]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: Add internal tracing_snapshot() functions
[mirror_ubuntu-eoan-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
1744a21d 15#include <linux/kmemcheck.h>
7a8e76a3
SR
16#include <linux/module.h>
17#include <linux/percpu.h>
18#include <linux/mutex.h>
5a0e3ad6 19#include <linux/slab.h>
7a8e76a3
SR
20#include <linux/init.h>
21#include <linux/hash.h>
22#include <linux/list.h>
554f786e 23#include <linux/cpu.h>
7a8e76a3
SR
24#include <linux/fs.h>
25
79615760 26#include <asm/local.h>
182e9f5f 27
83f40318
VN
28static void update_pages_handler(struct work_struct *work);
29
d1b182a8
SR
30/*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33int ring_buffer_print_entry_header(struct trace_seq *s)
34{
35 int ret;
36
334d4169
LJ
37 ret = trace_seq_printf(s, "# compressed entry header\n");
38 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
39 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
40 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
41 ret = trace_seq_printf(s, "\n");
42 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
46 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
47 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
48
49 return ret;
50}
51
5cc98548
SR
52/*
53 * The ring buffer is made up of a list of pages. A separate list of pages is
54 * allocated for each CPU. A writer may only write to a buffer that is
55 * associated with the CPU it is currently executing on. A reader may read
56 * from any per cpu buffer.
57 *
58 * The reader is special. For each per cpu buffer, the reader has its own
59 * reader page. When a reader has read the entire reader page, this reader
60 * page is swapped with another page in the ring buffer.
61 *
62 * Now, as long as the writer is off the reader page, the reader can do what
63 * ever it wants with that page. The writer will never write to that page
64 * again (as long as it is out of the ring buffer).
65 *
66 * Here's some silly ASCII art.
67 *
68 * +------+
69 * |reader| RING BUFFER
70 * |page |
71 * +------+ +---+ +---+ +---+
72 * | |-->| |-->| |
73 * +---+ +---+ +---+
74 * ^ |
75 * | |
76 * +---------------+
77 *
78 *
79 * +------+
80 * |reader| RING BUFFER
81 * |page |------------------v
82 * +------+ +---+ +---+ +---+
83 * | |-->| |-->| |
84 * +---+ +---+ +---+
85 * ^ |
86 * | |
87 * +---------------+
88 *
89 *
90 * +------+
91 * |reader| RING BUFFER
92 * |page |------------------v
93 * +------+ +---+ +---+ +---+
94 * ^ | |-->| |-->| |
95 * | +---+ +---+ +---+
96 * | |
97 * | |
98 * +------------------------------+
99 *
100 *
101 * +------+
102 * |buffer| RING BUFFER
103 * |page |------------------v
104 * +------+ +---+ +---+ +---+
105 * ^ | | | |-->| |
106 * | New +---+ +---+ +---+
107 * | Reader------^ |
108 * | page |
109 * +------------------------------+
110 *
111 *
112 * After we make this swap, the reader can hand this page off to the splice
113 * code and be done with it. It can even allocate a new page if it needs to
114 * and swap that into the ring buffer.
115 *
116 * We will be using cmpxchg soon to make all this lockless.
117 *
118 */
119
033601a3
SR
120/*
121 * A fast way to enable or disable all ring buffers is to
122 * call tracing_on or tracing_off. Turning off the ring buffers
123 * prevents all ring buffers from being recorded to.
124 * Turning this switch on, makes it OK to write to the
125 * ring buffer, if the ring buffer is enabled itself.
126 *
127 * There's three layers that must be on in order to write
128 * to the ring buffer.
129 *
130 * 1) This global flag must be set.
131 * 2) The ring buffer must be enabled for recording.
132 * 3) The per cpu buffer must be enabled for recording.
133 *
134 * In case of an anomaly, this global flag has a bit set that
135 * will permantly disable all ring buffers.
136 */
137
138/*
139 * Global flag to disable all recording to ring buffers
140 * This has two bits: ON, DISABLED
141 *
142 * ON DISABLED
143 * ---- ----------
144 * 0 0 : ring buffers are off
145 * 1 0 : ring buffers are on
146 * X 1 : ring buffers are permanently disabled
147 */
148
149enum {
150 RB_BUFFERS_ON_BIT = 0,
151 RB_BUFFERS_DISABLED_BIT = 1,
152};
153
154enum {
155 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
156 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
157};
158
5e39841c 159static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 160
499e5470
SR
161/* Used for individual buffers (after the counter) */
162#define RB_BUFFER_OFF (1 << 20)
a3583244 163
499e5470 164#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
165
166/**
167 * tracing_off_permanent - permanently disable ring buffers
168 *
169 * This function, once called, will disable all ring buffers
c3706f00 170 * permanently.
033601a3
SR
171 */
172void tracing_off_permanent(void)
173{
174 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
175}
176
e3d6bf0a 177#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 178#define RB_ALIGNMENT 4U
334d4169 179#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 180#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 181
2271048d
SR
182#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
183# define RB_FORCE_8BYTE_ALIGNMENT 0
184# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
185#else
186# define RB_FORCE_8BYTE_ALIGNMENT 1
187# define RB_ARCH_ALIGNMENT 8U
188#endif
189
334d4169
LJ
190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
192
193enum {
194 RB_LEN_TIME_EXTEND = 8,
195 RB_LEN_TIME_STAMP = 16,
196};
197
69d1b839
SR
198#define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
200
2d622719
TZ
201static inline int rb_null_event(struct ring_buffer_event *event)
202{
a1863c21 203 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
204}
205
206static void rb_event_set_padding(struct ring_buffer_event *event)
207{
a1863c21 208 /* padding has a NULL time_delta */
334d4169 209 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
210 event->time_delta = 0;
211}
212
34a148bf 213static unsigned
2d622719 214rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
215{
216 unsigned length;
217
334d4169
LJ
218 if (event->type_len)
219 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
220 else
221 length = event->array[0];
222 return length + RB_EVNT_HDR_SIZE;
223}
224
69d1b839
SR
225/*
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
228 * time extend.
