]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
ring-buffer: Make write slow path out of line
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
1744a21d 13#include <linux/kmemcheck.h>
7a8e76a3
SR
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
5a0e3ad6 17#include <linux/slab.h>
7a8e76a3
SR
18#include <linux/init.h>
19#include <linux/hash.h>
20#include <linux/list.h>
554f786e 21#include <linux/cpu.h>
7a8e76a3
SR
22#include <linux/fs.h>
23
79615760 24#include <asm/local.h>
182e9f5f
SR
25#include "trace.h"
26
d1b182a8
SR
27/*
28 * The ring buffer header is special. We must manually up keep it.
29 */
30int ring_buffer_print_entry_header(struct trace_seq *s)
31{
32 int ret;
33
334d4169
LJ
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
45
46 return ret;
47}
48
5cc98548
SR
49/*
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
54 *
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
58 *
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
62 *
63 * Here's some silly ASCII art.
64 *
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
74 *
75 *
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
85 *
86 *
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
96 *
97 *
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
107 *
108 *
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
112 *
113 * We will be using cmpxchg soon to make all this lockless.
114 *
115 */
116
033601a3
SR
117/*
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
123 *
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
126 *
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
130 *
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
133 */
134
135/*
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
138 *
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
144 */
145
146enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
149};
150
151enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
154};
155
5e39841c 156static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 157
474d32b6
SR
158#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
a3583244
SR
160/**
161 * tracing_on - enable all tracing buffers
162 *
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
165 */
166void tracing_on(void)
167{
033601a3 168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 169}
c4f50183 170EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
171
172/**
173 * tracing_off - turn off all tracing buffers
174 *
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
179 */
180void tracing_off(void)
181{
033601a3
SR
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183}
c4f50183 184EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
185
186/**
187 * tracing_off_permanent - permanently disable ring buffers
188 *
189 * This function, once called, will disable all ring buffers
c3706f00 190 * permanently.
033601a3
SR
191 */
192void tracing_off_permanent(void)
193{
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
195}
196
988ae9d6
SR
197/**
198 * tracing_is_on - show state of ring buffers enabled
199 */
200int tracing_is_on(void)
201{
202 return ring_buffer_flags == RB_BUFFERS_ON;
203}
204EXPORT_SYMBOL_GPL(tracing_is_on);
205
e3d6bf0a 206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 207#define RB_ALIGNMENT 4U
334d4169 208#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 209#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 210
2271048d
SR
211#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212# define RB_FORCE_8BYTE_ALIGNMENT 0
213# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214#else
215# define RB_FORCE_8BYTE_ALIGNMENT 1
216# define RB_ARCH_ALIGNMENT 8U
217#endif
218
334d4169
LJ
219/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
221
222enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
225};
226
2d622719
TZ
227static inline int rb_null_event(struct ring_buffer_event *event)
228{
a1863c21 229 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
230}
231
232static void rb_event_set_padding(struct ring_buffer_event *event)
233{
a1863c21 234 /* padding has a NULL time_delta */
334d4169 235 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
236 event->time_delta = 0;
237}
238
34a148bf 239static unsigned
2d622719 240rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
241{
242 unsigned length;
243
334d4169
LJ
244 if (event->type_len)
245 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
246 else
247 length = event->array[0];
248 return length + RB_EVNT_HDR_SIZE;
249}
250
251/* inline for ring buffer fast paths */
252static unsigned
253rb_event_length(struct ring_buffer_event *event)
254{
334d4169 255 switch (event->type_len) {
7a8e76a3 256 case RINGBUF_TYPE_PADDING:
2d622719
TZ
257 if (rb_null_event(event))
258 /* undefined */
259 return -1;
334d4169 260 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
261
262 case RINGBUF_TYPE_TIME_EXTEND:
263 return RB_LEN_TIME_EXTEND;
264
265 case RINGBUF_TYPE_TIME_STAMP:
266 return RB_LEN_TIME_STAMP;
267
268 case RINGBUF_TYPE_DATA:
2d622719 269 return rb_event_data_length(event);
7a8e76a3
SR
270 default:
271 BUG();
272 }
273 /* not hit */
274 return 0;
275}
276
277/**
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
280 */
281unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282{
465634ad 283 unsigned length = rb_event_length(event);
334d4169 284 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
285 return length;
286 length -= RB_EVNT_HDR_SIZE;
287 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288 length -= sizeof(event->array[0]);
289 return length;
7a8e76a3 290}
c4f50183 291EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
292
293/* inline for ring buffer fast paths */
34a148bf 294static void *
7a8e76a3
SR
295rb_event_data(struct ring_buffer_event *event)
296{
334d4169 297 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 298 /* If length is in len field, then array[0] has the data */
334d4169 299 if (event->type_len)
7a8e76a3
SR
300 return (void *)&event->array[0];
301 /* Otherwise length is in array[0] and array[1] has the data */
302 return (void *)&event->array[1];
303}
304
305/**
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
308 */
309void *ring_buffer_event_data(struct ring_buffer_event *event)
310{
311 return rb_event_data(event);
312}
c4f50183 313EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
314
315#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 316 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
317
318#define TS_SHIFT 27
319#define TS_MASK ((1ULL << TS_SHIFT) - 1)
320#define TS_DELTA_TEST (~TS_MASK)
321
66a8cb95
SR
322/* Flag when events were overwritten */
323#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
324/* Missed count stored at end */
325#define RB_MISSED_STORED (1 << 30)
66a8cb95 326
abc9b56d 327struct buffer_data_page {
e4c2ce82 328 u64 time_stamp; /* page time stamp */
c3706f00 329 local_t commit; /* write committed index */
abc9b56d
SR
330 unsigned char data[]; /* data of buffer page */
331};
332
77ae365e
SR
333/*
334 * Note, the buffer_page list must be first. The buffer pages
335 * are allocated in cache lines, which means that each buffer
336 * page will be at the beginning of a cache line, and thus
337 * the least significant bits will be zero. We use this to
338 * add flags in the list struct pointers, to make the ring buffer
339 * lockless.
340 */
abc9b56d 341struct buffer_page {
778c55d4 342 struct list_head list; /* list of buffer pages */
abc9b56d 343 local_t write; /* index for next write */
6f807acd 344 unsigned read; /* index for next read */
778c55d4 345 local_t entries; /* entries on this page */
ff0ff84a 346 unsigned long real_end; /* real end of data */
abc9b56d 347 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
348};
349
77ae365e
SR
350/*
351 * The buffer page counters, write and entries, must be reset
352 * atomically when crossing page boundaries. To synchronize this
353 * update, two counters are inserted into the number. One is
354 * the actual counter for the write position or count on the page.
355 *
356 * The other is a counter of updaters. Before an update happens
357 * the update partition of the counter is incremented. This will
358 * allow the updater to update the counter atomically.
359 *
360 * The counter is 20 bits, and the state data is 12.
361 */
362#define RB_WRITE_MASK 0xfffff
363#define RB_WRITE_INTCNT (1 << 20)
364
044fa782 365static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 366{
044fa782 367 local_set(&bpage->commit, 0);
abc9b56d
SR
368}
369
474d32b6
SR
370/**
371 * ring_buffer_page_len - the size of data on the page.
372 * @page: The page to read
373 *
374 * Returns the amount of data on the page, including buffer page header.
375 */
ef7a4a16
SR
376size_t ring_buffer_page_len(void *page)
377{
474d32b6
SR
378 return local_read(&((struct buffer_data_page *)page)->commit)
379 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
380}
381
ed56829c
SR
382/*
383 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
384 * this issue out.
385 */
34a148bf 386static void free_buffer_page(struct buffer_page *bpage)
ed56829c 387{
34a148bf 388 free_page((unsigned long)bpage->page);
e4c2ce82 389 kfree(bpage);
ed56829c
SR
390}
391
7a8e76a3
SR
392/*
393 * We need to fit the time_stamp delta into 27 bits.
394 */
395static inline int test_time_stamp(u64 delta)
396{
397 if (delta & TS_DELTA_TEST)
398 return 1;
399 return 0;
400}
401
474d32b6 402#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 403
be957c44
SR
404/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
405#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
406
ea05b57c 407/* Max number of timestamps that can fit on a page */
d0134324 408#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_EXTEND)
ea05b57c 409
d1b182a8
SR
410int ring_buffer_print_page_header(struct trace_seq *s)
411{
412 struct buffer_data_page field;
413 int ret;
414
415 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
416 "offset:0;\tsize:%u;\tsigned:%u;\n",
417 (unsigned int)sizeof(field.time_stamp),
418 (unsigned int)is_signed_type(u64));
d1b182a8
SR
419
420 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 421 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 422 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
423 (unsigned int)sizeof(field.commit),
424 (unsigned int)is_signed_type(long));
d1b182a8 425
66a8cb95
SR
426 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
427 "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 (unsigned int)offsetof(typeof(field), commit),
429 1,
430 (unsigned int)is_signed_type(long));
431
d1b182a8 432 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 433 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 434 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
435 (unsigned int)BUF_PAGE_SIZE,
436 (unsigned int)is_signed_type(char));
d1b182a8
SR
437
438 return ret;
439}
440
7a8e76a3
SR
441/*
442 * head_page == tail_page && head == tail then buffer is empty.
443 */
444struct ring_buffer_per_cpu {
445 int cpu;
985023de 446 atomic_t record_disabled;
7a8e76a3 447 struct ring_buffer *buffer;
77ae365e 448 spinlock_t reader_lock; /* serialize readers */
445c8951 449 arch_spinlock_t lock;
7a8e76a3 450 struct lock_class_key lock_key;
3adc54fa 451 struct list_head *pages;
6f807acd
SR
452 struct buffer_page *head_page; /* read from head */
453 struct buffer_page *tail_page; /* write to tail */
c3706f00 454 struct buffer_page *commit_page; /* committed pages */
d769041f 455 struct buffer_page *reader_page;
66a8cb95
SR
456 unsigned long lost_events;
457 unsigned long last_overrun;
77ae365e
SR
458 local_t commit_overrun;
459 local_t overrun;
e4906eff 460 local_t entries;
fa743953
SR
461 local_t committing;
462 local_t commits;
77ae365e 463 unsigned long read;
7a8e76a3
SR
464 u64 write_stamp;
465 u64 read_stamp;
7a8e76a3
SR
466};
467
468struct ring_buffer {
7a8e76a3
SR
469 unsigned pages;
470 unsigned flags;
471 int cpus;
7a8e76a3 472 atomic_t record_disabled;
00f62f61 473 cpumask_var_t cpumask;
7a8e76a3 474
1f8a6a10
PZ
475 struct lock_class_key *reader_lock_key;
476
7a8e76a3
SR
477 struct mutex mutex;
478
479 struct ring_buffer_per_cpu **buffers;
554f786e 480
59222efe 481#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
482 struct notifier_block cpu_notify;
483#endif
37886f6a 484 u64 (*clock)(void);
7a8e76a3
SR
485};
486
487struct ring_buffer_iter {
488 struct ring_buffer_per_cpu *cpu_buffer;
489 unsigned long head;
490 struct buffer_page *head_page;
492a74f4
SR
491 struct buffer_page *cache_reader_page;
492 unsigned long cache_read;
7a8e76a3
SR
493 u64 read_stamp;
494};
495
f536aafc 496/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
497#define RB_WARN_ON(b, cond) \
498 ({ \
499 int _____ret = unlikely(cond); \
500 if (_____ret) { \
501 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
502 struct ring_buffer_per_cpu *__b = \
503 (void *)b; \
504 atomic_inc(&__b->buffer->record_disabled); \
505 } else \
506 atomic_inc(&b->record_disabled); \
507 WARN_ON(1); \
508 } \
509 _____ret; \
3e89c7bb 510 })
f536aafc 511
37886f6a
SR
512/* Up this if you want to test the TIME_EXTENTS and normalization */
513#define DEBUG_SHIFT 0
514
6d3f1e12 515static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
516{
517 /* shift to debug/test normalization and TIME_EXTENTS */
518 return buffer->clock() << DEBUG_SHIFT;
519}
520
37886f6a
SR
521u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
522{
523 u64 time;
524
525 preempt_disable_notrace();
6d3f1e12 526 time = rb_time_stamp(buffer);
37886f6a
SR
527 preempt_enable_no_resched_notrace();
528
529 return time;
530}
531EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
532
533void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
534 int cpu, u64 *ts)
535{
536 /* Just stupid testing the normalize function and deltas */
537 *ts >>= DEBUG_SHIFT;
538}
539EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
540
77ae365e
SR
541/*
542 * Making the ring buffer lockless makes things tricky.
543 * Although writes only happen on the CPU that they are on,
544 * and they only need to worry about interrupts. Reads can
545 * happen on any CPU.
546 *
547 * The reader page is always off the ring buffer, but when the
548 * reader finishes with a page, it needs to swap its page with
549 * a new one from the buffer. The reader needs to take from
550 * the head (writes go to the tail). But if a writer is in overwrite
551 * mode and wraps, it must push the head page forward.
552 *
553 * Here lies the problem.
554 *
555 * The reader must be careful to replace only the head page, and
556 * not another one. As described at the top of the file in the
557 * ASCII art, the reader sets its old page to point to the next
558 * page after head. It then sets the page after head to point to
559 * the old reader page. But if the writer moves the head page
560 * during this operation, the reader could end up with the tail.
561 *
562 * We use cmpxchg to help prevent this race. We also do something
563 * special with the page before head. We set the LSB to 1.
564 *
565 * When the writer must push the page forward, it will clear the
566 * bit that points to the head page, move the head, and then set
567 * the bit that points to the new head page.
568 *
569 * We also don't want an interrupt coming in and moving the head
570 * page on another writer. Thus we use the second LSB to catch
571 * that too. Thus:
572 *
573 * head->list->prev->next bit 1 bit 0
574 * ------- -------
575 * Normal page 0 0
576 * Points to head page 0 1
577 * New head page 1 0
578 *
579 * Note we can not trust the prev pointer of the head page, because:
580 *
581 * +----+ +-----+ +-----+
582 * | |------>| T |---X--->| N |
583 * | |<------| | | |
584 * +----+ +-----+ +-----+
585 * ^ ^ |
586 * | +-----+ | |
587 * +----------| R |----------+ |
588 * | |<-----------+
589 * +-----+
590 *
591 * Key: ---X--> HEAD flag set in pointer
592 * T Tail page
593 * R Reader page
594 * N Next page
595 *
596 * (see __rb_reserve_next() to see where this happens)
597 *
598 * What the above shows is that the reader just swapped out
599 * the reader page with a page in the buffer, but before it
600 * could make the new header point back to the new page added
601 * it was preempted by a writer. The writer moved forward onto
602 * the new page added by the reader and is about to move forward
603 * again.
604 *
605 * You can see, it is legitimate for the previous pointer of
606 * the head (or any page) not to point back to itself. But only
607 * temporarially.
