]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
ring-buffer: Fix NULL pointer if rb_set_head_page() fails
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
83f40318
VN
26static void update_pages_handler(struct work_struct *work);
27
d1b182a8
SR
28/*
29 * The ring buffer header is special. We must manually up keep it.
30 */
31int ring_buffer_print_entry_header(struct trace_seq *s)
32{
33 int ret;
34
334d4169
LJ
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
46
47 return ret;
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
2271048d
SR
180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
334d4169
LJ
188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
190
191enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
194};
195
69d1b839
SR
196#define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
2d622719
TZ
199static inline int rb_null_event(struct ring_buffer_event *event)
200{
a1863c21 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
202}
203
204static void rb_event_set_padding(struct ring_buffer_event *event)
205{
a1863c21 206 /* padding has a NULL time_delta */
334d4169 207 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
208 event->time_delta = 0;
209}
210
34a148bf 211static unsigned
2d622719 212rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
213{
214 unsigned length;
215
334d4169
LJ
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
221}
222
69d1b839
SR
223/*
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
227 */
228static inline unsigned
2d622719
TZ
229rb_event_length(struct ring_buffer_event *event)
230{
334d4169 231 switch (event->type_len) {
7a8e76a3 232 case RINGBUF_TYPE_PADDING:
2d622719
TZ
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
334d4169 236 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
237
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
240
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
243
244 case RINGBUF_TYPE_DATA:
2d622719 245 return rb_event_data_length(event);
7a8e76a3
SR
246 default:
247 BUG();
248 }
249 /* not hit */
250 return 0;
251}
252
69d1b839
SR
253/*
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
256 */
257static inline unsigned
258rb_event_ts_length(struct ring_buffer_event *event)
259{
260 unsigned len = 0;
261
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
266 }
267 return len + rb_event_length(event);
268}
269
7a8e76a3
SR
270/**
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
69d1b839
SR
273 *
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
7a8e76a3
SR
279 */
280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281{
69d1b839
SR
282 unsigned length;
283
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
286
287 length = rb_event_length(event);
334d4169 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
7a8e76a3 294}
c4f50183 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
296
297/* inline for ring buffer fast paths */
34a148bf 298static void *
7a8e76a3
SR
299rb_event_data(struct ring_buffer_event *event)
300{
69d1b839
SR
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
334d4169 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 304 /* If length is in len field, then array[0] has the data */
334d4169 305 if (event->type_len)
7a8e76a3
SR
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
309}
310
311/**
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
314 */
315void *ring_buffer_event_data(struct ring_buffer_event *event)
316{
317 return rb_event_data(event);
318}
c4f50183 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
320
321#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 322 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
323
324#define TS_SHIFT 27
325#define TS_MASK ((1ULL << TS_SHIFT) - 1)
326#define TS_DELTA_TEST (~TS_MASK)
327
66a8cb95
SR
328/* Flag when events were overwritten */
329#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
330/* Missed count stored at end */
331#define RB_MISSED_STORED (1 << 30)
66a8cb95 332
abc9b56d 333struct buffer_data_page {
e4c2ce82 334 u64 time_stamp; /* page time stamp */
c3706f00 335 local_t commit; /* write committed index */
abc9b56d
SR
336 unsigned char data[]; /* data of buffer page */
337};
338
77ae365e
SR
339/*
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
346 */
abc9b56d 347struct buffer_page {
778c55d4 348 struct list_head list; /* list of buffer pages */
abc9b56d 349 local_t write; /* index for next write */
6f807acd 350 unsigned read; /* index for next read */
778c55d4 351 local_t entries; /* entries on this page */
ff0ff84a 352 unsigned long real_end; /* real end of data */
abc9b56d 353 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
354};
355
77ae365e
SR
356/*
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
361 *
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
365 *
366 * The counter is 20 bits, and the state data is 12.
367 */
368#define RB_WRITE_MASK 0xfffff
369#define RB_WRITE_INTCNT (1 << 20)
370
044fa782 371static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 372{
044fa782 373 local_set(&bpage->commit, 0);
abc9b56d
SR
374}
375
474d32b6
SR
376/**
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
379 *
380 * Returns the amount of data on the page, including buffer page header.
381 */
ef7a4a16
SR
382size_t ring_buffer_page_len(void *page)
383{
474d32b6
SR
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
386}
387
ed56829c
SR
388/*
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
391 */
34a148bf 392static void free_buffer_page(struct buffer_page *bpage)
ed56829c 393{
34a148bf 394 free_page((unsigned long)bpage->page);
e4c2ce82 395 kfree(bpage);
ed56829c
SR
396}
397
7a8e76a3
SR
398/*
399 * We need to fit the time_stamp delta into 27 bits.
400 */
401static inline int test_time_stamp(u64 delta)
402{
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
406}
407
474d32b6 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 409
be957c44
SR
410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
d1b182a8
SR
413int ring_buffer_print_page_header(struct trace_seq *s)
414{
415 struct buffer_data_page field;
416 int ret;
417
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
d1b182a8
SR
422
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 425 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
d1b182a8 428
66a8cb95
SR
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 1,
433 (unsigned int)is_signed_type(long));
434
d1b182a8 435 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 437 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
d1b182a8
SR
440
441 return ret;
442}
443
7a8e76a3
SR
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
985023de 449 atomic_t record_disabled;
7a8e76a3 450 struct ring_buffer *buffer;
5389f6fa 451 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 452 arch_spinlock_t lock;
7a8e76a3 453 struct lock_class_key lock_key;
438ced17 454 unsigned int nr_pages;
3adc54fa 455 struct list_head *pages;
6f807acd
SR
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
c3706f00 458 struct buffer_page *commit_page; /* committed pages */
d769041f 459 struct buffer_page *reader_page;
66a8cb95
SR
460 unsigned long lost_events;
461 unsigned long last_overrun;
c64e148a 462 local_t entries_bytes;
77ae365e
SR
463 local_t commit_overrun;
464 local_t overrun;
e4906eff 465 local_t entries;
fa743953
SR
466 local_t committing;
467 local_t commits;
77ae365e 468 unsigned long read;
c64e148a 469 unsigned long read_bytes;
7a8e76a3
SR
470 u64 write_stamp;
471 u64 read_stamp;
438ced17
VN
472 /* ring buffer pages to update, > 0 to add, < 0 to remove */
473 int nr_pages_to_update;
474 struct list_head new_pages; /* new pages to add */
83f40318 475 struct work_struct update_pages_work;
05fdd70d 476 struct completion update_done;
7a8e76a3
SR
477};
478
479struct ring_buffer {
7a8e76a3
SR
480 unsigned flags;
481 int cpus;
7a8e76a3 482 atomic_t record_disabled;
83f40318 483 atomic_t resize_disabled;
00f62f61 484 cpumask_var_t cpumask;
7a8e76a3 485
1f8a6a10
PZ
486 struct lock_class_key *reader_lock_key;
487
7a8e76a3
SR
488 struct mutex mutex;
489
490 struct ring_buffer_per_cpu **buffers;
554f786e 491
59222efe 492#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
493 struct notifier_block cpu_notify;
494#endif
37886f6a 495 u64 (*clock)(void);
7a8e76a3
SR
496};
497
498struct ring_buffer_iter {
499 struct ring_buffer_per_cpu *cpu_buffer;
500 unsigned long head;
501 struct buffer_page *head_page;
492a74f4
SR
502 struct buffer_page *cache_reader_page;
503 unsigned long cache_read;
7a8e76a3
SR
504 u64 read_stamp;
505};
506
f536aafc 507/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
508#define RB_WARN_ON(b, cond) \
509 ({ \
510 int _____ret = unlikely(cond); \
511 if (_____ret) { \
512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 struct ring_buffer_per_cpu *__b = \
514 (void *)b; \
515 atomic_inc(&__b->buffer->record_disabled); \
516 } else \
517 atomic_inc(&b->record_disabled); \
518 WARN_ON(1); \
519 } \
520 _____ret; \
3e89c7bb 521 })
f536aafc 522
37886f6a
SR
523/* Up this if you want to test the TIME_EXTENTS and normalization */
524#define DEBUG_SHIFT 0
525
6d3f1e12 526static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
527{
528 /* shift to debug/test normalization and TIME_EXTENTS */
529 return buffer->clock() << DEBUG_SHIFT;
530}
531
37886f6a
SR
532u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533{
534 u64 time;
535
536 preempt_disable_notrace();
6d3f1e12 537 time = rb_time_stamp(buffer);
37886f6a
SR
538 preempt_enable_no_resched_notrace();
539
540 return time;
541}
542EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 int cpu, u64 *ts)
546{
547 /* Just stupid testing the normalize function and deltas */
548 *ts >>= DEBUG_SHIFT;
549}
550EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
77ae365e
SR
552/*
553 * Making the ring buffer lockless makes things tricky.
554 * Although writes only happen on the CPU that they are on,
555 * and they only need to worry about interrupts. Reads can
556 * happen on any CPU.
557 *
558 * The reader page is always off the ring buffer, but when the
559 * reader finishes with a page, it needs to swap its page with
560 * a new one from the buffer. The reader needs to take from
561 * the head (writes go to the tail). But if a writer is in overwrite
562 * mode and wraps, it must push the head page forward.
563 *
564 * Here lies the problem.
565 *
566 * The reader must be careful to replace only the head page, and
567 * not another one. As described at the top of the file in the
568 * ASCII art, the reader sets its old page to point to the next
569 * page after head. It then sets the page after head to point to
570 * the old reader page. But if the writer moves the head page
571 * during this operation, the reader could end up with the tail.
572 *
573 * We use cmpxchg to help prevent this race. We also do something
574 * special with the page before head. We set the LSB to 1.
575 *
576 * When the writer must push the page forward, it will clear the
577 * bit that points to the head page, move the head, and then set
578 * the bit that points to the new head page.
579 *
580 * We also don't want an interrupt coming in and moving the head
581 * page on another writer. Thus we use the second LSB to catch
582 * that too. Thus:
583 *
584 * head->list->prev->next bit 1 bit 0
585 * ------- -------
586 * Normal page 0 0
587 * Points to head page 0 1
588 * New head page 1 0
589 *
590 * Note we can not trust the prev pointer of the head page, because:
591 *
592 * +----+ +-----+ +-----+
593 * | |------>| T |---X--->| N |
594 * | |<------| | | |
595 * +----+ +-----+ +-----+
596 * ^ ^ |
597 * | +-----+ | |
598 * +----------| R |----------+ |
599 * | |<-----------+
600 * +-----+
601 *
602 * Key: ---X--> HEAD flag set in pointer
603 * T Tail page
604 * R Reader page
605 * N Next page
606 *
607 * (see __rb_reserve_next() to see where this happens)
608 *
609 * What the above shows is that the reader just swapped out
610 * the reader page with a page in the buffer, but before it
611 * could make the new header point back to the new page added
612 * it was preempted by a writer. The writer moved forward onto
613 * the new page added by the reader and is about to move forward
614 * again.
615 *
616 * You can see, it is legitimate for the previous pointer of
617 * the head (or any page) not to point back to itself. But only
618 * temporarially.
619 */
620
621#define RB_PAGE_NORMAL 0UL
622#define RB_PAGE_HEAD 1UL
623#define RB_PAGE_UPDATE 2UL
624
625
626#define RB_FLAG_MASK 3UL
627
628/* PAGE_MOVED is not part of the mask */
629#define RB_PAGE_MOVED 4UL
630
631/*
632 * rb_list_head - remove any bit
633 */
634static struct list_head *rb_list_head(struct list_head *list)
635{
636 unsigned long val = (unsigned long)list;
637
638 return (struct list_head *)(val & ~RB_FLAG_MASK);
639}
640
641/*
6d3f1e12 642 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
643 *
644 * Because the reader may move the head_page pointer, we can
645 * not trust what the head page is (it may be pointing to
646 * the reader page). But if the next page is a header page,
647 * its flags will be non zero.
648 */
42b16b3f 649static inline int
77ae365e
SR
650rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 struct buffer_page *page, struct list_head *list)
652{
653 unsigned long val;
654
655 val = (unsigned long)list->next;
656
657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 return RB_PAGE_MOVED;
659
660 return val & RB_FLAG_MASK;
661}
662
663/*
664 * rb_is_reader_page
665 *
666 * The unique thing about the reader page, is that, if the
667 * writer is ever on it, the previous pointer never points
668 * back to the reader page.
669 */
670static int rb_is_reader_page(struct buffer_page *page)
671{
672 struct list_head *list = page->list.prev;
673
674 return rb_list_head(list->next) != &page->list;
675}
676
677/*
678 * rb_set_list_to_head - set a list_head to be pointing to head.
679 */
680static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *list)
682{
683 unsigned long *ptr;
684
685 ptr = (unsigned long *)&list->next;
686 *ptr |= RB_PAGE_HEAD;
687 *ptr &= ~RB_PAGE_UPDATE;
688}
689
690/*
691 * rb_head_page_activate - sets up head page
692 */
693static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694{
695 struct buffer_page *head;
696
697 head = cpu_buffer->head_page;
698 if (!head)
699 return;
700
701 /*
702 * Set the previous list pointer to have the HEAD flag.
703 */
704 rb_set_list_to_head(cpu_buffer, head->list.prev);
705}
706
707static void rb_list_head_clear(struct list_head *list)
708{
709 unsigned long *ptr = (unsigned long *)&list->next;
710
711 *ptr &= ~RB_FLAG_MASK;
712}
713
714/*
715 * rb_head_page_dactivate - clears head page ptr (for free list)
716 */
717static void
718rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719{
720 struct list_head *hd;
721
722 /* Go through the whole list and clear any pointers found. */
723 rb_list_head_clear(cpu_buffer->pages);
724
725 list_for_each(hd, cpu_buffer->pages)
726 rb_list_head_clear(hd);
727}
728
729static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 struct buffer_page *head,
731 struct buffer_page *prev,
732 int old_flag, int new_flag)
733{
734 struct list_head *list;
735 unsigned long val = (unsigned long)&head->list;
736 unsigned long ret;
737
738 list = &prev->list;
739
740 val &= ~RB_FLAG_MASK;
741
08a40816
SR
742 ret = cmpxchg((unsigned long *)&list->next,
743 val | old_flag, val | new_flag);
77ae365e
SR
744
745 /* check if the reader took the page */
746 if ((ret & ~RB_FLAG_MASK) != val)
747 return RB_PAGE_MOVED;
748
749 return ret & RB_FLAG_MASK;
750}
751
752static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag)
756{
757 return rb_head_page_set(cpu_buffer, head, prev,
758 old_flag, RB_PAGE_UPDATE);
759}
760
761static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 struct buffer_page *head,
763 struct buffer_page *prev,
764 int old_flag)
765{
766 return rb_head_page_set(cpu_buffer, head, prev,
767 old_flag, RB_PAGE_HEAD);
768}
769
770static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 struct buffer_page *head,
772 struct buffer_page *prev,
773 int old_flag)
774{
775 return rb_head_page_set(cpu_buffer, head, prev,
776 old_flag, RB_PAGE_NORMAL);
777}
778
779static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 struct buffer_page **bpage)
781{
782 struct list_head *p = rb_list_head((*bpage)->list.next);
783
784 *bpage = list_entry(p, struct buffer_page, list);
785}
786
787static struct buffer_page *
788rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789{
790 struct buffer_page *head;
791 struct buffer_page *page;
792 struct list_head *list;
793 int i;
794
795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 return NULL;
797
798 /* sanity check */
799 list = cpu_buffer->pages;
800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 return NULL;
802
803 page = head = cpu_buffer->head_page;
804 /*
805 * It is possible that the writer moves the header behind
806 * where we started, and we miss in one loop.
807 * A second loop should grab the header, but we'll do
808 * three loops just because I'm paranoid.
