/*
789 * rb_is_reader_page
790 *
791 * The unique thing about the reader page, is that, if the
792 * writer is ever on it, the previous pointer never points
793 * back to the reader page.
794 */
795static int rb_is_reader_page(struct buffer_page *page)
796{
797 struct list_head *list = page->list.prev;
798
799 return rb_list_head(list->next) != &page->list;
800}
801
802/*
803 * rb_set_list_to_head - set a list_head to be pointing to head.
804 */
805static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
806 struct list_head *list)
807{
808 unsigned long *ptr;
809
810 ptr = (unsigned long *)&list->next;
811 *ptr |= RB_PAGE_HEAD;
812 *ptr &= ~RB_PAGE_UPDATE;
813}
814
815/*
816 * rb_head_page_activate - sets up head page
817 */
818static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
819{
820 struct buffer_page *head;
821
822 head = cpu_buffer->head_page;
823 if (!head)
824 return;
825
826 /*
827 * Set the previous list pointer to have the HEAD flag.
828 */
829 rb_set_list_to_head(cpu_buffer, head->list.prev);
830}
831
832static void rb_list_head_clear(struct list_head *list)
833{
834 unsigned long *ptr = (unsigned long *)&list->next;
835
836 *ptr &= ~RB_FLAG_MASK;
837}
838
839/*
840 * rb_head_page_dactivate - clears head page ptr (for free list)
841 */
842static void
843rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
844{
845 struct list_head *hd;
846
847 /* Go through the whole list and clear any pointers found. */
848 rb_list_head_clear(cpu_buffer->pages);
849
850 list_for_each(hd, cpu_buffer->pages)
851 rb_list_head_clear(hd);
852}
853
854static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
855 struct buffer_page *head,
856 struct buffer_page *prev,
857 int old_flag, int new_flag)
858{
859 struct list_head *list;
860 unsigned long val = (unsigned long)&head->list;
861 unsigned long ret;
862
863 list = &prev->list;
864
865 val &= ~RB_FLAG_MASK;
866
08a40816
SR
867 ret = cmpxchg((unsigned long *)&list->next,
868 val | old_flag, val | new_flag);
77ae365e
SR
869
870 /* check if the reader took the page */
871 if ((ret & ~RB_FLAG_MASK) != val)
872 return RB_PAGE_MOVED;
873
874 return ret & RB_FLAG_MASK;
875}
876
877static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
878 struct buffer_page *head,
879 struct buffer_page *prev,
880 int old_flag)
881{
882 return rb_head_page_set(cpu_buffer, head, prev,
883 old_flag, RB_PAGE_UPDATE);
884}
885
886static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
887 struct buffer_page *head,
888 struct buffer_page *prev,
889 int old_flag)
890{
891 return rb_head_page_set(cpu_buffer, head, prev,
892 old_flag, RB_PAGE_HEAD);
893}
894
895static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
896 struct buffer_page *head,
897 struct buffer_page *prev,
898 int old_flag)
899{
900 return rb_head_page_set(cpu_buffer, head, prev,
901 old_flag, RB_PAGE_NORMAL);
902}
903
904static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
905 struct buffer_page **bpage)
906{
907 struct list_head *p = rb_list_head((*bpage)->list.next);
908
909 *bpage = list_entry(p, struct buffer_page, list);
910}
911
912static struct buffer_page *
913rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
914{
915 struct buffer_page *head;
916 struct buffer_page *page;
917 struct list_head *list;
918 int i;
919
920 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
921 return NULL;
922
923 /* sanity check */
924 list = cpu_buffer->pages;
925 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
926 return NULL;
927
928 page = head = cpu_buffer->head_page;
929 /*
930 * It is possible that the writer moves the header behind
931 * where we started, and we miss in one loop.
932 * A second loop should grab the header, but we'll do
933 * three loops just because I'm paranoid.
934 */
935 for (i = 0; i < 3; i++) {
936 do {
937 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
938 cpu_buffer->head_page = page;
939 return page;
940 }
941 rb_inc_page(cpu_buffer, &page);
942 } while (page != head);
943 }
944
945 RB_WARN_ON(cpu_buffer, 1);
946
947 return NULL;
948}
949
950static int rb_head_page_replace(struct buffer_page *old,
951 struct buffer_page *new)
952{
953 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
954 unsigned long val;
955 unsigned long ret;
956
957 val = *ptr & ~RB_FLAG_MASK;
958 val |= RB_PAGE_HEAD;
959
08a40816 960 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
961
962 return ret == val;
963}
964
965/*
966 * rb_tail_page_update - move the tail page forward
967 *
968 * Returns 1 if moved tail page, 0 if someone else did.
969 */
970static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
971 struct buffer_page *tail_page,
972 struct buffer_page *next_page)
973{
974 struct buffer_page *old_tail;
975 unsigned long old_entries;
976 unsigned long old_write;
977 int ret = 0;
978
979 /*
980 * The tail page now needs to be moved forward.
981 *
982 * We need to reset the tail page, but without messing
983 * with possible erasing of data brought in by interrupts
984 * that have moved the tail page and are currently on it.
985 *
986 * We add a counter to the write field to denote this.
987 */
988 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
989 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
990
991 /*
992 * Just make sure we have seen our old_write and synchronize
993 * with any interrupts that come in.
994 */
995 barrier();
996
997 /*
998 * If the tail page is still the same as what we think
999 * it is, then it is up to us to update the tail
1000 * pointer.
1001 */
1002 if (tail_page == cpu_buffer->tail_page) {
1003 /* Zero the write counter */
1004 unsigned long val = old_write & ~RB_WRITE_MASK;
1005 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1006
1007 /*
1008 * This will only succeed if an interrupt did
1009 * not come in and change it. In which case, we
1010 * do not want to modify it.
da706d8b
LJ
1011 *
1012 * We add (void) to let the compiler know that we do not care
1013 * about the return value of these functions. We use the
1014 * cmpxchg to only update if an interrupt did not already
1015 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1016 */
da706d8b
LJ
1017 (void)local_cmpxchg(&next_page->write, old_write, val);
1018 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1019
1020 /*
1021 * No need to worry about races with clearing out the commit.
1022 * it only can increment when a commit takes place. But that
1023 * only happens in the outer most nested commit.
1024 */
1025 local_set(&next_page->page->commit, 0);
1026
1027 old_tail = cmpxchg(&cpu_buffer->tail_page,
1028 tail_page, next_page);
1029
1030 if (old_tail == tail_page)
1031 ret = 1;
1032 }
1033
1034 return ret;
1035}
1036
1037static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1038 struct buffer_page *bpage)
1039{
1040 unsigned long val = (unsigned long)bpage;
1041
1042 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1043 return 1;
1044
1045 return 0;
1046}
1047
1048/**
1049 * rb_check_list - make sure a pointer to a list has the last bits zero
1050 */
1051static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1052 struct list_head *list)
1053{
1054 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1055 return 1;
1056 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1057 return 1;
1058 return 0;
1059}
1060
7a8e76a3
SR
1061/**
1062 * check_pages - integrity check of buffer pages
1063 * @cpu_buffer: CPU buffer with pages to test
1064 *
c3706f00 1065 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1066 * been corrupted.
1067 */
1068static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1069{
3adc54fa 1070 struct list_head *head = cpu_buffer->pages;
044fa782 1071 struct buffer_page *bpage, *tmp;
7a8e76a3 1072
308f7eeb
SR
1073 /* Reset the head page if it exists */
1074 if (cpu_buffer->head_page)
1075 rb_set_head_page(cpu_buffer);
1076
77ae365e
SR
1077 rb_head_page_deactivate(cpu_buffer);
1078
3e89c7bb
SR
1079 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1080 return -1;
1081 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1082 return -1;
7a8e76a3 1083
77ae365e
SR
1084 if (rb_check_list(cpu_buffer, head))
1085 return -1;
1086
044fa782 1087 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1088 if (RB_WARN_ON(cpu_buffer,
044fa782 1089 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1090 return -1;
1091 if (RB_WARN_ON(cpu_buffer,
044fa782 1092 bpage->list.prev->next != &bpage->list))
3e89c7bb 1093 return -1;
77ae365e
SR
1094 if (rb_check_list(cpu_buffer, &bpage->list))
1095 return -1;
7a8e76a3
SR
1096 }
1097
77ae365e
SR
1098 rb_head_page_activate(cpu_buffer);
1099
7a8e76a3
SR
1100 return 0;
1101}
1102
438ced17 1103static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1104{
438ced17 1105 int i;
044fa782 1106 struct buffer_page *bpage, *tmp;
3adc54fa 1107
7a8e76a3 1108 for (i = 0; i < nr_pages; i++) {
7ea59064 1109 struct page *page;
d7ec4bfe
VN
1110 /*
1111 * __GFP_NORETRY flag makes sure that the allocation fails
1112 * gracefully without invoking oom-killer and the system is
1113 * not destabilized.
1114 */
044fa782 1115 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1116 GFP_KERNEL | __GFP_NORETRY,
438ced17 1117 cpu_to_node(cpu));
044fa782 1118 if (!bpage)
e4c2ce82 1119 goto free_pages;
77ae365e 1120
438ced17 1121 list_add(&bpage->list, pages);
77ae365e 1122
438ced17 1123 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1124 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1125 if (!page)
7a8e76a3 1126 goto free_pages;
7ea59064 1127 bpage->page = page_address(page);
044fa782 1128 rb_init_page(bpage->page);
7a8e76a3
SR
1129 }
1130
438ced17
VN
1131 return 0;
1132
1133free_pages:
1134 list_for_each_entry_safe(bpage, tmp, pages, list) {
1135 list_del_init(&bpage->list);
1136 free_buffer_page(bpage);
1137 }
1138
1139 return -ENOMEM;
1140}
1141
1142static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1143 unsigned nr_pages)
1144{
1145 LIST_HEAD(pages);
1146
1147 WARN_ON(!nr_pages);
1148
1149 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1150 return -ENOMEM;
1151
3adc54fa
SR
1152 /*
1153 * The ring buffer page list is a circular list that does not
1154 * start and end with a list head. All page list items point to
1155 * other pages.
1156 */
1157 cpu_buffer->pages = pages.next;
1158 list_del(&pages);
7a8e76a3 1159
438ced17
VN
1160 cpu_buffer->nr_pages = nr_pages;
1161
7a8e76a3
SR
1162 rb_check_pages(cpu_buffer);
1163
1164 return 0;
7a8e76a3
SR
1165}
1166
1167static struct ring_buffer_per_cpu *
438ced17 1168rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1169{
1170 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1171 struct buffer_page *bpage;
7ea59064 1172 struct page *page;
7a8e76a3
SR
1173 int ret;
1174
1175 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1176 GFP_KERNEL, cpu_to_node(cpu));
1177 if (!cpu_buffer)
1178 return NULL;
1179
1180 cpu_buffer->cpu = cpu;
1181 cpu_buffer->buffer = buffer;
5389f6fa 1182 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1183 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1184 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1185 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1186 init_completion(&cpu_buffer->update_done);
15693458 1187 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
7a8e76a3 1188
044fa782 1189 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1190 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1191 if (!bpage)
e4c2ce82
SR
1192 goto fail_free_buffer;
1193
77ae365e
SR
1194 rb_check_bpage(cpu_buffer, bpage);
1195
044fa782 1196 cpu_buffer->reader_page = bpage;
7ea59064
VN
1197 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1198 if (!page)
e4c2ce82 1199 goto fail_free_reader;
7ea59064 1200 bpage->page = page_address(page);
044fa782 1201 rb_init_page(bpage->page);
e4c2ce82 1202
d769041f 1203 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1204 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1205
438ced17 1206 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1207 if (ret < 0)
d769041f 1208 goto fail_free_reader;
7a8e76a3
SR
1209
1210 cpu_buffer->head_page
3adc54fa 1211 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1212 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1213
77ae365e
SR
1214 rb_head_page_activate(cpu_buffer);
1215
7a8e76a3
SR
1216 return cpu_buffer;
1217
d769041f
SR
1218 fail_free_reader:
1219 free_buffer_page(cpu_buffer->reader_page);
1220
7a8e76a3
SR
1221 fail_free_buffer:
1222 kfree(cpu_buffer);
1223 return NULL;
1224}
1225
1226static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1227{
3adc54fa 1228 struct list_head *head = cpu_buffer->pages;
044fa782 1229 struct buffer_page *bpage, *tmp;
7a8e76a3 1230
d769041f
SR
1231 free_buffer_page(cpu_buffer->reader_page);
1232
77ae365e
SR
1233 rb_head_page_deactivate(cpu_buffer);
1234
3adc54fa
SR
1235 if (head) {
1236 list_for_each_entry_safe(bpage, tmp, head, list) {
1237 list_del_init(&bpage->list);
1238 free_buffer_page(bpage);
1239 }
1240 bpage = list_entry(head, struct buffer_page, list);
044fa782 1241 free_buffer_page(bpage);
7a8e76a3 1242 }
3adc54fa 1243
7a8e76a3
SR
1244 kfree(cpu_buffer);
1245}
1246
59222efe 1247#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1248static int rb_cpu_notify(struct notifier_block *self,
1249 unsigned long action, void *hcpu);
554f786e
SR
1250#endif
1251
7a8e76a3
SR
1252/**
1253 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1254 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1255 * @flags: attributes to set for the ring buffer.
1256 *
1257 * Currently the only flag that is available is the RB_FL_OVERWRITE
1258 * flag. This flag means that the buffer will overwrite old data
1259 * when the buffer wraps. If this flag is not set, the buffer will
1260 * drop data when the tail hits the head.
1261 */
1f8a6a10
PZ
1262struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1263 struct lock_class_key *key)
7a8e76a3
SR
1264{
1265 struct ring_buffer *buffer;
1266 int bsize;
438ced17 1267 int cpu, nr_pages;
7a8e76a3
SR
1268
1269 /* keep it in its own cache line */
1270 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1271 GFP_KERNEL);
1272 if (!buffer)
1273 return NULL;
1274
9e01c1b7
RR
1275 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1276 goto fail_free_buffer;
1277
438ced17 1278 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1279 buffer->flags = flags;
37886f6a 1280 buffer->clock = trace_clock_local;
1f8a6a10 1281 buffer->reader_lock_key = key;
7a8e76a3 1282
15693458
SRRH
1283 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1284
7a8e76a3 1285 /* need at least two pages */
438ced17
VN
1286 if (nr_pages < 2)
1287 nr_pages = 2;
7a8e76a3 1288
3bf832ce
FW
1289 /*
1290 * In case of non-hotplug cpu, if the ring-buffer is allocated
1291 * in early initcall, it will not be notified of secondary cpus.
1292 * In that off case, we need to allocate for all possible cpus.
