]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
ring-buffer: move some metadata into buffer page
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
7#include <linux/spinlock.h>
8#include <linux/debugfs.h>
9#include <linux/uaccess.h>
10#include <linux/module.h>
11#include <linux/percpu.h>
12#include <linux/mutex.h>
13#include <linux/sched.h> /* used for sched_clock() (for now) */
14#include <linux/init.h>
15#include <linux/hash.h>
16#include <linux/list.h>
17#include <linux/fs.h>
18
182e9f5f
SR
19#include "trace.h"
20
033601a3
SR
21/*
22 * A fast way to enable or disable all ring buffers is to
23 * call tracing_on or tracing_off. Turning off the ring buffers
24 * prevents all ring buffers from being recorded to.
25 * Turning this switch on, makes it OK to write to the
26 * ring buffer, if the ring buffer is enabled itself.
27 *
28 * There's three layers that must be on in order to write
29 * to the ring buffer.
30 *
31 * 1) This global flag must be set.
32 * 2) The ring buffer must be enabled for recording.
33 * 3) The per cpu buffer must be enabled for recording.
34 *
35 * In case of an anomaly, this global flag has a bit set that
36 * will permantly disable all ring buffers.
37 */
38
39/*
40 * Global flag to disable all recording to ring buffers
41 * This has two bits: ON, DISABLED
42 *
43 * ON DISABLED
44 * ---- ----------
45 * 0 0 : ring buffers are off
46 * 1 0 : ring buffers are on
47 * X 1 : ring buffers are permanently disabled
48 */
49
50enum {
51 RB_BUFFERS_ON_BIT = 0,
52 RB_BUFFERS_DISABLED_BIT = 1,
53};
54
55enum {
56 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
57 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
58};
59
60static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244
SR
61
62/**
63 * tracing_on - enable all tracing buffers
64 *
65 * This function enables all tracing buffers that may have been
66 * disabled with tracing_off.
67 */
68void tracing_on(void)
69{
033601a3 70 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244
SR
71}
72
73/**
74 * tracing_off - turn off all tracing buffers
75 *
76 * This function stops all tracing buffers from recording data.
77 * It does not disable any overhead the tracers themselves may
78 * be causing. This function simply causes all recording to
79 * the ring buffers to fail.
80 */
81void tracing_off(void)
82{
033601a3
SR
83 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
84}
85
86/**
87 * tracing_off_permanent - permanently disable ring buffers
88 *
89 * This function, once called, will disable all ring buffers
90 * permanenty.
91 */
92void tracing_off_permanent(void)
93{
94 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
95}
96
d06bbd66
IM
97#include "trace.h"
98
7a8e76a3
SR
99/* Up this if you want to test the TIME_EXTENTS and normalization */
100#define DEBUG_SHIFT 0
101
102/* FIXME!!! */
103u64 ring_buffer_time_stamp(int cpu)
104{
47e74f2b
SR
105 u64 time;
106
107 preempt_disable_notrace();
7a8e76a3 108 /* shift to debug/test normalization and TIME_EXTENTS */
47e74f2b
SR
109 time = sched_clock() << DEBUG_SHIFT;
110 preempt_enable_notrace();
111
112 return time;
7a8e76a3
SR
113}
114
115void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
116{
117 /* Just stupid testing the normalize function and deltas */
118 *ts >>= DEBUG_SHIFT;
119}
120
121#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
122#define RB_ALIGNMENT_SHIFT 2
123#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
124#define RB_MAX_SMALL_DATA 28
125
126enum {
127 RB_LEN_TIME_EXTEND = 8,
128 RB_LEN_TIME_STAMP = 16,
129};
130
131/* inline for ring buffer fast paths */
132static inline unsigned
133rb_event_length(struct ring_buffer_event *event)
134{
135 unsigned length;
136
137 switch (event->type) {
138 case RINGBUF_TYPE_PADDING:
139 /* undefined */
140 return -1;
141
142 case RINGBUF_TYPE_TIME_EXTEND:
143 return RB_LEN_TIME_EXTEND;
144
145 case RINGBUF_TYPE_TIME_STAMP:
146 return RB_LEN_TIME_STAMP;
147
148 case RINGBUF_TYPE_DATA:
149 if (event->len)
150 length = event->len << RB_ALIGNMENT_SHIFT;
151 else
152 length = event->array[0];
153 return length + RB_EVNT_HDR_SIZE;
154 default:
155 BUG();
156 }
157 /* not hit */
158 return 0;
159}
160
161/**
162 * ring_buffer_event_length - return the length of the event
163 * @event: the event to get the length of
164 */
165unsigned ring_buffer_event_length(struct ring_buffer_event *event)
166{
167 return rb_event_length(event);
168}
169
170/* inline for ring buffer fast paths */
171static inline void *
172rb_event_data(struct ring_buffer_event *event)
173{
174 BUG_ON(event->type != RINGBUF_TYPE_DATA);
175 /* If length is in len field, then array[0] has the data */
176 if (event->len)
177 return (void *)&event->array[0];
178 /* Otherwise length is in array[0] and array[1] has the data */
179 return (void *)&event->array[1];
180}
181
182/**
183 * ring_buffer_event_data - return the data of the event
184 * @event: the event to get the data from
185 */
186void *ring_buffer_event_data(struct ring_buffer_event *event)
187{
188 return rb_event_data(event);
189}
190
191#define for_each_buffer_cpu(buffer, cpu) \
192 for_each_cpu_mask(cpu, buffer->cpumask)
193
194#define TS_SHIFT 27
195#define TS_MASK ((1ULL << TS_SHIFT) - 1)
196#define TS_DELTA_TEST (~TS_MASK)
197
abc9b56d 198struct buffer_data_page {
e4c2ce82 199 u64 time_stamp; /* page time stamp */
bf41a158 200 local_t commit; /* write commited index */
abc9b56d
SR
201 unsigned char data[]; /* data of buffer page */
202};
203
204struct buffer_page {
205 local_t write; /* index for next write */
6f807acd 206 unsigned read; /* index for next read */
e4c2ce82 207 struct list_head list; /* list of free pages */
abc9b56d 208 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
209};
210
abc9b56d
SR
211static void rb_init_page(struct buffer_data_page *page)
212{
213 local_set(&page->commit, 0);
214}
215
ed56829c
SR
216/*
217 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
218 * this issue out.
219 */
220static inline void free_buffer_page(struct buffer_page *bpage)
221{
e4c2ce82 222 if (bpage->page)
6ae2a076 223 free_page((unsigned long)bpage->page);
e4c2ce82 224 kfree(bpage);
ed56829c
SR
225}
226
7a8e76a3
SR
227/*
228 * We need to fit the time_stamp delta into 27 bits.
229 */
230static inline int test_time_stamp(u64 delta)
231{
232 if (delta & TS_DELTA_TEST)
233 return 1;
234 return 0;
235}
236
abc9b56d 237#define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
7a8e76a3
SR
238
239/*
240 * head_page == tail_page && head == tail then buffer is empty.
241 */
242struct ring_buffer_per_cpu {
243 int cpu;
244 struct ring_buffer *buffer;
f83c9d0f 245 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 246 raw_spinlock_t lock;
7a8e76a3
SR
247 struct lock_class_key lock_key;
248 struct list_head pages;
6f807acd
SR
249 struct buffer_page *head_page; /* read from head */
250 struct buffer_page *tail_page; /* write to tail */
bf41a158 251 struct buffer_page *commit_page; /* commited pages */
d769041f 252 struct buffer_page *reader_page;
7a8e76a3
SR
253 unsigned long overrun;
254 unsigned long entries;
255 u64 write_stamp;
256 u64 read_stamp;
257 atomic_t record_disabled;
258};
259
260struct ring_buffer {
261 unsigned long size;
262 unsigned pages;
263 unsigned flags;
264 int cpus;
265 cpumask_t cpumask;
266 atomic_t record_disabled;
267
268 struct mutex mutex;
269
270 struct ring_buffer_per_cpu **buffers;
271};
272
273struct ring_buffer_iter {
274 struct ring_buffer_per_cpu *cpu_buffer;
275 unsigned long head;
276 struct buffer_page *head_page;
277 u64 read_stamp;
278};
279
f536aafc 280/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 281#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
282 ({ \
283 int _____ret = unlikely(cond); \
284 if (_____ret) { \
bf41a158
SR
285 atomic_inc(&buffer->record_disabled); \
286 WARN_ON(1); \
287 } \
3e89c7bb
SR
288 _____ret; \
289 })
f536aafc 290
7a8e76a3
SR
291/**
292 * check_pages - integrity check of buffer pages
293 * @cpu_buffer: CPU buffer with pages to test
294 *
295 * As a safty measure we check to make sure the data pages have not
296 * been corrupted.