809 */
810 for (i = 0; i < 3; i++) {
811 do {
812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 cpu_buffer->head_page = page;
814 return page;
815 }
816 rb_inc_page(cpu_buffer, &page);
817 } while (page != head);
818 }
819
820 RB_WARN_ON(cpu_buffer, 1);
821
822 return NULL;
823}
824
825static int rb_head_page_replace(struct buffer_page *old,
826 struct buffer_page *new)
827{
828 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 unsigned long val;
830 unsigned long ret;
831
832 val = *ptr & ~RB_FLAG_MASK;
833 val |= RB_PAGE_HEAD;
834
08a40816 835 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
836
837 return ret == val;
838}
839
840/*
841 * rb_tail_page_update - move the tail page forward
842 *
843 * Returns 1 if moved tail page, 0 if someone else did.
844 */
845static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *tail_page,
847 struct buffer_page *next_page)
848{
849 struct buffer_page *old_tail;
850 unsigned long old_entries;
851 unsigned long old_write;
852 int ret = 0;
853
854 /*
855 * The tail page now needs to be moved forward.
856 *
857 * We need to reset the tail page, but without messing
858 * with possible erasing of data brought in by interrupts
859 * that have moved the tail page and are currently on it.
860 *
861 * We add a counter to the write field to denote this.
862 */
863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866 /*
867 * Just make sure we have seen our old_write and synchronize
868 * with any interrupts that come in.
869 */
870 barrier();
871
872 /*
873 * If the tail page is still the same as what we think
874 * it is, then it is up to us to update the tail
875 * pointer.
876 */
877 if (tail_page == cpu_buffer->tail_page) {
878 /* Zero the write counter */
879 unsigned long val = old_write & ~RB_WRITE_MASK;
880 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882 /*
883 * This will only succeed if an interrupt did
884 * not come in and change it. In which case, we
885 * do not want to modify it.
da706d8b
LJ
886 *
887 * We add (void) to let the compiler know that we do not care
888 * about the return value of these functions. We use the
889 * cmpxchg to only update if an interrupt did not already
890 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 891 */
da706d8b
LJ
892 (void)local_cmpxchg(&next_page->write, old_write, val);
893 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
894
895 /*
896 * No need to worry about races with clearing out the commit.
897 * it only can increment when a commit takes place. But that
898 * only happens in the outer most nested commit.
899 */
900 local_set(&next_page->page->commit, 0);
901
902 old_tail = cmpxchg(&cpu_buffer->tail_page,
903 tail_page, next_page);
904
905 if (old_tail == tail_page)
906 ret = 1;
907 }
908
909 return ret;
910}
911
912static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 struct buffer_page *bpage)
914{
915 unsigned long val = (unsigned long)bpage;
916
917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 return 1;
919
920 return 0;
921}
922
923/**
924 * rb_check_list - make sure a pointer to a list has the last bits zero
925 */
926static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 struct list_head *list)
928{
929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 return 1;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 return 1;
933 return 0;
934}
935
7a8e76a3
SR
936/**
937 * check_pages - integrity check of buffer pages
938 * @cpu_buffer: CPU buffer with pages to test
939 *
c3706f00 940 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
941 * been corrupted.
942 */
943static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944{
3adc54fa 945 struct list_head *head = cpu_buffer->pages;
044fa782 946 struct buffer_page *bpage, *tmp;
7a8e76a3 947
308f7eeb
SR
948 /* Reset the head page if it exists */
949 if (cpu_buffer->head_page)
950 rb_set_head_page(cpu_buffer);
951
77ae365e
SR
952 rb_head_page_deactivate(cpu_buffer);
953
3e89c7bb
SR
954 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955 return -1;
956 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957 return -1;
7a8e76a3 958
77ae365e
SR
959 if (rb_check_list(cpu_buffer, head))
960 return -1;
961
044fa782 962 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 963 if (RB_WARN_ON(cpu_buffer,
044fa782 964 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
965 return -1;
966 if (RB_WARN_ON(cpu_buffer,
044fa782 967 bpage->list.prev->next != &bpage->list))
3e89c7bb 968 return -1;
77ae365e
SR
969 if (rb_check_list(cpu_buffer, &bpage->list))
970 return -1;
7a8e76a3
SR
971 }
972
77ae365e
SR
973 rb_head_page_activate(cpu_buffer);
974
7a8e76a3
SR
975 return 0;
976}
977
438ced17 978static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 979{
438ced17 980 int i;
044fa782 981 struct buffer_page *bpage, *tmp;
3adc54fa 982
7a8e76a3 983 for (i = 0; i < nr_pages; i++) {
7ea59064 984 struct page *page;
d7ec4bfe
VN
985 /*
986 * __GFP_NORETRY flag makes sure that the allocation fails
987 * gracefully without invoking oom-killer and the system is
988 * not destabilized.
989 */
044fa782 990 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 991 GFP_KERNEL | __GFP_NORETRY,
438ced17 992 cpu_to_node(cpu));
044fa782 993 if (!bpage)
e4c2ce82 994 goto free_pages;
77ae365e 995
438ced17 996 list_add(&bpage->list, pages);
77ae365e 997
438ced17 998 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 999 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1000 if (!page)
7a8e76a3 1001 goto free_pages;
7ea59064 1002 bpage->page = page_address(page);
044fa782 1003 rb_init_page(bpage->page);
7a8e76a3
SR
1004 }
1005
438ced17
VN
1006 return 0;
1007
1008free_pages:
1009 list_for_each_entry_safe(bpage, tmp, pages, list) {
1010 list_del_init(&bpage->list);
1011 free_buffer_page(bpage);
1012 }
1013
1014 return -ENOMEM;
1015}
1016
1017static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018 unsigned nr_pages)
1019{
1020 LIST_HEAD(pages);
1021
1022 WARN_ON(!nr_pages);
1023
1024 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025 return -ENOMEM;
1026
3adc54fa
SR
1027 /*
1028 * The ring buffer page list is a circular list that does not
1029 * start and end with a list head. All page list items point to
1030 * other pages.
1031 */
1032 cpu_buffer->pages = pages.next;
1033 list_del(&pages);
7a8e76a3 1034
438ced17
VN
1035 cpu_buffer->nr_pages = nr_pages;
1036
7a8e76a3
SR
1037 rb_check_pages(cpu_buffer);
1038
1039 return 0;
7a8e76a3
SR
1040}
1041
1042static struct ring_buffer_per_cpu *
438ced17 1043rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1044{
1045 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1046 struct buffer_page *bpage;
7ea59064 1047 struct page *page;
7a8e76a3
SR
1048 int ret;
1049
1050 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051 GFP_KERNEL, cpu_to_node(cpu));
1052 if (!cpu_buffer)
1053 return NULL;
1054
1055 cpu_buffer->cpu = cpu;
1056 cpu_buffer->buffer = buffer;
5389f6fa 1057 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1058 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1059 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1060 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1061 init_completion(&cpu_buffer->update_done);
7a8e76a3 1062
044fa782 1063 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1064 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1065 if (!bpage)
e4c2ce82
SR
1066 goto fail_free_buffer;
1067
77ae365e
SR
1068 rb_check_bpage(cpu_buffer, bpage);
1069
044fa782 1070 cpu_buffer->reader_page = bpage;
7ea59064
VN
1071 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072 if (!page)
e4c2ce82 1073 goto fail_free_reader;
7ea59064 1074 bpage->page = page_address(page);
044fa782 1075 rb_init_page(bpage->page);
e4c2ce82 1076
d769041f 1077 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1078 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1079
438ced17 1080 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1081 if (ret < 0)
d769041f 1082 goto fail_free_reader;
7a8e76a3
SR
1083
1084 cpu_buffer->head_page
3adc54fa 1085 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1086 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1087
77ae365e
SR
1088 rb_head_page_activate(cpu_buffer);
1089
7a8e76a3
SR
1090 return cpu_buffer;
1091
d769041f
SR
1092 fail_free_reader:
1093 free_buffer_page(cpu_buffer->reader_page);
1094
7a8e76a3
SR
1095 fail_free_buffer:
1096 kfree(cpu_buffer);
1097 return NULL;
1098}
1099
1100static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101{
3adc54fa 1102 struct list_head *head = cpu_buffer->pages;
044fa782 1103 struct buffer_page *bpage, *tmp;
7a8e76a3 1104
d769041f
SR
1105 free_buffer_page(cpu_buffer->reader_page);
1106
77ae365e
SR
1107 rb_head_page_deactivate(cpu_buffer);
1108
3adc54fa
SR
1109 if (head) {
1110 list_for_each_entry_safe(bpage, tmp, head, list) {
1111 list_del_init(&bpage->list);
1112 free_buffer_page(bpage);
1113 }
1114 bpage = list_entry(head, struct buffer_page, list);
044fa782 1115 free_buffer_page(bpage);
7a8e76a3 1116 }
3adc54fa 1117
7a8e76a3
SR
1118 kfree(cpu_buffer);
1119}
1120
59222efe 1121#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1122static int rb_cpu_notify(struct notifier_block *self,
1123 unsigned long action, void *hcpu);
554f786e
SR
1124#endif
1125
7a8e76a3
SR
1126/**
1127 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1128 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1129 * @flags: attributes to set for the ring buffer.
1130 *
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1135 */
1f8a6a10
PZ
1136struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137 struct lock_class_key *key)
7a8e76a3
SR
1138{
1139 struct ring_buffer *buffer;
1140 int bsize;
438ced17 1141 int cpu, nr_pages;
7a8e76a3
SR
1142
1143 /* keep it in its own cache line */
1144 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145 GFP_KERNEL);
1146 if (!buffer)
1147 return NULL;
1148
9e01c1b7
RR
1149 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150 goto fail_free_buffer;
1151
438ced17 1152 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1153 buffer->flags = flags;
37886f6a 1154 buffer->clock = trace_clock_local;
1f8a6a10 1155 buffer->reader_lock_key = key;
7a8e76a3
SR
1156
1157 /* need at least two pages */
438ced17
VN
1158 if (nr_pages < 2)
1159 nr_pages = 2;
7a8e76a3 1160
3bf832ce
FW
1161 /*
1162 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163 * in early initcall, it will not be notified of secondary cpus.
1164 * In that off case, we need to allocate for all possible cpus.
1165 */
1166#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1167 get_online_cpus();
1168 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1169#else
1170 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171#endif
7a8e76a3
SR
1172 buffer->cpus = nr_cpu_ids;
1173
1174 bsize = sizeof(void *) * nr_cpu_ids;
1175 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176 GFP_KERNEL);
1177 if (!buffer->buffers)
9e01c1b7 1178 goto fail_free_cpumask;
7a8e76a3
SR
1179
1180 for_each_buffer_cpu(buffer, cpu) {
1181 buffer->buffers[cpu] =
438ced17 1182 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1183 if (!buffer->buffers[cpu])
1184 goto fail_free_buffers;
1185 }
1186
59222efe 1187#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1188 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189 buffer->cpu_notify.priority = 0;
1190 register_cpu_notifier(&buffer->cpu_notify);
1191#endif
1192
1193 put_online_cpus();
7a8e76a3
SR
1194 mutex_init(&buffer->mutex);
1195
1196 return buffer;
1197
1198 fail_free_buffers:
1199 for_each_buffer_cpu(buffer, cpu) {
1200 if (buffer->buffers[cpu])
1201 rb_free_cpu_buffer(buffer->buffers[cpu]);
1202 }
1203 kfree(buffer->buffers);
1204
9e01c1b7
RR
1205 fail_free_cpumask:
1206 free_cpumask_var(buffer->cpumask);
554f786e 1207 put_online_cpus();
9e01c1b7 1208
7a8e76a3
SR
1209 fail_free_buffer:
1210 kfree(buffer);
1211 return NULL;
1212}
1f8a6a10 1213EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1214
1215/**
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1218 */
1219void
1220ring_buffer_free(struct ring_buffer *buffer)
1221{
1222 int cpu;
1223
554f786e
SR
1224 get_online_cpus();
1225
59222efe 1226#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1227 unregister_cpu_notifier(&buffer->cpu_notify);
1228#endif
1229
7a8e76a3
SR
1230 for_each_buffer_cpu(buffer, cpu)
1231 rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
554f786e
SR
1233 put_online_cpus();
1234
bd3f0221 1235 kfree(buffer->buffers);
9e01c1b7
RR
1236 free_cpumask_var(buffer->cpumask);
1237
7a8e76a3
SR
1238 kfree(buffer);
1239}
c4f50183 1240EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1241
37886f6a
SR
1242void ring_buffer_set_clock(struct ring_buffer *buffer,
1243 u64 (*clock)(void))
1244{
1245 buffer->clock = clock;
1246}
1247
7a8e76a3
SR
1248static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
83f40318
VN
1250static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1251{
1252 return local_read(&bpage->entries) & RB_WRITE_MASK;
1253}
1254
1255static inline unsigned long rb_page_write(struct buffer_page *bpage)
1256{
1257 return local_read(&bpage->write) & RB_WRITE_MASK;
1258}
1259
5040b4b7 1260static int
83f40318 1261rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1262{
83f40318
VN
1263 struct list_head *tail_page, *to_remove, *next_page;
1264 struct buffer_page *to_remove_page, *tmp_iter_page;
1265 struct buffer_page *last_page, *first_page;
1266 unsigned int nr_removed;
1267 unsigned long head_bit;
1268 int page_entries;
1269
1270 head_bit = 0;
7a8e76a3 1271
5389f6fa 1272 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1273 atomic_inc(&cpu_buffer->record_disabled);
1274 /*
1275 * We don't race with the readers since we have acquired the reader
1276 * lock. We also don't race with writers after disabling recording.
1277 * This makes it easy to figure out the first and the last page to be
1278 * removed from the list. We unlink all the pages in between including
1279 * the first and last pages. This is done in a busy loop so that we
1280 * lose the least number of traces.
1281 * The pages are freed after we restart recording and unlock readers.
1282 */
1283 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1284
83f40318
VN
1285 /*
1286 * tail page might be on reader page, we remove the next page
1287 * from the ring buffer
1288 */
1289 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1290 tail_page = rb_list_head(tail_page->next);
1291 to_remove = tail_page;
1292
1293 /* start of pages to remove */
1294 first_page = list_entry(rb_list_head(to_remove->next),
1295 struct buffer_page, list);
1296
1297 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1298 to_remove = rb_list_head(to_remove)->next;
1299 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1300 }
7a8e76a3 1301
83f40318 1302 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1303
83f40318
VN
1304 /*
1305 * Now we remove all pages between tail_page and next_page.
1306 * Make sure that we have head_bit value preserved for the
1307 * next page
1308 */
1309 tail_page->next = (struct list_head *)((unsigned long)next_page |
1310 head_bit);
1311 next_page = rb_list_head(next_page);
1312 next_page->prev = tail_page;
1313
1314 /* make sure pages points to a valid page in the ring buffer */
1315 cpu_buffer->pages = next_page;
1316
1317 /* update head page */
1318 if (head_bit)
1319 cpu_buffer->head_page = list_entry(next_page,
1320 struct buffer_page, list);
1321
1322 /*
1323 * change read pointer to make sure any read iterators reset
1324 * themselves
1325 */
1326 cpu_buffer->read = 0;
1327
1328 /* pages are removed, resume tracing and then free the pages */
1329 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1330 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1331
1332 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1333
1334 /* last buffer page to remove */
1335 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1336 list);
1337 tmp_iter_page = first_page;
1338
1339 do {
1340 to_remove_page = tmp_iter_page;
1341 rb_inc_page(cpu_buffer, &tmp_iter_page);
1342
1343 /* update the counters */
1344 page_entries = rb_page_entries(to_remove_page);
1345 if (page_entries) {
1346 /*
1347 * If something was added to this page, it was full
1348 * since it is not the tail page. So we deduct the
1349 * bytes consumed in ring buffer from here.
