]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
ring-buffer: User context bit recursion checking
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
83f40318
VN
26static void update_pages_handler(struct work_struct *work);
27
d1b182a8
SR
28/*
29 * The ring buffer header is special. We must manually up keep it.
30 */
31int ring_buffer_print_entry_header(struct trace_seq *s)
32{
33 int ret;
34
334d4169
LJ
35 ret = trace_seq_printf(s, "# compressed entry header\n");
36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
38 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
39 ret = trace_seq_printf(s, "\n");
40 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
46
47 return ret;
48}
49
5cc98548
SR
50/*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
033601a3
SR
118/*
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
124 *
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
127 *
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
131 *
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
134 */
135
136/*
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
139 *
140 * ON DISABLED
141 * ---- ----------
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
145 */
146
147enum {
148 RB_BUFFERS_ON_BIT = 0,
149 RB_BUFFERS_DISABLED_BIT = 1,
150};
151
152enum {
153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155};
156
5e39841c 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 158
499e5470
SR
159/* Used for individual buffers (after the counter) */
160#define RB_BUFFER_OFF (1 << 20)
a3583244 161
499e5470 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
163
164/**
165 * tracing_off_permanent - permanently disable ring buffers
166 *
167 * This function, once called, will disable all ring buffers
c3706f00 168 * permanently.
033601a3
SR
169 */
170void tracing_off_permanent(void)
171{
172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
173}
174
e3d6bf0a 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 176#define RB_ALIGNMENT 4U
334d4169 177#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 178#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 179
2271048d
SR
180#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181# define RB_FORCE_8BYTE_ALIGNMENT 0
182# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
183#else
184# define RB_FORCE_8BYTE_ALIGNMENT 1
185# define RB_ARCH_ALIGNMENT 8U
186#endif
187
334d4169
LJ
188/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
190
191enum {
192 RB_LEN_TIME_EXTEND = 8,
193 RB_LEN_TIME_STAMP = 16,
194};
195
69d1b839
SR
196#define skip_time_extend(event) \
197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
2d622719
TZ
199static inline int rb_null_event(struct ring_buffer_event *event)
200{
a1863c21 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
202}
203
204static void rb_event_set_padding(struct ring_buffer_event *event)
205{
a1863c21 206 /* padding has a NULL time_delta */
334d4169 207 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
208 event->time_delta = 0;
209}
210
34a148bf 211static unsigned
2d622719 212rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
213{
214 unsigned length;
215
334d4169
LJ
216 if (event->type_len)
217 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
218 else
219 length = event->array[0];
220 return length + RB_EVNT_HDR_SIZE;
221}
222
69d1b839
SR
223/*
224 * Return the length of the given event. Will return
225 * the length of the time extend if the event is a
226 * time extend.
227 */
228static inline unsigned
2d622719
TZ
229rb_event_length(struct ring_buffer_event *event)
230{
334d4169 231 switch (event->type_len) {
7a8e76a3 232 case RINGBUF_TYPE_PADDING:
2d622719
TZ
233 if (rb_null_event(event))
234 /* undefined */
235 return -1;
334d4169 236 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
237
238 case RINGBUF_TYPE_TIME_EXTEND:
239 return RB_LEN_TIME_EXTEND;
240
241 case RINGBUF_TYPE_TIME_STAMP:
242 return RB_LEN_TIME_STAMP;
243
244 case RINGBUF_TYPE_DATA:
2d622719 245 return rb_event_data_length(event);
7a8e76a3
SR
246 default:
247 BUG();
248 }
249 /* not hit */
250 return 0;
251}
252
69d1b839
SR
253/*
254 * Return total length of time extend and data,
255 * or just the event length for all other events.
256 */
257static inline unsigned
258rb_event_ts_length(struct ring_buffer_event *event)
259{
260 unsigned len = 0;
261
262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 /* time extends include the data event after it */
264 len = RB_LEN_TIME_EXTEND;
265 event = skip_time_extend(event);
266 }
267 return len + rb_event_length(event);
268}
269
7a8e76a3
SR
270/**
271 * ring_buffer_event_length - return the length of the event
272 * @event: the event to get the length of
69d1b839
SR
273 *
274 * Returns the size of the data load of a data event.
275 * If the event is something other than a data event, it
276 * returns the size of the event itself. With the exception
277 * of a TIME EXTEND, where it still returns the size of the
278 * data load of the data event after it.
7a8e76a3
SR
279 */
280unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281{
69d1b839
SR
282 unsigned length;
283
284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 event = skip_time_extend(event);
286
287 length = rb_event_length(event);
334d4169 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
289 return length;
290 length -= RB_EVNT_HDR_SIZE;
291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292 length -= sizeof(event->array[0]);
293 return length;
7a8e76a3 294}
c4f50183 295EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
296
297/* inline for ring buffer fast paths */
34a148bf 298static void *
7a8e76a3
SR
299rb_event_data(struct ring_buffer_event *event)
300{
69d1b839
SR
301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 event = skip_time_extend(event);
334d4169 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 304 /* If length is in len field, then array[0] has the data */
334d4169 305 if (event->type_len)
7a8e76a3
SR
306 return (void *)&event->array[0];
307 /* Otherwise length is in array[0] and array[1] has the data */
308 return (void *)&event->array[1];
309}
310
311/**
312 * ring_buffer_event_data - return the data of the event
313 * @event: the event to get the data from
314 */
315void *ring_buffer_event_data(struct ring_buffer_event *event)
316{
317 return rb_event_data(event);
318}
c4f50183 319EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
320
321#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 322 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
323
324#define TS_SHIFT 27
325#define TS_MASK ((1ULL << TS_SHIFT) - 1)
326#define TS_DELTA_TEST (~TS_MASK)
327
66a8cb95
SR
328/* Flag when events were overwritten */
329#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
330/* Missed count stored at end */
331#define RB_MISSED_STORED (1 << 30)
66a8cb95 332
abc9b56d 333struct buffer_data_page {
e4c2ce82 334 u64 time_stamp; /* page time stamp */
c3706f00 335 local_t commit; /* write committed index */
abc9b56d
SR
336 unsigned char data[]; /* data of buffer page */
337};
338
77ae365e
SR
339/*
340 * Note, the buffer_page list must be first. The buffer pages
341 * are allocated in cache lines, which means that each buffer
342 * page will be at the beginning of a cache line, and thus
343 * the least significant bits will be zero. We use this to
344 * add flags in the list struct pointers, to make the ring buffer
345 * lockless.
346 */
abc9b56d 347struct buffer_page {
778c55d4 348 struct list_head list; /* list of buffer pages */
abc9b56d 349 local_t write; /* index for next write */
6f807acd 350 unsigned read; /* index for next read */
778c55d4 351 local_t entries; /* entries on this page */
ff0ff84a 352 unsigned long real_end; /* real end of data */
abc9b56d 353 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
354};
355
77ae365e
SR
356/*
357 * The buffer page counters, write and entries, must be reset
358 * atomically when crossing page boundaries. To synchronize this
359 * update, two counters are inserted into the number. One is
360 * the actual counter for the write position or count on the page.
361 *
362 * The other is a counter of updaters. Before an update happens
363 * the update partition of the counter is incremented. This will
364 * allow the updater to update the counter atomically.
365 *
366 * The counter is 20 bits, and the state data is 12.
367 */
368#define RB_WRITE_MASK 0xfffff
369#define RB_WRITE_INTCNT (1 << 20)
370
044fa782 371static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 372{
044fa782 373 local_set(&bpage->commit, 0);
abc9b56d
SR
374}
375
474d32b6
SR
376/**
377 * ring_buffer_page_len - the size of data on the page.
378 * @page: The page to read
379 *
380 * Returns the amount of data on the page, including buffer page header.
381 */
ef7a4a16
SR
382size_t ring_buffer_page_len(void *page)
383{
474d32b6
SR
384 return local_read(&((struct buffer_data_page *)page)->commit)
385 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
386}
387
ed56829c
SR
388/*
389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390 * this issue out.
391 */
34a148bf 392static void free_buffer_page(struct buffer_page *bpage)
ed56829c 393{
34a148bf 394 free_page((unsigned long)bpage->page);
e4c2ce82 395 kfree(bpage);
ed56829c
SR
396}
397
7a8e76a3
SR
398/*
399 * We need to fit the time_stamp delta into 27 bits.
400 */
401static inline int test_time_stamp(u64 delta)
402{
403 if (delta & TS_DELTA_TEST)
404 return 1;
405 return 0;
406}
407
474d32b6 408#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 409
be957c44
SR
410/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
d1b182a8
SR
413int ring_buffer_print_page_header(struct trace_seq *s)
414{
415 struct buffer_data_page field;
416 int ret;
417
418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
419 "offset:0;\tsize:%u;\tsigned:%u;\n",
420 (unsigned int)sizeof(field.time_stamp),
421 (unsigned int)is_signed_type(u64));
d1b182a8
SR
422
423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 424 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 425 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
426 (unsigned int)sizeof(field.commit),
427 (unsigned int)is_signed_type(long));
d1b182a8 428
66a8cb95
SR
429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 1,
433 (unsigned int)is_signed_type(long));
434
d1b182a8 435 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 437 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
438 (unsigned int)BUF_PAGE_SIZE,
439 (unsigned int)is_signed_type(char));
d1b182a8
SR
440
441 return ret;
442}
443
7a8e76a3
SR
444/*
445 * head_page == tail_page && head == tail then buffer is empty.
446 */
447struct ring_buffer_per_cpu {
448 int cpu;
985023de 449 atomic_t record_disabled;
7a8e76a3 450 struct ring_buffer *buffer;
5389f6fa 451 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 452 arch_spinlock_t lock;
7a8e76a3 453 struct lock_class_key lock_key;
438ced17 454 unsigned int nr_pages;
3adc54fa 455 struct list_head *pages;
6f807acd
SR
456 struct buffer_page *head_page; /* read from head */
457 struct buffer_page *tail_page; /* write to tail */
c3706f00 458 struct buffer_page *commit_page; /* committed pages */
d769041f 459 struct buffer_page *reader_page;
66a8cb95
SR
460 unsigned long lost_events;
461 unsigned long last_overrun;
c64e148a 462 local_t entries_bytes;
e4906eff 463 local_t entries;
884bfe89
SP
464 local_t overrun;
465 local_t commit_overrun;
466 local_t dropped_events;
fa743953
SR
467 local_t committing;
468 local_t commits;
77ae365e 469 unsigned long read;
c64e148a 470 unsigned long read_bytes;
7a8e76a3
SR
471 u64 write_stamp;
472 u64 read_stamp;
438ced17
VN
473 /* ring buffer pages to update, > 0 to add, < 0 to remove */
474 int nr_pages_to_update;
475 struct list_head new_pages; /* new pages to add */
83f40318 476 struct work_struct update_pages_work;
05fdd70d 477 struct completion update_done;
7a8e76a3
SR
478};
479
480struct ring_buffer {
7a8e76a3
SR
481 unsigned flags;
482 int cpus;
7a8e76a3 483 atomic_t record_disabled;
83f40318 484 atomic_t resize_disabled;
00f62f61 485 cpumask_var_t cpumask;
7a8e76a3 486
1f8a6a10
PZ
487 struct lock_class_key *reader_lock_key;
488
7a8e76a3
SR
489 struct mutex mutex;
490
491 struct ring_buffer_per_cpu **buffers;
554f786e 492
59222efe 493#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
494 struct notifier_block cpu_notify;
495#endif
37886f6a 496 u64 (*clock)(void);
7a8e76a3
SR
497};
498
499struct ring_buffer_iter {
500 struct ring_buffer_per_cpu *cpu_buffer;
501 unsigned long head;
502 struct buffer_page *head_page;
492a74f4
SR
503 struct buffer_page *cache_reader_page;
504 unsigned long cache_read;
7a8e76a3
SR
505 u64 read_stamp;
506};
507
f536aafc 508/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
509#define RB_WARN_ON(b, cond) \
510 ({ \
511 int _____ret = unlikely(cond); \
512 if (_____ret) { \
513 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
514 struct ring_buffer_per_cpu *__b = \
515 (void *)b; \
516 atomic_inc(&__b->buffer->record_disabled); \
517 } else \
518 atomic_inc(&b->record_disabled); \
519 WARN_ON(1); \
520 } \
521 _____ret; \
3e89c7bb 522 })
f536aafc 523
37886f6a
SR
524/* Up this if you want to test the TIME_EXTENTS and normalization */
525#define DEBUG_SHIFT 0
526
6d3f1e12 527static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
528{
529 /* shift to debug/test normalization and TIME_EXTENTS */
530 return buffer->clock() << DEBUG_SHIFT;
531}
532
37886f6a
SR
533u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
534{
535 u64 time;
536
537 preempt_disable_notrace();
6d3f1e12 538 time = rb_time_stamp(buffer);
37886f6a
SR
539 preempt_enable_no_resched_notrace();
540
541 return time;
542}
543EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
544
545void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
546 int cpu, u64 *ts)
547{
548 /* Just stupid testing the normalize function and deltas */
549 *ts >>= DEBUG_SHIFT;
550}
551EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
552
77ae365e
SR
553/*
554 * Making the ring buffer lockless makes things tricky.
555 * Although writes only happen on the CPU that they are on,
556 * and they only need to worry about interrupts. Reads can
557 * happen on any CPU.
558 *
559 * The reader page is always off the ring buffer, but when the
560 * reader finishes with a page, it needs to swap its page with
561 * a new one from the buffer. The reader needs to take from
562 * the head (writes go to the tail). But if a writer is in overwrite
563 * mode and wraps, it must push the head page forward.
564 *
565 * Here lies the problem.
566 *
567 * The reader must be careful to replace only the head page, and
568 * not another one. As described at the top of the file in the
569 * ASCII art, the reader sets its old page to point to the next
570 * page after head. It then sets the page after head to point to
571 * the old reader page. But if the writer moves the head page
572 * during this operation, the reader could end up with the tail.
573 *
574 * We use cmpxchg to help prevent this race. We also do something
575 * special with the page before head. We set the LSB to 1.
576 *
577 * When the writer must push the page forward, it will clear the
578 * bit that points to the head page, move the head, and then set
579 * the bit that points to the new head page.
580 *
581 * We also don't want an interrupt coming in and moving the head
582 * page on another writer. Thus we use the second LSB to catch
583 * that too. Thus:
584 *
585 * head->list->prev->next bit 1 bit 0
586 * ------- -------
587 * Normal page 0 0
588 * Points to head page 0 1
589 * New head page 1 0
590 *
591 * Note we can not trust the prev pointer of the head page, because:
592 *
593 * +----+ +-----+ +-----+
594 * | |------>| T |---X--->| N |
595 * | |<------| | | |
596 * +----+ +-----+ +-----+
597 * ^ ^ |
598 * | +-----+ | |
599 * +----------| R |----------+ |
600 * | |<-----------+
601 * +-----+
602 *
603 * Key: ---X--> HEAD flag set in pointer
604 * T Tail page
605 * R Reader page
606 * N Next page
607 *
608 * (see __rb_reserve_next() to see where this happens)
609 *
610 * What the above shows is that the reader just swapped out
611 * the reader page with a page in the buffer, but before it
612 * could make the new header point back to the new page added
613 * it was preempted by a writer. The writer moved forward onto
614 * the new page added by the reader and is about to move forward
615 * again.
616 *
617 * You can see, it is legitimate for the previous pointer of
618 * the head (or any page) not to point back to itself. But only
619 * temporarially.
620 */
621
622#define RB_PAGE_NORMAL 0UL
623#define RB_PAGE_HEAD 1UL
624#define RB_PAGE_UPDATE 2UL
625
626
627#define RB_FLAG_MASK 3UL
628
629/* PAGE_MOVED is not part of the mask */
630#define RB_PAGE_MOVED 4UL
631
632/*
633 * rb_list_head - remove any bit
634 */
635static struct list_head *rb_list_head(struct list_head *list)
636{
637 unsigned long val = (unsigned long)list;
638
639 return (struct list_head *)(val & ~RB_FLAG_MASK);
640}
641
642/*
6d3f1e12 643 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
644 *
645 * Because the reader may move the head_page pointer, we can
646 * not trust what the head page is (it may be pointing to
647 * the reader page). But if the next page is a header page,
648 * its flags will be non zero.
649 */
42b16b3f 650static inline int
77ae365e
SR
651rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
652 struct buffer_page *page, struct list_head *list)
653{
654 unsigned long val;
655
656 val = (unsigned long)list->next;
657
658 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
659 return RB_PAGE_MOVED;
660
661 return val & RB_FLAG_MASK;
662}
663
664/*
665 * rb_is_reader_page
666 *
667 * The unique thing about the reader page, is that, if the
668 * writer is ever on it, the previous pointer never points
669 * back to the reader page.