608 */
609
610#define RB_PAGE_NORMAL 0UL
611#define RB_PAGE_HEAD 1UL
612#define RB_PAGE_UPDATE 2UL
613
614
615#define RB_FLAG_MASK 3UL
616
617/* PAGE_MOVED is not part of the mask */
618#define RB_PAGE_MOVED 4UL
619
620/*
621 * rb_list_head - remove any bit
622 */
623static struct list_head *rb_list_head(struct list_head *list)
624{
625 unsigned long val = (unsigned long)list;
626
627 return (struct list_head *)(val & ~RB_FLAG_MASK);
628}
629
630/*
6d3f1e12 631 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
632 *
633 * Because the reader may move the head_page pointer, we can
634 * not trust what the head page is (it may be pointing to
635 * the reader page). But if the next page is a header page,
636 * its flags will be non zero.
637 */
638static int inline
639rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
640 struct buffer_page *page, struct list_head *list)
641{
642 unsigned long val;
643
644 val = (unsigned long)list->next;
645
646 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
647 return RB_PAGE_MOVED;
648
649 return val & RB_FLAG_MASK;
650}
651
652/*
653 * rb_is_reader_page
654 *
655 * The unique thing about the reader page, is that, if the
656 * writer is ever on it, the previous pointer never points
657 * back to the reader page.
658 */
659static int rb_is_reader_page(struct buffer_page *page)
660{
661 struct list_head *list = page->list.prev;
662
663 return rb_list_head(list->next) != &page->list;
664}
665
666/*
667 * rb_set_list_to_head - set a list_head to be pointing to head.
668 */
669static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
670 struct list_head *list)
671{
672 unsigned long *ptr;
673
674 ptr = (unsigned long *)&list->next;
675 *ptr |= RB_PAGE_HEAD;
676 *ptr &= ~RB_PAGE_UPDATE;
677}
678
679/*
680 * rb_head_page_activate - sets up head page
681 */
682static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
683{
684 struct buffer_page *head;
685
686 head = cpu_buffer->head_page;
687 if (!head)
688 return;
689
690 /*
691 * Set the previous list pointer to have the HEAD flag.
692 */
693 rb_set_list_to_head(cpu_buffer, head->list.prev);
694}
695
696static void rb_list_head_clear(struct list_head *list)
697{
698 unsigned long *ptr = (unsigned long *)&list->next;
699
700 *ptr &= ~RB_FLAG_MASK;
701}
702
703/*
704 * rb_head_page_dactivate - clears head page ptr (for free list)
705 */
706static void
707rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
708{
709 struct list_head *hd;
710
711 /* Go through the whole list and clear any pointers found. */
712 rb_list_head_clear(cpu_buffer->pages);
713
714 list_for_each(hd, cpu_buffer->pages)
715 rb_list_head_clear(hd);
716}
717
718static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
719 struct buffer_page *head,
720 struct buffer_page *prev,
721 int old_flag, int new_flag)
722{
723 struct list_head *list;
724 unsigned long val = (unsigned long)&head->list;
725 unsigned long ret;
726
727 list = &prev->list;
728
729 val &= ~RB_FLAG_MASK;
730
08a40816
SR
731 ret = cmpxchg((unsigned long *)&list->next,
732 val | old_flag, val | new_flag);
77ae365e
SR
733
734 /* check if the reader took the page */
735 if ((ret & ~RB_FLAG_MASK) != val)
736 return RB_PAGE_MOVED;
737
738 return ret & RB_FLAG_MASK;
739}
740
741static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
742 struct buffer_page *head,
743 struct buffer_page *prev,
744 int old_flag)
745{
746 return rb_head_page_set(cpu_buffer, head, prev,
747 old_flag, RB_PAGE_UPDATE);
748}
749
750static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
751 struct buffer_page *head,
752 struct buffer_page *prev,
753 int old_flag)
754{
755 return rb_head_page_set(cpu_buffer, head, prev,
756 old_flag, RB_PAGE_HEAD);
757}
758
759static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
760 struct buffer_page *head,
761 struct buffer_page *prev,
762 int old_flag)
763{
764 return rb_head_page_set(cpu_buffer, head, prev,
765 old_flag, RB_PAGE_NORMAL);
766}
767
768static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
769 struct buffer_page **bpage)
770{
771 struct list_head *p = rb_list_head((*bpage)->list.next);
772
773 *bpage = list_entry(p, struct buffer_page, list);
774}
775
776static struct buffer_page *
777rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
778{
779 struct buffer_page *head;
780 struct buffer_page *page;
781 struct list_head *list;
782 int i;
783
784 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
785 return NULL;
786
787 /* sanity check */
788 list = cpu_buffer->pages;
789 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
790 return NULL;
791
792 page = head = cpu_buffer->head_page;
793 /*
794 * It is possible that the writer moves the header behind
795 * where we started, and we miss in one loop.
796 * A second loop should grab the header, but we'll do
797 * three loops just because I'm paranoid.
798 */
799 for (i = 0; i < 3; i++) {
800 do {
801 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
802 cpu_buffer->head_page = page;
803 return page;
804 }
805 rb_inc_page(cpu_buffer, &page);
806 } while (page != head);
807 }
808
809 RB_WARN_ON(cpu_buffer, 1);
810
811 return NULL;
812}
813
814static int rb_head_page_replace(struct buffer_page *old,
815 struct buffer_page *new)
816{
817 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
818 unsigned long val;
819 unsigned long ret;
820
821 val = *ptr & ~RB_FLAG_MASK;
822 val |= RB_PAGE_HEAD;
823
08a40816 824 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
825
826 return ret == val;
827}
828
829/*
830 * rb_tail_page_update - move the tail page forward
831 *
832 * Returns 1 if moved tail page, 0 if someone else did.
833 */
834static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
835 struct buffer_page *tail_page,
836 struct buffer_page *next_page)
837{
838 struct buffer_page *old_tail;
839 unsigned long old_entries;
840 unsigned long old_write;
841 int ret = 0;
842
843 /*
844 * The tail page now needs to be moved forward.
845 *
846 * We need to reset the tail page, but without messing
847 * with possible erasing of data brought in by interrupts
848 * that have moved the tail page and are currently on it.
849 *
850 * We add a counter to the write field to denote this.
851 */
852 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
853 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
854
855 /*
856 * Just make sure we have seen our old_write and synchronize
857 * with any interrupts that come in.
858 */
859 barrier();
860
861 /*
862 * If the tail page is still the same as what we think
863 * it is, then it is up to us to update the tail
864 * pointer.
865 */
866 if (tail_page == cpu_buffer->tail_page) {
867 /* Zero the write counter */
868 unsigned long val = old_write & ~RB_WRITE_MASK;
869 unsigned long eval = old_entries & ~RB_WRITE_MASK;
870
871 /*
872 * This will only succeed if an interrupt did
873 * not come in and change it. In which case, we
874 * do not want to modify it.
da706d8b
LJ
875 *
876 * We add (void) to let the compiler know that we do not care
877 * about the return value of these functions. We use the
878 * cmpxchg to only update if an interrupt did not already
879 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 880 */
da706d8b
LJ
881 (void)local_cmpxchg(&next_page->write, old_write, val);
882 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
883
884 /*
885 * No need to worry about races with clearing out the commit.
886 * it only can increment when a commit takes place. But that
887 * only happens in the outer most nested commit.
888 */
889 local_set(&next_page->page->commit, 0);
890
891 old_tail = cmpxchg(&cpu_buffer->tail_page,
892 tail_page, next_page);
893
894 if (old_tail == tail_page)
895 ret = 1;
896 }
897
898 return ret;
899}
900
901static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *bpage)
903{
904 unsigned long val = (unsigned long)bpage;
905
906 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
907 return 1;
908
909 return 0;
910}
911
912/**
913 * rb_check_list - make sure a pointer to a list has the last bits zero
914 */
915static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
916 struct list_head *list)
917{
918 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
919 return 1;
920 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
921 return 1;
922 return 0;
923}
924
7a8e76a3
SR
925/**
926 * check_pages - integrity check of buffer pages
927 * @cpu_buffer: CPU buffer with pages to test
928 *
c3706f00 929 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
930 * been corrupted.
931 */
932static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
933{
3adc54fa 934 struct list_head *head = cpu_buffer->pages;
044fa782 935 struct buffer_page *bpage, *tmp;
7a8e76a3 936
77ae365e
SR
937 rb_head_page_deactivate(cpu_buffer);
938
3e89c7bb
SR
939 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
940 return -1;
941 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
942 return -1;
7a8e76a3 943
77ae365e
SR
944 if (rb_check_list(cpu_buffer, head))
945 return -1;
946
044fa782 947 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 948 if (RB_WARN_ON(cpu_buffer,
044fa782 949 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
950 return -1;
951 if (RB_WARN_ON(cpu_buffer,
044fa782 952 bpage->list.prev->next != &bpage->list))
3e89c7bb 953 return -1;
77ae365e
SR
954 if (rb_check_list(cpu_buffer, &bpage->list))
955 return -1;
7a8e76a3
SR
956 }
957
77ae365e
SR
958 rb_head_page_activate(cpu_buffer);
959
7a8e76a3
SR
960 return 0;
961}
962
7a8e76a3
SR
963static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
964 unsigned nr_pages)
965{
044fa782 966 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
967 unsigned long addr;
968 LIST_HEAD(pages);
969 unsigned i;
970
3adc54fa
SR
971 WARN_ON(!nr_pages);
972
7a8e76a3 973 for (i = 0; i < nr_pages; i++) {
044fa782 974 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 975 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 976 if (!bpage)
e4c2ce82 977 goto free_pages;
77ae365e
SR
978
979 rb_check_bpage(cpu_buffer, bpage);
980
044fa782 981 list_add(&bpage->list, &pages);
e4c2ce82 982
7a8e76a3
SR
983 addr = __get_free_page(GFP_KERNEL);
984 if (!addr)
985 goto free_pages;
044fa782
SR
986 bpage->page = (void *)addr;
987 rb_init_page(bpage->page);
7a8e76a3
SR
988 }
989
3adc54fa
SR
990 /*
991 * The ring buffer page list is a circular list that does not
992 * start and end with a list head. All page list items point to
993 * other pages.
994 */
995 cpu_buffer->pages = pages.next;
996 list_del(&pages);
7a8e76a3
SR
997
998 rb_check_pages(cpu_buffer);
999
1000 return 0;
1001
1002 free_pages:
044fa782
SR
1003 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1004 list_del_init(&bpage->list);
1005 free_buffer_page(bpage);
7a8e76a3
SR
1006 }
1007 return -ENOMEM;
1008}
1009
1010static struct ring_buffer_per_cpu *
1011rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1012{
1013 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1014 struct buffer_page *bpage;
d769041f 1015 unsigned long addr;
7a8e76a3
SR
1016 int ret;
1017
1018 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1019 GFP_KERNEL, cpu_to_node(cpu));
1020 if (!cpu_buffer)
1021 return NULL;
1022
1023 cpu_buffer->cpu = cpu;
1024 cpu_buffer->buffer = buffer;
f83c9d0f 1025 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1026 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1027 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
7a8e76a3 1028
044fa782 1029 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1030 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1031 if (!bpage)
e4c2ce82
SR
1032 goto fail_free_buffer;
1033
77ae365e
SR
1034 rb_check_bpage(cpu_buffer, bpage);
1035
044fa782 1036 cpu_buffer->reader_page = bpage;
d769041f
SR
1037 addr = __get_free_page(GFP_KERNEL);
1038 if (!addr)
e4c2ce82 1039 goto fail_free_reader;
044fa782
SR
1040 bpage->page = (void *)addr;
1041 rb_init_page(bpage->page);
e4c2ce82 1042
d769041f 1043 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1044
7a8e76a3
SR
1045 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1046 if (ret < 0)
d769041f 1047 goto fail_free_reader;
7a8e76a3
SR
1048
1049 cpu_buffer->head_page
3adc54fa 1050 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1051 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1052
77ae365e
SR
1053 rb_head_page_activate(cpu_buffer);
1054
7a8e76a3
SR
1055 return cpu_buffer;
1056
d769041f
SR
1057 fail_free_reader:
1058 free_buffer_page(cpu_buffer->reader_page);
1059
7a8e76a3
SR
1060 fail_free_buffer:
1061 kfree(cpu_buffer);
1062 return NULL;
1063}
1064
1065static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1066{
3adc54fa 1067 struct list_head *head = cpu_buffer->pages;
044fa782 1068 struct buffer_page *bpage, *tmp;
7a8e76a3 1069
d769041f
SR
1070 free_buffer_page(cpu_buffer->reader_page);
1071
77ae365e
SR
1072 rb_head_page_deactivate(cpu_buffer);
1073
3adc54fa
SR
1074 if (head) {
1075 list_for_each_entry_safe(bpage, tmp, head, list) {
1076 list_del_init(&bpage->list);
1077 free_buffer_page(bpage);
1078 }
1079 bpage = list_entry(head, struct buffer_page, list);
044fa782 1080 free_buffer_page(bpage);
7a8e76a3 1081 }
3adc54fa 1082
7a8e76a3
SR
1083 kfree(cpu_buffer);
1084}
1085
59222efe 1086#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1087static int rb_cpu_notify(struct notifier_block *self,
1088 unsigned long action, void *hcpu);
554f786e
SR
1089#endif
1090
7a8e76a3
SR
1091/**
1092 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1093 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1094 * @flags: attributes to set for the ring buffer.
1095 *
1096 * Currently the only flag that is available is the RB_FL_OVERWRITE
1097 * flag. This flag means that the buffer will overwrite old data
1098 * when the buffer wraps. If this flag is not set, the buffer will
1099 * drop data when the tail hits the head.
1100 */
1f8a6a10
PZ
1101struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1102 struct lock_class_key *key)
7a8e76a3
SR
1103{
1104 struct ring_buffer *buffer;
1105 int bsize;
1106 int cpu;
1107
1108 /* keep it in its own cache line */
1109 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1110 GFP_KERNEL);
1111 if (!buffer)
1112 return NULL;
1113
9e01c1b7
RR
1114 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1115 goto fail_free_buffer;
1116
7a8e76a3
SR
1117 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1118 buffer->flags = flags;
37886f6a 1119 buffer->clock = trace_clock_local;
1f8a6a10 1120 buffer->reader_lock_key = key;
7a8e76a3
SR
1121
1122 /* need at least two pages */
5f78abee
SR
1123 if (buffer->pages < 2)
1124 buffer->pages = 2;
7a8e76a3 1125
3bf832ce
FW
1126 /*
1127 * In case of non-hotplug cpu, if the ring-buffer is allocated
1128 * in early initcall, it will not be notified of secondary cpus.
1129 * In that off case, we need to allocate for all possible cpus.