48fdc72f 1350 * Increment overrun to account for the lost events.
83f40318 1351 */
48fdc72f 1352 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1353 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354 }
1355
1356 /*
1357 * We have already removed references to this list item, just
1358 * free up the buffer_page and its page
1359 */
1360 free_buffer_page(to_remove_page);
1361 nr_removed--;
1362
1363 } while (to_remove_page != last_page);
1364
1365 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1366
1367 return nr_removed == 0;
7a8e76a3
SR
1368}
1369
5040b4b7
VN
1370static int
1371rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1372{
5040b4b7
VN
1373 struct list_head *pages = &cpu_buffer->new_pages;
1374 int retries, success;
7a8e76a3 1375
5389f6fa 1376 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1377 /*
1378 * We are holding the reader lock, so the reader page won't be swapped
1379 * in the ring buffer. Now we are racing with the writer trying to
1380 * move head page and the tail page.
1381 * We are going to adapt the reader page update process where:
1382 * 1. We first splice the start and end of list of new pages between
1383 * the head page and its previous page.
1384 * 2. We cmpxchg the prev_page->next to point from head page to the
1385 * start of new pages list.
1386 * 3. Finally, we update the head->prev to the end of new list.
1387 *
1388 * We will try this process 10 times, to make sure that we don't keep
1389 * spinning.
1390 */
1391 retries = 10;
1392 success = 0;
1393 while (retries--) {
1394 struct list_head *head_page, *prev_page, *r;
1395 struct list_head *last_page, *first_page;
1396 struct list_head *head_page_with_bit;
77ae365e 1397
5040b4b7 1398 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1399 if (!head_page)
1400 break;
5040b4b7
VN
1401 prev_page = head_page->prev;
1402
1403 first_page = pages->next;
1404 last_page = pages->prev;
1405
1406 head_page_with_bit = (struct list_head *)
1407 ((unsigned long)head_page | RB_PAGE_HEAD);
1408
1409 last_page->next = head_page_with_bit;
1410 first_page->prev = prev_page;
1411
1412 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1413
1414 if (r == head_page_with_bit) {
1415 /*
1416 * yay, we replaced the page pointer to our new list,
1417 * now, we just have to update to head page's prev
1418 * pointer to point to end of list
1419 */
1420 head_page->prev = last_page;
1421 success = 1;
1422 break;
1423 }
7a8e76a3 1424 }
7a8e76a3 1425
5040b4b7
VN
1426 if (success)
1427 INIT_LIST_HEAD(pages);
1428 /*
1429 * If we weren't successful in adding in new pages, warn and stop
1430 * tracing
1431 */
1432 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1433 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1434
1435 /* free pages if they weren't inserted */
1436 if (!success) {
1437 struct buffer_page *bpage, *tmp;
1438 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1439 list) {
1440 list_del_init(&bpage->list);
1441 free_buffer_page(bpage);
1442 }
1443 }
1444 return success;
7a8e76a3
SR
1445}
1446
83f40318 1447static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1448{
5040b4b7
VN
1449 int success;
1450
438ced17 1451 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1452 success = rb_insert_pages(cpu_buffer);
438ced17 1453 else
5040b4b7
VN
1454 success = rb_remove_pages(cpu_buffer,
1455 -cpu_buffer->nr_pages_to_update);
83f40318 1456
5040b4b7
VN
1457 if (success)
1458 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1459}
1460
1461static void update_pages_handler(struct work_struct *work)
1462{
1463 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1464 struct ring_buffer_per_cpu, update_pages_work);
1465 rb_update_pages(cpu_buffer);
05fdd70d 1466 complete(&cpu_buffer->update_done);
438ced17
VN
1467}
1468
7a8e76a3
SR
1469/**
1470 * ring_buffer_resize - resize the ring buffer
1471 * @buffer: the buffer to resize.
1472 * @size: the new size.
1473 *
7a8e76a3
SR
1474 * Minimum size is 2 * BUF_PAGE_SIZE.
1475 *
83f40318 1476 * Returns 0 on success and < 0 on failure.
7a8e76a3 1477 */
438ced17
VN
1478int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1479 int cpu_id)
7a8e76a3
SR
1480{
1481 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1482 unsigned nr_pages;
83f40318 1483 int cpu, err = 0;
7a8e76a3 1484
ee51a1de
IM
1485 /*
1486 * Always succeed at resizing a non-existent buffer:
1487 */
1488 if (!buffer)
1489 return size;
1490
6a31e1f1
SR
1491 /* Make sure the requested buffer exists */
1492 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1493 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1494 return size;
1495
7a8e76a3
SR
1496 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1497 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1498
1499 /* we need a minimum of two pages */
1500 if (size < BUF_PAGE_SIZE * 2)
1501 size = BUF_PAGE_SIZE * 2;
1502
83f40318 1503 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1504
83f40318
VN
1505 /*
1506 * Don't succeed if resizing is disabled, as a reader might be
1507 * manipulating the ring buffer and is expecting a sane state while
1508 * this is true.
1509 */
1510 if (atomic_read(&buffer->resize_disabled))
1511 return -EBUSY;
18421015 1512
83f40318 1513 /* prevent another thread from changing buffer sizes */
7a8e76a3 1514 mutex_lock(&buffer->mutex);
7a8e76a3 1515
438ced17
VN
1516 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1517 /* calculate the pages to update */
7a8e76a3
SR
1518 for_each_buffer_cpu(buffer, cpu) {
1519 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1520
438ced17
VN
1521 cpu_buffer->nr_pages_to_update = nr_pages -
1522 cpu_buffer->nr_pages;
438ced17
VN
1523 /*
1524 * nothing more to do for removing pages or no update
1525 */
1526 if (cpu_buffer->nr_pages_to_update <= 0)
1527 continue;
d7ec4bfe 1528 /*
438ced17
VN
1529 * to add pages, make sure all new pages can be
1530 * allocated without receiving ENOMEM
d7ec4bfe 1531 */
438ced17
VN
1532 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1533 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1534 &cpu_buffer->new_pages, cpu)) {
438ced17 1535 /* not enough memory for new pages */
83f40318
VN
1536 err = -ENOMEM;
1537 goto out_err;
1538 }
1539 }
1540
1541 get_online_cpus();
1542 /*
1543 * Fire off all the required work handlers
05fdd70d 1544 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1545 * since we can change their buffer sizes without any race.
1546 */
1547 for_each_buffer_cpu(buffer, cpu) {
1548 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1549 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1550 continue;
1551
05fdd70d
VN
1552 if (cpu_online(cpu))
1553 schedule_work_on(cpu,
1554 &cpu_buffer->update_pages_work);
1555 else
1556 rb_update_pages(cpu_buffer);
7a8e76a3 1557 }
7a8e76a3 1558
438ced17
VN
1559 /* wait for all the updates to complete */
1560 for_each_buffer_cpu(buffer, cpu) {
1561 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1562 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1563 continue;
1564
05fdd70d
VN
1565 if (cpu_online(cpu))
1566 wait_for_completion(&cpu_buffer->update_done);
83f40318 1567 cpu_buffer->nr_pages_to_update = 0;
438ced17 1568 }
83f40318
VN
1569
1570 put_online_cpus();
438ced17 1571 } else {
8e49f418
VN
1572 /* Make sure this CPU has been intitialized */
1573 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1574 goto out;
1575
438ced17 1576 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1577
438ced17
VN
1578 if (nr_pages == cpu_buffer->nr_pages)
1579 goto out;
7a8e76a3 1580
438ced17
VN
1581 cpu_buffer->nr_pages_to_update = nr_pages -
1582 cpu_buffer->nr_pages;
1583
1584 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1585 if (cpu_buffer->nr_pages_to_update > 0 &&
1586 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1587 &cpu_buffer->new_pages, cpu_id)) {
1588 err = -ENOMEM;
1589 goto out_err;
1590 }
438ced17 1591
83f40318
VN
1592 get_online_cpus();
1593
1594 if (cpu_online(cpu_id)) {
1595 schedule_work_on(cpu_id,
1596 &cpu_buffer->update_pages_work);
05fdd70d 1597 wait_for_completion(&cpu_buffer->update_done);
83f40318
VN
1598 } else
1599 rb_update_pages(cpu_buffer);
1600
83f40318 1601 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1602 put_online_cpus();
438ced17 1603 }
7a8e76a3
SR
1604
1605 out:
659f451f
SR
1606 /*
1607 * The ring buffer resize can happen with the ring buffer
1608 * enabled, so that the update disturbs the tracing as little
1609 * as possible. But if the buffer is disabled, we do not need
1610 * to worry about that, and we can take the time to verify
1611 * that the buffer is not corrupt.
1612 */
1613 if (atomic_read(&buffer->record_disabled)) {
1614 atomic_inc(&buffer->record_disabled);
1615 /*
1616 * Even though the buffer was disabled, we must make sure
1617 * that it is truly disabled before calling rb_check_pages.
1618 * There could have been a race between checking
1619 * record_disable and incrementing it.
1620 */
1621 synchronize_sched();
1622 for_each_buffer_cpu(buffer, cpu) {
1623 cpu_buffer = buffer->buffers[cpu];
1624 rb_check_pages(cpu_buffer);
1625 }
1626 atomic_dec(&buffer->record_disabled);
1627 }
1628
7a8e76a3 1629 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1630 return size;
1631
83f40318 1632 out_err:
438ced17
VN
1633 for_each_buffer_cpu(buffer, cpu) {
1634 struct buffer_page *bpage, *tmp;
83f40318 1635
438ced17 1636 cpu_buffer = buffer->buffers[cpu];
438ced17 1637 cpu_buffer->nr_pages_to_update = 0;
83f40318 1638
438ced17
VN
1639 if (list_empty(&cpu_buffer->new_pages))
1640 continue;
83f40318 1641
438ced17
VN
1642 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1643 list) {
1644 list_del_init(&bpage->list);
1645 free_buffer_page(bpage);
1646 }
7a8e76a3 1647 }
641d2f63 1648 mutex_unlock(&buffer->mutex);
83f40318 1649 return err;
7a8e76a3 1650}
c4f50183 1651EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1652
750912fa
DS
1653void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1654{
1655 mutex_lock(&buffer->mutex);
1656 if (val)
1657 buffer->flags |= RB_FL_OVERWRITE;
1658 else
1659 buffer->flags &= ~RB_FL_OVERWRITE;
1660 mutex_unlock(&buffer->mutex);
1661}
1662EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1663
8789a9e7 1664static inline void *
044fa782 1665__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1666{
044fa782 1667 return bpage->data + index;
8789a9e7
SR
1668}
1669
044fa782 1670static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1671{
044fa782 1672 return bpage->page->data + index;
7a8e76a3
SR
1673}
1674
1675static inline struct ring_buffer_event *
d769041f 1676rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1677{
6f807acd
SR
1678 return __rb_page_index(cpu_buffer->reader_page,
1679 cpu_buffer->reader_page->read);
1680}
1681
7a8e76a3
SR
1682static inline struct ring_buffer_event *
1683rb_iter_head_event(struct ring_buffer_iter *iter)
1684{
6f807acd 1685 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1686}
1687
bf41a158
SR
1688static inline unsigned rb_page_commit(struct buffer_page *bpage)
1689{
abc9b56d 1690 return local_read(&bpage->page->commit);
bf41a158
SR
1691}
1692
25985edc 1693/* Size is determined by what has been committed */
bf41a158
SR
1694static inline unsigned rb_page_size(struct buffer_page *bpage)
1695{
1696 return rb_page_commit(bpage);
1697}
1698
1699static inline unsigned
1700rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1701{
1702 return rb_page_commit(cpu_buffer->commit_page);
1703}
1704
bf41a158
SR
1705static inline unsigned
1706rb_event_index(struct ring_buffer_event *event)
1707{
1708 unsigned long addr = (unsigned long)event;
1709
22f470f8 1710 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1711}
1712
0f0c85fc 1713static inline int
fa743953
SR
1714rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1715 struct ring_buffer_event *event)
bf41a158
SR
1716{
1717 unsigned long addr = (unsigned long)event;
1718 unsigned long index;
1719
1720 index = rb_event_index(event);
1721 addr &= PAGE_MASK;
1722
1723 return cpu_buffer->commit_page->page == (void *)addr &&
1724 rb_commit_index(cpu_buffer) == index;
1725}
1726
34a148bf 1727static void
bf41a158 1728rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1729{
77ae365e
SR
1730 unsigned long max_count;
1731
bf41a158
SR
1732 /*
1733 * We only race with interrupts and NMIs on this CPU.
1734 * If we own the commit event, then we can commit
1735 * all others that interrupted us, since the interruptions
1736 * are in stack format (they finish before they come
1737 * back to us). This allows us to do a simple loop to
1738 * assign the commit to the tail.
1739 */
a8ccf1d6 1740 again:
438ced17 1741 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1742
bf41a158 1743 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1744 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1745 return;
1746 if (RB_WARN_ON(cpu_buffer,
1747 rb_is_reader_page(cpu_buffer->tail_page)))
1748 return;
1749 local_set(&cpu_buffer->commit_page->page->commit,
1750 rb_page_write(cpu_buffer->commit_page));
bf41a158 1751 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1752 cpu_buffer->write_stamp =
1753 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1754 /* add barrier to keep gcc from optimizing too much */
1755 barrier();
1756 }
1757 while (rb_commit_index(cpu_buffer) !=
1758 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1759
1760 local_set(&cpu_buffer->commit_page->page->commit,
1761 rb_page_write(cpu_buffer->commit_page));
1762 RB_WARN_ON(cpu_buffer,
1763 local_read(&cpu_buffer->commit_page->page->commit) &
1764 ~RB_WRITE_MASK);
bf41a158
SR
1765 barrier();
1766 }
a8ccf1d6
SR
1767
1768 /* again, keep gcc from optimizing */
1769 barrier();
1770
1771 /*
1772 * If an interrupt came in just after the first while loop
1773 * and pushed the tail page forward, we will be left with
1774 * a dangling commit that will never go forward.
1775 */
1776 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1777 goto again;
7a8e76a3
SR
1778}
1779
d769041f 1780static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1781{
abc9b56d 1782 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1783 cpu_buffer->reader_page->read = 0;
d769041f
SR
1784}
1785
34a148bf 1786static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1787{
1788 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1789
1790 /*
1791 * The iterator could be on the reader page (it starts there).
1792 * But the head could have moved, since the reader was
1793 * found. Check for this case and assign the iterator
1794 * to the head page instead of next.
1795 */
1796 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1797 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1798 else
1799 rb_inc_page(cpu_buffer, &iter->head_page);
1800
abc9b56d 1801 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1802 iter->head = 0;
1803}
1804
69d1b839
SR
1805/* Slow path, do not inline */
1806static noinline struct ring_buffer_event *
1807rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1808{
1809 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1810
1811 /* Not the first event on the page? */
1812 if (rb_event_index(event)) {
1813 event->time_delta = delta & TS_MASK;
1814 event->array[0] = delta >> TS_SHIFT;
1815 } else {
1816 /* nope, just zero it */
1817 event->time_delta = 0;
1818 event->array[0] = 0;
1819 }
1820
1821 return skip_time_extend(event);
1822}
1823
7a8e76a3
SR
1824/**
1825 * ring_buffer_update_event - update event type and data
1826 * @event: the even to update
1827 * @type: the type of event
1828 * @length: the size of the event field in the ring buffer
1829 *
1830 * Update the type and data fields of the event. The length
1831 * is the actual size that is written to the ring buffer,
1832 * and with this, we can determine what to place into the
1833 * data field.
