]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/trace/ring_buffer.c
tracing, function_graph: Add context-info support for function_graph tracer
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
d1b182a8
SR
26/*
27 * The ring buffer header is special. We must manually up keep it.
28 */
29int ring_buffer_print_entry_header(struct trace_seq *s)
30{
31 int ret;
32
334d4169
LJ
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
44
45 return ret;
46}
47
5cc98548
SR
48/*
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
53 *
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
57 *
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
61 *
62 * Here's some silly ASCII art.
63 *
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
73 *
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
95 *
96 *
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
106 *
107 *
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
111 *
112 * We will be using cmpxchg soon to make all this lockless.
113 *
114 */
115
033601a3
SR
116/*
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
122 *
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
125 *
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
129 *
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
132 */
133
134/*
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
137 *
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
143 */
144
145enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
148};
149
150enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
153};
154
5e39841c 155static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 156
474d32b6
SR
157#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158
a3583244
SR
159/**
160 * tracing_on - enable all tracing buffers
161 *
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
164 */
165void tracing_on(void)
166{
033601a3 167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 168}
c4f50183 169EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
170
171/**
172 * tracing_off - turn off all tracing buffers
173 *
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
178 */
179void tracing_off(void)
180{
033601a3
SR
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182}
c4f50183 183EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
184
185/**
186 * tracing_off_permanent - permanently disable ring buffers
187 *
188 * This function, once called, will disable all ring buffers
c3706f00 189 * permanently.
033601a3
SR
190 */
191void tracing_off_permanent(void)
192{
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
194}
195
988ae9d6
SR
196/**
197 * tracing_is_on - show state of ring buffers enabled
198 */
199int tracing_is_on(void)
200{
201 return ring_buffer_flags == RB_BUFFERS_ON;
202}
203EXPORT_SYMBOL_GPL(tracing_is_on);
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169 207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 208#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 209
2271048d
SR
210#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211# define RB_FORCE_8BYTE_ALIGNMENT 0
212# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
213#else
214# define RB_FORCE_8BYTE_ALIGNMENT 1
215# define RB_ARCH_ALIGNMENT 8U
216#endif
217
334d4169
LJ
218/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
220
221enum {
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
224};
225
69d1b839
SR
226#define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228
2d622719
TZ
229static inline int rb_null_event(struct ring_buffer_event *event)
230{
a1863c21 231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
232}
233
234static void rb_event_set_padding(struct ring_buffer_event *event)
235{
a1863c21 236 /* padding has a NULL time_delta */
334d4169 237 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
238 event->time_delta = 0;
239}
240
34a148bf 241static unsigned
2d622719 242rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
243{
244 unsigned length;
245
334d4169
LJ
246 if (event->type_len)
247 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
248 else
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
251}
252
69d1b839
SR
253/*
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
256 * time extend.
257 */
258static inline unsigned
2d622719
TZ
259rb_event_length(struct ring_buffer_event *event)
260{
334d4169 261 switch (event->type_len) {
7a8e76a3 262 case RINGBUF_TYPE_PADDING:
2d622719
TZ
263 if (rb_null_event(event))
264 /* undefined */
265 return -1;
334d4169 266 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
267
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
270
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
273
274 case RINGBUF_TYPE_DATA:
2d622719 275 return rb_event_data_length(event);
7a8e76a3
SR
276 default:
277 BUG();
278 }
279 /* not hit */
280 return 0;
281}
282
69d1b839
SR
283/*
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
286 */
287static inline unsigned
288rb_event_ts_length(struct ring_buffer_event *event)
289{
290 unsigned len = 0;
291
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
296 }
297 return len + rb_event_length(event);
298}
299
7a8e76a3
SR
300/**
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
69d1b839
SR
303 *
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
7a8e76a3
SR
309 */
310unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311{
69d1b839
SR
312 unsigned length;
313
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
316
317 length = rb_event_length(event);
334d4169 318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
319 return length;
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
323 return length;
7a8e76a3 324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
326
327/* inline for ring buffer fast paths */
34a148bf 328static void *
7a8e76a3
SR
329rb_event_data(struct ring_buffer_event *event)
330{
69d1b839
SR
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
334d4169 333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 334 /* If length is in len field, then array[0] has the data */
334d4169 335 if (event->type_len)
7a8e76a3
SR
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
339}
340
341/**
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
344 */
345void *ring_buffer_event_data(struct ring_buffer_event *event)
346{
347 return rb_event_data(event);
348}
c4f50183 349EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
350
351#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 352 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
353
354#define TS_SHIFT 27
355#define TS_MASK ((1ULL << TS_SHIFT) - 1)
356#define TS_DELTA_TEST (~TS_MASK)
357
66a8cb95
SR
358/* Flag when events were overwritten */
359#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
360/* Missed count stored at end */
361#define RB_MISSED_STORED (1 << 30)
66a8cb95 362
abc9b56d 363struct buffer_data_page {
e4c2ce82 364 u64 time_stamp; /* page time stamp */
c3706f00 365 local_t commit; /* write committed index */
abc9b56d
SR
366 unsigned char data[]; /* data of buffer page */
367};
368
77ae365e
SR
369/*
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
375 * lockless.
376 */
abc9b56d 377struct buffer_page {
778c55d4 378 struct list_head list; /* list of buffer pages */
abc9b56d 379 local_t write; /* index for next write */
6f807acd 380 unsigned read; /* index for next read */
778c55d4 381 local_t entries; /* entries on this page */
ff0ff84a 382 unsigned long real_end; /* real end of data */
abc9b56d 383 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
384};
385
77ae365e
SR
386/*
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
391 *
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
395 *
396 * The counter is 20 bits, and the state data is 12.
397 */
398#define RB_WRITE_MASK 0xfffff
399#define RB_WRITE_INTCNT (1 << 20)
400
044fa782 401static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 402{
044fa782 403 local_set(&bpage->commit, 0);
abc9b56d
SR
404}
405
474d32b6
SR
406/**
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
409 *
410 * Returns the amount of data on the page, including buffer page header.
411 */
ef7a4a16
SR
412size_t ring_buffer_page_len(void *page)
413{
474d32b6
SR
414 return local_read(&((struct buffer_data_page *)page)->commit)
415 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
416}
417
ed56829c
SR
418/*
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420 * this issue out.
421 */
34a148bf 422static void free_buffer_page(struct buffer_page *bpage)
ed56829c 423{
34a148bf 424 free_page((unsigned long)bpage->page);
e4c2ce82 425 kfree(bpage);
ed56829c
SR
426}
427
7a8e76a3
SR
428/*
429 * We need to fit the time_stamp delta into 27 bits.
430 */
431static inline int test_time_stamp(u64 delta)
432{
433 if (delta & TS_DELTA_TEST)
434 return 1;
435 return 0;
436}
437
474d32b6 438#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 439
be957c44
SR
440/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442
d1b182a8
SR
443int ring_buffer_print_page_header(struct trace_seq *s)
444{
445 struct buffer_data_page field;
446 int ret;
447
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
d1b182a8
SR
452
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 455 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
d1b182a8 458
66a8cb95
SR
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
462 1,
463 (unsigned int)is_signed_type(long));
464
d1b182a8 465 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 467 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
d1b182a8
SR
470
471 return ret;
472}
473
7a8e76a3
SR
474/*
475 * head_page == tail_page && head == tail then buffer is empty.
476 */
477struct ring_buffer_per_cpu {
478 int cpu;
985023de 479 atomic_t record_disabled;
7a8e76a3 480 struct ring_buffer *buffer;
77ae365e 481 spinlock_t reader_lock; /* serialize readers */
445c8951 482 arch_spinlock_t lock;
7a8e76a3 483 struct lock_class_key lock_key;
3adc54fa 484 struct list_head *pages;
6f807acd
SR
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
c3706f00 487 struct buffer_page *commit_page; /* committed pages */
d769041f 488 struct buffer_page *reader_page;
66a8cb95
SR
489 unsigned long lost_events;
490 unsigned long last_overrun;
77ae365e
SR
491 local_t commit_overrun;
492 local_t overrun;
e4906eff 493 local_t entries;
fa743953
SR
494 local_t committing;
495 local_t commits;
77ae365e 496 unsigned long read;
7a8e76a3
SR
497 u64 write_stamp;
498 u64 read_stamp;
7a8e76a3
SR
499};
500
501struct ring_buffer {
7a8e76a3
SR
502 unsigned pages;
503 unsigned flags;
504 int cpus;
7a8e76a3 505 atomic_t record_disabled;
00f62f61 506 cpumask_var_t cpumask;
7a8e76a3 507
1f8a6a10
PZ
508 struct lock_class_key *reader_lock_key;
509
7a8e76a3
SR
510 struct mutex mutex;
511
512 struct ring_buffer_per_cpu **buffers;
554f786e 513
59222efe 514#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
515 struct notifier_block cpu_notify;
516#endif
37886f6a 517 u64 (*clock)(void);
7a8e76a3
SR
518};
519
520struct ring_buffer_iter {
521 struct ring_buffer_per_cpu *cpu_buffer;
522 unsigned long head;
523 struct buffer_page *head_page;
492a74f4
SR
524 struct buffer_page *cache_reader_page;
525 unsigned long cache_read;
7a8e76a3
SR
526 u64 read_stamp;
527};
528
f536aafc 529/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
530#define RB_WARN_ON(b, cond) \
531 ({ \
532 int _____ret = unlikely(cond); \
533 if (_____ret) { \
534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 struct ring_buffer_per_cpu *__b = \
536 (void *)b; \
537 atomic_inc(&__b->buffer->record_disabled); \
538 } else \
539 atomic_inc(&b->record_disabled); \
540 WARN_ON(1); \
541 } \
542 _____ret; \
3e89c7bb 543 })
f536aafc 544
37886f6a
SR
545/* Up this if you want to test the TIME_EXTENTS and normalization */
546#define DEBUG_SHIFT 0
547
6d3f1e12 548static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
549{
550 /* shift to debug/test normalization and TIME_EXTENTS */
551 return buffer->clock() << DEBUG_SHIFT;
552}
553
37886f6a
SR
554u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
555{
556 u64 time;
557
558 preempt_disable_notrace();
6d3f1e12 559 time = rb_time_stamp(buffer);
37886f6a
SR
560 preempt_enable_no_resched_notrace();
561
562 return time;
563}
564EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
565
566void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567 int cpu, u64 *ts)
568{
569 /* Just stupid testing the normalize function and deltas */
570 *ts >>= DEBUG_SHIFT;
571}
572EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
573
77ae365e
SR
574/*
575 * Making the ring buffer lockless makes things tricky.
576 * Although writes only happen on the CPU that they are on,
577 * and they only need to worry about interrupts. Reads can
578 * happen on any CPU.
579 *
580 * The reader page is always off the ring buffer, but when the
581 * reader finishes with a page, it needs to swap its page with
582 * a new one from the buffer. The reader needs to take from
583 * the head (writes go to the tail). But if a writer is in overwrite
584 * mode and wraps, it must push the head page forward.
585 *
586 * Here lies the problem.
587 *
588 * The reader must be careful to replace only the head page, and
589 * not another one. As described at the top of the file in the
590 * ASCII art, the reader sets its old page to point to the next
591 * page after head. It then sets the page after head to point to
592 * the old reader page. But if the writer moves the head page
593 * during this operation, the reader could end up with the tail.
594 *
595 * We use cmpxchg to help prevent this race. We also do something
596 * special with the page before head. We set the LSB to 1.
597 *
598 * When the writer must push the page forward, it will clear the
599 * bit that points to the head page, move the head, and then set
600 * the bit that points to the new head page.
601 *
602 * We also don't want an interrupt coming in and moving the head
603 * page on another writer. Thus we use the second LSB to catch
604 * that too. Thus:
605 *
606 * head->list->prev->next bit 1 bit 0
607 * ------- -------
608 * Normal page 0 0
609 * Points to head page 0 1
610 * New head page 1 0
611 *
612 * Note we can not trust the prev pointer of the head page, because:
613 *
614 * +----+ +-----+ +-----+
615 * | |------>| T |---X--->| N |
616 * | |<------| | | |
617 * +----+ +-----+ +-----+
618 * ^ ^ |
619 * | +-----+ | |
620 * +----------| R |----------+ |
621 * | |<-----------+
622 * +-----+
623 *
624 * Key: ---X--> HEAD flag set in pointer
625 * T Tail page
626 * R Reader page
627 * N Next page
628 *
629 * (see __rb_reserve_next() to see where this happens)
630 *
631 * What the above shows is that the reader just swapped out
632 * the reader page with a page in the buffer, but before it
633 * could make the new header point back to the new page added
634 * it was preempted by a writer. The writer moved forward onto
635 * the new page added by the reader and is about to move forward
636 * again.
637 *
638 * You can see, it is legitimate for the previous pointer of
639 * the head (or any page) not to point back to itself. But only
640 * temporarially.
641 */
642
643#define RB_PAGE_NORMAL 0UL
644#define RB_PAGE_HEAD 1UL
645#define RB_PAGE_UPDATE 2UL
646
647
648#define RB_FLAG_MASK 3UL
649
650/* PAGE_MOVED is not part of the mask */
651#define RB_PAGE_MOVED 4UL
652
653/*
654 * rb_list_head - remove any bit
655 */
656static struct list_head *rb_list_head(struct list_head *list)
657{
658 unsigned long val = (unsigned long)list;
659
660 return (struct list_head *)(val & ~RB_FLAG_MASK);
661}
662
663/*
6d3f1e12 664 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
665 *
666 * Because the reader may move the head_page pointer, we can
667 * not trust what the head page is (it may be pointing to
668 * the reader page). But if the next page is a header page,
669 * its flags will be non zero.
670 */
42b16b3f 671static inline int
77ae365e
SR
672rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673 struct buffer_page *page, struct list_head *list)
674{
675 unsigned long val;
676
677 val = (unsigned long)list->next;
678
679 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680 return RB_PAGE_MOVED;
681
682 return val & RB_FLAG_MASK;
683}
684
685/*
686 * rb_is_reader_page
687 *
688 * The unique thing about the reader page, is that, if the
689 * writer is ever on it, the previous pointer never points
690 * back to the reader page.
691 */
692static int rb_is_reader_page(struct buffer_page *page)
693{
694 struct list_head *list = page->list.prev;
695
696 return rb_list_head(list->next) != &page->list;
697}
698
699/*
700 * rb_set_list_to_head - set a list_head to be pointing to head.
701 */
702static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703 struct list_head *list)
704{
705 unsigned long *ptr;
706
707 ptr = (unsigned long *)&list->next;
708 *ptr |= RB_PAGE_HEAD;
709 *ptr &= ~RB_PAGE_UPDATE;
710}
711
712/*
713 * rb_head_page_activate - sets up head page
714 */
715static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
716{
717 struct buffer_page *head;
718
719 head = cpu_buffer->head_page;
720 if (!head)
721 return;
722
723 /*
724 * Set the previous list pointer to have the HEAD flag.