670 */
671static int rb_is_reader_page(struct buffer_page *page)
672{
673 struct list_head *list = page->list.prev;
674
675 return rb_list_head(list->next) != &page->list;
676}
677
678/*
679 * rb_set_list_to_head - set a list_head to be pointing to head.
680 */
681static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
682 struct list_head *list)
683{
684 unsigned long *ptr;
685
686 ptr = (unsigned long *)&list->next;
687 *ptr |= RB_PAGE_HEAD;
688 *ptr &= ~RB_PAGE_UPDATE;
689}
690
691/*
692 * rb_head_page_activate - sets up head page
693 */
694static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
695{
696 struct buffer_page *head;
697
698 head = cpu_buffer->head_page;
699 if (!head)
700 return;
701
702 /*
703 * Set the previous list pointer to have the HEAD flag.
704 */
705 rb_set_list_to_head(cpu_buffer, head->list.prev);
706}
707
708static void rb_list_head_clear(struct list_head *list)
709{
710 unsigned long *ptr = (unsigned long *)&list->next;
711
712 *ptr &= ~RB_FLAG_MASK;
713}
714
715/*
716 * rb_head_page_dactivate - clears head page ptr (for free list)
717 */
718static void
719rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
720{
721 struct list_head *hd;
722
723 /* Go through the whole list and clear any pointers found. */
724 rb_list_head_clear(cpu_buffer->pages);
725
726 list_for_each(hd, cpu_buffer->pages)
727 rb_list_head_clear(hd);
728}
729
730static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
731 struct buffer_page *head,
732 struct buffer_page *prev,
733 int old_flag, int new_flag)
734{
735 struct list_head *list;
736 unsigned long val = (unsigned long)&head->list;
737 unsigned long ret;
738
739 list = &prev->list;
740
741 val &= ~RB_FLAG_MASK;
742
08a40816
SR
743 ret = cmpxchg((unsigned long *)&list->next,
744 val | old_flag, val | new_flag);
77ae365e
SR
745
746 /* check if the reader took the page */
747 if ((ret & ~RB_FLAG_MASK) != val)
748 return RB_PAGE_MOVED;
749
750 return ret & RB_FLAG_MASK;
751}
752
753static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
754 struct buffer_page *head,
755 struct buffer_page *prev,
756 int old_flag)
757{
758 return rb_head_page_set(cpu_buffer, head, prev,
759 old_flag, RB_PAGE_UPDATE);
760}
761
762static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
763 struct buffer_page *head,
764 struct buffer_page *prev,
765 int old_flag)
766{
767 return rb_head_page_set(cpu_buffer, head, prev,
768 old_flag, RB_PAGE_HEAD);
769}
770
771static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
772 struct buffer_page *head,
773 struct buffer_page *prev,
774 int old_flag)
775{
776 return rb_head_page_set(cpu_buffer, head, prev,
777 old_flag, RB_PAGE_NORMAL);
778}
779
780static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
781 struct buffer_page **bpage)
782{
783 struct list_head *p = rb_list_head((*bpage)->list.next);
784
785 *bpage = list_entry(p, struct buffer_page, list);
786}
787
788static struct buffer_page *
789rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
790{
791 struct buffer_page *head;
792 struct buffer_page *page;
793 struct list_head *list;
794 int i;
795
796 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
797 return NULL;
798
799 /* sanity check */
800 list = cpu_buffer->pages;
801 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
802 return NULL;
803
804 page = head = cpu_buffer->head_page;
805 /*
806 * It is possible that the writer moves the header behind
807 * where we started, and we miss in one loop.
808 * A second loop should grab the header, but we'll do
809 * three loops just because I'm paranoid.
810 */
811 for (i = 0; i < 3; i++) {
812 do {
813 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
814 cpu_buffer->head_page = page;
815 return page;
816 }
817 rb_inc_page(cpu_buffer, &page);
818 } while (page != head);
819 }
820
821 RB_WARN_ON(cpu_buffer, 1);
822
823 return NULL;
824}
825
826static int rb_head_page_replace(struct buffer_page *old,
827 struct buffer_page *new)
828{
829 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
830 unsigned long val;
831 unsigned long ret;
832
833 val = *ptr & ~RB_FLAG_MASK;
834 val |= RB_PAGE_HEAD;
835
08a40816 836 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
837
838 return ret == val;
839}
840
841/*
842 * rb_tail_page_update - move the tail page forward
843 *
844 * Returns 1 if moved tail page, 0 if someone else did.
845 */
846static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
847 struct buffer_page *tail_page,
848 struct buffer_page *next_page)
849{
850 struct buffer_page *old_tail;
851 unsigned long old_entries;
852 unsigned long old_write;
853 int ret = 0;
854
855 /*
856 * The tail page now needs to be moved forward.
857 *
858 * We need to reset the tail page, but without messing
859 * with possible erasing of data brought in by interrupts
860 * that have moved the tail page and are currently on it.
861 *
862 * We add a counter to the write field to denote this.
863 */
864 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
865 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
866
867 /*
868 * Just make sure we have seen our old_write and synchronize
869 * with any interrupts that come in.
870 */
871 barrier();
872
873 /*
874 * If the tail page is still the same as what we think
875 * it is, then it is up to us to update the tail
876 * pointer.
877 */
878 if (tail_page == cpu_buffer->tail_page) {
879 /* Zero the write counter */
880 unsigned long val = old_write & ~RB_WRITE_MASK;
881 unsigned long eval = old_entries & ~RB_WRITE_MASK;
882
883 /*
884 * This will only succeed if an interrupt did
885 * not come in and change it. In which case, we
886 * do not want to modify it.
da706d8b
LJ
887 *
888 * We add (void) to let the compiler know that we do not care
889 * about the return value of these functions. We use the
890 * cmpxchg to only update if an interrupt did not already
891 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 892 */
da706d8b
LJ
893 (void)local_cmpxchg(&next_page->write, old_write, val);
894 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
895
896 /*
897 * No need to worry about races with clearing out the commit.
898 * it only can increment when a commit takes place. But that
899 * only happens in the outer most nested commit.
900 */
901 local_set(&next_page->page->commit, 0);
902
903 old_tail = cmpxchg(&cpu_buffer->tail_page,
904 tail_page, next_page);
905
906 if (old_tail == tail_page)
907 ret = 1;
908 }
909
910 return ret;
911}
912
913static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
914 struct buffer_page *bpage)
915{
916 unsigned long val = (unsigned long)bpage;
917
918 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
919 return 1;
920
921 return 0;
922}
923
924/**
925 * rb_check_list - make sure a pointer to a list has the last bits zero
926 */
927static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
928 struct list_head *list)
929{
930 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
931 return 1;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
933 return 1;
934 return 0;
935}
936
7a8e76a3
SR
937/**
938 * check_pages - integrity check of buffer pages
939 * @cpu_buffer: CPU buffer with pages to test
940 *
c3706f00 941 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
942 * been corrupted.
943 */
944static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
945{
3adc54fa 946 struct list_head *head = cpu_buffer->pages;
044fa782 947 struct buffer_page *bpage, *tmp;
7a8e76a3 948
308f7eeb
SR
949 /* Reset the head page if it exists */
950 if (cpu_buffer->head_page)
951 rb_set_head_page(cpu_buffer);
952
77ae365e
SR
953 rb_head_page_deactivate(cpu_buffer);
954
3e89c7bb
SR
955 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
956 return -1;
957 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
958 return -1;
7a8e76a3 959
77ae365e
SR
960 if (rb_check_list(cpu_buffer, head))
961 return -1;
962
044fa782 963 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 964 if (RB_WARN_ON(cpu_buffer,
044fa782 965 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
966 return -1;
967 if (RB_WARN_ON(cpu_buffer,
044fa782 968 bpage->list.prev->next != &bpage->list))
3e89c7bb 969 return -1;
77ae365e
SR
970 if (rb_check_list(cpu_buffer, &bpage->list))
971 return -1;
7a8e76a3
SR
972 }
973
77ae365e
SR
974 rb_head_page_activate(cpu_buffer);
975
7a8e76a3
SR
976 return 0;
977}
978
438ced17 979static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 980{
438ced17 981 int i;
044fa782 982 struct buffer_page *bpage, *tmp;
3adc54fa 983
7a8e76a3 984 for (i = 0; i < nr_pages; i++) {
7ea59064 985 struct page *page;
d7ec4bfe
VN
986 /*
987 * __GFP_NORETRY flag makes sure that the allocation fails
988 * gracefully without invoking oom-killer and the system is
989 * not destabilized.
990 */
044fa782 991 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 992 GFP_KERNEL | __GFP_NORETRY,
438ced17 993 cpu_to_node(cpu));
044fa782 994 if (!bpage)
e4c2ce82 995 goto free_pages;
77ae365e 996
438ced17 997 list_add(&bpage->list, pages);
77ae365e 998
438ced17 999 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1000 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1001 if (!page)
7a8e76a3 1002 goto free_pages;
7ea59064 1003 bpage->page = page_address(page);
044fa782 1004 rb_init_page(bpage->page);
7a8e76a3
SR
1005 }
1006
438ced17
VN
1007 return 0;
1008
1009free_pages:
1010 list_for_each_entry_safe(bpage, tmp, pages, list) {
1011 list_del_init(&bpage->list);
1012 free_buffer_page(bpage);
1013 }
1014
1015 return -ENOMEM;
1016}
1017
1018static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1019 unsigned nr_pages)
1020{
1021 LIST_HEAD(pages);
1022
1023 WARN_ON(!nr_pages);
1024
1025 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1026 return -ENOMEM;
1027
3adc54fa
SR
1028 /*
1029 * The ring buffer page list is a circular list that does not
1030 * start and end with a list head. All page list items point to
1031 * other pages.
1032 */
1033 cpu_buffer->pages = pages.next;
1034 list_del(&pages);
7a8e76a3 1035
438ced17
VN
1036 cpu_buffer->nr_pages = nr_pages;
1037
7a8e76a3
SR
1038 rb_check_pages(cpu_buffer);
1039
1040 return 0;
7a8e76a3
SR
1041}
1042
1043static struct ring_buffer_per_cpu *
438ced17 1044rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1045{
1046 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1047 struct buffer_page *bpage;
7ea59064 1048 struct page *page;
7a8e76a3
SR
1049 int ret;
1050
1051 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052 GFP_KERNEL, cpu_to_node(cpu));
1053 if (!cpu_buffer)
1054 return NULL;
1055
1056 cpu_buffer->cpu = cpu;
1057 cpu_buffer->buffer = buffer;
5389f6fa 1058 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1059 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1060 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1061 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1062 init_completion(&cpu_buffer->update_done);
7a8e76a3 1063
044fa782 1064 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1065 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1066 if (!bpage)
e4c2ce82
SR
1067 goto fail_free_buffer;
1068
77ae365e
SR
1069 rb_check_bpage(cpu_buffer, bpage);
1070
044fa782 1071 cpu_buffer->reader_page = bpage;
7ea59064
VN
1072 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1073 if (!page)
e4c2ce82 1074 goto fail_free_reader;
7ea59064 1075 bpage->page = page_address(page);
044fa782 1076 rb_init_page(bpage->page);
e4c2ce82 1077
d769041f 1078 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1079 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1080
438ced17 1081 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1082 if (ret < 0)
d769041f 1083 goto fail_free_reader;
7a8e76a3
SR
1084
1085 cpu_buffer->head_page
3adc54fa 1086 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1087 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1088
77ae365e
SR
1089 rb_head_page_activate(cpu_buffer);
1090
7a8e76a3
SR
1091 return cpu_buffer;
1092
d769041f
SR
1093 fail_free_reader:
1094 free_buffer_page(cpu_buffer->reader_page);
1095
7a8e76a3
SR
1096 fail_free_buffer:
1097 kfree(cpu_buffer);
1098 return NULL;
1099}
1100
1101static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1102{
3adc54fa 1103 struct list_head *head = cpu_buffer->pages;
044fa782 1104 struct buffer_page *bpage, *tmp;
7a8e76a3 1105
d769041f
SR
1106 free_buffer_page(cpu_buffer->reader_page);
1107
77ae365e
SR
1108 rb_head_page_deactivate(cpu_buffer);
1109
3adc54fa
SR
1110 if (head) {
1111 list_for_each_entry_safe(bpage, tmp, head, list) {
1112 list_del_init(&bpage->list);
1113 free_buffer_page(bpage);
1114 }
1115 bpage = list_entry(head, struct buffer_page, list);
044fa782 1116 free_buffer_page(bpage);
7a8e76a3 1117 }
3adc54fa 1118
7a8e76a3
SR
1119 kfree(cpu_buffer);
1120}
1121
59222efe 1122#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1123static int rb_cpu_notify(struct notifier_block *self,
1124 unsigned long action, void *hcpu);
554f786e
SR
1125#endif
1126
7a8e76a3
SR
1127/**
1128 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1129 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1130 * @flags: attributes to set for the ring buffer.
1131 *
1132 * Currently the only flag that is available is the RB_FL_OVERWRITE
1133 * flag. This flag means that the buffer will overwrite old data
1134 * when the buffer wraps. If this flag is not set, the buffer will
1135 * drop data when the tail hits the head.
1136 */
1f8a6a10
PZ
1137struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1138 struct lock_class_key *key)
7a8e76a3
SR
1139{
1140 struct ring_buffer *buffer;
1141 int bsize;
438ced17 1142 int cpu, nr_pages;
7a8e76a3
SR
1143
1144 /* keep it in its own cache line */
1145 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1146 GFP_KERNEL);
1147 if (!buffer)
1148 return NULL;
1149
9e01c1b7
RR
1150 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1151 goto fail_free_buffer;
1152
438ced17 1153 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1154 buffer->flags = flags;
37886f6a 1155 buffer->clock = trace_clock_local;
1f8a6a10 1156 buffer->reader_lock_key = key;
7a8e76a3
SR
1157
1158 /* need at least two pages */
438ced17
VN
1159 if (nr_pages < 2)
1160 nr_pages = 2;
7a8e76a3 1161
3bf832ce
FW
1162 /*
1163 * In case of non-hotplug cpu, if the ring-buffer is allocated
1164 * in early initcall, it will not be notified of secondary cpus.
1165 * In that off case, we need to allocate for all possible cpus.
1166 */
1167#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1168 get_online_cpus();
1169 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1170#else
1171 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1172#endif
7a8e76a3
SR
1173 buffer->cpus = nr_cpu_ids;
1174
1175 bsize = sizeof(void *) * nr_cpu_ids;
1176 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1177 GFP_KERNEL);
1178 if (!buffer->buffers)
9e01c1b7 1179 goto fail_free_cpumask;
7a8e76a3
SR
1180
1181 for_each_buffer_cpu(buffer, cpu) {
1182 buffer->buffers[cpu] =
438ced17 1183 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1184 if (!buffer->buffers[cpu])
1185 goto fail_free_buffers;
1186 }
1187
59222efe 1188#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1189 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1190 buffer->cpu_notify.priority = 0;
1191 register_cpu_notifier(&buffer->cpu_notify);
1192#endif
1193
1194 put_online_cpus();
7a8e76a3
SR
1195 mutex_init(&buffer->mutex);
1196
1197 return buffer;
1198
1199 fail_free_buffers:
1200 for_each_buffer_cpu(buffer, cpu) {
1201 if (buffer->buffers[cpu])
1202 rb_free_cpu_buffer(buffer->buffers[cpu]);
1203 }
1204 kfree(buffer->buffers);
1205
9e01c1b7
RR
1206 fail_free_cpumask:
1207 free_cpumask_var(buffer->cpumask);
554f786e 1208 put_online_cpus();
9e01c1b7 1209
7a8e76a3
SR
1210 fail_free_buffer:
1211 kfree(buffer);
1212 return NULL;
1213}
1f8a6a10 1214EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1215
1216/**
1217 * ring_buffer_free - free a ring buffer.
1218 * @buffer: the buffer to free.