1130 */
1131#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1132 get_online_cpus();
1133 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1134#else
1135 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1136#endif
7a8e76a3
SR
1137 buffer->cpus = nr_cpu_ids;
1138
1139 bsize = sizeof(void *) * nr_cpu_ids;
1140 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1141 GFP_KERNEL);
1142 if (!buffer->buffers)
9e01c1b7 1143 goto fail_free_cpumask;
7a8e76a3
SR
1144
1145 for_each_buffer_cpu(buffer, cpu) {
1146 buffer->buffers[cpu] =
1147 rb_allocate_cpu_buffer(buffer, cpu);
1148 if (!buffer->buffers[cpu])
1149 goto fail_free_buffers;
1150 }
1151
59222efe 1152#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1153 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1154 buffer->cpu_notify.priority = 0;
1155 register_cpu_notifier(&buffer->cpu_notify);
1156#endif
1157
1158 put_online_cpus();
7a8e76a3
SR
1159 mutex_init(&buffer->mutex);
1160
1161 return buffer;
1162
1163 fail_free_buffers:
1164 for_each_buffer_cpu(buffer, cpu) {
1165 if (buffer->buffers[cpu])
1166 rb_free_cpu_buffer(buffer->buffers[cpu]);
1167 }
1168 kfree(buffer->buffers);
1169
9e01c1b7
RR
1170 fail_free_cpumask:
1171 free_cpumask_var(buffer->cpumask);
554f786e 1172 put_online_cpus();
9e01c1b7 1173
7a8e76a3
SR
1174 fail_free_buffer:
1175 kfree(buffer);
1176 return NULL;
1177}
1f8a6a10 1178EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1179
1180/**
1181 * ring_buffer_free - free a ring buffer.
1182 * @buffer: the buffer to free.
1183 */
1184void
1185ring_buffer_free(struct ring_buffer *buffer)
1186{
1187 int cpu;
1188
554f786e
SR
1189 get_online_cpus();
1190
59222efe 1191#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1192 unregister_cpu_notifier(&buffer->cpu_notify);
1193#endif
1194
7a8e76a3
SR
1195 for_each_buffer_cpu(buffer, cpu)
1196 rb_free_cpu_buffer(buffer->buffers[cpu]);
1197
554f786e
SR
1198 put_online_cpus();
1199
bd3f0221 1200 kfree(buffer->buffers);
9e01c1b7
RR
1201 free_cpumask_var(buffer->cpumask);
1202
7a8e76a3
SR
1203 kfree(buffer);
1204}
c4f50183 1205EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1206
37886f6a
SR
1207void ring_buffer_set_clock(struct ring_buffer *buffer,
1208 u64 (*clock)(void))
1209{
1210 buffer->clock = clock;
1211}
1212
7a8e76a3
SR
1213static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1214
1215static void
1216rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1217{
044fa782 1218 struct buffer_page *bpage;
7a8e76a3
SR
1219 struct list_head *p;
1220 unsigned i;
1221
f7112949 1222 spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1223 rb_head_page_deactivate(cpu_buffer);
1224
7a8e76a3 1225 for (i = 0; i < nr_pages; i++) {
3adc54fa 1226 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1227 goto out;
3adc54fa 1228 p = cpu_buffer->pages->next;
044fa782
SR
1229 bpage = list_entry(p, struct buffer_page, list);
1230 list_del_init(&bpage->list);
1231 free_buffer_page(bpage);
7a8e76a3 1232 }
3adc54fa 1233 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1234 goto out;
7a8e76a3
SR
1235
1236 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1237 rb_check_pages(cpu_buffer);
1238
292f60c0 1239out:
dd7f5943 1240 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1241}
1242
1243static void
1244rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1245 struct list_head *pages, unsigned nr_pages)
1246{
044fa782 1247 struct buffer_page *bpage;
7a8e76a3
SR
1248 struct list_head *p;
1249 unsigned i;
1250
77ae365e
SR
1251 spin_lock_irq(&cpu_buffer->reader_lock);
1252 rb_head_page_deactivate(cpu_buffer);
1253
7a8e76a3 1254 for (i = 0; i < nr_pages; i++) {
3e89c7bb 1255 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
292f60c0 1256 goto out;
7a8e76a3 1257 p = pages->next;
044fa782
SR
1258 bpage = list_entry(p, struct buffer_page, list);
1259 list_del_init(&bpage->list);
3adc54fa 1260 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1261 }
1262 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1263 rb_check_pages(cpu_buffer);
1264
292f60c0 1265out:
dd7f5943 1266 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1267}
1268
1269/**
1270 * ring_buffer_resize - resize the ring buffer
1271 * @buffer: the buffer to resize.
1272 * @size: the new size.
1273 *
7a8e76a3
SR
1274 * Minimum size is 2 * BUF_PAGE_SIZE.
1275 *
1276 * Returns -1 on failure.
1277 */
1278int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1279{
1280 struct ring_buffer_per_cpu *cpu_buffer;
1281 unsigned nr_pages, rm_pages, new_pages;
044fa782 1282 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1283 unsigned long buffer_size;
1284 unsigned long addr;
1285 LIST_HEAD(pages);
1286 int i, cpu;
1287
ee51a1de
IM
1288 /*
1289 * Always succeed at resizing a non-existent buffer:
1290 */
1291 if (!buffer)
1292 return size;
1293
7a8e76a3
SR
1294 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1295 size *= BUF_PAGE_SIZE;
1296 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1297
1298 /* we need a minimum of two pages */
1299 if (size < BUF_PAGE_SIZE * 2)
1300 size = BUF_PAGE_SIZE * 2;
1301
1302 if (size == buffer_size)
1303 return size;
1304
18421015
SR
1305 atomic_inc(&buffer->record_disabled);
1306
1307 /* Make sure all writers are done with this buffer. */
1308 synchronize_sched();
1309
7a8e76a3 1310 mutex_lock(&buffer->mutex);
554f786e 1311 get_online_cpus();
7a8e76a3
SR
1312
1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314
1315 if (size < buffer_size) {
1316
1317 /* easy case, just free pages */
554f786e
SR
1318 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1319 goto out_fail;
7a8e76a3
SR
1320
1321 rm_pages = buffer->pages - nr_pages;
1322
1323 for_each_buffer_cpu(buffer, cpu) {
1324 cpu_buffer = buffer->buffers[cpu];
1325 rb_remove_pages(cpu_buffer, rm_pages);
1326 }
1327 goto out;
1328 }
1329
1330 /*
1331 * This is a bit more difficult. We only want to add pages
1332 * when we can allocate enough for all CPUs. We do this
1333 * by allocating all the pages and storing them on a local
1334 * link list. If we succeed in our allocation, then we
1335 * add these pages to the cpu_buffers. Otherwise we just free
1336 * them all and return -ENOMEM;
1337 */
554f786e
SR
1338 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1339 goto out_fail;
f536aafc 1340
7a8e76a3
SR
1341 new_pages = nr_pages - buffer->pages;
1342
1343 for_each_buffer_cpu(buffer, cpu) {
1344 for (i = 0; i < new_pages; i++) {
044fa782 1345 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1346 cache_line_size()),
1347 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1348 if (!bpage)
e4c2ce82 1349 goto free_pages;
044fa782 1350 list_add(&bpage->list, &pages);
7a8e76a3
SR
1351 addr = __get_free_page(GFP_KERNEL);
1352 if (!addr)
1353 goto free_pages;
044fa782
SR
1354 bpage->page = (void *)addr;
1355 rb_init_page(bpage->page);
7a8e76a3
SR
1356 }
1357 }
1358
1359 for_each_buffer_cpu(buffer, cpu) {
1360 cpu_buffer = buffer->buffers[cpu];
1361 rb_insert_pages(cpu_buffer, &pages, new_pages);
1362 }
1363
554f786e
SR
1364 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1365 goto out_fail;
7a8e76a3
SR
1366
1367 out:
1368 buffer->pages = nr_pages;
554f786e 1369 put_online_cpus();
7a8e76a3
SR
1370 mutex_unlock(&buffer->mutex);
1371
18421015
SR
1372 atomic_dec(&buffer->record_disabled);
1373
7a8e76a3
SR
1374 return size;
1375
1376 free_pages:
044fa782
SR
1377 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1378 list_del_init(&bpage->list);
1379 free_buffer_page(bpage);
7a8e76a3 1380 }
554f786e 1381 put_online_cpus();
641d2f63 1382 mutex_unlock(&buffer->mutex);
18421015 1383 atomic_dec(&buffer->record_disabled);
7a8e76a3 1384 return -ENOMEM;
554f786e
SR
1385
1386 /*
1387 * Something went totally wrong, and we are too paranoid
1388 * to even clean up the mess.
1389 */
1390 out_fail:
1391 put_online_cpus();
1392 mutex_unlock(&buffer->mutex);
18421015 1393 atomic_dec(&buffer->record_disabled);
554f786e 1394 return -1;
7a8e76a3 1395}
c4f50183 1396EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1397
8789a9e7 1398static inline void *
044fa782 1399__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1400{
044fa782 1401 return bpage->data + index;
8789a9e7
SR
1402}
1403
044fa782 1404static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1405{
044fa782 1406 return bpage->page->data + index;
7a8e76a3
SR
1407}
1408
1409static inline struct ring_buffer_event *
d769041f 1410rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1411{
6f807acd
SR
1412 return __rb_page_index(cpu_buffer->reader_page,
1413 cpu_buffer->reader_page->read);
1414}
1415
7a8e76a3
SR
1416static inline struct ring_buffer_event *
1417rb_iter_head_event(struct ring_buffer_iter *iter)
1418{
6f807acd 1419 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1420}
1421
77ae365e 1422static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1423{
77ae365e 1424 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1425}
1426
1427static inline unsigned rb_page_commit(struct buffer_page *bpage)
1428{
abc9b56d 1429 return local_read(&bpage->page->commit);
bf41a158
SR
1430}
1431
77ae365e
SR
1432static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1433{
1434 return local_read(&bpage->entries) & RB_WRITE_MASK;
1435}
1436
bf41a158
SR
1437/* Size is determined by what has been commited */
1438static inline unsigned rb_page_size(struct buffer_page *bpage)
1439{
1440 return rb_page_commit(bpage);
1441}
1442
1443static inline unsigned
1444rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1445{
1446 return rb_page_commit(cpu_buffer->commit_page);
1447}
1448
bf41a158
SR
1449static inline unsigned
1450rb_event_index(struct ring_buffer_event *event)
1451{
1452 unsigned long addr = (unsigned long)event;
1453
22f470f8 1454 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1455}
1456
0f0c85fc 1457static inline int
fa743953
SR
1458rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1459 struct ring_buffer_event *event)
bf41a158
SR
1460{
1461 unsigned long addr = (unsigned long)event;
1462 unsigned long index;
1463
1464 index = rb_event_index(event);
1465 addr &= PAGE_MASK;
1466
1467 return cpu_buffer->commit_page->page == (void *)addr &&
1468 rb_commit_index(cpu_buffer) == index;
1469}
1470
34a148bf 1471static void
bf41a158 1472rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1473{
77ae365e
SR
1474 unsigned long max_count;
1475
bf41a158
SR
1476 /*
1477 * We only race with interrupts and NMIs on this CPU.
1478 * If we own the commit event, then we can commit
1479 * all others that interrupted us, since the interruptions
1480 * are in stack format (they finish before they come
1481 * back to us). This allows us to do a simple loop to
1482 * assign the commit to the tail.
1483 */
a8ccf1d6 1484 again:
77ae365e
SR
1485 max_count = cpu_buffer->buffer->pages * 100;
1486
bf41a158 1487 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1488 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1489 return;
1490 if (RB_WARN_ON(cpu_buffer,
1491 rb_is_reader_page(cpu_buffer->tail_page)))
1492 return;
1493 local_set(&cpu_buffer->commit_page->page->commit,
1494 rb_page_write(cpu_buffer->commit_page));
bf41a158 1495 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1496 cpu_buffer->write_stamp =
1497 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1498 /* add barrier to keep gcc from optimizing too much */
1499 barrier();
1500 }
1501 while (rb_commit_index(cpu_buffer) !=
1502 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1503
1504 local_set(&cpu_buffer->commit_page->page->commit,
1505 rb_page_write(cpu_buffer->commit_page));
1506 RB_WARN_ON(cpu_buffer,
1507 local_read(&cpu_buffer->commit_page->page->commit) &
1508 ~RB_WRITE_MASK);
bf41a158
SR
1509 barrier();
1510 }
a8ccf1d6
SR
1511
1512 /* again, keep gcc from optimizing */
1513 barrier();
1514
1515 /*
1516 * If an interrupt came in just after the first while loop
1517 * and pushed the tail page forward, we will be left with
1518 * a dangling commit that will never go forward.
1519 */
1520 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1521 goto again;
7a8e76a3
SR
1522}
1523
d769041f 1524static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1525{
abc9b56d 1526 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1527 cpu_buffer->reader_page->read = 0;
d769041f
SR
1528}
1529
34a148bf 1530static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1531{
1532 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1533
1534 /*
1535 * The iterator could be on the reader page (it starts there).
1536 * But the head could have moved, since the reader was
1537 * found. Check for this case and assign the iterator
1538 * to the head page instead of next.
1539 */
1540 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1541 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1542 else
1543 rb_inc_page(cpu_buffer, &iter->head_page);
1544
abc9b56d 1545 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1546 iter->head = 0;
1547}
1548
1549/**
1550 * ring_buffer_update_event - update event type and data
1551 * @event: the even to update
1552 * @type: the type of event
1553 * @length: the size of the event field in the ring buffer
1554 *
1555 * Update the type and data fields of the event. The length
1556 * is the actual size that is written to the ring buffer,
1557 * and with this, we can determine what to place into the
1558 * data field.
1559 */
34a148bf 1560static void
7a8e76a3
SR
1561rb_update_event(struct ring_buffer_event *event,
1562 unsigned type, unsigned length)
1563{
334d4169 1564 event->type_len = type;
7a8e76a3
SR
1565
1566 switch (type) {
1567
1568 case RINGBUF_TYPE_PADDING:
7a8e76a3 1569 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1570 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1571 break;
1572
334d4169 1573 case 0:
7a8e76a3 1574 length -= RB_EVNT_HDR_SIZE;
2271048d 1575 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3 1576 event->array[0] = length;
334d4169
LJ
1577 else
1578 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1579 break;
1580 default:
1581 BUG();
1582 }
1583}
1584
77ae365e
SR
1585/*
1586 * rb_handle_head_page - writer hit the head page
1587 *
1588 * Returns: +1 to retry page
1589 * 0 to continue
1590 * -1 on error
1591 */
1592static int
1593rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1594 struct buffer_page *tail_page,
1595 struct buffer_page *next_page)
1596{
1597 struct buffer_page *new_head;
1598 int entries;
1599 int type;
1600 int ret;
1601
1602 entries = rb_page_entries(next_page);
1603
1604 /*
1605 * The hard part is here. We need to move the head
1606 * forward, and protect against both readers on
1607 * other CPUs and writers coming in via interrupts.
1608 */
1609 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1610 RB_PAGE_HEAD);
1611
1612 /*
1613 * type can be one of four:
1614 * NORMAL - an interrupt already moved it for us
1615 * HEAD - we are the first to get here.
1616 * UPDATE - we are the interrupt interrupting
1617 * a current move.
1618 * MOVED - a reader on another CPU moved the next
1619 * pointer to its reader page. Give up
1620 * and try again.