725 */
726 rb_set_list_to_head(cpu_buffer, head->list.prev);
727}
728
729static void rb_list_head_clear(struct list_head *list)
730{
731 unsigned long *ptr = (unsigned long *)&list->next;
732
733 *ptr &= ~RB_FLAG_MASK;
734}
735
736/*
737 * rb_head_page_dactivate - clears head page ptr (for free list)
738 */
739static void
740rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
741{
742 struct list_head *hd;
743
744 /* Go through the whole list and clear any pointers found. */
745 rb_list_head_clear(cpu_buffer->pages);
746
747 list_for_each(hd, cpu_buffer->pages)
748 rb_list_head_clear(hd);
749}
750
751static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752 struct buffer_page *head,
753 struct buffer_page *prev,
754 int old_flag, int new_flag)
755{
756 struct list_head *list;
757 unsigned long val = (unsigned long)&head->list;
758 unsigned long ret;
759
760 list = &prev->list;
761
762 val &= ~RB_FLAG_MASK;
763
08a40816
SR
764 ret = cmpxchg((unsigned long *)&list->next,
765 val | old_flag, val | new_flag);
77ae365e
SR
766
767 /* check if the reader took the page */
768 if ((ret & ~RB_FLAG_MASK) != val)
769 return RB_PAGE_MOVED;
770
771 return ret & RB_FLAG_MASK;
772}
773
774static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775 struct buffer_page *head,
776 struct buffer_page *prev,
777 int old_flag)
778{
779 return rb_head_page_set(cpu_buffer, head, prev,
780 old_flag, RB_PAGE_UPDATE);
781}
782
783static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784 struct buffer_page *head,
785 struct buffer_page *prev,
786 int old_flag)
787{
788 return rb_head_page_set(cpu_buffer, head, prev,
789 old_flag, RB_PAGE_HEAD);
790}
791
792static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793 struct buffer_page *head,
794 struct buffer_page *prev,
795 int old_flag)
796{
797 return rb_head_page_set(cpu_buffer, head, prev,
798 old_flag, RB_PAGE_NORMAL);
799}
800
801static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802 struct buffer_page **bpage)
803{
804 struct list_head *p = rb_list_head((*bpage)->list.next);
805
806 *bpage = list_entry(p, struct buffer_page, list);
807}
808
809static struct buffer_page *
810rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
811{
812 struct buffer_page *head;
813 struct buffer_page *page;
814 struct list_head *list;
815 int i;
816
817 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818 return NULL;
819
820 /* sanity check */
821 list = cpu_buffer->pages;
822 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823 return NULL;
824
825 page = head = cpu_buffer->head_page;
826 /*
827 * It is possible that the writer moves the header behind
828 * where we started, and we miss in one loop.
829 * A second loop should grab the header, but we'll do
830 * three loops just because I'm paranoid.
831 */
832 for (i = 0; i < 3; i++) {
833 do {
834 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835 cpu_buffer->head_page = page;
836 return page;
837 }
838 rb_inc_page(cpu_buffer, &page);
839 } while (page != head);
840 }
841
842 RB_WARN_ON(cpu_buffer, 1);
843
844 return NULL;
845}
846
847static int rb_head_page_replace(struct buffer_page *old,
848 struct buffer_page *new)
849{
850 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851 unsigned long val;
852 unsigned long ret;
853
854 val = *ptr & ~RB_FLAG_MASK;
855 val |= RB_PAGE_HEAD;
856
08a40816 857 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
858
859 return ret == val;
860}
861
862/*
863 * rb_tail_page_update - move the tail page forward
864 *
865 * Returns 1 if moved tail page, 0 if someone else did.
866 */
867static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868 struct buffer_page *tail_page,
869 struct buffer_page *next_page)
870{
871 struct buffer_page *old_tail;
872 unsigned long old_entries;
873 unsigned long old_write;
874 int ret = 0;
875
876 /*
877 * The tail page now needs to be moved forward.
878 *
879 * We need to reset the tail page, but without messing
880 * with possible erasing of data brought in by interrupts
881 * that have moved the tail page and are currently on it.
882 *
883 * We add a counter to the write field to denote this.
884 */
885 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
887
888 /*
889 * Just make sure we have seen our old_write and synchronize
890 * with any interrupts that come in.
891 */
892 barrier();
893
894 /*
895 * If the tail page is still the same as what we think
896 * it is, then it is up to us to update the tail
897 * pointer.
898 */
899 if (tail_page == cpu_buffer->tail_page) {
900 /* Zero the write counter */
901 unsigned long val = old_write & ~RB_WRITE_MASK;
902 unsigned long eval = old_entries & ~RB_WRITE_MASK;
903
904 /*
905 * This will only succeed if an interrupt did
906 * not come in and change it. In which case, we
907 * do not want to modify it.
da706d8b
LJ
908 *
909 * We add (void) to let the compiler know that we do not care
910 * about the return value of these functions. We use the
911 * cmpxchg to only update if an interrupt did not already
912 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 913 */
da706d8b
LJ
914 (void)local_cmpxchg(&next_page->write, old_write, val);
915 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
916
917 /*
918 * No need to worry about races with clearing out the commit.
919 * it only can increment when a commit takes place. But that
920 * only happens in the outer most nested commit.
921 */
922 local_set(&next_page->page->commit, 0);
923
924 old_tail = cmpxchg(&cpu_buffer->tail_page,
925 tail_page, next_page);
926
927 if (old_tail == tail_page)
928 ret = 1;
929 }
930
931 return ret;
932}
933
934static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935 struct buffer_page *bpage)
936{
937 unsigned long val = (unsigned long)bpage;
938
939 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940 return 1;
941
942 return 0;
943}
944
945/**
946 * rb_check_list - make sure a pointer to a list has the last bits zero
947 */
948static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949 struct list_head *list)
950{
951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952 return 1;
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954 return 1;
955 return 0;
956}
957
7a8e76a3
SR
958/**
959 * check_pages - integrity check of buffer pages
960 * @cpu_buffer: CPU buffer with pages to test
961 *
c3706f00 962 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
963 * been corrupted.
964 */
965static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
966{
3adc54fa 967 struct list_head *head = cpu_buffer->pages;
044fa782 968 struct buffer_page *bpage, *tmp;
7a8e76a3 969
77ae365e
SR
970 rb_head_page_deactivate(cpu_buffer);
971
3e89c7bb
SR
972 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973 return -1;
974 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975 return -1;
7a8e76a3 976
77ae365e
SR
977 if (rb_check_list(cpu_buffer, head))
978 return -1;
979
044fa782 980 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 981 if (RB_WARN_ON(cpu_buffer,
044fa782 982 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
983 return -1;
984 if (RB_WARN_ON(cpu_buffer,
044fa782 985 bpage->list.prev->next != &bpage->list))
3e89c7bb 986 return -1;
77ae365e
SR
987 if (rb_check_list(cpu_buffer, &bpage->list))
988 return -1;
7a8e76a3
SR
989 }
990
77ae365e
SR
991 rb_head_page_activate(cpu_buffer);
992
7a8e76a3
SR
993 return 0;
994}
995
7a8e76a3
SR
996static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997 unsigned nr_pages)
998{
044fa782 999 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1000 LIST_HEAD(pages);
1001 unsigned i;
1002
3adc54fa
SR
1003 WARN_ON(!nr_pages);
1004
7a8e76a3 1005 for (i = 0; i < nr_pages; i++) {
7ea59064
VN
1006 struct page *page;
1007
044fa782 1008 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 1009 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 1010 if (!bpage)
e4c2ce82 1011 goto free_pages;
77ae365e
SR
1012
1013 rb_check_bpage(cpu_buffer, bpage);
1014
044fa782 1015 list_add(&bpage->list, &pages);
e4c2ce82 1016
7ea59064
VN
1017 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1018 GFP_KERNEL, 0);
1019 if (!page)
7a8e76a3 1020 goto free_pages;
7ea59064 1021 bpage->page = page_address(page);
044fa782 1022 rb_init_page(bpage->page);
7a8e76a3
SR
1023 }
1024
3adc54fa
SR
1025 /*
1026 * The ring buffer page list is a circular list that does not
1027 * start and end with a list head. All page list items point to
1028 * other pages.
1029 */
1030 cpu_buffer->pages = pages.next;
1031 list_del(&pages);
7a8e76a3
SR
1032
1033 rb_check_pages(cpu_buffer);
1034
1035 return 0;
1036
1037 free_pages:
044fa782
SR
1038 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1039 list_del_init(&bpage->list);
1040 free_buffer_page(bpage);
7a8e76a3
SR
1041 }
1042 return -ENOMEM;
1043}
1044
1045static struct ring_buffer_per_cpu *
1046rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1047{
1048 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1049 struct buffer_page *bpage;
7ea59064 1050 struct page *page;
7a8e76a3
SR
1051 int ret;
1052
1053 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1054 GFP_KERNEL, cpu_to_node(cpu));
1055 if (!cpu_buffer)
1056 return NULL;
1057
1058 cpu_buffer->cpu = cpu;
1059 cpu_buffer->buffer = buffer;
f83c9d0f 1060 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1061 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1062 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
7a8e76a3 1063
044fa782 1064 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1065 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1066 if (!bpage)
e4c2ce82
SR
1067 goto fail_free_buffer;
1068
77ae365e
SR
1069 rb_check_bpage(cpu_buffer, bpage);
1070
044fa782 1071 cpu_buffer->reader_page = bpage;
7ea59064
VN
1072 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1073 if (!page)
e4c2ce82 1074 goto fail_free_reader;
7ea59064 1075 bpage->page = page_address(page);
044fa782 1076 rb_init_page(bpage->page);
e4c2ce82 1077
d769041f 1078 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1079
7a8e76a3
SR
1080 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1081 if (ret < 0)
d769041f 1082 goto fail_free_reader;
7a8e76a3
SR
1083
1084 cpu_buffer->head_page
3adc54fa 1085 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1086 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1087
77ae365e
SR
1088 rb_head_page_activate(cpu_buffer);
1089
7a8e76a3
SR
1090 return cpu_buffer;
1091
d769041f
SR
1092 fail_free_reader:
1093 free_buffer_page(cpu_buffer->reader_page);
1094
7a8e76a3
SR
1095 fail_free_buffer:
1096 kfree(cpu_buffer);
1097 return NULL;
1098}
1099
1100static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101{
3adc54fa 1102 struct list_head *head = cpu_buffer->pages;
044fa782 1103 struct buffer_page *bpage, *tmp;
7a8e76a3 1104
d769041f
SR
1105 free_buffer_page(cpu_buffer->reader_page);
1106
77ae365e
SR
1107 rb_head_page_deactivate(cpu_buffer);
1108
3adc54fa
SR
1109 if (head) {
1110 list_for_each_entry_safe(bpage, tmp, head, list) {
1111 list_del_init(&bpage->list);
1112 free_buffer_page(bpage);
1113 }
1114 bpage = list_entry(head, struct buffer_page, list);
044fa782 1115 free_buffer_page(bpage);
7a8e76a3 1116 }
3adc54fa 1117
7a8e76a3
SR
1118 kfree(cpu_buffer);
1119}
1120
59222efe 1121#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1122static int rb_cpu_notify(struct notifier_block *self,
1123 unsigned long action, void *hcpu);
554f786e
SR
1124#endif
1125
7a8e76a3
SR
1126/**
1127 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1128 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1129 * @flags: attributes to set for the ring buffer.
1130 *
1131 * Currently the only flag that is available is the RB_FL_OVERWRITE
1132 * flag. This flag means that the buffer will overwrite old data
1133 * when the buffer wraps. If this flag is not set, the buffer will
1134 * drop data when the tail hits the head.
1135 */
1f8a6a10
PZ
1136struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1137 struct lock_class_key *key)
7a8e76a3
SR
1138{
1139 struct ring_buffer *buffer;
1140 int bsize;
1141 int cpu;
1142
1143 /* keep it in its own cache line */
1144 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1145 GFP_KERNEL);
1146 if (!buffer)
1147 return NULL;
1148
9e01c1b7
RR
1149 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1150 goto fail_free_buffer;
1151
7a8e76a3
SR
1152 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1153 buffer->flags = flags;
37886f6a 1154 buffer->clock = trace_clock_local;
1f8a6a10 1155 buffer->reader_lock_key = key;
7a8e76a3
SR
1156
1157 /* need at least two pages */
5f78abee
SR
1158 if (buffer->pages < 2)
1159 buffer->pages = 2;
7a8e76a3 1160
3bf832ce
FW
1161 /*
1162 * In case of non-hotplug cpu, if the ring-buffer is allocated
1163 * in early initcall, it will not be notified of secondary cpus.
1164 * In that off case, we need to allocate for all possible cpus.
1165 */
1166#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1167 get_online_cpus();
1168 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1169#else
1170 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1171#endif
7a8e76a3
SR
1172 buffer->cpus = nr_cpu_ids;
1173
1174 bsize = sizeof(void *) * nr_cpu_ids;
1175 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1176 GFP_KERNEL);
1177 if (!buffer->buffers)
9e01c1b7 1178 goto fail_free_cpumask;
7a8e76a3
SR
1179
1180 for_each_buffer_cpu(buffer, cpu) {
1181 buffer->buffers[cpu] =
1182 rb_allocate_cpu_buffer(buffer, cpu);
1183 if (!buffer->buffers[cpu])
1184 goto fail_free_buffers;
1185 }
1186
59222efe 1187#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1188 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1189 buffer->cpu_notify.priority = 0;
1190 register_cpu_notifier(&buffer->cpu_notify);
1191#endif
1192
1193 put_online_cpus();
7a8e76a3
SR
1194 mutex_init(&buffer->mutex);
1195
1196 return buffer;
1197
1198 fail_free_buffers:
1199 for_each_buffer_cpu(buffer, cpu) {
1200 if (buffer->buffers[cpu])
1201 rb_free_cpu_buffer(buffer->buffers[cpu]);
1202 }
1203 kfree(buffer->buffers);
1204
9e01c1b7
RR
1205 fail_free_cpumask:
1206 free_cpumask_var(buffer->cpumask);
554f786e 1207 put_online_cpus();
9e01c1b7 1208
7a8e76a3
SR
1209 fail_free_buffer:
1210 kfree(buffer);
1211 return NULL;
1212}
1f8a6a10 1213EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1214
1215/**
1216 * ring_buffer_free - free a ring buffer.
1217 * @buffer: the buffer to free.