1834 */
34a148bf 1835static void
69d1b839
SR
1836rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1837 struct ring_buffer_event *event, unsigned length,
1838 int add_timestamp, u64 delta)
7a8e76a3 1839{
69d1b839
SR
1840 /* Only a commit updates the timestamp */
1841 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1842 delta = 0;
7a8e76a3 1843
69d1b839
SR
1844 /*
1845 * If we need to add a timestamp, then we
1846 * add it to the start of the resevered space.
1847 */
1848 if (unlikely(add_timestamp)) {
1849 event = rb_add_time_stamp(event, delta);
1850 length -= RB_LEN_TIME_EXTEND;
1851 delta = 0;
7a8e76a3 1852 }
69d1b839
SR
1853
1854 event->time_delta = delta;
1855 length -= RB_EVNT_HDR_SIZE;
1856 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1857 event->type_len = 0;
1858 event->array[0] = length;
1859 } else
1860 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1861}
1862
77ae365e
SR
1863/*
1864 * rb_handle_head_page - writer hit the head page
1865 *
1866 * Returns: +1 to retry page
1867 * 0 to continue
1868 * -1 on error
1869 */
1870static int
1871rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1872 struct buffer_page *tail_page,
1873 struct buffer_page *next_page)
1874{
1875 struct buffer_page *new_head;
1876 int entries;
1877 int type;
1878 int ret;
1879
1880 entries = rb_page_entries(next_page);
1881
1882 /*
1883 * The hard part is here. We need to move the head
1884 * forward, and protect against both readers on
1885 * other CPUs and writers coming in via interrupts.
1886 */
1887 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1888 RB_PAGE_HEAD);
1889
1890 /*
1891 * type can be one of four:
1892 * NORMAL - an interrupt already moved it for us
1893 * HEAD - we are the first to get here.
1894 * UPDATE - we are the interrupt interrupting
1895 * a current move.
1896 * MOVED - a reader on another CPU moved the next
1897 * pointer to its reader page. Give up
1898 * and try again.
1899 */
1900
1901 switch (type) {
1902 case RB_PAGE_HEAD:
1903 /*
1904 * We changed the head to UPDATE, thus
1905 * it is our responsibility to update
1906 * the counters.
1907 */
1908 local_add(entries, &cpu_buffer->overrun);
c64e148a 1909 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1910
1911 /*
1912 * The entries will be zeroed out when we move the
1913 * tail page.
1914 */
1915
1916 /* still more to do */
1917 break;
1918
1919 case RB_PAGE_UPDATE:
1920 /*
1921 * This is an interrupt that interrupt the
1922 * previous update. Still more to do.
1923 */
1924 break;
1925 case RB_PAGE_NORMAL:
1926 /*
1927 * An interrupt came in before the update
1928 * and processed this for us.
1929 * Nothing left to do.
1930 */
1931 return 1;
1932 case RB_PAGE_MOVED:
1933 /*
1934 * The reader is on another CPU and just did
1935 * a swap with our next_page.
1936 * Try again.
1937 */
1938 return 1;
1939 default:
1940 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1941 return -1;
1942 }
1943
1944 /*
1945 * Now that we are here, the old head pointer is
1946 * set to UPDATE. This will keep the reader from
1947 * swapping the head page with the reader page.
1948 * The reader (on another CPU) will spin till
1949 * we are finished.
1950 *
1951 * We just need to protect against interrupts
1952 * doing the job. We will set the next pointer
1953 * to HEAD. After that, we set the old pointer
1954 * to NORMAL, but only if it was HEAD before.
1955 * otherwise we are an interrupt, and only
1956 * want the outer most commit to reset it.
1957 */
1958 new_head = next_page;
1959 rb_inc_page(cpu_buffer, &new_head);
1960
1961 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1962 RB_PAGE_NORMAL);
1963
1964 /*
1965 * Valid returns are:
1966 * HEAD - an interrupt came in and already set it.
1967 * NORMAL - One of two things:
1968 * 1) We really set it.
1969 * 2) A bunch of interrupts came in and moved
1970 * the page forward again.
1971 */
1972 switch (ret) {
1973 case RB_PAGE_HEAD:
1974 case RB_PAGE_NORMAL:
1975 /* OK */
1976 break;
1977 default:
1978 RB_WARN_ON(cpu_buffer, 1);
1979 return -1;
1980 }
1981
1982 /*
1983 * It is possible that an interrupt came in,
1984 * set the head up, then more interrupts came in
1985 * and moved it again. When we get back here,
1986 * the page would have been set to NORMAL but we
1987 * just set it back to HEAD.
1988 *
1989 * How do you detect this? Well, if that happened
1990 * the tail page would have moved.
1991 */
1992 if (ret == RB_PAGE_NORMAL) {
1993 /*
1994 * If the tail had moved passed next, then we need
1995 * to reset the pointer.
1996 */
1997 if (cpu_buffer->tail_page != tail_page &&
1998 cpu_buffer->tail_page != next_page)
1999 rb_head_page_set_normal(cpu_buffer, new_head,
2000 next_page,
2001 RB_PAGE_HEAD);
2002 }
2003
2004 /*
2005 * If this was the outer most commit (the one that
2006 * changed the original pointer from HEAD to UPDATE),
2007 * then it is up to us to reset it to NORMAL.
2008 */
2009 if (type == RB_PAGE_HEAD) {
2010 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2011 tail_page,
2012 RB_PAGE_UPDATE);
2013 if (RB_WARN_ON(cpu_buffer,
2014 ret != RB_PAGE_UPDATE))
2015 return -1;
2016 }
2017
2018 return 0;
2019}
2020
34a148bf 2021static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2022{
2023 struct ring_buffer_event event; /* Used only for sizeof array */
2024
2025 /* zero length can cause confusions */
2026 if (!length)
2027 length = 1;
2028
2271048d 2029 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2030 length += sizeof(event.array[0]);
2031
2032 length += RB_EVNT_HDR_SIZE;
2271048d 2033 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2034
2035 return length;
2036}
2037
c7b09308
SR
2038static inline void
2039rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2040 struct buffer_page *tail_page,
2041 unsigned long tail, unsigned long length)
2042{
2043 struct ring_buffer_event *event;
2044
2045 /*
2046 * Only the event that crossed the page boundary
2047 * must fill the old tail_page with padding.
2048 */
2049 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2050 /*
2051 * If the page was filled, then we still need
2052 * to update the real_end. Reset it to zero
2053 * and the reader will ignore it.
2054 */
2055 if (tail == BUF_PAGE_SIZE)
2056 tail_page->real_end = 0;
2057
c7b09308
SR
2058 local_sub(length, &tail_page->write);
2059 return;
2060 }
2061
2062 event = __rb_page_index(tail_page, tail);
b0b7065b 2063 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2064
c64e148a
VN
2065 /* account for padding bytes */
2066 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2067
ff0ff84a
SR
2068 /*
2069 * Save the original length to the meta data.
2070 * This will be used by the reader to add lost event
2071 * counter.
2072 */
2073 tail_page->real_end = tail;
2074
c7b09308
SR
2075 /*
2076 * If this event is bigger than the minimum size, then
2077 * we need to be careful that we don't subtract the
2078 * write counter enough to allow another writer to slip
2079 * in on this page.
2080 * We put in a discarded commit instead, to make sure
2081 * that this space is not used again.
2082 *
2083 * If we are less than the minimum size, we don't need to
2084 * worry about it.
2085 */
2086 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2087 /* No room for any events */
2088
2089 /* Mark the rest of the page with padding */
2090 rb_event_set_padding(event);
2091
2092 /* Set the write back to the previous setting */
2093 local_sub(length, &tail_page->write);
2094 return;
2095 }
2096
2097 /* Put in a discarded event */
2098 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2099 event->type_len = RINGBUF_TYPE_PADDING;
2100 /* time delta must be non zero */
2101 event->time_delta = 1;
c7b09308
SR
2102
2103 /* Set write to end of buffer */
2104 length = (tail + length) - BUF_PAGE_SIZE;
2105 local_sub(length, &tail_page->write);
2106}
6634ff26 2107
747e94ae
SR
2108/*
2109 * This is the slow path, force gcc not to inline it.
2110 */
2111static noinline struct ring_buffer_event *
6634ff26
SR
2112rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2113 unsigned long length, unsigned long tail,
e8bc43e8 2114 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2115{
5a50e33c 2116 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2117 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2118 struct buffer_page *next_page;
2119 int ret;
aa20ae84
SR
2120
2121 next_page = tail_page;
2122
aa20ae84
SR
2123 rb_inc_page(cpu_buffer, &next_page);
2124
aa20ae84
SR
2125 /*
2126 * If for some reason, we had an interrupt storm that made
2127 * it all the way around the buffer, bail, and warn
2128 * about it.
2129 */
2130 if (unlikely(next_page == commit_page)) {
77ae365e 2131 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2132 goto out_reset;
2133 }
2134
77ae365e
SR
2135 /*
2136 * This is where the fun begins!
2137 *
2138 * We are fighting against races between a reader that
2139 * could be on another CPU trying to swap its reader
2140 * page with the buffer head.
2141 *
2142 * We are also fighting against interrupts coming in and
2143 * moving the head or tail on us as well.
2144 *
2145 * If the next page is the head page then we have filled
2146 * the buffer, unless the commit page is still on the
2147 * reader page.
2148 */
2149 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2150
77ae365e
SR
2151 /*
2152 * If the commit is not on the reader page, then
2153 * move the header page.
2154 */
2155 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2156 /*
2157 * If we are not in overwrite mode,
2158 * this is easy, just stop here.
2159 */
2160 if (!(buffer->flags & RB_FL_OVERWRITE))
2161 goto out_reset;
2162
2163 ret = rb_handle_head_page(cpu_buffer,
2164 tail_page,
2165 next_page);
2166 if (ret < 0)
2167 goto out_reset;
2168 if (ret)
2169 goto out_again;
2170 } else {
2171 /*
2172 * We need to be careful here too. The
2173 * commit page could still be on the reader
2174 * page. We could have a small buffer, and
2175 * have filled up the buffer with events
2176 * from interrupts and such, and wrapped.
2177 *
2178 * Note, if the tail page is also the on the
2179 * reader_page, we let it move out.
2180 */
2181 if (unlikely((cpu_buffer->commit_page !=
2182 cpu_buffer->tail_page) &&
2183 (cpu_buffer->commit_page ==
2184 cpu_buffer->reader_page))) {
2185 local_inc(&cpu_buffer->commit_overrun);
2186 goto out_reset;
2187 }
aa20ae84
SR
2188 }
2189 }
2190
77ae365e
SR
2191 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2192 if (ret) {
2193 /*
2194 * Nested commits always have zero deltas, so
2195 * just reread the time stamp
2196 */
e8bc43e8
SR
2197 ts = rb_time_stamp(buffer);
2198 next_page->page->time_stamp = ts;
aa20ae84
SR
2199 }
2200
77ae365e 2201 out_again:
aa20ae84 2202
77ae365e 2203 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2204
2205 /* fail and let the caller try again */
2206 return ERR_PTR(-EAGAIN);
2207
45141d46 2208 out_reset:
6f3b3440 2209 /* reset write */
c7b09308 2210 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2211
bf41a158 2212 return NULL;
7a8e76a3
SR
2213}
2214
6634ff26
SR
2215static struct ring_buffer_event *
2216__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2217 unsigned long length, u64 ts,
2218 u64 delta, int add_timestamp)
6634ff26 2219{
5a50e33c 2220 struct buffer_page *tail_page;
6634ff26
SR
2221 struct ring_buffer_event *event;
2222 unsigned long tail, write;
2223
69d1b839
SR
2224 /*
2225 * If the time delta since the last event is too big to
2226 * hold in the time field of the event, then we append a
2227 * TIME EXTEND event ahead of the data event.
2228 */
2229 if (unlikely(add_timestamp))
2230 length += RB_LEN_TIME_EXTEND;
2231
6634ff26
SR
2232 tail_page = cpu_buffer->tail_page;
2233 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2234
2235 /* set write to only the index of the write */
2236 write &= RB_WRITE_MASK;
6634ff26
SR
2237 tail = write - length;
2238
2239 /* See if we shot pass the end of this buffer page */
747e94ae 2240 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2241 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2242 tail_page, ts);
6634ff26
SR
2243
2244 /* We reserved something on the buffer */
2245
6634ff26 2246 event = __rb_page_index(tail_page, tail);
1744a21d 2247 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2248 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2249
69d1b839 2250 local_inc(&tail_page->entries);
6634ff26
SR
2251
2252 /*
fa743953
SR
2253 * If this is the first commit on the page, then update
2254 * its timestamp.
6634ff26 2255 */
fa743953 2256 if (!tail)
e8bc43e8 2257 tail_page->page->time_stamp = ts;
6634ff26 2258
c64e148a
VN
2259 /* account for these added bytes */
2260 local_add(length, &cpu_buffer->entries_bytes);
2261
6634ff26
SR
2262 return event;
2263}
2264
edd813bf
SR
2265static inline int
2266rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2267 struct ring_buffer_event *event)
2268{
2269 unsigned long new_index, old_index;
2270 struct buffer_page *bpage;
2271 unsigned long index;
2272 unsigned long addr;
2273
2274 new_index = rb_event_index(event);
69d1b839 2275 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2276 addr = (unsigned long)event;
2277 addr &= PAGE_MASK;
2278
2279 bpage = cpu_buffer->tail_page;
2280
2281 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2282 unsigned long write_mask =
2283 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2284 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2285 /*
2286 * This is on the tail page. It is possible that
2287 * a write could come in and move the tail page
2288 * and write to the next page. That is fine
2289 * because we just shorten what is on this page.
2290 */
77ae365e
SR
2291 old_index += write_mask;
2292 new_index += write_mask;
edd813bf 2293 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2294 if (index == old_index) {
2295 /* update counters */
2296 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2297 return 1;
c64e148a 2298 }
edd813bf
SR
2299 }
2300
2301 /* could not discard */
2302 return 0;
2303}
2304
fa743953
SR
2305static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2306{
2307 local_inc(&cpu_buffer->committing);
2308 local_inc(&cpu_buffer->commits);
2309}
2310
d9abde21 2311static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2312{
2313 unsigned long commits;
2314
2315 if (RB_WARN_ON(cpu_buffer,
2316 !local_read(&cpu_buffer->committing)))
2317 return;
2318
2319 again:
2320 commits = local_read(&cpu_buffer->commits);
2321 /* synchronize with interrupts */
2322 barrier();
2323 if (local_read(&cpu_buffer->committing) == 1)
2324 rb_set_commit_to_write(cpu_buffer);
2325
2326 local_dec(&cpu_buffer->committing);
2327
2328 /* synchronize with interrupts */
2329 barrier();
2330
2331 /*
2332 * Need to account for interrupts coming in between the
2333 * updating of the commit page and the clearing of the
2334 * committing counter.
2335 */
2336 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2337 !local_read(&cpu_buffer->committing)) {
2338 local_inc(&cpu_buffer->committing);
2339 goto again;
2340 }
2341}
2342
7a8e76a3 2343static struct ring_buffer_event *
62f0b3eb
SR
2344rb_reserve_next_event(struct ring_buffer *buffer,
2345 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2346 unsigned long length)
7a8e76a3
SR
2347{
2348 struct ring_buffer_event *event;
69d1b839 2349 u64 ts, delta;
818e3dd3 2350 int nr_loops = 0;
69d1b839 2351 int add_timestamp;
140ff891 2352 u64 diff;
7a8e76a3 2353
fa743953
SR
2354 rb_start_commit(cpu_buffer);
2355
85bac32c 2356#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2357 /*
2358 * Due to the ability to swap a cpu buffer from a buffer
2359 * it is possible it was swapped before we committed.