1293 */
1294#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1295 get_online_cpus();
1296 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1297#else
1298 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1299#endif
7a8e76a3
SR
1300 buffer->cpus = nr_cpu_ids;
1301
1302 bsize = sizeof(void *) * nr_cpu_ids;
1303 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1304 GFP_KERNEL);
1305 if (!buffer->buffers)
9e01c1b7 1306 goto fail_free_cpumask;
7a8e76a3
SR
1307
1308 for_each_buffer_cpu(buffer, cpu) {
1309 buffer->buffers[cpu] =
438ced17 1310 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1311 if (!buffer->buffers[cpu])
1312 goto fail_free_buffers;
1313 }
1314
59222efe 1315#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1316 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1317 buffer->cpu_notify.priority = 0;
1318 register_cpu_notifier(&buffer->cpu_notify);
1319#endif
1320
1321 put_online_cpus();
7a8e76a3
SR
1322 mutex_init(&buffer->mutex);
1323
1324 return buffer;
1325
1326 fail_free_buffers:
1327 for_each_buffer_cpu(buffer, cpu) {
1328 if (buffer->buffers[cpu])
1329 rb_free_cpu_buffer(buffer->buffers[cpu]);
1330 }
1331 kfree(buffer->buffers);
1332
9e01c1b7
RR
1333 fail_free_cpumask:
1334 free_cpumask_var(buffer->cpumask);
554f786e 1335 put_online_cpus();
9e01c1b7 1336
7a8e76a3
SR
1337 fail_free_buffer:
1338 kfree(buffer);
1339 return NULL;
1340}
1f8a6a10 1341EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1342
1343/**
1344 * ring_buffer_free - free a ring buffer.
1345 * @buffer: the buffer to free.
1346 */
1347void
1348ring_buffer_free(struct ring_buffer *buffer)
1349{
1350 int cpu;
1351
554f786e
SR
1352 get_online_cpus();
1353
59222efe 1354#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1355 unregister_cpu_notifier(&buffer->cpu_notify);
1356#endif
1357
7a8e76a3
SR
1358 for_each_buffer_cpu(buffer, cpu)
1359 rb_free_cpu_buffer(buffer->buffers[cpu]);
1360
554f786e
SR
1361 put_online_cpus();
1362
bd3f0221 1363 kfree(buffer->buffers);
9e01c1b7
RR
1364 free_cpumask_var(buffer->cpumask);
1365
7a8e76a3
SR
1366 kfree(buffer);
1367}
c4f50183 1368EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1369
37886f6a
SR
1370void ring_buffer_set_clock(struct ring_buffer *buffer,
1371 u64 (*clock)(void))
1372{
1373 buffer->clock = clock;
1374}
1375
7a8e76a3
SR
1376static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1377
83f40318
VN
1378static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1379{
1380 return local_read(&bpage->entries) & RB_WRITE_MASK;
1381}
1382
1383static inline unsigned long rb_page_write(struct buffer_page *bpage)
1384{
1385 return local_read(&bpage->write) & RB_WRITE_MASK;
1386}
1387
5040b4b7 1388static int
83f40318 1389rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1390{
83f40318
VN
1391 struct list_head *tail_page, *to_remove, *next_page;
1392 struct buffer_page *to_remove_page, *tmp_iter_page;
1393 struct buffer_page *last_page, *first_page;
1394 unsigned int nr_removed;
1395 unsigned long head_bit;
1396 int page_entries;
1397
1398 head_bit = 0;
7a8e76a3 1399
5389f6fa 1400 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1401 atomic_inc(&cpu_buffer->record_disabled);
1402 /*
1403 * We don't race with the readers since we have acquired the reader
1404 * lock. We also don't race with writers after disabling recording.
1405 * This makes it easy to figure out the first and the last page to be
1406 * removed from the list. We unlink all the pages in between including
1407 * the first and last pages. This is done in a busy loop so that we
1408 * lose the least number of traces.
1409 * The pages are freed after we restart recording and unlock readers.
1410 */
1411 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1412
83f40318
VN
1413 /*
1414 * tail page might be on reader page, we remove the next page
1415 * from the ring buffer
1416 */
1417 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1418 tail_page = rb_list_head(tail_page->next);
1419 to_remove = tail_page;
1420
1421 /* start of pages to remove */
1422 first_page = list_entry(rb_list_head(to_remove->next),
1423 struct buffer_page, list);
1424
1425 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1426 to_remove = rb_list_head(to_remove)->next;
1427 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1428 }
7a8e76a3 1429
83f40318 1430 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1431
83f40318
VN
1432 /*
1433 * Now we remove all pages between tail_page and next_page.
1434 * Make sure that we have head_bit value preserved for the
1435 * next page
1436 */
1437 tail_page->next = (struct list_head *)((unsigned long)next_page |
1438 head_bit);
1439 next_page = rb_list_head(next_page);
1440 next_page->prev = tail_page;
1441
1442 /* make sure pages points to a valid page in the ring buffer */
1443 cpu_buffer->pages = next_page;
1444
1445 /* update head page */
1446 if (head_bit)
1447 cpu_buffer->head_page = list_entry(next_page,
1448 struct buffer_page, list);
1449
1450 /*
1451 * change read pointer to make sure any read iterators reset
1452 * themselves
1453 */
1454 cpu_buffer->read = 0;
1455
1456 /* pages are removed, resume tracing and then free the pages */
1457 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1458 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1459
1460 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1461
1462 /* last buffer page to remove */
1463 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1464 list);
1465 tmp_iter_page = first_page;
1466
1467 do {
1468 to_remove_page = tmp_iter_page;
1469 rb_inc_page(cpu_buffer, &tmp_iter_page);
1470
1471 /* update the counters */
1472 page_entries = rb_page_entries(to_remove_page);
1473 if (page_entries) {
1474 /*
1475 * If something was added to this page, it was full
1476 * since it is not the tail page. So we deduct the
1477 * bytes consumed in ring buffer from here.
48fdc72f 1478 * Increment overrun to account for the lost events.
83f40318 1479 */
48fdc72f 1480 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1481 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1482 }
1483
1484 /*
1485 * We have already removed references to this list item, just
1486 * free up the buffer_page and its page
1487 */
1488 free_buffer_page(to_remove_page);
1489 nr_removed--;
1490
1491 } while (to_remove_page != last_page);
1492
1493 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1494
1495 return nr_removed == 0;
7a8e76a3
SR
1496}
1497
5040b4b7
VN
1498static int
1499rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1500{
5040b4b7
VN
1501 struct list_head *pages = &cpu_buffer->new_pages;
1502 int retries, success;
7a8e76a3 1503
5389f6fa 1504 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1505 /*
1506 * We are holding the reader lock, so the reader page won't be swapped
1507 * in the ring buffer. Now we are racing with the writer trying to
1508 * move head page and the tail page.
1509 * We are going to adapt the reader page update process where:
1510 * 1. We first splice the start and end of list of new pages between
1511 * the head page and its previous page.
1512 * 2. We cmpxchg the prev_page->next to point from head page to the
1513 * start of new pages list.
1514 * 3. Finally, we update the head->prev to the end of new list.
1515 *
1516 * We will try this process 10 times, to make sure that we don't keep
1517 * spinning.
1518 */
1519 retries = 10;
1520 success = 0;
1521 while (retries--) {
1522 struct list_head *head_page, *prev_page, *r;
1523 struct list_head *last_page, *first_page;
1524 struct list_head *head_page_with_bit;
77ae365e 1525
5040b4b7 1526 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1527 if (!head_page)
1528 break;
5040b4b7
VN
1529 prev_page = head_page->prev;
1530
1531 first_page = pages->next;
1532 last_page = pages->prev;
1533
1534 head_page_with_bit = (struct list_head *)
1535 ((unsigned long)head_page | RB_PAGE_HEAD);
1536
1537 last_page->next = head_page_with_bit;
1538 first_page->prev = prev_page;
1539
1540 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1541
1542 if (r == head_page_with_bit) {
1543 /*
1544 * yay, we replaced the page pointer to our new list,
1545 * now, we just have to update to head page's prev
1546 * pointer to point to end of list
1547 */
1548 head_page->prev = last_page;
1549 success = 1;
1550 break;
1551 }
7a8e76a3 1552 }
7a8e76a3 1553
5040b4b7
VN
1554 if (success)
1555 INIT_LIST_HEAD(pages);
1556 /*
1557 * If we weren't successful in adding in new pages, warn and stop
1558 * tracing
1559 */
1560 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1561 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1562
1563 /* free pages if they weren't inserted */
1564 if (!success) {
1565 struct buffer_page *bpage, *tmp;
1566 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1567 list) {
1568 list_del_init(&bpage->list);
1569 free_buffer_page(bpage);
1570 }
1571 }
1572 return success;
7a8e76a3
SR
1573}
1574
83f40318 1575static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1576{
5040b4b7
VN
1577 int success;
1578
438ced17 1579 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1580 success = rb_insert_pages(cpu_buffer);
438ced17 1581 else
5040b4b7
VN
1582 success = rb_remove_pages(cpu_buffer,
1583 -cpu_buffer->nr_pages_to_update);
83f40318 1584
5040b4b7
VN
1585 if (success)
1586 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1587}
1588
1589static void update_pages_handler(struct work_struct *work)
1590{
1591 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1592 struct ring_buffer_per_cpu, update_pages_work);
1593 rb_update_pages(cpu_buffer);
05fdd70d 1594 complete(&cpu_buffer->update_done);
438ced17
VN
1595}
1596
7a8e76a3
SR
1597/**
1598 * ring_buffer_resize - resize the ring buffer
1599 * @buffer: the buffer to resize.
1600 * @size: the new size.
1601 *
7a8e76a3
SR
1602 * Minimum size is 2 * BUF_PAGE_SIZE.
1603 *
83f40318 1604 * Returns 0 on success and < 0 on failure.
7a8e76a3 1605 */
438ced17
VN
1606int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1607 int cpu_id)
7a8e76a3
SR
1608{
1609 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1610 unsigned nr_pages;
83f40318 1611 int cpu, err = 0;
7a8e76a3 1612
ee51a1de
IM
1613 /*
1614 * Always succeed at resizing a non-existent buffer:
1615 */
1616 if (!buffer)
1617 return size;
1618
6a31e1f1
SR
1619 /* Make sure the requested buffer exists */
1620 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1621 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1622 return size;
1623
7a8e76a3
SR
1624 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1625 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1626
1627 /* we need a minimum of two pages */
1628 if (size < BUF_PAGE_SIZE * 2)
1629 size = BUF_PAGE_SIZE * 2;
1630
83f40318 1631 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1632
83f40318
VN
1633 /*
1634 * Don't succeed if resizing is disabled, as a reader might be
1635 * manipulating the ring buffer and is expecting a sane state while
1636 * this is true.
1637 */
1638 if (atomic_read(&buffer->resize_disabled))
1639 return -EBUSY;
18421015 1640
83f40318 1641 /* prevent another thread from changing buffer sizes */
7a8e76a3 1642 mutex_lock(&buffer->mutex);
7a8e76a3 1643
438ced17
VN
1644 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1645 /* calculate the pages to update */
7a8e76a3
SR
1646 for_each_buffer_cpu(buffer, cpu) {
1647 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1648
438ced17
VN
1649 cpu_buffer->nr_pages_to_update = nr_pages -
1650 cpu_buffer->nr_pages;
438ced17
VN
1651 /*
1652 * nothing more to do for removing pages or no update
1653 */
1654 if (cpu_buffer->nr_pages_to_update <= 0)
1655 continue;
d7ec4bfe 1656 /*
438ced17
VN
1657 * to add pages, make sure all new pages can be
1658 * allocated without receiving ENOMEM
d7ec4bfe 1659 */
438ced17
VN
1660 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1661 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1662 &cpu_buffer->new_pages, cpu)) {
438ced17 1663 /* not enough memory for new pages */
83f40318
VN
1664 err = -ENOMEM;
1665 goto out_err;
1666 }
1667 }
1668
1669 get_online_cpus();
1670 /*
1671 * Fire off all the required work handlers
05fdd70d 1672 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1673 * since we can change their buffer sizes without any race.
1674 */
1675 for_each_buffer_cpu(buffer, cpu) {
1676 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1677 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1678 continue;
1679
05fdd70d
VN
1680 if (cpu_online(cpu))
1681 schedule_work_on(cpu,
1682 &cpu_buffer->update_pages_work);
1683 else
1684 rb_update_pages(cpu_buffer);
7a8e76a3 1685 }
7a8e76a3 1686
438ced17
VN
1687 /* wait for all the updates to complete */
1688 for_each_buffer_cpu(buffer, cpu) {
1689 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1690 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1691 continue;
1692
05fdd70d
VN
1693 if (cpu_online(cpu))
1694 wait_for_completion(&cpu_buffer->update_done);
83f40318 1695 cpu_buffer->nr_pages_to_update = 0;
438ced17 1696 }
83f40318
VN
1697
1698 put_online_cpus();
438ced17 1699 } else {
8e49f418
VN
1700 /* Make sure this CPU has been intitialized */
1701 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1702 goto out;
1703
438ced17 1704 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1705
438ced17
VN
1706 if (nr_pages == cpu_buffer->nr_pages)
1707 goto out;
7a8e76a3 1708
438ced17
VN
1709 cpu_buffer->nr_pages_to_update = nr_pages -
1710 cpu_buffer->nr_pages;
1711
1712 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1713 if (cpu_buffer->nr_pages_to_update > 0 &&
1714 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1715 &cpu_buffer->new_pages, cpu_id)) {
1716 err = -ENOMEM;
1717 goto out_err;
1718 }
438ced17 1719
83f40318
VN
1720 get_online_cpus();
1721
1722 if (cpu_online(cpu_id)) {
1723 schedule_work_on(cpu_id,
1724 &cpu_buffer->update_pages_work);
05fdd70d 1725 wait_for_completion(&cpu_buffer->update_done);
83f40318
VN
1726 } else
1727 rb_update_pages(cpu_buffer);
1728
83f40318 1729 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1730 put_online_cpus();
438ced17 1731 }
7a8e76a3
SR
1732
1733 out:
659f451f
SR
1734 /*
1735 * The ring buffer resize can happen with the ring buffer
1736 * enabled, so that the update disturbs the tracing as little
1737 * as possible. But if the buffer is disabled, we do not need
1738 * to worry about that, and we can take the time to verify
1739 * that the buffer is not corrupt.
1740 */
1741 if (atomic_read(&buffer->record_disabled)) {
1742 atomic_inc(&buffer->record_disabled);
1743 /*
1744 * Even though the buffer was disabled, we must make sure
1745 * that it is truly disabled before calling rb_check_pages.
1746 * There could have been a race between checking
1747 * record_disable and incrementing it.