1218 */
1219void
1220ring_buffer_free(struct ring_buffer *buffer)
1221{
1222 int cpu;
1223
554f786e
SR
1224 get_online_cpus();
1225
59222efe 1226#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1227 unregister_cpu_notifier(&buffer->cpu_notify);
1228#endif
1229
7a8e76a3
SR
1230 for_each_buffer_cpu(buffer, cpu)
1231 rb_free_cpu_buffer(buffer->buffers[cpu]);
1232
554f786e
SR
1233 put_online_cpus();
1234
bd3f0221 1235 kfree(buffer->buffers);
9e01c1b7
RR
1236 free_cpumask_var(buffer->cpumask);
1237
7a8e76a3
SR
1238 kfree(buffer);
1239}
c4f50183 1240EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1241
37886f6a
SR
1242void ring_buffer_set_clock(struct ring_buffer *buffer,
1243 u64 (*clock)(void))
1244{
1245 buffer->clock = clock;
1246}
1247
7a8e76a3
SR
1248static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249
1250static void
1251rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1252{
044fa782 1253 struct buffer_page *bpage;
7a8e76a3
SR
1254 struct list_head *p;
1255 unsigned i;
1256
f7112949 1257 spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1258 rb_head_page_deactivate(cpu_buffer);
1259
7a8e76a3 1260 for (i = 0; i < nr_pages; i++) {
3adc54fa 1261 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1262 goto out;
3adc54fa 1263 p = cpu_buffer->pages->next;
044fa782
SR
1264 bpage = list_entry(p, struct buffer_page, list);
1265 list_del_init(&bpage->list);
1266 free_buffer_page(bpage);
7a8e76a3 1267 }
3adc54fa 1268 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1269 goto out;
7a8e76a3
SR
1270
1271 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1272 rb_check_pages(cpu_buffer);
1273
292f60c0 1274out:
dd7f5943 1275 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1276}
1277
1278static void
1279rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1280 struct list_head *pages, unsigned nr_pages)
1281{
044fa782 1282 struct buffer_page *bpage;
7a8e76a3
SR
1283 struct list_head *p;
1284 unsigned i;
1285
77ae365e
SR
1286 spin_lock_irq(&cpu_buffer->reader_lock);
1287 rb_head_page_deactivate(cpu_buffer);
1288
7a8e76a3 1289 for (i = 0; i < nr_pages; i++) {
3e89c7bb 1290 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
292f60c0 1291 goto out;
7a8e76a3 1292 p = pages->next;
044fa782
SR
1293 bpage = list_entry(p, struct buffer_page, list);
1294 list_del_init(&bpage->list);
3adc54fa 1295 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1296 }
1297 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1298 rb_check_pages(cpu_buffer);
1299
292f60c0 1300out:
dd7f5943 1301 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1302}
1303
1304/**
1305 * ring_buffer_resize - resize the ring buffer
1306 * @buffer: the buffer to resize.
1307 * @size: the new size.
1308 *
7a8e76a3
SR
1309 * Minimum size is 2 * BUF_PAGE_SIZE.
1310 *
1311 * Returns -1 on failure.
1312 */
1313int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1314{
1315 struct ring_buffer_per_cpu *cpu_buffer;
1316 unsigned nr_pages, rm_pages, new_pages;
044fa782 1317 struct buffer_page *bpage, *tmp;
7a8e76a3 1318 unsigned long buffer_size;
7a8e76a3
SR
1319 LIST_HEAD(pages);
1320 int i, cpu;
1321
ee51a1de
IM
1322 /*
1323 * Always succeed at resizing a non-existent buffer:
1324 */
1325 if (!buffer)
1326 return size;
1327
7a8e76a3
SR
1328 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1329 size *= BUF_PAGE_SIZE;
1330 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1331
1332 /* we need a minimum of two pages */
1333 if (size < BUF_PAGE_SIZE * 2)
1334 size = BUF_PAGE_SIZE * 2;
1335
1336 if (size == buffer_size)
1337 return size;
1338
18421015
SR
1339 atomic_inc(&buffer->record_disabled);
1340
1341 /* Make sure all writers are done with this buffer. */
1342 synchronize_sched();
1343
7a8e76a3 1344 mutex_lock(&buffer->mutex);
554f786e 1345 get_online_cpus();
7a8e76a3
SR
1346
1347 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1348
1349 if (size < buffer_size) {
1350
1351 /* easy case, just free pages */
554f786e
SR
1352 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1353 goto out_fail;
7a8e76a3
SR
1354
1355 rm_pages = buffer->pages - nr_pages;
1356
1357 for_each_buffer_cpu(buffer, cpu) {
1358 cpu_buffer = buffer->buffers[cpu];
1359 rb_remove_pages(cpu_buffer, rm_pages);
1360 }
1361 goto out;
1362 }
1363
1364 /*
1365 * This is a bit more difficult. We only want to add pages
1366 * when we can allocate enough for all CPUs. We do this
1367 * by allocating all the pages and storing them on a local
1368 * link list. If we succeed in our allocation, then we
1369 * add these pages to the cpu_buffers. Otherwise we just free
1370 * them all and return -ENOMEM;
1371 */
554f786e
SR
1372 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1373 goto out_fail;
f536aafc 1374
7a8e76a3
SR
1375 new_pages = nr_pages - buffer->pages;
1376
1377 for_each_buffer_cpu(buffer, cpu) {
1378 for (i = 0; i < new_pages; i++) {
7ea59064 1379 struct page *page;
044fa782 1380 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1381 cache_line_size()),
1382 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1383 if (!bpage)
e4c2ce82 1384 goto free_pages;
044fa782 1385 list_add(&bpage->list, &pages);
7ea59064
VN
1386 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1387 if (!page)
7a8e76a3 1388 goto free_pages;
7ea59064 1389 bpage->page = page_address(page);
044fa782 1390 rb_init_page(bpage->page);
7a8e76a3
SR
1391 }
1392 }
1393
1394 for_each_buffer_cpu(buffer, cpu) {
1395 cpu_buffer = buffer->buffers[cpu];
1396 rb_insert_pages(cpu_buffer, &pages, new_pages);
1397 }
1398
554f786e
SR
1399 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1400 goto out_fail;
7a8e76a3
SR
1401
1402 out:
1403 buffer->pages = nr_pages;
554f786e 1404 put_online_cpus();
7a8e76a3
SR
1405 mutex_unlock(&buffer->mutex);
1406
18421015
SR
1407 atomic_dec(&buffer->record_disabled);
1408
7a8e76a3
SR
1409 return size;
1410
1411 free_pages:
044fa782
SR
1412 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1413 list_del_init(&bpage->list);
1414 free_buffer_page(bpage);
7a8e76a3 1415 }
554f786e 1416 put_online_cpus();
641d2f63 1417 mutex_unlock(&buffer->mutex);
18421015 1418 atomic_dec(&buffer->record_disabled);
7a8e76a3 1419 return -ENOMEM;
554f786e
SR
1420
1421 /*
1422 * Something went totally wrong, and we are too paranoid
1423 * to even clean up the mess.
1424 */
1425 out_fail:
1426 put_online_cpus();
1427 mutex_unlock(&buffer->mutex);
18421015 1428 atomic_dec(&buffer->record_disabled);
554f786e 1429 return -1;
7a8e76a3 1430}
c4f50183 1431EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1432
750912fa
DS
1433void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1434{
1435 mutex_lock(&buffer->mutex);
1436 if (val)
1437 buffer->flags |= RB_FL_OVERWRITE;
1438 else
1439 buffer->flags &= ~RB_FL_OVERWRITE;
1440 mutex_unlock(&buffer->mutex);
1441}
1442EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1443
8789a9e7 1444static inline void *
044fa782 1445__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1446{
044fa782 1447 return bpage->data + index;
8789a9e7
SR
1448}
1449
044fa782 1450static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1451{
044fa782 1452 return bpage->page->data + index;
7a8e76a3
SR
1453}
1454
1455static inline struct ring_buffer_event *
d769041f 1456rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1457{
6f807acd
SR
1458 return __rb_page_index(cpu_buffer->reader_page,
1459 cpu_buffer->reader_page->read);
1460}
1461
7a8e76a3
SR
1462static inline struct ring_buffer_event *
1463rb_iter_head_event(struct ring_buffer_iter *iter)
1464{
6f807acd 1465 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1466}
1467
77ae365e 1468static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1469{
77ae365e 1470 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1471}
1472
1473static inline unsigned rb_page_commit(struct buffer_page *bpage)
1474{
abc9b56d 1475 return local_read(&bpage->page->commit);
bf41a158
SR
1476}
1477
77ae365e
SR
1478static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1479{
1480 return local_read(&bpage->entries) & RB_WRITE_MASK;
1481}
1482
25985edc 1483/* Size is determined by what has been committed */
bf41a158
SR
1484static inline unsigned rb_page_size(struct buffer_page *bpage)
1485{
1486 return rb_page_commit(bpage);
1487}
1488
1489static inline unsigned
1490rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1491{
1492 return rb_page_commit(cpu_buffer->commit_page);
1493}
1494
bf41a158
SR
1495static inline unsigned
1496rb_event_index(struct ring_buffer_event *event)
1497{
1498 unsigned long addr = (unsigned long)event;
1499
22f470f8 1500 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1501}
1502
0f0c85fc 1503static inline int
fa743953
SR
1504rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1505 struct ring_buffer_event *event)
bf41a158
SR
1506{
1507 unsigned long addr = (unsigned long)event;
1508 unsigned long index;
1509
1510 index = rb_event_index(event);
1511 addr &= PAGE_MASK;
1512
1513 return cpu_buffer->commit_page->page == (void *)addr &&
1514 rb_commit_index(cpu_buffer) == index;
1515}
1516
34a148bf 1517static void
bf41a158 1518rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1519{
77ae365e
SR
1520 unsigned long max_count;
1521
bf41a158
SR
1522 /*
1523 * We only race with interrupts and NMIs on this CPU.
1524 * If we own the commit event, then we can commit
1525 * all others that interrupted us, since the interruptions
1526 * are in stack format (they finish before they come
1527 * back to us). This allows us to do a simple loop to
1528 * assign the commit to the tail.
1529 */
a8ccf1d6 1530 again:
77ae365e
SR
1531 max_count = cpu_buffer->buffer->pages * 100;
1532
bf41a158 1533 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1534 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1535 return;
1536 if (RB_WARN_ON(cpu_buffer,
1537 rb_is_reader_page(cpu_buffer->tail_page)))
1538 return;
1539 local_set(&cpu_buffer->commit_page->page->commit,
1540 rb_page_write(cpu_buffer->commit_page));
bf41a158 1541 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1542 cpu_buffer->write_stamp =
1543 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1544 /* add barrier to keep gcc from optimizing too much */
1545 barrier();
1546 }
1547 while (rb_commit_index(cpu_buffer) !=
1548 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1549
1550 local_set(&cpu_buffer->commit_page->page->commit,
1551 rb_page_write(cpu_buffer->commit_page));
1552 RB_WARN_ON(cpu_buffer,
1553 local_read(&cpu_buffer->commit_page->page->commit) &
1554 ~RB_WRITE_MASK);
bf41a158
SR
1555 barrier();
1556 }
a8ccf1d6
SR
1557
1558 /* again, keep gcc from optimizing */
1559 barrier();
1560
1561 /*
1562 * If an interrupt came in just after the first while loop
1563 * and pushed the tail page forward, we will be left with
1564 * a dangling commit that will never go forward.
1565 */
1566 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1567 goto again;
7a8e76a3
SR
1568}
1569
d769041f 1570static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1571{
abc9b56d 1572 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1573 cpu_buffer->reader_page->read = 0;
d769041f
SR
1574}
1575
34a148bf 1576static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1577{
1578 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1579
1580 /*
1581 * The iterator could be on the reader page (it starts there).
1582 * But the head could have moved, since the reader was
1583 * found. Check for this case and assign the iterator
1584 * to the head page instead of next.
1585 */
1586 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1587 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1588 else
1589 rb_inc_page(cpu_buffer, &iter->head_page);
1590
abc9b56d 1591 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1592 iter->head = 0;
1593}
1594
69d1b839
SR
1595/* Slow path, do not inline */
1596static noinline struct ring_buffer_event *
1597rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1598{
1599 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1600
1601 /* Not the first event on the page? */
1602 if (rb_event_index(event)) {
1603 event->time_delta = delta & TS_MASK;
1604 event->array[0] = delta >> TS_SHIFT;
1605 } else {
1606 /* nope, just zero it */
1607 event->time_delta = 0;
1608 event->array[0] = 0;
1609 }
1610
1611 return skip_time_extend(event);
1612}
1613
7a8e76a3
SR
1614/**
1615 * ring_buffer_update_event - update event type and data
1616 * @event: the even to update
1617 * @type: the type of event
1618 * @length: the size of the event field in the ring buffer
1619 *
1620 * Update the type and data fields of the event. The length
1621 * is the actual size that is written to the ring buffer,
1622 * and with this, we can determine what to place into the
1623 * data field.
1624 */
34a148bf 1625static void
69d1b839
SR
1626rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1627 struct ring_buffer_event *event, unsigned length,
1628 int add_timestamp, u64 delta)
7a8e76a3 1629{
69d1b839
SR
1630 /* Only a commit updates the timestamp */
1631 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1632 delta = 0;
7a8e76a3 1633
69d1b839
SR
1634 /*
1635 * If we need to add a timestamp, then we
1636 * add it to the start of the resevered space.
1637 */
1638 if (unlikely(add_timestamp)) {
1639 event = rb_add_time_stamp(event, delta);
1640 length -= RB_LEN_TIME_EXTEND;
1641 delta = 0;
7a8e76a3 1642 }
69d1b839
SR
1643
1644 event->time_delta = delta;
1645 length -= RB_EVNT_HDR_SIZE;
1646 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1647 event->type_len = 0;
1648 event->array[0] = length;
1649 } else
1650 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1651}
1652
77ae365e
SR
1653/*
1654 * rb_handle_head_page - writer hit the head page
1655 *
1656 * Returns: +1 to retry page
1657 * 0 to continue
1658 * -1 on error
1659 */
1660static int
1661rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1662 struct buffer_page *tail_page,
1663 struct buffer_page *next_page)
1664{
1665 struct buffer_page *new_head;
1666 int entries;
1667 int type;
1668 int ret;
1669
1670 entries = rb_page_entries(next_page);
1671
1672 /*
1673 * The hard part is here. We need to move the head
1674 * forward, and protect against both readers on
1675 * other CPUs and writers coming in via interrupts.
1676 */
1677 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1678 RB_PAGE_HEAD);
1679
1680 /*
1681 * type can be one of four:
1682 * NORMAL - an interrupt already moved it for us
1683 * HEAD - we are the first to get here.
1684 * UPDATE - we are the interrupt interrupting
1685 * a current move.
1686 * MOVED - a reader on another CPU moved the next
1687 * pointer to its reader page. Give up
1688 * and try again.
1689 */
1690
1691 switch (type) {
1692 case RB_PAGE_HEAD:
1693 /*
1694 * We changed the head to UPDATE, thus
1695 * it is our responsibility to update
1696 * the counters.