297 */
298static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
299{
300 struct list_head *head = &cpu_buffer->pages;
301 struct buffer_page *page, *tmp;
302
3e89c7bb
SR
303 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
304 return -1;
305 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
306 return -1;
7a8e76a3
SR
307
308 list_for_each_entry_safe(page, tmp, head, list) {
3e89c7bb
SR
309 if (RB_WARN_ON(cpu_buffer,
310 page->list.next->prev != &page->list))
311 return -1;
312 if (RB_WARN_ON(cpu_buffer,
313 page->list.prev->next != &page->list))
314 return -1;
7a8e76a3
SR
315 }
316
317 return 0;
318}
319
7a8e76a3
SR
320static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
321 unsigned nr_pages)
322{
323 struct list_head *head = &cpu_buffer->pages;
324 struct buffer_page *page, *tmp;
325 unsigned long addr;
326 LIST_HEAD(pages);
327 unsigned i;
328
329 for (i = 0; i < nr_pages; i++) {
e4c2ce82 330 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
aa1e0e3b 331 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
e4c2ce82
SR
332 if (!page)
333 goto free_pages;
334 list_add(&page->list, &pages);
335
7a8e76a3
SR
336 addr = __get_free_page(GFP_KERNEL);
337 if (!addr)
338 goto free_pages;
e4c2ce82 339 page->page = (void *)addr;
abc9b56d 340 rb_init_page(page->page);
7a8e76a3
SR
341 }
342
343 list_splice(&pages, head);
344
345 rb_check_pages(cpu_buffer);
346
347 return 0;
348
349 free_pages:
350 list_for_each_entry_safe(page, tmp, &pages, list) {
351 list_del_init(&page->list);
ed56829c 352 free_buffer_page(page);
7a8e76a3
SR
353 }
354 return -ENOMEM;
355}
356
357static struct ring_buffer_per_cpu *
358rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
359{
360 struct ring_buffer_per_cpu *cpu_buffer;
e4c2ce82 361 struct buffer_page *page;
d769041f 362 unsigned long addr;
7a8e76a3
SR
363 int ret;
364
365 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
366 GFP_KERNEL, cpu_to_node(cpu));
367 if (!cpu_buffer)
368 return NULL;
369
370 cpu_buffer->cpu = cpu;
371 cpu_buffer->buffer = buffer;
f83c9d0f 372 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 373 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
374 INIT_LIST_HEAD(&cpu_buffer->pages);
375
e4c2ce82
SR
376 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
377 GFP_KERNEL, cpu_to_node(cpu));
378 if (!page)
379 goto fail_free_buffer;
380
381 cpu_buffer->reader_page = page;
d769041f
SR
382 addr = __get_free_page(GFP_KERNEL);
383 if (!addr)
e4c2ce82
SR
384 goto fail_free_reader;
385 page->page = (void *)addr;
abc9b56d 386 rb_init_page(page->page);
e4c2ce82 387
d769041f 388 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 389
7a8e76a3
SR
390 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
391 if (ret < 0)
d769041f 392 goto fail_free_reader;
7a8e76a3
SR
393
394 cpu_buffer->head_page
395 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 396 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
397
398 return cpu_buffer;
399
d769041f
SR
400 fail_free_reader:
401 free_buffer_page(cpu_buffer->reader_page);
402
7a8e76a3
SR
403 fail_free_buffer:
404 kfree(cpu_buffer);
405 return NULL;
406}
407
408static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
409{
410 struct list_head *head = &cpu_buffer->pages;
411 struct buffer_page *page, *tmp;
412
d769041f
SR
413 list_del_init(&cpu_buffer->reader_page->list);
414 free_buffer_page(cpu_buffer->reader_page);
415
7a8e76a3
SR
416 list_for_each_entry_safe(page, tmp, head, list) {
417 list_del_init(&page->list);
ed56829c 418 free_buffer_page(page);
7a8e76a3
SR
419 }
420 kfree(cpu_buffer);
421}
422
a7b13743
SR
423/*
424 * Causes compile errors if the struct buffer_page gets bigger
425 * than the struct page.
426 */
427extern int ring_buffer_page_too_big(void);
428
7a8e76a3
SR
429/**
430 * ring_buffer_alloc - allocate a new ring_buffer
431 * @size: the size in bytes that is needed.
432 * @flags: attributes to set for the ring buffer.
433 *
434 * Currently the only flag that is available is the RB_FL_OVERWRITE
435 * flag. This flag means that the buffer will overwrite old data
436 * when the buffer wraps. If this flag is not set, the buffer will
437 * drop data when the tail hits the head.
438 */
439struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
440{
441 struct ring_buffer *buffer;
442 int bsize;
443 int cpu;
444
a7b13743
SR
445 /* Paranoid! Optimizes out when all is well */
446 if (sizeof(struct buffer_page) > sizeof(struct page))
447 ring_buffer_page_too_big();
448
449
7a8e76a3
SR
450 /* keep it in its own cache line */
451 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
452 GFP_KERNEL);
453 if (!buffer)
454 return NULL;
455
456 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
457 buffer->flags = flags;
458
459 /* need at least two pages */
460 if (buffer->pages == 1)
461 buffer->pages++;
462
463 buffer->cpumask = cpu_possible_map;
464 buffer->cpus = nr_cpu_ids;
465
466 bsize = sizeof(void *) * nr_cpu_ids;
467 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
468 GFP_KERNEL);
469 if (!buffer->buffers)
470 goto fail_free_buffer;
471
472 for_each_buffer_cpu(buffer, cpu) {
473 buffer->buffers[cpu] =
474 rb_allocate_cpu_buffer(buffer, cpu);
475 if (!buffer->buffers[cpu])
476 goto fail_free_buffers;
477 }
478
479 mutex_init(&buffer->mutex);
480
481 return buffer;
482
483 fail_free_buffers:
484 for_each_buffer_cpu(buffer, cpu) {
485 if (buffer->buffers[cpu])
486 rb_free_cpu_buffer(buffer->buffers[cpu]);
487 }
488 kfree(buffer->buffers);
489
490 fail_free_buffer:
491 kfree(buffer);
492 return NULL;
493}
494
495/**
496 * ring_buffer_free - free a ring buffer.
497 * @buffer: the buffer to free.
498 */
499void
500ring_buffer_free(struct ring_buffer *buffer)
501{
502 int cpu;
503
504 for_each_buffer_cpu(buffer, cpu)
505 rb_free_cpu_buffer(buffer->buffers[cpu]);
506
507 kfree(buffer);
508}
509
510static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
511
512static void
513rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
514{
515 struct buffer_page *page;
516 struct list_head *p;
517 unsigned i;
518
519 atomic_inc(&cpu_buffer->record_disabled);
520 synchronize_sched();
521
522 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
523 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
524 return;
7a8e76a3
SR
525 p = cpu_buffer->pages.next;
526 page = list_entry(p, struct buffer_page, list);
527 list_del_init(&page->list);
ed56829c 528 free_buffer_page(page);
7a8e76a3 529 }
3e89c7bb
SR
530 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
531 return;
7a8e76a3
SR
532
533 rb_reset_cpu(cpu_buffer);
534
535 rb_check_pages(cpu_buffer);
536
537 atomic_dec(&cpu_buffer->record_disabled);
538
539}
540
541static void
542rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
543 struct list_head *pages, unsigned nr_pages)
544{
545 struct buffer_page *page;
546 struct list_head *p;
547 unsigned i;
548
549 atomic_inc(&cpu_buffer->record_disabled);
550 synchronize_sched();
551
552 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
553 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
554 return;
7a8e76a3
SR
555 p = pages->next;
556 page = list_entry(p, struct buffer_page, list);
557 list_del_init(&page->list);
558 list_add_tail(&page->list, &cpu_buffer->pages);
559 }
560 rb_reset_cpu(cpu_buffer);
561
562 rb_check_pages(cpu_buffer);
563
564 atomic_dec(&cpu_buffer->record_disabled);
565}
566
567/**
568 * ring_buffer_resize - resize the ring buffer
569 * @buffer: the buffer to resize.
570 * @size: the new size.
571 *
572 * The tracer is responsible for making sure that the buffer is
573 * not being used while changing the size.
574 * Note: We may be able to change the above requirement by using
575 * RCU synchronizations.
576 *
577 * Minimum size is 2 * BUF_PAGE_SIZE.
578 *
579 * Returns -1 on failure.