2360 * (committing stops a swap). We check for it here and
2361 * if it happened, we have to fail the write.
2362 */
2363 barrier();
2364 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2365 local_dec(&cpu_buffer->committing);
2366 local_dec(&cpu_buffer->commits);
2367 return NULL;
2368 }
85bac32c 2369#endif
62f0b3eb 2370
be957c44 2371 length = rb_calculate_event_length(length);
bf41a158 2372 again:
69d1b839
SR
2373 add_timestamp = 0;
2374 delta = 0;
2375
818e3dd3
SR
2376 /*
2377 * We allow for interrupts to reenter here and do a trace.
2378 * If one does, it will cause this original code to loop
2379 * back here. Even with heavy interrupts happening, this
2380 * should only happen a few times in a row. If this happens
2381 * 1000 times in a row, there must be either an interrupt
2382 * storm or we have something buggy.
2383 * Bail!
2384 */
3e89c7bb 2385 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2386 goto out_fail;
818e3dd3 2387
6d3f1e12 2388 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2389 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2390
140ff891
SR
2391 /* make sure this diff is calculated here */
2392 barrier();
bf41a158 2393
140ff891
SR
2394 /* Did the write stamp get updated already? */
2395 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2396 delta = diff;
2397 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2398 int local_clock_stable = 1;
2399#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2400 local_clock_stable = sched_clock_stable;
2401#endif
69d1b839 2402 WARN_ONCE(delta > (1ULL << 59),
31274d72 2403 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2404 (unsigned long long)delta,
2405 (unsigned long long)ts,
31274d72
JO
2406 (unsigned long long)cpu_buffer->write_stamp,
2407 local_clock_stable ? "" :
2408 "If you just came from a suspend/resume,\n"
2409 "please switch to the trace global clock:\n"
2410 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2411 add_timestamp = 1;
7a8e76a3 2412 }
168b6b1d 2413 }
7a8e76a3 2414
69d1b839
SR
2415 event = __rb_reserve_next(cpu_buffer, length, ts,
2416 delta, add_timestamp);
168b6b1d 2417 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2418 goto again;
2419
fa743953
SR
2420 if (!event)
2421 goto out_fail;
7a8e76a3 2422
7a8e76a3 2423 return event;
fa743953
SR
2424
2425 out_fail:
2426 rb_end_commit(cpu_buffer);
2427 return NULL;
7a8e76a3
SR
2428}
2429
1155de47
PM
2430#ifdef CONFIG_TRACING
2431
aa18efb2 2432#define TRACE_RECURSIVE_DEPTH 16
261842b7 2433
d9abde21
SR
2434/* Keep this code out of the fast path cache */
2435static noinline void trace_recursive_fail(void)
261842b7 2436{
aa18efb2
SR
2437 /* Disable all tracing before we do anything else */
2438 tracing_off_permanent();
261842b7 2439
7d7d2b80 2440 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2441 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2442 trace_recursion_buffer(),
aa18efb2
SR
2443 hardirq_count() >> HARDIRQ_SHIFT,
2444 softirq_count() >> SOFTIRQ_SHIFT,
2445 in_nmi());
261842b7 2446
aa18efb2 2447 WARN_ON_ONCE(1);
d9abde21
SR
2448}
2449
2450static inline int trace_recursive_lock(void)
2451{
b1cff0ad 2452 trace_recursion_inc();
d9abde21 2453
b1cff0ad 2454 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2455 return 0;
2456
2457 trace_recursive_fail();
2458
aa18efb2 2459 return -1;
261842b7
SR
2460}
2461
d9abde21 2462static inline void trace_recursive_unlock(void)
261842b7 2463{
b1cff0ad 2464 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2465
b1cff0ad 2466 trace_recursion_dec();
261842b7
SR
2467}
2468
1155de47
PM
2469#else
2470
2471#define trace_recursive_lock() (0)
2472#define trace_recursive_unlock() do { } while (0)
2473
2474#endif
2475
7a8e76a3
SR
2476/**
2477 * ring_buffer_lock_reserve - reserve a part of the buffer
2478 * @buffer: the ring buffer to reserve from
2479 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2480 *
2481 * Returns a reseverd event on the ring buffer to copy directly to.
2482 * The user of this interface will need to get the body to write into
2483 * and can use the ring_buffer_event_data() interface.
2484 *
2485 * The length is the length of the data needed, not the event length
2486 * which also includes the event header.
2487 *
2488 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2489 * If NULL is returned, then nothing has been allocated or locked.
2490 */
2491struct ring_buffer_event *
0a987751 2492ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2493{
2494 struct ring_buffer_per_cpu *cpu_buffer;
2495 struct ring_buffer_event *event;
5168ae50 2496 int cpu;
7a8e76a3 2497
033601a3 2498 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2499 return NULL;
2500
bf41a158 2501 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2502 preempt_disable_notrace();
bf41a158 2503
52fbe9cd
LJ
2504 if (atomic_read(&buffer->record_disabled))
2505 goto out_nocheck;
2506
261842b7
SR
2507 if (trace_recursive_lock())
2508 goto out_nocheck;
2509
7a8e76a3
SR
2510 cpu = raw_smp_processor_id();
2511
9e01c1b7 2512 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2513 goto out;
7a8e76a3
SR
2514
2515 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2516
2517 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2518 goto out;
7a8e76a3 2519
be957c44 2520 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2521 goto out;
7a8e76a3 2522
62f0b3eb 2523 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2524 if (!event)
d769041f 2525 goto out;
7a8e76a3
SR
2526
2527 return event;
2528
d769041f 2529 out:
261842b7
SR
2530 trace_recursive_unlock();
2531
2532 out_nocheck:
5168ae50 2533 preempt_enable_notrace();
7a8e76a3
SR
2534 return NULL;
2535}
c4f50183 2536EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2537
a1863c21
SR
2538static void
2539rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2540 struct ring_buffer_event *event)
2541{
69d1b839
SR
2542 u64 delta;
2543
fa743953
SR
2544 /*
2545 * The event first in the commit queue updates the
2546 * time stamp.
2547 */
69d1b839
SR
2548 if (rb_event_is_commit(cpu_buffer, event)) {
2549 /*
2550 * A commit event that is first on a page
2551 * updates the write timestamp with the page stamp
2552 */
2553 if (!rb_event_index(event))
2554 cpu_buffer->write_stamp =
2555 cpu_buffer->commit_page->page->time_stamp;
2556 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2557 delta = event->array[0];
2558 delta <<= TS_SHIFT;
2559 delta += event->time_delta;
2560 cpu_buffer->write_stamp += delta;
2561 } else
2562 cpu_buffer->write_stamp += event->time_delta;
2563 }
a1863c21 2564}
bf41a158 2565
a1863c21
SR
2566static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2567 struct ring_buffer_event *event)
2568{
2569 local_inc(&cpu_buffer->entries);
2570 rb_update_write_stamp(cpu_buffer, event);
fa743953 2571 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2572}
2573
2574/**
2575 * ring_buffer_unlock_commit - commit a reserved
2576 * @buffer: The buffer to commit to
2577 * @event: The event pointer to commit.
7a8e76a3
SR
2578 *
2579 * This commits the data to the ring buffer, and releases any locks held.
2580 *
2581 * Must be paired with ring_buffer_lock_reserve.
2582 */
2583int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2584 struct ring_buffer_event *event)
7a8e76a3
SR
2585{
2586 struct ring_buffer_per_cpu *cpu_buffer;
2587 int cpu = raw_smp_processor_id();
2588
2589 cpu_buffer = buffer->buffers[cpu];
2590
7a8e76a3
SR
2591 rb_commit(cpu_buffer, event);
2592
261842b7
SR
2593 trace_recursive_unlock();
2594
5168ae50 2595 preempt_enable_notrace();
7a8e76a3
SR
2596
2597 return 0;
2598}
c4f50183 2599EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2600
f3b9aae1
FW
2601static inline void rb_event_discard(struct ring_buffer_event *event)
2602{
69d1b839
SR
2603 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2604 event = skip_time_extend(event);
2605
334d4169
LJ
2606 /* array[0] holds the actual length for the discarded event */
2607 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2608 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2609 /* time delta must be non zero */
2610 if (!event->time_delta)
2611 event->time_delta = 1;
2612}
2613
a1863c21
SR
2614/*
2615 * Decrement the entries to the page that an event is on.
2616 * The event does not even need to exist, only the pointer
2617 * to the page it is on. This may only be called before the commit
2618 * takes place.
2619 */
2620static inline void
2621rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2622 struct ring_buffer_event *event)
2623{
2624 unsigned long addr = (unsigned long)event;
2625 struct buffer_page *bpage = cpu_buffer->commit_page;
2626 struct buffer_page *start;
2627
2628 addr &= PAGE_MASK;
2629
2630 /* Do the likely case first */
2631 if (likely(bpage->page == (void *)addr)) {
2632 local_dec(&bpage->entries);
2633 return;
2634 }
2635
2636 /*
2637 * Because the commit page may be on the reader page we
2638 * start with the next page and check the end loop there.
2639 */
2640 rb_inc_page(cpu_buffer, &bpage);
2641 start = bpage;
2642 do {
2643 if (bpage->page == (void *)addr) {
2644 local_dec(&bpage->entries);
2645 return;
2646 }
2647 rb_inc_page(cpu_buffer, &bpage);
2648 } while (bpage != start);
2649
2650 /* commit not part of this buffer?? */
2651 RB_WARN_ON(cpu_buffer, 1);
2652}
2653
fa1b47dd
SR
2654/**
2655 * ring_buffer_commit_discard - discard an event that has not been committed
2656 * @buffer: the ring buffer
2657 * @event: non committed event to discard
2658 *
dc892f73
SR
2659 * Sometimes an event that is in the ring buffer needs to be ignored.
2660 * This function lets the user discard an event in the ring buffer
2661 * and then that event will not be read later.
2662 *
2663 * This function only works if it is called before the the item has been
2664 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2665 * if another event has not been added behind it.
2666 *
2667 * If another event has been added behind it, it will set the event
2668 * up as discarded, and perform the commit.
2669 *
2670 * If this function is called, do not call ring_buffer_unlock_commit on
2671 * the event.
2672 */
2673void ring_buffer_discard_commit(struct ring_buffer *buffer,
2674 struct ring_buffer_event *event)
2675{
2676 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2677 int cpu;
2678
2679 /* The event is discarded regardless */
f3b9aae1 2680 rb_event_discard(event);
fa1b47dd 2681
fa743953
SR
2682 cpu = smp_processor_id();
2683 cpu_buffer = buffer->buffers[cpu];
2684
fa1b47dd
SR
2685 /*
2686 * This must only be called if the event has not been
2687 * committed yet. Thus we can assume that preemption
2688 * is still disabled.
2689 */
fa743953 2690 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2691
a1863c21 2692 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2693 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2694 goto out;
fa1b47dd
SR
2695
2696 /*
2697 * The commit is still visible by the reader, so we
a1863c21 2698 * must still update the timestamp.
fa1b47dd 2699 */
a1863c21 2700 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2701 out:
fa743953 2702 rb_end_commit(cpu_buffer);
fa1b47dd 2703
f3b9aae1
FW
2704 trace_recursive_unlock();
2705
5168ae50 2706 preempt_enable_notrace();
fa1b47dd
SR
2707
2708}
2709EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2710
7a8e76a3
SR
2711/**
2712 * ring_buffer_write - write data to the buffer without reserving
2713 * @buffer: The ring buffer to write to.
2714 * @length: The length of the data being written (excluding the event header)
2715 * @data: The data to write to the buffer.
2716 *
2717 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2718 * one function. If you already have the data to write to the buffer, it
2719 * may be easier to simply call this function.
2720 *
2721 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2722 * and not the length of the event which would hold the header.
2723 */
2724int ring_buffer_write(struct ring_buffer *buffer,
2725 unsigned long length,
2726 void *data)
2727{
2728 struct ring_buffer_per_cpu *cpu_buffer;
2729 struct ring_buffer_event *event;
7a8e76a3
SR
2730 void *body;
2731 int ret = -EBUSY;
5168ae50 2732 int cpu;
7a8e76a3 2733
033601a3 2734 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2735 return -EBUSY;
2736
5168ae50 2737 preempt_disable_notrace();
bf41a158 2738
52fbe9cd
LJ
2739 if (atomic_read(&buffer->record_disabled))
2740 goto out;
2741
7a8e76a3
SR
2742 cpu = raw_smp_processor_id();
2743
9e01c1b7 2744 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2745 goto out;
7a8e76a3
SR
2746
2747 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2748
2749 if (atomic_read(&cpu_buffer->record_disabled))
2750 goto out;
2751
be957c44
SR
2752 if (length > BUF_MAX_DATA_SIZE)
2753 goto out;
2754
62f0b3eb 2755 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2756 if (!event)
2757 goto out;
2758
2759 body = rb_event_data(event);
2760
2761 memcpy(body, data, length);
2762
2763 rb_commit(cpu_buffer, event);
2764
2765 ret = 0;
2766 out:
5168ae50 2767 preempt_enable_notrace();
7a8e76a3
SR
2768
2769 return ret;
2770}
c4f50183 2771EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2772
34a148bf 2773static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2774{
2775 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2776 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2777 struct buffer_page *commit = cpu_buffer->commit_page;
2778
77ae365e
SR
2779 /* In case of error, head will be NULL */
2780 if (unlikely(!head))
2781 return 1;
2782
bf41a158
SR
2783 return reader->read == rb_page_commit(reader) &&
2784 (commit == reader ||
2785 (commit == head &&
2786 head->read == rb_page_commit(commit)));
2787}
2788
7a8e76a3
SR
2789/**
2790 * ring_buffer_record_disable - stop all writes into the buffer
2791 * @buffer: The ring buffer to stop writes to.
2792 *
2793 * This prevents all writes to the buffer. Any attempt to write
2794 * to the buffer after this will fail and return NULL.
2795 *
2796 * The caller should call synchronize_sched() after this.
2797 */
2798void ring_buffer_record_disable(struct ring_buffer *buffer)
2799{
2800 atomic_inc(&buffer->record_disabled);
2801}
c4f50183 2802EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2803
2804/**
2805 * ring_buffer_record_enable - enable writes to the buffer
2806 * @buffer: The ring buffer to enable writes
2807 *
2808 * Note, multiple disables will need the same number of enables
c41b20e7 2809 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2810 */
2811void ring_buffer_record_enable(struct ring_buffer *buffer)
2812{
2813 atomic_dec(&buffer->record_disabled);
2814}
c4f50183 2815EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 2816
499e5470
SR
2817/**
2818 * ring_buffer_record_off - stop all writes into the buffer
2819 * @buffer: The ring buffer to stop writes to.
2820 *
2821 * This prevents all writes to the buffer. Any attempt to write
2822 * to the buffer after this will fail and return NULL.
2823 *
2824 * This is different than ring_buffer_record_disable() as
87abb3b1 2825 * it works like an on/off switch, where as the disable() version
499e5470
SR
2826 * must be paired with a enable().
2827 */
2828void ring_buffer_record_off(struct ring_buffer *buffer)
2829{
2830 unsigned int rd;
2831 unsigned int new_rd;
2832
2833 do {
2834 rd = atomic_read(&buffer->record_disabled);
2835 new_rd = rd | RB_BUFFER_OFF;
2836 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2837}
2838EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2839
2840/**
2841 * ring_buffer_record_on - restart writes into the buffer
2842 * @buffer: The ring buffer to start writes to.
2843 *
2844 * This enables all writes to the buffer that was disabled by
2845 * ring_buffer_record_off().
2846 *
2847 * This is different than ring_buffer_record_enable() as
87abb3b1 2848 * it works like an on/off switch, where as the enable() version
499e5470
SR
2849 * must be paired with a disable().