1697 */
1698 local_add(entries, &cpu_buffer->overrun);
1699
1700 /*
1701 * The entries will be zeroed out when we move the
1702 * tail page.
1703 */
1704
1705 /* still more to do */
1706 break;
1707
1708 case RB_PAGE_UPDATE:
1709 /*
1710 * This is an interrupt that interrupt the
1711 * previous update. Still more to do.
1712 */
1713 break;
1714 case RB_PAGE_NORMAL:
1715 /*
1716 * An interrupt came in before the update
1717 * and processed this for us.
1718 * Nothing left to do.
1719 */
1720 return 1;
1721 case RB_PAGE_MOVED:
1722 /*
1723 * The reader is on another CPU and just did
1724 * a swap with our next_page.
1725 * Try again.
1726 */
1727 return 1;
1728 default:
1729 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1730 return -1;
1731 }
1732
1733 /*
1734 * Now that we are here, the old head pointer is
1735 * set to UPDATE. This will keep the reader from
1736 * swapping the head page with the reader page.
1737 * The reader (on another CPU) will spin till
1738 * we are finished.
1739 *
1740 * We just need to protect against interrupts
1741 * doing the job. We will set the next pointer
1742 * to HEAD. After that, we set the old pointer
1743 * to NORMAL, but only if it was HEAD before.
1744 * otherwise we are an interrupt, and only
1745 * want the outer most commit to reset it.
1746 */
1747 new_head = next_page;
1748 rb_inc_page(cpu_buffer, &new_head);
1749
1750 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1751 RB_PAGE_NORMAL);
1752
1753 /*
1754 * Valid returns are:
1755 * HEAD - an interrupt came in and already set it.
1756 * NORMAL - One of two things:
1757 * 1) We really set it.
1758 * 2) A bunch of interrupts came in and moved
1759 * the page forward again.
1760 */
1761 switch (ret) {
1762 case RB_PAGE_HEAD:
1763 case RB_PAGE_NORMAL:
1764 /* OK */
1765 break;
1766 default:
1767 RB_WARN_ON(cpu_buffer, 1);
1768 return -1;
1769 }
1770
1771 /*
1772 * It is possible that an interrupt came in,
1773 * set the head up, then more interrupts came in
1774 * and moved it again. When we get back here,
1775 * the page would have been set to NORMAL but we
1776 * just set it back to HEAD.
1777 *
1778 * How do you detect this? Well, if that happened
1779 * the tail page would have moved.
1780 */
1781 if (ret == RB_PAGE_NORMAL) {
1782 /*
1783 * If the tail had moved passed next, then we need
1784 * to reset the pointer.
1785 */
1786 if (cpu_buffer->tail_page != tail_page &&
1787 cpu_buffer->tail_page != next_page)
1788 rb_head_page_set_normal(cpu_buffer, new_head,
1789 next_page,
1790 RB_PAGE_HEAD);
1791 }
1792
1793 /*
1794 * If this was the outer most commit (the one that
1795 * changed the original pointer from HEAD to UPDATE),
1796 * then it is up to us to reset it to NORMAL.
1797 */
1798 if (type == RB_PAGE_HEAD) {
1799 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1800 tail_page,
1801 RB_PAGE_UPDATE);
1802 if (RB_WARN_ON(cpu_buffer,
1803 ret != RB_PAGE_UPDATE))
1804 return -1;
1805 }
1806
1807 return 0;
1808}
1809
34a148bf 1810static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1811{
1812 struct ring_buffer_event event; /* Used only for sizeof array */
1813
1814 /* zero length can cause confusions */
1815 if (!length)
1816 length = 1;
1817
2271048d 1818 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1819 length += sizeof(event.array[0]);
1820
1821 length += RB_EVNT_HDR_SIZE;
2271048d 1822 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1823
1824 return length;
1825}
1826
c7b09308
SR
1827static inline void
1828rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1829 struct buffer_page *tail_page,
1830 unsigned long tail, unsigned long length)
1831{
1832 struct ring_buffer_event *event;
1833
1834 /*
1835 * Only the event that crossed the page boundary
1836 * must fill the old tail_page with padding.
1837 */
1838 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
1839 /*
1840 * If the page was filled, then we still need
1841 * to update the real_end. Reset it to zero
1842 * and the reader will ignore it.
1843 */
1844 if (tail == BUF_PAGE_SIZE)
1845 tail_page->real_end = 0;
1846
c7b09308
SR
1847 local_sub(length, &tail_page->write);
1848 return;
1849 }
1850
1851 event = __rb_page_index(tail_page, tail);
b0b7065b 1852 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 1853
ff0ff84a
SR
1854 /*
1855 * Save the original length to the meta data.
1856 * This will be used by the reader to add lost event
1857 * counter.
1858 */
1859 tail_page->real_end = tail;
1860
c7b09308
SR
1861 /*
1862 * If this event is bigger than the minimum size, then
1863 * we need to be careful that we don't subtract the
1864 * write counter enough to allow another writer to slip
1865 * in on this page.
1866 * We put in a discarded commit instead, to make sure
1867 * that this space is not used again.
1868 *
1869 * If we are less than the minimum size, we don't need to
1870 * worry about it.
1871 */
1872 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1873 /* No room for any events */
1874
1875 /* Mark the rest of the page with padding */
1876 rb_event_set_padding(event);
1877
1878 /* Set the write back to the previous setting */
1879 local_sub(length, &tail_page->write);
1880 return;
1881 }
1882
1883 /* Put in a discarded event */
1884 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1885 event->type_len = RINGBUF_TYPE_PADDING;
1886 /* time delta must be non zero */
1887 event->time_delta = 1;
c7b09308
SR
1888
1889 /* Set write to end of buffer */
1890 length = (tail + length) - BUF_PAGE_SIZE;
1891 local_sub(length, &tail_page->write);
1892}
6634ff26 1893
747e94ae
SR
1894/*
1895 * This is the slow path, force gcc not to inline it.
1896 */
1897static noinline struct ring_buffer_event *
6634ff26
SR
1898rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1899 unsigned long length, unsigned long tail,
e8bc43e8 1900 struct buffer_page *tail_page, u64 ts)
7a8e76a3 1901{
5a50e33c 1902 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1903 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1904 struct buffer_page *next_page;
1905 int ret;
aa20ae84
SR
1906
1907 next_page = tail_page;
1908
aa20ae84
SR
1909 rb_inc_page(cpu_buffer, &next_page);
1910
aa20ae84
SR
1911 /*
1912 * If for some reason, we had an interrupt storm that made
1913 * it all the way around the buffer, bail, and warn
1914 * about it.
1915 */
1916 if (unlikely(next_page == commit_page)) {
77ae365e 1917 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1918 goto out_reset;
1919 }
1920
77ae365e
SR
1921 /*
1922 * This is where the fun begins!
1923 *
1924 * We are fighting against races between a reader that
1925 * could be on another CPU trying to swap its reader
1926 * page with the buffer head.
1927 *
1928 * We are also fighting against interrupts coming in and
1929 * moving the head or tail on us as well.
1930 *
1931 * If the next page is the head page then we have filled
1932 * the buffer, unless the commit page is still on the
1933 * reader page.
1934 */
1935 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1936
77ae365e
SR
1937 /*
1938 * If the commit is not on the reader page, then
1939 * move the header page.
1940 */
1941 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1942 /*
1943 * If we are not in overwrite mode,
1944 * this is easy, just stop here.
1945 */
1946 if (!(buffer->flags & RB_FL_OVERWRITE))
1947 goto out_reset;
1948
1949 ret = rb_handle_head_page(cpu_buffer,
1950 tail_page,
1951 next_page);
1952 if (ret < 0)
1953 goto out_reset;
1954 if (ret)
1955 goto out_again;
1956 } else {
1957 /*
1958 * We need to be careful here too. The
1959 * commit page could still be on the reader
1960 * page. We could have a small buffer, and
1961 * have filled up the buffer with events
1962 * from interrupts and such, and wrapped.
1963 *
1964 * Note, if the tail page is also the on the
1965 * reader_page, we let it move out.
1966 */
1967 if (unlikely((cpu_buffer->commit_page !=
1968 cpu_buffer->tail_page) &&
1969 (cpu_buffer->commit_page ==
1970 cpu_buffer->reader_page))) {
1971 local_inc(&cpu_buffer->commit_overrun);
1972 goto out_reset;
1973 }
aa20ae84
SR
1974 }
1975 }
1976
77ae365e
SR
1977 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1978 if (ret) {
1979 /*
1980 * Nested commits always have zero deltas, so
1981 * just reread the time stamp
1982 */
e8bc43e8
SR
1983 ts = rb_time_stamp(buffer);
1984 next_page->page->time_stamp = ts;
aa20ae84
SR
1985 }
1986
77ae365e 1987 out_again:
aa20ae84 1988
77ae365e 1989 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1990
1991 /* fail and let the caller try again */
1992 return ERR_PTR(-EAGAIN);
1993
45141d46 1994 out_reset:
6f3b3440 1995 /* reset write */
c7b09308 1996 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1997
bf41a158 1998 return NULL;
7a8e76a3
SR
1999}
2000
6634ff26
SR
2001static struct ring_buffer_event *
2002__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2003 unsigned long length, u64 ts,
2004 u64 delta, int add_timestamp)
6634ff26 2005{
5a50e33c 2006 struct buffer_page *tail_page;
6634ff26
SR
2007 struct ring_buffer_event *event;
2008 unsigned long tail, write;
2009
69d1b839
SR
2010 /*
2011 * If the time delta since the last event is too big to
2012 * hold in the time field of the event, then we append a
2013 * TIME EXTEND event ahead of the data event.
2014 */
2015 if (unlikely(add_timestamp))
2016 length += RB_LEN_TIME_EXTEND;
2017
6634ff26
SR
2018 tail_page = cpu_buffer->tail_page;
2019 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2020
2021 /* set write to only the index of the write */
2022 write &= RB_WRITE_MASK;
6634ff26
SR
2023 tail = write - length;
2024
2025 /* See if we shot pass the end of this buffer page */
747e94ae 2026 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2027 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2028 tail_page, ts);
6634ff26
SR
2029
2030 /* We reserved something on the buffer */
2031
6634ff26 2032 event = __rb_page_index(tail_page, tail);
1744a21d 2033 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2034 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2035
69d1b839 2036 local_inc(&tail_page->entries);
6634ff26
SR
2037
2038 /*
fa743953
SR
2039 * If this is the first commit on the page, then update
2040 * its timestamp.
6634ff26 2041 */
fa743953 2042 if (!tail)
e8bc43e8 2043 tail_page->page->time_stamp = ts;
6634ff26
SR
2044
2045 return event;
2046}
2047
edd813bf
SR
2048static inline int
2049rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2050 struct ring_buffer_event *event)
2051{
2052 unsigned long new_index, old_index;
2053 struct buffer_page *bpage;
2054 unsigned long index;
2055 unsigned long addr;
2056
2057 new_index = rb_event_index(event);
69d1b839 2058 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2059 addr = (unsigned long)event;
2060 addr &= PAGE_MASK;
2061
2062 bpage = cpu_buffer->tail_page;
2063
2064 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2065 unsigned long write_mask =
2066 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
2067 /*
2068 * This is on the tail page. It is possible that
2069 * a write could come in and move the tail page
2070 * and write to the next page. That is fine
2071 * because we just shorten what is on this page.
2072 */
77ae365e
SR
2073 old_index += write_mask;
2074 new_index += write_mask;
edd813bf
SR
2075 index = local_cmpxchg(&bpage->write, old_index, new_index);
2076 if (index == old_index)
2077 return 1;
2078 }
2079
2080 /* could not discard */
2081 return 0;
2082}
2083
fa743953
SR
2084static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2085{
2086 local_inc(&cpu_buffer->committing);
2087 local_inc(&cpu_buffer->commits);
2088}
2089
d9abde21 2090static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2091{
2092 unsigned long commits;
2093
2094 if (RB_WARN_ON(cpu_buffer,
2095 !local_read(&cpu_buffer->committing)))
2096 return;
2097
2098 again:
2099 commits = local_read(&cpu_buffer->commits);
2100 /* synchronize with interrupts */
2101 barrier();
2102 if (local_read(&cpu_buffer->committing) == 1)
2103 rb_set_commit_to_write(cpu_buffer);
2104
2105 local_dec(&cpu_buffer->committing);
2106
2107 /* synchronize with interrupts */
2108 barrier();
2109
2110 /*
2111 * Need to account for interrupts coming in between the
2112 * updating of the commit page and the clearing of the
2113 * committing counter.
2114 */
2115 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2116 !local_read(&cpu_buffer->committing)) {
2117 local_inc(&cpu_buffer->committing);
2118 goto again;
2119 }
2120}
2121
7a8e76a3 2122static struct ring_buffer_event *
62f0b3eb
SR
2123rb_reserve_next_event(struct ring_buffer *buffer,
2124 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2125 unsigned long length)
7a8e76a3
SR
2126{
2127 struct ring_buffer_event *event;
69d1b839 2128 u64 ts, delta;
818e3dd3 2129 int nr_loops = 0;
69d1b839 2130 int add_timestamp;
140ff891 2131 u64 diff;
7a8e76a3 2132
fa743953
SR
2133 rb_start_commit(cpu_buffer);
2134
85bac32c 2135#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2136 /*
2137 * Due to the ability to swap a cpu buffer from a buffer
2138 * it is possible it was swapped before we committed.
2139 * (committing stops a swap). We check for it here and
2140 * if it happened, we have to fail the write.
2141 */
2142 barrier();
2143 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2144 local_dec(&cpu_buffer->committing);
2145 local_dec(&cpu_buffer->commits);
2146 return NULL;
2147 }
85bac32c 2148#endif
62f0b3eb 2149
be957c44 2150 length = rb_calculate_event_length(length);
bf41a158 2151 again:
69d1b839
SR
2152 add_timestamp = 0;
2153 delta = 0;
2154
818e3dd3
SR
2155 /*
2156 * We allow for interrupts to reenter here and do a trace.
2157 * If one does, it will cause this original code to loop
2158 * back here. Even with heavy interrupts happening, this
2159 * should only happen a few times in a row. If this happens
2160 * 1000 times in a row, there must be either an interrupt
2161 * storm or we have something buggy.
2162 * Bail!