580 */
581int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
582{
583 struct ring_buffer_per_cpu *cpu_buffer;
584 unsigned nr_pages, rm_pages, new_pages;
585 struct buffer_page *page, *tmp;
586 unsigned long buffer_size;
587 unsigned long addr;
588 LIST_HEAD(pages);
589 int i, cpu;
590
ee51a1de
IM
591 /*
592 * Always succeed at resizing a non-existent buffer:
593 */
594 if (!buffer)
595 return size;
596
7a8e76a3
SR
597 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
598 size *= BUF_PAGE_SIZE;
599 buffer_size = buffer->pages * BUF_PAGE_SIZE;
600
601 /* we need a minimum of two pages */
602 if (size < BUF_PAGE_SIZE * 2)
603 size = BUF_PAGE_SIZE * 2;
604
605 if (size == buffer_size)
606 return size;
607
608 mutex_lock(&buffer->mutex);
609
610 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
611
612 if (size < buffer_size) {
613
614 /* easy case, just free pages */
3e89c7bb
SR
615 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
616 mutex_unlock(&buffer->mutex);
617 return -1;
618 }
7a8e76a3
SR
619
620 rm_pages = buffer->pages - nr_pages;
621
622 for_each_buffer_cpu(buffer, cpu) {
623 cpu_buffer = buffer->buffers[cpu];
624 rb_remove_pages(cpu_buffer, rm_pages);
625 }
626 goto out;
627 }
628
629 /*
630 * This is a bit more difficult. We only want to add pages
631 * when we can allocate enough for all CPUs. We do this
632 * by allocating all the pages and storing them on a local
633 * link list. If we succeed in our allocation, then we
634 * add these pages to the cpu_buffers. Otherwise we just free
635 * them all and return -ENOMEM;
636 */
3e89c7bb
SR
637 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
638 mutex_unlock(&buffer->mutex);
639 return -1;
640 }
f536aafc 641
7a8e76a3
SR
642 new_pages = nr_pages - buffer->pages;
643
644 for_each_buffer_cpu(buffer, cpu) {
645 for (i = 0; i < new_pages; i++) {
e4c2ce82
SR
646 page = kzalloc_node(ALIGN(sizeof(*page),
647 cache_line_size()),
648 GFP_KERNEL, cpu_to_node(cpu));
649 if (!page)
650 goto free_pages;
651 list_add(&page->list, &pages);
7a8e76a3
SR
652 addr = __get_free_page(GFP_KERNEL);
653 if (!addr)
654 goto free_pages;
e4c2ce82 655 page->page = (void *)addr;
abc9b56d 656 rb_init_page(page->page);
7a8e76a3
SR
657 }
658 }
659
660 for_each_buffer_cpu(buffer, cpu) {
661 cpu_buffer = buffer->buffers[cpu];
662 rb_insert_pages(cpu_buffer, &pages, new_pages);
663 }
664
3e89c7bb
SR
665 if (RB_WARN_ON(buffer, !list_empty(&pages))) {
666 mutex_unlock(&buffer->mutex);
667 return -1;
668 }
7a8e76a3
SR
669
670 out:
671 buffer->pages = nr_pages;
672 mutex_unlock(&buffer->mutex);
673
674 return size;
675
676 free_pages:
677 list_for_each_entry_safe(page, tmp, &pages, list) {
678 list_del_init(&page->list);
ed56829c 679 free_buffer_page(page);
7a8e76a3 680 }
641d2f63 681 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
682 return -ENOMEM;
683}
684
7a8e76a3
SR
685static inline int rb_null_event(struct ring_buffer_event *event)
686{
687 return event->type == RINGBUF_TYPE_PADDING;
688}
689
6f807acd 690static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
7a8e76a3 691{
abc9b56d 692 return page->page->data + index;
7a8e76a3
SR
693}
694
695static inline struct ring_buffer_event *
d769041f 696rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 697{
6f807acd
SR
698 return __rb_page_index(cpu_buffer->reader_page,
699 cpu_buffer->reader_page->read);
700}
701
702static inline struct ring_buffer_event *
703rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
704{
705 return __rb_page_index(cpu_buffer->head_page,
706 cpu_buffer->head_page->read);
7a8e76a3
SR
707}
708
709static inline struct ring_buffer_event *
710rb_iter_head_event(struct ring_buffer_iter *iter)
711{
6f807acd 712 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
713}
714
bf41a158
SR
715static inline unsigned rb_page_write(struct buffer_page *bpage)
716{
717 return local_read(&bpage->write);
718}
719
720static inline unsigned rb_page_commit(struct buffer_page *bpage)
721{
abc9b56d 722 return local_read(&bpage->page->commit);
bf41a158
SR
723}
724
725/* Size is determined by what has been commited */
726static inline unsigned rb_page_size(struct buffer_page *bpage)
727{
728 return rb_page_commit(bpage);
729}
730
731static inline unsigned
732rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
733{
734 return rb_page_commit(cpu_buffer->commit_page);
735}
736
737static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
738{
739 return rb_page_commit(cpu_buffer->head_page);
740}
741
7a8e76a3
SR
742/*
743 * When the tail hits the head and the buffer is in overwrite mode,
744 * the head jumps to the next page and all content on the previous
745 * page is discarded. But before doing so, we update the overrun
746 * variable of the buffer.
747 */
748static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
749{
750 struct ring_buffer_event *event;
751 unsigned long head;
752
753 for (head = 0; head < rb_head_size(cpu_buffer);
754 head += rb_event_length(event)) {
755
6f807acd 756 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
757 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
758 return;
7a8e76a3
SR
759 /* Only count data entries */
760 if (event->type != RINGBUF_TYPE_DATA)
761 continue;
762 cpu_buffer->overrun++;
763 cpu_buffer->entries--;
764 }
765}
766
767static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
768 struct buffer_page **page)
769{
770 struct list_head *p = (*page)->list.next;
771
772 if (p == &cpu_buffer->pages)
773 p = p->next;
774
775 *page = list_entry(p, struct buffer_page, list);
776}
777
bf41a158
SR
778static inline unsigned
779rb_event_index(struct ring_buffer_event *event)
780{
781 unsigned long addr = (unsigned long)event;
782
783 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
784}
785
786static inline int
787rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
788 struct ring_buffer_event *event)
789{
790 unsigned long addr = (unsigned long)event;
791 unsigned long index;
792
793 index = rb_event_index(event);
794 addr &= PAGE_MASK;
795
796 return cpu_buffer->commit_page->page == (void *)addr &&
797 rb_commit_index(cpu_buffer) == index;
798}
799
7a8e76a3 800static inline void
bf41a158
SR
801rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
802 struct ring_buffer_event *event)
7a8e76a3 803{
bf41a158
SR
804 unsigned long addr = (unsigned long)event;
805 unsigned long index;
806
807 index = rb_event_index(event);
808 addr &= PAGE_MASK;
809
810 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
811 if (RB_WARN_ON(cpu_buffer,
812 cpu_buffer->commit_page == cpu_buffer->tail_page))
813 return;
abc9b56d 814 cpu_buffer->commit_page->page->commit =
bf41a158
SR
815 cpu_buffer->commit_page->write;
816 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
817 cpu_buffer->write_stamp =
818 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
819 }
820
821 /* Now set the commit to the event's index */
abc9b56d 822 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
823}
824
bf41a158
SR
825static inline void
826rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 827{
bf41a158
SR
828 /*
829 * We only race with interrupts and NMIs on this CPU.
830 * If we own the commit event, then we can commit
831 * all others that interrupted us, since the interruptions
832 * are in stack format (they finish before they come
833 * back to us). This allows us to do a simple loop to
834 * assign the commit to the tail.
835 */
836 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 837 cpu_buffer->commit_page->page->commit =
bf41a158
SR
838 cpu_buffer->commit_page->write;
839 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
840 cpu_buffer->write_stamp =
841 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
842 /* add barrier to keep gcc from optimizing too much */
843 barrier();
844 }
845 while (rb_commit_index(cpu_buffer) !=
846 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 847 cpu_buffer->commit_page->page->commit =
bf41a158
SR
848 cpu_buffer->commit_page->write;
849 barrier();
850 }
7a8e76a3
SR
851}
852
d769041f 853static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 854{
abc9b56d 855 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 856 cpu_buffer->reader_page->read = 0;
d769041f
SR
857}
858
859static inline void rb_inc_iter(struct ring_buffer_iter *iter)
860{
861 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
862
863 /*
864 * The iterator could be on the reader page (it starts there).
865 * But the head could have moved, since the reader was
866 * found. Check for this case and assign the iterator
867 * to the head page instead of next.
868 */
869 if (iter->head_page == cpu_buffer->reader_page)
870 iter->head_page = cpu_buffer->head_page;
871 else
872 rb_inc_page(cpu_buffer, &iter->head_page);
873
abc9b56d 874 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
875 iter->head = 0;
876}
877
878/**
879 * ring_buffer_update_event - update event type and data
880 * @event: the even to update
881 * @type: the type of event
882 * @length: the size of the event field in the ring buffer
883 *
884 * Update the type and data fields of the event. The length
885 * is the actual size that is written to the ring buffer,
886 * and with this, we can determine what to place into the
887 * data field.