2850 */
2851void ring_buffer_record_on(struct ring_buffer *buffer)
2852{
2853 unsigned int rd;
2854 unsigned int new_rd;
2855
2856 do {
2857 rd = atomic_read(&buffer->record_disabled);
2858 new_rd = rd & ~RB_BUFFER_OFF;
2859 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2860}
2861EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2862
2863/**
2864 * ring_buffer_record_is_on - return true if the ring buffer can write
2865 * @buffer: The ring buffer to see if write is enabled
2866 *
2867 * Returns true if the ring buffer is in a state that it accepts writes.
2868 */
2869int ring_buffer_record_is_on(struct ring_buffer *buffer)
2870{
2871 return !atomic_read(&buffer->record_disabled);
2872}
2873
7a8e76a3
SR
2874/**
2875 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2876 * @buffer: The ring buffer to stop writes to.
2877 * @cpu: The CPU buffer to stop
2878 *
2879 * This prevents all writes to the buffer. Any attempt to write
2880 * to the buffer after this will fail and return NULL.
2881 *
2882 * The caller should call synchronize_sched() after this.
2883 */
2884void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2885{
2886 struct ring_buffer_per_cpu *cpu_buffer;
2887
9e01c1b7 2888 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2889 return;
7a8e76a3
SR
2890
2891 cpu_buffer = buffer->buffers[cpu];
2892 atomic_inc(&cpu_buffer->record_disabled);
2893}
c4f50183 2894EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2895
2896/**
2897 * ring_buffer_record_enable_cpu - enable writes to the buffer
2898 * @buffer: The ring buffer to enable writes
2899 * @cpu: The CPU to enable.
2900 *
2901 * Note, multiple disables will need the same number of enables
c41b20e7 2902 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2903 */
2904void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2905{
2906 struct ring_buffer_per_cpu *cpu_buffer;
2907
9e01c1b7 2908 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2909 return;
7a8e76a3
SR
2910
2911 cpu_buffer = buffer->buffers[cpu];
2912 atomic_dec(&cpu_buffer->record_disabled);
2913}
c4f50183 2914EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2915
f6195aa0
SR
2916/*
2917 * The total entries in the ring buffer is the running counter
2918 * of entries entered into the ring buffer, minus the sum of
2919 * the entries read from the ring buffer and the number of
2920 * entries that were overwritten.
2921 */
2922static inline unsigned long
2923rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2924{
2925 return local_read(&cpu_buffer->entries) -
2926 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2927}
2928
c64e148a
VN
2929/**
2930 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2931 * @buffer: The ring buffer
2932 * @cpu: The per CPU buffer to read from.
2933 */
2934unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2935{
2936 unsigned long flags;
2937 struct ring_buffer_per_cpu *cpu_buffer;
2938 struct buffer_page *bpage;
54f7be5b 2939 unsigned long ret = 0;
c64e148a
VN
2940
2941 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2942 return 0;
2943
2944 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2945 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2946 /*
2947 * if the tail is on reader_page, oldest time stamp is on the reader
2948 * page
2949 */
2950 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2951 bpage = cpu_buffer->reader_page;
2952 else
2953 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
2954 if (bpage)
2955 ret = bpage->page->time_stamp;
7115e3fc 2956 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2957
2958 return ret;
2959}
2960EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2961
2962/**
2963 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2964 * @buffer: The ring buffer
2965 * @cpu: The per CPU buffer to read from.
2966 */
2967unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2968{
2969 struct ring_buffer_per_cpu *cpu_buffer;
2970 unsigned long ret;
2971
2972 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2973 return 0;
2974
2975 cpu_buffer = buffer->buffers[cpu];
2976 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2977
2978 return ret;
2979}
2980EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2981
7a8e76a3
SR
2982/**
2983 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2984 * @buffer: The ring buffer
2985 * @cpu: The per CPU buffer to get the entries from.
2986 */
2987unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2988{
2989 struct ring_buffer_per_cpu *cpu_buffer;
2990
9e01c1b7 2991 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2992 return 0;
7a8e76a3
SR
2993
2994 cpu_buffer = buffer->buffers[cpu];
554f786e 2995
f6195aa0 2996 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2997}
c4f50183 2998EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2999
3000/**
3001 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
3002 * @buffer: The ring buffer
3003 * @cpu: The per CPU buffer to get the number of overruns from
3004 */
3005unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3006{
3007 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3008 unsigned long ret;
7a8e76a3 3009
9e01c1b7 3010 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3011 return 0;
7a8e76a3
SR
3012
3013 cpu_buffer = buffer->buffers[cpu];
77ae365e 3014 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3015
3016 return ret;
7a8e76a3 3017}
c4f50183 3018EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3019
f0d2c681
SR
3020/**
3021 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3022 * @buffer: The ring buffer
3023 * @cpu: The per CPU buffer to get the number of overruns from
3024 */
3025unsigned long
3026ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3027{
3028 struct ring_buffer_per_cpu *cpu_buffer;
3029 unsigned long ret;
3030
3031 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3032 return 0;
3033
3034 cpu_buffer = buffer->buffers[cpu];
77ae365e 3035 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3036
3037 return ret;
3038}
3039EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3040
7a8e76a3
SR
3041/**
3042 * ring_buffer_entries - get the number of entries in a buffer
3043 * @buffer: The ring buffer
3044 *
3045 * Returns the total number of entries in the ring buffer
3046 * (all CPU entries)
3047 */
3048unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3049{
3050 struct ring_buffer_per_cpu *cpu_buffer;
3051 unsigned long entries = 0;
3052 int cpu;
3053
3054 /* if you care about this being correct, lock the buffer */
3055 for_each_buffer_cpu(buffer, cpu) {
3056 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3057 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3058 }
3059
3060 return entries;
3061}
c4f50183 3062EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3063
3064/**
67b394f7 3065 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3066 * @buffer: The ring buffer
3067 *
3068 * Returns the total number of overruns in the ring buffer
3069 * (all CPU entries)
3070 */
3071unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3072{
3073 struct ring_buffer_per_cpu *cpu_buffer;
3074 unsigned long overruns = 0;
3075 int cpu;
3076
3077 /* if you care about this being correct, lock the buffer */
3078 for_each_buffer_cpu(buffer, cpu) {
3079 cpu_buffer = buffer->buffers[cpu];
77ae365e 3080 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3081 }
3082
3083 return overruns;
3084}
c4f50183 3085EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3086
642edba5 3087static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3088{
3089 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3090
d769041f
SR
3091 /* Iterator usage is expected to have record disabled */
3092 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3093 iter->head_page = rb_set_head_page(cpu_buffer);
3094 if (unlikely(!iter->head_page))
3095 return;
3096 iter->head = iter->head_page->read;
d769041f
SR
3097 } else {
3098 iter->head_page = cpu_buffer->reader_page;
6f807acd 3099 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3100 }
3101 if (iter->head)
3102 iter->read_stamp = cpu_buffer->read_stamp;
3103 else
abc9b56d 3104 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3105 iter->cache_reader_page = cpu_buffer->reader_page;
3106 iter->cache_read = cpu_buffer->read;
642edba5 3107}
f83c9d0f 3108
642edba5
SR
3109/**
3110 * ring_buffer_iter_reset - reset an iterator
3111 * @iter: The iterator to reset
3112 *
3113 * Resets the iterator, so that it will start from the beginning
3114 * again.
3115 */
3116void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3117{
554f786e 3118 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3119 unsigned long flags;
3120
554f786e
SR
3121 if (!iter)
3122 return;
3123
3124 cpu_buffer = iter->cpu_buffer;
3125
5389f6fa 3126 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3127 rb_iter_reset(iter);
5389f6fa 3128 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3129}
c4f50183 3130EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3131
3132/**
3133 * ring_buffer_iter_empty - check if an iterator has no more to read
3134 * @iter: The iterator to check
3135 */
3136int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3137{
3138 struct ring_buffer_per_cpu *cpu_buffer;
3139
3140 cpu_buffer = iter->cpu_buffer;
3141
bf41a158
SR
3142 return iter->head_page == cpu_buffer->commit_page &&
3143 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3144}
c4f50183 3145EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3146
3147static void
3148rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3149 struct ring_buffer_event *event)
3150{
3151 u64 delta;
3152
334d4169 3153 switch (event->type_len) {
7a8e76a3
SR
3154 case RINGBUF_TYPE_PADDING:
3155 return;
3156
3157 case RINGBUF_TYPE_TIME_EXTEND:
3158 delta = event->array[0];
3159 delta <<= TS_SHIFT;
3160 delta += event->time_delta;
3161 cpu_buffer->read_stamp += delta;
3162 return;
3163
3164 case RINGBUF_TYPE_TIME_STAMP:
3165 /* FIXME: not implemented */
3166 return;
3167
3168 case RINGBUF_TYPE_DATA:
3169 cpu_buffer->read_stamp += event->time_delta;
3170 return;
3171
3172 default:
3173 BUG();
3174 }
3175 return;
3176}
3177
3178static void
3179rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3180 struct ring_buffer_event *event)
3181{
3182 u64 delta;
3183
334d4169 3184 switch (event->type_len) {
7a8e76a3
SR
3185 case RINGBUF_TYPE_PADDING:
3186 return;
3187
3188 case RINGBUF_TYPE_TIME_EXTEND:
3189 delta = event->array[0];
3190 delta <<= TS_SHIFT;
3191 delta += event->time_delta;
3192 iter->read_stamp += delta;
3193 return;
3194
3195 case RINGBUF_TYPE_TIME_STAMP:
3196 /* FIXME: not implemented */
3197 return;
3198
3199 case RINGBUF_TYPE_DATA:
3200 iter->read_stamp += event->time_delta;
3201 return;
3202
3203 default:
3204 BUG();
3205 }
3206 return;
3207}
3208
d769041f
SR
3209static struct buffer_page *
3210rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3211{
d769041f 3212 struct buffer_page *reader = NULL;
66a8cb95 3213 unsigned long overwrite;
d769041f 3214 unsigned long flags;
818e3dd3 3215 int nr_loops = 0;
77ae365e 3216 int ret;
d769041f 3217
3e03fb7f 3218 local_irq_save(flags);
0199c4e6 3219 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3220
3221 again:
818e3dd3
SR
3222 /*
3223 * This should normally only loop twice. But because the
3224 * start of the reader inserts an empty page, it causes
3225 * a case where we will loop three times. There should be no
3226 * reason to loop four times (that I know of).
3227 */
3e89c7bb 3228 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3229 reader = NULL;
3230 goto out;
3231 }
3232
d769041f
SR
3233 reader = cpu_buffer->reader_page;
3234
3235 /* If there's more to read, return this page */
bf41a158 3236 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3237 goto out;
3238
3239 /* Never should we have an index greater than the size */
3e89c7bb
SR
3240 if (RB_WARN_ON(cpu_buffer,
3241 cpu_buffer->reader_page->read > rb_page_size(reader)))
3242 goto out;
d769041f
SR
3243
3244 /* check if we caught up to the tail */
3245 reader = NULL;
bf41a158 3246 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3247 goto out;
7a8e76a3 3248
a5fb8331
SR
3249 /* Don't bother swapping if the ring buffer is empty */
3250 if (rb_num_of_entries(cpu_buffer) == 0)
3251 goto out;
3252
7a8e76a3 3253 /*
d769041f 3254 * Reset the reader page to size zero.
7a8e76a3 3255 */
77ae365e
SR
3256 local_set(&cpu_buffer->reader_page->write, 0);
3257 local_set(&cpu_buffer->reader_page->entries, 0);
3258 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3259 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3260
77ae365e
SR
3261 spin:
3262 /*
3263 * Splice the empty reader page into the list around the head.
3264 */
3265 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3266 if (!reader)
3267 goto out;
0e1ff5d7 3268 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3269 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3270
3adc54fa
SR
3271 /*
3272 * cpu_buffer->pages just needs to point to the buffer, it
3273 * has no specific buffer page to point to. Lets move it out
25985edc 3274 * of our way so we don't accidentally swap it.
3adc54fa
SR
3275 */
3276 cpu_buffer->pages = reader->list.prev;
3277
77ae365e
SR
3278 /* The reader page will be pointing to the new head */
3279 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3280
66a8cb95
SR
3281 /*
3282 * We want to make sure we read the overruns after we set up our
3283 * pointers to the next object. The writer side does a
3284 * cmpxchg to cross pages which acts as the mb on the writer
3285 * side. Note, the reader will constantly fail the swap
3286 * while the writer is updating the pointers, so this
3287 * guarantees that the overwrite recorded here is the one we
3288 * want to compare with the last_overrun.
3289 */
3290 smp_mb();
3291 overwrite = local_read(&(cpu_buffer->overrun));
3292
77ae365e
SR
3293 /*
3294 * Here's the tricky part.
3295 *
3296 * We need to move the pointer past the header page.
3297 * But we can only do that if a writer is not currently
3298 * moving it. The page before the header page has the
3299 * flag bit '1' set if it is pointing to the page we want.
3300 * but if the writer is in the process of moving it
3301 * than it will be '2' or already moved '0'.
3302 */
3303
3304 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3305
3306 /*
77ae365e 3307 * If we did not convert it, then we must try again.
7a8e76a3 3308 */
77ae365e
SR
3309 if (!ret)
3310 goto spin;
7a8e76a3 3311
77ae365e
SR
3312 /*
3313 * Yeah! We succeeded in replacing the page.
3314 *
3315 * Now make the new head point back to the reader page.
3316 */
5ded3dc6 3317 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3318 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3319
3320 /* Finally update the reader page to the new head */
3321 cpu_buffer->reader_page = reader;
3322 rb_reset_reader_page(cpu_buffer);
3323
66a8cb95
SR
3324 if (overwrite != cpu_buffer->last_overrun) {
3325 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3326 cpu_buffer->last_overrun = overwrite;
3327 }
3328
d769041f
SR
3329 goto again;
3330
3331 out:
0199c4e6 3332 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3333 local_irq_restore(flags);
d769041f
SR
3334
3335 return reader;
3336}
3337
3338static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3339{
3340 struct ring_buffer_event *event;
3341 struct buffer_page *reader;
3342 unsigned length;
3343
3344 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3345
d769041f 3346 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3347 if (RB_WARN_ON(cpu_buffer, !reader))
3348 return;
7a8e76a3 3349
d769041f
SR
3350 event = rb_reader_event(cpu_buffer);
3351
a1863c21 3352 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3353 cpu_buffer->read++;
d769041f
SR
3354
3355 rb_update_read_stamp(cpu_buffer, event);
3356
3357 length = rb_event_length(event);
6f807acd 3358 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3359}
3360
3361static void rb_advance_iter(struct ring_buffer_iter *iter)
3362{
7a8e76a3
SR
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364 struct ring_buffer_event *event;
3365 unsigned length;
3366
3367 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3368
3369 /*
3370 * Check if we are at the end of the buffer.
3371 */
bf41a158 3372 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3373 /* discarded commits can make the page empty */
3374 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3375 return;
d769041f 3376 rb_inc_iter(iter);
7a8e76a3
SR
3377 return;
3378 }
3379
3380 event = rb_iter_head_event(iter);
3381
3382 length = rb_event_length(event);
3383
3384 /*
3385 * This should not be called to advance the header if we are
3386 * at the tail of the buffer.