2163 */
3e89c7bb 2164 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2165 goto out_fail;
818e3dd3 2166
6d3f1e12 2167 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2168 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2169
140ff891
SR
2170 /* make sure this diff is calculated here */
2171 barrier();
bf41a158 2172
140ff891
SR
2173 /* Did the write stamp get updated already? */
2174 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2175 delta = diff;
2176 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2177 int local_clock_stable = 1;
2178#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2179 local_clock_stable = sched_clock_stable;
2180#endif
69d1b839 2181 WARN_ONCE(delta > (1ULL << 59),
31274d72 2182 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2183 (unsigned long long)delta,
2184 (unsigned long long)ts,
31274d72
JO
2185 (unsigned long long)cpu_buffer->write_stamp,
2186 local_clock_stable ? "" :
2187 "If you just came from a suspend/resume,\n"
2188 "please switch to the trace global clock:\n"
2189 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2190 add_timestamp = 1;
7a8e76a3 2191 }
168b6b1d 2192 }
7a8e76a3 2193
69d1b839
SR
2194 event = __rb_reserve_next(cpu_buffer, length, ts,
2195 delta, add_timestamp);
168b6b1d 2196 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2197 goto again;
2198
fa743953
SR
2199 if (!event)
2200 goto out_fail;
7a8e76a3 2201
7a8e76a3 2202 return event;
fa743953
SR
2203
2204 out_fail:
2205 rb_end_commit(cpu_buffer);
2206 return NULL;
7a8e76a3
SR
2207}
2208
1155de47
PM
2209#ifdef CONFIG_TRACING
2210
aa18efb2 2211#define TRACE_RECURSIVE_DEPTH 16
261842b7 2212
d9abde21
SR
2213/* Keep this code out of the fast path cache */
2214static noinline void trace_recursive_fail(void)
261842b7 2215{
aa18efb2
SR
2216 /* Disable all tracing before we do anything else */
2217 tracing_off_permanent();
261842b7 2218
7d7d2b80 2219 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2220 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2221 trace_recursion_buffer(),
aa18efb2
SR
2222 hardirq_count() >> HARDIRQ_SHIFT,
2223 softirq_count() >> SOFTIRQ_SHIFT,
2224 in_nmi());
261842b7 2225
aa18efb2 2226 WARN_ON_ONCE(1);
d9abde21
SR
2227}
2228
2229static inline int trace_recursive_lock(void)
2230{
b1cff0ad 2231 trace_recursion_inc();
d9abde21 2232
b1cff0ad 2233 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2234 return 0;
2235
2236 trace_recursive_fail();
2237
aa18efb2 2238 return -1;
261842b7
SR
2239}
2240
d9abde21 2241static inline void trace_recursive_unlock(void)
261842b7 2242{
b1cff0ad 2243 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2244
b1cff0ad 2245 trace_recursion_dec();
261842b7
SR
2246}
2247
1155de47
PM
2248#else
2249
2250#define trace_recursive_lock() (0)
2251#define trace_recursive_unlock() do { } while (0)
2252
2253#endif
2254
7a8e76a3
SR
2255/**
2256 * ring_buffer_lock_reserve - reserve a part of the buffer
2257 * @buffer: the ring buffer to reserve from
2258 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2259 *
2260 * Returns a reseverd event on the ring buffer to copy directly to.
2261 * The user of this interface will need to get the body to write into
2262 * and can use the ring_buffer_event_data() interface.
2263 *
2264 * The length is the length of the data needed, not the event length
2265 * which also includes the event header.
2266 *
2267 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2268 * If NULL is returned, then nothing has been allocated or locked.
2269 */
2270struct ring_buffer_event *
0a987751 2271ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2272{
2273 struct ring_buffer_per_cpu *cpu_buffer;
2274 struct ring_buffer_event *event;
5168ae50 2275 int cpu;
7a8e76a3 2276
033601a3 2277 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2278 return NULL;
2279
bf41a158 2280 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2281 preempt_disable_notrace();
bf41a158 2282
52fbe9cd
LJ
2283 if (atomic_read(&buffer->record_disabled))
2284 goto out_nocheck;
2285
261842b7
SR
2286 if (trace_recursive_lock())
2287 goto out_nocheck;
2288
7a8e76a3
SR
2289 cpu = raw_smp_processor_id();
2290
9e01c1b7 2291 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2292 goto out;
7a8e76a3
SR
2293
2294 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2295
2296 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2297 goto out;
7a8e76a3 2298
be957c44 2299 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2300 goto out;
7a8e76a3 2301
62f0b3eb 2302 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2303 if (!event)
d769041f 2304 goto out;
7a8e76a3
SR
2305
2306 return event;
2307
d769041f 2308 out:
261842b7
SR
2309 trace_recursive_unlock();
2310
2311 out_nocheck:
5168ae50 2312 preempt_enable_notrace();
7a8e76a3
SR
2313 return NULL;
2314}
c4f50183 2315EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2316
a1863c21
SR
2317static void
2318rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2319 struct ring_buffer_event *event)
2320{
69d1b839
SR
2321 u64 delta;
2322
fa743953
SR
2323 /*
2324 * The event first in the commit queue updates the
2325 * time stamp.
2326 */
69d1b839
SR
2327 if (rb_event_is_commit(cpu_buffer, event)) {
2328 /*
2329 * A commit event that is first on a page
2330 * updates the write timestamp with the page stamp
2331 */
2332 if (!rb_event_index(event))
2333 cpu_buffer->write_stamp =
2334 cpu_buffer->commit_page->page->time_stamp;
2335 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2336 delta = event->array[0];
2337 delta <<= TS_SHIFT;
2338 delta += event->time_delta;
2339 cpu_buffer->write_stamp += delta;
2340 } else
2341 cpu_buffer->write_stamp += event->time_delta;
2342 }
a1863c21 2343}
bf41a158 2344
a1863c21
SR
2345static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2346 struct ring_buffer_event *event)
2347{
2348 local_inc(&cpu_buffer->entries);
2349 rb_update_write_stamp(cpu_buffer, event);
fa743953 2350 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2351}
2352
2353/**
2354 * ring_buffer_unlock_commit - commit a reserved
2355 * @buffer: The buffer to commit to
2356 * @event: The event pointer to commit.
7a8e76a3
SR
2357 *
2358 * This commits the data to the ring buffer, and releases any locks held.
2359 *
2360 * Must be paired with ring_buffer_lock_reserve.
2361 */
2362int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2363 struct ring_buffer_event *event)
7a8e76a3
SR
2364{
2365 struct ring_buffer_per_cpu *cpu_buffer;
2366 int cpu = raw_smp_processor_id();
2367
2368 cpu_buffer = buffer->buffers[cpu];
2369
7a8e76a3
SR
2370 rb_commit(cpu_buffer, event);
2371
261842b7
SR
2372 trace_recursive_unlock();
2373
5168ae50 2374 preempt_enable_notrace();
7a8e76a3
SR
2375
2376 return 0;
2377}
c4f50183 2378EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2379
f3b9aae1
FW
2380static inline void rb_event_discard(struct ring_buffer_event *event)
2381{
69d1b839
SR
2382 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2383 event = skip_time_extend(event);
2384
334d4169
LJ
2385 /* array[0] holds the actual length for the discarded event */
2386 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2387 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2388 /* time delta must be non zero */
2389 if (!event->time_delta)
2390 event->time_delta = 1;
2391}
2392
a1863c21
SR
2393/*
2394 * Decrement the entries to the page that an event is on.
2395 * The event does not even need to exist, only the pointer
2396 * to the page it is on. This may only be called before the commit
2397 * takes place.
2398 */
2399static inline void
2400rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2401 struct ring_buffer_event *event)
2402{
2403 unsigned long addr = (unsigned long)event;
2404 struct buffer_page *bpage = cpu_buffer->commit_page;
2405 struct buffer_page *start;
2406
2407 addr &= PAGE_MASK;
2408
2409 /* Do the likely case first */
2410 if (likely(bpage->page == (void *)addr)) {
2411 local_dec(&bpage->entries);
2412 return;
2413 }
2414
2415 /*
2416 * Because the commit page may be on the reader page we
2417 * start with the next page and check the end loop there.
2418 */
2419 rb_inc_page(cpu_buffer, &bpage);
2420 start = bpage;
2421 do {
2422 if (bpage->page == (void *)addr) {
2423 local_dec(&bpage->entries);
2424 return;
2425 }
2426 rb_inc_page(cpu_buffer, &bpage);
2427 } while (bpage != start);
2428
2429 /* commit not part of this buffer?? */
2430 RB_WARN_ON(cpu_buffer, 1);
2431}
2432
fa1b47dd
SR
2433/**
2434 * ring_buffer_commit_discard - discard an event that has not been committed
2435 * @buffer: the ring buffer
2436 * @event: non committed event to discard
2437 *
dc892f73
SR
2438 * Sometimes an event that is in the ring buffer needs to be ignored.
2439 * This function lets the user discard an event in the ring buffer
2440 * and then that event will not be read later.
2441 *
2442 * This function only works if it is called before the the item has been
2443 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2444 * if another event has not been added behind it.
2445 *
2446 * If another event has been added behind it, it will set the event
2447 * up as discarded, and perform the commit.
2448 *
2449 * If this function is called, do not call ring_buffer_unlock_commit on
2450 * the event.
2451 */
2452void ring_buffer_discard_commit(struct ring_buffer *buffer,
2453 struct ring_buffer_event *event)
2454{
2455 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2456 int cpu;
2457
2458 /* The event is discarded regardless */
f3b9aae1 2459 rb_event_discard(event);
fa1b47dd 2460
fa743953
SR
2461 cpu = smp_processor_id();
2462 cpu_buffer = buffer->buffers[cpu];
2463
fa1b47dd
SR
2464 /*
2465 * This must only be called if the event has not been
2466 * committed yet. Thus we can assume that preemption
2467 * is still disabled.
2468 */
fa743953 2469 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2470
a1863c21 2471 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2472 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2473 goto out;
fa1b47dd
SR
2474
2475 /*
2476 * The commit is still visible by the reader, so we
a1863c21 2477 * must still update the timestamp.
fa1b47dd 2478 */
a1863c21 2479 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2480 out:
fa743953 2481 rb_end_commit(cpu_buffer);
fa1b47dd 2482
f3b9aae1
FW
2483 trace_recursive_unlock();
2484
5168ae50 2485 preempt_enable_notrace();
fa1b47dd
SR
2486
2487}
2488EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2489
7a8e76a3
SR
2490/**
2491 * ring_buffer_write - write data to the buffer without reserving
2492 * @buffer: The ring buffer to write to.
2493 * @length: The length of the data being written (excluding the event header)
2494 * @data: The data to write to the buffer.
2495 *
2496 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2497 * one function. If you already have the data to write to the buffer, it
2498 * may be easier to simply call this function.
2499 *
2500 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2501 * and not the length of the event which would hold the header.
2502 */
2503int ring_buffer_write(struct ring_buffer *buffer,
2504 unsigned long length,
2505 void *data)
2506{
2507 struct ring_buffer_per_cpu *cpu_buffer;
2508 struct ring_buffer_event *event;
7a8e76a3
SR
2509 void *body;
2510 int ret = -EBUSY;
5168ae50 2511 int cpu;
7a8e76a3 2512
033601a3 2513 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2514 return -EBUSY;
2515
5168ae50 2516 preempt_disable_notrace();
bf41a158 2517
52fbe9cd
LJ
2518 if (atomic_read(&buffer->record_disabled))
2519 goto out;
2520
7a8e76a3
SR
2521 cpu = raw_smp_processor_id();
2522
9e01c1b7 2523 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2524 goto out;
7a8e76a3
SR
2525
2526 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2527
2528 if (atomic_read(&cpu_buffer->record_disabled))
2529 goto out;
2530
be957c44
SR
2531 if (length > BUF_MAX_DATA_SIZE)
2532 goto out;
2533
62f0b3eb 2534 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2535 if (!event)
2536 goto out;
2537
2538 body = rb_event_data(event);
2539
2540 memcpy(body, data, length);
2541
2542 rb_commit(cpu_buffer, event);
2543
2544 ret = 0;
2545 out:
5168ae50 2546 preempt_enable_notrace();
7a8e76a3
SR
2547
2548 return ret;
2549}
c4f50183 2550EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2551
34a148bf 2552static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2553{
2554 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2555 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2556 struct buffer_page *commit = cpu_buffer->commit_page;
2557
77ae365e
SR
2558 /* In case of error, head will be NULL */
2559 if (unlikely(!head))
2560 return 1;
2561
bf41a158
SR
2562 return reader->read == rb_page_commit(reader) &&
2563 (commit == reader ||
2564 (commit == head &&
2565 head->read == rb_page_commit(commit)));
2566}
2567
7a8e76a3
SR
2568/**
2569 * ring_buffer_record_disable - stop all writes into the buffer
2570 * @buffer: The ring buffer to stop writes to.
2571 *
2572 * This prevents all writes to the buffer. Any attempt to write
2573 * to the buffer after this will fail and return NULL.
2574 *
2575 * The caller should call synchronize_sched() after this.
2576 */
2577void ring_buffer_record_disable(struct ring_buffer *buffer)
2578{
2579 atomic_inc(&buffer->record_disabled);
2580}
c4f50183 2581EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2582
2583/**
2584 * ring_buffer_record_enable - enable writes to the buffer
2585 * @buffer: The ring buffer to enable writes
2586 *
2587 * Note, multiple disables will need the same number of enables
c41b20e7 2588 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2589 */
2590void ring_buffer_record_enable(struct ring_buffer *buffer)
2591{
2592 atomic_dec(&buffer->record_disabled);
2593}
c4f50183 2594EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2595
2596/**
2597 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2598 * @buffer: The ring buffer to stop writes to.
2599 * @cpu: The CPU buffer to stop
2600 *
2601 * This prevents all writes to the buffer. Any attempt to write
2602 * to the buffer after this will fail and return NULL.
2603 *
2604 * The caller should call synchronize_sched() after this.
2605 */
2606void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2607{
2608 struct ring_buffer_per_cpu *cpu_buffer;
2609
9e01c1b7 2610 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2611 return;
7a8e76a3
SR
2612
2613 cpu_buffer = buffer->buffers[cpu];
2614 atomic_inc(&cpu_buffer->record_disabled);
2615}
c4f50183 2616EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2617
2618/**
2619 * ring_buffer_record_enable_cpu - enable writes to the buffer
2620 * @buffer: The ring buffer to enable writes
2621 * @cpu: The CPU to enable.
2622 *
2623 * Note, multiple disables will need the same number of enables
c41b20e7 2624 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2625 */
2626void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2627{
2628 struct ring_buffer_per_cpu *cpu_buffer;
2629
9e01c1b7 2630 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2631 return;
7a8e76a3
SR
2632
2633 cpu_buffer = buffer->buffers[cpu];
2634 atomic_dec(&cpu_buffer->record_disabled);
2635}
c4f50183 2636EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2637
f6195aa0
SR
2638/*
2639 * The total entries in the ring buffer is the running counter
2640 * of entries entered into the ring buffer, minus the sum of
2641 * the entries read from the ring buffer and the number of
2642 * entries that were overwritten.