1219 */
1220void
1221ring_buffer_free(struct ring_buffer *buffer)
1222{
1223 int cpu;
1224
554f786e
SR
1225 get_online_cpus();
1226
59222efe 1227#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1228 unregister_cpu_notifier(&buffer->cpu_notify);
1229#endif
1230
7a8e76a3
SR
1231 for_each_buffer_cpu(buffer, cpu)
1232 rb_free_cpu_buffer(buffer->buffers[cpu]);
1233
554f786e
SR
1234 put_online_cpus();
1235
bd3f0221 1236 kfree(buffer->buffers);
9e01c1b7
RR
1237 free_cpumask_var(buffer->cpumask);
1238
7a8e76a3
SR
1239 kfree(buffer);
1240}
c4f50183 1241EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1242
37886f6a
SR
1243void ring_buffer_set_clock(struct ring_buffer *buffer,
1244 u64 (*clock)(void))
1245{
1246 buffer->clock = clock;
1247}
1248
7a8e76a3
SR
1249static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1250
83f40318
VN
1251static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1252{
1253 return local_read(&bpage->entries) & RB_WRITE_MASK;
1254}
1255
1256static inline unsigned long rb_page_write(struct buffer_page *bpage)
1257{
1258 return local_read(&bpage->write) & RB_WRITE_MASK;
1259}
1260
5040b4b7 1261static int
83f40318 1262rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1263{
83f40318
VN
1264 struct list_head *tail_page, *to_remove, *next_page;
1265 struct buffer_page *to_remove_page, *tmp_iter_page;
1266 struct buffer_page *last_page, *first_page;
1267 unsigned int nr_removed;
1268 unsigned long head_bit;
1269 int page_entries;
1270
1271 head_bit = 0;
7a8e76a3 1272
5389f6fa 1273 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1274 atomic_inc(&cpu_buffer->record_disabled);
1275 /*
1276 * We don't race with the readers since we have acquired the reader
1277 * lock. We also don't race with writers after disabling recording.
1278 * This makes it easy to figure out the first and the last page to be
1279 * removed from the list. We unlink all the pages in between including
1280 * the first and last pages. This is done in a busy loop so that we
1281 * lose the least number of traces.
1282 * The pages are freed after we restart recording and unlock readers.
1283 */
1284 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1285
83f40318
VN
1286 /*
1287 * tail page might be on reader page, we remove the next page
1288 * from the ring buffer
1289 */
1290 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1291 tail_page = rb_list_head(tail_page->next);
1292 to_remove = tail_page;
1293
1294 /* start of pages to remove */
1295 first_page = list_entry(rb_list_head(to_remove->next),
1296 struct buffer_page, list);
1297
1298 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1299 to_remove = rb_list_head(to_remove)->next;
1300 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1301 }
7a8e76a3 1302
83f40318 1303 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1304
83f40318
VN
1305 /*
1306 * Now we remove all pages between tail_page and next_page.
1307 * Make sure that we have head_bit value preserved for the
1308 * next page
1309 */
1310 tail_page->next = (struct list_head *)((unsigned long)next_page |
1311 head_bit);
1312 next_page = rb_list_head(next_page);
1313 next_page->prev = tail_page;
1314
1315 /* make sure pages points to a valid page in the ring buffer */
1316 cpu_buffer->pages = next_page;
1317
1318 /* update head page */
1319 if (head_bit)
1320 cpu_buffer->head_page = list_entry(next_page,
1321 struct buffer_page, list);
1322
1323 /*
1324 * change read pointer to make sure any read iterators reset
1325 * themselves
1326 */
1327 cpu_buffer->read = 0;
1328
1329 /* pages are removed, resume tracing and then free the pages */
1330 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1331 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1332
1333 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1334
1335 /* last buffer page to remove */
1336 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1337 list);
1338 tmp_iter_page = first_page;
1339
1340 do {
1341 to_remove_page = tmp_iter_page;
1342 rb_inc_page(cpu_buffer, &tmp_iter_page);
1343
1344 /* update the counters */
1345 page_entries = rb_page_entries(to_remove_page);
1346 if (page_entries) {
1347 /*
1348 * If something was added to this page, it was full
1349 * since it is not the tail page. So we deduct the
1350 * bytes consumed in ring buffer from here.
48fdc72f 1351 * Increment overrun to account for the lost events.
83f40318 1352 */
48fdc72f 1353 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1354 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1355 }
1356
1357 /*
1358 * We have already removed references to this list item, just
1359 * free up the buffer_page and its page
1360 */
1361 free_buffer_page(to_remove_page);
1362 nr_removed--;
1363
1364 } while (to_remove_page != last_page);
1365
1366 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1367
1368 return nr_removed == 0;
7a8e76a3
SR
1369}
1370
5040b4b7
VN
1371static int
1372rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1373{
5040b4b7
VN
1374 struct list_head *pages = &cpu_buffer->new_pages;
1375 int retries, success;
7a8e76a3 1376
5389f6fa 1377 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1378 /*
1379 * We are holding the reader lock, so the reader page won't be swapped
1380 * in the ring buffer. Now we are racing with the writer trying to
1381 * move head page and the tail page.
1382 * We are going to adapt the reader page update process where:
1383 * 1. We first splice the start and end of list of new pages between
1384 * the head page and its previous page.
1385 * 2. We cmpxchg the prev_page->next to point from head page to the
1386 * start of new pages list.
1387 * 3. Finally, we update the head->prev to the end of new list.
1388 *
1389 * We will try this process 10 times, to make sure that we don't keep
1390 * spinning.
1391 */
1392 retries = 10;
1393 success = 0;
1394 while (retries--) {
1395 struct list_head *head_page, *prev_page, *r;
1396 struct list_head *last_page, *first_page;
1397 struct list_head *head_page_with_bit;
77ae365e 1398
5040b4b7 1399 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1400 if (!head_page)
1401 break;
5040b4b7
VN
1402 prev_page = head_page->prev;
1403
1404 first_page = pages->next;
1405 last_page = pages->prev;
1406
1407 head_page_with_bit = (struct list_head *)
1408 ((unsigned long)head_page | RB_PAGE_HEAD);
1409
1410 last_page->next = head_page_with_bit;
1411 first_page->prev = prev_page;
1412
1413 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1414
1415 if (r == head_page_with_bit) {
1416 /*
1417 * yay, we replaced the page pointer to our new list,
1418 * now, we just have to update to head page's prev
1419 * pointer to point to end of list
1420 */
1421 head_page->prev = last_page;
1422 success = 1;
1423 break;
1424 }
7a8e76a3 1425 }
7a8e76a3 1426
5040b4b7
VN
1427 if (success)
1428 INIT_LIST_HEAD(pages);
1429 /*
1430 * If we weren't successful in adding in new pages, warn and stop
1431 * tracing
1432 */
1433 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1434 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1435
1436 /* free pages if they weren't inserted */
1437 if (!success) {
1438 struct buffer_page *bpage, *tmp;
1439 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1440 list) {
1441 list_del_init(&bpage->list);
1442 free_buffer_page(bpage);
1443 }
1444 }
1445 return success;
7a8e76a3
SR
1446}
1447
83f40318 1448static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1449{
5040b4b7
VN
1450 int success;
1451
438ced17 1452 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1453 success = rb_insert_pages(cpu_buffer);
438ced17 1454 else
5040b4b7
VN
1455 success = rb_remove_pages(cpu_buffer,
1456 -cpu_buffer->nr_pages_to_update);
83f40318 1457
5040b4b7
VN
1458 if (success)
1459 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1460}
1461
1462static void update_pages_handler(struct work_struct *work)
1463{
1464 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1465 struct ring_buffer_per_cpu, update_pages_work);
1466 rb_update_pages(cpu_buffer);
05fdd70d 1467 complete(&cpu_buffer->update_done);
438ced17
VN
1468}
1469
7a8e76a3
SR
1470/**
1471 * ring_buffer_resize - resize the ring buffer
1472 * @buffer: the buffer to resize.
1473 * @size: the new size.
1474 *
7a8e76a3
SR
1475 * Minimum size is 2 * BUF_PAGE_SIZE.
1476 *
83f40318 1477 * Returns 0 on success and < 0 on failure.
7a8e76a3 1478 */
438ced17
VN
1479int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1480 int cpu_id)
7a8e76a3
SR
1481{
1482 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1483 unsigned nr_pages;
83f40318 1484 int cpu, err = 0;
7a8e76a3 1485
ee51a1de
IM
1486 /*
1487 * Always succeed at resizing a non-existent buffer:
1488 */
1489 if (!buffer)
1490 return size;
1491
6a31e1f1
SR
1492 /* Make sure the requested buffer exists */
1493 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1494 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1495 return size;
1496
7a8e76a3
SR
1497 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1498 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1499
1500 /* we need a minimum of two pages */
1501 if (size < BUF_PAGE_SIZE * 2)
1502 size = BUF_PAGE_SIZE * 2;
1503
83f40318 1504 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1505
83f40318
VN
1506 /*
1507 * Don't succeed if resizing is disabled, as a reader might be
1508 * manipulating the ring buffer and is expecting a sane state while
1509 * this is true.
1510 */
1511 if (atomic_read(&buffer->resize_disabled))
1512 return -EBUSY;
18421015 1513
83f40318 1514 /* prevent another thread from changing buffer sizes */
7a8e76a3 1515 mutex_lock(&buffer->mutex);
7a8e76a3 1516
438ced17
VN
1517 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1518 /* calculate the pages to update */
7a8e76a3
SR
1519 for_each_buffer_cpu(buffer, cpu) {
1520 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1521
438ced17
VN
1522 cpu_buffer->nr_pages_to_update = nr_pages -
1523 cpu_buffer->nr_pages;
438ced17
VN
1524 /*
1525 * nothing more to do for removing pages or no update
1526 */
1527 if (cpu_buffer->nr_pages_to_update <= 0)
1528 continue;
d7ec4bfe 1529 /*
438ced17
VN
1530 * to add pages, make sure all new pages can be
1531 * allocated without receiving ENOMEM
d7ec4bfe 1532 */
438ced17
VN
1533 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1534 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1535 &cpu_buffer->new_pages, cpu)) {
438ced17 1536 /* not enough memory for new pages */
83f40318
VN
1537 err = -ENOMEM;
1538 goto out_err;
1539 }
1540 }
1541
1542 get_online_cpus();
1543 /*
1544 * Fire off all the required work handlers
05fdd70d 1545 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1546 * since we can change their buffer sizes without any race.
1547 */
1548 for_each_buffer_cpu(buffer, cpu) {
1549 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1550 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1551 continue;
1552
05fdd70d
VN
1553 if (cpu_online(cpu))
1554 schedule_work_on(cpu,
1555 &cpu_buffer->update_pages_work);
1556 else
1557 rb_update_pages(cpu_buffer);
7a8e76a3 1558 }
7a8e76a3 1559
438ced17
VN
1560 /* wait for all the updates to complete */
1561 for_each_buffer_cpu(buffer, cpu) {
1562 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1563 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1564 continue;
1565
05fdd70d
VN
1566 if (cpu_online(cpu))
1567 wait_for_completion(&cpu_buffer->update_done);
83f40318 1568 cpu_buffer->nr_pages_to_update = 0;
438ced17 1569 }
83f40318
VN
1570
1571 put_online_cpus();
438ced17 1572 } else {
8e49f418
VN
1573 /* Make sure this CPU has been intitialized */
1574 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1575 goto out;
1576
438ced17 1577 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1578
438ced17
VN
1579 if (nr_pages == cpu_buffer->nr_pages)
1580 goto out;
7a8e76a3 1581
438ced17
VN
1582 cpu_buffer->nr_pages_to_update = nr_pages -
1583 cpu_buffer->nr_pages;
1584
1585 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1586 if (cpu_buffer->nr_pages_to_update > 0 &&
1587 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1588 &cpu_buffer->new_pages, cpu_id)) {
1589 err = -ENOMEM;
1590 goto out_err;
1591 }
438ced17 1592
83f40318
VN
1593 get_online_cpus();
1594
1595 if (cpu_online(cpu_id)) {
1596 schedule_work_on(cpu_id,
1597 &cpu_buffer->update_pages_work);
05fdd70d 1598 wait_for_completion(&cpu_buffer->update_done);
83f40318
VN
1599 } else
1600 rb_update_pages(cpu_buffer);
1601
83f40318 1602 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1603 put_online_cpus();
438ced17 1604 }
7a8e76a3
SR
1605
1606 out:
659f451f
SR
1607 /*
1608 * The ring buffer resize can happen with the ring buffer
1609 * enabled, so that the update disturbs the tracing as little
1610 * as possible. But if the buffer is disabled, we do not need
1611 * to worry about that, and we can take the time to verify
1612 * that the buffer is not corrupt.
1613 */
1614 if (atomic_read(&buffer->record_disabled)) {
1615 atomic_inc(&buffer->record_disabled);
1616 /*
1617 * Even though the buffer was disabled, we must make sure
1618 * that it is truly disabled before calling rb_check_pages.
1619 * There could have been a race between checking
1620 * record_disable and incrementing it.
1621 */
1622 synchronize_sched();
1623 for_each_buffer_cpu(buffer, cpu) {
1624 cpu_buffer = buffer->buffers[cpu];
1625 rb_check_pages(cpu_buffer);
1626 }
1627 atomic_dec(&buffer->record_disabled);
1628 }
1629
7a8e76a3 1630 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1631 return size;
1632
83f40318 1633 out_err:
438ced17
VN
1634 for_each_buffer_cpu(buffer, cpu) {
1635 struct buffer_page *bpage, *tmp;
83f40318 1636
438ced17 1637 cpu_buffer = buffer->buffers[cpu];
438ced17 1638 cpu_buffer->nr_pages_to_update = 0;
83f40318 1639
438ced17
VN
1640 if (list_empty(&cpu_buffer->new_pages))
1641 continue;
83f40318 1642
438ced17
VN
1643 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1644 list) {
1645 list_del_init(&bpage->list);
1646 free_buffer_page(bpage);
1647 }
7a8e76a3 1648 }
641d2f63 1649 mutex_unlock(&buffer->mutex);
83f40318 1650 return err;
7a8e76a3 1651}
c4f50183 1652EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1653
750912fa
DS
1654void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1655{
1656 mutex_lock(&buffer->mutex);
1657 if (val)
1658 buffer->flags |= RB_FL_OVERWRITE;
1659 else
1660 buffer->flags &= ~RB_FL_OVERWRITE;
1661 mutex_unlock(&buffer->mutex);
1662}
1663EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1664
8789a9e7 1665static inline void *
044fa782 1666__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1667{
044fa782 1668 return bpage->data + index;
8789a9e7
SR
1669}
1670
044fa782 1671static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1672{
044fa782 1673 return bpage->page->data + index;
7a8e76a3
SR
1674}
1675
1676static inline struct ring_buffer_event *
d769041f 1677rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1678{
6f807acd
SR
1679 return __rb_page_index(cpu_buffer->reader_page,
1680 cpu_buffer->reader_page->read);
1681}
1682
7a8e76a3
SR
1683static inline struct ring_buffer_event *
1684rb_iter_head_event(struct ring_buffer_iter *iter)
1685{
6f807acd 1686 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1687}
1688
bf41a158
SR
1689static inline unsigned rb_page_commit(struct buffer_page *bpage)
1690{
abc9b56d 1691 return local_read(&bpage->page->commit);
bf41a158
SR
1692}
1693
25985edc 1694/* Size is determined by what has been committed */
bf41a158
SR
1695static inline unsigned rb_page_size(struct buffer_page *bpage)
1696{
1697 return rb_page_commit(bpage);
1698}
1699
1700static inline unsigned
1701rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1702{
1703 return rb_page_commit(cpu_buffer->commit_page);
1704}
1705
bf41a158
SR
1706static inline unsigned
1707rb_event_index(struct ring_buffer_event *event)
1708{
1709 unsigned long addr = (unsigned long)event;
1710
22f470f8 1711 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1712}
1713
0f0c85fc 1714static inline int
fa743953
SR
1715rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1716 struct ring_buffer_event *event)
bf41a158
SR
1717{
1718 unsigned long addr = (unsigned long)event;
1719 unsigned long index;
1720
1721 index = rb_event_index(event);
1722 addr &= PAGE_MASK;
1723
1724 return cpu_buffer->commit_page->page == (void *)addr &&
1725 rb_commit_index(cpu_buffer) == index;
1726}
1727
34a148bf 1728static void
bf41a158 1729rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1730{
77ae365e
SR
1731 unsigned long max_count;
1732
bf41a158
SR
1733 /*
1734 * We only race with interrupts and NMIs on this CPU.
1735 * If we own the commit event, then we can commit
1736 * all others that interrupted us, since the interruptions
1737 * are in stack format (they finish before they come
1738 * back to us). This allows us to do a simple loop to
1739 * assign the commit to the tail.