1748 */
1749 synchronize_sched();
1750 for_each_buffer_cpu(buffer, cpu) {
1751 cpu_buffer = buffer->buffers[cpu];
1752 rb_check_pages(cpu_buffer);
1753 }
1754 atomic_dec(&buffer->record_disabled);
1755 }
1756
7a8e76a3 1757 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1758 return size;
1759
83f40318 1760 out_err:
438ced17
VN
1761 for_each_buffer_cpu(buffer, cpu) {
1762 struct buffer_page *bpage, *tmp;
83f40318 1763
438ced17 1764 cpu_buffer = buffer->buffers[cpu];
438ced17 1765 cpu_buffer->nr_pages_to_update = 0;
83f40318 1766
438ced17
VN
1767 if (list_empty(&cpu_buffer->new_pages))
1768 continue;
83f40318 1769
438ced17
VN
1770 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1771 list) {
1772 list_del_init(&bpage->list);
1773 free_buffer_page(bpage);
1774 }
7a8e76a3 1775 }
641d2f63 1776 mutex_unlock(&buffer->mutex);
83f40318 1777 return err;
7a8e76a3 1778}
c4f50183 1779EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1780
750912fa
DS
1781void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1782{
1783 mutex_lock(&buffer->mutex);
1784 if (val)
1785 buffer->flags |= RB_FL_OVERWRITE;
1786 else
1787 buffer->flags &= ~RB_FL_OVERWRITE;
1788 mutex_unlock(&buffer->mutex);
1789}
1790EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1791
8789a9e7 1792static inline void *
044fa782 1793__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1794{
044fa782 1795 return bpage->data + index;
8789a9e7
SR
1796}
1797
044fa782 1798static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1799{
044fa782 1800 return bpage->page->data + index;
7a8e76a3
SR
1801}
1802
1803static inline struct ring_buffer_event *
d769041f 1804rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1805{
6f807acd
SR
1806 return __rb_page_index(cpu_buffer->reader_page,
1807 cpu_buffer->reader_page->read);
1808}
1809
7a8e76a3
SR
1810static inline struct ring_buffer_event *
1811rb_iter_head_event(struct ring_buffer_iter *iter)
1812{
6f807acd 1813 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1814}
1815
bf41a158
SR
1816static inline unsigned rb_page_commit(struct buffer_page *bpage)
1817{
abc9b56d 1818 return local_read(&bpage->page->commit);
bf41a158
SR
1819}
1820
25985edc 1821/* Size is determined by what has been committed */
bf41a158
SR
1822static inline unsigned rb_page_size(struct buffer_page *bpage)
1823{
1824 return rb_page_commit(bpage);
1825}
1826
1827static inline unsigned
1828rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1829{
1830 return rb_page_commit(cpu_buffer->commit_page);
1831}
1832
bf41a158
SR
1833static inline unsigned
1834rb_event_index(struct ring_buffer_event *event)
1835{
1836 unsigned long addr = (unsigned long)event;
1837
22f470f8 1838 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1839}
1840
0f0c85fc 1841static inline int
fa743953
SR
1842rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1843 struct ring_buffer_event *event)
bf41a158
SR
1844{
1845 unsigned long addr = (unsigned long)event;
1846 unsigned long index;
1847
1848 index = rb_event_index(event);
1849 addr &= PAGE_MASK;
1850
1851 return cpu_buffer->commit_page->page == (void *)addr &&
1852 rb_commit_index(cpu_buffer) == index;
1853}
1854
34a148bf 1855static void
bf41a158 1856rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1857{
77ae365e
SR
1858 unsigned long max_count;
1859
bf41a158
SR
1860 /*
1861 * We only race with interrupts and NMIs on this CPU.
1862 * If we own the commit event, then we can commit
1863 * all others that interrupted us, since the interruptions
1864 * are in stack format (they finish before they come
1865 * back to us). This allows us to do a simple loop to
1866 * assign the commit to the tail.
1867 */
a8ccf1d6 1868 again:
438ced17 1869 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1870
bf41a158 1871 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1872 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1873 return;
1874 if (RB_WARN_ON(cpu_buffer,
1875 rb_is_reader_page(cpu_buffer->tail_page)))
1876 return;
1877 local_set(&cpu_buffer->commit_page->page->commit,
1878 rb_page_write(cpu_buffer->commit_page));
bf41a158 1879 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1880 cpu_buffer->write_stamp =
1881 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1882 /* add barrier to keep gcc from optimizing too much */
1883 barrier();
1884 }
1885 while (rb_commit_index(cpu_buffer) !=
1886 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1887
1888 local_set(&cpu_buffer->commit_page->page->commit,
1889 rb_page_write(cpu_buffer->commit_page));
1890 RB_WARN_ON(cpu_buffer,
1891 local_read(&cpu_buffer->commit_page->page->commit) &
1892 ~RB_WRITE_MASK);
bf41a158
SR
1893 barrier();
1894 }
a8ccf1d6
SR
1895
1896 /* again, keep gcc from optimizing */
1897 barrier();
1898
1899 /*
1900 * If an interrupt came in just after the first while loop
1901 * and pushed the tail page forward, we will be left with
1902 * a dangling commit that will never go forward.
1903 */
1904 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1905 goto again;
7a8e76a3
SR
1906}
1907
d769041f 1908static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1909{
abc9b56d 1910 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1911 cpu_buffer->reader_page->read = 0;
d769041f
SR
1912}
1913
34a148bf 1914static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1915{
1916 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1917
1918 /*
1919 * The iterator could be on the reader page (it starts there).
1920 * But the head could have moved, since the reader was
1921 * found. Check for this case and assign the iterator
1922 * to the head page instead of next.
1923 */
1924 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1925 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1926 else
1927 rb_inc_page(cpu_buffer, &iter->head_page);
1928
abc9b56d 1929 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1930 iter->head = 0;
1931}
1932
69d1b839
SR
1933/* Slow path, do not inline */
1934static noinline struct ring_buffer_event *
1935rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1936{
1937 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1938
1939 /* Not the first event on the page? */
1940 if (rb_event_index(event)) {
1941 event->time_delta = delta & TS_MASK;
1942 event->array[0] = delta >> TS_SHIFT;
1943 } else {
1944 /* nope, just zero it */
1945 event->time_delta = 0;
1946 event->array[0] = 0;
1947 }
1948
1949 return skip_time_extend(event);
1950}
1951
7a8e76a3 1952/**
01e3e710 1953 * rb_update_event - update event type and data
7a8e76a3
SR
1954 * @event: the even to update
1955 * @type: the type of event
1956 * @length: the size of the event field in the ring buffer
1957 *
1958 * Update the type and data fields of the event. The length
1959 * is the actual size that is written to the ring buffer,
1960 * and with this, we can determine what to place into the
1961 * data field.
1962 */
34a148bf 1963static void
69d1b839
SR
1964rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1965 struct ring_buffer_event *event, unsigned length,
1966 int add_timestamp, u64 delta)
7a8e76a3 1967{
69d1b839
SR
1968 /* Only a commit updates the timestamp */
1969 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1970 delta = 0;
7a8e76a3 1971
69d1b839
SR
1972 /*
1973 * If we need to add a timestamp, then we
1974 * add it to the start of the resevered space.
1975 */
1976 if (unlikely(add_timestamp)) {
1977 event = rb_add_time_stamp(event, delta);
1978 length -= RB_LEN_TIME_EXTEND;
1979 delta = 0;
7a8e76a3 1980 }
69d1b839
SR
1981
1982 event->time_delta = delta;
1983 length -= RB_EVNT_HDR_SIZE;
1984 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1985 event->type_len = 0;
1986 event->array[0] = length;
1987 } else
1988 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1989}
1990
77ae365e
SR
1991/*
1992 * rb_handle_head_page - writer hit the head page
1993 *
1994 * Returns: +1 to retry page
1995 * 0 to continue
1996 * -1 on error
1997 */
1998static int
1999rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2000 struct buffer_page *tail_page,
2001 struct buffer_page *next_page)
2002{
2003 struct buffer_page *new_head;
2004 int entries;
2005 int type;
2006 int ret;
2007
2008 entries = rb_page_entries(next_page);
2009
2010 /*
2011 * The hard part is here. We need to move the head
2012 * forward, and protect against both readers on
2013 * other CPUs and writers coming in via interrupts.
2014 */
2015 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2016 RB_PAGE_HEAD);
2017
2018 /*
2019 * type can be one of four:
2020 * NORMAL - an interrupt already moved it for us
2021 * HEAD - we are the first to get here.
2022 * UPDATE - we are the interrupt interrupting
2023 * a current move.
2024 * MOVED - a reader on another CPU moved the next
2025 * pointer to its reader page. Give up
2026 * and try again.
2027 */
2028
2029 switch (type) {
2030 case RB_PAGE_HEAD:
2031 /*
2032 * We changed the head to UPDATE, thus
2033 * it is our responsibility to update
2034 * the counters.
2035 */
2036 local_add(entries, &cpu_buffer->overrun);
c64e148a 2037 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2038
2039 /*
2040 * The entries will be zeroed out when we move the
2041 * tail page.
2042 */
2043
2044 /* still more to do */
2045 break;
2046
2047 case RB_PAGE_UPDATE:
2048 /*
2049 * This is an interrupt that interrupt the
2050 * previous update. Still more to do.
2051 */
2052 break;
2053 case RB_PAGE_NORMAL:
2054 /*
2055 * An interrupt came in before the update
2056 * and processed this for us.
2057 * Nothing left to do.
2058 */
2059 return 1;
2060 case RB_PAGE_MOVED:
2061 /*
2062 * The reader is on another CPU and just did
2063 * a swap with our next_page.
2064 * Try again.
2065 */
2066 return 1;
2067 default:
2068 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2069 return -1;
2070 }
2071
2072 /*
2073 * Now that we are here, the old head pointer is
2074 * set to UPDATE. This will keep the reader from
2075 * swapping the head page with the reader page.
2076 * The reader (on another CPU) will spin till
2077 * we are finished.
2078 *
2079 * We just need to protect against interrupts
2080 * doing the job. We will set the next pointer
2081 * to HEAD. After that, we set the old pointer
2082 * to NORMAL, but only if it was HEAD before.
2083 * otherwise we are an interrupt, and only
2084 * want the outer most commit to reset it.
2085 */
2086 new_head = next_page;
2087 rb_inc_page(cpu_buffer, &new_head);
2088
2089 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2090 RB_PAGE_NORMAL);
2091
2092 /*
2093 * Valid returns are:
2094 * HEAD - an interrupt came in and already set it.
2095 * NORMAL - One of two things:
2096 * 1) We really set it.
2097 * 2) A bunch of interrupts came in and moved
2098 * the page forward again.
2099 */
2100 switch (ret) {
2101 case RB_PAGE_HEAD:
2102 case RB_PAGE_NORMAL:
2103 /* OK */
2104 break;
2105 default:
2106 RB_WARN_ON(cpu_buffer, 1);
2107 return -1;
2108 }
2109
2110 /*
2111 * It is possible that an interrupt came in,
2112 * set the head up, then more interrupts came in
2113 * and moved it again. When we get back here,
2114 * the page would have been set to NORMAL but we
2115 * just set it back to HEAD.
2116 *
2117 * How do you detect this? Well, if that happened
2118 * the tail page would have moved.
2119 */
2120 if (ret == RB_PAGE_NORMAL) {
2121 /*
2122 * If the tail had moved passed next, then we need
2123 * to reset the pointer.
2124 */
2125 if (cpu_buffer->tail_page != tail_page &&
2126 cpu_buffer->tail_page != next_page)
2127 rb_head_page_set_normal(cpu_buffer, new_head,
2128 next_page,
2129 RB_PAGE_HEAD);
2130 }
2131
2132 /*
2133 * If this was the outer most commit (the one that
2134 * changed the original pointer from HEAD to UPDATE),
2135 * then it is up to us to reset it to NORMAL.
2136 */
2137 if (type == RB_PAGE_HEAD) {
2138 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2139 tail_page,
2140 RB_PAGE_UPDATE);
2141 if (RB_WARN_ON(cpu_buffer,
2142 ret != RB_PAGE_UPDATE))
2143 return -1;
2144 }
2145
2146 return 0;
2147}
2148
34a148bf 2149static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2150{
2151 struct ring_buffer_event event; /* Used only for sizeof array */
2152
2153 /* zero length can cause confusions */
2154 if (!length)
2155 length = 1;
2156
2271048d 2157 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2158 length += sizeof(event.array[0]);
2159
2160 length += RB_EVNT_HDR_SIZE;
2271048d 2161 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2162
2163 return length;
2164}
2165
c7b09308
SR
2166static inline void
2167rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2168 struct buffer_page *tail_page,
2169 unsigned long tail, unsigned long length)
2170{
2171 struct ring_buffer_event *event;
2172
2173 /*
2174 * Only the event that crossed the page boundary
2175 * must fill the old tail_page with padding.
2176 */
2177 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2178 /*
2179 * If the page was filled, then we still need
2180 * to update the real_end. Reset it to zero
2181 * and the reader will ignore it.
2182 */
2183 if (tail == BUF_PAGE_SIZE)
2184 tail_page->real_end = 0;
2185
c7b09308
SR
2186 local_sub(length, &tail_page->write);
2187 return;
2188 }
2189
2190 event = __rb_page_index(tail_page, tail);
b0b7065b 2191 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2192
c64e148a
VN
2193 /* account for padding bytes */
2194 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2195
ff0ff84a
SR
2196 /*
2197 * Save the original length to the meta data.
2198 * This will be used by the reader to add lost event
2199 * counter.
2200 */
2201 tail_page->real_end = tail;
2202
c7b09308
SR
2203 /*
2204 * If this event is bigger than the minimum size, then
2205 * we need to be careful that we don't subtract the
2206 * write counter enough to allow another writer to slip
2207 * in on this page.
2208 * We put in a discarded commit instead, to make sure
2209 * that this space is not used again.
2210 *
2211 * If we are less than the minimum size, we don't need to
2212 * worry about it.
2213 */
2214 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2215 /* No room for any events */
2216
2217 /* Mark the rest of the page with padding */
2218 rb_event_set_padding(event);
2219
2220 /* Set the write back to the previous setting */
2221 local_sub(length, &tail_page->write);
2222 return;
2223 }
2224
2225 /* Put in a discarded event */
2226 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2227 event->type_len = RINGBUF_TYPE_PADDING;
2228 /* time delta must be non zero */
2229 event->time_delta = 1;
c7b09308
SR
2230
2231 /* Set write to end of buffer */
2232 length = (tail + length) - BUF_PAGE_SIZE;
2233 local_sub(length, &tail_page->write);
2234}
6634ff26 2235
747e94ae
SR
2236/*
2237 * This is the slow path, force gcc not to inline it.