229 */
230static inline unsigned
2d622719
TZ
231rb_event_length(struct ring_buffer_event *event)
232{
334d4169 233 switch (event->type_len) {
7a8e76a3 234 case RINGBUF_TYPE_PADDING:
2d622719
TZ
235 if (rb_null_event(event))
236 /* undefined */
237 return -1;
334d4169 238 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
239
240 case RINGBUF_TYPE_TIME_EXTEND:
241 return RB_LEN_TIME_EXTEND;
242
243 case RINGBUF_TYPE_TIME_STAMP:
244 return RB_LEN_TIME_STAMP;
245
246 case RINGBUF_TYPE_DATA:
2d622719 247 return rb_event_data_length(event);
7a8e76a3
SR
248 default:
249 BUG();
250 }
251 /* not hit */
252 return 0;
253}
254
69d1b839
SR
255/*
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
258 */
259static inline unsigned
260rb_event_ts_length(struct ring_buffer_event *event)
261{
262 unsigned len = 0;
263
264 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
265 /* time extends include the data event after it */
266 len = RB_LEN_TIME_EXTEND;
267 event = skip_time_extend(event);
268 }
269 return len + rb_event_length(event);
270}
271
7a8e76a3
SR
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
69d1b839
SR
275 *
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
7a8e76a3
SR
281 */
282unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283{
69d1b839
SR
284 unsigned length;
285
286 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
287 event = skip_time_extend(event);
288
289 length = rb_event_length(event);
334d4169 290 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
291 return length;
292 length -= RB_EVNT_HDR_SIZE;
293 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
294 length -= sizeof(event->array[0]);
295 return length;
7a8e76a3 296}
c4f50183 297EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
298
299/* inline for ring buffer fast paths */
34a148bf 300static void *
7a8e76a3
SR
301rb_event_data(struct ring_buffer_event *event)
302{
69d1b839
SR
303 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
304 event = skip_time_extend(event);
334d4169 305 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 306 /* If length is in len field, then array[0] has the data */
334d4169 307 if (event->type_len)
7a8e76a3
SR
308 return (void *)&event->array[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event->array[1];
311}
312
313/**
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
316 */
317void *ring_buffer_event_data(struct ring_buffer_event *event)
318{
319 return rb_event_data(event);
320}
c4f50183 321EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
322
323#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 324 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
325
326#define TS_SHIFT 27
327#define TS_MASK ((1ULL << TS_SHIFT) - 1)
328#define TS_DELTA_TEST (~TS_MASK)
329
66a8cb95
SR
330/* Flag when events were overwritten */
331#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
332/* Missed count stored at end */
333#define RB_MISSED_STORED (1 << 30)
66a8cb95 334
abc9b56d 335struct buffer_data_page {
e4c2ce82 336 u64 time_stamp; /* page time stamp */
c3706f00 337 local_t commit; /* write committed index */
abc9b56d
SR
338 unsigned char data[]; /* data of buffer page */
339};
340
77ae365e
SR
341/*
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
347 * lockless.
348 */
abc9b56d 349struct buffer_page {
778c55d4 350 struct list_head list; /* list of buffer pages */
abc9b56d 351 local_t write; /* index for next write */
6f807acd 352 unsigned read; /* index for next read */
778c55d4 353 local_t entries; /* entries on this page */
ff0ff84a 354 unsigned long real_end; /* real end of data */
abc9b56d 355 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
356};
357
77ae365e
SR
358/*
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
363 *
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
367 *
368 * The counter is 20 bits, and the state data is 12.
369 */
370#define RB_WRITE_MASK 0xfffff
371#define RB_WRITE_INTCNT (1 << 20)
372
044fa782 373static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 374{
044fa782 375 local_set(&bpage->commit, 0);
abc9b56d
SR
376}
377
474d32b6
SR
378/**
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
381 *
382 * Returns the amount of data on the page, including buffer page header.
383 */
ef7a4a16
SR
384size_t ring_buffer_page_len(void *page)
385{
474d32b6
SR
386 return local_read(&((struct buffer_data_page *)page)->commit)
387 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
388}
389
ed56829c
SR
390/*
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
392 * this issue out.
393 */
34a148bf 394static void free_buffer_page(struct buffer_page *bpage)
ed56829c 395{
34a148bf 396 free_page((unsigned long)bpage->page);
e4c2ce82 397 kfree(bpage);
ed56829c
SR
398}
399
7a8e76a3
SR
400/*
401 * We need to fit the time_stamp delta into 27 bits.