888 */
889static inline void
890rb_update_event(struct ring_buffer_event *event,
891 unsigned type, unsigned length)
892{
893 event->type = type;
894
895 switch (type) {
896
897 case RINGBUF_TYPE_PADDING:
898 break;
899
900 case RINGBUF_TYPE_TIME_EXTEND:
901 event->len =
902 (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
903 >> RB_ALIGNMENT_SHIFT;
904 break;
905
906 case RINGBUF_TYPE_TIME_STAMP:
907 event->len =
908 (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
909 >> RB_ALIGNMENT_SHIFT;
910 break;
911
912 case RINGBUF_TYPE_DATA:
913 length -= RB_EVNT_HDR_SIZE;
914 if (length > RB_MAX_SMALL_DATA) {
915 event->len = 0;
916 event->array[0] = length;
917 } else
918 event->len =
919 (length + (RB_ALIGNMENT-1))
920 >> RB_ALIGNMENT_SHIFT;
921 break;
922 default:
923 BUG();
924 }
925}
926
927static inline unsigned rb_calculate_event_length(unsigned length)
928{
929 struct ring_buffer_event event; /* Used only for sizeof array */
930
931 /* zero length can cause confusions */
932 if (!length)
933 length = 1;
934
935 if (length > RB_MAX_SMALL_DATA)
936 length += sizeof(event.array[0]);
937
938 length += RB_EVNT_HDR_SIZE;
939 length = ALIGN(length, RB_ALIGNMENT);
940
941 return length;
942}
943
944static struct ring_buffer_event *
945__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
946 unsigned type, unsigned long length, u64 *ts)
947{
d769041f 948 struct buffer_page *tail_page, *head_page, *reader_page;
bf41a158 949 unsigned long tail, write;
7a8e76a3
SR
950 struct ring_buffer *buffer = cpu_buffer->buffer;
951 struct ring_buffer_event *event;
bf41a158 952 unsigned long flags;
7a8e76a3
SR
953
954 tail_page = cpu_buffer->tail_page;
bf41a158
SR
955 write = local_add_return(length, &tail_page->write);
956 tail = write - length;
7a8e76a3 957
bf41a158
SR
958 /* See if we shot pass the end of this buffer page */
959 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
960 struct buffer_page *next_page = tail_page;
961
3e03fb7f
SR
962 local_irq_save(flags);
963 __raw_spin_lock(&cpu_buffer->lock);
bf41a158 964
7a8e76a3
SR
965 rb_inc_page(cpu_buffer, &next_page);
966
d769041f
SR
967 head_page = cpu_buffer->head_page;
968 reader_page = cpu_buffer->reader_page;
969
970 /* we grabbed the lock before incrementing */
3e89c7bb
SR
971 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
972 goto out_unlock;
bf41a158
SR
973
974 /*
975 * If for some reason, we had an interrupt storm that made
976 * it all the way around the buffer, bail, and warn
977 * about it.
978 */
979 if (unlikely(next_page == cpu_buffer->commit_page)) {
980 WARN_ON_ONCE(1);
981 goto out_unlock;
982 }
d769041f 983
7a8e76a3 984 if (next_page == head_page) {
d769041f 985 if (!(buffer->flags & RB_FL_OVERWRITE)) {
bf41a158
SR
986 /* reset write */
987 if (tail <= BUF_PAGE_SIZE)
988 local_set(&tail_page->write, tail);
989 goto out_unlock;
d769041f 990 }
7a8e76a3 991
bf41a158
SR
992 /* tail_page has not moved yet? */
993 if (tail_page == cpu_buffer->tail_page) {
994 /* count overflows */
995 rb_update_overflow(cpu_buffer);
996
997 rb_inc_page(cpu_buffer, &head_page);
998 cpu_buffer->head_page = head_page;
999 cpu_buffer->head_page->read = 0;
1000 }
1001 }
7a8e76a3 1002
bf41a158
SR
1003 /*
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1006 * pointer.
1007 */
1008 if (tail_page == cpu_buffer->tail_page) {
1009 local_set(&next_page->write, 0);
abc9b56d 1010 local_set(&next_page->page->commit, 0);
bf41a158
SR
1011 cpu_buffer->tail_page = next_page;
1012
1013 /* reread the time stamp */
1014 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
abc9b56d 1015 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1016 }
1017
bf41a158
SR
1018 /*
1019 * The actual tail page has moved forward.
1020 */
1021 if (tail < BUF_PAGE_SIZE) {
1022 /* Mark the rest of the page with padding */
6f807acd 1023 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1024 event->type = RINGBUF_TYPE_PADDING;
1025 }
1026
bf41a158
SR
1027 if (tail <= BUF_PAGE_SIZE)
1028 /* Set the write back to the previous setting */
1029 local_set(&tail_page->write, tail);
1030
1031 /*
1032 * If this was a commit entry that failed,
1033 * increment that too
1034 */
1035 if (tail_page == cpu_buffer->commit_page &&
1036 tail == rb_commit_index(cpu_buffer)) {
1037 rb_set_commit_to_write(cpu_buffer);
1038 }
1039
3e03fb7f
SR
1040 __raw_spin_unlock(&cpu_buffer->lock);
1041 local_irq_restore(flags);
bf41a158
SR
1042
1043 /* fail and let the caller try again */
1044 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1045 }
1046
bf41a158
SR
1047 /* We reserved something on the buffer */
1048
3e89c7bb
SR
1049 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1050 return NULL;
7a8e76a3 1051
6f807acd 1052 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1053 rb_update_event(event, type, length);
1054
bf41a158
SR
1055 /*
1056 * If this is a commit and the tail is zero, then update
1057 * this page's time stamp.
1058 */
1059 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1060 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1061
7a8e76a3 1062 return event;
bf41a158
SR
1063
1064 out_unlock:
3e03fb7f
SR
1065 __raw_spin_unlock(&cpu_buffer->lock);
1066 local_irq_restore(flags);
bf41a158 1067 return NULL;
7a8e76a3
SR
1068}
1069
1070static int
1071rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1072 u64 *ts, u64 *delta)
1073{
1074 struct ring_buffer_event *event;
1075 static int once;
bf41a158 1076 int ret;
7a8e76a3
SR
1077
1078 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1079 printk(KERN_WARNING "Delta way too big! %llu"
1080 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1081 (unsigned long long)*delta,
1082 (unsigned long long)*ts,
1083 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1084 WARN_ON(1);
1085 }
1086
1087 /*
1088 * The delta is too big, we to add a
1089 * new timestamp.
1090 */
1091 event = __rb_reserve_next(cpu_buffer,
1092 RINGBUF_TYPE_TIME_EXTEND,
1093 RB_LEN_TIME_EXTEND,
1094 ts);
1095 if (!event)
bf41a158 1096 return -EBUSY;
7a8e76a3 1097
bf41a158
SR
1098 if (PTR_ERR(event) == -EAGAIN)
1099 return -EAGAIN;
1100
1101 /* Only a commited time event can update the write stamp */
1102 if (rb_is_commit(cpu_buffer, event)) {
1103 /*
1104 * If this is the first on the page, then we need to
1105 * update the page itself, and just put in a zero.
1106 */
1107 if (rb_event_index(event)) {
1108 event->time_delta = *delta & TS_MASK;
1109 event->array[0] = *delta >> TS_SHIFT;
1110 } else {
abc9b56d 1111 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1112 event->time_delta = 0;
1113 event->array[0] = 0;
1114 }
7a8e76a3 1115 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1116 /* let the caller know this was the commit */
1117 ret = 1;
1118 } else {
1119 /* Darn, this is just wasted space */
1120 event->time_delta = 0;
1121 event->array[0] = 0;
1122 ret = 0;
7a8e76a3
SR
1123 }
1124
bf41a158
SR
1125 *delta = 0;
1126
1127 return ret;
7a8e76a3
SR
1128}
1129
1130static struct ring_buffer_event *
1131rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1132 unsigned type, unsigned long length)
1133{
1134 struct ring_buffer_event *event;
1135 u64 ts, delta;
bf41a158 1136 int commit = 0;
818e3dd3 1137 int nr_loops = 0;
7a8e76a3 1138
bf41a158 1139 again:
818e3dd3
SR
1140 /*
1141 * We allow for interrupts to reenter here and do a trace.
1142 * If one does, it will cause this original code to loop
1143 * back here. Even with heavy interrupts happening, this
1144 * should only happen a few times in a row. If this happens
1145 * 1000 times in a row, there must be either an interrupt
1146 * storm or we have something buggy.
1147 * Bail!
1148 */
3e89c7bb 1149 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1150 return NULL;
818e3dd3 1151
7a8e76a3
SR
1152 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1153
bf41a158
SR
1154 /*
1155 * Only the first commit can update the timestamp.
1156 * Yes there is a race here. If an interrupt comes in
1157 * just after the conditional and it traces too, then it
1158 * will also check the deltas. More than one timestamp may
1159 * also be made. But only the entry that did the actual
1160 * commit will be something other than zero.