1740 */
a8ccf1d6 1741 again:
438ced17 1742 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1743
bf41a158 1744 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1745 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1746 return;
1747 if (RB_WARN_ON(cpu_buffer,
1748 rb_is_reader_page(cpu_buffer->tail_page)))
1749 return;
1750 local_set(&cpu_buffer->commit_page->page->commit,
1751 rb_page_write(cpu_buffer->commit_page));
bf41a158 1752 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1753 cpu_buffer->write_stamp =
1754 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1755 /* add barrier to keep gcc from optimizing too much */
1756 barrier();
1757 }
1758 while (rb_commit_index(cpu_buffer) !=
1759 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1760
1761 local_set(&cpu_buffer->commit_page->page->commit,
1762 rb_page_write(cpu_buffer->commit_page));
1763 RB_WARN_ON(cpu_buffer,
1764 local_read(&cpu_buffer->commit_page->page->commit) &
1765 ~RB_WRITE_MASK);
bf41a158
SR
1766 barrier();
1767 }
a8ccf1d6
SR
1768
1769 /* again, keep gcc from optimizing */
1770 barrier();
1771
1772 /*
1773 * If an interrupt came in just after the first while loop
1774 * and pushed the tail page forward, we will be left with
1775 * a dangling commit that will never go forward.
1776 */
1777 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1778 goto again;
7a8e76a3
SR
1779}
1780
d769041f 1781static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1782{
abc9b56d 1783 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1784 cpu_buffer->reader_page->read = 0;
d769041f
SR
1785}
1786
34a148bf 1787static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1788{
1789 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1790
1791 /*
1792 * The iterator could be on the reader page (it starts there).
1793 * But the head could have moved, since the reader was
1794 * found. Check for this case and assign the iterator
1795 * to the head page instead of next.
1796 */
1797 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1798 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1799 else
1800 rb_inc_page(cpu_buffer, &iter->head_page);
1801
abc9b56d 1802 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1803 iter->head = 0;
1804}
1805
69d1b839
SR
1806/* Slow path, do not inline */
1807static noinline struct ring_buffer_event *
1808rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1809{
1810 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1811
1812 /* Not the first event on the page? */
1813 if (rb_event_index(event)) {
1814 event->time_delta = delta & TS_MASK;
1815 event->array[0] = delta >> TS_SHIFT;
1816 } else {
1817 /* nope, just zero it */
1818 event->time_delta = 0;
1819 event->array[0] = 0;
1820 }
1821
1822 return skip_time_extend(event);
1823}
1824
7a8e76a3 1825/**
01e3e710 1826 * rb_update_event - update event type and data
7a8e76a3
SR
1827 * @event: the even to update
1828 * @type: the type of event
1829 * @length: the size of the event field in the ring buffer
1830 *
1831 * Update the type and data fields of the event. The length
1832 * is the actual size that is written to the ring buffer,
1833 * and with this, we can determine what to place into the
1834 * data field.
1835 */
34a148bf 1836static void
69d1b839
SR
1837rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1838 struct ring_buffer_event *event, unsigned length,
1839 int add_timestamp, u64 delta)
7a8e76a3 1840{
69d1b839
SR
1841 /* Only a commit updates the timestamp */
1842 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1843 delta = 0;
7a8e76a3 1844
69d1b839
SR
1845 /*
1846 * If we need to add a timestamp, then we
1847 * add it to the start of the resevered space.
1848 */
1849 if (unlikely(add_timestamp)) {
1850 event = rb_add_time_stamp(event, delta);
1851 length -= RB_LEN_TIME_EXTEND;
1852 delta = 0;
7a8e76a3 1853 }
69d1b839
SR
1854
1855 event->time_delta = delta;
1856 length -= RB_EVNT_HDR_SIZE;
1857 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1858 event->type_len = 0;
1859 event->array[0] = length;
1860 } else
1861 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1862}
1863
77ae365e
SR
1864/*
1865 * rb_handle_head_page - writer hit the head page
1866 *
1867 * Returns: +1 to retry page
1868 * 0 to continue
1869 * -1 on error
1870 */
1871static int
1872rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1873 struct buffer_page *tail_page,
1874 struct buffer_page *next_page)
1875{
1876 struct buffer_page *new_head;
1877 int entries;
1878 int type;
1879 int ret;
1880
1881 entries = rb_page_entries(next_page);
1882
1883 /*
1884 * The hard part is here. We need to move the head
1885 * forward, and protect against both readers on
1886 * other CPUs and writers coming in via interrupts.
1887 */
1888 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1889 RB_PAGE_HEAD);
1890
1891 /*
1892 * type can be one of four:
1893 * NORMAL - an interrupt already moved it for us
1894 * HEAD - we are the first to get here.
1895 * UPDATE - we are the interrupt interrupting
1896 * a current move.
1897 * MOVED - a reader on another CPU moved the next
1898 * pointer to its reader page. Give up
1899 * and try again.
1900 */
1901
1902 switch (type) {
1903 case RB_PAGE_HEAD:
1904 /*
1905 * We changed the head to UPDATE, thus
1906 * it is our responsibility to update
1907 * the counters.
1908 */
1909 local_add(entries, &cpu_buffer->overrun);
c64e148a 1910 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1911
1912 /*
1913 * The entries will be zeroed out when we move the
1914 * tail page.
1915 */
1916
1917 /* still more to do */
1918 break;
1919
1920 case RB_PAGE_UPDATE:
1921 /*
1922 * This is an interrupt that interrupt the
1923 * previous update. Still more to do.
1924 */
1925 break;
1926 case RB_PAGE_NORMAL:
1927 /*
1928 * An interrupt came in before the update
1929 * and processed this for us.
1930 * Nothing left to do.
1931 */
1932 return 1;
1933 case RB_PAGE_MOVED:
1934 /*
1935 * The reader is on another CPU and just did
1936 * a swap with our next_page.
1937 * Try again.
1938 */
1939 return 1;
1940 default:
1941 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1942 return -1;
1943 }
1944
1945 /*
1946 * Now that we are here, the old head pointer is
1947 * set to UPDATE. This will keep the reader from
1948 * swapping the head page with the reader page.
1949 * The reader (on another CPU) will spin till
1950 * we are finished.
1951 *
1952 * We just need to protect against interrupts
1953 * doing the job. We will set the next pointer
1954 * to HEAD. After that, we set the old pointer
1955 * to NORMAL, but only if it was HEAD before.
1956 * otherwise we are an interrupt, and only
1957 * want the outer most commit to reset it.
1958 */
1959 new_head = next_page;
1960 rb_inc_page(cpu_buffer, &new_head);
1961
1962 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1963 RB_PAGE_NORMAL);
1964
1965 /*
1966 * Valid returns are:
1967 * HEAD - an interrupt came in and already set it.
1968 * NORMAL - One of two things:
1969 * 1) We really set it.
1970 * 2) A bunch of interrupts came in and moved
1971 * the page forward again.
1972 */
1973 switch (ret) {
1974 case RB_PAGE_HEAD:
1975 case RB_PAGE_NORMAL:
1976 /* OK */
1977 break;
1978 default:
1979 RB_WARN_ON(cpu_buffer, 1);
1980 return -1;
1981 }
1982
1983 /*
1984 * It is possible that an interrupt came in,
1985 * set the head up, then more interrupts came in
1986 * and moved it again. When we get back here,
1987 * the page would have been set to NORMAL but we
1988 * just set it back to HEAD.
1989 *
1990 * How do you detect this? Well, if that happened
1991 * the tail page would have moved.
1992 */
1993 if (ret == RB_PAGE_NORMAL) {
1994 /*
1995 * If the tail had moved passed next, then we need
1996 * to reset the pointer.
1997 */
1998 if (cpu_buffer->tail_page != tail_page &&
1999 cpu_buffer->tail_page != next_page)
2000 rb_head_page_set_normal(cpu_buffer, new_head,
2001 next_page,
2002 RB_PAGE_HEAD);
2003 }
2004
2005 /*
2006 * If this was the outer most commit (the one that
2007 * changed the original pointer from HEAD to UPDATE),
2008 * then it is up to us to reset it to NORMAL.
2009 */
2010 if (type == RB_PAGE_HEAD) {
2011 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2012 tail_page,
2013 RB_PAGE_UPDATE);
2014 if (RB_WARN_ON(cpu_buffer,
2015 ret != RB_PAGE_UPDATE))
2016 return -1;
2017 }
2018
2019 return 0;
2020}
2021
34a148bf 2022static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2023{
2024 struct ring_buffer_event event; /* Used only for sizeof array */
2025
2026 /* zero length can cause confusions */
2027 if (!length)
2028 length = 1;
2029
2271048d 2030 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2031 length += sizeof(event.array[0]);
2032
2033 length += RB_EVNT_HDR_SIZE;
2271048d 2034 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2035
2036 return length;
2037}
2038
c7b09308
SR
2039static inline void
2040rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2041 struct buffer_page *tail_page,
2042 unsigned long tail, unsigned long length)
2043{
2044 struct ring_buffer_event *event;
2045
2046 /*
2047 * Only the event that crossed the page boundary
2048 * must fill the old tail_page with padding.
2049 */
2050 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2051 /*
2052 * If the page was filled, then we still need
2053 * to update the real_end. Reset it to zero
2054 * and the reader will ignore it.
2055 */
2056 if (tail == BUF_PAGE_SIZE)
2057 tail_page->real_end = 0;
2058
c7b09308
SR
2059 local_sub(length, &tail_page->write);
2060 return;
2061 }
2062
2063 event = __rb_page_index(tail_page, tail);
b0b7065b 2064 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2065
c64e148a
VN
2066 /* account for padding bytes */
2067 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2068
ff0ff84a
SR
2069 /*
2070 * Save the original length to the meta data.
2071 * This will be used by the reader to add lost event
2072 * counter.
2073 */
2074 tail_page->real_end = tail;
2075
c7b09308
SR
2076 /*
2077 * If this event is bigger than the minimum size, then
2078 * we need to be careful that we don't subtract the
2079 * write counter enough to allow another writer to slip
2080 * in on this page.
2081 * We put in a discarded commit instead, to make sure
2082 * that this space is not used again.
2083 *
2084 * If we are less than the minimum size, we don't need to
2085 * worry about it.
2086 */
2087 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2088 /* No room for any events */
2089
2090 /* Mark the rest of the page with padding */
2091 rb_event_set_padding(event);
2092
2093 /* Set the write back to the previous setting */
2094 local_sub(length, &tail_page->write);
2095 return;
2096 }
2097
2098 /* Put in a discarded event */
2099 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2100 event->type_len = RINGBUF_TYPE_PADDING;
2101 /* time delta must be non zero */
2102 event->time_delta = 1;
c7b09308
SR
2103
2104 /* Set write to end of buffer */
2105 length = (tail + length) - BUF_PAGE_SIZE;
2106 local_sub(length, &tail_page->write);
2107}
6634ff26 2108
747e94ae
SR
2109/*
2110 * This is the slow path, force gcc not to inline it.
2111 */
2112static noinline struct ring_buffer_event *
6634ff26
SR
2113rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2114 unsigned long length, unsigned long tail,
e8bc43e8 2115 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2116{
5a50e33c 2117 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2118 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2119 struct buffer_page *next_page;
2120 int ret;
aa20ae84
SR
2121
2122 next_page = tail_page;
2123
aa20ae84
SR
2124 rb_inc_page(cpu_buffer, &next_page);
2125
aa20ae84
SR
2126 /*
2127 * If for some reason, we had an interrupt storm that made
2128 * it all the way around the buffer, bail, and warn
2129 * about it.
2130 */
2131 if (unlikely(next_page == commit_page)) {
77ae365e 2132 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2133 goto out_reset;
2134 }
2135
77ae365e
SR
2136 /*
2137 * This is where the fun begins!
2138 *
2139 * We are fighting against races between a reader that
2140 * could be on another CPU trying to swap its reader
2141 * page with the buffer head.
2142 *
2143 * We are also fighting against interrupts coming in and
2144 * moving the head or tail on us as well.
2145 *
2146 * If the next page is the head page then we have filled
2147 * the buffer, unless the commit page is still on the
2148 * reader page.
2149 */
2150 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2151
77ae365e
SR
2152 /*
2153 * If the commit is not on the reader page, then
2154 * move the header page.
2155 */
2156 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2157 /*
2158 * If we are not in overwrite mode,
2159 * this is easy, just stop here.
2160 */
884bfe89
SP
2161 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2162 local_inc(&cpu_buffer->dropped_events);
77ae365e 2163 goto out_reset;
884bfe89 2164 }
77ae365e
SR
2165
2166 ret = rb_handle_head_page(cpu_buffer,
2167 tail_page,
2168 next_page);
2169 if (ret < 0)
2170 goto out_reset;
2171 if (ret)
2172 goto out_again;
2173 } else {
2174 /*
2175 * We need to be careful here too. The
2176 * commit page could still be on the reader
2177 * page. We could have a small buffer, and
2178 * have filled up the buffer with events
2179 * from interrupts and such, and wrapped.
2180 *
2181 * Note, if the tail page is also the on the
2182 * reader_page, we let it move out.
2183 */
2184 if (unlikely((cpu_buffer->commit_page !=
2185 cpu_buffer->tail_page) &&
2186 (cpu_buffer->commit_page ==
2187 cpu_buffer->reader_page))) {
2188 local_inc(&cpu_buffer->commit_overrun);
2189 goto out_reset;
2190 }
aa20ae84
SR
2191 }
2192 }
2193
77ae365e
SR
2194 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2195 if (ret) {
2196 /*
2197 * Nested commits always have zero deltas, so
2198 * just reread the time stamp
2199 */
e8bc43e8
SR
2200 ts = rb_time_stamp(buffer);
2201 next_page->page->time_stamp = ts;
aa20ae84
SR
2202 }
2203
77ae365e 2204 out_again:
aa20ae84 2205
77ae365e 2206 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2207
2208 /* fail and let the caller try again */
2209 return ERR_PTR(-EAGAIN);
2210
45141d46 2211 out_reset:
6f3b3440 2212 /* reset write */
c7b09308 2213 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2214
bf41a158 2215 return NULL;
7a8e76a3
SR
2216}
2217
6634ff26
SR
2218static struct ring_buffer_event *
2219__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2220 unsigned long length, u64 ts,
2221 u64 delta, int add_timestamp)
6634ff26 2222{
5a50e33c 2223 struct buffer_page *tail_page;
6634ff26
SR
2224 struct ring_buffer_event *event;
2225 unsigned long tail, write;
2226
69d1b839
SR
2227 /*
2228 * If the time delta since the last event is too big to
2229 * hold in the time field of the event, then we append a
2230 * TIME EXTEND event ahead of the data event.
2231 */
2232 if (unlikely(add_timestamp))
2233 length += RB_LEN_TIME_EXTEND;
2234
6634ff26
SR
2235 tail_page = cpu_buffer->tail_page;
2236 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2237
2238 /* set write to only the index of the write */
2239 write &= RB_WRITE_MASK;
6634ff26
SR
2240 tail = write - length;
2241
2242 /* See if we shot pass the end of this buffer page */
747e94ae 2243 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2244 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2245 tail_page, ts);
6634ff26
SR
2246
2247 /* We reserved something on the buffer */
2248
6634ff26 2249 event = __rb_page_index(tail_page, tail);
1744a21d 2250 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2251 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2252
69d1b839 2253 local_inc(&tail_page->entries);
6634ff26
SR
2254
2255 /*
fa743953
SR
2256 * If this is the first commit on the page, then update
2257 * its timestamp.
6634ff26 2258 */
fa743953 2259 if (!tail)
e8bc43e8 2260 tail_page->page->time_stamp = ts;
6634ff26 2261
c64e148a
VN
2262 /* account for these added bytes */
2263 local_add(length, &cpu_buffer->entries_bytes);
2264
6634ff26
SR
2265 return event;
2266}
2267
edd813bf
SR
2268static inline int
2269rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2270 struct ring_buffer_event *event)
2271{
2272 unsigned long new_index, old_index;
2273 struct buffer_page *bpage;
2274 unsigned long index;
2275 unsigned long addr;
2276
2277 new_index = rb_event_index(event);
69d1b839 2278 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2279 addr = (unsigned long)event;
2280 addr &= PAGE_MASK;
2281
2282 bpage = cpu_buffer->tail_page;
2283
2284 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2285 unsigned long write_mask =
2286 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2287 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2288 /*
2289 * This is on the tail page. It is possible that
2290 * a write could come in and move the tail page
2291 * and write to the next page. That is fine
2292 * because we just shorten what is on this page.
2293 */
77ae365e
SR
2294 old_index += write_mask;
2295 new_index += write_mask;
edd813bf 2296 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2297 if (index == old_index) {
2298 /* update counters */
2299 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2300 return 1;
c64e148a 2301 }
edd813bf
SR
2302 }
2303
2304 /* could not discard */
2305 return 0;
2306}
2307
fa743953
SR
2308static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2309{
2310 local_inc(&cpu_buffer->committing);
2311 local_inc(&cpu_buffer->commits);
2312}
2313
d9abde21 2314static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2315{
2316 unsigned long commits;
2317
2318 if (RB_WARN_ON(cpu_buffer,
2319 !local_read(&cpu_buffer->committing)))
2320 return;
2321
2322 again:
2323 commits = local_read(&cpu_buffer->commits);
2324 /* synchronize with interrupts */
2325 barrier();
2326 if (local_read(&cpu_buffer->committing) == 1)
2327 rb_set_commit_to_write(cpu_buffer);
2328
2329 local_dec(&cpu_buffer->committing);
2330
2331 /* synchronize with interrupts */
2332 barrier();
2333
2334 /*
2335 * Need to account for interrupts coming in between the
2336 * updating of the commit page and the clearing of the
2337 * committing counter.