402 */
403static inline int test_time_stamp(u64 delta)
404{
405 if (delta & TS_DELTA_TEST)
406 return 1;
407 return 0;
408}
409
474d32b6 410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 411
be957c44
SR
412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
414
d1b182a8
SR
415int ring_buffer_print_page_header(struct trace_seq *s)
416{
417 struct buffer_data_page field;
418 int ret;
419
420 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
421 "offset:0;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)sizeof(field.time_stamp),
423 (unsigned int)is_signed_type(u64));
d1b182a8
SR
424
425 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 426 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 427 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
428 (unsigned int)sizeof(field.commit),
429 (unsigned int)is_signed_type(long));
d1b182a8 430
66a8cb95
SR
431 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
432 "offset:%u;\tsize:%u;\tsigned:%u;\n",
433 (unsigned int)offsetof(typeof(field), commit),
434 1,
435 (unsigned int)is_signed_type(long));
436
d1b182a8 437 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 438 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 439 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
440 (unsigned int)BUF_PAGE_SIZE,
441 (unsigned int)is_signed_type(char));
d1b182a8
SR
442
443 return ret;
444}
445
15693458
SRRH
446struct rb_irq_work {
447 struct irq_work work;
448 wait_queue_head_t waiters;
449 bool waiters_pending;
450};
451
7a8e76a3
SR
452/*
453 * head_page == tail_page && head == tail then buffer is empty.
454 */
455struct ring_buffer_per_cpu {
456 int cpu;
985023de 457 atomic_t record_disabled;
7a8e76a3 458 struct ring_buffer *buffer;
5389f6fa 459 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 460 arch_spinlock_t lock;
7a8e76a3 461 struct lock_class_key lock_key;
438ced17 462 unsigned int nr_pages;
3adc54fa 463 struct list_head *pages;
6f807acd
SR
464 struct buffer_page *head_page; /* read from head */
465 struct buffer_page *tail_page; /* write to tail */
c3706f00 466 struct buffer_page *commit_page; /* committed pages */
d769041f 467 struct buffer_page *reader_page;
66a8cb95
SR
468 unsigned long lost_events;
469 unsigned long last_overrun;
c64e148a 470 local_t entries_bytes;
e4906eff 471 local_t entries;
884bfe89
SP
472 local_t overrun;
473 local_t commit_overrun;
474 local_t dropped_events;
fa743953
SR
475 local_t committing;
476 local_t commits;
77ae365e 477 unsigned long read;
c64e148a 478 unsigned long read_bytes;
7a8e76a3
SR
479 u64 write_stamp;
480 u64 read_stamp;
438ced17
VN
481 /* ring buffer pages to update, > 0 to add, < 0 to remove */
482 int nr_pages_to_update;
483 struct list_head new_pages; /* new pages to add */
83f40318 484 struct work_struct update_pages_work;
05fdd70d 485 struct completion update_done;
15693458
SRRH
486
487 struct rb_irq_work irq_work;
7a8e76a3
SR
488};
489
490struct ring_buffer {
7a8e76a3
SR
491 unsigned flags;
492 int cpus;
7a8e76a3 493 atomic_t record_disabled;
83f40318 494 atomic_t resize_disabled;
00f62f61 495 cpumask_var_t cpumask;
7a8e76a3 496
1f8a6a10
PZ
497 struct lock_class_key *reader_lock_key;
498
7a8e76a3
SR
499 struct mutex mutex;
500
501 struct ring_buffer_per_cpu **buffers;
554f786e 502
59222efe 503#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
504 struct notifier_block cpu_notify;
505#endif
37886f6a 506 u64 (*clock)(void);
15693458
SRRH
507
508 struct rb_irq_work irq_work;
7a8e76a3
SR
509};
510
511struct ring_buffer_iter {
512 struct ring_buffer_per_cpu *cpu_buffer;
513 unsigned long head;
514 struct buffer_page *head_page;
492a74f4
SR
515 struct buffer_page *cache_reader_page;
516 unsigned long cache_read;
7a8e76a3
SR
517 u64 read_stamp;
518};
519
15693458
SRRH
520/*
521 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
522 *
523 * Schedules a delayed work to wake up any task that is blocked on the
524 * ring buffer waiters queue.
525 */
526static void rb_wake_up_waiters(struct irq_work *work)
527{
528 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
529
530 wake_up_all(&rbwork->waiters);
531}
532
533/**
534 * ring_buffer_wait - wait for input to the ring buffer
535 * @buffer: buffer to wait on
536 * @cpu: the cpu buffer to wait on
537 *
538 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
539 * as data is added to any of the @buffer's cpu buffers. Otherwise
540 * it will wait for data to be added to a specific cpu buffer.
541 */
542void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
543{
544 struct ring_buffer_per_cpu *cpu_buffer;
545 DEFINE_WAIT(wait);
546 struct rb_irq_work *work;
547
548 /*
549 * Depending on what the caller is waiting for, either any
550 * data in any cpu buffer, or a specific buffer, put the
551 * caller on the appropriate wait queue.
552 */
553 if (cpu == RING_BUFFER_ALL_CPUS)
554 work = &buffer->irq_work;
555 else {
556 cpu_buffer = buffer->buffers[cpu];
557 work = &cpu_buffer->irq_work;
558 }
559
560
561 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
562
563 /*
564 * The events can happen in critical sections where
565 * checking a work queue can cause deadlocks.
566 * After adding a task to the queue, this flag is set
567 * only to notify events to try to wake up the queue
568 * using irq_work.
569 *
570 * We don't clear it even if the buffer is no longer
571 * empty. The flag only causes the next event to run
572 * irq_work to do the work queue wake up. The worse
573 * that can happen if we race with !trace_empty() is that
574 * an event will cause an irq_work to try to wake up
575 * an empty queue.
576 *
577 * There's no reason to protect this flag either, as
578 * the work queue and irq_work logic will do the necessary
579 * synchronization for the wake ups. The only thing
580 * that is necessary is that the wake up happens after
581 * a task has been queued. It's OK for spurious wake ups.