2643 */
2644static inline unsigned long
2645rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2646{
2647 return local_read(&cpu_buffer->entries) -
2648 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2649}
2650
7a8e76a3
SR
2651/**
2652 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2653 * @buffer: The ring buffer
2654 * @cpu: The per CPU buffer to get the entries from.
2655 */
2656unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2657{
2658 struct ring_buffer_per_cpu *cpu_buffer;
2659
9e01c1b7 2660 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2661 return 0;
7a8e76a3
SR
2662
2663 cpu_buffer = buffer->buffers[cpu];
554f786e 2664
f6195aa0 2665 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2666}
c4f50183 2667EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2668
2669/**
2670 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2671 * @buffer: The ring buffer
2672 * @cpu: The per CPU buffer to get the number of overruns from
2673 */
2674unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2675{
2676 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2677 unsigned long ret;
7a8e76a3 2678
9e01c1b7 2679 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2680 return 0;
7a8e76a3
SR
2681
2682 cpu_buffer = buffer->buffers[cpu];
77ae365e 2683 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2684
2685 return ret;
7a8e76a3 2686}
c4f50183 2687EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2688
f0d2c681
SR
2689/**
2690 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2691 * @buffer: The ring buffer
2692 * @cpu: The per CPU buffer to get the number of overruns from
2693 */
2694unsigned long
2695ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2696{
2697 struct ring_buffer_per_cpu *cpu_buffer;
2698 unsigned long ret;
2699
2700 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2701 return 0;
2702
2703 cpu_buffer = buffer->buffers[cpu];
77ae365e 2704 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2705
2706 return ret;
2707}
2708EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2709
7a8e76a3
SR
2710/**
2711 * ring_buffer_entries - get the number of entries in a buffer
2712 * @buffer: The ring buffer
2713 *
2714 * Returns the total number of entries in the ring buffer
2715 * (all CPU entries)
2716 */
2717unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2718{
2719 struct ring_buffer_per_cpu *cpu_buffer;
2720 unsigned long entries = 0;
2721 int cpu;
2722
2723 /* if you care about this being correct, lock the buffer */
2724 for_each_buffer_cpu(buffer, cpu) {
2725 cpu_buffer = buffer->buffers[cpu];
f6195aa0 2726 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
2727 }
2728
2729 return entries;
2730}
c4f50183 2731EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2732
2733/**
67b394f7 2734 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2735 * @buffer: The ring buffer
2736 *
2737 * Returns the total number of overruns in the ring buffer
2738 * (all CPU entries)
2739 */
2740unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2741{
2742 struct ring_buffer_per_cpu *cpu_buffer;
2743 unsigned long overruns = 0;
2744 int cpu;
2745
2746 /* if you care about this being correct, lock the buffer */
2747 for_each_buffer_cpu(buffer, cpu) {
2748 cpu_buffer = buffer->buffers[cpu];
77ae365e 2749 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2750 }
2751
2752 return overruns;
2753}
c4f50183 2754EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2755
642edba5 2756static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2757{
2758 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2759
d769041f
SR
2760 /* Iterator usage is expected to have record disabled */
2761 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2762 iter->head_page = rb_set_head_page(cpu_buffer);
2763 if (unlikely(!iter->head_page))
2764 return;
2765 iter->head = iter->head_page->read;
d769041f
SR
2766 } else {
2767 iter->head_page = cpu_buffer->reader_page;
6f807acd 2768 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2769 }
2770 if (iter->head)
2771 iter->read_stamp = cpu_buffer->read_stamp;
2772 else
abc9b56d 2773 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
2774 iter->cache_reader_page = cpu_buffer->reader_page;
2775 iter->cache_read = cpu_buffer->read;
642edba5 2776}
f83c9d0f 2777
642edba5
SR
2778/**
2779 * ring_buffer_iter_reset - reset an iterator
2780 * @iter: The iterator to reset
2781 *
2782 * Resets the iterator, so that it will start from the beginning
2783 * again.
2784 */
2785void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2786{
554f786e 2787 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2788 unsigned long flags;
2789
554f786e
SR
2790 if (!iter)
2791 return;
2792
2793 cpu_buffer = iter->cpu_buffer;
2794
642edba5
SR
2795 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2796 rb_iter_reset(iter);
f83c9d0f 2797 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2798}
c4f50183 2799EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2800
2801/**
2802 * ring_buffer_iter_empty - check if an iterator has no more to read
2803 * @iter: The iterator to check
2804 */
2805int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2806{
2807 struct ring_buffer_per_cpu *cpu_buffer;
2808
2809 cpu_buffer = iter->cpu_buffer;
2810
bf41a158
SR
2811 return iter->head_page == cpu_buffer->commit_page &&
2812 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2813}
c4f50183 2814EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2815
2816static void
2817rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2818 struct ring_buffer_event *event)
2819{
2820 u64 delta;
2821
334d4169 2822 switch (event->type_len) {
7a8e76a3
SR
2823 case RINGBUF_TYPE_PADDING:
2824 return;
2825
2826 case RINGBUF_TYPE_TIME_EXTEND:
2827 delta = event->array[0];
2828 delta <<= TS_SHIFT;
2829 delta += event->time_delta;
2830 cpu_buffer->read_stamp += delta;
2831 return;
2832
2833 case RINGBUF_TYPE_TIME_STAMP:
2834 /* FIXME: not implemented */
2835 return;
2836
2837 case RINGBUF_TYPE_DATA:
2838 cpu_buffer->read_stamp += event->time_delta;
2839 return;
2840
2841 default:
2842 BUG();
2843 }
2844 return;
2845}
2846
2847static void
2848rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2849 struct ring_buffer_event *event)
2850{
2851 u64 delta;
2852
334d4169 2853 switch (event->type_len) {
7a8e76a3
SR
2854 case RINGBUF_TYPE_PADDING:
2855 return;
2856
2857 case RINGBUF_TYPE_TIME_EXTEND:
2858 delta = event->array[0];
2859 delta <<= TS_SHIFT;
2860 delta += event->time_delta;
2861 iter->read_stamp += delta;
2862 return;
2863
2864 case RINGBUF_TYPE_TIME_STAMP:
2865 /* FIXME: not implemented */
2866 return;
2867
2868 case RINGBUF_TYPE_DATA:
2869 iter->read_stamp += event->time_delta;
2870 return;
2871
2872 default:
2873 BUG();
2874 }
2875 return;
2876}
2877
d769041f
SR
2878static struct buffer_page *
2879rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2880{
d769041f 2881 struct buffer_page *reader = NULL;
66a8cb95 2882 unsigned long overwrite;
d769041f 2883 unsigned long flags;
818e3dd3 2884 int nr_loops = 0;
77ae365e 2885 int ret;
d769041f 2886
3e03fb7f 2887 local_irq_save(flags);
0199c4e6 2888 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
2889
2890 again:
818e3dd3
SR
2891 /*
2892 * This should normally only loop twice. But because the
2893 * start of the reader inserts an empty page, it causes
2894 * a case where we will loop three times. There should be no
2895 * reason to loop four times (that I know of).
2896 */
3e89c7bb 2897 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2898 reader = NULL;
2899 goto out;
2900 }
2901
d769041f
SR
2902 reader = cpu_buffer->reader_page;
2903
2904 /* If there's more to read, return this page */
bf41a158 2905 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2906 goto out;
2907
2908 /* Never should we have an index greater than the size */
3e89c7bb
SR
2909 if (RB_WARN_ON(cpu_buffer,
2910 cpu_buffer->reader_page->read > rb_page_size(reader)))
2911 goto out;
d769041f
SR
2912
2913 /* check if we caught up to the tail */
2914 reader = NULL;
bf41a158 2915 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2916 goto out;
7a8e76a3
SR
2917
2918 /*
d769041f 2919 * Reset the reader page to size zero.
7a8e76a3 2920 */
77ae365e
SR
2921 local_set(&cpu_buffer->reader_page->write, 0);
2922 local_set(&cpu_buffer->reader_page->entries, 0);
2923 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 2924 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 2925
77ae365e
SR
2926 spin:
2927 /*
2928 * Splice the empty reader page into the list around the head.
2929 */
2930 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 2931 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 2932 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2933
3adc54fa
SR
2934 /*
2935 * cpu_buffer->pages just needs to point to the buffer, it
2936 * has no specific buffer page to point to. Lets move it out
25985edc 2937 * of our way so we don't accidentally swap it.
3adc54fa
SR
2938 */
2939 cpu_buffer->pages = reader->list.prev;
2940
77ae365e
SR
2941 /* The reader page will be pointing to the new head */
2942 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2943
66a8cb95
SR
2944 /*
2945 * We want to make sure we read the overruns after we set up our
2946 * pointers to the next object. The writer side does a
2947 * cmpxchg to cross pages which acts as the mb on the writer
2948 * side. Note, the reader will constantly fail the swap
2949 * while the writer is updating the pointers, so this
2950 * guarantees that the overwrite recorded here is the one we
2951 * want to compare with the last_overrun.
2952 */
2953 smp_mb();
2954 overwrite = local_read(&(cpu_buffer->overrun));
2955
77ae365e
SR
2956 /*
2957 * Here's the tricky part.
2958 *
2959 * We need to move the pointer past the header page.
2960 * But we can only do that if a writer is not currently
2961 * moving it. The page before the header page has the
2962 * flag bit '1' set if it is pointing to the page we want.
2963 * but if the writer is in the process of moving it
2964 * than it will be '2' or already moved '0'.
2965 */
2966
2967 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2968
2969 /*
77ae365e 2970 * If we did not convert it, then we must try again.
7a8e76a3 2971 */
77ae365e
SR
2972 if (!ret)
2973 goto spin;
7a8e76a3 2974
77ae365e
SR
2975 /*
2976 * Yeah! We succeeded in replacing the page.
2977 *
2978 * Now make the new head point back to the reader page.
2979 */
5ded3dc6 2980 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 2981 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2982
2983 /* Finally update the reader page to the new head */
2984 cpu_buffer->reader_page = reader;
2985 rb_reset_reader_page(cpu_buffer);
2986
66a8cb95
SR
2987 if (overwrite != cpu_buffer->last_overrun) {
2988 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2989 cpu_buffer->last_overrun = overwrite;
2990 }
2991
d769041f
SR
2992 goto again;
2993
2994 out:
0199c4e6 2995 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 2996 local_irq_restore(flags);
d769041f
SR
2997
2998 return reader;
2999}
3000
3001static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3002{
3003 struct ring_buffer_event *event;
3004 struct buffer_page *reader;
3005 unsigned length;
3006
3007 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3008
d769041f 3009 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3010 if (RB_WARN_ON(cpu_buffer, !reader))
3011 return;
7a8e76a3 3012
d769041f
SR
3013 event = rb_reader_event(cpu_buffer);
3014
a1863c21 3015 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3016 cpu_buffer->read++;
d769041f
SR
3017
3018 rb_update_read_stamp(cpu_buffer, event);
3019
3020 length = rb_event_length(event);
6f807acd 3021 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3022}
3023
3024static void rb_advance_iter(struct ring_buffer_iter *iter)
3025{
7a8e76a3
SR
3026 struct ring_buffer_per_cpu *cpu_buffer;
3027 struct ring_buffer_event *event;
3028 unsigned length;
3029
3030 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3031
3032 /*
3033 * Check if we are at the end of the buffer.
3034 */
bf41a158 3035 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3036 /* discarded commits can make the page empty */
3037 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3038 return;
d769041f 3039 rb_inc_iter(iter);
7a8e76a3
SR
3040 return;
3041 }
3042
3043 event = rb_iter_head_event(iter);
3044
3045 length = rb_event_length(event);
3046
3047 /*
3048 * This should not be called to advance the header if we are
3049 * at the tail of the buffer.
3050 */
3e89c7bb 3051 if (RB_WARN_ON(cpu_buffer,
f536aafc 3052 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3053 (iter->head + length > rb_commit_index(cpu_buffer))))
3054 return;
7a8e76a3
SR
3055
3056 rb_update_iter_read_stamp(iter, event);
3057
3058 iter->head += length;
3059
3060 /* check for end of page padding */
bf41a158
SR
3061 if ((iter->head >= rb_page_size(iter->head_page)) &&
3062 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3063 rb_advance_iter(iter);
3064}
3065
66a8cb95
SR
3066static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3067{
3068 return cpu_buffer->lost_events;
3069}
3070
f83c9d0f 3071static struct ring_buffer_event *
66a8cb95
SR
3072rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3073 unsigned long *lost_events)
7a8e76a3 3074{
7a8e76a3 3075 struct ring_buffer_event *event;
d769041f 3076 struct buffer_page *reader;
818e3dd3 3077 int nr_loops = 0;
7a8e76a3 3078
7a8e76a3 3079 again:
818e3dd3 3080 /*
69d1b839
SR
3081 * We repeat when a time extend is encountered.
3082 * Since the time extend is always attached to a data event,
3083 * we should never loop more than once.
3084 * (We never hit the following condition more than twice).
818e3dd3 3085 */
69d1b839 3086 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3087 return NULL;
818e3dd3 3088
d769041f
SR
3089 reader = rb_get_reader_page(cpu_buffer);
3090 if (!reader)
7a8e76a3
SR
3091 return NULL;
3092
d769041f 3093 event = rb_reader_event(cpu_buffer);
7a8e76a3 3094
334d4169 3095 switch (event->type_len) {
7a8e76a3 3096 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3097 if (rb_null_event(event))
3098 RB_WARN_ON(cpu_buffer, 1);
3099 /*
3100 * Because the writer could be discarding every
3101 * event it creates (which would probably be bad)
3102 * if we were to go back to "again" then we may never
3103 * catch up, and will trigger the warn on, or lock
3104 * the box. Return the padding, and we will release
3105 * the current locks, and try again.
3106 */
2d622719 3107 return event;
7a8e76a3
SR
3108
3109 case RINGBUF_TYPE_TIME_EXTEND:
3110 /* Internal data, OK to advance */
d769041f 3111 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3112 goto again;
3113
3114 case RINGBUF_TYPE_TIME_STAMP:
3115 /* FIXME: not implemented */
d769041f 3116 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3117 goto again;
3118
3119 case RINGBUF_TYPE_DATA:
3120 if (ts) {
3121 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3122 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3123 cpu_buffer->cpu, ts);
7a8e76a3 3124 }
66a8cb95
SR
3125 if (lost_events)
3126 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3127 return event;
3128
3129 default:
3130 BUG();
3131 }
3132
3133 return NULL;
3134}
c4f50183 3135EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3136
f83c9d0f
SR
3137static struct ring_buffer_event *
3138rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3139{
3140 struct ring_buffer *buffer;
3141 struct ring_buffer_per_cpu *cpu_buffer;
3142 struct ring_buffer_event *event;
818e3dd3 3143 int nr_loops = 0;
7a8e76a3 3144
7a8e76a3
SR
3145 cpu_buffer = iter->cpu_buffer;
3146 buffer = cpu_buffer->buffer;
3147
492a74f4
SR
3148 /*
3149 * Check if someone performed a consuming read to
3150 * the buffer. A consuming read invalidates the iterator
3151 * and we need to reset the iterator in this case.