3387 */
3e89c7bb 3388 if (RB_WARN_ON(cpu_buffer,
f536aafc 3389 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3390 (iter->head + length > rb_commit_index(cpu_buffer))))
3391 return;
7a8e76a3
SR
3392
3393 rb_update_iter_read_stamp(iter, event);
3394
3395 iter->head += length;
3396
3397 /* check for end of page padding */
bf41a158
SR
3398 if ((iter->head >= rb_page_size(iter->head_page)) &&
3399 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3400 rb_advance_iter(iter);
3401}
3402
66a8cb95
SR
3403static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3404{
3405 return cpu_buffer->lost_events;
3406}
3407
f83c9d0f 3408static struct ring_buffer_event *
66a8cb95
SR
3409rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3410 unsigned long *lost_events)
7a8e76a3 3411{
7a8e76a3 3412 struct ring_buffer_event *event;
d769041f 3413 struct buffer_page *reader;
818e3dd3 3414 int nr_loops = 0;
7a8e76a3 3415
7a8e76a3 3416 again:
818e3dd3 3417 /*
69d1b839
SR
3418 * We repeat when a time extend is encountered.
3419 * Since the time extend is always attached to a data event,
3420 * we should never loop more than once.
3421 * (We never hit the following condition more than twice).
818e3dd3 3422 */
69d1b839 3423 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3424 return NULL;
818e3dd3 3425
d769041f
SR
3426 reader = rb_get_reader_page(cpu_buffer);
3427 if (!reader)
7a8e76a3
SR
3428 return NULL;
3429
d769041f 3430 event = rb_reader_event(cpu_buffer);
7a8e76a3 3431
334d4169 3432 switch (event->type_len) {
7a8e76a3 3433 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3434 if (rb_null_event(event))
3435 RB_WARN_ON(cpu_buffer, 1);
3436 /*
3437 * Because the writer could be discarding every
3438 * event it creates (which would probably be bad)
3439 * if we were to go back to "again" then we may never
3440 * catch up, and will trigger the warn on, or lock
3441 * the box. Return the padding, and we will release
3442 * the current locks, and try again.
3443 */
2d622719 3444 return event;
7a8e76a3
SR
3445
3446 case RINGBUF_TYPE_TIME_EXTEND:
3447 /* Internal data, OK to advance */
d769041f 3448 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3449 goto again;
3450
3451 case RINGBUF_TYPE_TIME_STAMP:
3452 /* FIXME: not implemented */
d769041f 3453 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3454 goto again;
3455
3456 case RINGBUF_TYPE_DATA:
3457 if (ts) {
3458 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3459 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3460 cpu_buffer->cpu, ts);
7a8e76a3 3461 }
66a8cb95
SR
3462 if (lost_events)
3463 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3464 return event;
3465
3466 default:
3467 BUG();
3468 }
3469
3470 return NULL;
3471}
c4f50183 3472EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3473
f83c9d0f
SR
3474static struct ring_buffer_event *
3475rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3476{
3477 struct ring_buffer *buffer;
3478 struct ring_buffer_per_cpu *cpu_buffer;
3479 struct ring_buffer_event *event;
818e3dd3 3480 int nr_loops = 0;
7a8e76a3 3481
7a8e76a3
SR
3482 cpu_buffer = iter->cpu_buffer;
3483 buffer = cpu_buffer->buffer;
3484
492a74f4
SR
3485 /*
3486 * Check if someone performed a consuming read to
3487 * the buffer. A consuming read invalidates the iterator
3488 * and we need to reset the iterator in this case.
3489 */
3490 if (unlikely(iter->cache_read != cpu_buffer->read ||
3491 iter->cache_reader_page != cpu_buffer->reader_page))
3492 rb_iter_reset(iter);
3493
7a8e76a3 3494 again:
3c05d748
SR
3495 if (ring_buffer_iter_empty(iter))
3496 return NULL;
3497
818e3dd3 3498 /*
69d1b839
SR
3499 * We repeat when a time extend is encountered.
3500 * Since the time extend is always attached to a data event,
3501 * we should never loop more than once.
3502 * (We never hit the following condition more than twice).
818e3dd3 3503 */
69d1b839 3504 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3505 return NULL;
818e3dd3 3506
7a8e76a3
SR
3507 if (rb_per_cpu_empty(cpu_buffer))
3508 return NULL;
3509
3c05d748
SR
3510 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3511 rb_inc_iter(iter);
3512 goto again;
3513 }
3514
7a8e76a3
SR
3515 event = rb_iter_head_event(iter);
3516
334d4169 3517 switch (event->type_len) {
7a8e76a3 3518 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3519 if (rb_null_event(event)) {
3520 rb_inc_iter(iter);
3521 goto again;
3522 }
3523 rb_advance_iter(iter);
3524 return event;
7a8e76a3
SR
3525
3526 case RINGBUF_TYPE_TIME_EXTEND:
3527 /* Internal data, OK to advance */
3528 rb_advance_iter(iter);
3529 goto again;
3530
3531 case RINGBUF_TYPE_TIME_STAMP:
3532 /* FIXME: not implemented */
3533 rb_advance_iter(iter);
3534 goto again;
3535
3536 case RINGBUF_TYPE_DATA:
3537 if (ts) {
3538 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3539 ring_buffer_normalize_time_stamp(buffer,
3540 cpu_buffer->cpu, ts);
7a8e76a3
SR
3541 }
3542 return event;
3543
3544 default:
3545 BUG();
3546 }
3547
3548 return NULL;
3549}
c4f50183 3550EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3551
8d707e8e
SR
3552static inline int rb_ok_to_lock(void)
3553{
3554 /*
3555 * If an NMI die dumps out the content of the ring buffer
3556 * do not grab locks. We also permanently disable the ring
3557 * buffer too. A one time deal is all you get from reading
3558 * the ring buffer from an NMI.
3559 */
464e85eb 3560 if (likely(!in_nmi()))
8d707e8e
SR
3561 return 1;
3562
3563 tracing_off_permanent();
3564 return 0;
3565}
3566
f83c9d0f
SR
3567/**
3568 * ring_buffer_peek - peek at the next event to be read
3569 * @buffer: The ring buffer to read
3570 * @cpu: The cpu to peak at
3571 * @ts: The timestamp counter of this event.
66a8cb95 3572 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3573 *
3574 * This will return the event that will be read next, but does
3575 * not consume the data.
3576 */
3577struct ring_buffer_event *
66a8cb95
SR
3578ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3579 unsigned long *lost_events)
f83c9d0f
SR
3580{
3581 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3582 struct ring_buffer_event *event;
f83c9d0f 3583 unsigned long flags;
8d707e8e 3584 int dolock;
f83c9d0f 3585
554f786e 3586 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3587 return NULL;
554f786e 3588
8d707e8e 3589 dolock = rb_ok_to_lock();
2d622719 3590 again:
8d707e8e
SR
3591 local_irq_save(flags);
3592 if (dolock)
5389f6fa 3593 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3594 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3595 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3596 rb_advance_reader(cpu_buffer);
8d707e8e 3597 if (dolock)
5389f6fa 3598 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3599 local_irq_restore(flags);
f83c9d0f 3600
1b959e18 3601 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3602 goto again;
2d622719 3603
f83c9d0f
SR
3604 return event;
3605}
3606
3607/**
3608 * ring_buffer_iter_peek - peek at the next event to be read
3609 * @iter: The ring buffer iterator
3610 * @ts: The timestamp counter of this event.
3611 *
3612 * This will return the event that will be read next, but does
3613 * not increment the iterator.
3614 */
3615struct ring_buffer_event *
3616ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3617{
3618 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3619 struct ring_buffer_event *event;
3620 unsigned long flags;
3621
2d622719 3622 again:
5389f6fa 3623 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3624 event = rb_iter_peek(iter, ts);
5389f6fa 3625 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3626
1b959e18 3627 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3628 goto again;
2d622719 3629
f83c9d0f
SR
3630 return event;
3631}
3632
7a8e76a3
SR
3633/**
3634 * ring_buffer_consume - return an event and consume it
3635 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3636 * @cpu: the cpu to read the buffer from
3637 * @ts: a variable to store the timestamp (may be NULL)
3638 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3639 *
3640 * Returns the next event in the ring buffer, and that event is consumed.
3641 * Meaning, that sequential reads will keep returning a different event,
3642 * and eventually empty the ring buffer if the producer is slower.
3643 */
3644struct ring_buffer_event *
66a8cb95
SR
3645ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3646 unsigned long *lost_events)
7a8e76a3 3647{
554f786e
SR
3648 struct ring_buffer_per_cpu *cpu_buffer;
3649 struct ring_buffer_event *event = NULL;
f83c9d0f 3650 unsigned long flags;
8d707e8e
SR
3651 int dolock;
3652
3653 dolock = rb_ok_to_lock();
7a8e76a3 3654
2d622719 3655 again:
554f786e
SR
3656 /* might be called in atomic */
3657 preempt_disable();
3658
9e01c1b7 3659 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3660 goto out;
7a8e76a3 3661
554f786e 3662 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3663 local_irq_save(flags);
3664 if (dolock)
5389f6fa 3665 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3666
66a8cb95
SR
3667 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3668 if (event) {
3669 cpu_buffer->lost_events = 0;
469535a5 3670 rb_advance_reader(cpu_buffer);
66a8cb95 3671 }
7a8e76a3 3672
8d707e8e 3673 if (dolock)
5389f6fa 3674 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3675 local_irq_restore(flags);
f83c9d0f 3676
554f786e
SR
3677 out:
3678 preempt_enable();
3679
1b959e18 3680 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3681 goto again;
2d622719 3682
7a8e76a3
SR
3683 return event;
3684}
c4f50183 3685EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3686
3687/**
72c9ddfd 3688 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3689 * @buffer: The ring buffer to read from
3690 * @cpu: The cpu buffer to iterate over
3691 *
72c9ddfd
DM
3692 * This performs the initial preparations necessary to iterate
3693 * through the buffer. Memory is allocated, buffer recording
3694 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3695 *
72c9ddfd
DM
3696 * Disabling buffer recordng prevents the reading from being
3697 * corrupted. This is not a consuming read, so a producer is not
3698 * expected.
3699 *
3700 * After a sequence of ring_buffer_read_prepare calls, the user is
3701 * expected to make at least one call to ring_buffer_prepare_sync.
3702 * Afterwards, ring_buffer_read_start is invoked to get things going
3703 * for real.
3704 *
3705 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3706 */
3707struct ring_buffer_iter *
72c9ddfd 3708ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3709{
3710 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3711 struct ring_buffer_iter *iter;
7a8e76a3 3712
9e01c1b7 3713 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3714 return NULL;
7a8e76a3
SR
3715
3716 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3717 if (!iter)
8aabee57 3718 return NULL;
7a8e76a3
SR
3719
3720 cpu_buffer = buffer->buffers[cpu];
3721
3722 iter->cpu_buffer = cpu_buffer;
3723
83f40318 3724 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3725 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3726
3727 return iter;
3728}
3729EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3730
3731/**
3732 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3733 *
3734 * All previously invoked ring_buffer_read_prepare calls to prepare
3735 * iterators will be synchronized. Afterwards, read_buffer_read_start
3736 * calls on those iterators are allowed.
3737 */
3738void
3739ring_buffer_read_prepare_sync(void)
3740{
7a8e76a3 3741 synchronize_sched();
72c9ddfd
DM
3742}
3743EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3744
3745/**
3746 * ring_buffer_read_start - start a non consuming read of the buffer
3747 * @iter: The iterator returned by ring_buffer_read_prepare
3748 *
3749 * This finalizes the startup of an iteration through the buffer.
3750 * The iterator comes from a call to ring_buffer_read_prepare and
3751 * an intervening ring_buffer_read_prepare_sync must have been
3752 * performed.
3753 *
3754 * Must be paired with ring_buffer_finish.
3755 */
3756void
3757ring_buffer_read_start(struct ring_buffer_iter *iter)
3758{
3759 struct ring_buffer_per_cpu *cpu_buffer;
3760 unsigned long flags;
3761
3762 if (!iter)
3763 return;
3764
3765 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3766
5389f6fa 3767 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3768 arch_spin_lock(&cpu_buffer->lock);
642edba5 3769 rb_iter_reset(iter);
0199c4e6 3770 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3771 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3772}
c4f50183 3773EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3774
3775/**
3776 * ring_buffer_finish - finish reading the iterator of the buffer
3777 * @iter: The iterator retrieved by ring_buffer_start
3778 *
3779 * This re-enables the recording to the buffer, and frees the
3780 * iterator.
3781 */
3782void
3783ring_buffer_read_finish(struct ring_buffer_iter *iter)
3784{
3785 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3786
659f451f
SR
3787 /*
3788 * Ring buffer is disabled from recording, here's a good place
3789 * to check the integrity of the ring buffer.
3790 */
3791 rb_check_pages(cpu_buffer);
3792
7a8e76a3 3793 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3794 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
3795 kfree(iter);
3796}
c4f50183 3797EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3798
3799/**
3800 * ring_buffer_read - read the next item in the ring buffer by the iterator
3801 * @iter: The ring buffer iterator
3802 * @ts: The time stamp of the event read.
3803 *
3804 * This reads the next event in the ring buffer and increments the iterator.
3805 */
3806struct ring_buffer_event *
3807ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3808{
3809 struct ring_buffer_event *event;
f83c9d0f
SR
3810 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3811 unsigned long flags;
7a8e76a3 3812
5389f6fa 3813 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3814 again:
f83c9d0f 3815 event = rb_iter_peek(iter, ts);
7a8e76a3 3816 if (!event)
f83c9d0f 3817 goto out;
7a8e76a3 3818
7e9391cf
SR
3819 if (event->type_len == RINGBUF_TYPE_PADDING)
3820 goto again;
3821
7a8e76a3 3822 rb_advance_iter(iter);
f83c9d0f 3823 out:
5389f6fa 3824 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3825
3826 return event;
3827}
c4f50183 3828EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3829
3830/**
3831 * ring_buffer_size - return the size of the ring buffer (in bytes)
3832 * @buffer: The ring buffer.
3833 */
438ced17 3834unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 3835{
438ced17
VN
3836 /*
3837 * Earlier, this method returned
3838 * BUF_PAGE_SIZE * buffer->nr_pages
3839 * Since the nr_pages field is now removed, we have converted this to
3840 * return the per cpu buffer value.
3841 */
3842 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3843 return 0;
3844
3845 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 3846}
c4f50183 3847EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3848
3849static void
3850rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3851{
77ae365e
SR
3852 rb_head_page_deactivate(cpu_buffer);
3853
7a8e76a3 3854 cpu_buffer->head_page
3adc54fa 3855 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3856 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3857 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3858 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3859
6f807acd 3860 cpu_buffer->head_page->read = 0;
bf41a158
SR
3861
3862 cpu_buffer->tail_page = cpu_buffer->head_page;
3863 cpu_buffer->commit_page = cpu_buffer->head_page;
3864
3865 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 3866 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 3867 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3868 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3869 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3870 cpu_buffer->reader_page->read = 0;
7a8e76a3 3871
77ae365e 3872 local_set(&cpu_buffer->commit_overrun, 0);
c64e148a 3873 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3874 local_set(&cpu_buffer->overrun, 0);
e4906eff 3875 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3876 local_set(&cpu_buffer->committing, 0);
3877 local_set(&cpu_buffer->commits, 0);
77ae365e 3878 cpu_buffer->read = 0;
c64e148a 3879 cpu_buffer->read_bytes = 0;
69507c06
SR
3880
3881 cpu_buffer->write_stamp = 0;
3882 cpu_buffer->read_stamp = 0;
77ae365e 3883
66a8cb95
SR
3884 cpu_buffer->lost_events = 0;
3885 cpu_buffer->last_overrun = 0;
3886
77ae365e 3887 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3888}
3889
3890/**
3891 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3892 * @buffer: The ring buffer to reset a per cpu buffer of
3893 * @cpu: The CPU buffer to be reset
3894 */
3895void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3896{
3897 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3898 unsigned long flags;
3899
9e01c1b7 3900 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3901 return;
7a8e76a3 3902
83f40318 3903 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
3904 atomic_inc(&cpu_buffer->record_disabled);
3905
83f40318
VN
3906 /* Make sure all commits have finished */
3907 synchronize_sched();
3908
5389f6fa 3909 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3910
41b6a95d
SR
3911 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3912 goto out;
3913
0199c4e6 3914 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3915
3916 rb_reset_cpu(cpu_buffer);
3917
0199c4e6 3918 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3919
41b6a95d 3920 out:
5389f6fa 3921 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3922
3923 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3924 atomic_dec(&buffer->resize_disabled);
7a8e76a3 3925}
c4f50183 3926EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3927
3928/**
3929 * ring_buffer_reset - reset a ring buffer
3930 * @buffer: The ring buffer to reset all cpu buffers
3931 */
3932void ring_buffer_reset(struct ring_buffer *buffer)
3933{
7a8e76a3
SR
3934 int cpu;
3935
7a8e76a3 3936 for_each_buffer_cpu(buffer, cpu)
d769041f 3937 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3938}
c4f50183 3939EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3940
3941/**
3942 * rind_buffer_empty - is the ring buffer empty?
