]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/trace/ring_buffer.c
ftrace, perf: Add filter support for function trace event
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
d1b182a8
SR
26/*
27 * The ring buffer header is special. We must manually up keep it.
28 */
29int ring_buffer_print_entry_header(struct trace_seq *s)
30{
31 int ret;
32
334d4169
LJ
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
44
45 return ret;
46}
47
5cc98548
SR
48/*
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
53 *
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
57 *
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
61 *
62 * Here's some silly ASCII art.
63 *
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
73 *
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
95 *
96 *
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
106 *
107 *
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
111 *
112 * We will be using cmpxchg soon to make all this lockless.
113 *
114 */
115
033601a3
SR
116/*
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
122 *
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
125 *
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
129 *
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
132 */
133
134/*
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
137 *
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
143 */
144
145enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
148};
149
150enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
153};
154
5e39841c 155static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 156
474d32b6
SR
157#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158
a3583244
SR
159/**
160 * tracing_on - enable all tracing buffers
161 *
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
164 */
165void tracing_on(void)
166{
033601a3 167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 168}
c4f50183 169EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
170
171/**
172 * tracing_off - turn off all tracing buffers
173 *
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
178 */
179void tracing_off(void)
180{
033601a3
SR
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182}
c4f50183 183EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
184
185/**
186 * tracing_off_permanent - permanently disable ring buffers
187 *
188 * This function, once called, will disable all ring buffers
c3706f00 189 * permanently.
033601a3
SR
190 */
191void tracing_off_permanent(void)
192{
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
194}
195
988ae9d6
SR
196/**
197 * tracing_is_on - show state of ring buffers enabled
198 */
199int tracing_is_on(void)
200{
201 return ring_buffer_flags == RB_BUFFERS_ON;
202}
203EXPORT_SYMBOL_GPL(tracing_is_on);
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169 207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 208#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 209
2271048d
SR
210#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211# define RB_FORCE_8BYTE_ALIGNMENT 0
212# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
213#else
214# define RB_FORCE_8BYTE_ALIGNMENT 1
215# define RB_ARCH_ALIGNMENT 8U
216#endif
217
334d4169
LJ
218/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
220
221enum {
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
224};
225
69d1b839
SR
226#define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228
2d622719
TZ
229static inline int rb_null_event(struct ring_buffer_event *event)
230{
a1863c21 231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
232}
233
234static void rb_event_set_padding(struct ring_buffer_event *event)
235{
a1863c21 236 /* padding has a NULL time_delta */
334d4169 237 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
238 event->time_delta = 0;
239}
240
34a148bf 241static unsigned
2d622719 242rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
243{
244 unsigned length;
245
334d4169
LJ
246 if (event->type_len)
247 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
248 else
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
251}
252
69d1b839
SR
253/*
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
256 * time extend.
257 */
258static inline unsigned
2d622719
TZ
259rb_event_length(struct ring_buffer_event *event)
260{
334d4169 261 switch (event->type_len) {
7a8e76a3 262 case RINGBUF_TYPE_PADDING:
2d622719
TZ
263 if (rb_null_event(event))
264 /* undefined */
265 return -1;
334d4169 266 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
267
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
270
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
273
274 case RINGBUF_TYPE_DATA:
2d622719 275 return rb_event_data_length(event);
7a8e76a3
SR
276 default:
277 BUG();
278 }
279 /* not hit */
280 return 0;
281}
282
69d1b839
SR
283/*
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
286 */
287static inline unsigned
288rb_event_ts_length(struct ring_buffer_event *event)
289{
290 unsigned len = 0;
291
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
296 }
297 return len + rb_event_length(event);
298}
299
7a8e76a3
SR
300/**
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
69d1b839
SR
303 *
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
7a8e76a3
SR
309 */
310unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311{
69d1b839
SR
312 unsigned length;
313
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
316
317 length = rb_event_length(event);
334d4169 318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
319 return length;
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
323 return length;
7a8e76a3 324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
326
327/* inline for ring buffer fast paths */
34a148bf 328static void *
7a8e76a3
SR
329rb_event_data(struct ring_buffer_event *event)
330{
69d1b839
SR
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
334d4169 333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 334 /* If length is in len field, then array[0] has the data */
334d4169 335 if (event->type_len)
7a8e76a3
SR
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
339}
340
341/**
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
344 */
345void *ring_buffer_event_data(struct ring_buffer_event *event)
346{
347 return rb_event_data(event);
348}
c4f50183 349EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
350
351#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 352 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
353
354#define TS_SHIFT 27
355#define TS_MASK ((1ULL << TS_SHIFT) - 1)
356#define TS_DELTA_TEST (~TS_MASK)
357
66a8cb95
SR
358/* Flag when events were overwritten */
359#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
360/* Missed count stored at end */
361#define RB_MISSED_STORED (1 << 30)
66a8cb95 362
abc9b56d 363struct buffer_data_page {
e4c2ce82 364 u64 time_stamp; /* page time stamp */
c3706f00 365 local_t commit; /* write committed index */
abc9b56d
SR
366 unsigned char data[]; /* data of buffer page */
367};
368
77ae365e
SR
369/*
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
375 * lockless.
376 */
abc9b56d 377struct buffer_page {
778c55d4 378 struct list_head list; /* list of buffer pages */
abc9b56d 379 local_t write; /* index for next write */
6f807acd 380 unsigned read; /* index for next read */
778c55d4 381 local_t entries; /* entries on this page */
ff0ff84a 382 unsigned long real_end; /* real end of data */
abc9b56d 383 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
384};
385
77ae365e
SR
386/*
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
391 *
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
395 *
396 * The counter is 20 bits, and the state data is 12.
397 */
398#define RB_WRITE_MASK 0xfffff
399#define RB_WRITE_INTCNT (1 << 20)
400
044fa782 401static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 402{
044fa782 403 local_set(&bpage->commit, 0);
abc9b56d
SR
404}
405
474d32b6
SR
406/**
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
409 *
410 * Returns the amount of data on the page, including buffer page header.
411 */
ef7a4a16
SR
412size_t ring_buffer_page_len(void *page)
413{
474d32b6
SR
414 return local_read(&((struct buffer_data_page *)page)->commit)
415 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
416}
417
ed56829c
SR
418/*
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420 * this issue out.
421 */
34a148bf 422static void free_buffer_page(struct buffer_page *bpage)
ed56829c 423{
34a148bf 424 free_page((unsigned long)bpage->page);
e4c2ce82 425 kfree(bpage);
ed56829c
SR
426}
427
7a8e76a3
SR
428/*
429 * We need to fit the time_stamp delta into 27 bits.
430 */
431static inline int test_time_stamp(u64 delta)
432{
433 if (delta & TS_DELTA_TEST)
434 return 1;
435 return 0;
436}
437
474d32b6 438#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 439
be957c44
SR
440/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442
d1b182a8
SR
443int ring_buffer_print_page_header(struct trace_seq *s)
444{
445 struct buffer_data_page field;
446 int ret;
447
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
d1b182a8
SR
452
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 455 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
d1b182a8 458
66a8cb95
SR
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
462 1,
463 (unsigned int)is_signed_type(long));
464
d1b182a8 465 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 467 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
d1b182a8
SR
470
471 return ret;
472}
473
7a8e76a3
SR
474/*
475 * head_page == tail_page && head == tail then buffer is empty.
476 */
477struct ring_buffer_per_cpu {
478 int cpu;
985023de 479 atomic_t record_disabled;
7a8e76a3 480 struct ring_buffer *buffer;
5389f6fa 481 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 482 arch_spinlock_t lock;
7a8e76a3 483 struct lock_class_key lock_key;
3adc54fa 484 struct list_head *pages;
6f807acd
SR
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
c3706f00 487 struct buffer_page *commit_page; /* committed pages */
d769041f 488 struct buffer_page *reader_page;
66a8cb95
SR
489 unsigned long lost_events;
490 unsigned long last_overrun;
c64e148a 491 local_t entries_bytes;
77ae365e
SR
492 local_t commit_overrun;
493 local_t overrun;
e4906eff 494 local_t entries;
fa743953
SR
495 local_t committing;
496 local_t commits;
77ae365e 497 unsigned long read;
c64e148a 498 unsigned long read_bytes;
7a8e76a3
SR
499 u64 write_stamp;
500 u64 read_stamp;
7a8e76a3
SR
501};
502
503struct ring_buffer {
7a8e76a3
SR
504 unsigned pages;
505 unsigned flags;
506 int cpus;
7a8e76a3 507 atomic_t record_disabled;
00f62f61 508 cpumask_var_t cpumask;
7a8e76a3 509
1f8a6a10
PZ
510 struct lock_class_key *reader_lock_key;
511
7a8e76a3
SR
512 struct mutex mutex;
513
514 struct ring_buffer_per_cpu **buffers;
554f786e 515
59222efe 516#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
517 struct notifier_block cpu_notify;
518#endif
37886f6a 519 u64 (*clock)(void);
7a8e76a3
SR
520};
521
522struct ring_buffer_iter {
523 struct ring_buffer_per_cpu *cpu_buffer;
524 unsigned long head;
525 struct buffer_page *head_page;
492a74f4
SR
526 struct buffer_page *cache_reader_page;
527 unsigned long cache_read;
7a8e76a3
SR
528 u64 read_stamp;
529};
530
f536aafc 531/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
532#define RB_WARN_ON(b, cond) \
533 ({ \
534 int _____ret = unlikely(cond); \
535 if (_____ret) { \
536 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
537 struct ring_buffer_per_cpu *__b = \
538 (void *)b; \
539 atomic_inc(&__b->buffer->record_disabled); \
540 } else \
541 atomic_inc(&b->record_disabled); \
542 WARN_ON(1); \
543 } \
544 _____ret; \
3e89c7bb 545 })
f536aafc 546
37886f6a
SR
547/* Up this if you want to test the TIME_EXTENTS and normalization */
548#define DEBUG_SHIFT 0
549
6d3f1e12 550static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
551{
552 /* shift to debug/test normalization and TIME_EXTENTS */
553 return buffer->clock() << DEBUG_SHIFT;
554}
555
37886f6a
SR
556u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
557{
558 u64 time;
559
560 preempt_disable_notrace();
6d3f1e12 561 time = rb_time_stamp(buffer);
37886f6a
SR
562 preempt_enable_no_resched_notrace();
563
564 return time;
565}
566EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
567
568void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
569 int cpu, u64 *ts)
570{
571 /* Just stupid testing the normalize function and deltas */
572 *ts >>= DEBUG_SHIFT;
573}
574EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
575
77ae365e
SR
576/*
577 * Making the ring buffer lockless makes things tricky.
578 * Although writes only happen on the CPU that they are on,
579 * and they only need to worry about interrupts. Reads can
580 * happen on any CPU.
581 *
582 * The reader page is always off the ring buffer, but when the
583 * reader finishes with a page, it needs to swap its page with
584 * a new one from the buffer. The reader needs to take from
585 * the head (writes go to the tail). But if a writer is in overwrite
586 * mode and wraps, it must push the head page forward.
587 *
588 * Here lies the problem.
589 *
590 * The reader must be careful to replace only the head page, and
591 * not another one. As described at the top of the file in the
592 * ASCII art, the reader sets its old page to point to the next
593 * page after head. It then sets the page after head to point to
594 * the old reader page. But if the writer moves the head page
595 * during this operation, the reader could end up with the tail.
596 *
597 * We use cmpxchg to help prevent this race. We also do something
598 * special with the page before head. We set the LSB to 1.
599 *
600 * When the writer must push the page forward, it will clear the
601 * bit that points to the head page, move the head, and then set
602 * the bit that points to the new head page.
603 *
604 * We also don't want an interrupt coming in and moving the head
605 * page on another writer. Thus we use the second LSB to catch
606 * that too. Thus:
607 *
608 * head->list->prev->next bit 1 bit 0
609 * ------- -------
610 * Normal page 0 0
611 * Points to head page 0 1
612 * New head page 1 0
613 *
614 * Note we can not trust the prev pointer of the head page, because:
615 *
616 * +----+ +-----+ +-----+
617 * | |------>| T |---X--->| N |
618 * | |<------| | | |
619 * +----+ +-----+ +-----+
620 * ^ ^ |
621 * | +-----+ | |
622 * +----------| R |----------+ |
623 * | |<-----------+
624 * +-----+
625 *
626 * Key: ---X--> HEAD flag set in pointer
627 * T Tail page
628 * R Reader page
629 * N Next page
630 *
631 * (see __rb_reserve_next() to see where this happens)
632 *
633 * What the above shows is that the reader just swapped out
634 * the reader page with a page in the buffer, but before it
635 * could make the new header point back to the new page added
636 * it was preempted by a writer. The writer moved forward onto
637 * the new page added by the reader and is about to move forward
638 * again.
639 *
640 * You can see, it is legitimate for the previous pointer of
641 * the head (or any page) not to point back to itself. But only
642 * temporarially.
643 */
644
645#define RB_PAGE_NORMAL 0UL
646#define RB_PAGE_HEAD 1UL
647#define RB_PAGE_UPDATE 2UL
648
649
650#define RB_FLAG_MASK 3UL
651
652/* PAGE_MOVED is not part of the mask */
653#define RB_PAGE_MOVED 4UL
654
655/*
656 * rb_list_head - remove any bit
657 */
658static struct list_head *rb_list_head(struct list_head *list)
659{
660 unsigned long val = (unsigned long)list;
661
662 return (struct list_head *)(val & ~RB_FLAG_MASK);
663}
664
665/*
6d3f1e12 666 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
667 *
668 * Because the reader may move the head_page pointer, we can
669 * not trust what the head page is (it may be pointing to
670 * the reader page). But if the next page is a header page,
671 * its flags will be non zero.
672 */
42b16b3f 673static inline int
77ae365e
SR
674rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
675 struct buffer_page *page, struct list_head *list)
676{
677 unsigned long val;
678
679 val = (unsigned long)list->next;
680
681 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
682 return RB_PAGE_MOVED;
683
684 return val & RB_FLAG_MASK;
685}
686
687/*
688 * rb_is_reader_page
689 *
690 * The unique thing about the reader page, is that, if the
691 * writer is ever on it, the previous pointer never points
692 * back to the reader page.
693 */
694static int rb_is_reader_page(struct buffer_page *page)
695{
696 struct list_head *list = page->list.prev;
697
698 return rb_list_head(list->next) != &page->list;
699}
700
701/*
702 * rb_set_list_to_head - set a list_head to be pointing to head.
703 */
704static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
705 struct list_head *list)
706{
707 unsigned long *ptr;
708
709 ptr = (unsigned long *)&list->next;
710 *ptr |= RB_PAGE_HEAD;
711 *ptr &= ~RB_PAGE_UPDATE;
712}
713
714/*
715 * rb_head_page_activate - sets up head page
716 */
717static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
718{
719 struct buffer_page *head;
720
721 head = cpu_buffer->head_page;
722 if (!head)
723 return;
724
725 /*
726 * Set the previous list pointer to have the HEAD flag.