582 */
583 work->waiters_pending = true;
584
585 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
586 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
587 schedule();
588
589 finish_wait(&work->waiters, &wait);
590}
591
592/**
593 * ring_buffer_poll_wait - poll on buffer input
594 * @buffer: buffer to wait on
595 * @cpu: the cpu buffer to wait on
596 * @filp: the file descriptor
597 * @poll_table: The poll descriptor
598 *
599 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
600 * as data is added to any of the @buffer's cpu buffers. Otherwise
601 * it will wait for data to be added to a specific cpu buffer.
602 *
603 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
604 * zero otherwise.
605 */
606int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
607 struct file *filp, poll_table *poll_table)
608{
609 struct ring_buffer_per_cpu *cpu_buffer;
610 struct rb_irq_work *work;
611
612 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
613 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
614 return POLLIN | POLLRDNORM;
615
616 if (cpu == RING_BUFFER_ALL_CPUS)
617 work = &buffer->irq_work;
618 else {
619 cpu_buffer = buffer->buffers[cpu];
620 work = &cpu_buffer->irq_work;
621 }
622
623 work->waiters_pending = true;
624 poll_wait(filp, &work->waiters, poll_table);
625
626 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
627 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
628 return POLLIN | POLLRDNORM;
629 return 0;
630}
631
f536aafc 632/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
633#define RB_WARN_ON(b, cond) \
634 ({ \
635 int _____ret = unlikely(cond); \
636 if (_____ret) { \
637 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
638 struct ring_buffer_per_cpu *__b = \
639 (void *)b; \
640 atomic_inc(&__b->buffer->record_disabled); \
641 } else \
642 atomic_inc(&b->record_disabled); \
643 WARN_ON(1); \
644 } \
645 _____ret; \
3e89c7bb 646 })
f536aafc 647
37886f6a
SR
648/* Up this if you want to test the TIME_EXTENTS and normalization */
649#define DEBUG_SHIFT 0
650
6d3f1e12 651static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
652{
653 /* shift to debug/test normalization and TIME_EXTENTS */
654 return buffer->clock() << DEBUG_SHIFT;
655}
656
37886f6a
SR
657u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
658{
659 u64 time;
660
661 preempt_disable_notrace();
6d3f1e12 662 time = rb_time_stamp(buffer);
37886f6a
SR
663 preempt_enable_no_resched_notrace();
664
665 return time;
666}
667EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
668
669void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
670 int cpu, u64 *ts)
671{
672 /* Just stupid testing the normalize function and deltas */
673 *ts >>= DEBUG_SHIFT;
674}
675EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
676
77ae365e
SR
677/*
678 * Making the ring buffer lockless makes things tricky.
679 * Although writes only happen on the CPU that they are on,
680 * and they only need to worry about interrupts. Reads can
681 * happen on any CPU.
682 *
683 * The reader page is always off the ring buffer, but when the
684 * reader finishes with a page, it needs to swap its page with
685 * a new one from the buffer. The reader needs to take from
686 * the head (writes go to the tail). But if a writer is in overwrite
687 * mode and wraps, it must push the head page forward.
688 *
689 * Here lies the problem.
690 *
691 * The reader must be careful to replace only the head page, and
692 * not another one. As described at the top of the file in the
693 * ASCII art, the reader sets its old page to point to the next
694 * page after head. It then sets the page after head to point to
695 * the old reader page. But if the writer moves the head page
696 * during this operation, the reader could end up with the tail.
697 *
698 * We use cmpxchg to help prevent this race. We also do something
699 * special with the page before head. We set the LSB to 1.
700 *
701 * When the writer must push the page forward, it will clear the
702 * bit that points to the head page, move the head, and then set
703 * the bit that points to the new head page.
704 *
705 * We also don't want an interrupt coming in and moving the head
706 * page on another writer. Thus we use the second LSB to catch
707 * that too. Thus:
708 *
709 * head->list->prev->next bit 1 bit 0
710 * ------- -------
711 * Normal page 0 0
712 * Points to head page 0 1
713 * New head page 1 0
714 *
715 * Note we can not trust the prev pointer of the head page, because:
716 *
717 * +----+ +-----+ +-----+
718 * | |------>| T |---X--->| N |
719 * | |<------| | | |
720 * +----+ +-----+ +-----+
721 * ^ ^ |
722 * | +-----+ | |
723 * +----------| R |----------+ |
724 * | |<-----------+
725 * +-----+
726 *
727 * Key: ---X--> HEAD flag set in pointer
728 * T Tail page
729 * R Reader page
730 * N Next page
731 *
732 * (see __rb_reserve_next() to see where this happens)
733 *
734 * What the above shows is that the reader just swapped out
735 * the reader page with a page in the buffer, but before it
736 * could make the new header point back to the new page added
737 * it was preempted by a writer. The writer moved forward onto
738 * the new page added by the reader and is about to move forward
739 * again.
740 *
741 * You can see, it is legitimate for the previous pointer of
742 * the head (or any page) not to point back to itself. But only
743 * temporarially.
744 */
745
746#define RB_PAGE_NORMAL 0UL
747#define RB_PAGE_HEAD 1UL
748#define RB_PAGE_UPDATE 2UL
749
750
751#define RB_FLAG_MASK 3UL
752
753/* PAGE_MOVED is not part of the mask */
754#define RB_PAGE_MOVED 4UL
755
756/*
757 * rb_list_head - remove any bit
758 */
759static struct list_head *rb_list_head(struct list_head *list)
760{
761 unsigned long val = (unsigned long)list;
762
763 return (struct list_head *)(val & ~RB_FLAG_MASK);
764}
765
766/*
6d3f1e12 767 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
768 *
769 * Because the reader may move the head_page pointer, we can
770 * not trust what the head page is (it may be pointing to
771 * the reader page). But if the next page is a header page,
772 * its flags will be non zero.