3943 * @buffer: The ring buffer to test
3944 */
3945int ring_buffer_empty(struct ring_buffer *buffer)
3946{
3947 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3948 unsigned long flags;
8d707e8e 3949 int dolock;
7a8e76a3 3950 int cpu;
d4788207 3951 int ret;
7a8e76a3 3952
8d707e8e 3953 dolock = rb_ok_to_lock();
7a8e76a3
SR
3954
3955 /* yes this is racy, but if you don't like the race, lock the buffer */
3956 for_each_buffer_cpu(buffer, cpu) {
3957 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3958 local_irq_save(flags);
3959 if (dolock)
5389f6fa 3960 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 3961 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3962 if (dolock)
5389f6fa 3963 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
3964 local_irq_restore(flags);
3965
d4788207 3966 if (!ret)
7a8e76a3
SR
3967 return 0;
3968 }
554f786e 3969
7a8e76a3
SR
3970 return 1;
3971}
c4f50183 3972EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3973
3974/**
3975 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3976 * @buffer: The ring buffer
3977 * @cpu: The CPU buffer to test
3978 */
3979int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3980{
3981 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3982 unsigned long flags;
8d707e8e 3983 int dolock;
8aabee57 3984 int ret;
7a8e76a3 3985
9e01c1b7 3986 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3987 return 1;
7a8e76a3 3988
8d707e8e
SR
3989 dolock = rb_ok_to_lock();
3990
7a8e76a3 3991 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3992 local_irq_save(flags);
3993 if (dolock)
5389f6fa 3994 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 3995 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3996 if (dolock)
5389f6fa 3997 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3998 local_irq_restore(flags);
554f786e
SR
3999
4000 return ret;
7a8e76a3 4001}
c4f50183 4002EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4003
85bac32c 4004#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4005/**
4006 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4007 * @buffer_a: One buffer to swap with
4008 * @buffer_b: The other buffer to swap with
4009 *
4010 * This function is useful for tracers that want to take a "snapshot"
4011 * of a CPU buffer and has another back up buffer lying around.
4012 * it is expected that the tracer handles the cpu buffer not being
4013 * used at the moment.
4014 */
4015int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4016 struct ring_buffer *buffer_b, int cpu)
4017{
4018 struct ring_buffer_per_cpu *cpu_buffer_a;
4019 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4020 int ret = -EINVAL;
4021
9e01c1b7
RR
4022 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4023 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4024 goto out;
7a8e76a3 4025
438ced17
VN
4026 cpu_buffer_a = buffer_a->buffers[cpu];
4027 cpu_buffer_b = buffer_b->buffers[cpu];
4028
7a8e76a3 4029 /* At least make sure the two buffers are somewhat the same */
438ced17 4030 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4031 goto out;
4032
4033 ret = -EAGAIN;
7a8e76a3 4034
97b17efe 4035 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4036 goto out;
97b17efe
SR
4037
4038 if (atomic_read(&buffer_a->record_disabled))
554f786e 4039 goto out;
97b17efe
SR
4040
4041 if (atomic_read(&buffer_b->record_disabled))
554f786e 4042 goto out;
97b17efe 4043
97b17efe 4044 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4045 goto out;
97b17efe
SR
4046
4047 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4048 goto out;
97b17efe 4049
7a8e76a3
SR
4050 /*
4051 * We can't do a synchronize_sched here because this
4052 * function can be called in atomic context.
4053 * Normally this will be called from the same CPU as cpu.
4054 * If not it's up to the caller to protect this.
4055 */
4056 atomic_inc(&cpu_buffer_a->record_disabled);
4057 atomic_inc(&cpu_buffer_b->record_disabled);
4058
98277991
SR
4059 ret = -EBUSY;
4060 if (local_read(&cpu_buffer_a->committing))
4061 goto out_dec;
4062 if (local_read(&cpu_buffer_b->committing))
4063 goto out_dec;
4064
7a8e76a3
SR
4065 buffer_a->buffers[cpu] = cpu_buffer_b;
4066 buffer_b->buffers[cpu] = cpu_buffer_a;
4067
4068 cpu_buffer_b->buffer = buffer_a;
4069 cpu_buffer_a->buffer = buffer_b;
4070
98277991
SR
4071 ret = 0;
4072
4073out_dec:
7a8e76a3
SR
4074 atomic_dec(&cpu_buffer_a->record_disabled);
4075 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4076out:
554f786e 4077 return ret;
7a8e76a3 4078}
c4f50183 4079EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4080#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4081
8789a9e7
SR
4082/**
4083 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4084 * @buffer: the buffer to allocate for.
4085 *
4086 * This function is used in conjunction with ring_buffer_read_page.
4087 * When reading a full page from the ring buffer, these functions
4088 * can be used to speed up the process. The calling function should
4089 * allocate a few pages first with this function. Then when it
4090 * needs to get pages from the ring buffer, it passes the result
4091 * of this function into ring_buffer_read_page, which will swap
4092 * the page that was allocated, with the read page of the buffer.
4093 *
4094 * Returns:
4095 * The page allocated, or NULL on error.
4096 */
7ea59064 4097void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4098{
044fa782 4099 struct buffer_data_page *bpage;
7ea59064 4100 struct page *page;
8789a9e7 4101
d7ec4bfe
VN
4102 page = alloc_pages_node(cpu_to_node(cpu),
4103 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4104 if (!page)
8789a9e7
SR
4105 return NULL;
4106
7ea59064 4107 bpage = page_address(page);
8789a9e7 4108
ef7a4a16
SR
4109 rb_init_page(bpage);
4110
044fa782 4111 return bpage;
8789a9e7 4112}
d6ce96da 4113EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4114
4115/**
4116 * ring_buffer_free_read_page - free an allocated read page
4117 * @buffer: the buffer the page was allocate for
4118 * @data: the page to free
4119 *
4120 * Free a page allocated from ring_buffer_alloc_read_page.
4121 */
4122void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4123{
4124 free_page((unsigned long)data);
4125}
d6ce96da 4126EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4127
4128/**
4129 * ring_buffer_read_page - extract a page from the ring buffer
4130 * @buffer: buffer to extract from
4131 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4132 * @len: amount to extract
8789a9e7
SR
4133 * @cpu: the cpu of the buffer to extract
4134 * @full: should the extraction only happen when the page is full.
4135 *
4136 * This function will pull out a page from the ring buffer and consume it.
4137 * @data_page must be the address of the variable that was returned
4138 * from ring_buffer_alloc_read_page. This is because the page might be used
4139 * to swap with a page in the ring buffer.
4140 *
4141 * for example:
b85fa01e 4142 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4143 * if (!rpage)
4144 * return error;
ef7a4a16 4145 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4146 * if (ret >= 0)
4147 * process_page(rpage, ret);
8789a9e7
SR
4148 *
4149 * When @full is set, the function will not return true unless
4150 * the writer is off the reader page.
4151 *
4152 * Note: it is up to the calling functions to handle sleeps and wakeups.
4153 * The ring buffer can be used anywhere in the kernel and can not
4154 * blindly call wake_up. The layer that uses the ring buffer must be
4155 * responsible for that.
4156 *
4157 * Returns:
667d2412
LJ
4158 * >=0 if data has been transferred, returns the offset of consumed data.
4159 * <0 if no data has been transferred.
8789a9e7
SR
4160 */
4161int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4162 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4163{
4164 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4165 struct ring_buffer_event *event;
044fa782 4166 struct buffer_data_page *bpage;
ef7a4a16 4167 struct buffer_page *reader;
ff0ff84a 4168 unsigned long missed_events;
8789a9e7 4169 unsigned long flags;
ef7a4a16 4170 unsigned int commit;
667d2412 4171 unsigned int read;
4f3640f8 4172 u64 save_timestamp;
667d2412 4173 int ret = -1;
8789a9e7 4174
554f786e
SR
4175 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4176 goto out;
4177
474d32b6
SR
4178 /*
4179 * If len is not big enough to hold the page header, then
4180 * we can not copy anything.
4181 */
4182 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4183 goto out;
474d32b6
SR
4184
4185 len -= BUF_PAGE_HDR_SIZE;
4186
8789a9e7 4187 if (!data_page)
554f786e 4188 goto out;
8789a9e7 4189
044fa782
SR
4190 bpage = *data_page;
4191 if (!bpage)
554f786e 4192 goto out;
8789a9e7 4193
5389f6fa 4194 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4195
ef7a4a16
SR
4196 reader = rb_get_reader_page(cpu_buffer);
4197 if (!reader)
554f786e 4198 goto out_unlock;
8789a9e7 4199
ef7a4a16
SR
4200 event = rb_reader_event(cpu_buffer);
4201
4202 read = reader->read;
4203 commit = rb_page_commit(reader);
667d2412 4204
66a8cb95 4205 /* Check if any events were dropped */
ff0ff84a 4206 missed_events = cpu_buffer->lost_events;
66a8cb95 4207
8789a9e7 4208 /*
474d32b6
SR
4209 * If this page has been partially read or
4210 * if len is not big enough to read the rest of the page or
4211 * a writer is still on the page, then
4212 * we must copy the data from the page to the buffer.
4213 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4214 */
474d32b6 4215 if (read || (len < (commit - read)) ||
ef7a4a16 4216 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4217 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4218 unsigned int rpos = read;
4219 unsigned int pos = 0;
ef7a4a16 4220 unsigned int size;
8789a9e7
SR
4221
4222 if (full)
554f786e 4223 goto out_unlock;
8789a9e7 4224
ef7a4a16
SR
4225 if (len > (commit - read))
4226 len = (commit - read);
4227
69d1b839
SR
4228 /* Always keep the time extend and data together */
4229 size = rb_event_ts_length(event);
ef7a4a16
SR
4230
4231 if (len < size)
554f786e 4232 goto out_unlock;
ef7a4a16 4233
4f3640f8
SR
4234 /* save the current timestamp, since the user will need it */
4235 save_timestamp = cpu_buffer->read_stamp;
4236
ef7a4a16
SR
4237 /* Need to copy one event at a time */
4238 do {
e1e35927
DS
4239 /* We need the size of one event, because
4240 * rb_advance_reader only advances by one event,
4241 * whereas rb_event_ts_length may include the size of
4242 * one or two events.
4243 * We have already ensured there's enough space if this
4244 * is a time extend. */
4245 size = rb_event_length(event);
474d32b6 4246 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4247
4248 len -= size;
4249
4250 rb_advance_reader(cpu_buffer);
474d32b6
SR
4251 rpos = reader->read;
4252 pos += size;
ef7a4a16 4253
18fab912
HY
4254 if (rpos >= commit)
4255 break;
4256
ef7a4a16 4257 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4258 /* Always keep the time extend and data together */
4259 size = rb_event_ts_length(event);
e1e35927 4260 } while (len >= size);
667d2412
LJ
4261
4262 /* update bpage */
ef7a4a16 4263 local_set(&bpage->commit, pos);
4f3640f8 4264 bpage->time_stamp = save_timestamp;
ef7a4a16 4265
474d32b6
SR
4266 /* we copied everything to the beginning */
4267 read = 0;
8789a9e7 4268 } else {
afbab76a 4269 /* update the entry counter */
77ae365e 4270 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4271 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4272
8789a9e7 4273 /* swap the pages */
044fa782 4274 rb_init_page(bpage);
ef7a4a16
SR
4275 bpage = reader->page;
4276 reader->page = *data_page;
4277 local_set(&reader->write, 0);
778c55d4 4278 local_set(&reader->entries, 0);
ef7a4a16 4279 reader->read = 0;
044fa782 4280 *data_page = bpage;
ff0ff84a
SR
4281
4282 /*
4283 * Use the real_end for the data size,
4284 * This gives us a chance to store the lost events
4285 * on the page.
4286 */
4287 if (reader->real_end)
4288 local_set(&bpage->commit, reader->real_end);
8789a9e7 4289 }
667d2412 4290 ret = read;
8789a9e7 4291
66a8cb95 4292 cpu_buffer->lost_events = 0;
2711ca23
SR
4293
4294 commit = local_read(&bpage->commit);
66a8cb95
SR
4295 /*
4296 * Set a flag in the commit field if we lost events
4297 */
ff0ff84a 4298 if (missed_events) {
ff0ff84a
SR
4299 /* If there is room at the end of the page to save the
4300 * missed events, then record it there.
4301 */
4302 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4303 memcpy(&bpage->data[commit], &missed_events,
4304 sizeof(missed_events));
4305 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4306 commit += sizeof(missed_events);
ff0ff84a 4307 }
66a8cb95 4308 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4309 }
66a8cb95 4310
2711ca23
SR
4311 /*
4312 * This page may be off to user land. Zero it out here.
4313 */
4314 if (commit < BUF_PAGE_SIZE)
4315 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4316
554f786e 4317 out_unlock:
5389f6fa 4318 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4319
554f786e 4320 out:
8789a9e7
SR
4321 return ret;
4322}
d6ce96da 4323EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4324
59222efe 4325#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4326static int rb_cpu_notify(struct notifier_block *self,
4327 unsigned long action, void *hcpu)
554f786e
SR
4328{
4329 struct ring_buffer *buffer =
4330 container_of(self, struct ring_buffer, cpu_notify);
4331 long cpu = (long)hcpu;
438ced17
VN
4332 int cpu_i, nr_pages_same;
4333 unsigned int nr_pages;
554f786e
SR
4334
4335 switch (action) {
4336 case CPU_UP_PREPARE:
4337 case CPU_UP_PREPARE_FROZEN:
3f237a79 4338 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4339 return NOTIFY_OK;
4340
438ced17
VN
4341 nr_pages = 0;
4342 nr_pages_same = 1;
4343 /* check if all cpu sizes are same */
4344 for_each_buffer_cpu(buffer, cpu_i) {
4345 /* fill in the size from first enabled cpu */
4346 if (nr_pages == 0)
4347 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4348 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4349 nr_pages_same = 0;
4350 break;
4351 }
4352 }
4353 /* allocate minimum pages, user can later expand it */
4354 if (!nr_pages_same)
4355 nr_pages = 2;
554f786e 4356 buffer->buffers[cpu] =
438ced17 4357 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4358 if (!buffer->buffers[cpu]) {
4359 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4360 cpu);
4361 return NOTIFY_OK;
4362 }
4363 smp_wmb();
3f237a79 4364 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4365 break;
4366 case CPU_DOWN_PREPARE:
4367 case CPU_DOWN_PREPARE_FROZEN:
4368 /*
4369 * Do nothing.
4370 * If we were to free the buffer, then the user would
4371 * lose any trace that was in the buffer.
4372 */
4373 break;
4374 default:
4375 break;
4376 }
4377 return NOTIFY_OK;
4378}
4379#endif