727 */
728 rb_set_list_to_head(cpu_buffer, head->list.prev);
729}
730
731static void rb_list_head_clear(struct list_head *list)
732{
733 unsigned long *ptr = (unsigned long *)&list->next;
734
735 *ptr &= ~RB_FLAG_MASK;
736}
737
738/*
739 * rb_head_page_dactivate - clears head page ptr (for free list)
740 */
741static void
742rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
743{
744 struct list_head *hd;
745
746 /* Go through the whole list and clear any pointers found. */
747 rb_list_head_clear(cpu_buffer->pages);
748
749 list_for_each(hd, cpu_buffer->pages)
750 rb_list_head_clear(hd);
751}
752
753static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
754 struct buffer_page *head,
755 struct buffer_page *prev,
756 int old_flag, int new_flag)
757{
758 struct list_head *list;
759 unsigned long val = (unsigned long)&head->list;
760 unsigned long ret;
761
762 list = &prev->list;
763
764 val &= ~RB_FLAG_MASK;
765
08a40816
SR
766 ret = cmpxchg((unsigned long *)&list->next,
767 val | old_flag, val | new_flag);
77ae365e
SR
768
769 /* check if the reader took the page */
770 if ((ret & ~RB_FLAG_MASK) != val)
771 return RB_PAGE_MOVED;
772
773 return ret & RB_FLAG_MASK;
774}
775
776static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
777 struct buffer_page *head,
778 struct buffer_page *prev,
779 int old_flag)
780{
781 return rb_head_page_set(cpu_buffer, head, prev,
782 old_flag, RB_PAGE_UPDATE);
783}
784
785static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
786 struct buffer_page *head,
787 struct buffer_page *prev,
788 int old_flag)
789{
790 return rb_head_page_set(cpu_buffer, head, prev,
791 old_flag, RB_PAGE_HEAD);
792}
793
794static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
795 struct buffer_page *head,
796 struct buffer_page *prev,
797 int old_flag)
798{
799 return rb_head_page_set(cpu_buffer, head, prev,
800 old_flag, RB_PAGE_NORMAL);
801}
802
803static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
804 struct buffer_page **bpage)
805{
806 struct list_head *p = rb_list_head((*bpage)->list.next);
807
808 *bpage = list_entry(p, struct buffer_page, list);
809}
810
811static struct buffer_page *
812rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
813{
814 struct buffer_page *head;
815 struct buffer_page *page;
816 struct list_head *list;
817 int i;
818
819 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
820 return NULL;
821
822 /* sanity check */
823 list = cpu_buffer->pages;
824 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
825 return NULL;
826
827 page = head = cpu_buffer->head_page;
828 /*
829 * It is possible that the writer moves the header behind
830 * where we started, and we miss in one loop.
831 * A second loop should grab the header, but we'll do
832 * three loops just because I'm paranoid.
833 */
834 for (i = 0; i < 3; i++) {
835 do {
836 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
837 cpu_buffer->head_page = page;
838 return page;
839 }
840 rb_inc_page(cpu_buffer, &page);
841 } while (page != head);
842 }
843
844 RB_WARN_ON(cpu_buffer, 1);
845
846 return NULL;
847}
848
849static int rb_head_page_replace(struct buffer_page *old,
850 struct buffer_page *new)
851{
852 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
853 unsigned long val;
854 unsigned long ret;
855
856 val = *ptr & ~RB_FLAG_MASK;
857 val |= RB_PAGE_HEAD;
858
08a40816 859 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
860
861 return ret == val;
862}
863
864/*
865 * rb_tail_page_update - move the tail page forward
866 *
867 * Returns 1 if moved tail page, 0 if someone else did.
868 */
869static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
870 struct buffer_page *tail_page,
871 struct buffer_page *next_page)
872{
873 struct buffer_page *old_tail;
874 unsigned long old_entries;
875 unsigned long old_write;
876 int ret = 0;
877
878 /*
879 * The tail page now needs to be moved forward.
880 *
881 * We need to reset the tail page, but without messing
882 * with possible erasing of data brought in by interrupts
883 * that have moved the tail page and are currently on it.
884 *
885 * We add a counter to the write field to denote this.
886 */
887 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
888 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
889
890 /*
891 * Just make sure we have seen our old_write and synchronize
892 * with any interrupts that come in.
893 */
894 barrier();
895
896 /*
897 * If the tail page is still the same as what we think
898 * it is, then it is up to us to update the tail
899 * pointer.
900 */
901 if (tail_page == cpu_buffer->tail_page) {
902 /* Zero the write counter */
903 unsigned long val = old_write & ~RB_WRITE_MASK;
904 unsigned long eval = old_entries & ~RB_WRITE_MASK;
905
906 /*
907 * This will only succeed if an interrupt did
908 * not come in and change it. In which case, we
909 * do not want to modify it.
da706d8b
LJ
910 *
911 * We add (void) to let the compiler know that we do not care
912 * about the return value of these functions. We use the
913 * cmpxchg to only update if an interrupt did not already
914 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 915 */
da706d8b
LJ
916 (void)local_cmpxchg(&next_page->write, old_write, val);
917 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
918
919 /*
920 * No need to worry about races with clearing out the commit.
921 * it only can increment when a commit takes place. But that
922 * only happens in the outer most nested commit.
923 */
924 local_set(&next_page->page->commit, 0);
925
926 old_tail = cmpxchg(&cpu_buffer->tail_page,
927 tail_page, next_page);
928
929 if (old_tail == tail_page)
930 ret = 1;
931 }
932
933 return ret;
934}
935
936static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
937 struct buffer_page *bpage)
938{
939 unsigned long val = (unsigned long)bpage;
940
941 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
942 return 1;
943
944 return 0;
945}
946
947/**
948 * rb_check_list - make sure a pointer to a list has the last bits zero
949 */
950static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
951 struct list_head *list)
952{
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
954 return 1;
955 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
956 return 1;
957 return 0;
958}
959
7a8e76a3
SR
960/**
961 * check_pages - integrity check of buffer pages
962 * @cpu_buffer: CPU buffer with pages to test
963 *
c3706f00 964 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
965 * been corrupted.
966 */
967static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
968{
3adc54fa 969 struct list_head *head = cpu_buffer->pages;
044fa782 970 struct buffer_page *bpage, *tmp;
7a8e76a3 971
77ae365e
SR
972 rb_head_page_deactivate(cpu_buffer);
973
3e89c7bb
SR
974 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
975 return -1;
976 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
977 return -1;
7a8e76a3 978
77ae365e
SR
979 if (rb_check_list(cpu_buffer, head))
980 return -1;
981
044fa782 982 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 983 if (RB_WARN_ON(cpu_buffer,
044fa782 984 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
985 return -1;
986 if (RB_WARN_ON(cpu_buffer,
044fa782 987 bpage->list.prev->next != &bpage->list))
3e89c7bb 988 return -1;
77ae365e
SR
989 if (rb_check_list(cpu_buffer, &bpage->list))
990 return -1;
7a8e76a3
SR
991 }
992
77ae365e
SR
993 rb_head_page_activate(cpu_buffer);
994
7a8e76a3
SR
995 return 0;
996}
997
7a8e76a3
SR
998static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
999 unsigned nr_pages)
1000{
044fa782 1001 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1002 LIST_HEAD(pages);
1003 unsigned i;
1004
3adc54fa
SR
1005 WARN_ON(!nr_pages);
1006
7a8e76a3 1007 for (i = 0; i < nr_pages; i++) {
7ea59064 1008 struct page *page;
d7ec4bfe
VN
1009 /*
1010 * __GFP_NORETRY flag makes sure that the allocation fails
1011 * gracefully without invoking oom-killer and the system is
1012 * not destabilized.
1013 */
044fa782 1014 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe
VN
1015 GFP_KERNEL | __GFP_NORETRY,
1016 cpu_to_node(cpu_buffer->cpu));
044fa782 1017 if (!bpage)
e4c2ce82 1018 goto free_pages;
77ae365e
SR
1019
1020 rb_check_bpage(cpu_buffer, bpage);
1021
044fa782 1022 list_add(&bpage->list, &pages);
e4c2ce82 1023
7ea59064 1024 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
d7ec4bfe 1025 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1026 if (!page)
7a8e76a3 1027 goto free_pages;
7ea59064 1028 bpage->page = page_address(page);
044fa782 1029 rb_init_page(bpage->page);
7a8e76a3
SR
1030 }
1031
3adc54fa
SR
1032 /*
1033 * The ring buffer page list is a circular list that does not
1034 * start and end with a list head. All page list items point to
1035 * other pages.
1036 */
1037 cpu_buffer->pages = pages.next;
1038 list_del(&pages);
7a8e76a3
SR
1039
1040 rb_check_pages(cpu_buffer);
1041
1042 return 0;
1043
1044 free_pages:
044fa782
SR
1045 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1046 list_del_init(&bpage->list);
1047 free_buffer_page(bpage);
7a8e76a3
SR
1048 }
1049 return -ENOMEM;
1050}
1051
1052static struct ring_buffer_per_cpu *
1053rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1054{
1055 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1056 struct buffer_page *bpage;
7ea59064 1057 struct page *page;
7a8e76a3
SR
1058 int ret;
1059
1060 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1061 GFP_KERNEL, cpu_to_node(cpu));
1062 if (!cpu_buffer)
1063 return NULL;
1064
1065 cpu_buffer->cpu = cpu;
1066 cpu_buffer->buffer = buffer;
5389f6fa 1067 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1068 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1069 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
7a8e76a3 1070
044fa782 1071 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1072 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1073 if (!bpage)
e4c2ce82
SR
1074 goto fail_free_buffer;
1075
77ae365e
SR
1076 rb_check_bpage(cpu_buffer, bpage);
1077
044fa782 1078 cpu_buffer->reader_page = bpage;
7ea59064
VN
1079 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1080 if (!page)
e4c2ce82 1081 goto fail_free_reader;
7ea59064 1082 bpage->page = page_address(page);
044fa782 1083 rb_init_page(bpage->page);
e4c2ce82 1084
d769041f 1085 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1086
7a8e76a3
SR
1087 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1088 if (ret < 0)
d769041f 1089 goto fail_free_reader;
7a8e76a3
SR
1090
1091 cpu_buffer->head_page
3adc54fa 1092 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1093 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1094
77ae365e
SR
1095 rb_head_page_activate(cpu_buffer);
1096
7a8e76a3
SR
1097 return cpu_buffer;
1098
d769041f
SR
1099 fail_free_reader:
1100 free_buffer_page(cpu_buffer->reader_page);
1101
7a8e76a3
SR
1102 fail_free_buffer:
1103 kfree(cpu_buffer);
1104 return NULL;
1105}
1106
1107static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1108{
3adc54fa 1109 struct list_head *head = cpu_buffer->pages;
044fa782 1110 struct buffer_page *bpage, *tmp;
7a8e76a3 1111
d769041f
SR
1112 free_buffer_page(cpu_buffer->reader_page);
1113
77ae365e
SR
1114 rb_head_page_deactivate(cpu_buffer);
1115
3adc54fa
SR
1116 if (head) {
1117 list_for_each_entry_safe(bpage, tmp, head, list) {
1118 list_del_init(&bpage->list);
1119 free_buffer_page(bpage);
1120 }
1121 bpage = list_entry(head, struct buffer_page, list);
044fa782 1122 free_buffer_page(bpage);
7a8e76a3 1123 }
3adc54fa 1124
7a8e76a3
SR
1125 kfree(cpu_buffer);
1126}
1127
59222efe 1128#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1129static int rb_cpu_notify(struct notifier_block *self,
1130 unsigned long action, void *hcpu);
554f786e
SR
1131#endif
1132
7a8e76a3
SR
1133/**
1134 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1135 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1136 * @flags: attributes to set for the ring buffer.
1137 *
1138 * Currently the only flag that is available is the RB_FL_OVERWRITE
1139 * flag. This flag means that the buffer will overwrite old data
1140 * when the buffer wraps. If this flag is not set, the buffer will
1141 * drop data when the tail hits the head.
1142 */
1f8a6a10
PZ
1143struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1144 struct lock_class_key *key)
7a8e76a3
SR
1145{
1146 struct ring_buffer *buffer;
1147 int bsize;
1148 int cpu;
1149
1150 /* keep it in its own cache line */
1151 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1152 GFP_KERNEL);
1153 if (!buffer)
1154 return NULL;
1155
9e01c1b7
RR
1156 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1157 goto fail_free_buffer;
1158
7a8e76a3
SR
1159 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1160 buffer->flags = flags;
37886f6a 1161 buffer->clock = trace_clock_local;
1f8a6a10 1162 buffer->reader_lock_key = key;
7a8e76a3
SR
1163
1164 /* need at least two pages */
5f78abee
SR
1165 if (buffer->pages < 2)
1166 buffer->pages = 2;
7a8e76a3 1167
3bf832ce
FW
1168 /*
1169 * In case of non-hotplug cpu, if the ring-buffer is allocated
1170 * in early initcall, it will not be notified of secondary cpus.
1171 * In that off case, we need to allocate for all possible cpus.
1172 */
1173#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1174 get_online_cpus();
1175 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1176#else
1177 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1178#endif
7a8e76a3
SR
1179 buffer->cpus = nr_cpu_ids;
1180
1181 bsize = sizeof(void *) * nr_cpu_ids;
1182 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1183 GFP_KERNEL);
1184 if (!buffer->buffers)
9e01c1b7 1185 goto fail_free_cpumask;
7a8e76a3
SR
1186
1187 for_each_buffer_cpu(buffer, cpu) {
1188 buffer->buffers[cpu] =
1189 rb_allocate_cpu_buffer(buffer, cpu);
1190 if (!buffer->buffers[cpu])
1191 goto fail_free_buffers;
1192 }
1193
59222efe 1194#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1195 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1196 buffer->cpu_notify.priority = 0;
1197 register_cpu_notifier(&buffer->cpu_notify);
1198#endif
1199
1200 put_online_cpus();
7a8e76a3
SR
1201 mutex_init(&buffer->mutex);
1202
1203 return buffer;
1204
1205 fail_free_buffers:
1206 for_each_buffer_cpu(buffer, cpu) {
1207 if (buffer->buffers[cpu])
1208 rb_free_cpu_buffer(buffer->buffers[cpu]);
1209 }
1210 kfree(buffer->buffers);
1211
9e01c1b7
RR
1212 fail_free_cpumask:
1213 free_cpumask_var(buffer->cpumask);
554f786e 1214 put_online_cpus();
9e01c1b7 1215
7a8e76a3
SR
1216 fail_free_buffer:
1217 kfree(buffer);
1218 return NULL;
1219}
1f8a6a10 1220EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1221
1222/**
1223 * ring_buffer_free - free a ring buffer.
1224 * @buffer: the buffer to free.