1621 */
1622
1623 switch (type) {
1624 case RB_PAGE_HEAD:
1625 /*
1626 * We changed the head to UPDATE, thus
1627 * it is our responsibility to update
1628 * the counters.
1629 */
1630 local_add(entries, &cpu_buffer->overrun);
1631
1632 /*
1633 * The entries will be zeroed out when we move the
1634 * tail page.
1635 */
1636
1637 /* still more to do */
1638 break;
1639
1640 case RB_PAGE_UPDATE:
1641 /*
1642 * This is an interrupt that interrupt the
1643 * previous update. Still more to do.
1644 */
1645 break;
1646 case RB_PAGE_NORMAL:
1647 /*
1648 * An interrupt came in before the update
1649 * and processed this for us.
1650 * Nothing left to do.
1651 */
1652 return 1;
1653 case RB_PAGE_MOVED:
1654 /*
1655 * The reader is on another CPU and just did
1656 * a swap with our next_page.
1657 * Try again.
1658 */
1659 return 1;
1660 default:
1661 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1662 return -1;
1663 }
1664
1665 /*
1666 * Now that we are here, the old head pointer is
1667 * set to UPDATE. This will keep the reader from
1668 * swapping the head page with the reader page.
1669 * The reader (on another CPU) will spin till
1670 * we are finished.
1671 *
1672 * We just need to protect against interrupts
1673 * doing the job. We will set the next pointer
1674 * to HEAD. After that, we set the old pointer
1675 * to NORMAL, but only if it was HEAD before.
1676 * otherwise we are an interrupt, and only
1677 * want the outer most commit to reset it.
1678 */
1679 new_head = next_page;
1680 rb_inc_page(cpu_buffer, &new_head);
1681
1682 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1683 RB_PAGE_NORMAL);
1684
1685 /*
1686 * Valid returns are:
1687 * HEAD - an interrupt came in and already set it.
1688 * NORMAL - One of two things:
1689 * 1) We really set it.
1690 * 2) A bunch of interrupts came in and moved
1691 * the page forward again.
1692 */
1693 switch (ret) {
1694 case RB_PAGE_HEAD:
1695 case RB_PAGE_NORMAL:
1696 /* OK */
1697 break;
1698 default:
1699 RB_WARN_ON(cpu_buffer, 1);
1700 return -1;
1701 }
1702
1703 /*
1704 * It is possible that an interrupt came in,
1705 * set the head up, then more interrupts came in
1706 * and moved it again. When we get back here,
1707 * the page would have been set to NORMAL but we
1708 * just set it back to HEAD.
1709 *
1710 * How do you detect this? Well, if that happened
1711 * the tail page would have moved.
1712 */
1713 if (ret == RB_PAGE_NORMAL) {
1714 /*
1715 * If the tail had moved passed next, then we need
1716 * to reset the pointer.
1717 */
1718 if (cpu_buffer->tail_page != tail_page &&
1719 cpu_buffer->tail_page != next_page)
1720 rb_head_page_set_normal(cpu_buffer, new_head,
1721 next_page,
1722 RB_PAGE_HEAD);
1723 }
1724
1725 /*
1726 * If this was the outer most commit (the one that
1727 * changed the original pointer from HEAD to UPDATE),
1728 * then it is up to us to reset it to NORMAL.
1729 */
1730 if (type == RB_PAGE_HEAD) {
1731 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1732 tail_page,
1733 RB_PAGE_UPDATE);
1734 if (RB_WARN_ON(cpu_buffer,
1735 ret != RB_PAGE_UPDATE))
1736 return -1;
1737 }
1738
1739 return 0;
1740}
1741
34a148bf 1742static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1743{
1744 struct ring_buffer_event event; /* Used only for sizeof array */
1745
1746 /* zero length can cause confusions */
1747 if (!length)
1748 length = 1;
1749
2271048d 1750 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1751 length += sizeof(event.array[0]);
1752
1753 length += RB_EVNT_HDR_SIZE;
2271048d 1754 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1755
1756 return length;
1757}
1758
c7b09308
SR
1759static inline void
1760rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1761 struct buffer_page *tail_page,
1762 unsigned long tail, unsigned long length)
1763{
1764 struct ring_buffer_event *event;
1765
1766 /*
1767 * Only the event that crossed the page boundary
1768 * must fill the old tail_page with padding.
1769 */
1770 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
1771 /*
1772 * If the page was filled, then we still need
1773 * to update the real_end. Reset it to zero
1774 * and the reader will ignore it.
1775 */
1776 if (tail == BUF_PAGE_SIZE)
1777 tail_page->real_end = 0;
1778
c7b09308
SR
1779 local_sub(length, &tail_page->write);
1780 return;
1781 }
1782
1783 event = __rb_page_index(tail_page, tail);
b0b7065b 1784 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 1785
ff0ff84a
SR
1786 /*
1787 * Save the original length to the meta data.
1788 * This will be used by the reader to add lost event
1789 * counter.
1790 */
1791 tail_page->real_end = tail;
1792
c7b09308
SR
1793 /*
1794 * If this event is bigger than the minimum size, then
1795 * we need to be careful that we don't subtract the
1796 * write counter enough to allow another writer to slip
1797 * in on this page.
1798 * We put in a discarded commit instead, to make sure
1799 * that this space is not used again.
1800 *
1801 * If we are less than the minimum size, we don't need to
1802 * worry about it.
1803 */
1804 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1805 /* No room for any events */
1806
1807 /* Mark the rest of the page with padding */
1808 rb_event_set_padding(event);
1809
1810 /* Set the write back to the previous setting */
1811 local_sub(length, &tail_page->write);
1812 return;
1813 }
1814
1815 /* Put in a discarded event */
1816 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1817 event->type_len = RINGBUF_TYPE_PADDING;
1818 /* time delta must be non zero */
1819 event->time_delta = 1;
c7b09308
SR
1820
1821 /* Set write to end of buffer */
1822 length = (tail + length) - BUF_PAGE_SIZE;
1823 local_sub(length, &tail_page->write);
1824}
6634ff26 1825
747e94ae
SR
1826/*
1827 * This is the slow path, force gcc not to inline it.
1828 */
1829static noinline struct ring_buffer_event *
6634ff26
SR
1830rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1831 unsigned long length, unsigned long tail,
6634ff26 1832 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1833{
5a50e33c 1834 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1835 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1836 struct buffer_page *next_page;
1837 int ret;
aa20ae84
SR
1838
1839 next_page = tail_page;
1840
aa20ae84
SR
1841 rb_inc_page(cpu_buffer, &next_page);
1842
aa20ae84
SR
1843 /*
1844 * If for some reason, we had an interrupt storm that made
1845 * it all the way around the buffer, bail, and warn
1846 * about it.
1847 */
1848 if (unlikely(next_page == commit_page)) {
77ae365e 1849 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1850 goto out_reset;
1851 }
1852
77ae365e
SR
1853 /*
1854 * This is where the fun begins!
1855 *
1856 * We are fighting against races between a reader that
1857 * could be on another CPU trying to swap its reader
1858 * page with the buffer head.
1859 *
1860 * We are also fighting against interrupts coming in and
1861 * moving the head or tail on us as well.
1862 *
1863 * If the next page is the head page then we have filled
1864 * the buffer, unless the commit page is still on the
1865 * reader page.
1866 */
1867 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1868
77ae365e
SR
1869 /*
1870 * If the commit is not on the reader page, then
1871 * move the header page.
1872 */
1873 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1874 /*
1875 * If we are not in overwrite mode,
1876 * this is easy, just stop here.
1877 */
1878 if (!(buffer->flags & RB_FL_OVERWRITE))
1879 goto out_reset;
1880
1881 ret = rb_handle_head_page(cpu_buffer,
1882 tail_page,
1883 next_page);
1884 if (ret < 0)
1885 goto out_reset;
1886 if (ret)
1887 goto out_again;
1888 } else {
1889 /*
1890 * We need to be careful here too. The
1891 * commit page could still be on the reader
1892 * page. We could have a small buffer, and
1893 * have filled up the buffer with events
1894 * from interrupts and such, and wrapped.
1895 *
1896 * Note, if the tail page is also the on the
1897 * reader_page, we let it move out.
1898 */
1899 if (unlikely((cpu_buffer->commit_page !=
1900 cpu_buffer->tail_page) &&
1901 (cpu_buffer->commit_page ==
1902 cpu_buffer->reader_page))) {
1903 local_inc(&cpu_buffer->commit_overrun);
1904 goto out_reset;
1905 }
aa20ae84
SR
1906 }
1907 }
1908
77ae365e
SR
1909 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1910 if (ret) {
1911 /*
1912 * Nested commits always have zero deltas, so
1913 * just reread the time stamp
1914 */
6d3f1e12 1915 *ts = rb_time_stamp(buffer);
77ae365e 1916 next_page->page->time_stamp = *ts;
aa20ae84
SR
1917 }
1918
77ae365e 1919 out_again:
aa20ae84 1920
77ae365e 1921 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1922
1923 /* fail and let the caller try again */
1924 return ERR_PTR(-EAGAIN);
1925
45141d46 1926 out_reset:
6f3b3440 1927 /* reset write */
c7b09308 1928 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1929
bf41a158 1930 return NULL;
7a8e76a3
SR
1931}
1932
6634ff26
SR
1933static struct ring_buffer_event *
1934__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1935 unsigned type, unsigned long length, u64 *ts)
1936{
5a50e33c 1937 struct buffer_page *tail_page;
6634ff26
SR
1938 struct ring_buffer_event *event;
1939 unsigned long tail, write;
1940
6634ff26
SR
1941 tail_page = cpu_buffer->tail_page;
1942 write = local_add_return(length, &tail_page->write);
77ae365e
SR
1943
1944 /* set write to only the index of the write */
1945 write &= RB_WRITE_MASK;
6634ff26
SR
1946 tail = write - length;
1947
1948 /* See if we shot pass the end of this buffer page */
747e94ae 1949 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 1950 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 1951 tail_page, ts);
6634ff26
SR
1952
1953 /* We reserved something on the buffer */
1954
6634ff26 1955 event = __rb_page_index(tail_page, tail);
1744a21d 1956 kmemcheck_annotate_bitfield(event, bitfield);
6634ff26
SR
1957 rb_update_event(event, type, length);
1958
1959 /* The passed in type is zero for DATA */
1960 if (likely(!type))
1961 local_inc(&tail_page->entries);
1962
1963 /*
fa743953
SR
1964 * If this is the first commit on the page, then update
1965 * its timestamp.
6634ff26 1966 */
fa743953
SR
1967 if (!tail)
1968 tail_page->page->time_stamp = *ts;
6634ff26
SR
1969
1970 return event;
1971}
1972
edd813bf
SR
1973static inline int
1974rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1975 struct ring_buffer_event *event)
1976{
1977 unsigned long new_index, old_index;
1978 struct buffer_page *bpage;
1979 unsigned long index;
1980 unsigned long addr;
1981
1982 new_index = rb_event_index(event);
1983 old_index = new_index + rb_event_length(event);
1984 addr = (unsigned long)event;
1985 addr &= PAGE_MASK;
1986
1987 bpage = cpu_buffer->tail_page;
1988
1989 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
1990 unsigned long write_mask =
1991 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
1992 /*
1993 * This is on the tail page. It is possible that
1994 * a write could come in and move the tail page
1995 * and write to the next page. That is fine
1996 * because we just shorten what is on this page.
1997 */
77ae365e
SR
1998 old_index += write_mask;
1999 new_index += write_mask;
edd813bf
SR
2000 index = local_cmpxchg(&bpage->write, old_index, new_index);
2001 if (index == old_index)
2002 return 1;
2003 }
2004
2005 /* could not discard */
2006 return 0;
2007}
2008
7a8e76a3
SR
2009static int
2010rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2011 u64 *ts, u64 *delta)
2012{
2013 struct ring_buffer_event *event;
bf41a158 2014 int ret;
7a8e76a3 2015
95609791
BP
2016 WARN_ONCE(*delta > (1ULL << 59),
2017 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2018 (unsigned long long)*delta,
2019 (unsigned long long)*ts,
2020 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
2021
2022 /*
2023 * The delta is too big, we to add a
2024 * new timestamp.
2025 */
2026 event = __rb_reserve_next(cpu_buffer,
2027 RINGBUF_TYPE_TIME_EXTEND,
2028 RB_LEN_TIME_EXTEND,
2029 ts);
2030 if (!event)
bf41a158 2031 return -EBUSY;
7a8e76a3 2032
bf41a158
SR
2033 if (PTR_ERR(event) == -EAGAIN)
2034 return -EAGAIN;
2035
2036 /* Only a commited time event can update the write stamp */
fa743953 2037 if (rb_event_is_commit(cpu_buffer, event)) {
bf41a158 2038 /*
fa743953
SR
2039 * If this is the first on the page, then it was
2040 * updated with the page itself. Try to discard it
2041 * and if we can't just make it zero.
bf41a158
SR
2042 */
2043 if (rb_event_index(event)) {
2044 event->time_delta = *delta & TS_MASK;
2045 event->array[0] = *delta >> TS_SHIFT;
2046 } else {
ea05b57c
SR
2047 /* try to discard, since we do not need this */
2048 if (!rb_try_to_discard(cpu_buffer, event)) {
2049 /* nope, just zero it */
2050 event->time_delta = 0;
2051 event->array[0] = 0;
2052 }
bf41a158 2053 }
7a8e76a3 2054 cpu_buffer->write_stamp = *ts;
bf41a158
SR
2055 /* let the caller know this was the commit */
2056 ret = 1;
2057 } else {
edd813bf
SR
2058 /* Try to discard the event */
2059 if (!rb_try_to_discard(cpu_buffer, event)) {
2060 /* Darn, this is just wasted space */
2061 event->time_delta = 0;
2062 event->array[0] = 0;
edd813bf 2063 }
f57a8a19 2064 ret = 0;
7a8e76a3
SR
2065 }
2066
bf41a158
SR
2067 *delta = 0;
2068
2069 return ret;
7a8e76a3
SR
2070}
2071
fa743953
SR
2072static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2073{
2074 local_inc(&cpu_buffer->committing);
2075 local_inc(&cpu_buffer->commits);
2076}
2077
2078static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2079{
2080 unsigned long commits;
2081
2082 if (RB_WARN_ON(cpu_buffer,
2083 !local_read(&cpu_buffer->committing)))
2084 return;
2085
2086 again:
2087 commits = local_read(&cpu_buffer->commits);
2088 /* synchronize with interrupts */
2089 barrier();
2090 if (local_read(&cpu_buffer->committing) == 1)
2091 rb_set_commit_to_write(cpu_buffer);
2092
2093 local_dec(&cpu_buffer->committing);
2094
2095 /* synchronize with interrupts */
2096 barrier();
2097
2098 /*
2099 * Need to account for interrupts coming in between the
2100 * updating of the commit page and the clearing of the
2101 * committing counter.