3152 */
3153 if (unlikely(iter->cache_read != cpu_buffer->read ||
3154 iter->cache_reader_page != cpu_buffer->reader_page))
3155 rb_iter_reset(iter);
3156
7a8e76a3 3157 again:
3c05d748
SR
3158 if (ring_buffer_iter_empty(iter))
3159 return NULL;
3160
818e3dd3 3161 /*
69d1b839
SR
3162 * We repeat when a time extend is encountered.
3163 * Since the time extend is always attached to a data event,
3164 * we should never loop more than once.
3165 * (We never hit the following condition more than twice).
818e3dd3 3166 */
69d1b839 3167 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3168 return NULL;
818e3dd3 3169
7a8e76a3
SR
3170 if (rb_per_cpu_empty(cpu_buffer))
3171 return NULL;
3172
3c05d748
SR
3173 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3174 rb_inc_iter(iter);
3175 goto again;
3176 }
3177
7a8e76a3
SR
3178 event = rb_iter_head_event(iter);
3179
334d4169 3180 switch (event->type_len) {
7a8e76a3 3181 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3182 if (rb_null_event(event)) {
3183 rb_inc_iter(iter);
3184 goto again;
3185 }
3186 rb_advance_iter(iter);
3187 return event;
7a8e76a3
SR
3188
3189 case RINGBUF_TYPE_TIME_EXTEND:
3190 /* Internal data, OK to advance */
3191 rb_advance_iter(iter);
3192 goto again;
3193
3194 case RINGBUF_TYPE_TIME_STAMP:
3195 /* FIXME: not implemented */
3196 rb_advance_iter(iter);
3197 goto again;
3198
3199 case RINGBUF_TYPE_DATA:
3200 if (ts) {
3201 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3202 ring_buffer_normalize_time_stamp(buffer,
3203 cpu_buffer->cpu, ts);
7a8e76a3
SR
3204 }
3205 return event;
3206
3207 default:
3208 BUG();
3209 }
3210
3211 return NULL;
3212}
c4f50183 3213EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3214
8d707e8e
SR
3215static inline int rb_ok_to_lock(void)
3216{
3217 /*
3218 * If an NMI die dumps out the content of the ring buffer
3219 * do not grab locks. We also permanently disable the ring
3220 * buffer too. A one time deal is all you get from reading
3221 * the ring buffer from an NMI.
3222 */
464e85eb 3223 if (likely(!in_nmi()))
8d707e8e
SR
3224 return 1;
3225
3226 tracing_off_permanent();
3227 return 0;
3228}
3229
f83c9d0f
SR
3230/**
3231 * ring_buffer_peek - peek at the next event to be read
3232 * @buffer: The ring buffer to read
3233 * @cpu: The cpu to peak at
3234 * @ts: The timestamp counter of this event.
66a8cb95 3235 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3236 *
3237 * This will return the event that will be read next, but does
3238 * not consume the data.
3239 */
3240struct ring_buffer_event *
66a8cb95
SR
3241ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3242 unsigned long *lost_events)
f83c9d0f
SR
3243{
3244 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3245 struct ring_buffer_event *event;
f83c9d0f 3246 unsigned long flags;
8d707e8e 3247 int dolock;
f83c9d0f 3248
554f786e 3249 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3250 return NULL;
554f786e 3251
8d707e8e 3252 dolock = rb_ok_to_lock();
2d622719 3253 again:
8d707e8e
SR
3254 local_irq_save(flags);
3255 if (dolock)
3256 spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3257 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3258 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3259 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3260 if (dolock)
3261 spin_unlock(&cpu_buffer->reader_lock);
3262 local_irq_restore(flags);
f83c9d0f 3263
1b959e18 3264 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3265 goto again;
2d622719 3266
f83c9d0f
SR
3267 return event;
3268}
3269
3270/**
3271 * ring_buffer_iter_peek - peek at the next event to be read
3272 * @iter: The ring buffer iterator
3273 * @ts: The timestamp counter of this event.
3274 *
3275 * This will return the event that will be read next, but does
3276 * not increment the iterator.
3277 */
3278struct ring_buffer_event *
3279ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3280{
3281 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3282 struct ring_buffer_event *event;
3283 unsigned long flags;
3284
2d622719 3285 again:
f83c9d0f
SR
3286 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3287 event = rb_iter_peek(iter, ts);
3288 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3289
1b959e18 3290 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3291 goto again;
2d622719 3292
f83c9d0f
SR
3293 return event;
3294}
3295
7a8e76a3
SR
3296/**
3297 * ring_buffer_consume - return an event and consume it
3298 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3299 * @cpu: the cpu to read the buffer from
3300 * @ts: a variable to store the timestamp (may be NULL)
3301 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3302 *
3303 * Returns the next event in the ring buffer, and that event is consumed.
3304 * Meaning, that sequential reads will keep returning a different event,
3305 * and eventually empty the ring buffer if the producer is slower.
3306 */
3307struct ring_buffer_event *
66a8cb95
SR
3308ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3309 unsigned long *lost_events)
7a8e76a3 3310{
554f786e
SR
3311 struct ring_buffer_per_cpu *cpu_buffer;
3312 struct ring_buffer_event *event = NULL;
f83c9d0f 3313 unsigned long flags;
8d707e8e
SR
3314 int dolock;
3315
3316 dolock = rb_ok_to_lock();
7a8e76a3 3317
2d622719 3318 again:
554f786e
SR
3319 /* might be called in atomic */
3320 preempt_disable();
3321
9e01c1b7 3322 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3323 goto out;
7a8e76a3 3324
554f786e 3325 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3326 local_irq_save(flags);
3327 if (dolock)
3328 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3329
66a8cb95
SR
3330 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3331 if (event) {
3332 cpu_buffer->lost_events = 0;
469535a5 3333 rb_advance_reader(cpu_buffer);
66a8cb95 3334 }
7a8e76a3 3335
8d707e8e
SR
3336 if (dolock)
3337 spin_unlock(&cpu_buffer->reader_lock);
3338 local_irq_restore(flags);
f83c9d0f 3339
554f786e
SR
3340 out:
3341 preempt_enable();
3342
1b959e18 3343 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3344 goto again;
2d622719 3345
7a8e76a3
SR
3346 return event;
3347}
c4f50183 3348EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3349
3350/**
72c9ddfd 3351 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3352 * @buffer: The ring buffer to read from
3353 * @cpu: The cpu buffer to iterate over
3354 *
72c9ddfd
DM
3355 * This performs the initial preparations necessary to iterate
3356 * through the buffer. Memory is allocated, buffer recording
3357 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3358 *
72c9ddfd
DM
3359 * Disabling buffer recordng prevents the reading from being
3360 * corrupted. This is not a consuming read, so a producer is not
3361 * expected.
3362 *
3363 * After a sequence of ring_buffer_read_prepare calls, the user is
3364 * expected to make at least one call to ring_buffer_prepare_sync.
3365 * Afterwards, ring_buffer_read_start is invoked to get things going
3366 * for real.
3367 *
3368 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3369 */
3370struct ring_buffer_iter *
72c9ddfd 3371ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3372{
3373 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3374 struct ring_buffer_iter *iter;
7a8e76a3 3375
9e01c1b7 3376 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3377 return NULL;
7a8e76a3
SR
3378
3379 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3380 if (!iter)
8aabee57 3381 return NULL;
7a8e76a3
SR
3382
3383 cpu_buffer = buffer->buffers[cpu];
3384
3385 iter->cpu_buffer = cpu_buffer;
3386
3387 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3388
3389 return iter;
3390}
3391EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3392
3393/**
3394 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3395 *
3396 * All previously invoked ring_buffer_read_prepare calls to prepare
3397 * iterators will be synchronized. Afterwards, read_buffer_read_start
3398 * calls on those iterators are allowed.
3399 */
3400void
3401ring_buffer_read_prepare_sync(void)
3402{
7a8e76a3 3403 synchronize_sched();
72c9ddfd
DM
3404}
3405EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3406
3407/**
3408 * ring_buffer_read_start - start a non consuming read of the buffer
3409 * @iter: The iterator returned by ring_buffer_read_prepare
3410 *
3411 * This finalizes the startup of an iteration through the buffer.
3412 * The iterator comes from a call to ring_buffer_read_prepare and
3413 * an intervening ring_buffer_read_prepare_sync must have been
3414 * performed.
3415 *
3416 * Must be paired with ring_buffer_finish.
3417 */
3418void
3419ring_buffer_read_start(struct ring_buffer_iter *iter)
3420{
3421 struct ring_buffer_per_cpu *cpu_buffer;
3422 unsigned long flags;
3423
3424 if (!iter)
3425 return;
3426
3427 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3428
f83c9d0f 3429 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3430 arch_spin_lock(&cpu_buffer->lock);
642edba5 3431 rb_iter_reset(iter);
0199c4e6 3432 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3433 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3434}
c4f50183 3435EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3436
3437/**
3438 * ring_buffer_finish - finish reading the iterator of the buffer
3439 * @iter: The iterator retrieved by ring_buffer_start
3440 *
3441 * This re-enables the recording to the buffer, and frees the
3442 * iterator.
3443 */
3444void
3445ring_buffer_read_finish(struct ring_buffer_iter *iter)
3446{
3447 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3448
3449 atomic_dec(&cpu_buffer->record_disabled);
3450 kfree(iter);
3451}
c4f50183 3452EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3453
3454/**
3455 * ring_buffer_read - read the next item in the ring buffer by the iterator
3456 * @iter: The ring buffer iterator
3457 * @ts: The time stamp of the event read.
3458 *
3459 * This reads the next event in the ring buffer and increments the iterator.
3460 */
3461struct ring_buffer_event *
3462ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3463{
3464 struct ring_buffer_event *event;
f83c9d0f
SR
3465 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3466 unsigned long flags;
7a8e76a3 3467
f83c9d0f 3468 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3469 again:
f83c9d0f 3470 event = rb_iter_peek(iter, ts);
7a8e76a3 3471 if (!event)
f83c9d0f 3472 goto out;
7a8e76a3 3473
7e9391cf
SR
3474 if (event->type_len == RINGBUF_TYPE_PADDING)
3475 goto again;
3476
7a8e76a3 3477 rb_advance_iter(iter);
f83c9d0f
SR
3478 out:
3479 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3480
3481 return event;
3482}
c4f50183 3483EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3484
3485/**
3486 * ring_buffer_size - return the size of the ring buffer (in bytes)
3487 * @buffer: The ring buffer.
3488 */
3489unsigned long ring_buffer_size(struct ring_buffer *buffer)
3490{
3491 return BUF_PAGE_SIZE * buffer->pages;
3492}
c4f50183 3493EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3494
3495static void
3496rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3497{
77ae365e
SR
3498 rb_head_page_deactivate(cpu_buffer);
3499
7a8e76a3 3500 cpu_buffer->head_page
3adc54fa 3501 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3502 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3503 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3504 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3505
6f807acd 3506 cpu_buffer->head_page->read = 0;
bf41a158
SR
3507
3508 cpu_buffer->tail_page = cpu_buffer->head_page;
3509 cpu_buffer->commit_page = cpu_buffer->head_page;
3510
3511 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3512 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3513 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3514 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3515 cpu_buffer->reader_page->read = 0;
7a8e76a3 3516
77ae365e
SR
3517 local_set(&cpu_buffer->commit_overrun, 0);
3518 local_set(&cpu_buffer->overrun, 0);
e4906eff 3519 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3520 local_set(&cpu_buffer->committing, 0);
3521 local_set(&cpu_buffer->commits, 0);
77ae365e 3522 cpu_buffer->read = 0;
69507c06
SR
3523
3524 cpu_buffer->write_stamp = 0;
3525 cpu_buffer->read_stamp = 0;
77ae365e 3526
66a8cb95
SR
3527 cpu_buffer->lost_events = 0;
3528 cpu_buffer->last_overrun = 0;
3529
77ae365e 3530 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3531}
3532
3533/**
3534 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3535 * @buffer: The ring buffer to reset a per cpu buffer of
3536 * @cpu: The CPU buffer to be reset
3537 */
3538void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3539{
3540 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3541 unsigned long flags;
3542
9e01c1b7 3543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3544 return;
7a8e76a3 3545
41ede23e
SR
3546 atomic_inc(&cpu_buffer->record_disabled);
3547
f83c9d0f
SR
3548 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3549
41b6a95d
SR
3550 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3551 goto out;
3552
0199c4e6 3553 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3554
3555 rb_reset_cpu(cpu_buffer);
3556
0199c4e6 3557 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3558
41b6a95d 3559 out:
f83c9d0f 3560 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3561
3562 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3563}
c4f50183 3564EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3565
3566/**
3567 * ring_buffer_reset - reset a ring buffer
3568 * @buffer: The ring buffer to reset all cpu buffers
3569 */
3570void ring_buffer_reset(struct ring_buffer *buffer)
3571{
7a8e76a3
SR
3572 int cpu;
3573
7a8e76a3 3574 for_each_buffer_cpu(buffer, cpu)
d769041f 3575 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3576}
c4f50183 3577EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3578
3579/**
3580 * rind_buffer_empty - is the ring buffer empty?
3581 * @buffer: The ring buffer to test
3582 */
3583int ring_buffer_empty(struct ring_buffer *buffer)
3584{
3585 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3586 unsigned long flags;
8d707e8e 3587 int dolock;
7a8e76a3 3588 int cpu;
d4788207 3589 int ret;
7a8e76a3 3590
8d707e8e 3591 dolock = rb_ok_to_lock();
7a8e76a3
SR
3592
3593 /* yes this is racy, but if you don't like the race, lock the buffer */
3594 for_each_buffer_cpu(buffer, cpu) {
3595 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3596 local_irq_save(flags);
3597 if (dolock)
3598 spin_lock(&cpu_buffer->reader_lock);
d4788207 3599 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3600 if (dolock)
3601 spin_unlock(&cpu_buffer->reader_lock);
3602 local_irq_restore(flags);
3603
d4788207 3604 if (!ret)
7a8e76a3
SR
3605 return 0;
3606 }
554f786e 3607
7a8e76a3
SR
3608 return 1;
3609}
c4f50183 3610EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3611
3612/**
3613 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3614 * @buffer: The ring buffer
3615 * @cpu: The CPU buffer to test
3616 */
3617int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3618{
3619 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3620 unsigned long flags;
8d707e8e 3621 int dolock;
8aabee57 3622 int ret;
7a8e76a3 3623
9e01c1b7 3624 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3625 return 1;
7a8e76a3 3626
8d707e8e
SR
3627 dolock = rb_ok_to_lock();
3628
7a8e76a3 3629 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3630 local_irq_save(flags);
3631 if (dolock)
3632 spin_lock(&cpu_buffer->reader_lock);
554f786e 3633 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3634 if (dolock)
3635 spin_unlock(&cpu_buffer->reader_lock);
3636 local_irq_restore(flags);
554f786e
SR
3637
3638 return ret;
7a8e76a3 3639}
c4f50183 3640EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3641
85bac32c 3642#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3643/**
3644 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3645 * @buffer_a: One buffer to swap with
3646 * @buffer_b: The other buffer to swap with
3647 *
3648 * This function is useful for tracers that want to take a "snapshot"
3649 * of a CPU buffer and has another back up buffer lying around.