2238 */
2239static noinline struct ring_buffer_event *
6634ff26
SR
2240rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241 unsigned long length, unsigned long tail,
e8bc43e8 2242 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2243{
5a50e33c 2244 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2245 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2246 struct buffer_page *next_page;
2247 int ret;
aa20ae84
SR
2248
2249 next_page = tail_page;
2250
aa20ae84
SR
2251 rb_inc_page(cpu_buffer, &next_page);
2252
aa20ae84
SR
2253 /*
2254 * If for some reason, we had an interrupt storm that made
2255 * it all the way around the buffer, bail, and warn
2256 * about it.
2257 */
2258 if (unlikely(next_page == commit_page)) {
77ae365e 2259 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2260 goto out_reset;
2261 }
2262
77ae365e
SR
2263 /*
2264 * This is where the fun begins!
2265 *
2266 * We are fighting against races between a reader that
2267 * could be on another CPU trying to swap its reader
2268 * page with the buffer head.
2269 *
2270 * We are also fighting against interrupts coming in and
2271 * moving the head or tail on us as well.
2272 *
2273 * If the next page is the head page then we have filled
2274 * the buffer, unless the commit page is still on the
2275 * reader page.
2276 */
2277 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2278
77ae365e
SR
2279 /*
2280 * If the commit is not on the reader page, then
2281 * move the header page.
2282 */
2283 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2284 /*
2285 * If we are not in overwrite mode,
2286 * this is easy, just stop here.
2287 */
884bfe89
SP
2288 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2289 local_inc(&cpu_buffer->dropped_events);
77ae365e 2290 goto out_reset;
884bfe89 2291 }
77ae365e
SR
2292
2293 ret = rb_handle_head_page(cpu_buffer,
2294 tail_page,
2295 next_page);
2296 if (ret < 0)
2297 goto out_reset;
2298 if (ret)
2299 goto out_again;
2300 } else {
2301 /*
2302 * We need to be careful here too. The
2303 * commit page could still be on the reader
2304 * page. We could have a small buffer, and
2305 * have filled up the buffer with events
2306 * from interrupts and such, and wrapped.
2307 *
2308 * Note, if the tail page is also the on the
2309 * reader_page, we let it move out.
2310 */
2311 if (unlikely((cpu_buffer->commit_page !=
2312 cpu_buffer->tail_page) &&
2313 (cpu_buffer->commit_page ==
2314 cpu_buffer->reader_page))) {
2315 local_inc(&cpu_buffer->commit_overrun);
2316 goto out_reset;
2317 }
aa20ae84
SR
2318 }
2319 }
2320
77ae365e
SR
2321 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2322 if (ret) {
2323 /*
2324 * Nested commits always have zero deltas, so
2325 * just reread the time stamp
2326 */
e8bc43e8
SR
2327 ts = rb_time_stamp(buffer);
2328 next_page->page->time_stamp = ts;
aa20ae84
SR
2329 }
2330
77ae365e 2331 out_again:
aa20ae84 2332
77ae365e 2333 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2334
2335 /* fail and let the caller try again */
2336 return ERR_PTR(-EAGAIN);
2337
45141d46 2338 out_reset:
6f3b3440 2339 /* reset write */
c7b09308 2340 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2341
bf41a158 2342 return NULL;
7a8e76a3
SR
2343}
2344
6634ff26
SR
2345static struct ring_buffer_event *
2346__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2347 unsigned long length, u64 ts,
2348 u64 delta, int add_timestamp)
6634ff26 2349{
5a50e33c 2350 struct buffer_page *tail_page;
6634ff26
SR
2351 struct ring_buffer_event *event;
2352 unsigned long tail, write;
2353
69d1b839
SR
2354 /*
2355 * If the time delta since the last event is too big to
2356 * hold in the time field of the event, then we append a
2357 * TIME EXTEND event ahead of the data event.
2358 */
2359 if (unlikely(add_timestamp))
2360 length += RB_LEN_TIME_EXTEND;
2361
6634ff26
SR
2362 tail_page = cpu_buffer->tail_page;
2363 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2364
2365 /* set write to only the index of the write */
2366 write &= RB_WRITE_MASK;
6634ff26
SR
2367 tail = write - length;
2368
2369 /* See if we shot pass the end of this buffer page */
747e94ae 2370 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2371 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2372 tail_page, ts);
6634ff26
SR
2373
2374 /* We reserved something on the buffer */
2375
6634ff26 2376 event = __rb_page_index(tail_page, tail);
1744a21d 2377 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2378 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2379
69d1b839 2380 local_inc(&tail_page->entries);
6634ff26
SR
2381
2382 /*
fa743953
SR
2383 * If this is the first commit on the page, then update
2384 * its timestamp.
6634ff26 2385 */
fa743953 2386 if (!tail)
e8bc43e8 2387 tail_page->page->time_stamp = ts;
6634ff26 2388
c64e148a
VN
2389 /* account for these added bytes */
2390 local_add(length, &cpu_buffer->entries_bytes);
2391
6634ff26
SR
2392 return event;
2393}
2394
edd813bf
SR
2395static inline int
2396rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2397 struct ring_buffer_event *event)
2398{
2399 unsigned long new_index, old_index;
2400 struct buffer_page *bpage;
2401 unsigned long index;
2402 unsigned long addr;
2403
2404 new_index = rb_event_index(event);
69d1b839 2405 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2406 addr = (unsigned long)event;
2407 addr &= PAGE_MASK;
2408
2409 bpage = cpu_buffer->tail_page;
2410
2411 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2412 unsigned long write_mask =
2413 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2414 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2415 /*
2416 * This is on the tail page. It is possible that
2417 * a write could come in and move the tail page
2418 * and write to the next page. That is fine
2419 * because we just shorten what is on this page.
2420 */
77ae365e
SR
2421 old_index += write_mask;
2422 new_index += write_mask;
edd813bf 2423 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2424 if (index == old_index) {
2425 /* update counters */
2426 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2427 return 1;
c64e148a 2428 }
edd813bf
SR
2429 }
2430
2431 /* could not discard */
2432 return 0;
2433}
2434
fa743953
SR
2435static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2436{
2437 local_inc(&cpu_buffer->committing);
2438 local_inc(&cpu_buffer->commits);
2439}
2440
d9abde21 2441static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2442{
2443 unsigned long commits;
2444
2445 if (RB_WARN_ON(cpu_buffer,
2446 !local_read(&cpu_buffer->committing)))
2447 return;
2448
2449 again:
2450 commits = local_read(&cpu_buffer->commits);
2451 /* synchronize with interrupts */
2452 barrier();
2453 if (local_read(&cpu_buffer->committing) == 1)
2454 rb_set_commit_to_write(cpu_buffer);
2455
2456 local_dec(&cpu_buffer->committing);
2457
2458 /* synchronize with interrupts */
2459 barrier();
2460
2461 /*
2462 * Need to account for interrupts coming in between the
2463 * updating of the commit page and the clearing of the
2464 * committing counter.
2465 */
2466 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2467 !local_read(&cpu_buffer->committing)) {
2468 local_inc(&cpu_buffer->committing);
2469 goto again;
2470 }
2471}
2472
7a8e76a3 2473static struct ring_buffer_event *
62f0b3eb
SR
2474rb_reserve_next_event(struct ring_buffer *buffer,
2475 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2476 unsigned long length)
7a8e76a3
SR
2477{
2478 struct ring_buffer_event *event;
69d1b839 2479 u64 ts, delta;
818e3dd3 2480 int nr_loops = 0;
69d1b839 2481 int add_timestamp;
140ff891 2482 u64 diff;
7a8e76a3 2483
fa743953
SR
2484 rb_start_commit(cpu_buffer);
2485
85bac32c 2486#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2487 /*
2488 * Due to the ability to swap a cpu buffer from a buffer
2489 * it is possible it was swapped before we committed.
2490 * (committing stops a swap). We check for it here and
2491 * if it happened, we have to fail the write.
2492 */
2493 barrier();
2494 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2495 local_dec(&cpu_buffer->committing);
2496 local_dec(&cpu_buffer->commits);
2497 return NULL;
2498 }
85bac32c 2499#endif
62f0b3eb 2500
be957c44 2501 length = rb_calculate_event_length(length);
bf41a158 2502 again:
69d1b839
SR
2503 add_timestamp = 0;
2504 delta = 0;
2505
818e3dd3
SR
2506 /*
2507 * We allow for interrupts to reenter here and do a trace.
2508 * If one does, it will cause this original code to loop
2509 * back here. Even with heavy interrupts happening, this
2510 * should only happen a few times in a row. If this happens
2511 * 1000 times in a row, there must be either an interrupt
2512 * storm or we have something buggy.
2513 * Bail!
2514 */
3e89c7bb 2515 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2516 goto out_fail;
818e3dd3 2517
6d3f1e12 2518 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2519 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2520
140ff891
SR
2521 /* make sure this diff is calculated here */
2522 barrier();
bf41a158 2523
140ff891
SR
2524 /* Did the write stamp get updated already? */
2525 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2526 delta = diff;
2527 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2528 int local_clock_stable = 1;
2529#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2530 local_clock_stable = sched_clock_stable;
2531#endif
69d1b839 2532 WARN_ONCE(delta > (1ULL << 59),
31274d72 2533 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2534 (unsigned long long)delta,
2535 (unsigned long long)ts,
31274d72
JO
2536 (unsigned long long)cpu_buffer->write_stamp,
2537 local_clock_stable ? "" :
2538 "If you just came from a suspend/resume,\n"
2539 "please switch to the trace global clock:\n"
2540 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2541 add_timestamp = 1;
7a8e76a3 2542 }
168b6b1d 2543 }
7a8e76a3 2544
69d1b839
SR
2545 event = __rb_reserve_next(cpu_buffer, length, ts,
2546 delta, add_timestamp);
168b6b1d 2547 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2548 goto again;
2549
fa743953
SR
2550 if (!event)
2551 goto out_fail;
7a8e76a3 2552
7a8e76a3 2553 return event;
fa743953
SR
2554
2555 out_fail:
2556 rb_end_commit(cpu_buffer);
2557 return NULL;
7a8e76a3
SR
2558}
2559
1155de47
PM
2560#ifdef CONFIG_TRACING
2561
567cd4da
SR
2562/*
2563 * The lock and unlock are done within a preempt disable section.
2564 * The current_context per_cpu variable can only be modified
2565 * by the current task between lock and unlock. But it can
2566 * be modified more than once via an interrupt. To pass this
2567 * information from the lock to the unlock without having to
2568 * access the 'in_interrupt()' functions again (which do show
2569 * a bit of overhead in something as critical as function tracing,
2570 * we use a bitmask trick.
2571 *
2572 * bit 0 = NMI context
2573 * bit 1 = IRQ context
2574 * bit 2 = SoftIRQ context
2575 * bit 3 = normal context.
2576 *
2577 * This works because this is the order of contexts that can
2578 * preempt other contexts. A SoftIRQ never preempts an IRQ
2579 * context.
2580 *
2581 * When the context is determined, the corresponding bit is
2582 * checked and set (if it was set, then a recursion of that context
2583 * happened).
2584 *
2585 * On unlock, we need to clear this bit. To do so, just subtract
2586 * 1 from the current_context and AND it to itself.
2587 *
2588 * (binary)
2589 * 101 - 1 = 100
2590 * 101 & 100 = 100 (clearing bit zero)
2591 *
2592 * 1010 - 1 = 1001
2593 * 1010 & 1001 = 1000 (clearing bit 1)
2594 *
2595 * The least significant bit can be cleared this way, and it
2596 * just so happens that it is the same bit corresponding to
2597 * the current context.
2598 */
2599static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2600
567cd4da 2601static __always_inline int trace_recursive_lock(void)
261842b7 2602{
567cd4da
SR
2603 unsigned int val = this_cpu_read(current_context);
2604 int bit;
d9abde21 2605
567cd4da
SR
2606 if (in_interrupt()) {
2607 if (in_nmi())
2608 bit = 0;
2609 else if (in_irq())
2610 bit = 1;
2611 else
2612 bit = 2;
2613 } else
2614 bit = 3;
d9abde21 2615
567cd4da
SR
2616 if (unlikely(val & (1 << bit)))
2617 return 1;
d9abde21 2618
567cd4da
SR
2619 val |= (1 << bit);
2620 this_cpu_write(current_context, val);
d9abde21 2621
567cd4da 2622 return 0;
261842b7
SR
2623}
2624
567cd4da 2625static __always_inline void trace_recursive_unlock(void)
261842b7 2626{
567cd4da 2627 unsigned int val = this_cpu_read(current_context);
261842b7 2628
567cd4da
SR
2629 val--;
2630 val &= this_cpu_read(current_context);
2631 this_cpu_write(current_context, val);
261842b7
SR
2632}
2633
1155de47
PM
2634#else
2635
2636#define trace_recursive_lock() (0)
2637#define trace_recursive_unlock() do { } while (0)
2638
2639#endif
2640
7a8e76a3
SR
2641/**
2642 * ring_buffer_lock_reserve - reserve a part of the buffer
2643 * @buffer: the ring buffer to reserve from
2644 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2645 *
2646 * Returns a reseverd event on the ring buffer to copy directly to.
2647 * The user of this interface will need to get the body to write into
2648 * and can use the ring_buffer_event_data() interface.
2649 *
2650 * The length is the length of the data needed, not the event length
2651 * which also includes the event header.
2652 *
2653 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2654 * If NULL is returned, then nothing has been allocated or locked.
2655 */
2656struct ring_buffer_event *
0a987751 2657ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2658{
2659 struct ring_buffer_per_cpu *cpu_buffer;
2660 struct ring_buffer_event *event;
5168ae50 2661 int cpu;
7a8e76a3 2662
033601a3 2663 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2664 return NULL;
2665
bf41a158 2666 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2667 preempt_disable_notrace();
bf41a158 2668
52fbe9cd
LJ
2669 if (atomic_read(&buffer->record_disabled))
2670 goto out_nocheck;
2671
261842b7
SR
2672 if (trace_recursive_lock())
2673 goto out_nocheck;
2674
7a8e76a3
SR
2675 cpu = raw_smp_processor_id();
2676
9e01c1b7 2677 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2678 goto out;
7a8e76a3
SR
2679
2680 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2681
2682 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2683 goto out;
7a8e76a3 2684
be957c44 2685 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2686 goto out;
7a8e76a3 2687
62f0b3eb 2688 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2689 if (!event)
d769041f 2690 goto out;
7a8e76a3
SR
2691
2692 return event;
2693
d769041f 2694 out:
261842b7
SR
2695 trace_recursive_unlock();
2696
2697 out_nocheck:
5168ae50 2698 preempt_enable_notrace();
7a8e76a3
SR
2699 return NULL;
2700}
c4f50183 2701EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2702
a1863c21
SR
2703static void
2704rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2705 struct ring_buffer_event *event)
2706{
69d1b839
SR
2707 u64 delta;
2708
fa743953
SR
2709 /*
2710 * The event first in the commit queue updates the
2711 * time stamp.