2102 */
2103 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2104 !local_read(&cpu_buffer->committing)) {
2105 local_inc(&cpu_buffer->committing);
2106 goto again;
2107 }
2108}
2109
7a8e76a3 2110static struct ring_buffer_event *
62f0b3eb
SR
2111rb_reserve_next_event(struct ring_buffer *buffer,
2112 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2113 unsigned long length)
7a8e76a3
SR
2114{
2115 struct ring_buffer_event *event;
168b6b1d 2116 u64 ts, delta = 0;
bf41a158 2117 int commit = 0;
818e3dd3 2118 int nr_loops = 0;
7a8e76a3 2119
fa743953
SR
2120 rb_start_commit(cpu_buffer);
2121
85bac32c 2122#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2123 /*
2124 * Due to the ability to swap a cpu buffer from a buffer
2125 * it is possible it was swapped before we committed.
2126 * (committing stops a swap). We check for it here and
2127 * if it happened, we have to fail the write.
2128 */
2129 barrier();
2130 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2131 local_dec(&cpu_buffer->committing);
2132 local_dec(&cpu_buffer->commits);
2133 return NULL;
2134 }
85bac32c 2135#endif
62f0b3eb 2136
be957c44 2137 length = rb_calculate_event_length(length);
bf41a158 2138 again:
818e3dd3
SR
2139 /*
2140 * We allow for interrupts to reenter here and do a trace.
2141 * If one does, it will cause this original code to loop
2142 * back here. Even with heavy interrupts happening, this
2143 * should only happen a few times in a row. If this happens
2144 * 1000 times in a row, there must be either an interrupt
2145 * storm or we have something buggy.
2146 * Bail!
2147 */
3e89c7bb 2148 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2149 goto out_fail;
818e3dd3 2150
6d3f1e12 2151 ts = rb_time_stamp(cpu_buffer->buffer);
7a8e76a3 2152
bf41a158
SR
2153 /*
2154 * Only the first commit can update the timestamp.
2155 * Yes there is a race here. If an interrupt comes in
2156 * just after the conditional and it traces too, then it
2157 * will also check the deltas. More than one timestamp may
2158 * also be made. But only the entry that did the actual
2159 * commit will be something other than zero.
2160 */
0f0c85fc
SR
2161 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2162 rb_page_write(cpu_buffer->tail_page) ==
2163 rb_commit_index(cpu_buffer))) {
168b6b1d 2164 u64 diff;
bf41a158 2165
168b6b1d 2166 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2167
168b6b1d 2168 /* make sure this diff is calculated here */
bf41a158
SR
2169 barrier();
2170
2171 /* Did the write stamp get updated already? */
2172 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 2173 goto get_event;
bf41a158 2174
168b6b1d
SR
2175 delta = diff;
2176 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 2177
bf41a158 2178 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 2179 if (commit == -EBUSY)
fa743953 2180 goto out_fail;
bf41a158
SR
2181
2182 if (commit == -EAGAIN)
2183 goto again;
2184
2185 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 2186 }
168b6b1d 2187 }
7a8e76a3 2188
168b6b1d 2189 get_event:
1cd8d735 2190 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 2191 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2192 goto again;
2193
fa743953
SR
2194 if (!event)
2195 goto out_fail;
7a8e76a3 2196
fa743953 2197 if (!rb_event_is_commit(cpu_buffer, event))
7a8e76a3
SR
2198 delta = 0;
2199
2200 event->time_delta = delta;
2201
2202 return event;
fa743953
SR
2203
2204 out_fail:
2205 rb_end_commit(cpu_buffer);
2206 return NULL;
7a8e76a3
SR
2207}
2208
1155de47
PM
2209#ifdef CONFIG_TRACING
2210
aa18efb2 2211#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
2212
2213static int trace_recursive_lock(void)
2214{
aa18efb2 2215 current->trace_recursion++;
261842b7 2216
aa18efb2
SR
2217 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2218 return 0;
e057a5e5 2219
aa18efb2
SR
2220 /* Disable all tracing before we do anything else */
2221 tracing_off_permanent();
261842b7 2222
7d7d2b80 2223 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
2224 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2225 current->trace_recursion,
2226 hardirq_count() >> HARDIRQ_SHIFT,
2227 softirq_count() >> SOFTIRQ_SHIFT,
2228 in_nmi());
261842b7 2229
aa18efb2
SR
2230 WARN_ON_ONCE(1);
2231 return -1;
261842b7
SR
2232}
2233
2234static void trace_recursive_unlock(void)
2235{
aa18efb2 2236 WARN_ON_ONCE(!current->trace_recursion);
261842b7 2237
aa18efb2 2238 current->trace_recursion--;
261842b7
SR
2239}
2240
1155de47
PM
2241#else
2242
2243#define trace_recursive_lock() (0)
2244#define trace_recursive_unlock() do { } while (0)
2245
2246#endif
2247
7a8e76a3
SR
2248/**
2249 * ring_buffer_lock_reserve - reserve a part of the buffer
2250 * @buffer: the ring buffer to reserve from
2251 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2252 *
2253 * Returns a reseverd event on the ring buffer to copy directly to.
2254 * The user of this interface will need to get the body to write into
2255 * and can use the ring_buffer_event_data() interface.
2256 *
2257 * The length is the length of the data needed, not the event length
2258 * which also includes the event header.
2259 *
2260 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2261 * If NULL is returned, then nothing has been allocated or locked.
2262 */
2263struct ring_buffer_event *
0a987751 2264ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2265{
2266 struct ring_buffer_per_cpu *cpu_buffer;
2267 struct ring_buffer_event *event;
5168ae50 2268 int cpu;
7a8e76a3 2269
033601a3 2270 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2271 return NULL;
2272
bf41a158 2273 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2274 preempt_disable_notrace();
bf41a158 2275
52fbe9cd
LJ
2276 if (atomic_read(&buffer->record_disabled))
2277 goto out_nocheck;
2278
261842b7
SR
2279 if (trace_recursive_lock())
2280 goto out_nocheck;
2281
7a8e76a3
SR
2282 cpu = raw_smp_processor_id();
2283
9e01c1b7 2284 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2285 goto out;
7a8e76a3
SR
2286
2287 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2288
2289 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2290 goto out;
7a8e76a3 2291
be957c44 2292 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2293 goto out;
7a8e76a3 2294
62f0b3eb 2295 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2296 if (!event)
d769041f 2297 goto out;
7a8e76a3
SR
2298
2299 return event;
2300
d769041f 2301 out:
261842b7
SR
2302 trace_recursive_unlock();
2303
2304 out_nocheck:
5168ae50 2305 preempt_enable_notrace();
7a8e76a3
SR
2306 return NULL;
2307}
c4f50183 2308EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2309
a1863c21
SR
2310static void
2311rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2312 struct ring_buffer_event *event)
2313{
fa743953
SR
2314 /*
2315 * The event first in the commit queue updates the
2316 * time stamp.
2317 */
2318 if (rb_event_is_commit(cpu_buffer, event))
2319 cpu_buffer->write_stamp += event->time_delta;
a1863c21 2320}
bf41a158 2321
a1863c21
SR
2322static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2323 struct ring_buffer_event *event)
2324{
2325 local_inc(&cpu_buffer->entries);
2326 rb_update_write_stamp(cpu_buffer, event);
fa743953 2327 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2328}
2329
2330/**
2331 * ring_buffer_unlock_commit - commit a reserved
2332 * @buffer: The buffer to commit to
2333 * @event: The event pointer to commit.
7a8e76a3
SR
2334 *
2335 * This commits the data to the ring buffer, and releases any locks held.
2336 *
2337 * Must be paired with ring_buffer_lock_reserve.
2338 */
2339int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2340 struct ring_buffer_event *event)
7a8e76a3
SR
2341{
2342 struct ring_buffer_per_cpu *cpu_buffer;
2343 int cpu = raw_smp_processor_id();
2344
2345 cpu_buffer = buffer->buffers[cpu];
2346
7a8e76a3
SR
2347 rb_commit(cpu_buffer, event);
2348
261842b7
SR
2349 trace_recursive_unlock();
2350
5168ae50 2351 preempt_enable_notrace();
7a8e76a3
SR
2352
2353 return 0;
2354}
c4f50183 2355EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2356
f3b9aae1
FW
2357static inline void rb_event_discard(struct ring_buffer_event *event)
2358{
334d4169
LJ
2359 /* array[0] holds the actual length for the discarded event */
2360 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2361 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2362 /* time delta must be non zero */
2363 if (!event->time_delta)
2364 event->time_delta = 1;
2365}
2366
a1863c21
SR
2367/*
2368 * Decrement the entries to the page that an event is on.
2369 * The event does not even need to exist, only the pointer
2370 * to the page it is on. This may only be called before the commit
2371 * takes place.
2372 */
2373static inline void
2374rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2375 struct ring_buffer_event *event)
2376{
2377 unsigned long addr = (unsigned long)event;
2378 struct buffer_page *bpage = cpu_buffer->commit_page;
2379 struct buffer_page *start;
2380
2381 addr &= PAGE_MASK;
2382
2383 /* Do the likely case first */
2384 if (likely(bpage->page == (void *)addr)) {
2385 local_dec(&bpage->entries);
2386 return;
2387 }
2388
2389 /*
2390 * Because the commit page may be on the reader page we
2391 * start with the next page and check the end loop there.
2392 */
2393 rb_inc_page(cpu_buffer, &bpage);
2394 start = bpage;
2395 do {
2396 if (bpage->page == (void *)addr) {
2397 local_dec(&bpage->entries);
2398 return;
2399 }
2400 rb_inc_page(cpu_buffer, &bpage);
2401 } while (bpage != start);
2402
2403 /* commit not part of this buffer?? */
2404 RB_WARN_ON(cpu_buffer, 1);
2405}
2406
fa1b47dd
SR
2407/**
2408 * ring_buffer_commit_discard - discard an event that has not been committed
2409 * @buffer: the ring buffer
2410 * @event: non committed event to discard
2411 *
dc892f73
SR
2412 * Sometimes an event that is in the ring buffer needs to be ignored.
2413 * This function lets the user discard an event in the ring buffer
2414 * and then that event will not be read later.
2415 *
2416 * This function only works if it is called before the the item has been
2417 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2418 * if another event has not been added behind it.
2419 *
2420 * If another event has been added behind it, it will set the event
2421 * up as discarded, and perform the commit.
2422 *
2423 * If this function is called, do not call ring_buffer_unlock_commit on
2424 * the event.
2425 */
2426void ring_buffer_discard_commit(struct ring_buffer *buffer,
2427 struct ring_buffer_event *event)
2428{
2429 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2430 int cpu;
2431
2432 /* The event is discarded regardless */
f3b9aae1 2433 rb_event_discard(event);
fa1b47dd 2434
fa743953
SR
2435 cpu = smp_processor_id();
2436 cpu_buffer = buffer->buffers[cpu];
2437
fa1b47dd
SR
2438 /*
2439 * This must only be called if the event has not been
2440 * committed yet. Thus we can assume that preemption
2441 * is still disabled.
2442 */
fa743953 2443 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2444
a1863c21 2445 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2446 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2447 goto out;
fa1b47dd
SR
2448
2449 /*
2450 * The commit is still visible by the reader, so we
a1863c21 2451 * must still update the timestamp.
fa1b47dd 2452 */
a1863c21 2453 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2454 out:
fa743953 2455 rb_end_commit(cpu_buffer);
fa1b47dd 2456
f3b9aae1
FW
2457 trace_recursive_unlock();
2458
5168ae50 2459 preempt_enable_notrace();
fa1b47dd
SR
2460
2461}
2462EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2463
7a8e76a3
SR
2464/**
2465 * ring_buffer_write - write data to the buffer without reserving
2466 * @buffer: The ring buffer to write to.
2467 * @length: The length of the data being written (excluding the event header)
2468 * @data: The data to write to the buffer.
2469 *
2470 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2471 * one function. If you already have the data to write to the buffer, it
2472 * may be easier to simply call this function.
2473 *
2474 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2475 * and not the length of the event which would hold the header.
2476 */
2477int ring_buffer_write(struct ring_buffer *buffer,
2478 unsigned long length,
2479 void *data)
2480{
2481 struct ring_buffer_per_cpu *cpu_buffer;
2482 struct ring_buffer_event *event;
7a8e76a3
SR
2483 void *body;
2484 int ret = -EBUSY;
5168ae50 2485 int cpu;
7a8e76a3 2486
033601a3 2487 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2488 return -EBUSY;
2489
5168ae50 2490 preempt_disable_notrace();
bf41a158 2491
52fbe9cd
LJ
2492 if (atomic_read(&buffer->record_disabled))
2493 goto out;
2494
7a8e76a3
SR
2495 cpu = raw_smp_processor_id();
2496
9e01c1b7 2497 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2498 goto out;
7a8e76a3
SR
2499
2500 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2501
2502 if (atomic_read(&cpu_buffer->record_disabled))
2503 goto out;
2504
be957c44
SR
2505 if (length > BUF_MAX_DATA_SIZE)
2506 goto out;
2507
62f0b3eb 2508 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2509 if (!event)
2510 goto out;
2511
2512 body = rb_event_data(event);
2513
2514 memcpy(body, data, length);
2515
2516 rb_commit(cpu_buffer, event);
2517
2518 ret = 0;
2519 out:
5168ae50 2520 preempt_enable_notrace();
7a8e76a3
SR
2521
2522 return ret;
2523}
c4f50183 2524EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2525
34a148bf 2526static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2527{
2528 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2529 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2530 struct buffer_page *commit = cpu_buffer->commit_page;
2531
77ae365e
SR
2532 /* In case of error, head will be NULL */
2533 if (unlikely(!head))
2534 return 1;
2535
bf41a158
SR
2536 return reader->read == rb_page_commit(reader) &&
2537 (commit == reader ||
2538 (commit == head &&
2539 head->read == rb_page_commit(commit)));
2540}
2541
7a8e76a3
SR
2542/**
2543 * ring_buffer_record_disable - stop all writes into the buffer
2544 * @buffer: The ring buffer to stop writes to.
2545 *
2546 * This prevents all writes to the buffer. Any attempt to write
2547 * to the buffer after this will fail and return NULL.
2548 *
2549 * The caller should call synchronize_sched() after this.
2550 */
2551void ring_buffer_record_disable(struct ring_buffer *buffer)
2552{
2553 atomic_inc(&buffer->record_disabled);
2554}
c4f50183 2555EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2556
2557/**
2558 * ring_buffer_record_enable - enable writes to the buffer
2559 * @buffer: The ring buffer to enable writes
2560 *
2561 * Note, multiple disables will need the same number of enables
c41b20e7 2562 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2563 */
2564void ring_buffer_record_enable(struct ring_buffer *buffer)
2565{
2566 atomic_dec(&buffer->record_disabled);
2567}
c4f50183 2568EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2569
2570/**
2571 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2572 * @buffer: The ring buffer to stop writes to.
2573 * @cpu: The CPU buffer to stop
2574 *
2575 * This prevents all writes to the buffer. Any attempt to write
2576 * to the buffer after this will fail and return NULL.
2577 *
2578 * The caller should call synchronize_sched() after this.