2338 */
2339 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2340 !local_read(&cpu_buffer->committing)) {
2341 local_inc(&cpu_buffer->committing);
2342 goto again;
2343 }
2344}
2345
7a8e76a3 2346static struct ring_buffer_event *
62f0b3eb
SR
2347rb_reserve_next_event(struct ring_buffer *buffer,
2348 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2349 unsigned long length)
7a8e76a3
SR
2350{
2351 struct ring_buffer_event *event;
69d1b839 2352 u64 ts, delta;
818e3dd3 2353 int nr_loops = 0;
69d1b839 2354 int add_timestamp;
140ff891 2355 u64 diff;
7a8e76a3 2356
fa743953
SR
2357 rb_start_commit(cpu_buffer);
2358
85bac32c 2359#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2360 /*
2361 * Due to the ability to swap a cpu buffer from a buffer
2362 * it is possible it was swapped before we committed.
2363 * (committing stops a swap). We check for it here and
2364 * if it happened, we have to fail the write.
2365 */
2366 barrier();
2367 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2368 local_dec(&cpu_buffer->committing);
2369 local_dec(&cpu_buffer->commits);
2370 return NULL;
2371 }
85bac32c 2372#endif
62f0b3eb 2373
be957c44 2374 length = rb_calculate_event_length(length);
bf41a158 2375 again:
69d1b839
SR
2376 add_timestamp = 0;
2377 delta = 0;
2378
818e3dd3
SR
2379 /*
2380 * We allow for interrupts to reenter here and do a trace.
2381 * If one does, it will cause this original code to loop
2382 * back here. Even with heavy interrupts happening, this
2383 * should only happen a few times in a row. If this happens
2384 * 1000 times in a row, there must be either an interrupt
2385 * storm or we have something buggy.
2386 * Bail!
2387 */
3e89c7bb 2388 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2389 goto out_fail;
818e3dd3 2390
6d3f1e12 2391 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2392 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2393
140ff891
SR
2394 /* make sure this diff is calculated here */
2395 barrier();
bf41a158 2396
140ff891
SR
2397 /* Did the write stamp get updated already? */
2398 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2399 delta = diff;
2400 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2401 int local_clock_stable = 1;
2402#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2403 local_clock_stable = sched_clock_stable;
2404#endif
69d1b839 2405 WARN_ONCE(delta > (1ULL << 59),
31274d72 2406 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2407 (unsigned long long)delta,
2408 (unsigned long long)ts,
31274d72
JO
2409 (unsigned long long)cpu_buffer->write_stamp,
2410 local_clock_stable ? "" :
2411 "If you just came from a suspend/resume,\n"
2412 "please switch to the trace global clock:\n"
2413 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2414 add_timestamp = 1;
7a8e76a3 2415 }
168b6b1d 2416 }
7a8e76a3 2417
69d1b839
SR
2418 event = __rb_reserve_next(cpu_buffer, length, ts,
2419 delta, add_timestamp);
168b6b1d 2420 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2421 goto again;
2422
fa743953
SR
2423 if (!event)
2424 goto out_fail;
7a8e76a3 2425
7a8e76a3 2426 return event;
fa743953
SR
2427
2428 out_fail:
2429 rb_end_commit(cpu_buffer);
2430 return NULL;
7a8e76a3
SR
2431}
2432
1155de47
PM
2433#ifdef CONFIG_TRACING
2434
567cd4da
SR
2435/*
2436 * The lock and unlock are done within a preempt disable section.
2437 * The current_context per_cpu variable can only be modified
2438 * by the current task between lock and unlock. But it can
2439 * be modified more than once via an interrupt. To pass this
2440 * information from the lock to the unlock without having to
2441 * access the 'in_interrupt()' functions again (which do show
2442 * a bit of overhead in something as critical as function tracing,
2443 * we use a bitmask trick.
2444 *
2445 * bit 0 = NMI context
2446 * bit 1 = IRQ context
2447 * bit 2 = SoftIRQ context
2448 * bit 3 = normal context.
2449 *
2450 * This works because this is the order of contexts that can
2451 * preempt other contexts. A SoftIRQ never preempts an IRQ
2452 * context.
2453 *
2454 * When the context is determined, the corresponding bit is
2455 * checked and set (if it was set, then a recursion of that context
2456 * happened).
2457 *
2458 * On unlock, we need to clear this bit. To do so, just subtract
2459 * 1 from the current_context and AND it to itself.
2460 *
2461 * (binary)
2462 * 101 - 1 = 100
2463 * 101 & 100 = 100 (clearing bit zero)
2464 *
2465 * 1010 - 1 = 1001
2466 * 1010 & 1001 = 1000 (clearing bit 1)
2467 *
2468 * The least significant bit can be cleared this way, and it
2469 * just so happens that it is the same bit corresponding to
2470 * the current context.
2471 */
2472static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2473
567cd4da 2474static __always_inline int trace_recursive_lock(void)
261842b7 2475{
567cd4da
SR
2476 unsigned int val = this_cpu_read(current_context);
2477 int bit;
d9abde21 2478
567cd4da
SR
2479 if (in_interrupt()) {
2480 if (in_nmi())
2481 bit = 0;
2482 else if (in_irq())
2483 bit = 1;
2484 else
2485 bit = 2;
2486 } else
2487 bit = 3;
d9abde21 2488
567cd4da
SR
2489 if (unlikely(val & (1 << bit)))
2490 return 1;
d9abde21 2491
567cd4da
SR
2492 val |= (1 << bit);
2493 this_cpu_write(current_context, val);
d9abde21 2494
567cd4da 2495 return 0;
261842b7
SR
2496}
2497
567cd4da 2498static __always_inline void trace_recursive_unlock(void)
261842b7 2499{
567cd4da 2500 unsigned int val = this_cpu_read(current_context);
261842b7 2501
567cd4da
SR
2502 val--;
2503 val &= this_cpu_read(current_context);
2504 this_cpu_write(current_context, val);
261842b7
SR
2505}
2506
1155de47
PM
2507#else
2508
2509#define trace_recursive_lock() (0)
2510#define trace_recursive_unlock() do { } while (0)
2511
2512#endif
2513
7a8e76a3
SR
2514/**
2515 * ring_buffer_lock_reserve - reserve a part of the buffer
2516 * @buffer: the ring buffer to reserve from
2517 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2518 *
2519 * Returns a reseverd event on the ring buffer to copy directly to.
2520 * The user of this interface will need to get the body to write into
2521 * and can use the ring_buffer_event_data() interface.
2522 *
2523 * The length is the length of the data needed, not the event length
2524 * which also includes the event header.
2525 *
2526 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2527 * If NULL is returned, then nothing has been allocated or locked.
2528 */
2529struct ring_buffer_event *
0a987751 2530ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2531{
2532 struct ring_buffer_per_cpu *cpu_buffer;
2533 struct ring_buffer_event *event;
5168ae50 2534 int cpu;
7a8e76a3 2535
033601a3 2536 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2537 return NULL;
2538
bf41a158 2539 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2540 preempt_disable_notrace();
bf41a158 2541
52fbe9cd
LJ
2542 if (atomic_read(&buffer->record_disabled))
2543 goto out_nocheck;
2544
261842b7
SR
2545 if (trace_recursive_lock())
2546 goto out_nocheck;
2547
7a8e76a3
SR
2548 cpu = raw_smp_processor_id();
2549
9e01c1b7 2550 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2551 goto out;
7a8e76a3
SR
2552
2553 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2554
2555 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2556 goto out;
7a8e76a3 2557
be957c44 2558 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2559 goto out;
7a8e76a3 2560
62f0b3eb 2561 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2562 if (!event)
d769041f 2563 goto out;
7a8e76a3
SR
2564
2565 return event;
2566
d769041f 2567 out:
261842b7
SR
2568 trace_recursive_unlock();
2569
2570 out_nocheck:
5168ae50 2571 preempt_enable_notrace();
7a8e76a3
SR
2572 return NULL;
2573}
c4f50183 2574EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2575
a1863c21
SR
2576static void
2577rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2578 struct ring_buffer_event *event)
2579{
69d1b839
SR
2580 u64 delta;
2581
fa743953
SR
2582 /*
2583 * The event first in the commit queue updates the
2584 * time stamp.
2585 */
69d1b839
SR
2586 if (rb_event_is_commit(cpu_buffer, event)) {
2587 /*
2588 * A commit event that is first on a page
2589 * updates the write timestamp with the page stamp
2590 */
2591 if (!rb_event_index(event))
2592 cpu_buffer->write_stamp =
2593 cpu_buffer->commit_page->page->time_stamp;
2594 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2595 delta = event->array[0];
2596 delta <<= TS_SHIFT;
2597 delta += event->time_delta;
2598 cpu_buffer->write_stamp += delta;
2599 } else
2600 cpu_buffer->write_stamp += event->time_delta;
2601 }
a1863c21 2602}
bf41a158 2603
a1863c21
SR
2604static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2605 struct ring_buffer_event *event)
2606{
2607 local_inc(&cpu_buffer->entries);
2608 rb_update_write_stamp(cpu_buffer, event);
fa743953 2609 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2610}
2611
2612/**
2613 * ring_buffer_unlock_commit - commit a reserved
2614 * @buffer: The buffer to commit to
2615 * @event: The event pointer to commit.
7a8e76a3
SR
2616 *
2617 * This commits the data to the ring buffer, and releases any locks held.
2618 *
2619 * Must be paired with ring_buffer_lock_reserve.
2620 */
2621int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2622 struct ring_buffer_event *event)
7a8e76a3
SR
2623{
2624 struct ring_buffer_per_cpu *cpu_buffer;
2625 int cpu = raw_smp_processor_id();
2626
2627 cpu_buffer = buffer->buffers[cpu];
2628
7a8e76a3
SR
2629 rb_commit(cpu_buffer, event);
2630
261842b7
SR
2631 trace_recursive_unlock();
2632
5168ae50 2633 preempt_enable_notrace();
7a8e76a3
SR
2634
2635 return 0;
2636}
c4f50183 2637EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2638
f3b9aae1
FW
2639static inline void rb_event_discard(struct ring_buffer_event *event)
2640{
69d1b839
SR
2641 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2642 event = skip_time_extend(event);
2643
334d4169
LJ
2644 /* array[0] holds the actual length for the discarded event */
2645 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2646 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2647 /* time delta must be non zero */
2648 if (!event->time_delta)
2649 event->time_delta = 1;
2650}
2651
a1863c21
SR
2652/*
2653 * Decrement the entries to the page that an event is on.
2654 * The event does not even need to exist, only the pointer
2655 * to the page it is on. This may only be called before the commit
2656 * takes place.
2657 */
2658static inline void
2659rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2660 struct ring_buffer_event *event)
2661{
2662 unsigned long addr = (unsigned long)event;
2663 struct buffer_page *bpage = cpu_buffer->commit_page;
2664 struct buffer_page *start;
2665
2666 addr &= PAGE_MASK;
2667
2668 /* Do the likely case first */
2669 if (likely(bpage->page == (void *)addr)) {
2670 local_dec(&bpage->entries);
2671 return;
2672 }
2673
2674 /*
2675 * Because the commit page may be on the reader page we
2676 * start with the next page and check the end loop there.
2677 */
2678 rb_inc_page(cpu_buffer, &bpage);
2679 start = bpage;
2680 do {
2681 if (bpage->page == (void *)addr) {
2682 local_dec(&bpage->entries);
2683 return;
2684 }
2685 rb_inc_page(cpu_buffer, &bpage);
2686 } while (bpage != start);
2687
2688 /* commit not part of this buffer?? */
2689 RB_WARN_ON(cpu_buffer, 1);
2690}
2691
fa1b47dd
SR
2692/**
2693 * ring_buffer_commit_discard - discard an event that has not been committed
2694 * @buffer: the ring buffer
2695 * @event: non committed event to discard
2696 *
dc892f73
SR
2697 * Sometimes an event that is in the ring buffer needs to be ignored.
2698 * This function lets the user discard an event in the ring buffer
2699 * and then that event will not be read later.
2700 *
2701 * This function only works if it is called before the the item has been
2702 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2703 * if another event has not been added behind it.
2704 *
2705 * If another event has been added behind it, it will set the event
2706 * up as discarded, and perform the commit.
2707 *
2708 * If this function is called, do not call ring_buffer_unlock_commit on
2709 * the event.
2710 */
2711void ring_buffer_discard_commit(struct ring_buffer *buffer,
2712 struct ring_buffer_event *event)
2713{
2714 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2715 int cpu;
2716
2717 /* The event is discarded regardless */
f3b9aae1 2718 rb_event_discard(event);
fa1b47dd 2719
fa743953
SR
2720 cpu = smp_processor_id();
2721 cpu_buffer = buffer->buffers[cpu];
2722
fa1b47dd
SR
2723 /*
2724 * This must only be called if the event has not been
2725 * committed yet. Thus we can assume that preemption
2726 * is still disabled.
2727 */
fa743953 2728 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2729
a1863c21 2730 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2731 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2732 goto out;
fa1b47dd
SR
2733
2734 /*
2735 * The commit is still visible by the reader, so we
a1863c21 2736 * must still update the timestamp.
fa1b47dd 2737 */
a1863c21 2738 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2739 out:
fa743953 2740 rb_end_commit(cpu_buffer);
fa1b47dd 2741
f3b9aae1
FW
2742 trace_recursive_unlock();
2743
5168ae50 2744 preempt_enable_notrace();
fa1b47dd
SR
2745
2746}
2747EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2748
7a8e76a3
SR
2749/**
2750 * ring_buffer_write - write data to the buffer without reserving
2751 * @buffer: The ring buffer to write to.
2752 * @length: The length of the data being written (excluding the event header)
2753 * @data: The data to write to the buffer.
2754 *
2755 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2756 * one function. If you already have the data to write to the buffer, it
2757 * may be easier to simply call this function.
2758 *
2759 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2760 * and not the length of the event which would hold the header.
2761 */
2762int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2763 unsigned long length,
2764 void *data)
7a8e76a3
SR
2765{
2766 struct ring_buffer_per_cpu *cpu_buffer;
2767 struct ring_buffer_event *event;
7a8e76a3
SR
2768 void *body;
2769 int ret = -EBUSY;
5168ae50 2770 int cpu;
7a8e76a3 2771
033601a3 2772 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2773 return -EBUSY;
2774
5168ae50 2775 preempt_disable_notrace();
bf41a158 2776
52fbe9cd
LJ
2777 if (atomic_read(&buffer->record_disabled))
2778 goto out;
2779
7a8e76a3
SR
2780 cpu = raw_smp_processor_id();
2781
9e01c1b7 2782 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2783 goto out;
7a8e76a3
SR
2784
2785 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2786
2787 if (atomic_read(&cpu_buffer->record_disabled))
2788 goto out;
2789
be957c44
SR
2790 if (length > BUF_MAX_DATA_SIZE)
2791 goto out;
2792
62f0b3eb 2793 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2794 if (!event)
2795 goto out;
2796
2797 body = rb_event_data(event);
2798
2799 memcpy(body, data, length);
2800
2801 rb_commit(cpu_buffer, event);
2802
2803 ret = 0;
2804 out:
5168ae50 2805 preempt_enable_notrace();
7a8e76a3
SR
2806
2807 return ret;
2808}
c4f50183 2809EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2810
34a148bf 2811static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2812{
2813 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2814 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2815 struct buffer_page *commit = cpu_buffer->commit_page;
2816
77ae365e
SR
2817 /* In case of error, head will be NULL */
2818 if (unlikely(!head))
2819 return 1;
2820
bf41a158
SR
2821 return reader->read == rb_page_commit(reader) &&
2822 (commit == reader ||
2823 (commit == head &&
2824 head->read == rb_page_commit(commit)));
2825}
2826
7a8e76a3
SR
2827/**
2828 * ring_buffer_record_disable - stop all writes into the buffer
2829 * @buffer: The ring buffer to stop writes to.
2830 *
2831 * This prevents all writes to the buffer. Any attempt to write
2832 * to the buffer after this will fail and return NULL.
2833 *
2834 * The caller should call synchronize_sched() after this.