1161 */
1162 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1163 rb_page_write(cpu_buffer->tail_page) ==
1164 rb_commit_index(cpu_buffer)) {
1165
7a8e76a3
SR
1166 delta = ts - cpu_buffer->write_stamp;
1167
bf41a158
SR
1168 /* make sure this delta is calculated here */
1169 barrier();
1170
1171 /* Did the write stamp get updated already? */
1172 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1173 delta = 0;
bf41a158 1174
7a8e76a3 1175 if (test_time_stamp(delta)) {
7a8e76a3 1176
bf41a158
SR
1177 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1178
1179 if (commit == -EBUSY)
7a8e76a3 1180 return NULL;
bf41a158
SR
1181
1182 if (commit == -EAGAIN)
1183 goto again;
1184
1185 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1186 }
bf41a158
SR
1187 } else
1188 /* Non commits have zero deltas */
7a8e76a3 1189 delta = 0;
7a8e76a3
SR
1190
1191 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1192 if (PTR_ERR(event) == -EAGAIN)
1193 goto again;
1194
1195 if (!event) {
1196 if (unlikely(commit))
1197 /*
1198 * Ouch! We needed a timestamp and it was commited. But
1199 * we didn't get our event reserved.
1200 */
1201 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1202 return NULL;
bf41a158 1203 }
7a8e76a3 1204
bf41a158
SR
1205 /*
1206 * If the timestamp was commited, make the commit our entry
1207 * now so that we will update it when needed.
1208 */
1209 if (commit)
1210 rb_set_commit_event(cpu_buffer, event);
1211 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1212 delta = 0;
1213
1214 event->time_delta = delta;
1215
1216 return event;
1217}
1218
bf41a158
SR
1219static DEFINE_PER_CPU(int, rb_need_resched);
1220
7a8e76a3
SR
1221/**
1222 * ring_buffer_lock_reserve - reserve a part of the buffer
1223 * @buffer: the ring buffer to reserve from
1224 * @length: the length of the data to reserve (excluding event header)
1225 * @flags: a pointer to save the interrupt flags
1226 *
1227 * Returns a reseverd event on the ring buffer to copy directly to.
1228 * The user of this interface will need to get the body to write into
1229 * and can use the ring_buffer_event_data() interface.
1230 *
1231 * The length is the length of the data needed, not the event length
1232 * which also includes the event header.
1233 *
1234 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1235 * If NULL is returned, then nothing has been allocated or locked.
1236 */
1237struct ring_buffer_event *
1238ring_buffer_lock_reserve(struct ring_buffer *buffer,
1239 unsigned long length,
1240 unsigned long *flags)
1241{
1242 struct ring_buffer_per_cpu *cpu_buffer;
1243 struct ring_buffer_event *event;
bf41a158 1244 int cpu, resched;
7a8e76a3 1245
033601a3 1246 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1247 return NULL;
1248
7a8e76a3
SR
1249 if (atomic_read(&buffer->record_disabled))
1250 return NULL;
1251
bf41a158 1252 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1253 resched = ftrace_preempt_disable();
bf41a158 1254
7a8e76a3
SR
1255 cpu = raw_smp_processor_id();
1256
1257 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 1258 goto out;
7a8e76a3
SR
1259
1260 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1261
1262 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1263 goto out;
7a8e76a3
SR
1264
1265 length = rb_calculate_event_length(length);
1266 if (length > BUF_PAGE_SIZE)
bf41a158 1267 goto out;
7a8e76a3
SR
1268
1269 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1270 if (!event)
d769041f 1271 goto out;
7a8e76a3 1272
bf41a158
SR
1273 /*
1274 * Need to store resched state on this cpu.
1275 * Only the first needs to.
1276 */
1277
1278 if (preempt_count() == 1)
1279 per_cpu(rb_need_resched, cpu) = resched;
1280
7a8e76a3
SR
1281 return event;
1282
d769041f 1283 out:
182e9f5f 1284 ftrace_preempt_enable(resched);
7a8e76a3
SR
1285 return NULL;
1286}
1287
1288static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1289 struct ring_buffer_event *event)
1290{
7a8e76a3 1291 cpu_buffer->entries++;
bf41a158
SR
1292
1293 /* Only process further if we own the commit */
1294 if (!rb_is_commit(cpu_buffer, event))
1295 return;
1296
1297 cpu_buffer->write_stamp += event->time_delta;
1298
1299 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1300}
1301
1302/**
1303 * ring_buffer_unlock_commit - commit a reserved
1304 * @buffer: The buffer to commit to
1305 * @event: The event pointer to commit.
1306 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1307 *
1308 * This commits the data to the ring buffer, and releases any locks held.
1309 *
1310 * Must be paired with ring_buffer_lock_reserve.
1311 */
1312int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1313 struct ring_buffer_event *event,
1314 unsigned long flags)
1315{
1316 struct ring_buffer_per_cpu *cpu_buffer;
1317 int cpu = raw_smp_processor_id();
1318
1319 cpu_buffer = buffer->buffers[cpu];
1320
7a8e76a3
SR
1321 rb_commit(cpu_buffer, event);
1322
bf41a158
SR
1323 /*
1324 * Only the last preempt count needs to restore preemption.
1325 */
182e9f5f
SR
1326 if (preempt_count() == 1)
1327 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1328 else
bf41a158 1329 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1330
1331 return 0;
1332}
1333
1334/**
1335 * ring_buffer_write - write data to the buffer without reserving
1336 * @buffer: The ring buffer to write to.
1337 * @length: The length of the data being written (excluding the event header)
1338 * @data: The data to write to the buffer.
1339 *
1340 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1341 * one function. If you already have the data to write to the buffer, it
1342 * may be easier to simply call this function.
1343 *
1344 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1345 * and not the length of the event which would hold the header.
1346 */
1347int ring_buffer_write(struct ring_buffer *buffer,
1348 unsigned long length,
1349 void *data)
1350{
1351 struct ring_buffer_per_cpu *cpu_buffer;
1352 struct ring_buffer_event *event;
bf41a158 1353 unsigned long event_length;
7a8e76a3
SR
1354 void *body;
1355 int ret = -EBUSY;
bf41a158 1356 int cpu, resched;
7a8e76a3 1357
033601a3 1358 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1359 return -EBUSY;
1360
7a8e76a3
SR
1361 if (atomic_read(&buffer->record_disabled))
1362 return -EBUSY;
1363
182e9f5f 1364 resched = ftrace_preempt_disable();
bf41a158 1365
7a8e76a3
SR
1366 cpu = raw_smp_processor_id();
1367
1368 if (!cpu_isset(cpu, buffer->cpumask))
d769041f 1369 goto out;
7a8e76a3
SR
1370
1371 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1372
1373 if (atomic_read(&cpu_buffer->record_disabled))
1374 goto out;
1375
1376 event_length = rb_calculate_event_length(length);
1377 event = rb_reserve_next_event(cpu_buffer,
1378 RINGBUF_TYPE_DATA, event_length);
1379 if (!event)
1380 goto out;
1381
1382 body = rb_event_data(event);
1383
1384 memcpy(body, data, length);
1385
1386 rb_commit(cpu_buffer, event);
1387
1388 ret = 0;
1389 out:
182e9f5f 1390 ftrace_preempt_enable(resched);
7a8e76a3
SR
1391
1392 return ret;
1393}
1394
bf41a158
SR
1395static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1396{
1397 struct buffer_page *reader = cpu_buffer->reader_page;
1398 struct buffer_page *head = cpu_buffer->head_page;
1399 struct buffer_page *commit = cpu_buffer->commit_page;
1400
1401 return reader->read == rb_page_commit(reader) &&
1402 (commit == reader ||
1403 (commit == head &&
1404 head->read == rb_page_commit(commit)));
1405}
1406
7a8e76a3
SR
1407/**
1408 * ring_buffer_record_disable - stop all writes into the buffer
1409 * @buffer: The ring buffer to stop writes to.
1410 *
1411 * This prevents all writes to the buffer. Any attempt to write
1412 * to the buffer after this will fail and return NULL.
1413 *
1414 * The caller should call synchronize_sched() after this.
1415 */
1416void ring_buffer_record_disable(struct ring_buffer *buffer)
1417{
1418 atomic_inc(&buffer->record_disabled);
1419}
1420
1421/**
1422 * ring_buffer_record_enable - enable writes to the buffer
1423 * @buffer: The ring buffer to enable writes
1424 *
1425 * Note, multiple disables will need the same number of enables
1426 * to truely enable the writing (much like preempt_disable).
1427 */
1428void ring_buffer_record_enable(struct ring_buffer *buffer)
1429{
1430 atomic_dec(&buffer->record_disabled);
1431}
1432
1433/**
1434 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1435 * @buffer: The ring buffer to stop writes to.