3650 * it is expected that the tracer handles the cpu buffer not being
3651 * used at the moment.
3652 */
3653int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3654 struct ring_buffer *buffer_b, int cpu)
3655{
3656 struct ring_buffer_per_cpu *cpu_buffer_a;
3657 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3658 int ret = -EINVAL;
3659
9e01c1b7
RR
3660 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3661 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3662 goto out;
7a8e76a3
SR
3663
3664 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3665 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3666 goto out;
3667
3668 ret = -EAGAIN;
7a8e76a3 3669
97b17efe 3670 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3671 goto out;
97b17efe
SR
3672
3673 if (atomic_read(&buffer_a->record_disabled))
554f786e 3674 goto out;
97b17efe
SR
3675
3676 if (atomic_read(&buffer_b->record_disabled))
554f786e 3677 goto out;
97b17efe 3678
7a8e76a3
SR
3679 cpu_buffer_a = buffer_a->buffers[cpu];
3680 cpu_buffer_b = buffer_b->buffers[cpu];
3681
97b17efe 3682 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3683 goto out;
97b17efe
SR
3684
3685 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3686 goto out;
97b17efe 3687
7a8e76a3
SR
3688 /*
3689 * We can't do a synchronize_sched here because this
3690 * function can be called in atomic context.
3691 * Normally this will be called from the same CPU as cpu.
3692 * If not it's up to the caller to protect this.
3693 */
3694 atomic_inc(&cpu_buffer_a->record_disabled);
3695 atomic_inc(&cpu_buffer_b->record_disabled);
3696
98277991
SR
3697 ret = -EBUSY;
3698 if (local_read(&cpu_buffer_a->committing))
3699 goto out_dec;
3700 if (local_read(&cpu_buffer_b->committing))
3701 goto out_dec;
3702
7a8e76a3
SR
3703 buffer_a->buffers[cpu] = cpu_buffer_b;
3704 buffer_b->buffers[cpu] = cpu_buffer_a;
3705
3706 cpu_buffer_b->buffer = buffer_a;
3707 cpu_buffer_a->buffer = buffer_b;
3708
98277991
SR
3709 ret = 0;
3710
3711out_dec:
7a8e76a3
SR
3712 atomic_dec(&cpu_buffer_a->record_disabled);
3713 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3714out:
554f786e 3715 return ret;
7a8e76a3 3716}
c4f50183 3717EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3718#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3719
8789a9e7
SR
3720/**
3721 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3722 * @buffer: the buffer to allocate for.
3723 *
3724 * This function is used in conjunction with ring_buffer_read_page.
3725 * When reading a full page from the ring buffer, these functions
3726 * can be used to speed up the process. The calling function should
3727 * allocate a few pages first with this function. Then when it
3728 * needs to get pages from the ring buffer, it passes the result
3729 * of this function into ring_buffer_read_page, which will swap
3730 * the page that was allocated, with the read page of the buffer.
3731 *
3732 * Returns:
3733 * The page allocated, or NULL on error.
3734 */
7ea59064 3735void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 3736{
044fa782 3737 struct buffer_data_page *bpage;
7ea59064 3738 struct page *page;
8789a9e7 3739
7ea59064
VN
3740 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
3741 if (!page)
8789a9e7
SR
3742 return NULL;
3743
7ea59064 3744 bpage = page_address(page);
8789a9e7 3745
ef7a4a16
SR
3746 rb_init_page(bpage);
3747
044fa782 3748 return bpage;
8789a9e7 3749}
d6ce96da 3750EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3751
3752/**
3753 * ring_buffer_free_read_page - free an allocated read page
3754 * @buffer: the buffer the page was allocate for
3755 * @data: the page to free
3756 *
3757 * Free a page allocated from ring_buffer_alloc_read_page.
3758 */
3759void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3760{
3761 free_page((unsigned long)data);
3762}
d6ce96da 3763EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3764
3765/**
3766 * ring_buffer_read_page - extract a page from the ring buffer
3767 * @buffer: buffer to extract from
3768 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3769 * @len: amount to extract
8789a9e7
SR
3770 * @cpu: the cpu of the buffer to extract
3771 * @full: should the extraction only happen when the page is full.
3772 *
3773 * This function will pull out a page from the ring buffer and consume it.
3774 * @data_page must be the address of the variable that was returned
3775 * from ring_buffer_alloc_read_page. This is because the page might be used
3776 * to swap with a page in the ring buffer.
3777 *
3778 * for example:
b85fa01e 3779 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3780 * if (!rpage)
3781 * return error;
ef7a4a16 3782 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3783 * if (ret >= 0)
3784 * process_page(rpage, ret);
8789a9e7
SR
3785 *
3786 * When @full is set, the function will not return true unless
3787 * the writer is off the reader page.
3788 *
3789 * Note: it is up to the calling functions to handle sleeps and wakeups.
3790 * The ring buffer can be used anywhere in the kernel and can not
3791 * blindly call wake_up. The layer that uses the ring buffer must be
3792 * responsible for that.
3793 *
3794 * Returns:
667d2412
LJ
3795 * >=0 if data has been transferred, returns the offset of consumed data.
3796 * <0 if no data has been transferred.
8789a9e7
SR
3797 */
3798int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3799 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3800{
3801 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3802 struct ring_buffer_event *event;
044fa782 3803 struct buffer_data_page *bpage;
ef7a4a16 3804 struct buffer_page *reader;
ff0ff84a 3805 unsigned long missed_events;
8789a9e7 3806 unsigned long flags;
ef7a4a16 3807 unsigned int commit;
667d2412 3808 unsigned int read;
4f3640f8 3809 u64 save_timestamp;
667d2412 3810 int ret = -1;
8789a9e7 3811
554f786e
SR
3812 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3813 goto out;
3814
474d32b6
SR
3815 /*
3816 * If len is not big enough to hold the page header, then
3817 * we can not copy anything.
3818 */
3819 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3820 goto out;
474d32b6
SR
3821
3822 len -= BUF_PAGE_HDR_SIZE;
3823
8789a9e7 3824 if (!data_page)
554f786e 3825 goto out;
8789a9e7 3826
044fa782
SR
3827 bpage = *data_page;
3828 if (!bpage)
554f786e 3829 goto out;
8789a9e7
SR
3830
3831 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3832
ef7a4a16
SR
3833 reader = rb_get_reader_page(cpu_buffer);
3834 if (!reader)
554f786e 3835 goto out_unlock;
8789a9e7 3836
ef7a4a16
SR
3837 event = rb_reader_event(cpu_buffer);
3838
3839 read = reader->read;
3840 commit = rb_page_commit(reader);
667d2412 3841
66a8cb95 3842 /* Check if any events were dropped */
ff0ff84a 3843 missed_events = cpu_buffer->lost_events;
66a8cb95 3844
8789a9e7 3845 /*
474d32b6
SR
3846 * If this page has been partially read or
3847 * if len is not big enough to read the rest of the page or
3848 * a writer is still on the page, then
3849 * we must copy the data from the page to the buffer.
3850 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3851 */
474d32b6 3852 if (read || (len < (commit - read)) ||
ef7a4a16 3853 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3854 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3855 unsigned int rpos = read;
3856 unsigned int pos = 0;
ef7a4a16 3857 unsigned int size;
8789a9e7
SR
3858
3859 if (full)
554f786e 3860 goto out_unlock;
8789a9e7 3861
ef7a4a16
SR
3862 if (len > (commit - read))
3863 len = (commit - read);
3864
69d1b839
SR
3865 /* Always keep the time extend and data together */
3866 size = rb_event_ts_length(event);
ef7a4a16
SR
3867
3868 if (len < size)
554f786e 3869 goto out_unlock;
ef7a4a16 3870
4f3640f8
SR
3871 /* save the current timestamp, since the user will need it */
3872 save_timestamp = cpu_buffer->read_stamp;
3873
ef7a4a16
SR
3874 /* Need to copy one event at a time */
3875 do {
e1e35927
DS
3876 /* We need the size of one event, because
3877 * rb_advance_reader only advances by one event,
3878 * whereas rb_event_ts_length may include the size of
3879 * one or two events.
3880 * We have already ensured there's enough space if this
3881 * is a time extend. */
3882 size = rb_event_length(event);
474d32b6 3883 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3884
3885 len -= size;
3886
3887 rb_advance_reader(cpu_buffer);
474d32b6
SR
3888 rpos = reader->read;
3889 pos += size;
ef7a4a16 3890
18fab912
HY
3891 if (rpos >= commit)
3892 break;
3893
ef7a4a16 3894 event = rb_reader_event(cpu_buffer);
69d1b839
SR
3895 /* Always keep the time extend and data together */
3896 size = rb_event_ts_length(event);
e1e35927 3897 } while (len >= size);
667d2412
LJ
3898
3899 /* update bpage */
ef7a4a16 3900 local_set(&bpage->commit, pos);
4f3640f8 3901 bpage->time_stamp = save_timestamp;
ef7a4a16 3902
474d32b6
SR
3903 /* we copied everything to the beginning */
3904 read = 0;
8789a9e7 3905 } else {
afbab76a 3906 /* update the entry counter */
77ae365e 3907 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3908
8789a9e7 3909 /* swap the pages */
044fa782 3910 rb_init_page(bpage);
ef7a4a16
SR
3911 bpage = reader->page;
3912 reader->page = *data_page;
3913 local_set(&reader->write, 0);
778c55d4 3914 local_set(&reader->entries, 0);
ef7a4a16 3915 reader->read = 0;
044fa782 3916 *data_page = bpage;
ff0ff84a
SR
3917
3918 /*
3919 * Use the real_end for the data size,
3920 * This gives us a chance to store the lost events
3921 * on the page.
3922 */
3923 if (reader->real_end)
3924 local_set(&bpage->commit, reader->real_end);
8789a9e7 3925 }
667d2412 3926 ret = read;
8789a9e7 3927
66a8cb95 3928 cpu_buffer->lost_events = 0;
2711ca23
SR
3929
3930 commit = local_read(&bpage->commit);
66a8cb95
SR
3931 /*
3932 * Set a flag in the commit field if we lost events
3933 */
ff0ff84a 3934 if (missed_events) {
ff0ff84a
SR
3935 /* If there is room at the end of the page to save the
3936 * missed events, then record it there.
3937 */
3938 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3939 memcpy(&bpage->data[commit], &missed_events,
3940 sizeof(missed_events));
3941 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 3942 commit += sizeof(missed_events);
ff0ff84a 3943 }
66a8cb95 3944 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 3945 }
66a8cb95 3946
2711ca23
SR
3947 /*
3948 * This page may be off to user land. Zero it out here.
3949 */
3950 if (commit < BUF_PAGE_SIZE)
3951 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3952
554f786e 3953 out_unlock:
8789a9e7
SR
3954 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3955
554f786e 3956 out:
8789a9e7
SR
3957 return ret;
3958}
d6ce96da 3959EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3960
1155de47 3961#ifdef CONFIG_TRACING
a3583244
SR
3962static ssize_t
3963rb_simple_read(struct file *filp, char __user *ubuf,
3964 size_t cnt, loff_t *ppos)
3965{
5e39841c 3966 unsigned long *p = filp->private_data;
a3583244
SR
3967 char buf[64];
3968 int r;
3969
033601a3
SR
3970 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3971 r = sprintf(buf, "permanently disabled\n");
3972 else
3973 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3974
3975 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3976}
3977
3978static ssize_t
3979rb_simple_write(struct file *filp, const char __user *ubuf,
3980 size_t cnt, loff_t *ppos)
3981{
5e39841c 3982 unsigned long *p = filp->private_data;
a3583244 3983 char buf[64];
5e39841c 3984 unsigned long val;
a3583244
SR
3985 int ret;
3986
3987 if (cnt >= sizeof(buf))
3988 return -EINVAL;
3989
3990 if (copy_from_user(&buf, ubuf, cnt))
3991 return -EFAULT;
3992
3993 buf[cnt] = 0;
3994
3995 ret = strict_strtoul(buf, 10, &val);
3996 if (ret < 0)
3997 return ret;
3998
033601a3
SR
3999 if (val)
4000 set_bit(RB_BUFFERS_ON_BIT, p);
4001 else
4002 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
4003
4004 (*ppos)++;
4005
4006 return cnt;
4007}
4008
5e2336a0 4009static const struct file_operations rb_simple_fops = {
a3583244
SR
4010 .open = tracing_open_generic,
4011 .read = rb_simple_read,
4012 .write = rb_simple_write,
6038f373 4013 .llseek = default_llseek,
a3583244
SR
4014};
4015
4016
4017static __init int rb_init_debugfs(void)
4018{
4019 struct dentry *d_tracer;
a3583244
SR
4020
4021 d_tracer = tracing_init_dentry();
4022
5452af66
FW
4023 trace_create_file("tracing_on", 0644, d_tracer,
4024 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
4025
4026 return 0;
4027}
4028
4029fs_initcall(rb_init_debugfs);
1155de47 4030#endif
554f786e 4031
59222efe 4032#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4033static int rb_cpu_notify(struct notifier_block *self,
4034 unsigned long action, void *hcpu)
554f786e
SR
4035{
4036 struct ring_buffer *buffer =
4037 container_of(self, struct ring_buffer, cpu_notify);
4038 long cpu = (long)hcpu;
4039
4040 switch (action) {
4041 case CPU_UP_PREPARE:
4042 case CPU_UP_PREPARE_FROZEN:
3f237a79 4043 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4044 return NOTIFY_OK;
4045
4046 buffer->buffers[cpu] =
4047 rb_allocate_cpu_buffer(buffer, cpu);
4048 if (!buffer->buffers[cpu]) {
4049 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4050 cpu);
4051 return NOTIFY_OK;
4052 }
4053 smp_wmb();
3f237a79 4054 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4055 break;
4056 case CPU_DOWN_PREPARE:
4057 case CPU_DOWN_PREPARE_FROZEN:
4058 /*
4059 * Do nothing.
4060 * If we were to free the buffer, then the user would
4061 * lose any trace that was in the buffer.
4062 */
4063 break;
4064 default:
4065 break;
4066 }
4067 return NOTIFY_OK;
4068}
4069#endif