2835 */
2836void ring_buffer_record_disable(struct ring_buffer *buffer)
2837{
2838 atomic_inc(&buffer->record_disabled);
2839}
c4f50183 2840EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2841
2842/**
2843 * ring_buffer_record_enable - enable writes to the buffer
2844 * @buffer: The ring buffer to enable writes
2845 *
2846 * Note, multiple disables will need the same number of enables
c41b20e7 2847 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2848 */
2849void ring_buffer_record_enable(struct ring_buffer *buffer)
2850{
2851 atomic_dec(&buffer->record_disabled);
2852}
c4f50183 2853EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 2854
499e5470
SR
2855/**
2856 * ring_buffer_record_off - stop all writes into the buffer
2857 * @buffer: The ring buffer to stop writes to.
2858 *
2859 * This prevents all writes to the buffer. Any attempt to write
2860 * to the buffer after this will fail and return NULL.
2861 *
2862 * This is different than ring_buffer_record_disable() as
87abb3b1 2863 * it works like an on/off switch, where as the disable() version
499e5470
SR
2864 * must be paired with a enable().
2865 */
2866void ring_buffer_record_off(struct ring_buffer *buffer)
2867{
2868 unsigned int rd;
2869 unsigned int new_rd;
2870
2871 do {
2872 rd = atomic_read(&buffer->record_disabled);
2873 new_rd = rd | RB_BUFFER_OFF;
2874 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2875}
2876EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2877
2878/**
2879 * ring_buffer_record_on - restart writes into the buffer
2880 * @buffer: The ring buffer to start writes to.
2881 *
2882 * This enables all writes to the buffer that was disabled by
2883 * ring_buffer_record_off().
2884 *
2885 * This is different than ring_buffer_record_enable() as
87abb3b1 2886 * it works like an on/off switch, where as the enable() version
499e5470
SR
2887 * must be paired with a disable().
2888 */
2889void ring_buffer_record_on(struct ring_buffer *buffer)
2890{
2891 unsigned int rd;
2892 unsigned int new_rd;
2893
2894 do {
2895 rd = atomic_read(&buffer->record_disabled);
2896 new_rd = rd & ~RB_BUFFER_OFF;
2897 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2898}
2899EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2900
2901/**
2902 * ring_buffer_record_is_on - return true if the ring buffer can write
2903 * @buffer: The ring buffer to see if write is enabled
2904 *
2905 * Returns true if the ring buffer is in a state that it accepts writes.
2906 */
2907int ring_buffer_record_is_on(struct ring_buffer *buffer)
2908{
2909 return !atomic_read(&buffer->record_disabled);
2910}
2911
7a8e76a3
SR
2912/**
2913 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2914 * @buffer: The ring buffer to stop writes to.
2915 * @cpu: The CPU buffer to stop
2916 *
2917 * This prevents all writes to the buffer. Any attempt to write
2918 * to the buffer after this will fail and return NULL.
2919 *
2920 * The caller should call synchronize_sched() after this.
2921 */
2922void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2923{
2924 struct ring_buffer_per_cpu *cpu_buffer;
2925
9e01c1b7 2926 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2927 return;
7a8e76a3
SR
2928
2929 cpu_buffer = buffer->buffers[cpu];
2930 atomic_inc(&cpu_buffer->record_disabled);
2931}
c4f50183 2932EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2933
2934/**
2935 * ring_buffer_record_enable_cpu - enable writes to the buffer
2936 * @buffer: The ring buffer to enable writes
2937 * @cpu: The CPU to enable.
2938 *
2939 * Note, multiple disables will need the same number of enables
c41b20e7 2940 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2941 */
2942void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2943{
2944 struct ring_buffer_per_cpu *cpu_buffer;
2945
9e01c1b7 2946 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2947 return;
7a8e76a3
SR
2948
2949 cpu_buffer = buffer->buffers[cpu];
2950 atomic_dec(&cpu_buffer->record_disabled);
2951}
c4f50183 2952EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2953
f6195aa0
SR
2954/*
2955 * The total entries in the ring buffer is the running counter
2956 * of entries entered into the ring buffer, minus the sum of
2957 * the entries read from the ring buffer and the number of
2958 * entries that were overwritten.
2959 */
2960static inline unsigned long
2961rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2962{
2963 return local_read(&cpu_buffer->entries) -
2964 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2965}
2966
c64e148a
VN
2967/**
2968 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2969 * @buffer: The ring buffer
2970 * @cpu: The per CPU buffer to read from.
2971 */
50ecf2c3 2972u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
2973{
2974 unsigned long flags;
2975 struct ring_buffer_per_cpu *cpu_buffer;
2976 struct buffer_page *bpage;
da830e58 2977 u64 ret = 0;
c64e148a
VN
2978
2979 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2980 return 0;
2981
2982 cpu_buffer = buffer->buffers[cpu];
7115e3fc 2983 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2984 /*
2985 * if the tail is on reader_page, oldest time stamp is on the reader
2986 * page
2987 */
2988 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2989 bpage = cpu_buffer->reader_page;
2990 else
2991 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
2992 if (bpage)
2993 ret = bpage->page->time_stamp;
7115e3fc 2994 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
2995
2996 return ret;
2997}
2998EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2999
3000/**
3001 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3002 * @buffer: The ring buffer
3003 * @cpu: The per CPU buffer to read from.
3004 */
3005unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3006{
3007 struct ring_buffer_per_cpu *cpu_buffer;
3008 unsigned long ret;
3009
3010 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3011 return 0;
3012
3013 cpu_buffer = buffer->buffers[cpu];
3014 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3015
3016 return ret;
3017}
3018EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3019
7a8e76a3
SR
3020/**
3021 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3022 * @buffer: The ring buffer
3023 * @cpu: The per CPU buffer to get the entries from.
3024 */
3025unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3026{
3027 struct ring_buffer_per_cpu *cpu_buffer;
3028
9e01c1b7 3029 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3030 return 0;
7a8e76a3
SR
3031
3032 cpu_buffer = buffer->buffers[cpu];
554f786e 3033
f6195aa0 3034 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3035}
c4f50183 3036EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3037
3038/**
884bfe89
SP
3039 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3040 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3041 * @buffer: The ring buffer
3042 * @cpu: The per CPU buffer to get the number of overruns from
3043 */
3044unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3045{
3046 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3047 unsigned long ret;
7a8e76a3 3048
9e01c1b7 3049 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3050 return 0;
7a8e76a3
SR
3051
3052 cpu_buffer = buffer->buffers[cpu];
77ae365e 3053 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3054
3055 return ret;
7a8e76a3 3056}
c4f50183 3057EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3058
f0d2c681 3059/**
884bfe89
SP
3060 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3061 * commits failing due to the buffer wrapping around while there are uncommitted
3062 * events, such as during an interrupt storm.
f0d2c681
SR
3063 * @buffer: The ring buffer
3064 * @cpu: The per CPU buffer to get the number of overruns from
3065 */
3066unsigned long
3067ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3068{
3069 struct ring_buffer_per_cpu *cpu_buffer;
3070 unsigned long ret;
3071
3072 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3073 return 0;
3074
3075 cpu_buffer = buffer->buffers[cpu];
77ae365e 3076 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3077
3078 return ret;
3079}
3080EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3081
884bfe89
SP
3082/**
3083 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3084 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3085 * @buffer: The ring buffer
3086 * @cpu: The per CPU buffer to get the number of overruns from
3087 */
3088unsigned long
3089ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3090{
3091 struct ring_buffer_per_cpu *cpu_buffer;
3092 unsigned long ret;
3093
3094 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3095 return 0;
3096
3097 cpu_buffer = buffer->buffers[cpu];
3098 ret = local_read(&cpu_buffer->dropped_events);
3099
3100 return ret;
3101}
3102EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3103
7a8e76a3
SR
3104/**
3105 * ring_buffer_entries - get the number of entries in a buffer
3106 * @buffer: The ring buffer
3107 *
3108 * Returns the total number of entries in the ring buffer
3109 * (all CPU entries)
3110 */
3111unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3112{
3113 struct ring_buffer_per_cpu *cpu_buffer;
3114 unsigned long entries = 0;
3115 int cpu;
3116
3117 /* if you care about this being correct, lock the buffer */
3118 for_each_buffer_cpu(buffer, cpu) {
3119 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3120 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3121 }
3122
3123 return entries;
3124}
c4f50183 3125EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3126
3127/**
67b394f7 3128 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3129 * @buffer: The ring buffer
3130 *
3131 * Returns the total number of overruns in the ring buffer
3132 * (all CPU entries)
3133 */
3134unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3135{
3136 struct ring_buffer_per_cpu *cpu_buffer;
3137 unsigned long overruns = 0;
3138 int cpu;
3139
3140 /* if you care about this being correct, lock the buffer */
3141 for_each_buffer_cpu(buffer, cpu) {
3142 cpu_buffer = buffer->buffers[cpu];
77ae365e 3143 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3144 }
3145
3146 return overruns;
3147}
c4f50183 3148EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3149
642edba5 3150static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3151{
3152 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3153
d769041f
SR
3154 /* Iterator usage is expected to have record disabled */
3155 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3156 iter->head_page = rb_set_head_page(cpu_buffer);
3157 if (unlikely(!iter->head_page))
3158 return;
3159 iter->head = iter->head_page->read;
d769041f
SR
3160 } else {
3161 iter->head_page = cpu_buffer->reader_page;
6f807acd 3162 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3163 }
3164 if (iter->head)
3165 iter->read_stamp = cpu_buffer->read_stamp;
3166 else
abc9b56d 3167 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3168 iter->cache_reader_page = cpu_buffer->reader_page;
3169 iter->cache_read = cpu_buffer->read;
642edba5 3170}
f83c9d0f 3171
642edba5
SR
3172/**
3173 * ring_buffer_iter_reset - reset an iterator
3174 * @iter: The iterator to reset
3175 *
3176 * Resets the iterator, so that it will start from the beginning
3177 * again.
3178 */
3179void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3180{
554f786e 3181 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3182 unsigned long flags;
3183
554f786e
SR
3184 if (!iter)
3185 return;
3186
3187 cpu_buffer = iter->cpu_buffer;
3188
5389f6fa 3189 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3190 rb_iter_reset(iter);
5389f6fa 3191 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3192}
c4f50183 3193EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3194
3195/**
3196 * ring_buffer_iter_empty - check if an iterator has no more to read
3197 * @iter: The iterator to check
3198 */
3199int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3200{
3201 struct ring_buffer_per_cpu *cpu_buffer;
3202
3203 cpu_buffer = iter->cpu_buffer;
3204
bf41a158
SR
3205 return iter->head_page == cpu_buffer->commit_page &&
3206 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3207}
c4f50183 3208EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3209
3210static void
3211rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3212 struct ring_buffer_event *event)
3213{
3214 u64 delta;
3215
334d4169 3216 switch (event->type_len) {
7a8e76a3
SR
3217 case RINGBUF_TYPE_PADDING:
3218 return;
3219
3220 case RINGBUF_TYPE_TIME_EXTEND:
3221 delta = event->array[0];
3222 delta <<= TS_SHIFT;
3223 delta += event->time_delta;
3224 cpu_buffer->read_stamp += delta;
3225 return;
3226
3227 case RINGBUF_TYPE_TIME_STAMP:
3228 /* FIXME: not implemented */
3229 return;
3230
3231 case RINGBUF_TYPE_DATA:
3232 cpu_buffer->read_stamp += event->time_delta;
3233 return;
3234
3235 default:
3236 BUG();
3237 }
3238 return;
3239}
3240
3241static void
3242rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3243 struct ring_buffer_event *event)
3244{
3245 u64 delta;
3246
334d4169 3247 switch (event->type_len) {
7a8e76a3
SR
3248 case RINGBUF_TYPE_PADDING:
3249 return;
3250
3251 case RINGBUF_TYPE_TIME_EXTEND:
3252 delta = event->array[0];
3253 delta <<= TS_SHIFT;
3254 delta += event->time_delta;
3255 iter->read_stamp += delta;
3256 return;
3257
3258 case RINGBUF_TYPE_TIME_STAMP:
3259 /* FIXME: not implemented */
3260 return;
3261
3262 case RINGBUF_TYPE_DATA:
3263 iter->read_stamp += event->time_delta;
3264 return;
3265
3266 default:
3267 BUG();
3268 }
3269 return;
3270}
3271
d769041f
SR
3272static struct buffer_page *
3273rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3274{
d769041f 3275 struct buffer_page *reader = NULL;
66a8cb95 3276 unsigned long overwrite;
d769041f 3277 unsigned long flags;
818e3dd3 3278 int nr_loops = 0;
77ae365e 3279 int ret;
d769041f 3280
3e03fb7f 3281 local_irq_save(flags);
0199c4e6 3282 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3283
3284 again:
818e3dd3
SR
3285 /*
3286 * This should normally only loop twice. But because the
3287 * start of the reader inserts an empty page, it causes
3288 * a case where we will loop three times. There should be no
3289 * reason to loop four times (that I know of).
3290 */
3e89c7bb 3291 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3292 reader = NULL;
3293 goto out;
3294 }
3295
d769041f
SR
3296 reader = cpu_buffer->reader_page;
3297
3298 /* If there's more to read, return this page */
bf41a158 3299 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3300 goto out;
3301
3302 /* Never should we have an index greater than the size */
3e89c7bb
SR
3303 if (RB_WARN_ON(cpu_buffer,
3304 cpu_buffer->reader_page->read > rb_page_size(reader)))
3305 goto out;
d769041f
SR
3306
3307 /* check if we caught up to the tail */
3308 reader = NULL;
bf41a158 3309 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3310 goto out;
7a8e76a3 3311
a5fb8331
SR
3312 /* Don't bother swapping if the ring buffer is empty */
3313 if (rb_num_of_entries(cpu_buffer) == 0)
3314 goto out;
3315
7a8e76a3 3316 /*
d769041f 3317 * Reset the reader page to size zero.
7a8e76a3 3318 */
77ae365e
SR
3319 local_set(&cpu_buffer->reader_page->write, 0);
3320 local_set(&cpu_buffer->reader_page->entries, 0);
3321 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3322 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3323
77ae365e
SR
3324 spin:
3325 /*
3326 * Splice the empty reader page into the list around the head.
3327 */
3328 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3329 if (!reader)
3330 goto out;
0e1ff5d7 3331 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3332 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3333
3adc54fa
SR
3334 /*
3335 * cpu_buffer->pages just needs to point to the buffer, it
3336 * has no specific buffer page to point to. Lets move it out
25985edc 3337 * of our way so we don't accidentally swap it.
3adc54fa
SR
3338 */
3339 cpu_buffer->pages = reader->list.prev;
3340
77ae365e
SR
3341 /* The reader page will be pointing to the new head */
3342 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3343
66a8cb95
SR
3344 /*
3345 * We want to make sure we read the overruns after we set up our
3346 * pointers to the next object. The writer side does a
3347 * cmpxchg to cross pages which acts as the mb on the writer
3348 * side. Note, the reader will constantly fail the swap
3349 * while the writer is updating the pointers, so this
3350 * guarantees that the overwrite recorded here is the one we
3351 * want to compare with the last_overrun.
3352 */
3353 smp_mb();
3354 overwrite = local_read(&(cpu_buffer->overrun));
3355
77ae365e
SR
3356 /*
3357 * Here's the tricky part.
3358 *
3359 * We need to move the pointer past the header page.
3360 * But we can only do that if a writer is not currently
3361 * moving it. The page before the header page has the
3362 * flag bit '1' set if it is pointing to the page we want.
3363 * but if the writer is in the process of moving it
3364 * than it will be '2' or already moved '0'.
3365 */
3366
3367 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3368
3369 /*
77ae365e 3370 * If we did not convert it, then we must try again.
7a8e76a3 3371 */
77ae365e
SR
3372 if (!ret)
3373 goto spin;
7a8e76a3 3374
77ae365e
SR
3375 /*
3376 * Yeah! We succeeded in replacing the page.
3377 *
3378 * Now make the new head point back to the reader page.