1225 */
1226void
1227ring_buffer_free(struct ring_buffer *buffer)
1228{
1229 int cpu;
1230
554f786e
SR
1231 get_online_cpus();
1232
59222efe 1233#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1234 unregister_cpu_notifier(&buffer->cpu_notify);
1235#endif
1236
7a8e76a3
SR
1237 for_each_buffer_cpu(buffer, cpu)
1238 rb_free_cpu_buffer(buffer->buffers[cpu]);
1239
554f786e
SR
1240 put_online_cpus();
1241
bd3f0221 1242 kfree(buffer->buffers);
9e01c1b7
RR
1243 free_cpumask_var(buffer->cpumask);
1244
7a8e76a3
SR
1245 kfree(buffer);
1246}
c4f50183 1247EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1248
37886f6a
SR
1249void ring_buffer_set_clock(struct ring_buffer *buffer,
1250 u64 (*clock)(void))
1251{
1252 buffer->clock = clock;
1253}
1254
7a8e76a3
SR
1255static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1256
1257static void
1258rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1259{
044fa782 1260 struct buffer_page *bpage;
7a8e76a3
SR
1261 struct list_head *p;
1262 unsigned i;
1263
5389f6fa 1264 raw_spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1265 rb_head_page_deactivate(cpu_buffer);
1266
7a8e76a3 1267 for (i = 0; i < nr_pages; i++) {
3adc54fa 1268 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1269 goto out;
3adc54fa 1270 p = cpu_buffer->pages->next;
044fa782
SR
1271 bpage = list_entry(p, struct buffer_page, list);
1272 list_del_init(&bpage->list);
1273 free_buffer_page(bpage);
7a8e76a3 1274 }
3adc54fa 1275 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1276 goto out;
7a8e76a3
SR
1277
1278 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1279 rb_check_pages(cpu_buffer);
1280
292f60c0 1281out:
5389f6fa 1282 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1283}
1284
1285static void
1286rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1287 struct list_head *pages, unsigned nr_pages)
1288{
044fa782 1289 struct buffer_page *bpage;
7a8e76a3
SR
1290 struct list_head *p;
1291 unsigned i;
1292
5389f6fa 1293 raw_spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1294 rb_head_page_deactivate(cpu_buffer);
1295
7a8e76a3 1296 for (i = 0; i < nr_pages; i++) {
3e89c7bb 1297 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
292f60c0 1298 goto out;
7a8e76a3 1299 p = pages->next;
044fa782
SR
1300 bpage = list_entry(p, struct buffer_page, list);
1301 list_del_init(&bpage->list);
3adc54fa 1302 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1303 }
1304 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1305 rb_check_pages(cpu_buffer);
1306
292f60c0 1307out:
5389f6fa 1308 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1309}
1310
1311/**
1312 * ring_buffer_resize - resize the ring buffer
1313 * @buffer: the buffer to resize.
1314 * @size: the new size.
1315 *
7a8e76a3
SR
1316 * Minimum size is 2 * BUF_PAGE_SIZE.
1317 *
1318 * Returns -1 on failure.
1319 */
1320int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1321{
1322 struct ring_buffer_per_cpu *cpu_buffer;
1323 unsigned nr_pages, rm_pages, new_pages;
044fa782 1324 struct buffer_page *bpage, *tmp;
7a8e76a3 1325 unsigned long buffer_size;
7a8e76a3
SR
1326 LIST_HEAD(pages);
1327 int i, cpu;
1328
ee51a1de
IM
1329 /*
1330 * Always succeed at resizing a non-existent buffer:
1331 */
1332 if (!buffer)
1333 return size;
1334
7a8e76a3
SR
1335 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1336 size *= BUF_PAGE_SIZE;
1337 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1338
1339 /* we need a minimum of two pages */
1340 if (size < BUF_PAGE_SIZE * 2)
1341 size = BUF_PAGE_SIZE * 2;
1342
1343 if (size == buffer_size)
1344 return size;
1345
18421015
SR
1346 atomic_inc(&buffer->record_disabled);
1347
1348 /* Make sure all writers are done with this buffer. */
1349 synchronize_sched();
1350
7a8e76a3 1351 mutex_lock(&buffer->mutex);
554f786e 1352 get_online_cpus();
7a8e76a3
SR
1353
1354 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1355
1356 if (size < buffer_size) {
1357
1358 /* easy case, just free pages */
554f786e
SR
1359 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1360 goto out_fail;
7a8e76a3
SR
1361
1362 rm_pages = buffer->pages - nr_pages;
1363
1364 for_each_buffer_cpu(buffer, cpu) {
1365 cpu_buffer = buffer->buffers[cpu];
1366 rb_remove_pages(cpu_buffer, rm_pages);
1367 }
1368 goto out;
1369 }
1370
1371 /*
1372 * This is a bit more difficult. We only want to add pages
1373 * when we can allocate enough for all CPUs. We do this
1374 * by allocating all the pages and storing them on a local
1375 * link list. If we succeed in our allocation, then we
1376 * add these pages to the cpu_buffers. Otherwise we just free
1377 * them all and return -ENOMEM;
1378 */
554f786e
SR
1379 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1380 goto out_fail;
f536aafc 1381
7a8e76a3
SR
1382 new_pages = nr_pages - buffer->pages;
1383
1384 for_each_buffer_cpu(buffer, cpu) {
1385 for (i = 0; i < new_pages; i++) {
7ea59064 1386 struct page *page;
d7ec4bfe
VN
1387 /*
1388 * __GFP_NORETRY flag makes sure that the allocation
1389 * fails gracefully without invoking oom-killer and
1390 * the system is not destabilized.
1391 */
044fa782 1392 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82 1393 cache_line_size()),
d7ec4bfe
VN
1394 GFP_KERNEL | __GFP_NORETRY,
1395 cpu_to_node(cpu));
044fa782 1396 if (!bpage)
e4c2ce82 1397 goto free_pages;
044fa782 1398 list_add(&bpage->list, &pages);
d7ec4bfe
VN
1399 page = alloc_pages_node(cpu_to_node(cpu),
1400 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1401 if (!page)
7a8e76a3 1402 goto free_pages;
7ea59064 1403 bpage->page = page_address(page);
044fa782 1404 rb_init_page(bpage->page);
7a8e76a3
SR
1405 }
1406 }
1407
1408 for_each_buffer_cpu(buffer, cpu) {
1409 cpu_buffer = buffer->buffers[cpu];
1410 rb_insert_pages(cpu_buffer, &pages, new_pages);
1411 }
1412
554f786e
SR
1413 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1414 goto out_fail;
7a8e76a3
SR
1415
1416 out:
1417 buffer->pages = nr_pages;
554f786e 1418 put_online_cpus();
7a8e76a3
SR
1419 mutex_unlock(&buffer->mutex);
1420
18421015
SR
1421 atomic_dec(&buffer->record_disabled);
1422
7a8e76a3
SR
1423 return size;
1424
1425 free_pages:
044fa782
SR
1426 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1427 list_del_init(&bpage->list);
1428 free_buffer_page(bpage);
7a8e76a3 1429 }
554f786e 1430 put_online_cpus();
641d2f63 1431 mutex_unlock(&buffer->mutex);
18421015 1432 atomic_dec(&buffer->record_disabled);
7a8e76a3 1433 return -ENOMEM;
554f786e
SR
1434
1435 /*
1436 * Something went totally wrong, and we are too paranoid
1437 * to even clean up the mess.
1438 */
1439 out_fail:
1440 put_online_cpus();
1441 mutex_unlock(&buffer->mutex);
18421015 1442 atomic_dec(&buffer->record_disabled);
554f786e 1443 return -1;
7a8e76a3 1444}
c4f50183 1445EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1446
750912fa
DS
1447void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1448{
1449 mutex_lock(&buffer->mutex);
1450 if (val)
1451 buffer->flags |= RB_FL_OVERWRITE;
1452 else
1453 buffer->flags &= ~RB_FL_OVERWRITE;
1454 mutex_unlock(&buffer->mutex);
1455}
1456EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1457
8789a9e7 1458static inline void *
044fa782 1459__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1460{
044fa782 1461 return bpage->data + index;
8789a9e7
SR
1462}
1463
044fa782 1464static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1465{
044fa782 1466 return bpage->page->data + index;
7a8e76a3
SR
1467}
1468
1469static inline struct ring_buffer_event *
d769041f 1470rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1471{
6f807acd
SR
1472 return __rb_page_index(cpu_buffer->reader_page,
1473 cpu_buffer->reader_page->read);
1474}
1475
7a8e76a3
SR
1476static inline struct ring_buffer_event *
1477rb_iter_head_event(struct ring_buffer_iter *iter)
1478{
6f807acd 1479 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1480}
1481
77ae365e 1482static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1483{
77ae365e 1484 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1485}
1486
1487static inline unsigned rb_page_commit(struct buffer_page *bpage)
1488{
abc9b56d 1489 return local_read(&bpage->page->commit);
bf41a158
SR
1490}
1491
77ae365e
SR
1492static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1493{
1494 return local_read(&bpage->entries) & RB_WRITE_MASK;
1495}
1496
25985edc 1497/* Size is determined by what has been committed */
bf41a158
SR
1498static inline unsigned rb_page_size(struct buffer_page *bpage)
1499{
1500 return rb_page_commit(bpage);
1501}
1502
1503static inline unsigned
1504rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1505{
1506 return rb_page_commit(cpu_buffer->commit_page);
1507}
1508
bf41a158
SR
1509static inline unsigned
1510rb_event_index(struct ring_buffer_event *event)
1511{
1512 unsigned long addr = (unsigned long)event;
1513
22f470f8 1514 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1515}
1516
0f0c85fc 1517static inline int
fa743953
SR
1518rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1519 struct ring_buffer_event *event)
bf41a158
SR
1520{
1521 unsigned long addr = (unsigned long)event;
1522 unsigned long index;
1523
1524 index = rb_event_index(event);
1525 addr &= PAGE_MASK;
1526
1527 return cpu_buffer->commit_page->page == (void *)addr &&
1528 rb_commit_index(cpu_buffer) == index;
1529}
1530
34a148bf 1531static void
bf41a158 1532rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1533{
77ae365e
SR
1534 unsigned long max_count;
1535
bf41a158
SR
1536 /*
1537 * We only race with interrupts and NMIs on this CPU.
1538 * If we own the commit event, then we can commit
1539 * all others that interrupted us, since the interruptions
1540 * are in stack format (they finish before they come
1541 * back to us). This allows us to do a simple loop to
1542 * assign the commit to the tail.
1543 */
a8ccf1d6 1544 again:
77ae365e
SR
1545 max_count = cpu_buffer->buffer->pages * 100;
1546
bf41a158 1547 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1548 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1549 return;
1550 if (RB_WARN_ON(cpu_buffer,
1551 rb_is_reader_page(cpu_buffer->tail_page)))
1552 return;
1553 local_set(&cpu_buffer->commit_page->page->commit,
1554 rb_page_write(cpu_buffer->commit_page));
bf41a158 1555 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1556 cpu_buffer->write_stamp =
1557 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1558 /* add barrier to keep gcc from optimizing too much */
1559 barrier();
1560 }
1561 while (rb_commit_index(cpu_buffer) !=
1562 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1563
1564 local_set(&cpu_buffer->commit_page->page->commit,
1565 rb_page_write(cpu_buffer->commit_page));
1566 RB_WARN_ON(cpu_buffer,
1567 local_read(&cpu_buffer->commit_page->page->commit) &
1568 ~RB_WRITE_MASK);
bf41a158
SR
1569 barrier();
1570 }
a8ccf1d6
SR
1571
1572 /* again, keep gcc from optimizing */
1573 barrier();
1574
1575 /*
1576 * If an interrupt came in just after the first while loop
1577 * and pushed the tail page forward, we will be left with
1578 * a dangling commit that will never go forward.
1579 */
1580 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1581 goto again;
7a8e76a3
SR
1582}
1583
d769041f 1584static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1585{
abc9b56d 1586 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1587 cpu_buffer->reader_page->read = 0;
d769041f
SR
1588}
1589
34a148bf 1590static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1591{
1592 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1593
1594 /*
1595 * The iterator could be on the reader page (it starts there).
1596 * But the head could have moved, since the reader was
1597 * found. Check for this case and assign the iterator
1598 * to the head page instead of next.
1599 */
1600 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1601 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1602 else
1603 rb_inc_page(cpu_buffer, &iter->head_page);
1604
abc9b56d 1605 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1606 iter->head = 0;
1607}
1608
69d1b839
SR
1609/* Slow path, do not inline */
1610static noinline struct ring_buffer_event *
1611rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1612{
1613 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1614
1615 /* Not the first event on the page? */
1616 if (rb_event_index(event)) {
1617 event->time_delta = delta & TS_MASK;
1618 event->array[0] = delta >> TS_SHIFT;
1619 } else {
1620 /* nope, just zero it */
1621 event->time_delta = 0;
1622 event->array[0] = 0;
1623 }
1624
1625 return skip_time_extend(event);
1626}
1627
7a8e76a3
SR
1628/**
1629 * ring_buffer_update_event - update event type and data
1630 * @event: the even to update
1631 * @type: the type of event
1632 * @length: the size of the event field in the ring buffer
1633 *
1634 * Update the type and data fields of the event. The length
1635 * is the actual size that is written to the ring buffer,
1636 * and with this, we can determine what to place into the
1637 * data field.
1638 */
34a148bf 1639static void
69d1b839
SR
1640rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1641 struct ring_buffer_event *event, unsigned length,
1642 int add_timestamp, u64 delta)
7a8e76a3 1643{
69d1b839
SR
1644 /* Only a commit updates the timestamp */
1645 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1646 delta = 0;
7a8e76a3 1647
69d1b839
SR
1648 /*
1649 * If we need to add a timestamp, then we
1650 * add it to the start of the resevered space.
1651 */
1652 if (unlikely(add_timestamp)) {
1653 event = rb_add_time_stamp(event, delta);
1654 length -= RB_LEN_TIME_EXTEND;
1655 delta = 0;
7a8e76a3 1656 }
69d1b839
SR
1657
1658 event->time_delta = delta;
1659 length -= RB_EVNT_HDR_SIZE;
1660 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1661 event->type_len = 0;
1662 event->array[0] = length;
1663 } else
1664 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1665}
1666
77ae365e
SR
1667/*
1668 * rb_handle_head_page - writer hit the head page
1669 *
1670 * Returns: +1 to retry page
1671 * 0 to continue
1672 * -1 on error
1673 */
1674static int
1675rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1676 struct buffer_page *tail_page,
1677 struct buffer_page *next_page)
1678{
1679 struct buffer_page *new_head;
1680 int entries;
1681 int type;
1682 int ret;
1683
1684 entries = rb_page_entries(next_page);
1685
1686 /*
1687 * The hard part is here. We need to move the head
1688 * forward, and protect against both readers on
1689 * other CPUs and writers coming in via interrupts.
1690 */
1691 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1692 RB_PAGE_HEAD);
1693
1694 /*
1695 * type can be one of four:
1696 * NORMAL - an interrupt already moved it for us
1697 * HEAD - we are the first to get here.
1698 * UPDATE - we are the interrupt interrupting
1699 * a current move.
1700 * MOVED - a reader on another CPU moved the next
1701 * pointer to its reader page. Give up
1702 * and try again.