2712 */
69d1b839
SR
2713 if (rb_event_is_commit(cpu_buffer, event)) {
2714 /*
2715 * A commit event that is first on a page
2716 * updates the write timestamp with the page stamp
2717 */
2718 if (!rb_event_index(event))
2719 cpu_buffer->write_stamp =
2720 cpu_buffer->commit_page->page->time_stamp;
2721 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2722 delta = event->array[0];
2723 delta <<= TS_SHIFT;
2724 delta += event->time_delta;
2725 cpu_buffer->write_stamp += delta;
2726 } else
2727 cpu_buffer->write_stamp += event->time_delta;
2728 }
a1863c21 2729}
bf41a158 2730
a1863c21
SR
2731static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2732 struct ring_buffer_event *event)
2733{
2734 local_inc(&cpu_buffer->entries);
2735 rb_update_write_stamp(cpu_buffer, event);
fa743953 2736 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2737}
2738
15693458
SRRH
2739static __always_inline void
2740rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2741{
2742 if (buffer->irq_work.waiters_pending) {
2743 buffer->irq_work.waiters_pending = false;
2744 /* irq_work_queue() supplies it's own memory barriers */
2745 irq_work_queue(&buffer->irq_work.work);
2746 }
2747
2748 if (cpu_buffer->irq_work.waiters_pending) {
2749 cpu_buffer->irq_work.waiters_pending = false;
2750 /* irq_work_queue() supplies it's own memory barriers */
2751 irq_work_queue(&cpu_buffer->irq_work.work);
2752 }
2753}
2754
7a8e76a3
SR
2755/**
2756 * ring_buffer_unlock_commit - commit a reserved
2757 * @buffer: The buffer to commit to
2758 * @event: The event pointer to commit.
7a8e76a3
SR
2759 *
2760 * This commits the data to the ring buffer, and releases any locks held.
2761 *
2762 * Must be paired with ring_buffer_lock_reserve.
2763 */
2764int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2765 struct ring_buffer_event *event)
7a8e76a3
SR
2766{
2767 struct ring_buffer_per_cpu *cpu_buffer;
2768 int cpu = raw_smp_processor_id();
2769
2770 cpu_buffer = buffer->buffers[cpu];
2771
7a8e76a3
SR
2772 rb_commit(cpu_buffer, event);
2773
15693458
SRRH
2774 rb_wakeups(buffer, cpu_buffer);
2775
261842b7
SR
2776 trace_recursive_unlock();
2777
5168ae50 2778 preempt_enable_notrace();
7a8e76a3
SR
2779
2780 return 0;
2781}
c4f50183 2782EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2783
f3b9aae1
FW
2784static inline void rb_event_discard(struct ring_buffer_event *event)
2785{
69d1b839
SR
2786 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2787 event = skip_time_extend(event);
2788
334d4169
LJ
2789 /* array[0] holds the actual length for the discarded event */
2790 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2791 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2792 /* time delta must be non zero */
2793 if (!event->time_delta)
2794 event->time_delta = 1;
2795}
2796
a1863c21
SR
2797/*
2798 * Decrement the entries to the page that an event is on.
2799 * The event does not even need to exist, only the pointer
2800 * to the page it is on. This may only be called before the commit
2801 * takes place.
2802 */
2803static inline void
2804rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2805 struct ring_buffer_event *event)
2806{
2807 unsigned long addr = (unsigned long)event;
2808 struct buffer_page *bpage = cpu_buffer->commit_page;
2809 struct buffer_page *start;
2810
2811 addr &= PAGE_MASK;
2812
2813 /* Do the likely case first */
2814 if (likely(bpage->page == (void *)addr)) {
2815 local_dec(&bpage->entries);
2816 return;
2817 }
2818
2819 /*
2820 * Because the commit page may be on the reader page we
2821 * start with the next page and check the end loop there.
2822 */
2823 rb_inc_page(cpu_buffer, &bpage);
2824 start = bpage;
2825 do {
2826 if (bpage->page == (void *)addr) {
2827 local_dec(&bpage->entries);
2828 return;
2829 }
2830 rb_inc_page(cpu_buffer, &bpage);
2831 } while (bpage != start);
2832
2833 /* commit not part of this buffer?? */
2834 RB_WARN_ON(cpu_buffer, 1);
2835}
2836
fa1b47dd
SR
2837/**
2838 * ring_buffer_commit_discard - discard an event that has not been committed
2839 * @buffer: the ring buffer
2840 * @event: non committed event to discard
2841 *
dc892f73
SR
2842 * Sometimes an event that is in the ring buffer needs to be ignored.
2843 * This function lets the user discard an event in the ring buffer
2844 * and then that event will not be read later.
2845 *
2846 * This function only works if it is called before the the item has been
2847 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2848 * if another event has not been added behind it.
2849 *
2850 * If another event has been added behind it, it will set the event
2851 * up as discarded, and perform the commit.
2852 *
2853 * If this function is called, do not call ring_buffer_unlock_commit on
2854 * the event.
2855 */
2856void ring_buffer_discard_commit(struct ring_buffer *buffer,
2857 struct ring_buffer_event *event)
2858{
2859 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2860 int cpu;
2861
2862 /* The event is discarded regardless */
f3b9aae1 2863 rb_event_discard(event);
fa1b47dd 2864
fa743953
SR
2865 cpu = smp_processor_id();
2866 cpu_buffer = buffer->buffers[cpu];
2867
fa1b47dd
SR
2868 /*
2869 * This must only be called if the event has not been
2870 * committed yet. Thus we can assume that preemption
2871 * is still disabled.
2872 */
fa743953 2873 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2874
a1863c21 2875 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2876 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2877 goto out;
fa1b47dd
SR
2878
2879 /*
2880 * The commit is still visible by the reader, so we
a1863c21 2881 * must still update the timestamp.
fa1b47dd 2882 */
a1863c21 2883 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2884 out:
fa743953 2885 rb_end_commit(cpu_buffer);
fa1b47dd 2886
f3b9aae1
FW
2887 trace_recursive_unlock();
2888
5168ae50 2889 preempt_enable_notrace();
fa1b47dd
SR
2890
2891}
2892EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2893
7a8e76a3
SR
2894/**
2895 * ring_buffer_write - write data to the buffer without reserving
2896 * @buffer: The ring buffer to write to.
2897 * @length: The length of the data being written (excluding the event header)
2898 * @data: The data to write to the buffer.
2899 *
2900 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2901 * one function. If you already have the data to write to the buffer, it
2902 * may be easier to simply call this function.
2903 *
2904 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2905 * and not the length of the event which would hold the header.
2906 */
2907int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2908 unsigned long length,
2909 void *data)
7a8e76a3
SR
2910{
2911 struct ring_buffer_per_cpu *cpu_buffer;
2912 struct ring_buffer_event *event;
7a8e76a3
SR
2913 void *body;
2914 int ret = -EBUSY;
5168ae50 2915 int cpu;
7a8e76a3 2916
033601a3 2917 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2918 return -EBUSY;
2919
5168ae50 2920 preempt_disable_notrace();
bf41a158 2921
52fbe9cd
LJ
2922 if (atomic_read(&buffer->record_disabled))
2923 goto out;
2924
7a8e76a3
SR
2925 cpu = raw_smp_processor_id();
2926
9e01c1b7 2927 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2928 goto out;
7a8e76a3
SR
2929
2930 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2931
2932 if (atomic_read(&cpu_buffer->record_disabled))
2933 goto out;
2934
be957c44
SR
2935 if (length > BUF_MAX_DATA_SIZE)
2936 goto out;
2937
62f0b3eb 2938 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2939 if (!event)
2940 goto out;
2941
2942 body = rb_event_data(event);
2943
2944 memcpy(body, data, length);
2945
2946 rb_commit(cpu_buffer, event);
2947
15693458
SRRH
2948 rb_wakeups(buffer, cpu_buffer);
2949
7a8e76a3
SR
2950 ret = 0;
2951 out:
5168ae50 2952 preempt_enable_notrace();
7a8e76a3
SR
2953
2954 return ret;
2955}
c4f50183 2956EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2957
34a148bf 2958static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2959{
2960 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2961 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2962 struct buffer_page *commit = cpu_buffer->commit_page;
2963
77ae365e
SR
2964 /* In case of error, head will be NULL */
2965 if (unlikely(!head))
2966 return 1;
2967
bf41a158
SR
2968 return reader->read == rb_page_commit(reader) &&
2969 (commit == reader ||
2970 (commit == head &&
2971 head->read == rb_page_commit(commit)));
2972}
2973
7a8e76a3
SR
2974/**
2975 * ring_buffer_record_disable - stop all writes into the buffer
2976 * @buffer: The ring buffer to stop writes to.
2977 *
2978 * This prevents all writes to the buffer. Any attempt to write
2979 * to the buffer after this will fail and return NULL.
2980 *
2981 * The caller should call synchronize_sched() after this.
2982 */
2983void ring_buffer_record_disable(struct ring_buffer *buffer)
2984{
2985 atomic_inc(&buffer->record_disabled);
2986}
c4f50183 2987EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2988
2989/**
2990 * ring_buffer_record_enable - enable writes to the buffer
2991 * @buffer: The ring buffer to enable writes
2992 *
2993 * Note, multiple disables will need the same number of enables
c41b20e7 2994 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2995 */
2996void ring_buffer_record_enable(struct ring_buffer *buffer)
2997{
2998 atomic_dec(&buffer->record_disabled);
2999}
c4f50183 3000EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3001
499e5470
SR
3002/**
3003 * ring_buffer_record_off - stop all writes into the buffer
3004 * @buffer: The ring buffer to stop writes to.
3005 *
3006 * This prevents all writes to the buffer. Any attempt to write
3007 * to the buffer after this will fail and return NULL.
3008 *
3009 * This is different than ring_buffer_record_disable() as
87abb3b1 3010 * it works like an on/off switch, where as the disable() version
499e5470
SR
3011 * must be paired with a enable().
3012 */
3013void ring_buffer_record_off(struct ring_buffer *buffer)
3014{
3015 unsigned int rd;
3016 unsigned int new_rd;
3017
3018 do {
3019 rd = atomic_read(&buffer->record_disabled);
3020 new_rd = rd | RB_BUFFER_OFF;
3021 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3022}
3023EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3024
3025/**
3026 * ring_buffer_record_on - restart writes into the buffer
3027 * @buffer: The ring buffer to start writes to.
3028 *
3029 * This enables all writes to the buffer that was disabled by
3030 * ring_buffer_record_off().
3031 *
3032 * This is different than ring_buffer_record_enable() as
87abb3b1 3033 * it works like an on/off switch, where as the enable() version
499e5470
SR
3034 * must be paired with a disable().
3035 */
3036void ring_buffer_record_on(struct ring_buffer *buffer)
3037{
3038 unsigned int rd;
3039 unsigned int new_rd;
3040
3041 do {
3042 rd = atomic_read(&buffer->record_disabled);
3043 new_rd = rd & ~RB_BUFFER_OFF;
3044 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3045}
3046EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3047
3048/**
3049 * ring_buffer_record_is_on - return true if the ring buffer can write
3050 * @buffer: The ring buffer to see if write is enabled
3051 *
3052 * Returns true if the ring buffer is in a state that it accepts writes.
3053 */
3054int ring_buffer_record_is_on(struct ring_buffer *buffer)
3055{
3056 return !atomic_read(&buffer->record_disabled);
3057}
3058
7a8e76a3
SR
3059/**
3060 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3061 * @buffer: The ring buffer to stop writes to.
3062 * @cpu: The CPU buffer to stop
3063 *
3064 * This prevents all writes to the buffer. Any attempt to write
3065 * to the buffer after this will fail and return NULL.
3066 *
3067 * The caller should call synchronize_sched() after this.
3068 */
3069void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3070{
3071 struct ring_buffer_per_cpu *cpu_buffer;
3072
9e01c1b7 3073 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3074 return;
7a8e76a3
SR
3075
3076 cpu_buffer = buffer->buffers[cpu];
3077 atomic_inc(&cpu_buffer->record_disabled);
3078}
c4f50183 3079EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3080
3081/**
3082 * ring_buffer_record_enable_cpu - enable writes to the buffer
3083 * @buffer: The ring buffer to enable writes
3084 * @cpu: The CPU to enable.
3085 *
3086 * Note, multiple disables will need the same number of enables
c41b20e7 3087 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3088 */
3089void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3090{
3091 struct ring_buffer_per_cpu *cpu_buffer;
3092
9e01c1b7 3093 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3094 return;
7a8e76a3
SR
3095
3096 cpu_buffer = buffer->buffers[cpu];
3097 atomic_dec(&cpu_buffer->record_disabled);
3098}
c4f50183 3099EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3100
f6195aa0
SR
3101/*
3102 * The total entries in the ring buffer is the running counter
3103 * of entries entered into the ring buffer, minus the sum of
3104 * the entries read from the ring buffer and the number of
3105 * entries that were overwritten.
3106 */
3107static inline unsigned long
3108rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3109{
3110 return local_read(&cpu_buffer->entries) -
3111 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3112}
3113
c64e148a
VN
3114/**
3115 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3116 * @buffer: The ring buffer
3117 * @cpu: The per CPU buffer to read from.
3118 */
50ecf2c3 3119u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3120{
3121 unsigned long flags;
3122 struct ring_buffer_per_cpu *cpu_buffer;
3123 struct buffer_page *bpage;
da830e58 3124 u64 ret = 0;
c64e148a
VN
3125
3126 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3127 return 0;
3128
3129 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3130 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3131 /*
3132 * if the tail is on reader_page, oldest time stamp is on the reader
3133 * page
3134 */
3135 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3136 bpage = cpu_buffer->reader_page;
3137 else
3138 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3139 if (bpage)
3140 ret = bpage->page->time_stamp;
7115e3fc 3141 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3142
3143 return ret;
3144}
3145EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3146
3147/**
3148 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3149 * @buffer: The ring buffer
3150 * @cpu: The per CPU buffer to read from.
3151 */
3152unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3153{
3154 struct ring_buffer_per_cpu *cpu_buffer;
3155 unsigned long ret;
3156
3157 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158 return 0;
3159
3160 cpu_buffer = buffer->buffers[cpu];
3161 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3162
3163 return ret;
3164}
3165EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3166
7a8e76a3
SR
3167/**
3168 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3169 * @buffer: The ring buffer
3170 * @cpu: The per CPU buffer to get the entries from.