3379 */
5ded3dc6 3380 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3381 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3382
3383 /* Finally update the reader page to the new head */
3384 cpu_buffer->reader_page = reader;
3385 rb_reset_reader_page(cpu_buffer);
3386
66a8cb95
SR
3387 if (overwrite != cpu_buffer->last_overrun) {
3388 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3389 cpu_buffer->last_overrun = overwrite;
3390 }
3391
d769041f
SR
3392 goto again;
3393
3394 out:
0199c4e6 3395 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3396 local_irq_restore(flags);
d769041f
SR
3397
3398 return reader;
3399}
3400
3401static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3402{
3403 struct ring_buffer_event *event;
3404 struct buffer_page *reader;
3405 unsigned length;
3406
3407 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3408
d769041f 3409 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3410 if (RB_WARN_ON(cpu_buffer, !reader))
3411 return;
7a8e76a3 3412
d769041f
SR
3413 event = rb_reader_event(cpu_buffer);
3414
a1863c21 3415 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3416 cpu_buffer->read++;
d769041f
SR
3417
3418 rb_update_read_stamp(cpu_buffer, event);
3419
3420 length = rb_event_length(event);
6f807acd 3421 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3422}
3423
3424static void rb_advance_iter(struct ring_buffer_iter *iter)
3425{
7a8e76a3
SR
3426 struct ring_buffer_per_cpu *cpu_buffer;
3427 struct ring_buffer_event *event;
3428 unsigned length;
3429
3430 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3431
3432 /*
3433 * Check if we are at the end of the buffer.
3434 */
bf41a158 3435 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3436 /* discarded commits can make the page empty */
3437 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3438 return;
d769041f 3439 rb_inc_iter(iter);
7a8e76a3
SR
3440 return;
3441 }
3442
3443 event = rb_iter_head_event(iter);
3444
3445 length = rb_event_length(event);
3446
3447 /*
3448 * This should not be called to advance the header if we are
3449 * at the tail of the buffer.
3450 */
3e89c7bb 3451 if (RB_WARN_ON(cpu_buffer,
f536aafc 3452 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3453 (iter->head + length > rb_commit_index(cpu_buffer))))
3454 return;
7a8e76a3
SR
3455
3456 rb_update_iter_read_stamp(iter, event);
3457
3458 iter->head += length;
3459
3460 /* check for end of page padding */
bf41a158
SR
3461 if ((iter->head >= rb_page_size(iter->head_page)) &&
3462 (iter->head_page != cpu_buffer->commit_page))
771e0384 3463 rb_inc_iter(iter);
7a8e76a3
SR
3464}
3465
66a8cb95
SR
3466static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3467{
3468 return cpu_buffer->lost_events;
3469}
3470
f83c9d0f 3471static struct ring_buffer_event *
66a8cb95
SR
3472rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3473 unsigned long *lost_events)
7a8e76a3 3474{
7a8e76a3 3475 struct ring_buffer_event *event;
d769041f 3476 struct buffer_page *reader;
818e3dd3 3477 int nr_loops = 0;
7a8e76a3 3478
7a8e76a3 3479 again:
818e3dd3 3480 /*
69d1b839
SR
3481 * We repeat when a time extend is encountered.
3482 * Since the time extend is always attached to a data event,
3483 * we should never loop more than once.
3484 * (We never hit the following condition more than twice).
818e3dd3 3485 */
69d1b839 3486 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3487 return NULL;
818e3dd3 3488
d769041f
SR
3489 reader = rb_get_reader_page(cpu_buffer);
3490 if (!reader)
7a8e76a3
SR
3491 return NULL;
3492
d769041f 3493 event = rb_reader_event(cpu_buffer);
7a8e76a3 3494
334d4169 3495 switch (event->type_len) {
7a8e76a3 3496 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3497 if (rb_null_event(event))
3498 RB_WARN_ON(cpu_buffer, 1);
3499 /*
3500 * Because the writer could be discarding every
3501 * event it creates (which would probably be bad)
3502 * if we were to go back to "again" then we may never
3503 * catch up, and will trigger the warn on, or lock
3504 * the box. Return the padding, and we will release
3505 * the current locks, and try again.
3506 */
2d622719 3507 return event;
7a8e76a3
SR
3508
3509 case RINGBUF_TYPE_TIME_EXTEND:
3510 /* Internal data, OK to advance */
d769041f 3511 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3512 goto again;
3513
3514 case RINGBUF_TYPE_TIME_STAMP:
3515 /* FIXME: not implemented */
d769041f 3516 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3517 goto again;
3518
3519 case RINGBUF_TYPE_DATA:
3520 if (ts) {
3521 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3522 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3523 cpu_buffer->cpu, ts);
7a8e76a3 3524 }
66a8cb95
SR
3525 if (lost_events)
3526 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3527 return event;
3528
3529 default:
3530 BUG();
3531 }
3532
3533 return NULL;
3534}
c4f50183 3535EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3536
f83c9d0f
SR
3537static struct ring_buffer_event *
3538rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3539{
3540 struct ring_buffer *buffer;
3541 struct ring_buffer_per_cpu *cpu_buffer;
3542 struct ring_buffer_event *event;
818e3dd3 3543 int nr_loops = 0;
7a8e76a3 3544
7a8e76a3
SR
3545 cpu_buffer = iter->cpu_buffer;
3546 buffer = cpu_buffer->buffer;
3547
492a74f4
SR
3548 /*
3549 * Check if someone performed a consuming read to
3550 * the buffer. A consuming read invalidates the iterator
3551 * and we need to reset the iterator in this case.
3552 */
3553 if (unlikely(iter->cache_read != cpu_buffer->read ||
3554 iter->cache_reader_page != cpu_buffer->reader_page))
3555 rb_iter_reset(iter);
3556
7a8e76a3 3557 again:
3c05d748
SR
3558 if (ring_buffer_iter_empty(iter))
3559 return NULL;
3560
818e3dd3 3561 /*
69d1b839
SR
3562 * We repeat when a time extend is encountered.
3563 * Since the time extend is always attached to a data event,
3564 * we should never loop more than once.
3565 * (We never hit the following condition more than twice).
818e3dd3 3566 */
69d1b839 3567 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3568 return NULL;
818e3dd3 3569
7a8e76a3
SR
3570 if (rb_per_cpu_empty(cpu_buffer))
3571 return NULL;
3572
3c05d748
SR
3573 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3574 rb_inc_iter(iter);
3575 goto again;
3576 }
3577
7a8e76a3
SR
3578 event = rb_iter_head_event(iter);
3579
334d4169 3580 switch (event->type_len) {
7a8e76a3 3581 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3582 if (rb_null_event(event)) {
3583 rb_inc_iter(iter);
3584 goto again;
3585 }
3586 rb_advance_iter(iter);
3587 return event;
7a8e76a3
SR
3588
3589 case RINGBUF_TYPE_TIME_EXTEND:
3590 /* Internal data, OK to advance */
3591 rb_advance_iter(iter);
3592 goto again;
3593
3594 case RINGBUF_TYPE_TIME_STAMP:
3595 /* FIXME: not implemented */
3596 rb_advance_iter(iter);
3597 goto again;
3598
3599 case RINGBUF_TYPE_DATA:
3600 if (ts) {
3601 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3602 ring_buffer_normalize_time_stamp(buffer,
3603 cpu_buffer->cpu, ts);
7a8e76a3
SR
3604 }
3605 return event;
3606
3607 default:
3608 BUG();
3609 }
3610
3611 return NULL;
3612}
c4f50183 3613EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3614
8d707e8e
SR
3615static inline int rb_ok_to_lock(void)
3616{
3617 /*
3618 * If an NMI die dumps out the content of the ring buffer
3619 * do not grab locks. We also permanently disable the ring
3620 * buffer too. A one time deal is all you get from reading
3621 * the ring buffer from an NMI.
3622 */
464e85eb 3623 if (likely(!in_nmi()))
8d707e8e
SR
3624 return 1;
3625
3626 tracing_off_permanent();
3627 return 0;
3628}
3629
f83c9d0f
SR
3630/**
3631 * ring_buffer_peek - peek at the next event to be read
3632 * @buffer: The ring buffer to read
3633 * @cpu: The cpu to peak at
3634 * @ts: The timestamp counter of this event.
66a8cb95 3635 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3636 *
3637 * This will return the event that will be read next, but does
3638 * not consume the data.
3639 */
3640struct ring_buffer_event *
66a8cb95
SR
3641ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3642 unsigned long *lost_events)
f83c9d0f
SR
3643{
3644 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3645 struct ring_buffer_event *event;
f83c9d0f 3646 unsigned long flags;
8d707e8e 3647 int dolock;
f83c9d0f 3648
554f786e 3649 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3650 return NULL;
554f786e 3651
8d707e8e 3652 dolock = rb_ok_to_lock();
2d622719 3653 again:
8d707e8e
SR
3654 local_irq_save(flags);
3655 if (dolock)
5389f6fa 3656 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3657 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3658 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3659 rb_advance_reader(cpu_buffer);
8d707e8e 3660 if (dolock)
5389f6fa 3661 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3662 local_irq_restore(flags);
f83c9d0f 3663
1b959e18 3664 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3665 goto again;
2d622719 3666
f83c9d0f
SR
3667 return event;
3668}
3669
3670/**
3671 * ring_buffer_iter_peek - peek at the next event to be read
3672 * @iter: The ring buffer iterator
3673 * @ts: The timestamp counter of this event.
3674 *
3675 * This will return the event that will be read next, but does
3676 * not increment the iterator.
3677 */
3678struct ring_buffer_event *
3679ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3680{
3681 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3682 struct ring_buffer_event *event;
3683 unsigned long flags;
3684
2d622719 3685 again:
5389f6fa 3686 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3687 event = rb_iter_peek(iter, ts);
5389f6fa 3688 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3689
1b959e18 3690 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3691 goto again;
2d622719 3692
f83c9d0f
SR
3693 return event;
3694}
3695
7a8e76a3
SR
3696/**
3697 * ring_buffer_consume - return an event and consume it
3698 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3699 * @cpu: the cpu to read the buffer from
3700 * @ts: a variable to store the timestamp (may be NULL)
3701 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3702 *
3703 * Returns the next event in the ring buffer, and that event is consumed.
3704 * Meaning, that sequential reads will keep returning a different event,
3705 * and eventually empty the ring buffer if the producer is slower.
3706 */
3707struct ring_buffer_event *
66a8cb95
SR
3708ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3709 unsigned long *lost_events)
7a8e76a3 3710{
554f786e
SR
3711 struct ring_buffer_per_cpu *cpu_buffer;
3712 struct ring_buffer_event *event = NULL;
f83c9d0f 3713 unsigned long flags;
8d707e8e
SR
3714 int dolock;
3715
3716 dolock = rb_ok_to_lock();
7a8e76a3 3717
2d622719 3718 again:
554f786e
SR
3719 /* might be called in atomic */
3720 preempt_disable();
3721
9e01c1b7 3722 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3723 goto out;
7a8e76a3 3724
554f786e 3725 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3726 local_irq_save(flags);
3727 if (dolock)
5389f6fa 3728 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3729
66a8cb95
SR
3730 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3731 if (event) {
3732 cpu_buffer->lost_events = 0;
469535a5 3733 rb_advance_reader(cpu_buffer);
66a8cb95 3734 }
7a8e76a3 3735
8d707e8e 3736 if (dolock)
5389f6fa 3737 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3738 local_irq_restore(flags);
f83c9d0f 3739
554f786e
SR
3740 out:
3741 preempt_enable();
3742
1b959e18 3743 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3744 goto again;
2d622719 3745
7a8e76a3
SR
3746 return event;
3747}
c4f50183 3748EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3749
3750/**
72c9ddfd 3751 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3752 * @buffer: The ring buffer to read from
3753 * @cpu: The cpu buffer to iterate over
3754 *
72c9ddfd
DM
3755 * This performs the initial preparations necessary to iterate
3756 * through the buffer. Memory is allocated, buffer recording
3757 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3758 *
72c9ddfd
DM
3759 * Disabling buffer recordng prevents the reading from being
3760 * corrupted. This is not a consuming read, so a producer is not
3761 * expected.
3762 *
3763 * After a sequence of ring_buffer_read_prepare calls, the user is
3764 * expected to make at least one call to ring_buffer_prepare_sync.
3765 * Afterwards, ring_buffer_read_start is invoked to get things going
3766 * for real.
3767 *
3768 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3769 */
3770struct ring_buffer_iter *
72c9ddfd 3771ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3772{
3773 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3774 struct ring_buffer_iter *iter;
7a8e76a3 3775
9e01c1b7 3776 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3777 return NULL;
7a8e76a3
SR
3778
3779 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3780 if (!iter)
8aabee57 3781 return NULL;
7a8e76a3
SR
3782
3783 cpu_buffer = buffer->buffers[cpu];
3784
3785 iter->cpu_buffer = cpu_buffer;
3786
83f40318 3787 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3788 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3789
3790 return iter;
3791}
3792EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3793
3794/**
3795 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3796 *
3797 * All previously invoked ring_buffer_read_prepare calls to prepare
3798 * iterators will be synchronized. Afterwards, read_buffer_read_start
3799 * calls on those iterators are allowed.
3800 */
3801void
3802ring_buffer_read_prepare_sync(void)
3803{
7a8e76a3 3804 synchronize_sched();
72c9ddfd
DM
3805}
3806EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3807
3808/**
3809 * ring_buffer_read_start - start a non consuming read of the buffer
3810 * @iter: The iterator returned by ring_buffer_read_prepare
3811 *
3812 * This finalizes the startup of an iteration through the buffer.
3813 * The iterator comes from a call to ring_buffer_read_prepare and
3814 * an intervening ring_buffer_read_prepare_sync must have been
3815 * performed.
3816 *
3817 * Must be paired with ring_buffer_finish.
3818 */
3819void
3820ring_buffer_read_start(struct ring_buffer_iter *iter)
3821{
3822 struct ring_buffer_per_cpu *cpu_buffer;
3823 unsigned long flags;
3824
3825 if (!iter)
3826 return;
3827
3828 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3829
5389f6fa 3830 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3831 arch_spin_lock(&cpu_buffer->lock);
642edba5 3832 rb_iter_reset(iter);
0199c4e6 3833 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 3834 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3835}
c4f50183 3836EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3837
3838/**
3839 * ring_buffer_finish - finish reading the iterator of the buffer
3840 * @iter: The iterator retrieved by ring_buffer_start
3841 *
3842 * This re-enables the recording to the buffer, and frees the
3843 * iterator.
3844 */
3845void
3846ring_buffer_read_finish(struct ring_buffer_iter *iter)
3847{
3848 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 3849 unsigned long flags;
7a8e76a3 3850
659f451f
SR
3851 /*
3852 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
3853 * to check the integrity of the ring buffer.
3854 * Must prevent readers from trying to read, as the check
3855 * clears the HEAD page and readers require it.
659f451f 3856 */
9366c1ba 3857 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 3858 rb_check_pages(cpu_buffer);
9366c1ba 3859 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 3860
7a8e76a3 3861 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3862 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
3863 kfree(iter);
3864}
c4f50183 3865EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3866
3867/**
3868 * ring_buffer_read - read the next item in the ring buffer by the iterator
3869 * @iter: The ring buffer iterator
3870 * @ts: The time stamp of the event read.
3871 *
3872 * This reads the next event in the ring buffer and increments the iterator.
3873 */
3874struct ring_buffer_event *
3875ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3876{
3877 struct ring_buffer_event *event;
f83c9d0f
SR
3878 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3879 unsigned long flags;
7a8e76a3 3880
5389f6fa 3881 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3882 again:
f83c9d0f 3883 event = rb_iter_peek(iter, ts);
7a8e76a3 3884 if (!event)
f83c9d0f 3885 goto out;
7a8e76a3 3886
7e9391cf
SR
3887 if (event->type_len == RINGBUF_TYPE_PADDING)
3888 goto again;
3889
7a8e76a3 3890 rb_advance_iter(iter);
f83c9d0f 3891 out:
5389f6fa 3892 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3893
3894 return event;
3895}
c4f50183 3896EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3897
3898/**
3899 * ring_buffer_size - return the size of the ring buffer (in bytes)
3900 * @buffer: The ring buffer.
3901 */
438ced17 3902unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 3903{
438ced17
VN
3904 /*
3905 * Earlier, this method returned
3906 * BUF_PAGE_SIZE * buffer->nr_pages
3907 * Since the nr_pages field is now removed, we have converted this to
3908 * return the per cpu buffer value.