773 */
42b16b3f 774static inline int
77ae365e
SR
775rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
776 struct buffer_page *page, struct list_head *list)
777{
778 unsigned long val;
779
780 val = (unsigned long)list->next;
781
782 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
783 return RB_PAGE_MOVED;
784
785 return val & RB_FLAG_MASK;
786}
787
788/*
789 * rb_is_reader_page
790 *
791 * The unique thing about the reader page, is that, if the
792 * writer is ever on it, the previous pointer never points
793 * back to the reader page.
794 */
795static int rb_is_reader_page(struct buffer_page *page)
796{
797 struct list_head *list = page->list.prev;
798
799 return rb_list_head(list->next) != &page->list;
800}
801
802/*
803 * rb_set_list_to_head - set a list_head to be pointing to head.
804 */
805static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
806 struct list_head *list)
807{
808 unsigned long *ptr;
809
810 ptr = (unsigned long *)&list->next;
811 *ptr |= RB_PAGE_HEAD;
812 *ptr &= ~RB_PAGE_UPDATE;
813}
814
815/*
816 * rb_head_page_activate - sets up head page
817 */
818static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
819{
820 struct buffer_page *head;
821
822 head = cpu_buffer->head_page;
823 if (!head)
824 return;
825
826 /*
827 * Set the previous list pointer to have the HEAD flag.
828 */
829 rb_set_list_to_head(cpu_buffer, head->list.prev);
830}
831
832static void rb_list_head_clear(struct list_head *list)
833{
834 unsigned long *ptr = (unsigned long *)&list->next;
835
836 *ptr &= ~RB_FLAG_MASK;
837}
838
839/*
840 * rb_head_page_dactivate - clears head page ptr (for free list)
841 */
842static void
843rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
844{
845 struct list_head *hd;
846
847 /* Go through the whole list and clear any pointers found. */
848 rb_list_head_clear(cpu_buffer->pages);
849
850 list_for_each(hd, cpu_buffer->pages)
851 rb_list_head_clear(hd);
852}
853
854static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
855 struct buffer_page *head,
856 struct buffer_page *prev,
857 int old_flag, int new_flag)
858{
859 struct list_head *list;
860 unsigned long val = (unsigned long)&head->list;
861 unsigned long ret;
862
863 list = &prev->list;
864
865 val &= ~RB_FLAG_MASK;
866
08a40816
SR
867 ret = cmpxchg((unsigned long *)&list->next,
868 val | old_flag, val | new_flag);
77ae365e
SR
869
870 /* check if the reader took the page */
871 if ((ret & ~RB_FLAG_MASK) != val)
872 return RB_PAGE_MOVED;
873
874 return ret & RB_FLAG_MASK;
875}
876
877static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
878 struct buffer_page *head,
879 struct buffer_page *prev,
880 int old_flag)
881{
882 return rb_head_page_set(cpu_buffer, head, prev,
883 old_flag, RB_PAGE_UPDATE);
884}
885
886static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
887 struct buffer_page *head,
888 struct buffer_page *prev,
889 int old_flag)
890{
891 return rb_head_page_set(cpu_buffer, head, prev,
892 old_flag, RB_PAGE_HEAD);
893}
894
895static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
896 struct buffer_page *head,
897 struct buffer_page *prev,
898 int old_flag)
899{
900 return rb_head_page_set(cpu_buffer, head, prev,
901 old_flag, RB_PAGE_NORMAL);
902}
903
904static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
905 struct buffer_page **bpage)
906{
907 struct list_head *p = rb_list_head((*bpage)->list.next);
908
909 *bpage = list_entry(p, struct buffer_page, list);
910}
911
912static struct buffer_page *
913rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
914{
915 struct buffer_page *head;
916 struct buffer_page *page;
917 struct list_head *list;
918 int i;
919
920 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
921 return NULL;
922
923 /* sanity check */
924 list = cpu_buffer->pages;
925 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
926 return NULL;
927
928 page = head = cpu_buffer->head_page;
929 /*
930 * It is possible that the writer moves the header behind
931 * where we started, and we miss in one loop.
932 * A second loop should grab the header, but we'll do
933 * three loops just because I'm paranoid.
934 */
935 for (i = 0; i < 3; i++) {
936 do {
937 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
938 cpu_buffer->head_page = page;
939 return page;
940 }
941 rb_inc_page(cpu_buffer, &page);
942 } while (page != head);
943 }
944
945 RB_WARN_ON(cpu_buffer, 1);
946
947 return NULL;
948}
949
950static int rb_head_page_replace(struct buffer_page *old,
951 struct buffer_page *new)
952{
953 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
954 unsigned long val;
955 unsigned long ret;
956
957 val = *ptr & ~RB_FLAG_MASK;
958 val |= RB_PAGE_HEAD;
959
08a40816 960 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
961
962 return ret == val;
963}
964
965/*
966 * rb_tail_page_update - move the tail page forward
967 *
968 * Returns 1 if moved tail page, 0 if someone else did.
969 */
970static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
971 struct buffer_page *tail_page,
972 struct buffer_page *next_page)
973{
974 struct buffer_page *old_tail;
975 unsigned long old_entries;
976 unsigned long old_write;
977 int ret = 0;
978
979 /*
980 * The tail page now needs to be moved forward.