2579 */
2580void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2581{
2582 struct ring_buffer_per_cpu *cpu_buffer;
2583
9e01c1b7 2584 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2585 return;
7a8e76a3
SR
2586
2587 cpu_buffer = buffer->buffers[cpu];
2588 atomic_inc(&cpu_buffer->record_disabled);
2589}
c4f50183 2590EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2591
2592/**
2593 * ring_buffer_record_enable_cpu - enable writes to the buffer
2594 * @buffer: The ring buffer to enable writes
2595 * @cpu: The CPU to enable.
2596 *
2597 * Note, multiple disables will need the same number of enables
c41b20e7 2598 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2599 */
2600void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2601{
2602 struct ring_buffer_per_cpu *cpu_buffer;
2603
9e01c1b7 2604 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2605 return;
7a8e76a3
SR
2606
2607 cpu_buffer = buffer->buffers[cpu];
2608 atomic_dec(&cpu_buffer->record_disabled);
2609}
c4f50183 2610EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
2611
2612/**
2613 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2614 * @buffer: The ring buffer
2615 * @cpu: The per CPU buffer to get the entries from.
2616 */
2617unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2618{
2619 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2620 unsigned long ret;
7a8e76a3 2621
9e01c1b7 2622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2623 return 0;
7a8e76a3
SR
2624
2625 cpu_buffer = buffer->buffers[cpu];
77ae365e 2626 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
e4906eff 2627 - cpu_buffer->read;
554f786e
SR
2628
2629 return ret;
7a8e76a3 2630}
c4f50183 2631EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2632
2633/**
2634 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2635 * @buffer: The ring buffer
2636 * @cpu: The per CPU buffer to get the number of overruns from
2637 */
2638unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2639{
2640 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2641 unsigned long ret;
7a8e76a3 2642
9e01c1b7 2643 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2644 return 0;
7a8e76a3
SR
2645
2646 cpu_buffer = buffer->buffers[cpu];
77ae365e 2647 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2648
2649 return ret;
7a8e76a3 2650}
c4f50183 2651EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2652
f0d2c681
SR
2653/**
2654 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2655 * @buffer: The ring buffer
2656 * @cpu: The per CPU buffer to get the number of overruns from
2657 */
2658unsigned long
2659ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2660{
2661 struct ring_buffer_per_cpu *cpu_buffer;
2662 unsigned long ret;
2663
2664 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2665 return 0;
2666
2667 cpu_buffer = buffer->buffers[cpu];
77ae365e 2668 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2669
2670 return ret;
2671}
2672EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2673
7a8e76a3
SR
2674/**
2675 * ring_buffer_entries - get the number of entries in a buffer
2676 * @buffer: The ring buffer
2677 *
2678 * Returns the total number of entries in the ring buffer
2679 * (all CPU entries)
2680 */
2681unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2682{
2683 struct ring_buffer_per_cpu *cpu_buffer;
2684 unsigned long entries = 0;
2685 int cpu;
2686
2687 /* if you care about this being correct, lock the buffer */
2688 for_each_buffer_cpu(buffer, cpu) {
2689 cpu_buffer = buffer->buffers[cpu];
e4906eff 2690 entries += (local_read(&cpu_buffer->entries) -
77ae365e 2691 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
7a8e76a3
SR
2692 }
2693
2694 return entries;
2695}
c4f50183 2696EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2697
2698/**
67b394f7 2699 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2700 * @buffer: The ring buffer
2701 *
2702 * Returns the total number of overruns in the ring buffer
2703 * (all CPU entries)
2704 */
2705unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2706{
2707 struct ring_buffer_per_cpu *cpu_buffer;
2708 unsigned long overruns = 0;
2709 int cpu;
2710
2711 /* if you care about this being correct, lock the buffer */
2712 for_each_buffer_cpu(buffer, cpu) {
2713 cpu_buffer = buffer->buffers[cpu];
77ae365e 2714 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2715 }
2716
2717 return overruns;
2718}
c4f50183 2719EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2720
642edba5 2721static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2722{
2723 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2724
d769041f
SR
2725 /* Iterator usage is expected to have record disabled */
2726 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2727 iter->head_page = rb_set_head_page(cpu_buffer);
2728 if (unlikely(!iter->head_page))
2729 return;
2730 iter->head = iter->head_page->read;
d769041f
SR
2731 } else {
2732 iter->head_page = cpu_buffer->reader_page;
6f807acd 2733 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2734 }
2735 if (iter->head)
2736 iter->read_stamp = cpu_buffer->read_stamp;
2737 else
abc9b56d 2738 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
2739 iter->cache_reader_page = cpu_buffer->reader_page;
2740 iter->cache_read = cpu_buffer->read;
642edba5 2741}
f83c9d0f 2742
642edba5
SR
2743/**
2744 * ring_buffer_iter_reset - reset an iterator
2745 * @iter: The iterator to reset
2746 *
2747 * Resets the iterator, so that it will start from the beginning
2748 * again.
2749 */
2750void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2751{
554f786e 2752 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2753 unsigned long flags;
2754
554f786e
SR
2755 if (!iter)
2756 return;
2757
2758 cpu_buffer = iter->cpu_buffer;
2759
642edba5
SR
2760 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2761 rb_iter_reset(iter);
f83c9d0f 2762 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2763}
c4f50183 2764EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2765
2766/**
2767 * ring_buffer_iter_empty - check if an iterator has no more to read
2768 * @iter: The iterator to check
2769 */
2770int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2771{
2772 struct ring_buffer_per_cpu *cpu_buffer;
2773
2774 cpu_buffer = iter->cpu_buffer;
2775
bf41a158
SR
2776 return iter->head_page == cpu_buffer->commit_page &&
2777 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2778}
c4f50183 2779EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2780
2781static void
2782rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2783 struct ring_buffer_event *event)
2784{
2785 u64 delta;
2786
334d4169 2787 switch (event->type_len) {
7a8e76a3
SR
2788 case RINGBUF_TYPE_PADDING:
2789 return;
2790
2791 case RINGBUF_TYPE_TIME_EXTEND:
2792 delta = event->array[0];
2793 delta <<= TS_SHIFT;
2794 delta += event->time_delta;
2795 cpu_buffer->read_stamp += delta;
2796 return;
2797
2798 case RINGBUF_TYPE_TIME_STAMP:
2799 /* FIXME: not implemented */
2800 return;
2801
2802 case RINGBUF_TYPE_DATA:
2803 cpu_buffer->read_stamp += event->time_delta;
2804 return;
2805
2806 default:
2807 BUG();
2808 }
2809 return;
2810}
2811
2812static void
2813rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2814 struct ring_buffer_event *event)
2815{
2816 u64 delta;
2817
334d4169 2818 switch (event->type_len) {
7a8e76a3
SR
2819 case RINGBUF_TYPE_PADDING:
2820 return;
2821
2822 case RINGBUF_TYPE_TIME_EXTEND:
2823 delta = event->array[0];
2824 delta <<= TS_SHIFT;
2825 delta += event->time_delta;
2826 iter->read_stamp += delta;
2827 return;
2828
2829 case RINGBUF_TYPE_TIME_STAMP:
2830 /* FIXME: not implemented */
2831 return;
2832
2833 case RINGBUF_TYPE_DATA:
2834 iter->read_stamp += event->time_delta;
2835 return;
2836
2837 default:
2838 BUG();
2839 }
2840 return;
2841}
2842
d769041f
SR
2843static struct buffer_page *
2844rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2845{
d769041f 2846 struct buffer_page *reader = NULL;
66a8cb95 2847 unsigned long overwrite;
d769041f 2848 unsigned long flags;
818e3dd3 2849 int nr_loops = 0;
77ae365e 2850 int ret;
d769041f 2851
3e03fb7f 2852 local_irq_save(flags);
0199c4e6 2853 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
2854
2855 again:
818e3dd3
SR
2856 /*
2857 * This should normally only loop twice. But because the
2858 * start of the reader inserts an empty page, it causes
2859 * a case where we will loop three times. There should be no
2860 * reason to loop four times (that I know of).
2861 */
3e89c7bb 2862 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2863 reader = NULL;
2864 goto out;
2865 }
2866
d769041f
SR
2867 reader = cpu_buffer->reader_page;
2868
2869 /* If there's more to read, return this page */
bf41a158 2870 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2871 goto out;
2872
2873 /* Never should we have an index greater than the size */
3e89c7bb
SR
2874 if (RB_WARN_ON(cpu_buffer,
2875 cpu_buffer->reader_page->read > rb_page_size(reader)))
2876 goto out;
d769041f
SR
2877
2878 /* check if we caught up to the tail */
2879 reader = NULL;
bf41a158 2880 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2881 goto out;
7a8e76a3
SR
2882
2883 /*
d769041f 2884 * Reset the reader page to size zero.
7a8e76a3 2885 */
77ae365e
SR
2886 local_set(&cpu_buffer->reader_page->write, 0);
2887 local_set(&cpu_buffer->reader_page->entries, 0);
2888 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 2889 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 2890
77ae365e
SR
2891 spin:
2892 /*
2893 * Splice the empty reader page into the list around the head.
2894 */
2895 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 2896 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 2897 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2898
3adc54fa
SR
2899 /*
2900 * cpu_buffer->pages just needs to point to the buffer, it
2901 * has no specific buffer page to point to. Lets move it out
2902 * of our way so we don't accidently swap it.
2903 */
2904 cpu_buffer->pages = reader->list.prev;
2905
77ae365e
SR
2906 /* The reader page will be pointing to the new head */
2907 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2908
66a8cb95
SR
2909 /*
2910 * We want to make sure we read the overruns after we set up our
2911 * pointers to the next object. The writer side does a
2912 * cmpxchg to cross pages which acts as the mb on the writer
2913 * side. Note, the reader will constantly fail the swap
2914 * while the writer is updating the pointers, so this
2915 * guarantees that the overwrite recorded here is the one we
2916 * want to compare with the last_overrun.
2917 */
2918 smp_mb();
2919 overwrite = local_read(&(cpu_buffer->overrun));
2920
77ae365e
SR
2921 /*
2922 * Here's the tricky part.
2923 *
2924 * We need to move the pointer past the header page.
2925 * But we can only do that if a writer is not currently
2926 * moving it. The page before the header page has the
2927 * flag bit '1' set if it is pointing to the page we want.
2928 * but if the writer is in the process of moving it
2929 * than it will be '2' or already moved '0'.
2930 */
2931
2932 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2933
2934 /*
77ae365e 2935 * If we did not convert it, then we must try again.
7a8e76a3 2936 */
77ae365e
SR
2937 if (!ret)
2938 goto spin;
7a8e76a3 2939
77ae365e
SR
2940 /*
2941 * Yeah! We succeeded in replacing the page.
2942 *
2943 * Now make the new head point back to the reader page.
2944 */
5ded3dc6 2945 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 2946 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2947
2948 /* Finally update the reader page to the new head */
2949 cpu_buffer->reader_page = reader;
2950 rb_reset_reader_page(cpu_buffer);
2951
66a8cb95
SR
2952 if (overwrite != cpu_buffer->last_overrun) {
2953 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2954 cpu_buffer->last_overrun = overwrite;
2955 }
2956
d769041f
SR
2957 goto again;
2958
2959 out:
0199c4e6 2960 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 2961 local_irq_restore(flags);
d769041f
SR
2962
2963 return reader;
2964}
2965
2966static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2967{
2968 struct ring_buffer_event *event;
2969 struct buffer_page *reader;
2970 unsigned length;
2971
2972 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2973
d769041f 2974 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2975 if (RB_WARN_ON(cpu_buffer, !reader))
2976 return;
7a8e76a3 2977
d769041f
SR
2978 event = rb_reader_event(cpu_buffer);
2979
a1863c21 2980 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 2981 cpu_buffer->read++;
d769041f
SR
2982
2983 rb_update_read_stamp(cpu_buffer, event);
2984
2985 length = rb_event_length(event);
6f807acd 2986 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2987}
2988
2989static void rb_advance_iter(struct ring_buffer_iter *iter)
2990{
7a8e76a3
SR
2991 struct ring_buffer_per_cpu *cpu_buffer;
2992 struct ring_buffer_event *event;
2993 unsigned length;
2994
2995 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
2996
2997 /*
2998 * Check if we are at the end of the buffer.
2999 */
bf41a158 3000 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3001 /* discarded commits can make the page empty */
3002 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3003 return;
d769041f 3004 rb_inc_iter(iter);
7a8e76a3
SR
3005 return;
3006 }
3007
3008 event = rb_iter_head_event(iter);
3009
3010 length = rb_event_length(event);
3011
3012 /*
3013 * This should not be called to advance the header if we are
3014 * at the tail of the buffer.
3015 */
3e89c7bb 3016 if (RB_WARN_ON(cpu_buffer,
f536aafc 3017 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3018 (iter->head + length > rb_commit_index(cpu_buffer))))
3019 return;
7a8e76a3
SR
3020
3021 rb_update_iter_read_stamp(iter, event);
3022
3023 iter->head += length;
3024
3025 /* check for end of page padding */
bf41a158
SR
3026 if ((iter->head >= rb_page_size(iter->head_page)) &&
3027 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3028 rb_advance_iter(iter);
3029}
3030
66a8cb95
SR
3031static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3032{
3033 return cpu_buffer->lost_events;
3034}
3035
f83c9d0f 3036static struct ring_buffer_event *
66a8cb95
SR
3037rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3038 unsigned long *lost_events)
7a8e76a3 3039{
7a8e76a3 3040 struct ring_buffer_event *event;
d769041f 3041 struct buffer_page *reader;
818e3dd3 3042 int nr_loops = 0;
7a8e76a3 3043
7a8e76a3 3044 again:
818e3dd3
SR
3045 /*
3046 * We repeat when a timestamp is encountered. It is possible
3047 * to get multiple timestamps from an interrupt entering just
ea05b57c
SR
3048 * as one timestamp is about to be written, or from discarded
3049 * commits. The most that we can have is the number on a single page.
818e3dd3 3050 */
ea05b57c 3051 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 3052 return NULL;
818e3dd3 3053
d769041f
SR
3054 reader = rb_get_reader_page(cpu_buffer);
3055 if (!reader)
7a8e76a3
SR
3056 return NULL;
3057
d769041f 3058 event = rb_reader_event(cpu_buffer);
7a8e76a3 3059
334d4169 3060 switch (event->type_len) {
7a8e76a3 3061 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3062 if (rb_null_event(event))
3063 RB_WARN_ON(cpu_buffer, 1);
3064 /*
3065 * Because the writer could be discarding every
3066 * event it creates (which would probably be bad)
3067 * if we were to go back to "again" then we may never
3068 * catch up, and will trigger the warn on, or lock
3069 * the box. Return the padding, and we will release
3070 * the current locks, and try again.