1436 * @cpu: The CPU buffer to stop
1437 *
1438 * This prevents all writes to the buffer. Any attempt to write
1439 * to the buffer after this will fail and return NULL.
1440 *
1441 * The caller should call synchronize_sched() after this.
1442 */
1443void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1444{
1445 struct ring_buffer_per_cpu *cpu_buffer;
1446
1447 if (!cpu_isset(cpu, buffer->cpumask))
1448 return;
1449
1450 cpu_buffer = buffer->buffers[cpu];
1451 atomic_inc(&cpu_buffer->record_disabled);
1452}
1453
1454/**
1455 * ring_buffer_record_enable_cpu - enable writes to the buffer
1456 * @buffer: The ring buffer to enable writes
1457 * @cpu: The CPU to enable.
1458 *
1459 * Note, multiple disables will need the same number of enables
1460 * to truely enable the writing (much like preempt_disable).
1461 */
1462void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1463{
1464 struct ring_buffer_per_cpu *cpu_buffer;
1465
1466 if (!cpu_isset(cpu, buffer->cpumask))
1467 return;
1468
1469 cpu_buffer = buffer->buffers[cpu];
1470 atomic_dec(&cpu_buffer->record_disabled);
1471}
1472
1473/**
1474 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1475 * @buffer: The ring buffer
1476 * @cpu: The per CPU buffer to get the entries from.
1477 */
1478unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1479{
1480 struct ring_buffer_per_cpu *cpu_buffer;
1481
1482 if (!cpu_isset(cpu, buffer->cpumask))
1483 return 0;
1484
1485 cpu_buffer = buffer->buffers[cpu];
1486 return cpu_buffer->entries;
1487}
1488
1489/**
1490 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1491 * @buffer: The ring buffer
1492 * @cpu: The per CPU buffer to get the number of overruns from
1493 */
1494unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1495{
1496 struct ring_buffer_per_cpu *cpu_buffer;
1497
1498 if (!cpu_isset(cpu, buffer->cpumask))
1499 return 0;
1500
1501 cpu_buffer = buffer->buffers[cpu];
1502 return cpu_buffer->overrun;
1503}
1504
1505/**
1506 * ring_buffer_entries - get the number of entries in a buffer
1507 * @buffer: The ring buffer
1508 *
1509 * Returns the total number of entries in the ring buffer
1510 * (all CPU entries)
1511 */
1512unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1513{
1514 struct ring_buffer_per_cpu *cpu_buffer;
1515 unsigned long entries = 0;
1516 int cpu;
1517
1518 /* if you care about this being correct, lock the buffer */
1519 for_each_buffer_cpu(buffer, cpu) {
1520 cpu_buffer = buffer->buffers[cpu];
1521 entries += cpu_buffer->entries;
1522 }
1523
1524 return entries;
1525}
1526
1527/**
1528 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1529 * @buffer: The ring buffer
1530 *
1531 * Returns the total number of overruns in the ring buffer
1532 * (all CPU entries)
1533 */
1534unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1535{
1536 struct ring_buffer_per_cpu *cpu_buffer;
1537 unsigned long overruns = 0;
1538 int cpu;
1539
1540 /* if you care about this being correct, lock the buffer */
1541 for_each_buffer_cpu(buffer, cpu) {
1542 cpu_buffer = buffer->buffers[cpu];
1543 overruns += cpu_buffer->overrun;
1544 }
1545
1546 return overruns;
1547}
1548
642edba5 1549static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1550{
1551 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1552
d769041f
SR
1553 /* Iterator usage is expected to have record disabled */
1554 if (list_empty(&cpu_buffer->reader_page->list)) {
1555 iter->head_page = cpu_buffer->head_page;
6f807acd 1556 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1557 } else {
1558 iter->head_page = cpu_buffer->reader_page;
6f807acd 1559 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1560 }
1561 if (iter->head)
1562 iter->read_stamp = cpu_buffer->read_stamp;
1563 else
abc9b56d 1564 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 1565}
f83c9d0f 1566
642edba5
SR
1567/**
1568 * ring_buffer_iter_reset - reset an iterator
1569 * @iter: The iterator to reset
1570 *
1571 * Resets the iterator, so that it will start from the beginning
1572 * again.
1573 */
1574void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1575{
1576 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1577 unsigned long flags;
1578
1579 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1580 rb_iter_reset(iter);
f83c9d0f 1581 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
1582}
1583
1584/**
1585 * ring_buffer_iter_empty - check if an iterator has no more to read
1586 * @iter: The iterator to check
1587 */
1588int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1589{
1590 struct ring_buffer_per_cpu *cpu_buffer;
1591
1592 cpu_buffer = iter->cpu_buffer;
1593
bf41a158
SR
1594 return iter->head_page == cpu_buffer->commit_page &&
1595 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3
SR
1596}
1597
1598static void
1599rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1600 struct ring_buffer_event *event)
1601{
1602 u64 delta;
1603
1604 switch (event->type) {
1605 case RINGBUF_TYPE_PADDING:
1606 return;
1607
1608 case RINGBUF_TYPE_TIME_EXTEND:
1609 delta = event->array[0];
1610 delta <<= TS_SHIFT;
1611 delta += event->time_delta;
1612 cpu_buffer->read_stamp += delta;
1613 return;
1614
1615 case RINGBUF_TYPE_TIME_STAMP:
1616 /* FIXME: not implemented */
1617 return;
1618
1619 case RINGBUF_TYPE_DATA:
1620 cpu_buffer->read_stamp += event->time_delta;
1621 return;
1622
1623 default:
1624 BUG();
1625 }
1626 return;
1627}
1628
1629static void
1630rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1631 struct ring_buffer_event *event)
1632{
1633 u64 delta;
1634
1635 switch (event->type) {
1636 case RINGBUF_TYPE_PADDING:
1637 return;
1638
1639 case RINGBUF_TYPE_TIME_EXTEND:
1640 delta = event->array[0];
1641 delta <<= TS_SHIFT;
1642 delta += event->time_delta;
1643 iter->read_stamp += delta;
1644 return;
1645
1646 case RINGBUF_TYPE_TIME_STAMP:
1647 /* FIXME: not implemented */
1648 return;
1649
1650 case RINGBUF_TYPE_DATA:
1651 iter->read_stamp += event->time_delta;
1652 return;
1653
1654 default:
1655 BUG();
1656 }
1657 return;
1658}
1659
d769041f
SR
1660static struct buffer_page *
1661rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1662{
d769041f
SR
1663 struct buffer_page *reader = NULL;
1664 unsigned long flags;
818e3dd3 1665 int nr_loops = 0;
d769041f 1666
3e03fb7f
SR
1667 local_irq_save(flags);
1668 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
1669
1670 again:
818e3dd3
SR
1671 /*
1672 * This should normally only loop twice. But because the
1673 * start of the reader inserts an empty page, it causes
1674 * a case where we will loop three times. There should be no
1675 * reason to loop four times (that I know of).
1676 */
3e89c7bb 1677 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
1678 reader = NULL;
1679 goto out;
1680 }
1681
d769041f
SR
1682 reader = cpu_buffer->reader_page;
1683
1684 /* If there's more to read, return this page */
bf41a158 1685 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
1686 goto out;
1687
1688 /* Never should we have an index greater than the size */
3e89c7bb
SR
1689 if (RB_WARN_ON(cpu_buffer,
1690 cpu_buffer->reader_page->read > rb_page_size(reader)))
1691 goto out;
d769041f
SR
1692
1693 /* check if we caught up to the tail */
1694 reader = NULL;
bf41a158 1695 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 1696 goto out;
7a8e76a3
SR
1697
1698 /*
d769041f
SR
1699 * Splice the empty reader page into the list around the head.
1700 * Reset the reader page to size zero.
7a8e76a3 1701 */
7a8e76a3 1702
d769041f
SR
1703 reader = cpu_buffer->head_page;
1704 cpu_buffer->reader_page->list.next = reader->list.next;
1705 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
1706
1707 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 1708 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 1709
d769041f
SR
1710 /* Make the reader page now replace the head */
1711 reader->list.prev->next = &cpu_buffer->reader_page->list;
1712 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1713
1714 /*
d769041f
SR
1715 * If the tail is on the reader, then we must set the head
1716 * to the inserted page, otherwise we set it one before.