1703 */
1704
1705 switch (type) {
1706 case RB_PAGE_HEAD:
1707 /*
1708 * We changed the head to UPDATE, thus
1709 * it is our responsibility to update
1710 * the counters.
1711 */
1712 local_add(entries, &cpu_buffer->overrun);
c64e148a 1713 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1714
1715 /*
1716 * The entries will be zeroed out when we move the
1717 * tail page.
1718 */
1719
1720 /* still more to do */
1721 break;
1722
1723 case RB_PAGE_UPDATE:
1724 /*
1725 * This is an interrupt that interrupt the
1726 * previous update. Still more to do.
1727 */
1728 break;
1729 case RB_PAGE_NORMAL:
1730 /*
1731 * An interrupt came in before the update
1732 * and processed this for us.
1733 * Nothing left to do.
1734 */
1735 return 1;
1736 case RB_PAGE_MOVED:
1737 /*
1738 * The reader is on another CPU and just did
1739 * a swap with our next_page.
1740 * Try again.
1741 */
1742 return 1;
1743 default:
1744 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1745 return -1;
1746 }
1747
1748 /*
1749 * Now that we are here, the old head pointer is
1750 * set to UPDATE. This will keep the reader from
1751 * swapping the head page with the reader page.
1752 * The reader (on another CPU) will spin till
1753 * we are finished.
1754 *
1755 * We just need to protect against interrupts
1756 * doing the job. We will set the next pointer
1757 * to HEAD. After that, we set the old pointer
1758 * to NORMAL, but only if it was HEAD before.
1759 * otherwise we are an interrupt, and only
1760 * want the outer most commit to reset it.
1761 */
1762 new_head = next_page;
1763 rb_inc_page(cpu_buffer, &new_head);
1764
1765 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1766 RB_PAGE_NORMAL);
1767
1768 /*
1769 * Valid returns are:
1770 * HEAD - an interrupt came in and already set it.
1771 * NORMAL - One of two things:
1772 * 1) We really set it.
1773 * 2) A bunch of interrupts came in and moved
1774 * the page forward again.
1775 */
1776 switch (ret) {
1777 case RB_PAGE_HEAD:
1778 case RB_PAGE_NORMAL:
1779 /* OK */
1780 break;
1781 default:
1782 RB_WARN_ON(cpu_buffer, 1);
1783 return -1;
1784 }
1785
1786 /*
1787 * It is possible that an interrupt came in,
1788 * set the head up, then more interrupts came in
1789 * and moved it again. When we get back here,
1790 * the page would have been set to NORMAL but we
1791 * just set it back to HEAD.
1792 *
1793 * How do you detect this? Well, if that happened
1794 * the tail page would have moved.
1795 */
1796 if (ret == RB_PAGE_NORMAL) {
1797 /*
1798 * If the tail had moved passed next, then we need
1799 * to reset the pointer.
1800 */
1801 if (cpu_buffer->tail_page != tail_page &&
1802 cpu_buffer->tail_page != next_page)
1803 rb_head_page_set_normal(cpu_buffer, new_head,
1804 next_page,
1805 RB_PAGE_HEAD);
1806 }
1807
1808 /*
1809 * If this was the outer most commit (the one that
1810 * changed the original pointer from HEAD to UPDATE),
1811 * then it is up to us to reset it to NORMAL.
1812 */
1813 if (type == RB_PAGE_HEAD) {
1814 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1815 tail_page,
1816 RB_PAGE_UPDATE);
1817 if (RB_WARN_ON(cpu_buffer,
1818 ret != RB_PAGE_UPDATE))
1819 return -1;
1820 }
1821
1822 return 0;
1823}
1824
34a148bf 1825static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1826{
1827 struct ring_buffer_event event; /* Used only for sizeof array */
1828
1829 /* zero length can cause confusions */
1830 if (!length)
1831 length = 1;
1832
2271048d 1833 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1834 length += sizeof(event.array[0]);
1835
1836 length += RB_EVNT_HDR_SIZE;
2271048d 1837 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1838
1839 return length;
1840}
1841
c7b09308
SR
1842static inline void
1843rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1844 struct buffer_page *tail_page,
1845 unsigned long tail, unsigned long length)
1846{
1847 struct ring_buffer_event *event;
1848
1849 /*
1850 * Only the event that crossed the page boundary
1851 * must fill the old tail_page with padding.
1852 */
1853 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
1854 /*
1855 * If the page was filled, then we still need
1856 * to update the real_end. Reset it to zero
1857 * and the reader will ignore it.
1858 */
1859 if (tail == BUF_PAGE_SIZE)
1860 tail_page->real_end = 0;
1861
c7b09308
SR
1862 local_sub(length, &tail_page->write);
1863 return;
1864 }
1865
1866 event = __rb_page_index(tail_page, tail);
b0b7065b 1867 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 1868
c64e148a
VN
1869 /* account for padding bytes */
1870 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
1871
ff0ff84a
SR
1872 /*
1873 * Save the original length to the meta data.
1874 * This will be used by the reader to add lost event
1875 * counter.
1876 */
1877 tail_page->real_end = tail;
1878
c7b09308
SR
1879 /*
1880 * If this event is bigger than the minimum size, then
1881 * we need to be careful that we don't subtract the
1882 * write counter enough to allow another writer to slip
1883 * in on this page.
1884 * We put in a discarded commit instead, to make sure
1885 * that this space is not used again.
1886 *
1887 * If we are less than the minimum size, we don't need to
1888 * worry about it.
1889 */
1890 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1891 /* No room for any events */
1892
1893 /* Mark the rest of the page with padding */
1894 rb_event_set_padding(event);
1895
1896 /* Set the write back to the previous setting */
1897 local_sub(length, &tail_page->write);
1898 return;
1899 }
1900
1901 /* Put in a discarded event */
1902 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1903 event->type_len = RINGBUF_TYPE_PADDING;
1904 /* time delta must be non zero */
1905 event->time_delta = 1;
c7b09308
SR
1906
1907 /* Set write to end of buffer */
1908 length = (tail + length) - BUF_PAGE_SIZE;
1909 local_sub(length, &tail_page->write);
1910}
6634ff26 1911
747e94ae
SR
1912/*
1913 * This is the slow path, force gcc not to inline it.
1914 */
1915static noinline struct ring_buffer_event *
6634ff26
SR
1916rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1917 unsigned long length, unsigned long tail,
e8bc43e8 1918 struct buffer_page *tail_page, u64 ts)
7a8e76a3 1919{
5a50e33c 1920 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1921 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1922 struct buffer_page *next_page;
1923 int ret;
aa20ae84
SR
1924
1925 next_page = tail_page;
1926
aa20ae84
SR
1927 rb_inc_page(cpu_buffer, &next_page);
1928
aa20ae84
SR
1929 /*
1930 * If for some reason, we had an interrupt storm that made
1931 * it all the way around the buffer, bail, and warn
1932 * about it.
1933 */
1934 if (unlikely(next_page == commit_page)) {
77ae365e 1935 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1936 goto out_reset;
1937 }
1938
77ae365e
SR
1939 /*
1940 * This is where the fun begins!
1941 *
1942 * We are fighting against races between a reader that
1943 * could be on another CPU trying to swap its reader
1944 * page with the buffer head.
1945 *
1946 * We are also fighting against interrupts coming in and
1947 * moving the head or tail on us as well.
1948 *
1949 * If the next page is the head page then we have filled
1950 * the buffer, unless the commit page is still on the
1951 * reader page.
1952 */
1953 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1954
77ae365e
SR
1955 /*
1956 * If the commit is not on the reader page, then
1957 * move the header page.
1958 */
1959 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1960 /*
1961 * If we are not in overwrite mode,
1962 * this is easy, just stop here.
1963 */
1964 if (!(buffer->flags & RB_FL_OVERWRITE))
1965 goto out_reset;
1966
1967 ret = rb_handle_head_page(cpu_buffer,
1968 tail_page,
1969 next_page);
1970 if (ret < 0)
1971 goto out_reset;
1972 if (ret)
1973 goto out_again;
1974 } else {
1975 /*
1976 * We need to be careful here too. The
1977 * commit page could still be on the reader
1978 * page. We could have a small buffer, and
1979 * have filled up the buffer with events
1980 * from interrupts and such, and wrapped.
1981 *
1982 * Note, if the tail page is also the on the
1983 * reader_page, we let it move out.
1984 */
1985 if (unlikely((cpu_buffer->commit_page !=
1986 cpu_buffer->tail_page) &&
1987 (cpu_buffer->commit_page ==
1988 cpu_buffer->reader_page))) {
1989 local_inc(&cpu_buffer->commit_overrun);
1990 goto out_reset;
1991 }
aa20ae84
SR
1992 }
1993 }
1994
77ae365e
SR
1995 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1996 if (ret) {
1997 /*
1998 * Nested commits always have zero deltas, so
1999 * just reread the time stamp
2000 */
e8bc43e8
SR
2001 ts = rb_time_stamp(buffer);
2002 next_page->page->time_stamp = ts;
aa20ae84
SR
2003 }
2004
77ae365e 2005 out_again:
aa20ae84 2006
77ae365e 2007 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2008
2009 /* fail and let the caller try again */
2010 return ERR_PTR(-EAGAIN);
2011
45141d46 2012 out_reset:
6f3b3440 2013 /* reset write */
c7b09308 2014 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2015
bf41a158 2016 return NULL;
7a8e76a3
SR
2017}
2018
6634ff26
SR
2019static struct ring_buffer_event *
2020__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2021 unsigned long length, u64 ts,
2022 u64 delta, int add_timestamp)
6634ff26 2023{
5a50e33c 2024 struct buffer_page *tail_page;
6634ff26
SR
2025 struct ring_buffer_event *event;
2026 unsigned long tail, write;
2027
69d1b839
SR
2028 /*
2029 * If the time delta since the last event is too big to
2030 * hold in the time field of the event, then we append a
2031 * TIME EXTEND event ahead of the data event.
2032 */
2033 if (unlikely(add_timestamp))
2034 length += RB_LEN_TIME_EXTEND;
2035
6634ff26
SR
2036 tail_page = cpu_buffer->tail_page;
2037 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2038
2039 /* set write to only the index of the write */
2040 write &= RB_WRITE_MASK;
6634ff26
SR
2041 tail = write - length;
2042
2043 /* See if we shot pass the end of this buffer page */
747e94ae 2044 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2045 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2046 tail_page, ts);
6634ff26
SR
2047
2048 /* We reserved something on the buffer */
2049
6634ff26 2050 event = __rb_page_index(tail_page, tail);
1744a21d 2051 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2052 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2053
69d1b839 2054 local_inc(&tail_page->entries);
6634ff26
SR
2055
2056 /*
fa743953
SR
2057 * If this is the first commit on the page, then update
2058 * its timestamp.
6634ff26 2059 */
fa743953 2060 if (!tail)
e8bc43e8 2061 tail_page->page->time_stamp = ts;
6634ff26 2062
c64e148a
VN
2063 /* account for these added bytes */
2064 local_add(length, &cpu_buffer->entries_bytes);
2065
6634ff26
SR
2066 return event;
2067}
2068
edd813bf
SR
2069static inline int
2070rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2071 struct ring_buffer_event *event)
2072{
2073 unsigned long new_index, old_index;
2074 struct buffer_page *bpage;
2075 unsigned long index;
2076 unsigned long addr;
2077
2078 new_index = rb_event_index(event);
69d1b839 2079 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2080 addr = (unsigned long)event;
2081 addr &= PAGE_MASK;
2082
2083 bpage = cpu_buffer->tail_page;
2084
2085 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2086 unsigned long write_mask =
2087 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2088 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2089 /*
2090 * This is on the tail page. It is possible that
2091 * a write could come in and move the tail page
2092 * and write to the next page. That is fine
2093 * because we just shorten what is on this page.
2094 */
77ae365e
SR
2095 old_index += write_mask;
2096 new_index += write_mask;
edd813bf 2097 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2098 if (index == old_index) {
2099 /* update counters */
2100 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2101 return 1;
c64e148a 2102 }
edd813bf
SR
2103 }
2104
2105 /* could not discard */
2106 return 0;
2107}
2108
fa743953
SR
2109static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2110{
2111 local_inc(&cpu_buffer->committing);
2112 local_inc(&cpu_buffer->commits);
2113}
2114
d9abde21 2115static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2116{
2117 unsigned long commits;
2118
2119 if (RB_WARN_ON(cpu_buffer,
2120 !local_read(&cpu_buffer->committing)))
2121 return;
2122
2123 again:
2124 commits = local_read(&cpu_buffer->commits);
2125 /* synchronize with interrupts */
2126 barrier();
2127 if (local_read(&cpu_buffer->committing) == 1)
2128 rb_set_commit_to_write(cpu_buffer);
2129
2130 local_dec(&cpu_buffer->committing);
2131
2132 /* synchronize with interrupts */
2133 barrier();
2134
2135 /*
2136 * Need to account for interrupts coming in between the
2137 * updating of the commit page and the clearing of the
2138 * committing counter.
2139 */
2140 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2141 !local_read(&cpu_buffer->committing)) {
2142 local_inc(&cpu_buffer->committing);
2143 goto again;
2144 }
2145}
2146
7a8e76a3 2147static struct ring_buffer_event *
62f0b3eb
SR
2148rb_reserve_next_event(struct ring_buffer *buffer,
2149 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2150 unsigned long length)
7a8e76a3
SR
2151{
2152 struct ring_buffer_event *event;
69d1b839 2153 u64 ts, delta;
818e3dd3 2154 int nr_loops = 0;
69d1b839 2155 int add_timestamp;
140ff891 2156 u64 diff;
7a8e76a3 2157
fa743953
SR
2158 rb_start_commit(cpu_buffer);
2159
85bac32c 2160#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2161 /*
2162 * Due to the ability to swap a cpu buffer from a buffer
2163 * it is possible it was swapped before we committed.
2164 * (committing stops a swap). We check for it here and
2165 * if it happened, we have to fail the write.
2166 */
2167 barrier();
2168 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2169 local_dec(&cpu_buffer->committing);
2170 local_dec(&cpu_buffer->commits);
2171 return NULL;
2172 }
85bac32c 2173#endif
62f0b3eb 2174
be957c44 2175 length = rb_calculate_event_length(length);
bf41a158 2176 again:
69d1b839
SR
2177 add_timestamp = 0;
2178 delta = 0;
2179
818e3dd3
SR
2180 /*
2181 * We allow for interrupts to reenter here and do a trace.
2182 * If one does, it will cause this original code to loop
2183 * back here. Even with heavy interrupts happening, this
2184 * should only happen a few times in a row. If this happens
2185 * 1000 times in a row, there must be either an interrupt
2186 * storm or we have something buggy.
2187 * Bail!