3071 */
2d622719 3072 return event;
7a8e76a3
SR
3073
3074 case RINGBUF_TYPE_TIME_EXTEND:
3075 /* Internal data, OK to advance */
d769041f 3076 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3077 goto again;
3078
3079 case RINGBUF_TYPE_TIME_STAMP:
3080 /* FIXME: not implemented */
d769041f 3081 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3082 goto again;
3083
3084 case RINGBUF_TYPE_DATA:
3085 if (ts) {
3086 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3087 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3088 cpu_buffer->cpu, ts);
7a8e76a3 3089 }
66a8cb95
SR
3090 if (lost_events)
3091 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3092 return event;
3093
3094 default:
3095 BUG();
3096 }
3097
3098 return NULL;
3099}
c4f50183 3100EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3101
f83c9d0f
SR
3102static struct ring_buffer_event *
3103rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3104{
3105 struct ring_buffer *buffer;
3106 struct ring_buffer_per_cpu *cpu_buffer;
3107 struct ring_buffer_event *event;
818e3dd3 3108 int nr_loops = 0;
7a8e76a3 3109
7a8e76a3
SR
3110 cpu_buffer = iter->cpu_buffer;
3111 buffer = cpu_buffer->buffer;
3112
492a74f4
SR
3113 /*
3114 * Check if someone performed a consuming read to
3115 * the buffer. A consuming read invalidates the iterator
3116 * and we need to reset the iterator in this case.
3117 */
3118 if (unlikely(iter->cache_read != cpu_buffer->read ||
3119 iter->cache_reader_page != cpu_buffer->reader_page))
3120 rb_iter_reset(iter);
3121
7a8e76a3 3122 again:
3c05d748
SR
3123 if (ring_buffer_iter_empty(iter))
3124 return NULL;
3125
818e3dd3 3126 /*
ea05b57c
SR
3127 * We repeat when a timestamp is encountered.
3128 * We can get multiple timestamps by nested interrupts or also
3129 * if filtering is on (discarding commits). Since discarding
3130 * commits can be frequent we can get a lot of timestamps.
3131 * But we limit them by not adding timestamps if they begin
3132 * at the start of a page.
818e3dd3 3133 */
ea05b57c 3134 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 3135 return NULL;
818e3dd3 3136
7a8e76a3
SR
3137 if (rb_per_cpu_empty(cpu_buffer))
3138 return NULL;
3139
3c05d748
SR
3140 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3141 rb_inc_iter(iter);
3142 goto again;
3143 }
3144
7a8e76a3
SR
3145 event = rb_iter_head_event(iter);
3146
334d4169 3147 switch (event->type_len) {
7a8e76a3 3148 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3149 if (rb_null_event(event)) {
3150 rb_inc_iter(iter);
3151 goto again;
3152 }
3153 rb_advance_iter(iter);
3154 return event;
7a8e76a3
SR
3155
3156 case RINGBUF_TYPE_TIME_EXTEND:
3157 /* Internal data, OK to advance */
3158 rb_advance_iter(iter);
3159 goto again;
3160
3161 case RINGBUF_TYPE_TIME_STAMP:
3162 /* FIXME: not implemented */
3163 rb_advance_iter(iter);
3164 goto again;
3165
3166 case RINGBUF_TYPE_DATA:
3167 if (ts) {
3168 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3169 ring_buffer_normalize_time_stamp(buffer,
3170 cpu_buffer->cpu, ts);
7a8e76a3
SR
3171 }
3172 return event;
3173
3174 default:
3175 BUG();
3176 }
3177
3178 return NULL;
3179}
c4f50183 3180EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3181
8d707e8e
SR
3182static inline int rb_ok_to_lock(void)
3183{
3184 /*
3185 * If an NMI die dumps out the content of the ring buffer
3186 * do not grab locks. We also permanently disable the ring
3187 * buffer too. A one time deal is all you get from reading
3188 * the ring buffer from an NMI.
3189 */
464e85eb 3190 if (likely(!in_nmi()))
8d707e8e
SR
3191 return 1;
3192
3193 tracing_off_permanent();
3194 return 0;
3195}
3196
f83c9d0f
SR
3197/**
3198 * ring_buffer_peek - peek at the next event to be read
3199 * @buffer: The ring buffer to read
3200 * @cpu: The cpu to peak at
3201 * @ts: The timestamp counter of this event.
66a8cb95 3202 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3203 *
3204 * This will return the event that will be read next, but does
3205 * not consume the data.
3206 */
3207struct ring_buffer_event *
66a8cb95
SR
3208ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3209 unsigned long *lost_events)
f83c9d0f
SR
3210{
3211 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3212 struct ring_buffer_event *event;
f83c9d0f 3213 unsigned long flags;
8d707e8e 3214 int dolock;
f83c9d0f 3215
554f786e 3216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3217 return NULL;
554f786e 3218
8d707e8e 3219 dolock = rb_ok_to_lock();
2d622719 3220 again:
8d707e8e
SR
3221 local_irq_save(flags);
3222 if (dolock)
3223 spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3224 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3225 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3226 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3227 if (dolock)
3228 spin_unlock(&cpu_buffer->reader_lock);
3229 local_irq_restore(flags);
f83c9d0f 3230
1b959e18 3231 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3232 goto again;
2d622719 3233
f83c9d0f
SR
3234 return event;
3235}
3236
3237/**
3238 * ring_buffer_iter_peek - peek at the next event to be read
3239 * @iter: The ring buffer iterator
3240 * @ts: The timestamp counter of this event.
3241 *
3242 * This will return the event that will be read next, but does
3243 * not increment the iterator.
3244 */
3245struct ring_buffer_event *
3246ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3247{
3248 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3249 struct ring_buffer_event *event;
3250 unsigned long flags;
3251
2d622719 3252 again:
f83c9d0f
SR
3253 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3254 event = rb_iter_peek(iter, ts);
3255 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3256
1b959e18 3257 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3258 goto again;
2d622719 3259
f83c9d0f
SR
3260 return event;
3261}
3262
7a8e76a3
SR
3263/**
3264 * ring_buffer_consume - return an event and consume it
3265 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3266 * @cpu: the cpu to read the buffer from
3267 * @ts: a variable to store the timestamp (may be NULL)
3268 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3269 *
3270 * Returns the next event in the ring buffer, and that event is consumed.
3271 * Meaning, that sequential reads will keep returning a different event,
3272 * and eventually empty the ring buffer if the producer is slower.
3273 */
3274struct ring_buffer_event *
66a8cb95
SR
3275ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3276 unsigned long *lost_events)
7a8e76a3 3277{
554f786e
SR
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 struct ring_buffer_event *event = NULL;
f83c9d0f 3280 unsigned long flags;
8d707e8e
SR
3281 int dolock;
3282
3283 dolock = rb_ok_to_lock();
7a8e76a3 3284
2d622719 3285 again:
554f786e
SR
3286 /* might be called in atomic */
3287 preempt_disable();
3288
9e01c1b7 3289 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3290 goto out;
7a8e76a3 3291
554f786e 3292 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3293 local_irq_save(flags);
3294 if (dolock)
3295 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3296
66a8cb95
SR
3297 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3298 if (event) {
3299 cpu_buffer->lost_events = 0;
469535a5 3300 rb_advance_reader(cpu_buffer);
66a8cb95 3301 }
7a8e76a3 3302
8d707e8e
SR
3303 if (dolock)
3304 spin_unlock(&cpu_buffer->reader_lock);
3305 local_irq_restore(flags);
f83c9d0f 3306
554f786e
SR
3307 out:
3308 preempt_enable();
3309
1b959e18 3310 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3311 goto again;
2d622719 3312
7a8e76a3
SR
3313 return event;
3314}
c4f50183 3315EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3316
3317/**
72c9ddfd 3318 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3319 * @buffer: The ring buffer to read from
3320 * @cpu: The cpu buffer to iterate over
3321 *
72c9ddfd
DM
3322 * This performs the initial preparations necessary to iterate
3323 * through the buffer. Memory is allocated, buffer recording
3324 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3325 *
72c9ddfd
DM
3326 * Disabling buffer recordng prevents the reading from being
3327 * corrupted. This is not a consuming read, so a producer is not
3328 * expected.
3329 *
3330 * After a sequence of ring_buffer_read_prepare calls, the user is
3331 * expected to make at least one call to ring_buffer_prepare_sync.
3332 * Afterwards, ring_buffer_read_start is invoked to get things going
3333 * for real.
3334 *
3335 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3336 */
3337struct ring_buffer_iter *
72c9ddfd 3338ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3339{
3340 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3341 struct ring_buffer_iter *iter;
7a8e76a3 3342
9e01c1b7 3343 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3344 return NULL;
7a8e76a3
SR
3345
3346 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3347 if (!iter)
8aabee57 3348 return NULL;
7a8e76a3
SR
3349
3350 cpu_buffer = buffer->buffers[cpu];
3351
3352 iter->cpu_buffer = cpu_buffer;
3353
3354 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3355
3356 return iter;
3357}
3358EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3359
3360/**
3361 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3362 *
3363 * All previously invoked ring_buffer_read_prepare calls to prepare
3364 * iterators will be synchronized. Afterwards, read_buffer_read_start
3365 * calls on those iterators are allowed.
3366 */
3367void
3368ring_buffer_read_prepare_sync(void)
3369{
7a8e76a3 3370 synchronize_sched();
72c9ddfd
DM
3371}
3372EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3373
3374/**
3375 * ring_buffer_read_start - start a non consuming read of the buffer
3376 * @iter: The iterator returned by ring_buffer_read_prepare
3377 *
3378 * This finalizes the startup of an iteration through the buffer.
3379 * The iterator comes from a call to ring_buffer_read_prepare and
3380 * an intervening ring_buffer_read_prepare_sync must have been
3381 * performed.
3382 *
3383 * Must be paired with ring_buffer_finish.
3384 */
3385void
3386ring_buffer_read_start(struct ring_buffer_iter *iter)
3387{
3388 struct ring_buffer_per_cpu *cpu_buffer;
3389 unsigned long flags;
3390
3391 if (!iter)
3392 return;
3393
3394 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3395
f83c9d0f 3396 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3397 arch_spin_lock(&cpu_buffer->lock);
642edba5 3398 rb_iter_reset(iter);
0199c4e6 3399 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3400 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3401}
c4f50183 3402EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3403
3404/**
3405 * ring_buffer_finish - finish reading the iterator of the buffer
3406 * @iter: The iterator retrieved by ring_buffer_start
3407 *
3408 * This re-enables the recording to the buffer, and frees the
3409 * iterator.
3410 */
3411void
3412ring_buffer_read_finish(struct ring_buffer_iter *iter)
3413{
3414 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3415
3416 atomic_dec(&cpu_buffer->record_disabled);
3417 kfree(iter);
3418}
c4f50183 3419EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3420
3421/**
3422 * ring_buffer_read - read the next item in the ring buffer by the iterator
3423 * @iter: The ring buffer iterator
3424 * @ts: The time stamp of the event read.
3425 *
3426 * This reads the next event in the ring buffer and increments the iterator.
3427 */
3428struct ring_buffer_event *
3429ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3430{
3431 struct ring_buffer_event *event;
f83c9d0f
SR
3432 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3433 unsigned long flags;
7a8e76a3 3434
f83c9d0f 3435 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3436 again:
f83c9d0f 3437 event = rb_iter_peek(iter, ts);
7a8e76a3 3438 if (!event)
f83c9d0f 3439 goto out;
7a8e76a3 3440
7e9391cf
SR
3441 if (event->type_len == RINGBUF_TYPE_PADDING)
3442 goto again;
3443
7a8e76a3 3444 rb_advance_iter(iter);
f83c9d0f
SR
3445 out:
3446 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3447
3448 return event;
3449}
c4f50183 3450EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3451
3452/**
3453 * ring_buffer_size - return the size of the ring buffer (in bytes)
3454 * @buffer: The ring buffer.
3455 */
3456unsigned long ring_buffer_size(struct ring_buffer *buffer)
3457{
3458 return BUF_PAGE_SIZE * buffer->pages;
3459}
c4f50183 3460EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3461
3462static void
3463rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3464{
77ae365e
SR
3465 rb_head_page_deactivate(cpu_buffer);
3466
7a8e76a3 3467 cpu_buffer->head_page
3adc54fa 3468 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3469 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3470 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3471 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3472
6f807acd 3473 cpu_buffer->head_page->read = 0;
bf41a158
SR
3474
3475 cpu_buffer->tail_page = cpu_buffer->head_page;
3476 cpu_buffer->commit_page = cpu_buffer->head_page;
3477
3478 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3479 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3480 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3481 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3482 cpu_buffer->reader_page->read = 0;
7a8e76a3 3483
77ae365e
SR
3484 local_set(&cpu_buffer->commit_overrun, 0);
3485 local_set(&cpu_buffer->overrun, 0);
e4906eff 3486 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3487 local_set(&cpu_buffer->committing, 0);
3488 local_set(&cpu_buffer->commits, 0);
77ae365e 3489 cpu_buffer->read = 0;
69507c06
SR
3490
3491 cpu_buffer->write_stamp = 0;
3492 cpu_buffer->read_stamp = 0;
77ae365e 3493
66a8cb95
SR
3494 cpu_buffer->lost_events = 0;
3495 cpu_buffer->last_overrun = 0;
3496
77ae365e 3497 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3498}
3499
3500/**
3501 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3502 * @buffer: The ring buffer to reset a per cpu buffer of
3503 * @cpu: The CPU buffer to be reset
3504 */
3505void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3506{
3507 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3508 unsigned long flags;
3509
9e01c1b7 3510 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3511 return;
7a8e76a3 3512
41ede23e
SR
3513 atomic_inc(&cpu_buffer->record_disabled);
3514
f83c9d0f
SR
3515 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3516
41b6a95d
SR
3517 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3518 goto out;
3519
0199c4e6 3520 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3521
3522 rb_reset_cpu(cpu_buffer);
3523
0199c4e6 3524 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3525
41b6a95d 3526 out:
f83c9d0f 3527 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3528
3529 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3530}
c4f50183 3531EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3532
3533/**
3534 * ring_buffer_reset - reset a ring buffer
3535 * @buffer: The ring buffer to reset all cpu buffers
3536 */
3537void ring_buffer_reset(struct ring_buffer *buffer)
3538{
7a8e76a3
SR
3539 int cpu;
3540
7a8e76a3 3541 for_each_buffer_cpu(buffer, cpu)
d769041f 3542 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3543}
c4f50183 3544EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3545
3546/**
3547 * rind_buffer_empty - is the ring buffer empty?