7a8e76a3 1717 */
d769041f 1718 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1719
bf41a158 1720 if (cpu_buffer->commit_page != reader)
d769041f
SR
1721 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1722
1723 /* Finally update the reader page to the new head */
1724 cpu_buffer->reader_page = reader;
1725 rb_reset_reader_page(cpu_buffer);
1726
1727 goto again;
1728
1729 out:
3e03fb7f
SR
1730 __raw_spin_unlock(&cpu_buffer->lock);
1731 local_irq_restore(flags);
d769041f
SR
1732
1733 return reader;
1734}
1735
1736static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1737{
1738 struct ring_buffer_event *event;
1739 struct buffer_page *reader;
1740 unsigned length;
1741
1742 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1743
d769041f 1744 /* This function should not be called when buffer is empty */
3e89c7bb
SR
1745 if (RB_WARN_ON(cpu_buffer, !reader))
1746 return;
7a8e76a3 1747
d769041f
SR
1748 event = rb_reader_event(cpu_buffer);
1749
1750 if (event->type == RINGBUF_TYPE_DATA)
1751 cpu_buffer->entries--;
1752
1753 rb_update_read_stamp(cpu_buffer, event);
1754
1755 length = rb_event_length(event);
6f807acd 1756 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
1757}
1758
1759static void rb_advance_iter(struct ring_buffer_iter *iter)
1760{
1761 struct ring_buffer *buffer;
1762 struct ring_buffer_per_cpu *cpu_buffer;
1763 struct ring_buffer_event *event;
1764 unsigned length;
1765
1766 cpu_buffer = iter->cpu_buffer;
1767 buffer = cpu_buffer->buffer;
1768
1769 /*
1770 * Check if we are at the end of the buffer.
1771 */
bf41a158 1772 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
1773 if (RB_WARN_ON(buffer,
1774 iter->head_page == cpu_buffer->commit_page))
1775 return;
d769041f 1776 rb_inc_iter(iter);
7a8e76a3
SR
1777 return;
1778 }
1779
1780 event = rb_iter_head_event(iter);
1781
1782 length = rb_event_length(event);
1783
1784 /*
1785 * This should not be called to advance the header if we are
1786 * at the tail of the buffer.
1787 */
3e89c7bb 1788 if (RB_WARN_ON(cpu_buffer,
f536aafc 1789 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
1790 (iter->head + length > rb_commit_index(cpu_buffer))))
1791 return;
7a8e76a3
SR
1792
1793 rb_update_iter_read_stamp(iter, event);
1794
1795 iter->head += length;
1796
1797 /* check for end of page padding */
bf41a158
SR
1798 if ((iter->head >= rb_page_size(iter->head_page)) &&
1799 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
1800 rb_advance_iter(iter);
1801}
1802
f83c9d0f
SR
1803static struct ring_buffer_event *
1804rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
1805{
1806 struct ring_buffer_per_cpu *cpu_buffer;
1807 struct ring_buffer_event *event;
d769041f 1808 struct buffer_page *reader;
818e3dd3 1809 int nr_loops = 0;
7a8e76a3
SR
1810
1811 if (!cpu_isset(cpu, buffer->cpumask))
1812 return NULL;
1813
1814 cpu_buffer = buffer->buffers[cpu];
1815
1816 again:
818e3dd3
SR
1817 /*
1818 * We repeat when a timestamp is encountered. It is possible
1819 * to get multiple timestamps from an interrupt entering just
1820 * as one timestamp is about to be written. The max times
1821 * that this can happen is the number of nested interrupts we
1822 * can have. Nesting 10 deep of interrupts is clearly
1823 * an anomaly.
1824 */
3e89c7bb 1825 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1826 return NULL;
818e3dd3 1827
d769041f
SR
1828 reader = rb_get_reader_page(cpu_buffer);
1829 if (!reader)
7a8e76a3
SR
1830 return NULL;
1831
d769041f 1832 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
1833
1834 switch (event->type) {
1835 case RINGBUF_TYPE_PADDING:
bf41a158 1836 RB_WARN_ON(cpu_buffer, 1);
d769041f
SR
1837 rb_advance_reader(cpu_buffer);
1838 return NULL;
7a8e76a3
SR
1839
1840 case RINGBUF_TYPE_TIME_EXTEND:
1841 /* Internal data, OK to advance */
d769041f 1842 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1843 goto again;
1844
1845 case RINGBUF_TYPE_TIME_STAMP:
1846 /* FIXME: not implemented */
d769041f 1847 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
1848 goto again;
1849
1850 case RINGBUF_TYPE_DATA:
1851 if (ts) {
1852 *ts = cpu_buffer->read_stamp + event->time_delta;
1853 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1854 }
1855 return event;
1856
1857 default:
1858 BUG();
1859 }
1860
1861 return NULL;
1862}
1863
f83c9d0f
SR
1864static struct ring_buffer_event *
1865rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
1866{
1867 struct ring_buffer *buffer;
1868 struct ring_buffer_per_cpu *cpu_buffer;
1869 struct ring_buffer_event *event;
818e3dd3 1870 int nr_loops = 0;
7a8e76a3
SR
1871
1872 if (ring_buffer_iter_empty(iter))
1873 return NULL;
1874
1875 cpu_buffer = iter->cpu_buffer;
1876 buffer = cpu_buffer->buffer;
1877
1878 again:
818e3dd3
SR
1879 /*
1880 * We repeat when a timestamp is encountered. It is possible
1881 * to get multiple timestamps from an interrupt entering just
1882 * as one timestamp is about to be written. The max times
1883 * that this can happen is the number of nested interrupts we
1884 * can have. Nesting 10 deep of interrupts is clearly
1885 * an anomaly.
1886 */
3e89c7bb 1887 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 1888 return NULL;
818e3dd3 1889
7a8e76a3
SR
1890 if (rb_per_cpu_empty(cpu_buffer))
1891 return NULL;
1892
1893 event = rb_iter_head_event(iter);
1894
1895 switch (event->type) {
1896 case RINGBUF_TYPE_PADDING:
d769041f 1897 rb_inc_iter(iter);
7a8e76a3
SR
1898 goto again;
1899
1900 case RINGBUF_TYPE_TIME_EXTEND:
1901 /* Internal data, OK to advance */
1902 rb_advance_iter(iter);
1903 goto again;
1904
1905 case RINGBUF_TYPE_TIME_STAMP:
1906 /* FIXME: not implemented */
1907 rb_advance_iter(iter);
1908 goto again;
1909
1910 case RINGBUF_TYPE_DATA:
1911 if (ts) {
1912 *ts = iter->read_stamp + event->time_delta;
1913 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1914 }
1915 return event;
1916
1917 default:
1918 BUG();
1919 }
1920
1921 return NULL;
1922}
1923
f83c9d0f
SR
1924/**
1925 * ring_buffer_peek - peek at the next event to be read
1926 * @buffer: The ring buffer to read
1927 * @cpu: The cpu to peak at
1928 * @ts: The timestamp counter of this event.
1929 *
1930 * This will return the event that will be read next, but does
1931 * not consume the data.
1932 */
1933struct ring_buffer_event *
1934ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1935{
1936 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1937 struct ring_buffer_event *event;
1938 unsigned long flags;
1939
1940 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1941 event = rb_buffer_peek(buffer, cpu, ts);
1942 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1943
1944 return event;
1945}
1946
1947/**
1948 * ring_buffer_iter_peek - peek at the next event to be read
1949 * @iter: The ring buffer iterator
1950 * @ts: The timestamp counter of this event.
1951 *
1952 * This will return the event that will be read next, but does
1953 * not increment the iterator.
1954 */
1955struct ring_buffer_event *
1956ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1957{
1958 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1959 struct ring_buffer_event *event;
1960 unsigned long flags;
1961
1962 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1963 event = rb_iter_peek(iter, ts);
1964 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1965
1966 return event;
1967}
1968
7a8e76a3
SR
1969/**
1970 * ring_buffer_consume - return an event and consume it
1971 * @buffer: The ring buffer to get the next event from
1972 *
1973 * Returns the next event in the ring buffer, and that event is consumed.
1974 * Meaning, that sequential reads will keep returning a different event,
1975 * and eventually empty the ring buffer if the producer is slower.
1976 */
1977struct ring_buffer_event *
1978ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1979{
f83c9d0f 1980 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1981 struct ring_buffer_event *event;
f83c9d0f 1982 unsigned long flags;
7a8e76a3
SR
1983
1984 if (!cpu_isset(cpu, buffer->cpumask))
1985 return NULL;
1986
f83c9d0f
SR
1987 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1988
1989 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 1990 if (!event)
f83c9d0f 1991 goto out;
7a8e76a3 1992
d769041f 1993 rb_advance_reader(cpu_buffer);
7a8e76a3 1994
f83c9d0f
SR
1995 out:
1996 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1997
7a8e76a3
SR
1998 return event;
1999}
2000
2001/**
2002 * ring_buffer_read_start - start a non consuming read of the buffer
2003 * @buffer: The ring buffer to read from
2004 * @cpu: The cpu buffer to iterate over
2005 *
2006 * This starts up an iteration through the buffer. It also disables
2007 * the recording to the buffer until the reading is finished.
2008 * This prevents the reading from being corrupted. This is not
2009 * a consuming read, so a producer is not expected.
2010 *
2011 * Must be paired with ring_buffer_finish.