2188 */
3e89c7bb 2189 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2190 goto out_fail;
818e3dd3 2191
6d3f1e12 2192 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2193 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2194
140ff891
SR
2195 /* make sure this diff is calculated here */
2196 barrier();
bf41a158 2197
140ff891
SR
2198 /* Did the write stamp get updated already? */
2199 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2200 delta = diff;
2201 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2202 int local_clock_stable = 1;
2203#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2204 local_clock_stable = sched_clock_stable;
2205#endif
69d1b839 2206 WARN_ONCE(delta > (1ULL << 59),
31274d72 2207 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2208 (unsigned long long)delta,
2209 (unsigned long long)ts,
31274d72
JO
2210 (unsigned long long)cpu_buffer->write_stamp,
2211 local_clock_stable ? "" :
2212 "If you just came from a suspend/resume,\n"
2213 "please switch to the trace global clock:\n"
2214 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2215 add_timestamp = 1;
7a8e76a3 2216 }
168b6b1d 2217 }
7a8e76a3 2218
69d1b839
SR
2219 event = __rb_reserve_next(cpu_buffer, length, ts,
2220 delta, add_timestamp);
168b6b1d 2221 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2222 goto again;
2223
fa743953
SR
2224 if (!event)
2225 goto out_fail;
7a8e76a3 2226
7a8e76a3 2227 return event;
fa743953
SR
2228
2229 out_fail:
2230 rb_end_commit(cpu_buffer);
2231 return NULL;
7a8e76a3
SR
2232}
2233
1155de47
PM
2234#ifdef CONFIG_TRACING
2235
aa18efb2 2236#define TRACE_RECURSIVE_DEPTH 16
261842b7 2237
d9abde21
SR
2238/* Keep this code out of the fast path cache */
2239static noinline void trace_recursive_fail(void)
261842b7 2240{
aa18efb2
SR
2241 /* Disable all tracing before we do anything else */
2242 tracing_off_permanent();
261842b7 2243
7d7d2b80 2244 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2245 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2246 trace_recursion_buffer(),
aa18efb2
SR
2247 hardirq_count() >> HARDIRQ_SHIFT,
2248 softirq_count() >> SOFTIRQ_SHIFT,
2249 in_nmi());
261842b7 2250
aa18efb2 2251 WARN_ON_ONCE(1);
d9abde21
SR
2252}
2253
2254static inline int trace_recursive_lock(void)
2255{
b1cff0ad 2256 trace_recursion_inc();
d9abde21 2257
b1cff0ad 2258 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2259 return 0;
2260
2261 trace_recursive_fail();
2262
aa18efb2 2263 return -1;
261842b7
SR
2264}
2265
d9abde21 2266static inline void trace_recursive_unlock(void)
261842b7 2267{
b1cff0ad 2268 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2269
b1cff0ad 2270 trace_recursion_dec();
261842b7
SR
2271}
2272
1155de47
PM
2273#else
2274
2275#define trace_recursive_lock() (0)
2276#define trace_recursive_unlock() do { } while (0)
2277
2278#endif
2279
7a8e76a3
SR
2280/**
2281 * ring_buffer_lock_reserve - reserve a part of the buffer
2282 * @buffer: the ring buffer to reserve from
2283 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2284 *
2285 * Returns a reseverd event on the ring buffer to copy directly to.
2286 * The user of this interface will need to get the body to write into
2287 * and can use the ring_buffer_event_data() interface.
2288 *
2289 * The length is the length of the data needed, not the event length
2290 * which also includes the event header.
2291 *
2292 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2293 * If NULL is returned, then nothing has been allocated or locked.
2294 */
2295struct ring_buffer_event *
0a987751 2296ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2297{
2298 struct ring_buffer_per_cpu *cpu_buffer;
2299 struct ring_buffer_event *event;
5168ae50 2300 int cpu;
7a8e76a3 2301
033601a3 2302 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2303 return NULL;
2304
bf41a158 2305 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2306 preempt_disable_notrace();
bf41a158 2307
52fbe9cd
LJ
2308 if (atomic_read(&buffer->record_disabled))
2309 goto out_nocheck;
2310
261842b7
SR
2311 if (trace_recursive_lock())
2312 goto out_nocheck;
2313
7a8e76a3
SR
2314 cpu = raw_smp_processor_id();
2315
9e01c1b7 2316 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2317 goto out;
7a8e76a3
SR
2318
2319 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2320
2321 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2322 goto out;
7a8e76a3 2323
be957c44 2324 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2325 goto out;
7a8e76a3 2326
62f0b3eb 2327 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2328 if (!event)
d769041f 2329 goto out;
7a8e76a3
SR
2330
2331 return event;
2332
d769041f 2333 out:
261842b7
SR
2334 trace_recursive_unlock();
2335
2336 out_nocheck:
5168ae50 2337 preempt_enable_notrace();
7a8e76a3
SR
2338 return NULL;
2339}
c4f50183 2340EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2341
a1863c21
SR
2342static void
2343rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2344 struct ring_buffer_event *event)
2345{
69d1b839
SR
2346 u64 delta;
2347
fa743953
SR
2348 /*
2349 * The event first in the commit queue updates the
2350 * time stamp.
2351 */
69d1b839
SR
2352 if (rb_event_is_commit(cpu_buffer, event)) {
2353 /*
2354 * A commit event that is first on a page
2355 * updates the write timestamp with the page stamp
2356 */
2357 if (!rb_event_index(event))
2358 cpu_buffer->write_stamp =
2359 cpu_buffer->commit_page->page->time_stamp;
2360 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2361 delta = event->array[0];
2362 delta <<= TS_SHIFT;
2363 delta += event->time_delta;
2364 cpu_buffer->write_stamp += delta;
2365 } else
2366 cpu_buffer->write_stamp += event->time_delta;
2367 }
a1863c21 2368}
bf41a158 2369
a1863c21
SR
2370static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2371 struct ring_buffer_event *event)
2372{
2373 local_inc(&cpu_buffer->entries);
2374 rb_update_write_stamp(cpu_buffer, event);
fa743953 2375 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2376}
2377
2378/**
2379 * ring_buffer_unlock_commit - commit a reserved
2380 * @buffer: The buffer to commit to
2381 * @event: The event pointer to commit.
7a8e76a3
SR
2382 *
2383 * This commits the data to the ring buffer, and releases any locks held.
2384 *
2385 * Must be paired with ring_buffer_lock_reserve.
2386 */
2387int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2388 struct ring_buffer_event *event)
7a8e76a3
SR
2389{
2390 struct ring_buffer_per_cpu *cpu_buffer;
2391 int cpu = raw_smp_processor_id();
2392
2393 cpu_buffer = buffer->buffers[cpu];
2394
7a8e76a3
SR
2395 rb_commit(cpu_buffer, event);
2396
261842b7
SR
2397 trace_recursive_unlock();
2398
5168ae50 2399 preempt_enable_notrace();
7a8e76a3
SR
2400
2401 return 0;
2402}
c4f50183 2403EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2404
f3b9aae1
FW
2405static inline void rb_event_discard(struct ring_buffer_event *event)
2406{
69d1b839
SR
2407 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2408 event = skip_time_extend(event);
2409
334d4169
LJ
2410 /* array[0] holds the actual length for the discarded event */
2411 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2412 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2413 /* time delta must be non zero */
2414 if (!event->time_delta)
2415 event->time_delta = 1;
2416}
2417
a1863c21
SR
2418/*
2419 * Decrement the entries to the page that an event is on.
2420 * The event does not even need to exist, only the pointer
2421 * to the page it is on. This may only be called before the commit
2422 * takes place.
2423 */
2424static inline void
2425rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2426 struct ring_buffer_event *event)
2427{
2428 unsigned long addr = (unsigned long)event;
2429 struct buffer_page *bpage = cpu_buffer->commit_page;
2430 struct buffer_page *start;
2431
2432 addr &= PAGE_MASK;
2433
2434 /* Do the likely case first */
2435 if (likely(bpage->page == (void *)addr)) {
2436 local_dec(&bpage->entries);
2437 return;
2438 }
2439
2440 /*
2441 * Because the commit page may be on the reader page we
2442 * start with the next page and check the end loop there.
2443 */
2444 rb_inc_page(cpu_buffer, &bpage);
2445 start = bpage;
2446 do {
2447 if (bpage->page == (void *)addr) {
2448 local_dec(&bpage->entries);
2449 return;
2450 }
2451 rb_inc_page(cpu_buffer, &bpage);
2452 } while (bpage != start);
2453
2454 /* commit not part of this buffer?? */
2455 RB_WARN_ON(cpu_buffer, 1);
2456}
2457
fa1b47dd
SR
2458/**
2459 * ring_buffer_commit_discard - discard an event that has not been committed
2460 * @buffer: the ring buffer
2461 * @event: non committed event to discard
2462 *
dc892f73
SR
2463 * Sometimes an event that is in the ring buffer needs to be ignored.
2464 * This function lets the user discard an event in the ring buffer
2465 * and then that event will not be read later.
2466 *
2467 * This function only works if it is called before the the item has been
2468 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2469 * if another event has not been added behind it.
2470 *
2471 * If another event has been added behind it, it will set the event
2472 * up as discarded, and perform the commit.
2473 *
2474 * If this function is called, do not call ring_buffer_unlock_commit on
2475 * the event.
2476 */
2477void ring_buffer_discard_commit(struct ring_buffer *buffer,
2478 struct ring_buffer_event *event)
2479{
2480 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2481 int cpu;
2482
2483 /* The event is discarded regardless */
f3b9aae1 2484 rb_event_discard(event);
fa1b47dd 2485
fa743953
SR
2486 cpu = smp_processor_id();
2487 cpu_buffer = buffer->buffers[cpu];
2488
fa1b47dd
SR
2489 /*
2490 * This must only be called if the event has not been
2491 * committed yet. Thus we can assume that preemption
2492 * is still disabled.
2493 */
fa743953 2494 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2495
a1863c21 2496 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2497 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2498 goto out;
fa1b47dd
SR
2499
2500 /*
2501 * The commit is still visible by the reader, so we
a1863c21 2502 * must still update the timestamp.
fa1b47dd 2503 */
a1863c21 2504 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2505 out:
fa743953 2506 rb_end_commit(cpu_buffer);
fa1b47dd 2507
f3b9aae1
FW
2508 trace_recursive_unlock();
2509
5168ae50 2510 preempt_enable_notrace();
fa1b47dd
SR
2511
2512}
2513EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2514
7a8e76a3
SR
2515/**
2516 * ring_buffer_write - write data to the buffer without reserving
2517 * @buffer: The ring buffer to write to.
2518 * @length: The length of the data being written (excluding the event header)
2519 * @data: The data to write to the buffer.
2520 *
2521 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2522 * one function. If you already have the data to write to the buffer, it
2523 * may be easier to simply call this function.
2524 *
2525 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2526 * and not the length of the event which would hold the header.
2527 */
2528int ring_buffer_write(struct ring_buffer *buffer,
2529 unsigned long length,
2530 void *data)
2531{
2532 struct ring_buffer_per_cpu *cpu_buffer;
2533 struct ring_buffer_event *event;
7a8e76a3
SR
2534 void *body;
2535 int ret = -EBUSY;
5168ae50 2536 int cpu;
7a8e76a3 2537
033601a3 2538 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2539 return -EBUSY;
2540
5168ae50 2541 preempt_disable_notrace();
bf41a158 2542
52fbe9cd
LJ
2543 if (atomic_read(&buffer->record_disabled))
2544 goto out;
2545
7a8e76a3
SR
2546 cpu = raw_smp_processor_id();
2547
9e01c1b7 2548 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2549 goto out;
7a8e76a3
SR
2550
2551 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2552
2553 if (atomic_read(&cpu_buffer->record_disabled))
2554 goto out;
2555
be957c44
SR
2556 if (length > BUF_MAX_DATA_SIZE)
2557 goto out;
2558
62f0b3eb 2559 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2560 if (!event)
2561 goto out;
2562
2563 body = rb_event_data(event);
2564
2565 memcpy(body, data, length);
2566
2567 rb_commit(cpu_buffer, event);
2568
2569 ret = 0;
2570 out:
5168ae50 2571 preempt_enable_notrace();
7a8e76a3
SR
2572
2573 return ret;
2574}
c4f50183 2575EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2576
34a148bf 2577static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2578{
2579 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2580 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2581 struct buffer_page *commit = cpu_buffer->commit_page;
2582
77ae365e
SR
2583 /* In case of error, head will be NULL */
2584 if (unlikely(!head))
2585 return 1;
2586
bf41a158
SR
2587 return reader->read == rb_page_commit(reader) &&
2588 (commit == reader ||
2589 (commit == head &&
2590 head->read == rb_page_commit(commit)));
2591}
2592
7a8e76a3
SR
2593/**
2594 * ring_buffer_record_disable - stop all writes into the buffer
2595 * @buffer: The ring buffer to stop writes to.
2596 *
2597 * This prevents all writes to the buffer. Any attempt to write
2598 * to the buffer after this will fail and return NULL.
2599 *
2600 * The caller should call synchronize_sched() after this.
2601 */
2602void ring_buffer_record_disable(struct ring_buffer *buffer)
2603{
2604 atomic_inc(&buffer->record_disabled);
2605}
c4f50183 2606EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2607
2608/**
2609 * ring_buffer_record_enable - enable writes to the buffer
2610 * @buffer: The ring buffer to enable writes
2611 *
2612 * Note, multiple disables will need the same number of enables
c41b20e7 2613 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2614 */
2615void ring_buffer_record_enable(struct ring_buffer *buffer)
2616{
2617 atomic_dec(&buffer->record_disabled);
2618}
c4f50183 2619EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2620
2621/**
2622 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2623 * @buffer: The ring buffer to stop writes to.
2624 * @cpu: The CPU buffer to stop
2625 *
2626 * This prevents all writes to the buffer. Any attempt to write
2627 * to the buffer after this will fail and return NULL.
2628 *
2629 * The caller should call synchronize_sched() after this.
2630 */
2631void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2632{
2633 struct ring_buffer_per_cpu *cpu_buffer;
2634
9e01c1b7 2635 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2636 return;
7a8e76a3
SR
2637
2638 cpu_buffer = buffer->buffers[cpu];
2639 atomic_inc(&cpu_buffer->record_disabled);
2640}
c4f50183 2641EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2642
2643/**
2644 * ring_buffer_record_enable_cpu - enable writes to the buffer
2645 * @buffer: The ring buffer to enable writes
2646 * @cpu: The CPU to enable.
2647 *
2648 * Note, multiple disables will need the same number of enables
c41b20e7 2649 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2650 */
2651void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2652{
2653 struct ring_buffer_per_cpu *cpu_buffer;
2654
9e01c1b7 2655 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2656 return;
7a8e76a3
SR
2657
2658 cpu_buffer = buffer->buffers[cpu];
2659 atomic_dec(&cpu_buffer->record_disabled);
2660}
c4f50183 2661EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2662
f6195aa0
SR
2663/*
2664 * The total entries in the ring buffer is the running counter
2665 * of entries entered into the ring buffer, minus the sum of
2666 * the entries read from the ring buffer and the number of
2667 * entries that were overwritten.
2668 */
2669static inline unsigned long
2670rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2671{
2672 return local_read(&cpu_buffer->entries) -
2673 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2674}
2675
c64e148a
VN
2676/**
2677 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2678 * @buffer: The ring buffer
2679 * @cpu: The per CPU buffer to read from.