3171 */
3172unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3173{
3174 struct ring_buffer_per_cpu *cpu_buffer;
3175
9e01c1b7 3176 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3177 return 0;
7a8e76a3
SR
3178
3179 cpu_buffer = buffer->buffers[cpu];
554f786e 3180
f6195aa0 3181 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3182}
c4f50183 3183EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3184
3185/**
884bfe89
SP
3186 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3187 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3188 * @buffer: The ring buffer
3189 * @cpu: The per CPU buffer to get the number of overruns from
3190 */
3191unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3192{
3193 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3194 unsigned long ret;
7a8e76a3 3195
9e01c1b7 3196 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3197 return 0;
7a8e76a3
SR
3198
3199 cpu_buffer = buffer->buffers[cpu];
77ae365e 3200 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3201
3202 return ret;
7a8e76a3 3203}
c4f50183 3204EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3205
f0d2c681 3206/**
884bfe89
SP
3207 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3208 * commits failing due to the buffer wrapping around while there are uncommitted
3209 * events, such as during an interrupt storm.
f0d2c681
SR
3210 * @buffer: The ring buffer
3211 * @cpu: The per CPU buffer to get the number of overruns from
3212 */
3213unsigned long
3214ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3215{
3216 struct ring_buffer_per_cpu *cpu_buffer;
3217 unsigned long ret;
3218
3219 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3220 return 0;
3221
3222 cpu_buffer = buffer->buffers[cpu];
77ae365e 3223 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3224
3225 return ret;
3226}
3227EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3228
884bfe89
SP
3229/**
3230 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3231 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3232 * @buffer: The ring buffer
3233 * @cpu: The per CPU buffer to get the number of overruns from
3234 */
3235unsigned long
3236ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3237{
3238 struct ring_buffer_per_cpu *cpu_buffer;
3239 unsigned long ret;
3240
3241 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 return 0;
3243
3244 cpu_buffer = buffer->buffers[cpu];
3245 ret = local_read(&cpu_buffer->dropped_events);
3246
3247 return ret;
3248}
3249EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3250
ad964704
SRRH
3251/**
3252 * ring_buffer_read_events_cpu - get the number of events successfully read
3253 * @buffer: The ring buffer
3254 * @cpu: The per CPU buffer to get the number of events read
3255 */
3256unsigned long
3257ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3258{
3259 struct ring_buffer_per_cpu *cpu_buffer;
3260
3261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262 return 0;
3263
3264 cpu_buffer = buffer->buffers[cpu];
3265 return cpu_buffer->read;
3266}
3267EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3268
7a8e76a3
SR
3269/**
3270 * ring_buffer_entries - get the number of entries in a buffer
3271 * @buffer: The ring buffer
3272 *
3273 * Returns the total number of entries in the ring buffer
3274 * (all CPU entries)
3275 */
3276unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3277{
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long entries = 0;
3280 int cpu;
3281
3282 /* if you care about this being correct, lock the buffer */
3283 for_each_buffer_cpu(buffer, cpu) {
3284 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3285 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3286 }
3287
3288 return entries;
3289}
c4f50183 3290EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3291
3292/**
67b394f7 3293 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3294 * @buffer: The ring buffer
3295 *
3296 * Returns the total number of overruns in the ring buffer
3297 * (all CPU entries)
3298 */
3299unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3300{
3301 struct ring_buffer_per_cpu *cpu_buffer;
3302 unsigned long overruns = 0;
3303 int cpu;
3304
3305 /* if you care about this being correct, lock the buffer */
3306 for_each_buffer_cpu(buffer, cpu) {
3307 cpu_buffer = buffer->buffers[cpu];
77ae365e 3308 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3309 }
3310
3311 return overruns;
3312}
c4f50183 3313EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3314
642edba5 3315static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3316{
3317 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3318
d769041f
SR
3319 /* Iterator usage is expected to have record disabled */
3320 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3321 iter->head_page = rb_set_head_page(cpu_buffer);
3322 if (unlikely(!iter->head_page))
3323 return;
3324 iter->head = iter->head_page->read;
d769041f
SR
3325 } else {
3326 iter->head_page = cpu_buffer->reader_page;
6f807acd 3327 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3328 }
3329 if (iter->head)
3330 iter->read_stamp = cpu_buffer->read_stamp;
3331 else
abc9b56d 3332 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3333 iter->cache_reader_page = cpu_buffer->reader_page;
3334 iter->cache_read = cpu_buffer->read;
642edba5 3335}
f83c9d0f 3336
642edba5
SR
3337/**
3338 * ring_buffer_iter_reset - reset an iterator
3339 * @iter: The iterator to reset
3340 *
3341 * Resets the iterator, so that it will start from the beginning
3342 * again.
3343 */
3344void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3345{
554f786e 3346 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3347 unsigned long flags;
3348
554f786e
SR
3349 if (!iter)
3350 return;
3351
3352 cpu_buffer = iter->cpu_buffer;
3353
5389f6fa 3354 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3355 rb_iter_reset(iter);
5389f6fa 3356 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3357}
c4f50183 3358EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3359
3360/**
3361 * ring_buffer_iter_empty - check if an iterator has no more to read
3362 * @iter: The iterator to check
3363 */
3364int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3365{
3366 struct ring_buffer_per_cpu *cpu_buffer;
3367
3368 cpu_buffer = iter->cpu_buffer;
3369
bf41a158
SR
3370 return iter->head_page == cpu_buffer->commit_page &&
3371 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3372}
c4f50183 3373EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3374
3375static void
3376rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3377 struct ring_buffer_event *event)
3378{
3379 u64 delta;
3380
334d4169 3381 switch (event->type_len) {
7a8e76a3
SR
3382 case RINGBUF_TYPE_PADDING:
3383 return;
3384
3385 case RINGBUF_TYPE_TIME_EXTEND:
3386 delta = event->array[0];
3387 delta <<= TS_SHIFT;
3388 delta += event->time_delta;
3389 cpu_buffer->read_stamp += delta;
3390 return;
3391
3392 case RINGBUF_TYPE_TIME_STAMP:
3393 /* FIXME: not implemented */
3394 return;
3395
3396 case RINGBUF_TYPE_DATA:
3397 cpu_buffer->read_stamp += event->time_delta;
3398 return;
3399
3400 default:
3401 BUG();
3402 }
3403 return;
3404}
3405
3406static void
3407rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3408 struct ring_buffer_event *event)
3409{
3410 u64 delta;
3411
334d4169 3412 switch (event->type_len) {
7a8e76a3
SR
3413 case RINGBUF_TYPE_PADDING:
3414 return;
3415
3416 case RINGBUF_TYPE_TIME_EXTEND:
3417 delta = event->array[0];
3418 delta <<= TS_SHIFT;
3419 delta += event->time_delta;
3420 iter->read_stamp += delta;
3421 return;
3422
3423 case RINGBUF_TYPE_TIME_STAMP:
3424 /* FIXME: not implemented */
3425 return;
3426
3427 case RINGBUF_TYPE_DATA:
3428 iter->read_stamp += event->time_delta;
3429 return;
3430
3431 default:
3432 BUG();
3433 }
3434 return;
3435}
3436
d769041f
SR
3437static struct buffer_page *
3438rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3439{
d769041f 3440 struct buffer_page *reader = NULL;
66a8cb95 3441 unsigned long overwrite;
d769041f 3442 unsigned long flags;
818e3dd3 3443 int nr_loops = 0;
77ae365e 3444 int ret;
d769041f 3445
3e03fb7f 3446 local_irq_save(flags);
0199c4e6 3447 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3448
3449 again:
818e3dd3
SR
3450 /*
3451 * This should normally only loop twice. But because the
3452 * start of the reader inserts an empty page, it causes
3453 * a case where we will loop three times. There should be no
3454 * reason to loop four times (that I know of).
3455 */
3e89c7bb 3456 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3457 reader = NULL;
3458 goto out;
3459 }
3460
d769041f
SR
3461 reader = cpu_buffer->reader_page;
3462
3463 /* If there's more to read, return this page */
bf41a158 3464 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3465 goto out;
3466
3467 /* Never should we have an index greater than the size */
3e89c7bb
SR
3468 if (RB_WARN_ON(cpu_buffer,
3469 cpu_buffer->reader_page->read > rb_page_size(reader)))
3470 goto out;
d769041f
SR
3471
3472 /* check if we caught up to the tail */
3473 reader = NULL;
bf41a158 3474 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3475 goto out;
7a8e76a3 3476
a5fb8331
SR
3477 /* Don't bother swapping if the ring buffer is empty */
3478 if (rb_num_of_entries(cpu_buffer) == 0)
3479 goto out;
3480
7a8e76a3 3481 /*
d769041f 3482 * Reset the reader page to size zero.
7a8e76a3 3483 */
77ae365e
SR
3484 local_set(&cpu_buffer->reader_page->write, 0);
3485 local_set(&cpu_buffer->reader_page->entries, 0);
3486 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3487 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3488
77ae365e
SR
3489 spin:
3490 /*
3491 * Splice the empty reader page into the list around the head.
3492 */
3493 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3494 if (!reader)
3495 goto out;
0e1ff5d7 3496 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3497 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3498
3adc54fa
SR
3499 /*
3500 * cpu_buffer->pages just needs to point to the buffer, it
3501 * has no specific buffer page to point to. Lets move it out
25985edc 3502 * of our way so we don't accidentally swap it.
3adc54fa
SR
3503 */
3504 cpu_buffer->pages = reader->list.prev;
3505
77ae365e
SR
3506 /* The reader page will be pointing to the new head */
3507 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3508
66a8cb95
SR
3509 /*
3510 * We want to make sure we read the overruns after we set up our
3511 * pointers to the next object. The writer side does a
3512 * cmpxchg to cross pages which acts as the mb on the writer
3513 * side. Note, the reader will constantly fail the swap
3514 * while the writer is updating the pointers, so this
3515 * guarantees that the overwrite recorded here is the one we
3516 * want to compare with the last_overrun.
3517 */
3518 smp_mb();
3519 overwrite = local_read(&(cpu_buffer->overrun));
3520
77ae365e
SR
3521 /*
3522 * Here's the tricky part.
3523 *
3524 * We need to move the pointer past the header page.
3525 * But we can only do that if a writer is not currently
3526 * moving it. The page before the header page has the
3527 * flag bit '1' set if it is pointing to the page we want.
3528 * but if the writer is in the process of moving it
3529 * than it will be '2' or already moved '0'.
3530 */
3531
3532 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3533
3534 /*
77ae365e 3535 * If we did not convert it, then we must try again.
7a8e76a3 3536 */
77ae365e
SR
3537 if (!ret)
3538 goto spin;
7a8e76a3 3539
77ae365e
SR
3540 /*
3541 * Yeah! We succeeded in replacing the page.
3542 *
3543 * Now make the new head point back to the reader page.
3544 */
5ded3dc6 3545 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3546 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3547
3548 /* Finally update the reader page to the new head */
3549 cpu_buffer->reader_page = reader;
3550 rb_reset_reader_page(cpu_buffer);
3551
66a8cb95
SR
3552 if (overwrite != cpu_buffer->last_overrun) {
3553 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3554 cpu_buffer->last_overrun = overwrite;
3555 }
3556
d769041f
SR
3557 goto again;
3558
3559 out:
0199c4e6 3560 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3561 local_irq_restore(flags);
d769041f
SR
3562
3563 return reader;
3564}
3565
3566static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3567{
3568 struct ring_buffer_event *event;
3569 struct buffer_page *reader;
3570 unsigned length;
3571
3572 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3573
d769041f 3574 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3575 if (RB_WARN_ON(cpu_buffer, !reader))
3576 return;
7a8e76a3 3577
d769041f
SR
3578 event = rb_reader_event(cpu_buffer);
3579
a1863c21 3580 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3581 cpu_buffer->read++;
d769041f
SR
3582
3583 rb_update_read_stamp(cpu_buffer, event);
3584
3585 length = rb_event_length(event);
6f807acd 3586 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3587}
3588
3589static void rb_advance_iter(struct ring_buffer_iter *iter)
3590{
7a8e76a3
SR
3591 struct ring_buffer_per_cpu *cpu_buffer;
3592 struct ring_buffer_event *event;
3593 unsigned length;
3594
3595 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3596
3597 /*
3598 * Check if we are at the end of the buffer.
3599 */
bf41a158 3600 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3601 /* discarded commits can make the page empty */
3602 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3603 return;
d769041f 3604 rb_inc_iter(iter);
7a8e76a3
SR
3605 return;
3606 }
3607
3608 event = rb_iter_head_event(iter);
3609
3610 length = rb_event_length(event);
3611
3612 /*
3613 * This should not be called to advance the header if we are
3614 * at the tail of the buffer.
3615 */
3e89c7bb 3616 if (RB_WARN_ON(cpu_buffer,
f536aafc 3617 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3618 (iter->head + length > rb_commit_index(cpu_buffer))))
3619 return;
7a8e76a3
SR
3620
3621 rb_update_iter_read_stamp(iter, event);
3622
3623 iter->head += length;
3624
3625 /* check for end of page padding */
bf41a158
SR
3626 if ((iter->head >= rb_page_size(iter->head_page)) &&
3627 (iter->head_page != cpu_buffer->commit_page))
771e0384 3628 rb_inc_iter(iter);
7a8e76a3
SR
3629}
3630
66a8cb95
SR
3631static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3632{
3633 return cpu_buffer->lost_events;
3634}
3635
f83c9d0f 3636static struct ring_buffer_event *
66a8cb95
SR
3637rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3638 unsigned long *lost_events)
7a8e76a3 3639{
7a8e76a3 3640 struct ring_buffer_event *event;
d769041f 3641 struct buffer_page *reader;
818e3dd3 3642 int nr_loops = 0;
7a8e76a3 3643
7a8e76a3 3644 again:
818e3dd3 3645 /*
69d1b839
SR
3646 * We repeat when a time extend is encountered.
3647 * Since the time extend is always attached to a data event,
3648 * we should never loop more than once.
3649 * (We never hit the following condition more than twice).
818e3dd3 3650 */
69d1b839 3651 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3652 return NULL;
818e3dd3 3653
d769041f
SR
3654 reader = rb_get_reader_page(cpu_buffer);
3655 if (!reader)
7a8e76a3
SR
3656 return NULL;
3657
d769041f 3658 event = rb_reader_event(cpu_buffer);
7a8e76a3 3659
334d4169 3660 switch (event->type_len) {
7a8e76a3 3661 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3662 if (rb_null_event(event))
3663 RB_WARN_ON(cpu_buffer, 1);
3664 /*
3665 * Because the writer could be discarding every
3666 * event it creates (which would probably be bad)
3667 * if we were to go back to "again" then we may never
3668 * catch up, and will trigger the warn on, or lock
3669 * the box. Return the padding, and we will release
3670 * the current locks, and try again.