981 *
982 * We need to reset the tail page, but without messing
983 * with possible erasing of data brought in by interrupts
984 * that have moved the tail page and are currently on it.
985 *
986 * We add a counter to the write field to denote this.
987 */
988 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
989 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
990
991 /*
992 * Just make sure we have seen our old_write and synchronize
993 * with any interrupts that come in.
994 */
995 barrier();
996
997 /*
998 * If the tail page is still the same as what we think
999 * it is, then it is up to us to update the tail
1000 * pointer.
1001 */
1002 if (tail_page == cpu_buffer->tail_page) {
1003 /* Zero the write counter */
1004 unsigned long val = old_write & ~RB_WRITE_MASK;
1005 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1006
1007 /*
1008 * This will only succeed if an interrupt did
1009 * not come in and change it. In which case, we
1010 * do not want to modify it.
da706d8b
LJ
1011 *
1012 * We add (void) to let the compiler know that we do not care
1013 * about the return value of these functions. We use the
1014 * cmpxchg to only update if an interrupt did not already
1015 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1016 */
da706d8b
LJ
1017 (void)local_cmpxchg(&next_page->write, old_write, val);
1018 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1019
1020 /*
1021 * No need to worry about races with clearing out the commit.
1022 * it only can increment when a commit takes place. But that
1023 * only happens in the outer most nested commit.
1024 */
1025 local_set(&next_page->page->commit, 0);
1026
1027 old_tail = cmpxchg(&cpu_buffer->tail_page,
1028 tail_page, next_page);
1029
1030 if (old_tail == tail_page)
1031 ret = 1;
1032 }
1033
1034 return ret;
1035}
1036
1037static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1038 struct buffer_page *bpage)
1039{
1040 unsigned long val = (unsigned long)bpage;
1041
1042 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1043 return 1;
1044
1045 return 0;
1046}
1047
1048/**
1049 * rb_check_list - make sure a pointer to a list has the last bits zero
1050 */
1051static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1052 struct list_head *list)
1053{
1054 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1055 return 1;
1056 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1057 return 1;
1058 return 0;
1059}
1060
7a8e76a3
SR
1061/**
1062 * check_pages - integrity check of buffer pages
1063 * @cpu_buffer: CPU buffer with pages to test
1064 *
c3706f00 1065 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1066 * been corrupted.
1067 */
1068static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1069{
3adc54fa 1070 struct list_head *head = cpu_buffer->pages;
044fa782 1071 struct buffer_page *bpage, *tmp;
7a8e76a3 1072
308f7eeb
SR
1073 /* Reset the head page if it exists */
1074 if (cpu_buffer->head_page)
1075 rb_set_head_page(cpu_buffer);
1076
77ae365e
SR
1077 rb_head_page_deactivate(cpu_buffer);
1078
3e89c7bb
SR
1079 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1080 return -1;
1081 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1082 return -1;
7a8e76a3 1083
77ae365e
SR
1084 if (rb_check_list(cpu_buffer, head))
1085 return -1;
1086
044fa782 1087 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1088 if (RB_WARN_ON(cpu_buffer,
044fa782 1089 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1090 return -1;
1091 if (RB_WARN_ON(cpu_buffer,
044fa782 1092 bpage->list.prev->next != &bpage->list))
3e89c7bb 1093 return -1;
77ae365e
SR
1094 if (rb_check_list(cpu_buffer, &bpage->list))
1095 return -1;
7a8e76a3
SR
1096 }
1097
77ae365e
SR
1098 rb_head_page_activate(cpu_buffer);
1099
7a8e76a3
SR
1100 return 0;
1101}
1102
438ced17 1103static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1104{
438ced17 1105 int i;
044fa782 1106 struct buffer_page *bpage, *tmp;
3adc54fa 1107
7a8e76a3 1108 for (i = 0; i < nr_pages; i++) {
7ea59064 1109 struct page *page;
d7ec4bfe
VN
1110 /*
1111 * __GFP_NORETRY flag makes sure that the allocation fails
1112 * gracefully without invoking oom-killer and the system is
1113 * not destabilized.
1114 */
044fa782 1115 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1116 GFP_KERNEL | __GFP_NORETRY,
438ced17 1117 cpu_to_node(cpu));
044fa782 1118 if (!bpage)
e4c2ce82 1119 goto free_pages;
77ae365e 1120
438ced17 1121 list_add(&bpage->list, pages);
77ae365e 1122
438ced17 1123 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1124 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1125 if (!page)
7a8e76a3 1126 goto free_pages;
7ea59064 1127 bpage->page = page_address(page);
044fa782 1128 rb_init_page(bpage->page);
7a8e76a3
SR
1129 }
1130
438ced17
VN
1131 return 0;
1132
1133free_pages:
1134 list_for_each_entry_safe(bpage, tmp, pages, list) {
1135 list_del_init(&bpage->list);
1136 free_buffer_page(bpage);
1137 }
1138
1139 return -ENOMEM;
1140}
1141
1142static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1143 unsigned nr_pages)
1144{
1145 LIST_HEAD(pages);
1146
1147 WARN_ON(!nr_pages);
1148
1149 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1150 return -ENOMEM;
1151
3adc54fa
SR
1152 /*
1153 * The ring buffer page list is a circular list that does not
1154 * start and end with a list head. All page list items point to
1155 * other pages.