2680 */
2681unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2682{
2683 unsigned long flags;
2684 struct ring_buffer_per_cpu *cpu_buffer;
2685 struct buffer_page *bpage;
2686 unsigned long ret;
2687
2688 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2689 return 0;
2690
2691 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2692 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2693 /*
2694 * if the tail is on reader_page, oldest time stamp is on the reader
2695 * page
2696 */
2697 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2698 bpage = cpu_buffer->reader_page;
2699 else
2700 bpage = rb_set_head_page(cpu_buffer);
2701 ret = bpage->page->time_stamp;
7115e3fc 2702 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2703
2704 return ret;
2705}
2706EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2707
2708/**
2709 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2710 * @buffer: The ring buffer
2711 * @cpu: The per CPU buffer to read from.
2712 */
2713unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2714{
2715 struct ring_buffer_per_cpu *cpu_buffer;
2716 unsigned long ret;
2717
2718 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2719 return 0;
2720
2721 cpu_buffer = buffer->buffers[cpu];
2722 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2723
2724 return ret;
2725}
2726EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2727
7a8e76a3
SR
2728/**
2729 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2730 * @buffer: The ring buffer
2731 * @cpu: The per CPU buffer to get the entries from.
2732 */
2733unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2734{
2735 struct ring_buffer_per_cpu *cpu_buffer;
2736
9e01c1b7 2737 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2738 return 0;
7a8e76a3
SR
2739
2740 cpu_buffer = buffer->buffers[cpu];
554f786e 2741
f6195aa0 2742 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2743}
c4f50183 2744EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2745
2746/**
2747 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2748 * @buffer: The ring buffer
2749 * @cpu: The per CPU buffer to get the number of overruns from
2750 */
2751unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2752{
2753 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2754 unsigned long ret;
7a8e76a3 2755
9e01c1b7 2756 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2757 return 0;
7a8e76a3
SR
2758
2759 cpu_buffer = buffer->buffers[cpu];
77ae365e 2760 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2761
2762 return ret;
7a8e76a3 2763}
c4f50183 2764EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2765
f0d2c681
SR
2766/**
2767 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2768 * @buffer: The ring buffer
2769 * @cpu: The per CPU buffer to get the number of overruns from
2770 */
2771unsigned long
2772ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2773{
2774 struct ring_buffer_per_cpu *cpu_buffer;
2775 unsigned long ret;
2776
2777 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2778 return 0;
2779
2780 cpu_buffer = buffer->buffers[cpu];
77ae365e 2781 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2782
2783 return ret;
2784}
2785EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2786
7a8e76a3
SR
2787/**
2788 * ring_buffer_entries - get the number of entries in a buffer
2789 * @buffer: The ring buffer
2790 *
2791 * Returns the total number of entries in the ring buffer
2792 * (all CPU entries)
2793 */
2794unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2795{
2796 struct ring_buffer_per_cpu *cpu_buffer;
2797 unsigned long entries = 0;
2798 int cpu;
2799
2800 /* if you care about this being correct, lock the buffer */
2801 for_each_buffer_cpu(buffer, cpu) {
2802 cpu_buffer = buffer->buffers[cpu];
f6195aa0 2803 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
2804 }
2805
2806 return entries;
2807}
c4f50183 2808EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2809
2810/**
67b394f7 2811 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2812 * @buffer: The ring buffer
2813 *
2814 * Returns the total number of overruns in the ring buffer
2815 * (all CPU entries)
2816 */
2817unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2818{
2819 struct ring_buffer_per_cpu *cpu_buffer;
2820 unsigned long overruns = 0;
2821 int cpu;
2822
2823 /* if you care about this being correct, lock the buffer */
2824 for_each_buffer_cpu(buffer, cpu) {
2825 cpu_buffer = buffer->buffers[cpu];
77ae365e 2826 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2827 }
2828
2829 return overruns;
2830}
c4f50183 2831EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2832
642edba5 2833static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2834{
2835 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2836
d769041f
SR
2837 /* Iterator usage is expected to have record disabled */
2838 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2839 iter->head_page = rb_set_head_page(cpu_buffer);
2840 if (unlikely(!iter->head_page))
2841 return;
2842 iter->head = iter->head_page->read;
d769041f
SR
2843 } else {
2844 iter->head_page = cpu_buffer->reader_page;
6f807acd 2845 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2846 }
2847 if (iter->head)
2848 iter->read_stamp = cpu_buffer->read_stamp;
2849 else
abc9b56d 2850 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
2851 iter->cache_reader_page = cpu_buffer->reader_page;
2852 iter->cache_read = cpu_buffer->read;
642edba5 2853}
f83c9d0f 2854
642edba5
SR
2855/**
2856 * ring_buffer_iter_reset - reset an iterator
2857 * @iter: The iterator to reset
2858 *
2859 * Resets the iterator, so that it will start from the beginning
2860 * again.
2861 */
2862void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2863{
554f786e 2864 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2865 unsigned long flags;
2866
554f786e
SR
2867 if (!iter)
2868 return;
2869
2870 cpu_buffer = iter->cpu_buffer;
2871
5389f6fa 2872 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 2873 rb_iter_reset(iter);
5389f6fa 2874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2875}
c4f50183 2876EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2877
2878/**
2879 * ring_buffer_iter_empty - check if an iterator has no more to read
2880 * @iter: The iterator to check
2881 */
2882int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2883{
2884 struct ring_buffer_per_cpu *cpu_buffer;
2885
2886 cpu_buffer = iter->cpu_buffer;
2887
bf41a158
SR
2888 return iter->head_page == cpu_buffer->commit_page &&
2889 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2890}
c4f50183 2891EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2892
2893static void
2894rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2895 struct ring_buffer_event *event)
2896{
2897 u64 delta;
2898
334d4169 2899 switch (event->type_len) {
7a8e76a3
SR
2900 case RINGBUF_TYPE_PADDING:
2901 return;
2902
2903 case RINGBUF_TYPE_TIME_EXTEND:
2904 delta = event->array[0];
2905 delta <<= TS_SHIFT;
2906 delta += event->time_delta;
2907 cpu_buffer->read_stamp += delta;
2908 return;
2909
2910 case RINGBUF_TYPE_TIME_STAMP:
2911 /* FIXME: not implemented */
2912 return;
2913
2914 case RINGBUF_TYPE_DATA:
2915 cpu_buffer->read_stamp += event->time_delta;
2916 return;
2917
2918 default:
2919 BUG();
2920 }
2921 return;
2922}
2923
2924static void
2925rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2926 struct ring_buffer_event *event)
2927{
2928 u64 delta;
2929
334d4169 2930 switch (event->type_len) {
7a8e76a3
SR
2931 case RINGBUF_TYPE_PADDING:
2932 return;
2933
2934 case RINGBUF_TYPE_TIME_EXTEND:
2935 delta = event->array[0];
2936 delta <<= TS_SHIFT;
2937 delta += event->time_delta;
2938 iter->read_stamp += delta;
2939 return;
2940
2941 case RINGBUF_TYPE_TIME_STAMP:
2942 /* FIXME: not implemented */
2943 return;
2944
2945 case RINGBUF_TYPE_DATA:
2946 iter->read_stamp += event->time_delta;
2947 return;
2948
2949 default:
2950 BUG();
2951 }
2952 return;
2953}
2954
d769041f
SR
2955static struct buffer_page *
2956rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2957{
d769041f 2958 struct buffer_page *reader = NULL;
66a8cb95 2959 unsigned long overwrite;
d769041f 2960 unsigned long flags;
818e3dd3 2961 int nr_loops = 0;
77ae365e 2962 int ret;
d769041f 2963
3e03fb7f 2964 local_irq_save(flags);
0199c4e6 2965 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
2966
2967 again:
818e3dd3
SR
2968 /*
2969 * This should normally only loop twice. But because the
2970 * start of the reader inserts an empty page, it causes
2971 * a case where we will loop three times. There should be no
2972 * reason to loop four times (that I know of).
2973 */
3e89c7bb 2974 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2975 reader = NULL;
2976 goto out;
2977 }
2978
d769041f
SR
2979 reader = cpu_buffer->reader_page;
2980
2981 /* If there's more to read, return this page */
bf41a158 2982 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2983 goto out;
2984
2985 /* Never should we have an index greater than the size */
3e89c7bb
SR
2986 if (RB_WARN_ON(cpu_buffer,
2987 cpu_buffer->reader_page->read > rb_page_size(reader)))
2988 goto out;
d769041f
SR
2989
2990 /* check if we caught up to the tail */
2991 reader = NULL;
bf41a158 2992 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2993 goto out;
7a8e76a3
SR
2994
2995 /*
d769041f 2996 * Reset the reader page to size zero.
7a8e76a3 2997 */
77ae365e
SR
2998 local_set(&cpu_buffer->reader_page->write, 0);
2999 local_set(&cpu_buffer->reader_page->entries, 0);
3000 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3001 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3002
77ae365e
SR
3003 spin:
3004 /*
3005 * Splice the empty reader page into the list around the head.
3006 */
3007 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 3008 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3009 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3010
3adc54fa
SR
3011 /*
3012 * cpu_buffer->pages just needs to point to the buffer, it
3013 * has no specific buffer page to point to. Lets move it out
25985edc 3014 * of our way so we don't accidentally swap it.
3adc54fa
SR
3015 */
3016 cpu_buffer->pages = reader->list.prev;
3017
77ae365e
SR
3018 /* The reader page will be pointing to the new head */
3019 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3020
66a8cb95
SR
3021 /*
3022 * We want to make sure we read the overruns after we set up our
3023 * pointers to the next object. The writer side does a
3024 * cmpxchg to cross pages which acts as the mb on the writer
3025 * side. Note, the reader will constantly fail the swap
3026 * while the writer is updating the pointers, so this
3027 * guarantees that the overwrite recorded here is the one we
3028 * want to compare with the last_overrun.
3029 */
3030 smp_mb();
3031 overwrite = local_read(&(cpu_buffer->overrun));
3032
77ae365e
SR
3033 /*
3034 * Here's the tricky part.
3035 *
3036 * We need to move the pointer past the header page.
3037 * But we can only do that if a writer is not currently
3038 * moving it. The page before the header page has the
3039 * flag bit '1' set if it is pointing to the page we want.
3040 * but if the writer is in the process of moving it
3041 * than it will be '2' or already moved '0'.
3042 */
3043
3044 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3045
3046 /*
77ae365e 3047 * If we did not convert it, then we must try again.
7a8e76a3 3048 */
77ae365e
SR
3049 if (!ret)
3050 goto spin;
7a8e76a3 3051
77ae365e
SR
3052 /*
3053 * Yeah! We succeeded in replacing the page.
3054 *
3055 * Now make the new head point back to the reader page.
3056 */
5ded3dc6 3057 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3058 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3059
3060 /* Finally update the reader page to the new head */
3061 cpu_buffer->reader_page = reader;
3062 rb_reset_reader_page(cpu_buffer);
3063
66a8cb95
SR
3064 if (overwrite != cpu_buffer->last_overrun) {
3065 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3066 cpu_buffer->last_overrun = overwrite;
3067 }
3068
d769041f
SR
3069 goto again;
3070
3071 out:
0199c4e6 3072 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3073 local_irq_restore(flags);
d769041f
SR
3074
3075 return reader;
3076}
3077
3078static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3079{
3080 struct ring_buffer_event *event;
3081 struct buffer_page *reader;
3082 unsigned length;
3083
3084 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3085
d769041f 3086 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3087 if (RB_WARN_ON(cpu_buffer, !reader))
3088 return;
7a8e76a3 3089
d769041f
SR
3090 event = rb_reader_event(cpu_buffer);
3091
a1863c21 3092 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3093 cpu_buffer->read++;
d769041f
SR
3094
3095 rb_update_read_stamp(cpu_buffer, event);
3096
3097 length = rb_event_length(event);
6f807acd 3098 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3099}
3100
3101static void rb_advance_iter(struct ring_buffer_iter *iter)
3102{
7a8e76a3
SR
3103 struct ring_buffer_per_cpu *cpu_buffer;
3104 struct ring_buffer_event *event;
3105 unsigned length;
3106
3107 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3108
3109 /*
3110 * Check if we are at the end of the buffer.
3111 */
bf41a158 3112 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3113 /* discarded commits can make the page empty */
3114 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3115 return;
d769041f 3116 rb_inc_iter(iter);
7a8e76a3
SR
3117 return;
3118 }
3119
3120 event = rb_iter_head_event(iter);
3121
3122 length = rb_event_length(event);
3123
3124 /*
3125 * This should not be called to advance the header if we are
3126 * at the tail of the buffer.
3127 */
3e89c7bb 3128 if (RB_WARN_ON(cpu_buffer,
f536aafc 3129 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3130 (iter->head + length > rb_commit_index(cpu_buffer))))
3131 return;
7a8e76a3
SR
3132
3133 rb_update_iter_read_stamp(iter, event);
3134
3135 iter->head += length;
3136
3137 /* check for end of page padding */
bf41a158
SR
3138 if ((iter->head >= rb_page_size(iter->head_page)) &&
3139 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3140 rb_advance_iter(iter);
3141}
3142
66a8cb95
SR
3143static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3144{
3145 return cpu_buffer->lost_events;
3146}
3147
f83c9d0f 3148static struct ring_buffer_event *
66a8cb95
SR
3149rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3150 unsigned long *lost_events)
7a8e76a3 3151{
7a8e76a3 3152 struct ring_buffer_event *event;
d769041f 3153 struct buffer_page *reader;
818e3dd3 3154 int nr_loops = 0;
7a8e76a3 3155
7a8e76a3 3156 again:
818e3dd3 3157 /*
69d1b839
SR
3158 * We repeat when a time extend is encountered.
3159 * Since the time extend is always attached to a data event,
3160 * we should never loop more than once.
3161 * (We never hit the following condition more than twice).
818e3dd3 3162 */
69d1b839 3163 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3164 return NULL;
818e3dd3 3165
d769041f
SR
3166 reader = rb_get_reader_page(cpu_buffer);
3167 if (!reader)
7a8e76a3
SR
3168 return NULL;
3169
d769041f 3170 event = rb_reader_event(cpu_buffer);
7a8e76a3 3171
334d4169 3172 switch (event->type_len) {
7a8e76a3 3173 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3174 if (rb_null_event(event))
3175 RB_WARN_ON(cpu_buffer, 1);
3176 /*
3177 * Because the writer could be discarding every
3178 * event it creates (which would probably be bad)
3179 * if we were to go back to "again" then we may never
3180 * catch up, and will trigger the warn on, or lock
3181 * the box. Return the padding, and we will release
3182 * the current locks, and try again.