3671 */
2d622719 3672 return event;
7a8e76a3
SR
3673
3674 case RINGBUF_TYPE_TIME_EXTEND:
3675 /* Internal data, OK to advance */
d769041f 3676 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3677 goto again;
3678
3679 case RINGBUF_TYPE_TIME_STAMP:
3680 /* FIXME: not implemented */
d769041f 3681 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3682 goto again;
3683
3684 case RINGBUF_TYPE_DATA:
3685 if (ts) {
3686 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3687 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3688 cpu_buffer->cpu, ts);
7a8e76a3 3689 }
66a8cb95
SR
3690 if (lost_events)
3691 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3692 return event;
3693
3694 default:
3695 BUG();
3696 }
3697
3698 return NULL;
3699}
c4f50183 3700EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3701
f83c9d0f
SR
3702static struct ring_buffer_event *
3703rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3704{
3705 struct ring_buffer *buffer;
3706 struct ring_buffer_per_cpu *cpu_buffer;
3707 struct ring_buffer_event *event;
818e3dd3 3708 int nr_loops = 0;
7a8e76a3 3709
7a8e76a3
SR
3710 cpu_buffer = iter->cpu_buffer;
3711 buffer = cpu_buffer->buffer;
3712
492a74f4
SR
3713 /*
3714 * Check if someone performed a consuming read to
3715 * the buffer. A consuming read invalidates the iterator
3716 * and we need to reset the iterator in this case.
3717 */
3718 if (unlikely(iter->cache_read != cpu_buffer->read ||
3719 iter->cache_reader_page != cpu_buffer->reader_page))
3720 rb_iter_reset(iter);
3721
7a8e76a3 3722 again:
3c05d748
SR
3723 if (ring_buffer_iter_empty(iter))
3724 return NULL;
3725
818e3dd3 3726 /*
69d1b839
SR
3727 * We repeat when a time extend is encountered.
3728 * Since the time extend is always attached to a data event,
3729 * we should never loop more than once.
3730 * (We never hit the following condition more than twice).
818e3dd3 3731 */
69d1b839 3732 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3733 return NULL;
818e3dd3 3734
7a8e76a3
SR
3735 if (rb_per_cpu_empty(cpu_buffer))
3736 return NULL;
3737
3c05d748
SR
3738 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3739 rb_inc_iter(iter);
3740 goto again;
3741 }
3742
7a8e76a3
SR
3743 event = rb_iter_head_event(iter);
3744
334d4169 3745 switch (event->type_len) {
7a8e76a3 3746 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3747 if (rb_null_event(event)) {
3748 rb_inc_iter(iter);
3749 goto again;
3750 }
3751 rb_advance_iter(iter);
3752 return event;
7a8e76a3
SR
3753
3754 case RINGBUF_TYPE_TIME_EXTEND:
3755 /* Internal data, OK to advance */
3756 rb_advance_iter(iter);
3757 goto again;
3758
3759 case RINGBUF_TYPE_TIME_STAMP:
3760 /* FIXME: not implemented */
3761 rb_advance_iter(iter);
3762 goto again;
3763
3764 case RINGBUF_TYPE_DATA:
3765 if (ts) {
3766 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3767 ring_buffer_normalize_time_stamp(buffer,
3768 cpu_buffer->cpu, ts);
7a8e76a3
SR
3769 }
3770 return event;
3771
3772 default:
3773 BUG();
3774 }
3775
3776 return NULL;
3777}
c4f50183 3778EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3779
8d707e8e
SR
3780static inline int rb_ok_to_lock(void)
3781{
3782 /*
3783 * If an NMI die dumps out the content of the ring buffer
3784 * do not grab locks. We also permanently disable the ring
3785 * buffer too. A one time deal is all you get from reading
3786 * the ring buffer from an NMI.
3787 */
464e85eb 3788 if (likely(!in_nmi()))
8d707e8e
SR
3789 return 1;
3790
3791 tracing_off_permanent();
3792 return 0;
3793}
3794
f83c9d0f
SR
3795/**
3796 * ring_buffer_peek - peek at the next event to be read
3797 * @buffer: The ring buffer to read
3798 * @cpu: The cpu to peak at
3799 * @ts: The timestamp counter of this event.
66a8cb95 3800 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3801 *
3802 * This will return the event that will be read next, but does
3803 * not consume the data.
3804 */
3805struct ring_buffer_event *
66a8cb95
SR
3806ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3807 unsigned long *lost_events)
f83c9d0f
SR
3808{
3809 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3810 struct ring_buffer_event *event;
f83c9d0f 3811 unsigned long flags;
8d707e8e 3812 int dolock;
f83c9d0f 3813
554f786e 3814 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3815 return NULL;
554f786e 3816
8d707e8e 3817 dolock = rb_ok_to_lock();
2d622719 3818 again:
8d707e8e
SR
3819 local_irq_save(flags);
3820 if (dolock)
5389f6fa 3821 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3822 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3823 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3824 rb_advance_reader(cpu_buffer);
8d707e8e 3825 if (dolock)
5389f6fa 3826 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3827 local_irq_restore(flags);
f83c9d0f 3828
1b959e18 3829 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3830 goto again;
2d622719 3831
f83c9d0f
SR
3832 return event;
3833}
3834
3835/**
3836 * ring_buffer_iter_peek - peek at the next event to be read
3837 * @iter: The ring buffer iterator
3838 * @ts: The timestamp counter of this event.
3839 *
3840 * This will return the event that will be read next, but does
3841 * not increment the iterator.
3842 */
3843struct ring_buffer_event *
3844ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3845{
3846 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3847 struct ring_buffer_event *event;
3848 unsigned long flags;
3849
2d622719 3850 again:
5389f6fa 3851 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3852 event = rb_iter_peek(iter, ts);
5389f6fa 3853 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3854
1b959e18 3855 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3856 goto again;
2d622719 3857
f83c9d0f
SR
3858 return event;
3859}
3860
7a8e76a3
SR
3861/**
3862 * ring_buffer_consume - return an event and consume it
3863 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3864 * @cpu: the cpu to read the buffer from
3865 * @ts: a variable to store the timestamp (may be NULL)
3866 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3867 *
3868 * Returns the next event in the ring buffer, and that event is consumed.
3869 * Meaning, that sequential reads will keep returning a different event,
3870 * and eventually empty the ring buffer if the producer is slower.
3871 */
3872struct ring_buffer_event *
66a8cb95
SR
3873ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3874 unsigned long *lost_events)
7a8e76a3 3875{
554f786e
SR
3876 struct ring_buffer_per_cpu *cpu_buffer;
3877 struct ring_buffer_event *event = NULL;
f83c9d0f 3878 unsigned long flags;
8d707e8e
SR
3879 int dolock;
3880
3881 dolock = rb_ok_to_lock();
7a8e76a3 3882
2d622719 3883 again:
554f786e
SR
3884 /* might be called in atomic */
3885 preempt_disable();
3886
9e01c1b7 3887 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3888 goto out;
7a8e76a3 3889
554f786e 3890 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3891 local_irq_save(flags);
3892 if (dolock)
5389f6fa 3893 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3894
66a8cb95
SR
3895 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3896 if (event) {
3897 cpu_buffer->lost_events = 0;
469535a5 3898 rb_advance_reader(cpu_buffer);
66a8cb95 3899 }
7a8e76a3 3900
8d707e8e 3901 if (dolock)
5389f6fa 3902 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3903 local_irq_restore(flags);
f83c9d0f 3904
554f786e
SR
3905 out:
3906 preempt_enable();
3907
1b959e18 3908 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3909 goto again;
2d622719 3910
7a8e76a3
SR
3911 return event;
3912}
c4f50183 3913EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3914
3915/**
72c9ddfd 3916 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3917 * @buffer: The ring buffer to read from
3918 * @cpu: The cpu buffer to iterate over
3919 *
72c9ddfd
DM
3920 * This performs the initial preparations necessary to iterate
3921 * through the buffer. Memory is allocated, buffer recording
3922 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3923 *
72c9ddfd
DM
3924 * Disabling buffer recordng prevents the reading from being
3925 * corrupted. This is not a consuming read, so a producer is not
3926 * expected.
3927 *
3928 * After a sequence of ring_buffer_read_prepare calls, the user is
3929 * expected to make at least one call to ring_buffer_prepare_sync.
3930 * Afterwards, ring_buffer_read_start is invoked to get things going
3931 * for real.
3932 *
3933 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3934 */
3935struct ring_buffer_iter *
72c9ddfd 3936ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3937{
3938 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3939 struct ring_buffer_iter *iter;
7a8e76a3 3940
9e01c1b7 3941 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3942 return NULL;
7a8e76a3
SR
3943
3944 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3945 if (!iter)
8aabee57 3946 return NULL;
7a8e76a3
SR
3947
3948 cpu_buffer = buffer->buffers[cpu];
3949
3950 iter->cpu_buffer = cpu_buffer;
3951
83f40318 3952 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3953 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3954
3955 return iter;
3956}
3957EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3958
3959/**
3960 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3961 *
3962 * All previously invoked ring_buffer_read_prepare calls to prepare
3963 * iterators will be synchronized. Afterwards, read_buffer_read_start
3964 * calls on those iterators are allowed.
3965 */
3966void
3967ring_buffer_read_prepare_sync(void)
3968{
7a8e76a3 3969 synchronize_sched();
72c9ddfd
DM
3970}
3971EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3972
3973/**
3974 * ring_buffer_read_start - start a non consuming read of the buffer
3975 * @iter: The iterator returned by ring_buffer_read_prepare
3976 *
3977 * This finalizes the startup of an iteration through the buffer.
3978 * The iterator comes from a call to ring_buffer_read_prepare and
3979 * an intervening ring_buffer_read_prepare_sync must have been
3980 * performed.
3981 *
3982 * Must be paired with ring_buffer_finish.
3983 */
3984void
3985ring_buffer_read_start(struct ring_buffer_iter *iter)
3986{
3987 struct ring_buffer_per_cpu *cpu_buffer;
3988 unsigned long flags;
3989
3990 if (!iter)
3991 return;
3992
3993 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3994
5389f6fa 3995 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3996 arch_spin_lock(&cpu_buffer->lock);
642edba5 3997 rb_iter_reset(iter);
0199c4e6 3998 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3999 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4000}
c4f50183 4001EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4002
4003/**
4004 * ring_buffer_finish - finish reading the iterator of the buffer
4005 * @iter: The iterator retrieved by ring_buffer_start
4006 *
4007 * This re-enables the recording to the buffer, and frees the
4008 * iterator.
4009 */
4010void
4011ring_buffer_read_finish(struct ring_buffer_iter *iter)
4012{
4013 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4014 unsigned long flags;
7a8e76a3 4015
659f451f
SR
4016 /*
4017 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4018 * to check the integrity of the ring buffer.
4019 * Must prevent readers from trying to read, as the check
4020 * clears the HEAD page and readers require it.
659f451f 4021 */
9366c1ba 4022 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4023 rb_check_pages(cpu_buffer);
9366c1ba 4024 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4025
7a8e76a3 4026 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4027 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4028 kfree(iter);
4029}
c4f50183 4030EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4031
4032/**
4033 * ring_buffer_read - read the next item in the ring buffer by the iterator
4034 * @iter: The ring buffer iterator
4035 * @ts: The time stamp of the event read.
4036 *
4037 * This reads the next event in the ring buffer and increments the iterator.
4038 */
4039struct ring_buffer_event *
4040ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4041{
4042 struct ring_buffer_event *event;
f83c9d0f
SR
4043 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4044 unsigned long flags;
7a8e76a3 4045
5389f6fa 4046 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4047 again:
f83c9d0f 4048 event = rb_iter_peek(iter, ts);
7a8e76a3 4049 if (!event)
f83c9d0f 4050 goto out;
7a8e76a3 4051
7e9391cf
SR
4052 if (event->type_len == RINGBUF_TYPE_PADDING)
4053 goto again;
4054
7a8e76a3 4055 rb_advance_iter(iter);
f83c9d0f 4056 out:
5389f6fa 4057 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4058
4059 return event;
4060}
c4f50183 4061EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4062
4063/**
4064 * ring_buffer_size - return the size of the ring buffer (in bytes)
4065 * @buffer: The ring buffer.
4066 */
438ced17 4067unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4068{
438ced17
VN
4069 /*
4070 * Earlier, this method returned
4071 * BUF_PAGE_SIZE * buffer->nr_pages
4072 * Since the nr_pages field is now removed, we have converted this to
4073 * return the per cpu buffer value.
4074 */
4075 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4076 return 0;
4077
4078 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4079}
c4f50183 4080EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4081
4082static void
4083rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4084{
77ae365e
SR
4085 rb_head_page_deactivate(cpu_buffer);
4086
7a8e76a3 4087 cpu_buffer->head_page
3adc54fa 4088 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4089 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4090 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4091 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4092
6f807acd 4093 cpu_buffer->head_page->read = 0;
bf41a158
SR
4094
4095 cpu_buffer->tail_page = cpu_buffer->head_page;
4096 cpu_buffer->commit_page = cpu_buffer->head_page;
4097
4098 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4099 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4100 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4101 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4102 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4103 cpu_buffer->reader_page->read = 0;
7a8e76a3 4104
c64e148a 4105 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4106 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4107 local_set(&cpu_buffer->commit_overrun, 0);
4108 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4109 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4110 local_set(&cpu_buffer->committing, 0);
4111 local_set(&cpu_buffer->commits, 0);
77ae365e 4112 cpu_buffer->read = 0;
c64e148a 4113 cpu_buffer->read_bytes = 0;
69507c06
SR
4114
4115 cpu_buffer->write_stamp = 0;
4116 cpu_buffer->read_stamp = 0;
77ae365e 4117
66a8cb95
SR
4118 cpu_buffer->lost_events = 0;
4119 cpu_buffer->last_overrun = 0;
4120
77ae365e 4121 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4122}
4123
4124/**
4125 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4126 * @buffer: The ring buffer to reset a per cpu buffer of
4127 * @cpu: The CPU buffer to be reset
4128 */
4129void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4130{
4131 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4132 unsigned long flags;
4133
9e01c1b7 4134 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4135 return;
7a8e76a3 4136
83f40318 4137 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4138 atomic_inc(&cpu_buffer->record_disabled);
4139
83f40318
VN
4140 /* Make sure all commits have finished */
4141 synchronize_sched();
4142
5389f6fa 4143 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4144
41b6a95d
SR
4145 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4146 goto out;
4147
0199c4e6 4148 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4149
4150 rb_reset_cpu(cpu_buffer);
4151
0199c4e6 4152 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4153
41b6a95d 4154 out:
5389f6fa 4155 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4156
4157 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4158 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4159}
c4f50183 4160EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4161
4162/**
4163 * ring_buffer_reset - reset a ring buffer
4164 * @buffer: The ring buffer to reset all cpu buffers
4165 */
4166void ring_buffer_reset(struct ring_buffer *buffer)
4167{
7a8e76a3
SR
4168 int cpu;
4169
7a8e76a3 4170 for_each_buffer_cpu(buffer, cpu)
d769041f 4171 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4172}
c4f50183 4173EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4174
4175/**
4176 * rind_buffer_empty - is the ring buffer empty?