1156 */
1157 cpu_buffer->pages = pages.next;
1158 list_del(&pages);
7a8e76a3 1159
438ced17
VN
1160 cpu_buffer->nr_pages = nr_pages;
1161
7a8e76a3
SR
1162 rb_check_pages(cpu_buffer);
1163
1164 return 0;
7a8e76a3
SR
1165}
1166
1167static struct ring_buffer_per_cpu *
438ced17 1168rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1169{
1170 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1171 struct buffer_page *bpage;
7ea59064 1172 struct page *page;
7a8e76a3
SR
1173 int ret;
1174
1175 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1176 GFP_KERNEL, cpu_to_node(cpu));
1177 if (!cpu_buffer)
1178 return NULL;
1179
1180 cpu_buffer->cpu = cpu;
1181 cpu_buffer->buffer = buffer;
5389f6fa 1182 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1183 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1184 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1185 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1186 init_completion(&cpu_buffer->update_done);
15693458 1187 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1188 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1189
044fa782 1190 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1191 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1192 if (!bpage)
e4c2ce82
SR
1193 goto fail_free_buffer;
1194
77ae365e
SR
1195 rb_check_bpage(cpu_buffer, bpage);
1196
044fa782 1197 cpu_buffer->reader_page = bpage;
7ea59064
VN
1198 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1199 if (!page)
e4c2ce82 1200 goto fail_free_reader;
7ea59064 1201 bpage->page = page_address(page);
044fa782 1202 rb_init_page(bpage->page);
e4c2ce82 1203
d769041f 1204 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1205 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1206
438ced17 1207 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1208 if (ret < 0)
d769041f 1209 goto fail_free_reader;
7a8e76a3
SR
1210
1211 cpu_buffer->head_page
3adc54fa 1212 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1213 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1214
77ae365e
SR
1215 rb_head_page_activate(cpu_buffer);
1216
7a8e76a3
SR
1217 return cpu_buffer;
1218
d769041f
SR
1219 fail_free_reader:
1220 free_buffer_page(cpu_buffer->reader_page);
1221
7a8e76a3
SR
1222 fail_free_buffer:
1223 kfree(cpu_buffer);
1224 return NULL;
1225}
1226
1227static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1228{
3adc54fa 1229 struct list_head *head = cpu_buffer->pages;
044fa782 1230 struct buffer_page *bpage, *tmp;
7a8e76a3 1231
d769041f
SR
1232 free_buffer_page(cpu_buffer->reader_page);
1233
77ae365e
SR
1234 rb_head_page_deactivate(cpu_buffer);
1235
3adc54fa
SR
1236 if (head) {
1237 list_for_each_entry_safe(bpage, tmp, head, list) {
1238 list_del_init(&bpage->list);
1239 free_buffer_page(bpage);
1240 }
1241 bpage = list_entry(head, struct buffer_page, list);
044fa782 1242 free_buffer_page(bpage);
7a8e76a3 1243 }
3adc54fa 1244
7a8e76a3
SR
1245 kfree(cpu_buffer);
1246}
1247
59222efe 1248#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1249static int rb_cpu_notify(struct notifier_block *self,
1250 unsigned long action, void *hcpu);
554f786e
SR
1251#endif
1252
7a8e76a3
SR
1253/**
1254 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1255 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1256 * @flags: attributes to set for the ring buffer.
1257 *
1258 * Currently the only flag that is available is the RB_FL_OVERWRITE
1259 * flag. This flag means that the buffer will overwrite old data
1260 * when the buffer wraps. If this flag is not set, the buffer will
1261 * drop data when the tail hits the head.
1262 */
1f8a6a10
PZ
1263struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1264 struct lock_class_key *key)
7a8e76a3
SR
1265{
1266 struct ring_buffer *buffer;
1267 int bsize;
438ced17 1268 int cpu, nr_pages;
7a8e76a3
SR
1269
1270 /* keep it in its own cache line */
1271 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1272 GFP_KERNEL);
1273 if (!buffer)
1274 return NULL;
1275
9e01c1b7
RR
1276 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1277 goto fail_free_buffer;
1278
438ced17 1279 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1280 buffer->flags = flags;
37886f6a 1281 buffer->clock = trace_clock_local;
1f8a6a10 1282 buffer->reader_lock_key = key;
7a8e76a3 1283
15693458 1284 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1285 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1286
7a8e76a3 1287 /* need at least two pages */
438ced17
VN
1288 if (nr_pages < 2)
1289 nr_pages = 2;
7a8e76a3 1290
3bf832ce
FW
1291 /*
1292 * In case of non-hotplug cpu, if the ring-buffer is allocated
1293 * in early initcall, it will not be notified of secondary cpus.
1294 * In that off case, we need to allocate for all possible cpus.
1295 */
1296#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1297 get_online_cpus();
1298 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1299#else
1300 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1301#endif
7a8e76a3
SR
1302 buffer->cpus = nr_cpu_ids;
1303
1304 bsize = sizeof(void *) * nr_cpu_ids;
1305 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1306 GFP_KERNEL);
1307 if (!buffer->buffers)
9e01c1b7 1308 goto fail_free_cpumask;
7a8e76a3
SR
1309
1310 for_each_buffer_cpu(buffer, cpu) {
1311 buffer->buffers[cpu] =
438ced17 1312 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1313 if (!buffer->buffers[cpu])
1314 goto fail_free_buffers;
1315 }
1316
59222efe 1317#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1318 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1319 buffer->cpu_notify.priority = 0;
1320 register_cpu_notifier(&buffer->cpu_notify);
1321#endif
1322
1323 put_online_cpus();
7a8e76a3
SR
1324 mutex_init(&buffer->mutex);
1325
1326 return buffer;
1327
1328 fail_free_buffers:
1329 for_each_buffer_cpu(buffer, cpu) {
1330 if (buffer->buffers[cpu])
1331 rb_free_cpu_buffer(buffer->buffers[cpu]);
1332 }
1333 kfree(buffer->buffers);
1334
9e01c1b7
RR
1335 fail_free_cpumask:
1336 free_cpumask_var(buffer->cpumask);
554f786e 1337 put_online_cpus();
9e01c1b7 1338
7a8e76a3
SR
1339 fail_free_buffer:
1340 kfree(buffer);
1341 return NULL;
1342}
1f8a6a10 1343EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1344
1345/**
1346 * ring_buffer_free - free a ring buffer.