3183 */
2d622719 3184 return event;
7a8e76a3
SR
3185
3186 case RINGBUF_TYPE_TIME_EXTEND:
3187 /* Internal data, OK to advance */
d769041f 3188 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3189 goto again;
3190
3191 case RINGBUF_TYPE_TIME_STAMP:
3192 /* FIXME: not implemented */
d769041f 3193 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3194 goto again;
3195
3196 case RINGBUF_TYPE_DATA:
3197 if (ts) {
3198 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3199 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3200 cpu_buffer->cpu, ts);
7a8e76a3 3201 }
66a8cb95
SR
3202 if (lost_events)
3203 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3204 return event;
3205
3206 default:
3207 BUG();
3208 }
3209
3210 return NULL;
3211}
c4f50183 3212EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3213
f83c9d0f
SR
3214static struct ring_buffer_event *
3215rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3216{
3217 struct ring_buffer *buffer;
3218 struct ring_buffer_per_cpu *cpu_buffer;
3219 struct ring_buffer_event *event;
818e3dd3 3220 int nr_loops = 0;
7a8e76a3 3221
7a8e76a3
SR
3222 cpu_buffer = iter->cpu_buffer;
3223 buffer = cpu_buffer->buffer;
3224
492a74f4
SR
3225 /*
3226 * Check if someone performed a consuming read to
3227 * the buffer. A consuming read invalidates the iterator
3228 * and we need to reset the iterator in this case.
3229 */
3230 if (unlikely(iter->cache_read != cpu_buffer->read ||
3231 iter->cache_reader_page != cpu_buffer->reader_page))
3232 rb_iter_reset(iter);
3233
7a8e76a3 3234 again:
3c05d748
SR
3235 if (ring_buffer_iter_empty(iter))
3236 return NULL;
3237
818e3dd3 3238 /*
69d1b839
SR
3239 * We repeat when a time extend is encountered.
3240 * Since the time extend is always attached to a data event,
3241 * we should never loop more than once.
3242 * (We never hit the following condition more than twice).
818e3dd3 3243 */
69d1b839 3244 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3245 return NULL;
818e3dd3 3246
7a8e76a3
SR
3247 if (rb_per_cpu_empty(cpu_buffer))
3248 return NULL;
3249
3c05d748
SR
3250 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3251 rb_inc_iter(iter);
3252 goto again;
3253 }
3254
7a8e76a3
SR
3255 event = rb_iter_head_event(iter);
3256
334d4169 3257 switch (event->type_len) {
7a8e76a3 3258 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3259 if (rb_null_event(event)) {
3260 rb_inc_iter(iter);
3261 goto again;
3262 }
3263 rb_advance_iter(iter);
3264 return event;
7a8e76a3
SR
3265
3266 case RINGBUF_TYPE_TIME_EXTEND:
3267 /* Internal data, OK to advance */
3268 rb_advance_iter(iter);
3269 goto again;
3270
3271 case RINGBUF_TYPE_TIME_STAMP:
3272 /* FIXME: not implemented */
3273 rb_advance_iter(iter);
3274 goto again;
3275
3276 case RINGBUF_TYPE_DATA:
3277 if (ts) {
3278 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3279 ring_buffer_normalize_time_stamp(buffer,
3280 cpu_buffer->cpu, ts);
7a8e76a3
SR
3281 }
3282 return event;
3283
3284 default:
3285 BUG();
3286 }
3287
3288 return NULL;
3289}
c4f50183 3290EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3291
8d707e8e
SR
3292static inline int rb_ok_to_lock(void)
3293{
3294 /*
3295 * If an NMI die dumps out the content of the ring buffer
3296 * do not grab locks. We also permanently disable the ring
3297 * buffer too. A one time deal is all you get from reading
3298 * the ring buffer from an NMI.
3299 */
464e85eb 3300 if (likely(!in_nmi()))
8d707e8e
SR
3301 return 1;
3302
3303 tracing_off_permanent();
3304 return 0;
3305}
3306
f83c9d0f
SR
3307/**
3308 * ring_buffer_peek - peek at the next event to be read
3309 * @buffer: The ring buffer to read
3310 * @cpu: The cpu to peak at
3311 * @ts: The timestamp counter of this event.
66a8cb95 3312 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3313 *
3314 * This will return the event that will be read next, but does
3315 * not consume the data.
3316 */
3317struct ring_buffer_event *
66a8cb95
SR
3318ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3319 unsigned long *lost_events)
f83c9d0f
SR
3320{
3321 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3322 struct ring_buffer_event *event;
f83c9d0f 3323 unsigned long flags;
8d707e8e 3324 int dolock;
f83c9d0f 3325
554f786e 3326 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3327 return NULL;
554f786e 3328
8d707e8e 3329 dolock = rb_ok_to_lock();
2d622719 3330 again:
8d707e8e
SR
3331 local_irq_save(flags);
3332 if (dolock)
5389f6fa 3333 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3334 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3335 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3336 rb_advance_reader(cpu_buffer);
8d707e8e 3337 if (dolock)
5389f6fa 3338 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3339 local_irq_restore(flags);
f83c9d0f 3340
1b959e18 3341 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3342 goto again;
2d622719 3343
f83c9d0f
SR
3344 return event;
3345}
3346
3347/**
3348 * ring_buffer_iter_peek - peek at the next event to be read
3349 * @iter: The ring buffer iterator
3350 * @ts: The timestamp counter of this event.
3351 *
3352 * This will return the event that will be read next, but does
3353 * not increment the iterator.
3354 */
3355struct ring_buffer_event *
3356ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3357{
3358 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3359 struct ring_buffer_event *event;
3360 unsigned long flags;
3361
2d622719 3362 again:
5389f6fa 3363 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3364 event = rb_iter_peek(iter, ts);
5389f6fa 3365 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3366
1b959e18 3367 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3368 goto again;
2d622719 3369
f83c9d0f
SR
3370 return event;
3371}
3372
7a8e76a3
SR
3373/**
3374 * ring_buffer_consume - return an event and consume it
3375 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3376 * @cpu: the cpu to read the buffer from
3377 * @ts: a variable to store the timestamp (may be NULL)
3378 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3379 *
3380 * Returns the next event in the ring buffer, and that event is consumed.
3381 * Meaning, that sequential reads will keep returning a different event,
3382 * and eventually empty the ring buffer if the producer is slower.
3383 */
3384struct ring_buffer_event *
66a8cb95
SR
3385ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3386 unsigned long *lost_events)
7a8e76a3 3387{
554f786e
SR
3388 struct ring_buffer_per_cpu *cpu_buffer;
3389 struct ring_buffer_event *event = NULL;
f83c9d0f 3390 unsigned long flags;
8d707e8e
SR
3391 int dolock;
3392
3393 dolock = rb_ok_to_lock();
7a8e76a3 3394
2d622719 3395 again:
554f786e
SR
3396 /* might be called in atomic */
3397 preempt_disable();
3398
9e01c1b7 3399 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3400 goto out;
7a8e76a3 3401
554f786e 3402 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3403 local_irq_save(flags);
3404 if (dolock)
5389f6fa 3405 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3406
66a8cb95
SR
3407 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3408 if (event) {
3409 cpu_buffer->lost_events = 0;
469535a5 3410 rb_advance_reader(cpu_buffer);
66a8cb95 3411 }
7a8e76a3 3412
8d707e8e 3413 if (dolock)
5389f6fa 3414 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3415 local_irq_restore(flags);
f83c9d0f 3416
554f786e
SR
3417 out:
3418 preempt_enable();
3419
1b959e18 3420 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3421 goto again;
2d622719 3422
7a8e76a3
SR
3423 return event;
3424}
c4f50183 3425EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3426
3427/**
72c9ddfd 3428 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3429 * @buffer: The ring buffer to read from
3430 * @cpu: The cpu buffer to iterate over
3431 *
72c9ddfd
DM
3432 * This performs the initial preparations necessary to iterate
3433 * through the buffer. Memory is allocated, buffer recording
3434 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3435 *
72c9ddfd
DM
3436 * Disabling buffer recordng prevents the reading from being
3437 * corrupted. This is not a consuming read, so a producer is not
3438 * expected.
3439 *
3440 * After a sequence of ring_buffer_read_prepare calls, the user is
3441 * expected to make at least one call to ring_buffer_prepare_sync.
3442 * Afterwards, ring_buffer_read_start is invoked to get things going
3443 * for real.
3444 *
3445 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3446 */
3447struct ring_buffer_iter *
72c9ddfd 3448ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3449{
3450 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3451 struct ring_buffer_iter *iter;
7a8e76a3 3452
9e01c1b7 3453 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3454 return NULL;
7a8e76a3
SR
3455
3456 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3457 if (!iter)
8aabee57 3458 return NULL;
7a8e76a3
SR
3459
3460 cpu_buffer = buffer->buffers[cpu];
3461
3462 iter->cpu_buffer = cpu_buffer;
3463
3464 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3465
3466 return iter;
3467}
3468EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3469
3470/**
3471 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3472 *
3473 * All previously invoked ring_buffer_read_prepare calls to prepare
3474 * iterators will be synchronized. Afterwards, read_buffer_read_start
3475 * calls on those iterators are allowed.
3476 */
3477void
3478ring_buffer_read_prepare_sync(void)
3479{
7a8e76a3 3480 synchronize_sched();
72c9ddfd
DM
3481}
3482EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3483
3484/**
3485 * ring_buffer_read_start - start a non consuming read of the buffer
3486 * @iter: The iterator returned by ring_buffer_read_prepare
3487 *
3488 * This finalizes the startup of an iteration through the buffer.
3489 * The iterator comes from a call to ring_buffer_read_prepare and
3490 * an intervening ring_buffer_read_prepare_sync must have been
3491 * performed.
3492 *
3493 * Must be paired with ring_buffer_finish.
3494 */
3495void
3496ring_buffer_read_start(struct ring_buffer_iter *iter)
3497{
3498 struct ring_buffer_per_cpu *cpu_buffer;
3499 unsigned long flags;
3500
3501 if (!iter)
3502 return;
3503
3504 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3505
5389f6fa 3506 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3507 arch_spin_lock(&cpu_buffer->lock);
642edba5 3508 rb_iter_reset(iter);
0199c4e6 3509 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3510 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3511}
c4f50183 3512EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3513
3514/**
3515 * ring_buffer_finish - finish reading the iterator of the buffer
3516 * @iter: The iterator retrieved by ring_buffer_start
3517 *
3518 * This re-enables the recording to the buffer, and frees the
3519 * iterator.
3520 */
3521void
3522ring_buffer_read_finish(struct ring_buffer_iter *iter)
3523{
3524 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3525
3526 atomic_dec(&cpu_buffer->record_disabled);
3527 kfree(iter);
3528}
c4f50183 3529EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3530
3531/**
3532 * ring_buffer_read - read the next item in the ring buffer by the iterator
3533 * @iter: The ring buffer iterator
3534 * @ts: The time stamp of the event read.
3535 *
3536 * This reads the next event in the ring buffer and increments the iterator.
3537 */
3538struct ring_buffer_event *
3539ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3540{
3541 struct ring_buffer_event *event;
f83c9d0f
SR
3542 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3543 unsigned long flags;
7a8e76a3 3544
5389f6fa 3545 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3546 again:
f83c9d0f 3547 event = rb_iter_peek(iter, ts);
7a8e76a3 3548 if (!event)
f83c9d0f 3549 goto out;
7a8e76a3 3550
7e9391cf
SR
3551 if (event->type_len == RINGBUF_TYPE_PADDING)
3552 goto again;
3553
7a8e76a3 3554 rb_advance_iter(iter);
f83c9d0f 3555 out:
5389f6fa 3556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3557
3558 return event;
3559}
c4f50183 3560EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3561
3562/**
3563 * ring_buffer_size - return the size of the ring buffer (in bytes)
3564 * @buffer: The ring buffer.
3565 */
3566unsigned long ring_buffer_size(struct ring_buffer *buffer)
3567{
3568 return BUF_PAGE_SIZE * buffer->pages;
3569}
c4f50183 3570EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3571
3572static void
3573rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3574{
77ae365e
SR
3575 rb_head_page_deactivate(cpu_buffer);
3576
7a8e76a3 3577 cpu_buffer->head_page
3adc54fa 3578 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3579 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3580 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3581 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3582
6f807acd 3583 cpu_buffer->head_page->read = 0;
bf41a158
SR
3584
3585 cpu_buffer->tail_page = cpu_buffer->head_page;
3586 cpu_buffer->commit_page = cpu_buffer->head_page;
3587
3588 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3589 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3590 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3591 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3592 cpu_buffer->reader_page->read = 0;
7a8e76a3 3593
77ae365e 3594 local_set(&cpu_buffer->commit_overrun, 0);
c64e148a 3595 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3596 local_set(&cpu_buffer->overrun, 0);
e4906eff 3597 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3598 local_set(&cpu_buffer->committing, 0);
3599 local_set(&cpu_buffer->commits, 0);
77ae365e 3600 cpu_buffer->read = 0;
c64e148a 3601 cpu_buffer->read_bytes = 0;
69507c06
SR
3602
3603 cpu_buffer->write_stamp = 0;
3604 cpu_buffer->read_stamp = 0;
77ae365e 3605
66a8cb95
SR
3606 cpu_buffer->lost_events = 0;
3607 cpu_buffer->last_overrun = 0;
3608
77ae365e 3609 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3610}
3611
3612/**
3613 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3614 * @buffer: The ring buffer to reset a per cpu buffer of
3615 * @cpu: The CPU buffer to be reset
3616 */
3617void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3618{
3619 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3620 unsigned long flags;
3621
9e01c1b7 3622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3623 return;
7a8e76a3 3624
41ede23e
SR
3625 atomic_inc(&cpu_buffer->record_disabled);
3626
5389f6fa 3627 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3628
41b6a95d
SR
3629 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3630 goto out;
3631
0199c4e6 3632 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3633
3634 rb_reset_cpu(cpu_buffer);
3635
0199c4e6 3636 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3637
41b6a95d 3638 out:
5389f6fa 3639 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3640
3641 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3642}
c4f50183 3643EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3644
3645/**
3646 * ring_buffer_reset - reset a ring buffer
3647 * @buffer: The ring buffer to reset all cpu buffers
3648 */
3649void ring_buffer_reset(struct ring_buffer *buffer)
3650{
7a8e76a3
SR
3651 int cpu;
3652
7a8e76a3 3653 for_each_buffer_cpu(buffer, cpu)
d769041f 3654 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3655}
c4f50183 3656EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3657
3658/**
3659 * rind_buffer_empty - is the ring buffer empty?