4177 * @buffer: The ring buffer to test
4178 */
4179int ring_buffer_empty(struct ring_buffer *buffer)
4180{
4181 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4182 unsigned long flags;
8d707e8e 4183 int dolock;
7a8e76a3 4184 int cpu;
d4788207 4185 int ret;
7a8e76a3 4186
8d707e8e 4187 dolock = rb_ok_to_lock();
7a8e76a3
SR
4188
4189 /* yes this is racy, but if you don't like the race, lock the buffer */
4190 for_each_buffer_cpu(buffer, cpu) {
4191 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4192 local_irq_save(flags);
4193 if (dolock)
5389f6fa 4194 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4195 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4196 if (dolock)
5389f6fa 4197 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4198 local_irq_restore(flags);
4199
d4788207 4200 if (!ret)
7a8e76a3
SR
4201 return 0;
4202 }
554f786e 4203
7a8e76a3
SR
4204 return 1;
4205}
c4f50183 4206EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4207
4208/**
4209 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4210 * @buffer: The ring buffer
4211 * @cpu: The CPU buffer to test
4212 */
4213int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4214{
4215 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4216 unsigned long flags;
8d707e8e 4217 int dolock;
8aabee57 4218 int ret;
7a8e76a3 4219
9e01c1b7 4220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4221 return 1;
7a8e76a3 4222
8d707e8e
SR
4223 dolock = rb_ok_to_lock();
4224
7a8e76a3 4225 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4226 local_irq_save(flags);
4227 if (dolock)
5389f6fa 4228 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4229 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4230 if (dolock)
5389f6fa 4231 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4232 local_irq_restore(flags);
554f786e
SR
4233
4234 return ret;
7a8e76a3 4235}
c4f50183 4236EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4237
85bac32c 4238#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4239/**
4240 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4241 * @buffer_a: One buffer to swap with
4242 * @buffer_b: The other buffer to swap with
4243 *
4244 * This function is useful for tracers that want to take a "snapshot"
4245 * of a CPU buffer and has another back up buffer lying around.
4246 * it is expected that the tracer handles the cpu buffer not being
4247 * used at the moment.
4248 */
4249int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4250 struct ring_buffer *buffer_b, int cpu)
4251{
4252 struct ring_buffer_per_cpu *cpu_buffer_a;
4253 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4254 int ret = -EINVAL;
4255
9e01c1b7
RR
4256 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4257 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4258 goto out;
7a8e76a3 4259
438ced17
VN
4260 cpu_buffer_a = buffer_a->buffers[cpu];
4261 cpu_buffer_b = buffer_b->buffers[cpu];
4262
7a8e76a3 4263 /* At least make sure the two buffers are somewhat the same */
438ced17 4264 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4265 goto out;
4266
4267 ret = -EAGAIN;
7a8e76a3 4268
97b17efe 4269 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4270 goto out;
97b17efe
SR
4271
4272 if (atomic_read(&buffer_a->record_disabled))
554f786e 4273 goto out;
97b17efe
SR
4274
4275 if (atomic_read(&buffer_b->record_disabled))
554f786e 4276 goto out;
97b17efe 4277
97b17efe 4278 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4279 goto out;
97b17efe
SR
4280
4281 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4282 goto out;
97b17efe 4283
7a8e76a3
SR
4284 /*
4285 * We can't do a synchronize_sched here because this
4286 * function can be called in atomic context.
4287 * Normally this will be called from the same CPU as cpu.
4288 * If not it's up to the caller to protect this.
4289 */
4290 atomic_inc(&cpu_buffer_a->record_disabled);
4291 atomic_inc(&cpu_buffer_b->record_disabled);
4292
98277991
SR
4293 ret = -EBUSY;
4294 if (local_read(&cpu_buffer_a->committing))
4295 goto out_dec;
4296 if (local_read(&cpu_buffer_b->committing))
4297 goto out_dec;
4298
7a8e76a3
SR
4299 buffer_a->buffers[cpu] = cpu_buffer_b;
4300 buffer_b->buffers[cpu] = cpu_buffer_a;
4301
4302 cpu_buffer_b->buffer = buffer_a;
4303 cpu_buffer_a->buffer = buffer_b;
4304
98277991
SR
4305 ret = 0;
4306
4307out_dec:
7a8e76a3
SR
4308 atomic_dec(&cpu_buffer_a->record_disabled);
4309 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4310out:
554f786e 4311 return ret;
7a8e76a3 4312}
c4f50183 4313EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4314#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4315
8789a9e7
SR
4316/**
4317 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4318 * @buffer: the buffer to allocate for.
4319 *
4320 * This function is used in conjunction with ring_buffer_read_page.
4321 * When reading a full page from the ring buffer, these functions
4322 * can be used to speed up the process. The calling function should
4323 * allocate a few pages first with this function. Then when it
4324 * needs to get pages from the ring buffer, it passes the result
4325 * of this function into ring_buffer_read_page, which will swap
4326 * the page that was allocated, with the read page of the buffer.
4327 *
4328 * Returns:
4329 * The page allocated, or NULL on error.
4330 */
7ea59064 4331void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4332{
044fa782 4333 struct buffer_data_page *bpage;
7ea59064 4334 struct page *page;
8789a9e7 4335
d7ec4bfe
VN
4336 page = alloc_pages_node(cpu_to_node(cpu),
4337 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4338 if (!page)
8789a9e7
SR
4339 return NULL;
4340
7ea59064 4341 bpage = page_address(page);
8789a9e7 4342
ef7a4a16
SR
4343 rb_init_page(bpage);
4344
044fa782 4345 return bpage;
8789a9e7 4346}
d6ce96da 4347EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4348
4349/**
4350 * ring_buffer_free_read_page - free an allocated read page
4351 * @buffer: the buffer the page was allocate for
4352 * @data: the page to free
4353 *
4354 * Free a page allocated from ring_buffer_alloc_read_page.
4355 */
4356void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4357{
4358 free_page((unsigned long)data);
4359}
d6ce96da 4360EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4361
4362/**
4363 * ring_buffer_read_page - extract a page from the ring buffer
4364 * @buffer: buffer to extract from
4365 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4366 * @len: amount to extract
8789a9e7
SR
4367 * @cpu: the cpu of the buffer to extract
4368 * @full: should the extraction only happen when the page is full.
4369 *
4370 * This function will pull out a page from the ring buffer and consume it.
4371 * @data_page must be the address of the variable that was returned
4372 * from ring_buffer_alloc_read_page. This is because the page might be used
4373 * to swap with a page in the ring buffer.
4374 *
4375 * for example:
b85fa01e 4376 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4377 * if (!rpage)
4378 * return error;
ef7a4a16 4379 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4380 * if (ret >= 0)
4381 * process_page(rpage, ret);
8789a9e7
SR
4382 *
4383 * When @full is set, the function will not return true unless
4384 * the writer is off the reader page.
4385 *
4386 * Note: it is up to the calling functions to handle sleeps and wakeups.
4387 * The ring buffer can be used anywhere in the kernel and can not
4388 * blindly call wake_up. The layer that uses the ring buffer must be
4389 * responsible for that.
4390 *
4391 * Returns:
667d2412
LJ
4392 * >=0 if data has been transferred, returns the offset of consumed data.
4393 * <0 if no data has been transferred.
8789a9e7
SR
4394 */
4395int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4396 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4397{
4398 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4399 struct ring_buffer_event *event;
044fa782 4400 struct buffer_data_page *bpage;
ef7a4a16 4401 struct buffer_page *reader;
ff0ff84a 4402 unsigned long missed_events;
8789a9e7 4403 unsigned long flags;
ef7a4a16 4404 unsigned int commit;
667d2412 4405 unsigned int read;
4f3640f8 4406 u64 save_timestamp;
667d2412 4407 int ret = -1;
8789a9e7 4408
554f786e
SR
4409 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4410 goto out;
4411
474d32b6
SR
4412 /*
4413 * If len is not big enough to hold the page header, then
4414 * we can not copy anything.
4415 */
4416 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4417 goto out;
474d32b6
SR
4418
4419 len -= BUF_PAGE_HDR_SIZE;
4420
8789a9e7 4421 if (!data_page)
554f786e 4422 goto out;
8789a9e7 4423
044fa782
SR
4424 bpage = *data_page;
4425 if (!bpage)
554f786e 4426 goto out;
8789a9e7 4427
5389f6fa 4428 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4429
ef7a4a16
SR
4430 reader = rb_get_reader_page(cpu_buffer);
4431 if (!reader)
554f786e 4432 goto out_unlock;
8789a9e7 4433
ef7a4a16
SR
4434 event = rb_reader_event(cpu_buffer);
4435
4436 read = reader->read;
4437 commit = rb_page_commit(reader);
667d2412 4438
66a8cb95 4439 /* Check if any events were dropped */
ff0ff84a 4440 missed_events = cpu_buffer->lost_events;
66a8cb95 4441
8789a9e7 4442 /*
474d32b6
SR
4443 * If this page has been partially read or
4444 * if len is not big enough to read the rest of the page or
4445 * a writer is still on the page, then
4446 * we must copy the data from the page to the buffer.
4447 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4448 */
474d32b6 4449 if (read || (len < (commit - read)) ||
ef7a4a16 4450 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4451 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4452 unsigned int rpos = read;
4453 unsigned int pos = 0;
ef7a4a16 4454 unsigned int size;
8789a9e7
SR
4455
4456 if (full)
554f786e 4457 goto out_unlock;
8789a9e7 4458
ef7a4a16
SR
4459 if (len > (commit - read))
4460 len = (commit - read);
4461
69d1b839
SR
4462 /* Always keep the time extend and data together */
4463 size = rb_event_ts_length(event);
ef7a4a16
SR
4464
4465 if (len < size)
554f786e 4466 goto out_unlock;
ef7a4a16 4467
4f3640f8
SR
4468 /* save the current timestamp, since the user will need it */
4469 save_timestamp = cpu_buffer->read_stamp;
4470
ef7a4a16
SR
4471 /* Need to copy one event at a time */
4472 do {
e1e35927
DS
4473 /* We need the size of one event, because
4474 * rb_advance_reader only advances by one event,
4475 * whereas rb_event_ts_length may include the size of
4476 * one or two events.
4477 * We have already ensured there's enough space if this
4478 * is a time extend. */
4479 size = rb_event_length(event);
474d32b6 4480 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4481
4482 len -= size;
4483
4484 rb_advance_reader(cpu_buffer);
474d32b6
SR
4485 rpos = reader->read;
4486 pos += size;
ef7a4a16 4487
18fab912
HY
4488 if (rpos >= commit)
4489 break;
4490
ef7a4a16 4491 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4492 /* Always keep the time extend and data together */
4493 size = rb_event_ts_length(event);
e1e35927 4494 } while (len >= size);
667d2412
LJ
4495
4496 /* update bpage */
ef7a4a16 4497 local_set(&bpage->commit, pos);
4f3640f8 4498 bpage->time_stamp = save_timestamp;
ef7a4a16 4499
474d32b6
SR
4500 /* we copied everything to the beginning */
4501 read = 0;
8789a9e7 4502 } else {
afbab76a 4503 /* update the entry counter */
77ae365e 4504 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4505 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4506
8789a9e7 4507 /* swap the pages */
044fa782 4508 rb_init_page(bpage);
ef7a4a16
SR
4509 bpage = reader->page;
4510 reader->page = *data_page;
4511 local_set(&reader->write, 0);
778c55d4 4512 local_set(&reader->entries, 0);
ef7a4a16 4513 reader->read = 0;
044fa782 4514 *data_page = bpage;
ff0ff84a
SR
4515
4516 /*
4517 * Use the real_end for the data size,
4518 * This gives us a chance to store the lost events
4519 * on the page.
4520 */
4521 if (reader->real_end)
4522 local_set(&bpage->commit, reader->real_end);
8789a9e7 4523 }
667d2412 4524 ret = read;
8789a9e7 4525
66a8cb95 4526 cpu_buffer->lost_events = 0;
2711ca23
SR
4527
4528 commit = local_read(&bpage->commit);
66a8cb95
SR
4529 /*
4530 * Set a flag in the commit field if we lost events
4531 */
ff0ff84a 4532 if (missed_events) {
ff0ff84a
SR
4533 /* If there is room at the end of the page to save the
4534 * missed events, then record it there.
4535 */
4536 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4537 memcpy(&bpage->data[commit], &missed_events,
4538 sizeof(missed_events));
4539 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4540 commit += sizeof(missed_events);
ff0ff84a 4541 }
66a8cb95 4542 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4543 }
66a8cb95 4544
2711ca23
SR
4545 /*
4546 * This page may be off to user land. Zero it out here.
4547 */
4548 if (commit < BUF_PAGE_SIZE)
4549 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4550
554f786e 4551 out_unlock:
5389f6fa 4552 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4553
554f786e 4554 out:
8789a9e7
SR
4555 return ret;
4556}
d6ce96da 4557EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4558
59222efe 4559#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4560static int rb_cpu_notify(struct notifier_block *self,
4561 unsigned long action, void *hcpu)
554f786e
SR
4562{
4563 struct ring_buffer *buffer =
4564 container_of(self, struct ring_buffer, cpu_notify);
4565 long cpu = (long)hcpu;
438ced17
VN
4566 int cpu_i, nr_pages_same;
4567 unsigned int nr_pages;
554f786e
SR
4568
4569 switch (action) {
4570 case CPU_UP_PREPARE:
4571 case CPU_UP_PREPARE_FROZEN:
3f237a79 4572 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4573 return NOTIFY_OK;
4574
438ced17
VN
4575 nr_pages = 0;
4576 nr_pages_same = 1;
4577 /* check if all cpu sizes are same */
4578 for_each_buffer_cpu(buffer, cpu_i) {
4579 /* fill in the size from first enabled cpu */
4580 if (nr_pages == 0)
4581 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4582 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4583 nr_pages_same = 0;
4584 break;
4585 }
4586 }
4587 /* allocate minimum pages, user can later expand it */
4588 if (!nr_pages_same)
4589 nr_pages = 2;
554f786e 4590 buffer->buffers[cpu] =
438ced17 4591 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4592 if (!buffer->buffers[cpu]) {
4593 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4594 cpu);
4595 return NOTIFY_OK;
4596 }
4597 smp_wmb();
3f237a79 4598 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4599 break;
4600 case CPU_DOWN_PREPARE:
4601 case CPU_DOWN_PREPARE_FROZEN:
4602 /*
4603 * Do nothing.
4604 * If we were to free the buffer, then the user would
4605 * lose any trace that was in the buffer.
4606 */
4607 break;
4608 default:
4609 break;
4610 }
4611 return NOTIFY_OK;
4612}
4613#endif