3548 * @buffer: The ring buffer to test
3549 */
3550int ring_buffer_empty(struct ring_buffer *buffer)
3551{
3552 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3553 unsigned long flags;
8d707e8e 3554 int dolock;
7a8e76a3 3555 int cpu;
d4788207 3556 int ret;
7a8e76a3 3557
8d707e8e 3558 dolock = rb_ok_to_lock();
7a8e76a3
SR
3559
3560 /* yes this is racy, but if you don't like the race, lock the buffer */
3561 for_each_buffer_cpu(buffer, cpu) {
3562 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3563 local_irq_save(flags);
3564 if (dolock)
3565 spin_lock(&cpu_buffer->reader_lock);
d4788207 3566 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3567 if (dolock)
3568 spin_unlock(&cpu_buffer->reader_lock);
3569 local_irq_restore(flags);
3570
d4788207 3571 if (!ret)
7a8e76a3
SR
3572 return 0;
3573 }
554f786e 3574
7a8e76a3
SR
3575 return 1;
3576}
c4f50183 3577EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3578
3579/**
3580 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3581 * @buffer: The ring buffer
3582 * @cpu: The CPU buffer to test
3583 */
3584int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3585{
3586 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3587 unsigned long flags;
8d707e8e 3588 int dolock;
8aabee57 3589 int ret;
7a8e76a3 3590
9e01c1b7 3591 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3592 return 1;
7a8e76a3 3593
8d707e8e
SR
3594 dolock = rb_ok_to_lock();
3595
7a8e76a3 3596 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3597 local_irq_save(flags);
3598 if (dolock)
3599 spin_lock(&cpu_buffer->reader_lock);
554f786e 3600 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3601 if (dolock)
3602 spin_unlock(&cpu_buffer->reader_lock);
3603 local_irq_restore(flags);
554f786e
SR
3604
3605 return ret;
7a8e76a3 3606}
c4f50183 3607EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3608
85bac32c 3609#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3610/**
3611 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3612 * @buffer_a: One buffer to swap with
3613 * @buffer_b: The other buffer to swap with
3614 *
3615 * This function is useful for tracers that want to take a "snapshot"
3616 * of a CPU buffer and has another back up buffer lying around.
3617 * it is expected that the tracer handles the cpu buffer not being
3618 * used at the moment.
3619 */
3620int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3621 struct ring_buffer *buffer_b, int cpu)
3622{
3623 struct ring_buffer_per_cpu *cpu_buffer_a;
3624 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3625 int ret = -EINVAL;
3626
9e01c1b7
RR
3627 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3628 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3629 goto out;
7a8e76a3
SR
3630
3631 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3632 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3633 goto out;
3634
3635 ret = -EAGAIN;
7a8e76a3 3636
97b17efe 3637 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3638 goto out;
97b17efe
SR
3639
3640 if (atomic_read(&buffer_a->record_disabled))
554f786e 3641 goto out;
97b17efe
SR
3642
3643 if (atomic_read(&buffer_b->record_disabled))
554f786e 3644 goto out;
97b17efe 3645
7a8e76a3
SR
3646 cpu_buffer_a = buffer_a->buffers[cpu];
3647 cpu_buffer_b = buffer_b->buffers[cpu];
3648
97b17efe 3649 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3650 goto out;
97b17efe
SR
3651
3652 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3653 goto out;
97b17efe 3654
7a8e76a3
SR
3655 /*
3656 * We can't do a synchronize_sched here because this
3657 * function can be called in atomic context.
3658 * Normally this will be called from the same CPU as cpu.
3659 * If not it's up to the caller to protect this.
3660 */
3661 atomic_inc(&cpu_buffer_a->record_disabled);
3662 atomic_inc(&cpu_buffer_b->record_disabled);
3663
98277991
SR
3664 ret = -EBUSY;
3665 if (local_read(&cpu_buffer_a->committing))
3666 goto out_dec;
3667 if (local_read(&cpu_buffer_b->committing))
3668 goto out_dec;
3669
7a8e76a3
SR
3670 buffer_a->buffers[cpu] = cpu_buffer_b;
3671 buffer_b->buffers[cpu] = cpu_buffer_a;
3672
3673 cpu_buffer_b->buffer = buffer_a;
3674 cpu_buffer_a->buffer = buffer_b;
3675
98277991
SR
3676 ret = 0;
3677
3678out_dec:
7a8e76a3
SR
3679 atomic_dec(&cpu_buffer_a->record_disabled);
3680 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3681out:
554f786e 3682 return ret;
7a8e76a3 3683}
c4f50183 3684EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3685#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3686
8789a9e7
SR
3687/**
3688 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3689 * @buffer: the buffer to allocate for.
3690 *
3691 * This function is used in conjunction with ring_buffer_read_page.
3692 * When reading a full page from the ring buffer, these functions
3693 * can be used to speed up the process. The calling function should
3694 * allocate a few pages first with this function. Then when it
3695 * needs to get pages from the ring buffer, it passes the result
3696 * of this function into ring_buffer_read_page, which will swap
3697 * the page that was allocated, with the read page of the buffer.
3698 *
3699 * Returns:
3700 * The page allocated, or NULL on error.
3701 */
3702void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3703{
044fa782 3704 struct buffer_data_page *bpage;
ef7a4a16 3705 unsigned long addr;
8789a9e7
SR
3706
3707 addr = __get_free_page(GFP_KERNEL);
3708 if (!addr)
3709 return NULL;
3710
044fa782 3711 bpage = (void *)addr;
8789a9e7 3712
ef7a4a16
SR
3713 rb_init_page(bpage);
3714
044fa782 3715 return bpage;
8789a9e7 3716}
d6ce96da 3717EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3718
3719/**
3720 * ring_buffer_free_read_page - free an allocated read page
3721 * @buffer: the buffer the page was allocate for
3722 * @data: the page to free
3723 *
3724 * Free a page allocated from ring_buffer_alloc_read_page.
3725 */
3726void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3727{
3728 free_page((unsigned long)data);
3729}
d6ce96da 3730EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3731
3732/**
3733 * ring_buffer_read_page - extract a page from the ring buffer
3734 * @buffer: buffer to extract from
3735 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3736 * @len: amount to extract
8789a9e7
SR
3737 * @cpu: the cpu of the buffer to extract
3738 * @full: should the extraction only happen when the page is full.
3739 *
3740 * This function will pull out a page from the ring buffer and consume it.
3741 * @data_page must be the address of the variable that was returned
3742 * from ring_buffer_alloc_read_page. This is because the page might be used
3743 * to swap with a page in the ring buffer.
3744 *
3745 * for example:
b85fa01e 3746 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3747 * if (!rpage)
3748 * return error;
ef7a4a16 3749 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3750 * if (ret >= 0)
3751 * process_page(rpage, ret);
8789a9e7
SR
3752 *
3753 * When @full is set, the function will not return true unless
3754 * the writer is off the reader page.
3755 *
3756 * Note: it is up to the calling functions to handle sleeps and wakeups.
3757 * The ring buffer can be used anywhere in the kernel and can not
3758 * blindly call wake_up. The layer that uses the ring buffer must be
3759 * responsible for that.
3760 *
3761 * Returns:
667d2412
LJ
3762 * >=0 if data has been transferred, returns the offset of consumed data.
3763 * <0 if no data has been transferred.
8789a9e7
SR
3764 */
3765int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3766 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3767{
3768 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3769 struct ring_buffer_event *event;
044fa782 3770 struct buffer_data_page *bpage;
ef7a4a16 3771 struct buffer_page *reader;
ff0ff84a 3772 unsigned long missed_events;
8789a9e7 3773 unsigned long flags;
ef7a4a16 3774 unsigned int commit;
667d2412 3775 unsigned int read;
4f3640f8 3776 u64 save_timestamp;
667d2412 3777 int ret = -1;
8789a9e7 3778
554f786e
SR
3779 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3780 goto out;
3781
474d32b6
SR
3782 /*
3783 * If len is not big enough to hold the page header, then
3784 * we can not copy anything.
3785 */
3786 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3787 goto out;
474d32b6
SR
3788
3789 len -= BUF_PAGE_HDR_SIZE;
3790
8789a9e7 3791 if (!data_page)
554f786e 3792 goto out;
8789a9e7 3793
044fa782
SR
3794 bpage = *data_page;
3795 if (!bpage)
554f786e 3796 goto out;
8789a9e7
SR
3797
3798 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3799
ef7a4a16
SR
3800 reader = rb_get_reader_page(cpu_buffer);
3801 if (!reader)
554f786e 3802 goto out_unlock;
8789a9e7 3803
ef7a4a16
SR
3804 event = rb_reader_event(cpu_buffer);
3805
3806 read = reader->read;
3807 commit = rb_page_commit(reader);
667d2412 3808
66a8cb95 3809 /* Check if any events were dropped */
ff0ff84a 3810 missed_events = cpu_buffer->lost_events;
66a8cb95 3811
8789a9e7 3812 /*
474d32b6
SR
3813 * If this page has been partially read or
3814 * if len is not big enough to read the rest of the page or
3815 * a writer is still on the page, then
3816 * we must copy the data from the page to the buffer.
3817 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3818 */
474d32b6 3819 if (read || (len < (commit - read)) ||
ef7a4a16 3820 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3821 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3822 unsigned int rpos = read;
3823 unsigned int pos = 0;
ef7a4a16 3824 unsigned int size;
8789a9e7
SR
3825
3826 if (full)
554f786e 3827 goto out_unlock;
8789a9e7 3828
ef7a4a16
SR
3829 if (len > (commit - read))
3830 len = (commit - read);
3831
3832 size = rb_event_length(event);
3833
3834 if (len < size)
554f786e 3835 goto out_unlock;
ef7a4a16 3836
4f3640f8
SR
3837 /* save the current timestamp, since the user will need it */
3838 save_timestamp = cpu_buffer->read_stamp;
3839
ef7a4a16
SR
3840 /* Need to copy one event at a time */
3841 do {
474d32b6 3842 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3843
3844 len -= size;
3845
3846 rb_advance_reader(cpu_buffer);
474d32b6
SR
3847 rpos = reader->read;
3848 pos += size;
ef7a4a16 3849
18fab912
HY
3850 if (rpos >= commit)
3851 break;
3852
ef7a4a16
SR
3853 event = rb_reader_event(cpu_buffer);
3854 size = rb_event_length(event);
3855 } while (len > size);
667d2412
LJ
3856
3857 /* update bpage */
ef7a4a16 3858 local_set(&bpage->commit, pos);
4f3640f8 3859 bpage->time_stamp = save_timestamp;
ef7a4a16 3860
474d32b6
SR
3861 /* we copied everything to the beginning */
3862 read = 0;
8789a9e7 3863 } else {
afbab76a 3864 /* update the entry counter */
77ae365e 3865 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3866
8789a9e7 3867 /* swap the pages */
044fa782 3868 rb_init_page(bpage);
ef7a4a16
SR
3869 bpage = reader->page;
3870 reader->page = *data_page;
3871 local_set(&reader->write, 0);
778c55d4 3872 local_set(&reader->entries, 0);
ef7a4a16 3873 reader->read = 0;
044fa782 3874 *data_page = bpage;
ff0ff84a
SR
3875
3876 /*
3877 * Use the real_end for the data size,
3878 * This gives us a chance to store the lost events
3879 * on the page.
3880 */
3881 if (reader->real_end)
3882 local_set(&bpage->commit, reader->real_end);
8789a9e7 3883 }
667d2412 3884 ret = read;
8789a9e7 3885
66a8cb95 3886 cpu_buffer->lost_events = 0;
2711ca23
SR
3887
3888 commit = local_read(&bpage->commit);
66a8cb95
SR
3889 /*
3890 * Set a flag in the commit field if we lost events
3891 */
ff0ff84a 3892 if (missed_events) {
ff0ff84a
SR
3893 /* If there is room at the end of the page to save the
3894 * missed events, then record it there.
3895 */
3896 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3897 memcpy(&bpage->data[commit], &missed_events,
3898 sizeof(missed_events));
3899 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 3900 commit += sizeof(missed_events);
ff0ff84a 3901 }
66a8cb95 3902 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 3903 }
66a8cb95 3904
2711ca23
SR
3905 /*
3906 * This page may be off to user land. Zero it out here.
3907 */
3908 if (commit < BUF_PAGE_SIZE)
3909 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3910
554f786e 3911 out_unlock:
8789a9e7
SR
3912 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3913
554f786e 3914 out:
8789a9e7
SR
3915 return ret;
3916}
d6ce96da 3917EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3918
1155de47 3919#ifdef CONFIG_TRACING
a3583244
SR
3920static ssize_t
3921rb_simple_read(struct file *filp, char __user *ubuf,
3922 size_t cnt, loff_t *ppos)
3923{
5e39841c 3924 unsigned long *p = filp->private_data;
a3583244
SR
3925 char buf[64];
3926 int r;
3927
033601a3
SR
3928 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3929 r = sprintf(buf, "permanently disabled\n");
3930 else
3931 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3932
3933 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3934}
3935
3936static ssize_t
3937rb_simple_write(struct file *filp, const char __user *ubuf,
3938 size_t cnt, loff_t *ppos)
3939{
5e39841c 3940 unsigned long *p = filp->private_data;
a3583244 3941 char buf[64];
5e39841c 3942 unsigned long val;
a3583244
SR
3943 int ret;
3944
3945 if (cnt >= sizeof(buf))
3946 return -EINVAL;
3947
3948 if (copy_from_user(&buf, ubuf, cnt))
3949 return -EFAULT;
3950
3951 buf[cnt] = 0;
3952
3953 ret = strict_strtoul(buf, 10, &val);
3954 if (ret < 0)
3955 return ret;
3956
033601a3
SR
3957 if (val)
3958 set_bit(RB_BUFFERS_ON_BIT, p);
3959 else
3960 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3961
3962 (*ppos)++;
3963
3964 return cnt;
3965}
3966
5e2336a0 3967static const struct file_operations rb_simple_fops = {
a3583244
SR
3968 .open = tracing_open_generic,
3969 .read = rb_simple_read,
3970 .write = rb_simple_write,
3971};
3972
3973
3974static __init int rb_init_debugfs(void)
3975{
3976 struct dentry *d_tracer;
a3583244
SR
3977
3978 d_tracer = tracing_init_dentry();
3979
5452af66
FW
3980 trace_create_file("tracing_on", 0644, d_tracer,
3981 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3982
3983 return 0;
3984}
3985
3986fs_initcall(rb_init_debugfs);
1155de47 3987#endif
554f786e 3988
59222efe 3989#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3990static int rb_cpu_notify(struct notifier_block *self,
3991 unsigned long action, void *hcpu)
554f786e
SR
3992{
3993 struct ring_buffer *buffer =
3994 container_of(self, struct ring_buffer, cpu_notify);
3995 long cpu = (long)hcpu;
3996
3997 switch (action) {
3998 case CPU_UP_PREPARE:
3999 case CPU_UP_PREPARE_FROZEN:
3f237a79 4000 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4001 return NOTIFY_OK;
4002
4003 buffer->buffers[cpu] =
4004 rb_allocate_cpu_buffer(buffer, cpu);
4005 if (!buffer->buffers[cpu]) {
4006 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4007 cpu);
4008 return NOTIFY_OK;
4009 }
4010 smp_wmb();
3f237a79 4011 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4012 break;
4013 case CPU_DOWN_PREPARE:
4014 case CPU_DOWN_PREPARE_FROZEN:
4015 /*
4016 * Do nothing.
4017 * If we were to free the buffer, then the user would
4018 * lose any trace that was in the buffer.
4019 */
4020 break;
4021 default:
4022 break;
4023 }
4024 return NOTIFY_OK;
4025}
4026#endif