3660 * @buffer: The ring buffer to test
3661 */
3662int ring_buffer_empty(struct ring_buffer *buffer)
3663{
3664 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3665 unsigned long flags;
8d707e8e 3666 int dolock;
7a8e76a3 3667 int cpu;
d4788207 3668 int ret;
7a8e76a3 3669
8d707e8e 3670 dolock = rb_ok_to_lock();
7a8e76a3
SR
3671
3672 /* yes this is racy, but if you don't like the race, lock the buffer */
3673 for_each_buffer_cpu(buffer, cpu) {
3674 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3675 local_irq_save(flags);
3676 if (dolock)
5389f6fa 3677 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 3678 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3679 if (dolock)
5389f6fa 3680 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
3681 local_irq_restore(flags);
3682
d4788207 3683 if (!ret)
7a8e76a3
SR
3684 return 0;
3685 }
554f786e 3686
7a8e76a3
SR
3687 return 1;
3688}
c4f50183 3689EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3690
3691/**
3692 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3693 * @buffer: The ring buffer
3694 * @cpu: The CPU buffer to test
3695 */
3696int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3697{
3698 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3699 unsigned long flags;
8d707e8e 3700 int dolock;
8aabee57 3701 int ret;
7a8e76a3 3702
9e01c1b7 3703 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3704 return 1;
7a8e76a3 3705
8d707e8e
SR
3706 dolock = rb_ok_to_lock();
3707
7a8e76a3 3708 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3709 local_irq_save(flags);
3710 if (dolock)
5389f6fa 3711 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 3712 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 3713 if (dolock)
5389f6fa 3714 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3715 local_irq_restore(flags);
554f786e
SR
3716
3717 return ret;
7a8e76a3 3718}
c4f50183 3719EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3720
85bac32c 3721#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3722/**
3723 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3724 * @buffer_a: One buffer to swap with
3725 * @buffer_b: The other buffer to swap with
3726 *
3727 * This function is useful for tracers that want to take a "snapshot"
3728 * of a CPU buffer and has another back up buffer lying around.
3729 * it is expected that the tracer handles the cpu buffer not being
3730 * used at the moment.
3731 */
3732int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3733 struct ring_buffer *buffer_b, int cpu)
3734{
3735 struct ring_buffer_per_cpu *cpu_buffer_a;
3736 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3737 int ret = -EINVAL;
3738
9e01c1b7
RR
3739 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3740 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3741 goto out;
7a8e76a3
SR
3742
3743 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3744 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3745 goto out;
3746
3747 ret = -EAGAIN;
7a8e76a3 3748
97b17efe 3749 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3750 goto out;
97b17efe
SR
3751
3752 if (atomic_read(&buffer_a->record_disabled))
554f786e 3753 goto out;
97b17efe
SR
3754
3755 if (atomic_read(&buffer_b->record_disabled))
554f786e 3756 goto out;
97b17efe 3757
7a8e76a3
SR
3758 cpu_buffer_a = buffer_a->buffers[cpu];
3759 cpu_buffer_b = buffer_b->buffers[cpu];
3760
97b17efe 3761 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3762 goto out;
97b17efe
SR
3763
3764 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3765 goto out;
97b17efe 3766
7a8e76a3
SR
3767 /*
3768 * We can't do a synchronize_sched here because this
3769 * function can be called in atomic context.
3770 * Normally this will be called from the same CPU as cpu.
3771 * If not it's up to the caller to protect this.
3772 */
3773 atomic_inc(&cpu_buffer_a->record_disabled);
3774 atomic_inc(&cpu_buffer_b->record_disabled);
3775
98277991
SR
3776 ret = -EBUSY;
3777 if (local_read(&cpu_buffer_a->committing))
3778 goto out_dec;
3779 if (local_read(&cpu_buffer_b->committing))
3780 goto out_dec;
3781
7a8e76a3
SR
3782 buffer_a->buffers[cpu] = cpu_buffer_b;
3783 buffer_b->buffers[cpu] = cpu_buffer_a;
3784
3785 cpu_buffer_b->buffer = buffer_a;
3786 cpu_buffer_a->buffer = buffer_b;
3787
98277991
SR
3788 ret = 0;
3789
3790out_dec:
7a8e76a3
SR
3791 atomic_dec(&cpu_buffer_a->record_disabled);
3792 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3793out:
554f786e 3794 return ret;
7a8e76a3 3795}
c4f50183 3796EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3797#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3798
8789a9e7
SR
3799/**
3800 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3801 * @buffer: the buffer to allocate for.
3802 *
3803 * This function is used in conjunction with ring_buffer_read_page.
3804 * When reading a full page from the ring buffer, these functions
3805 * can be used to speed up the process. The calling function should
3806 * allocate a few pages first with this function. Then when it
3807 * needs to get pages from the ring buffer, it passes the result
3808 * of this function into ring_buffer_read_page, which will swap
3809 * the page that was allocated, with the read page of the buffer.
3810 *
3811 * Returns:
3812 * The page allocated, or NULL on error.
3813 */
7ea59064 3814void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 3815{
044fa782 3816 struct buffer_data_page *bpage;
7ea59064 3817 struct page *page;
8789a9e7 3818
d7ec4bfe
VN
3819 page = alloc_pages_node(cpu_to_node(cpu),
3820 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 3821 if (!page)
8789a9e7
SR
3822 return NULL;
3823
7ea59064 3824 bpage = page_address(page);
8789a9e7 3825
ef7a4a16
SR
3826 rb_init_page(bpage);
3827
044fa782 3828 return bpage;
8789a9e7 3829}
d6ce96da 3830EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3831
3832/**
3833 * ring_buffer_free_read_page - free an allocated read page
3834 * @buffer: the buffer the page was allocate for
3835 * @data: the page to free
3836 *
3837 * Free a page allocated from ring_buffer_alloc_read_page.
3838 */
3839void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3840{
3841 free_page((unsigned long)data);
3842}
d6ce96da 3843EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3844
3845/**
3846 * ring_buffer_read_page - extract a page from the ring buffer
3847 * @buffer: buffer to extract from
3848 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3849 * @len: amount to extract
8789a9e7
SR
3850 * @cpu: the cpu of the buffer to extract
3851 * @full: should the extraction only happen when the page is full.
3852 *
3853 * This function will pull out a page from the ring buffer and consume it.
3854 * @data_page must be the address of the variable that was returned
3855 * from ring_buffer_alloc_read_page. This is because the page might be used
3856 * to swap with a page in the ring buffer.
3857 *
3858 * for example:
b85fa01e 3859 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3860 * if (!rpage)
3861 * return error;
ef7a4a16 3862 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3863 * if (ret >= 0)
3864 * process_page(rpage, ret);
8789a9e7
SR
3865 *
3866 * When @full is set, the function will not return true unless
3867 * the writer is off the reader page.
3868 *
3869 * Note: it is up to the calling functions to handle sleeps and wakeups.
3870 * The ring buffer can be used anywhere in the kernel and can not
3871 * blindly call wake_up. The layer that uses the ring buffer must be
3872 * responsible for that.
3873 *
3874 * Returns:
667d2412
LJ
3875 * >=0 if data has been transferred, returns the offset of consumed data.
3876 * <0 if no data has been transferred.
8789a9e7
SR
3877 */
3878int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3879 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3880{
3881 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3882 struct ring_buffer_event *event;
044fa782 3883 struct buffer_data_page *bpage;
ef7a4a16 3884 struct buffer_page *reader;
ff0ff84a 3885 unsigned long missed_events;
8789a9e7 3886 unsigned long flags;
ef7a4a16 3887 unsigned int commit;
667d2412 3888 unsigned int read;
4f3640f8 3889 u64 save_timestamp;
667d2412 3890 int ret = -1;
8789a9e7 3891
554f786e
SR
3892 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3893 goto out;
3894
474d32b6
SR
3895 /*
3896 * If len is not big enough to hold the page header, then
3897 * we can not copy anything.
3898 */
3899 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3900 goto out;
474d32b6
SR
3901
3902 len -= BUF_PAGE_HDR_SIZE;
3903
8789a9e7 3904 if (!data_page)
554f786e 3905 goto out;
8789a9e7 3906
044fa782
SR
3907 bpage = *data_page;
3908 if (!bpage)
554f786e 3909 goto out;
8789a9e7 3910
5389f6fa 3911 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 3912
ef7a4a16
SR
3913 reader = rb_get_reader_page(cpu_buffer);
3914 if (!reader)
554f786e 3915 goto out_unlock;
8789a9e7 3916
ef7a4a16
SR
3917 event = rb_reader_event(cpu_buffer);
3918
3919 read = reader->read;
3920 commit = rb_page_commit(reader);
667d2412 3921
66a8cb95 3922 /* Check if any events were dropped */
ff0ff84a 3923 missed_events = cpu_buffer->lost_events;
66a8cb95 3924
8789a9e7 3925 /*
474d32b6
SR
3926 * If this page has been partially read or
3927 * if len is not big enough to read the rest of the page or
3928 * a writer is still on the page, then
3929 * we must copy the data from the page to the buffer.
3930 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3931 */
474d32b6 3932 if (read || (len < (commit - read)) ||
ef7a4a16 3933 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3934 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3935 unsigned int rpos = read;
3936 unsigned int pos = 0;
ef7a4a16 3937 unsigned int size;
8789a9e7
SR
3938
3939 if (full)
554f786e 3940 goto out_unlock;
8789a9e7 3941
ef7a4a16
SR
3942 if (len > (commit - read))
3943 len = (commit - read);
3944
69d1b839
SR
3945 /* Always keep the time extend and data together */
3946 size = rb_event_ts_length(event);
ef7a4a16
SR
3947
3948 if (len < size)
554f786e 3949 goto out_unlock;
ef7a4a16 3950
4f3640f8
SR
3951 /* save the current timestamp, since the user will need it */
3952 save_timestamp = cpu_buffer->read_stamp;
3953
ef7a4a16
SR
3954 /* Need to copy one event at a time */
3955 do {
e1e35927
DS
3956 /* We need the size of one event, because
3957 * rb_advance_reader only advances by one event,
3958 * whereas rb_event_ts_length may include the size of
3959 * one or two events.
3960 * We have already ensured there's enough space if this
3961 * is a time extend. */
3962 size = rb_event_length(event);
474d32b6 3963 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3964
3965 len -= size;
3966
3967 rb_advance_reader(cpu_buffer);
474d32b6
SR
3968 rpos = reader->read;
3969 pos += size;
ef7a4a16 3970
18fab912
HY
3971 if (rpos >= commit)
3972 break;
3973
ef7a4a16 3974 event = rb_reader_event(cpu_buffer);
69d1b839
SR
3975 /* Always keep the time extend and data together */
3976 size = rb_event_ts_length(event);
e1e35927 3977 } while (len >= size);
667d2412
LJ
3978
3979 /* update bpage */
ef7a4a16 3980 local_set(&bpage->commit, pos);
4f3640f8 3981 bpage->time_stamp = save_timestamp;
ef7a4a16 3982
474d32b6
SR
3983 /* we copied everything to the beginning */
3984 read = 0;
8789a9e7 3985 } else {
afbab76a 3986 /* update the entry counter */
77ae365e 3987 cpu_buffer->read += rb_page_entries(reader);
c64e148a 3988 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 3989
8789a9e7 3990 /* swap the pages */
044fa782 3991 rb_init_page(bpage);
ef7a4a16
SR
3992 bpage = reader->page;
3993 reader->page = *data_page;
3994 local_set(&reader->write, 0);
778c55d4 3995 local_set(&reader->entries, 0);
ef7a4a16 3996 reader->read = 0;
044fa782 3997 *data_page = bpage;
ff0ff84a
SR
3998
3999 /*
4000 * Use the real_end for the data size,
4001 * This gives us a chance to store the lost events
4002 * on the page.
4003 */
4004 if (reader->real_end)
4005 local_set(&bpage->commit, reader->real_end);
8789a9e7 4006 }
667d2412 4007 ret = read;
8789a9e7 4008
66a8cb95 4009 cpu_buffer->lost_events = 0;
2711ca23
SR
4010
4011 commit = local_read(&bpage->commit);
66a8cb95
SR
4012 /*
4013 * Set a flag in the commit field if we lost events
4014 */
ff0ff84a 4015 if (missed_events) {
ff0ff84a
SR
4016 /* If there is room at the end of the page to save the
4017 * missed events, then record it there.
4018 */
4019 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4020 memcpy(&bpage->data[commit], &missed_events,
4021 sizeof(missed_events));
4022 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4023 commit += sizeof(missed_events);
ff0ff84a 4024 }
66a8cb95 4025 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4026 }
66a8cb95 4027
2711ca23
SR
4028 /*
4029 * This page may be off to user land. Zero it out here.
4030 */
4031 if (commit < BUF_PAGE_SIZE)
4032 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4033
554f786e 4034 out_unlock:
5389f6fa 4035 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4036
554f786e 4037 out:
8789a9e7
SR
4038 return ret;
4039}
d6ce96da 4040EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4041
1155de47 4042#ifdef CONFIG_TRACING
a3583244
SR
4043static ssize_t
4044rb_simple_read(struct file *filp, char __user *ubuf,
4045 size_t cnt, loff_t *ppos)
4046{
5e39841c 4047 unsigned long *p = filp->private_data;
a3583244
SR
4048 char buf[64];
4049 int r;
4050
033601a3
SR
4051 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
4052 r = sprintf(buf, "permanently disabled\n");
4053 else
4054 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
4055
4056 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
4057}
4058
4059static ssize_t
4060rb_simple_write(struct file *filp, const char __user *ubuf,
4061 size_t cnt, loff_t *ppos)
4062{
5e39841c 4063 unsigned long *p = filp->private_data;
5e39841c 4064 unsigned long val;
a3583244
SR
4065 int ret;
4066
22fe9b54
PH
4067 ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
4068 if (ret)
a3583244
SR
4069 return ret;
4070
033601a3
SR
4071 if (val)
4072 set_bit(RB_BUFFERS_ON_BIT, p);
4073 else
4074 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
4075
4076 (*ppos)++;
4077
4078 return cnt;
4079}
4080
5e2336a0 4081static const struct file_operations rb_simple_fops = {
a3583244
SR
4082 .open = tracing_open_generic,
4083 .read = rb_simple_read,
4084 .write = rb_simple_write,
6038f373 4085 .llseek = default_llseek,
a3583244
SR
4086};
4087
4088
4089static __init int rb_init_debugfs(void)
4090{
4091 struct dentry *d_tracer;
a3583244
SR
4092
4093 d_tracer = tracing_init_dentry();
4094
5452af66
FW
4095 trace_create_file("tracing_on", 0644, d_tracer,
4096 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
4097
4098 return 0;
4099}
4100
4101fs_initcall(rb_init_debugfs);
1155de47 4102#endif
554f786e 4103
59222efe 4104#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4105static int rb_cpu_notify(struct notifier_block *self,
4106 unsigned long action, void *hcpu)
554f786e
SR
4107{
4108 struct ring_buffer *buffer =
4109 container_of(self, struct ring_buffer, cpu_notify);
4110 long cpu = (long)hcpu;
4111
4112 switch (action) {
4113 case CPU_UP_PREPARE:
4114 case CPU_UP_PREPARE_FROZEN:
3f237a79 4115 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4116 return NOTIFY_OK;
4117
4118 buffer->buffers[cpu] =
4119 rb_allocate_cpu_buffer(buffer, cpu);
4120 if (!buffer->buffers[cpu]) {
4121 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4122 cpu);
4123 return NOTIFY_OK;
4124 }
4125 smp_wmb();
3f237a79 4126 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4127 break;
4128 case CPU_DOWN_PREPARE:
4129 case CPU_DOWN_PREPARE_FROZEN:
4130 /*
4131 * Do nothing.
4132 * If we were to free the buffer, then the user would
4133 * lose any trace that was in the buffer.
4134 */
4135 break;
4136 default:
4137 break;
4138 }
4139 return NOTIFY_OK;
4140}
4141#endif