2012 */
2013struct ring_buffer_iter *
2014ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2015{
2016 struct ring_buffer_per_cpu *cpu_buffer;
2017 struct ring_buffer_iter *iter;
d769041f 2018 unsigned long flags;
7a8e76a3
SR
2019
2020 if (!cpu_isset(cpu, buffer->cpumask))
2021 return NULL;
2022
2023 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2024 if (!iter)
2025 return NULL;
2026
2027 cpu_buffer = buffer->buffers[cpu];
2028
2029 iter->cpu_buffer = cpu_buffer;
2030
2031 atomic_inc(&cpu_buffer->record_disabled);
2032 synchronize_sched();
2033
f83c9d0f 2034 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2035 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2036 rb_iter_reset(iter);
3e03fb7f 2037 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2038 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2039
2040 return iter;
2041}
2042
2043/**
2044 * ring_buffer_finish - finish reading the iterator of the buffer
2045 * @iter: The iterator retrieved by ring_buffer_start
2046 *
2047 * This re-enables the recording to the buffer, and frees the
2048 * iterator.
2049 */
2050void
2051ring_buffer_read_finish(struct ring_buffer_iter *iter)
2052{
2053 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2054
2055 atomic_dec(&cpu_buffer->record_disabled);
2056 kfree(iter);
2057}
2058
2059/**
2060 * ring_buffer_read - read the next item in the ring buffer by the iterator
2061 * @iter: The ring buffer iterator
2062 * @ts: The time stamp of the event read.
2063 *
2064 * This reads the next event in the ring buffer and increments the iterator.
2065 */
2066struct ring_buffer_event *
2067ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2068{
2069 struct ring_buffer_event *event;
f83c9d0f
SR
2070 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2071 unsigned long flags;
7a8e76a3 2072
f83c9d0f
SR
2073 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2074 event = rb_iter_peek(iter, ts);
7a8e76a3 2075 if (!event)
f83c9d0f 2076 goto out;
7a8e76a3
SR
2077
2078 rb_advance_iter(iter);
f83c9d0f
SR
2079 out:
2080 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2081
2082 return event;
2083}
2084
2085/**
2086 * ring_buffer_size - return the size of the ring buffer (in bytes)
2087 * @buffer: The ring buffer.
2088 */
2089unsigned long ring_buffer_size(struct ring_buffer *buffer)
2090{
2091 return BUF_PAGE_SIZE * buffer->pages;
2092}
2093
2094static void
2095rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2096{
2097 cpu_buffer->head_page
2098 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2099 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2100 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2101
6f807acd 2102 cpu_buffer->head_page->read = 0;
bf41a158
SR
2103
2104 cpu_buffer->tail_page = cpu_buffer->head_page;
2105 cpu_buffer->commit_page = cpu_buffer->head_page;
2106
2107 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2108 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2109 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2110 cpu_buffer->reader_page->read = 0;
7a8e76a3 2111
7a8e76a3
SR
2112 cpu_buffer->overrun = 0;
2113 cpu_buffer->entries = 0;
2114}
2115
2116/**
2117 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2118 * @buffer: The ring buffer to reset a per cpu buffer of
2119 * @cpu: The CPU buffer to be reset
2120 */
2121void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2122{
2123 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2124 unsigned long flags;
2125
2126 if (!cpu_isset(cpu, buffer->cpumask))
2127 return;
2128
f83c9d0f
SR
2129 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2130
3e03fb7f 2131 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2132
2133 rb_reset_cpu(cpu_buffer);
2134
3e03fb7f 2135 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2136
2137 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2138}
2139
2140/**
2141 * ring_buffer_reset - reset a ring buffer
2142 * @buffer: The ring buffer to reset all cpu buffers
2143 */
2144void ring_buffer_reset(struct ring_buffer *buffer)
2145{
7a8e76a3
SR
2146 int cpu;
2147
7a8e76a3 2148 for_each_buffer_cpu(buffer, cpu)
d769041f 2149 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3
SR
2150}
2151
2152/**
2153 * rind_buffer_empty - is the ring buffer empty?
2154 * @buffer: The ring buffer to test
2155 */
2156int ring_buffer_empty(struct ring_buffer *buffer)
2157{
2158 struct ring_buffer_per_cpu *cpu_buffer;
2159 int cpu;
2160
2161 /* yes this is racy, but if you don't like the race, lock the buffer */
2162 for_each_buffer_cpu(buffer, cpu) {
2163 cpu_buffer = buffer->buffers[cpu];
2164 if (!rb_per_cpu_empty(cpu_buffer))
2165 return 0;
2166 }
2167 return 1;
2168}
2169
2170/**
2171 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2172 * @buffer: The ring buffer
2173 * @cpu: The CPU buffer to test
2174 */
2175int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2176{
2177 struct ring_buffer_per_cpu *cpu_buffer;
2178
2179 if (!cpu_isset(cpu, buffer->cpumask))
2180 return 1;
2181
2182 cpu_buffer = buffer->buffers[cpu];
2183 return rb_per_cpu_empty(cpu_buffer);
2184}
2185
2186/**
2187 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2188 * @buffer_a: One buffer to swap with
2189 * @buffer_b: The other buffer to swap with
2190 *
2191 * This function is useful for tracers that want to take a "snapshot"
2192 * of a CPU buffer and has another back up buffer lying around.
2193 * it is expected that the tracer handles the cpu buffer not being
2194 * used at the moment.
2195 */
2196int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2197 struct ring_buffer *buffer_b, int cpu)
2198{
2199 struct ring_buffer_per_cpu *cpu_buffer_a;
2200 struct ring_buffer_per_cpu *cpu_buffer_b;
2201
2202 if (!cpu_isset(cpu, buffer_a->cpumask) ||
2203 !cpu_isset(cpu, buffer_b->cpumask))
2204 return -EINVAL;
2205
2206 /* At least make sure the two buffers are somewhat the same */
2207 if (buffer_a->size != buffer_b->size ||
2208 buffer_a->pages != buffer_b->pages)
2209 return -EINVAL;
2210
2211 cpu_buffer_a = buffer_a->buffers[cpu];
2212 cpu_buffer_b = buffer_b->buffers[cpu];
2213
2214 /*
2215 * We can't do a synchronize_sched here because this
2216 * function can be called in atomic context.
2217 * Normally this will be called from the same CPU as cpu.
2218 * If not it's up to the caller to protect this.
2219 */
2220 atomic_inc(&cpu_buffer_a->record_disabled);
2221 atomic_inc(&cpu_buffer_b->record_disabled);
2222
2223 buffer_a->buffers[cpu] = cpu_buffer_b;
2224 buffer_b->buffers[cpu] = cpu_buffer_a;
2225
2226 cpu_buffer_b->buffer = buffer_a;
2227 cpu_buffer_a->buffer = buffer_b;
2228
2229 atomic_dec(&cpu_buffer_a->record_disabled);
2230 atomic_dec(&cpu_buffer_b->record_disabled);
2231
2232 return 0;
2233}
2234
a3583244
SR
2235static ssize_t
2236rb_simple_read(struct file *filp, char __user *ubuf,
2237 size_t cnt, loff_t *ppos)
2238{
033601a3 2239 long *p = filp->private_data;
a3583244
SR
2240 char buf[64];
2241 int r;
2242
033601a3
SR
2243 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2244 r = sprintf(buf, "permanently disabled\n");
2245 else
2246 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2247
2248 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2249}
2250
2251static ssize_t
2252rb_simple_write(struct file *filp, const char __user *ubuf,
2253 size_t cnt, loff_t *ppos)
2254{
033601a3 2255 long *p = filp->private_data;
a3583244
SR
2256 char buf[64];
2257 long val;
2258 int ret;
2259
2260 if (cnt >= sizeof(buf))
2261 return -EINVAL;
2262
2263 if (copy_from_user(&buf, ubuf, cnt))
2264 return -EFAULT;
2265
2266 buf[cnt] = 0;
2267
2268 ret = strict_strtoul(buf, 10, &val);
2269 if (ret < 0)
2270 return ret;
2271
033601a3
SR
2272 if (val)
2273 set_bit(RB_BUFFERS_ON_BIT, p);
2274 else
2275 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
2276
2277 (*ppos)++;
2278
2279 return cnt;
2280}
2281
2282static struct file_operations rb_simple_fops = {
2283 .open = tracing_open_generic,
2284 .read = rb_simple_read,
2285 .write = rb_simple_write,
2286};
2287
2288
2289static __init int rb_init_debugfs(void)
2290{
2291 struct dentry *d_tracer;
2292 struct dentry *entry;
2293
2294 d_tracer = tracing_init_dentry();
2295
2296 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
033601a3 2297 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
2298 if (!entry)
2299 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2300
2301 return 0;
2302}
2303
2304fs_initcall(rb_init_debugfs);