3909 */
3910 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3911 return 0;
3912
3913 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 3914}
c4f50183 3915EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3916
3917static void
3918rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3919{
77ae365e
SR
3920 rb_head_page_deactivate(cpu_buffer);
3921
7a8e76a3 3922 cpu_buffer->head_page
3adc54fa 3923 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3924 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3925 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3926 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3927
6f807acd 3928 cpu_buffer->head_page->read = 0;
bf41a158
SR
3929
3930 cpu_buffer->tail_page = cpu_buffer->head_page;
3931 cpu_buffer->commit_page = cpu_buffer->head_page;
3932
3933 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 3934 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 3935 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3936 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3937 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3938 cpu_buffer->reader_page->read = 0;
7a8e76a3 3939
c64e148a 3940 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 3941 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
3942 local_set(&cpu_buffer->commit_overrun, 0);
3943 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 3944 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3945 local_set(&cpu_buffer->committing, 0);
3946 local_set(&cpu_buffer->commits, 0);
77ae365e 3947 cpu_buffer->read = 0;
c64e148a 3948 cpu_buffer->read_bytes = 0;
69507c06
SR
3949
3950 cpu_buffer->write_stamp = 0;
3951 cpu_buffer->read_stamp = 0;
77ae365e 3952
66a8cb95
SR
3953 cpu_buffer->lost_events = 0;
3954 cpu_buffer->last_overrun = 0;
3955
77ae365e 3956 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3957}
3958
3959/**
3960 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3961 * @buffer: The ring buffer to reset a per cpu buffer of
3962 * @cpu: The CPU buffer to be reset
3963 */
3964void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3965{
3966 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3967 unsigned long flags;
3968
9e01c1b7 3969 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3970 return;
7a8e76a3 3971
83f40318 3972 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
3973 atomic_inc(&cpu_buffer->record_disabled);
3974
83f40318
VN
3975 /* Make sure all commits have finished */
3976 synchronize_sched();
3977
5389f6fa 3978 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3979
41b6a95d
SR
3980 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3981 goto out;
3982
0199c4e6 3983 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3984
3985 rb_reset_cpu(cpu_buffer);
3986
0199c4e6 3987 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3988
41b6a95d 3989 out:
5389f6fa 3990 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3991
3992 atomic_dec(&cpu_buffer->record_disabled);
83f40318 3993 atomic_dec(&buffer->resize_disabled);
7a8e76a3 3994}
c4f50183 3995EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3996
3997/**
3998 * ring_buffer_reset - reset a ring buffer
3999 * @buffer: The ring buffer to reset all cpu buffers
4000 */
4001void ring_buffer_reset(struct ring_buffer *buffer)
4002{
7a8e76a3
SR
4003 int cpu;
4004
7a8e76a3 4005 for_each_buffer_cpu(buffer, cpu)
d769041f 4006 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4007}
c4f50183 4008EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4009
4010/**
4011 * rind_buffer_empty - is the ring buffer empty?
4012 * @buffer: The ring buffer to test
4013 */
4014int ring_buffer_empty(struct ring_buffer *buffer)
4015{
4016 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4017 unsigned long flags;
8d707e8e 4018 int dolock;
7a8e76a3 4019 int cpu;
d4788207 4020 int ret;
7a8e76a3 4021
8d707e8e 4022 dolock = rb_ok_to_lock();
7a8e76a3
SR
4023
4024 /* yes this is racy, but if you don't like the race, lock the buffer */
4025 for_each_buffer_cpu(buffer, cpu) {
4026 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4027 local_irq_save(flags);
4028 if (dolock)
5389f6fa 4029 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4030 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4031 if (dolock)
5389f6fa 4032 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4033 local_irq_restore(flags);
4034
d4788207 4035 if (!ret)
7a8e76a3
SR
4036 return 0;
4037 }
554f786e 4038
7a8e76a3
SR
4039 return 1;
4040}
c4f50183 4041EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4042
4043/**
4044 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4045 * @buffer: The ring buffer
4046 * @cpu: The CPU buffer to test
4047 */
4048int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4049{
4050 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4051 unsigned long flags;
8d707e8e 4052 int dolock;
8aabee57 4053 int ret;
7a8e76a3 4054
9e01c1b7 4055 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4056 return 1;
7a8e76a3 4057
8d707e8e
SR
4058 dolock = rb_ok_to_lock();
4059
7a8e76a3 4060 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4061 local_irq_save(flags);
4062 if (dolock)
5389f6fa 4063 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4064 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4065 if (dolock)
5389f6fa 4066 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4067 local_irq_restore(flags);
554f786e
SR
4068
4069 return ret;
7a8e76a3 4070}
c4f50183 4071EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4072
85bac32c 4073#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4074/**
4075 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4076 * @buffer_a: One buffer to swap with
4077 * @buffer_b: The other buffer to swap with
4078 *
4079 * This function is useful for tracers that want to take a "snapshot"
4080 * of a CPU buffer and has another back up buffer lying around.
4081 * it is expected that the tracer handles the cpu buffer not being
4082 * used at the moment.
4083 */
4084int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4085 struct ring_buffer *buffer_b, int cpu)
4086{
4087 struct ring_buffer_per_cpu *cpu_buffer_a;
4088 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4089 int ret = -EINVAL;
4090
9e01c1b7
RR
4091 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4092 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4093 goto out;
7a8e76a3 4094
438ced17
VN
4095 cpu_buffer_a = buffer_a->buffers[cpu];
4096 cpu_buffer_b = buffer_b->buffers[cpu];
4097
7a8e76a3 4098 /* At least make sure the two buffers are somewhat the same */
438ced17 4099 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4100 goto out;
4101
4102 ret = -EAGAIN;
7a8e76a3 4103
97b17efe 4104 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4105 goto out;
97b17efe
SR
4106
4107 if (atomic_read(&buffer_a->record_disabled))
554f786e 4108 goto out;
97b17efe
SR
4109
4110 if (atomic_read(&buffer_b->record_disabled))
554f786e 4111 goto out;
97b17efe 4112
97b17efe 4113 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4114 goto out;
97b17efe
SR
4115
4116 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4117 goto out;
97b17efe 4118
7a8e76a3
SR
4119 /*
4120 * We can't do a synchronize_sched here because this
4121 * function can be called in atomic context.
4122 * Normally this will be called from the same CPU as cpu.
4123 * If not it's up to the caller to protect this.
4124 */
4125 atomic_inc(&cpu_buffer_a->record_disabled);
4126 atomic_inc(&cpu_buffer_b->record_disabled);
4127
98277991
SR
4128 ret = -EBUSY;
4129 if (local_read(&cpu_buffer_a->committing))
4130 goto out_dec;
4131 if (local_read(&cpu_buffer_b->committing))
4132 goto out_dec;
4133
7a8e76a3
SR
4134 buffer_a->buffers[cpu] = cpu_buffer_b;
4135 buffer_b->buffers[cpu] = cpu_buffer_a;
4136
4137 cpu_buffer_b->buffer = buffer_a;
4138 cpu_buffer_a->buffer = buffer_b;
4139
98277991
SR
4140 ret = 0;
4141
4142out_dec:
7a8e76a3
SR
4143 atomic_dec(&cpu_buffer_a->record_disabled);
4144 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4145out:
554f786e 4146 return ret;
7a8e76a3 4147}
c4f50183 4148EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4149#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4150
8789a9e7
SR
4151/**
4152 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4153 * @buffer: the buffer to allocate for.
4154 *
4155 * This function is used in conjunction with ring_buffer_read_page.
4156 * When reading a full page from the ring buffer, these functions
4157 * can be used to speed up the process. The calling function should
4158 * allocate a few pages first with this function. Then when it
4159 * needs to get pages from the ring buffer, it passes the result
4160 * of this function into ring_buffer_read_page, which will swap
4161 * the page that was allocated, with the read page of the buffer.
4162 *
4163 * Returns:
4164 * The page allocated, or NULL on error.
4165 */
7ea59064 4166void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4167{
044fa782 4168 struct buffer_data_page *bpage;
7ea59064 4169 struct page *page;
8789a9e7 4170
d7ec4bfe
VN
4171 page = alloc_pages_node(cpu_to_node(cpu),
4172 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4173 if (!page)
8789a9e7
SR
4174 return NULL;
4175
7ea59064 4176 bpage = page_address(page);
8789a9e7 4177
ef7a4a16
SR
4178 rb_init_page(bpage);
4179
044fa782 4180 return bpage;
8789a9e7 4181}
d6ce96da 4182EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4183
4184/**
4185 * ring_buffer_free_read_page - free an allocated read page
4186 * @buffer: the buffer the page was allocate for
4187 * @data: the page to free
4188 *
4189 * Free a page allocated from ring_buffer_alloc_read_page.
4190 */
4191void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4192{
4193 free_page((unsigned long)data);
4194}
d6ce96da 4195EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4196
4197/**
4198 * ring_buffer_read_page - extract a page from the ring buffer
4199 * @buffer: buffer to extract from
4200 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4201 * @len: amount to extract
8789a9e7
SR
4202 * @cpu: the cpu of the buffer to extract
4203 * @full: should the extraction only happen when the page is full.
4204 *
4205 * This function will pull out a page from the ring buffer and consume it.
4206 * @data_page must be the address of the variable that was returned
4207 * from ring_buffer_alloc_read_page. This is because the page might be used
4208 * to swap with a page in the ring buffer.
4209 *
4210 * for example:
b85fa01e 4211 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4212 * if (!rpage)
4213 * return error;
ef7a4a16 4214 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4215 * if (ret >= 0)
4216 * process_page(rpage, ret);
8789a9e7
SR
4217 *
4218 * When @full is set, the function will not return true unless
4219 * the writer is off the reader page.
4220 *
4221 * Note: it is up to the calling functions to handle sleeps and wakeups.
4222 * The ring buffer can be used anywhere in the kernel and can not
4223 * blindly call wake_up. The layer that uses the ring buffer must be
4224 * responsible for that.
4225 *
4226 * Returns:
667d2412
LJ
4227 * >=0 if data has been transferred, returns the offset of consumed data.
4228 * <0 if no data has been transferred.
8789a9e7
SR
4229 */
4230int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4231 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4232{
4233 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4234 struct ring_buffer_event *event;
044fa782 4235 struct buffer_data_page *bpage;
ef7a4a16 4236 struct buffer_page *reader;
ff0ff84a 4237 unsigned long missed_events;
8789a9e7 4238 unsigned long flags;
ef7a4a16 4239 unsigned int commit;
667d2412 4240 unsigned int read;
4f3640f8 4241 u64 save_timestamp;
667d2412 4242 int ret = -1;
8789a9e7 4243
554f786e
SR
4244 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4245 goto out;
4246
474d32b6
SR
4247 /*
4248 * If len is not big enough to hold the page header, then
4249 * we can not copy anything.
4250 */
4251 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4252 goto out;
474d32b6
SR
4253
4254 len -= BUF_PAGE_HDR_SIZE;
4255
8789a9e7 4256 if (!data_page)
554f786e 4257 goto out;
8789a9e7 4258
044fa782
SR
4259 bpage = *data_page;
4260 if (!bpage)
554f786e 4261 goto out;
8789a9e7 4262
5389f6fa 4263 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4264
ef7a4a16
SR
4265 reader = rb_get_reader_page(cpu_buffer);
4266 if (!reader)
554f786e 4267 goto out_unlock;
8789a9e7 4268
ef7a4a16
SR
4269 event = rb_reader_event(cpu_buffer);
4270
4271 read = reader->read;
4272 commit = rb_page_commit(reader);
667d2412 4273
66a8cb95 4274 /* Check if any events were dropped */
ff0ff84a 4275 missed_events = cpu_buffer->lost_events;
66a8cb95 4276
8789a9e7 4277 /*
474d32b6
SR
4278 * If this page has been partially read or
4279 * if len is not big enough to read the rest of the page or
4280 * a writer is still on the page, then
4281 * we must copy the data from the page to the buffer.
4282 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4283 */
474d32b6 4284 if (read || (len < (commit - read)) ||
ef7a4a16 4285 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4286 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4287 unsigned int rpos = read;
4288 unsigned int pos = 0;
ef7a4a16 4289 unsigned int size;
8789a9e7
SR
4290
4291 if (full)
554f786e 4292 goto out_unlock;
8789a9e7 4293
ef7a4a16
SR
4294 if (len > (commit - read))
4295 len = (commit - read);
4296
69d1b839
SR
4297 /* Always keep the time extend and data together */
4298 size = rb_event_ts_length(event);
ef7a4a16
SR
4299
4300 if (len < size)
554f786e 4301 goto out_unlock;
ef7a4a16 4302
4f3640f8
SR
4303 /* save the current timestamp, since the user will need it */
4304 save_timestamp = cpu_buffer->read_stamp;
4305
ef7a4a16
SR
4306 /* Need to copy one event at a time */
4307 do {
e1e35927
DS
4308 /* We need the size of one event, because
4309 * rb_advance_reader only advances by one event,
4310 * whereas rb_event_ts_length may include the size of
4311 * one or two events.
4312 * We have already ensured there's enough space if this
4313 * is a time extend. */
4314 size = rb_event_length(event);
474d32b6 4315 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4316
4317 len -= size;
4318
4319 rb_advance_reader(cpu_buffer);
474d32b6
SR
4320 rpos = reader->read;
4321 pos += size;
ef7a4a16 4322
18fab912
HY
4323 if (rpos >= commit)
4324 break;
4325
ef7a4a16 4326 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4327 /* Always keep the time extend and data together */
4328 size = rb_event_ts_length(event);
e1e35927 4329 } while (len >= size);
667d2412
LJ
4330
4331 /* update bpage */
ef7a4a16 4332 local_set(&bpage->commit, pos);
4f3640f8 4333 bpage->time_stamp = save_timestamp;
ef7a4a16 4334
474d32b6
SR
4335 /* we copied everything to the beginning */
4336 read = 0;
8789a9e7 4337 } else {
afbab76a 4338 /* update the entry counter */
77ae365e 4339 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4340 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4341
8789a9e7 4342 /* swap the pages */
044fa782 4343 rb_init_page(bpage);
ef7a4a16
SR
4344 bpage = reader->page;
4345 reader->page = *data_page;
4346 local_set(&reader->write, 0);
778c55d4 4347 local_set(&reader->entries, 0);
ef7a4a16 4348 reader->read = 0;
044fa782 4349 *data_page = bpage;
ff0ff84a
SR
4350
4351 /*
4352 * Use the real_end for the data size,
4353 * This gives us a chance to store the lost events
4354 * on the page.
4355 */
4356 if (reader->real_end)
4357 local_set(&bpage->commit, reader->real_end);
8789a9e7 4358 }
667d2412 4359 ret = read;
8789a9e7 4360
66a8cb95 4361 cpu_buffer->lost_events = 0;
2711ca23
SR
4362
4363 commit = local_read(&bpage->commit);
66a8cb95
SR
4364 /*
4365 * Set a flag in the commit field if we lost events
4366 */
ff0ff84a 4367 if (missed_events) {
ff0ff84a
SR
4368 /* If there is room at the end of the page to save the
4369 * missed events, then record it there.
4370 */
4371 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4372 memcpy(&bpage->data[commit], &missed_events,
4373 sizeof(missed_events));
4374 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4375 commit += sizeof(missed_events);
ff0ff84a 4376 }
66a8cb95 4377 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4378 }
66a8cb95 4379
2711ca23
SR
4380 /*
4381 * This page may be off to user land. Zero it out here.
4382 */
4383 if (commit < BUF_PAGE_SIZE)
4384 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4385
554f786e 4386 out_unlock:
5389f6fa 4387 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4388
554f786e 4389 out:
8789a9e7
SR
4390 return ret;
4391}
d6ce96da 4392EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4393
59222efe 4394#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4395static int rb_cpu_notify(struct notifier_block *self,
4396 unsigned long action, void *hcpu)
554f786e
SR
4397{
4398 struct ring_buffer *buffer =
4399 container_of(self, struct ring_buffer, cpu_notify);
4400 long cpu = (long)hcpu;
438ced17
VN
4401 int cpu_i, nr_pages_same;
4402 unsigned int nr_pages;
554f786e
SR
4403
4404 switch (action) {
4405 case CPU_UP_PREPARE:
4406 case CPU_UP_PREPARE_FROZEN:
3f237a79 4407 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4408 return NOTIFY_OK;
4409
438ced17
VN
4410 nr_pages = 0;
4411 nr_pages_same = 1;
4412 /* check if all cpu sizes are same */
4413 for_each_buffer_cpu(buffer, cpu_i) {
4414 /* fill in the size from first enabled cpu */
4415 if (nr_pages == 0)
4416 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4417 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4418 nr_pages_same = 0;
4419 break;
4420 }
4421 }
4422 /* allocate minimum pages, user can later expand it */
4423 if (!nr_pages_same)
4424 nr_pages = 2;
554f786e 4425 buffer->buffers[cpu] =
438ced17 4426 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4427 if (!buffer->buffers[cpu]) {
4428 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4429 cpu);
4430 return NOTIFY_OK;
4431 }
4432 smp_wmb();
3f237a79 4433 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4434 break;
4435 case CPU_DOWN_PREPARE:
4436 case CPU_DOWN_PREPARE_FROZEN:
4437 /*
4438 * Do nothing.
4439 * If we were to free the buffer, then the user would
4440 * lose any trace that was in the buffer.
4441 */
4442 break;
4443 default:
4444 break;
4445 }
4446 return NOTIFY_OK;
4447}
4448#endif