1347 * @buffer: the buffer to free.
1348 */
1349void
1350ring_buffer_free(struct ring_buffer *buffer)
1351{
1352 int cpu;
1353
554f786e
SR
1354 get_online_cpus();
1355
59222efe 1356#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1357 unregister_cpu_notifier(&buffer->cpu_notify);
1358#endif
1359
7a8e76a3
SR
1360 for_each_buffer_cpu(buffer, cpu)
1361 rb_free_cpu_buffer(buffer->buffers[cpu]);
1362
554f786e
SR
1363 put_online_cpus();
1364
bd3f0221 1365 kfree(buffer->buffers);
9e01c1b7
RR
1366 free_cpumask_var(buffer->cpumask);
1367
7a8e76a3
SR
1368 kfree(buffer);
1369}
c4f50183 1370EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1371
37886f6a
SR
1372void ring_buffer_set_clock(struct ring_buffer *buffer,
1373 u64 (*clock)(void))
1374{
1375 buffer->clock = clock;
1376}
1377
7a8e76a3
SR
1378static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1379
83f40318
VN
1380static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1381{
1382 return local_read(&bpage->entries) & RB_WRITE_MASK;
1383}
1384
1385static inline unsigned long rb_page_write(struct buffer_page *bpage)
1386{
1387 return local_read(&bpage->write) & RB_WRITE_MASK;
1388}
1389
5040b4b7 1390static int
83f40318 1391rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1392{
83f40318
VN
1393 struct list_head *tail_page, *to_remove, *next_page;
1394 struct buffer_page *to_remove_page, *tmp_iter_page;
1395 struct buffer_page *last_page, *first_page;
1396 unsigned int nr_removed;
1397 unsigned long head_bit;
1398 int page_entries;
1399
1400 head_bit = 0;
7a8e76a3 1401
5389f6fa 1402 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1403 atomic_inc(&cpu_buffer->record_disabled);
1404 /*
1405 * We don't race with the readers since we have acquired the reader
1406 * lock. We also don't race with writers after disabling recording.
1407 * This makes it easy to figure out the first and the last page to be
1408 * removed from the list. We unlink all the pages in between including
1409 * the first and last pages. This is done in a busy loop so that we
1410 * lose the least number of traces.
1411 * The pages are freed after we restart recording and unlock readers.
1412 */
1413 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1414
83f40318
VN
1415 /*
1416 * tail page might be on reader page, we remove the next page
1417 * from the ring buffer
1418 */
1419 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1420 tail_page = rb_list_head(tail_page->next);
1421 to_remove = tail_page;
1422
1423 /* start of pages to remove */
1424 first_page = list_entry(rb_list_head(to_remove->next),
1425 struct buffer_page, list);
1426
1427 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1428 to_remove = rb_list_head(to_remove)->next;
1429 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1430 }
7a8e76a3 1431
83f40318 1432 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1433
83f40318
VN
1434 /*
1435 * Now we remove all pages between tail_page and next_page.
1436 * Make sure that we have head_bit value preserved for the
1437 * next page
1438 */
1439 tail_page->next = (struct list_head *)((unsigned long)next_page |
1440 head_bit);
1441 next_page = rb_list_head(next_page);
1442 next_page->prev = tail_page;
1443
1444 /* make sure pages points to a valid page in the ring buffer */
1445 cpu_buffer->pages = next_page;
1446
1447 /* update head page */
1448 if (head_bit)
1449 cpu_buffer->head_page = list_entry(next_page,
1450 struct buffer_page, list);
1451
1452 /*
1453 * change read pointer to make sure any read iterators reset
1454 * themselves
1455 */
1456 cpu_buffer->read = 0;
1457
1458 /* pages are removed, resume tracing and then free the pages */
1459 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1460 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1461
1462 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1463
1464 /* last buffer page to remove */
1465 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1466 list);
1467 tmp_iter_page = first_page;
1468
1469 do {
1470 to_remove_page = tmp_iter_page;
1471 rb_inc_page(cpu_buffer, &tmp_iter_page);
1472
1473 /* update the counters */
1474 page_entries = rb_page_entries(to_remove_page);
1475 if (page_entries) {
1476 /*
1477 * If something was added to this page, it was full
1478 * since it is not the tail page. So we deduct the
1479 * bytes consumed in ring buffer from here.
48fdc72f 1480 * Increment overrun to account for the lost events.
83f40318 1481 */
48fdc72f 1482 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1483 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1484 }
1485
1486 /*
1487 * We have already removed references to this list item, just
1488 * free up the buffer_page and its page
1489 */
1490 free_buffer_page(to_remove_page);
1491 nr_removed--;
1492
1493 } while (to_remove_page != last_page);
1494
1495 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1496
1497 return nr_removed == 0;
7a8e76a3
SR
1498}
1499
5040b4b7
VN
1500static int
1501rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1502{
5040b4b7
VN
1503 struct list_head *pages = &cpu_buffer->new_pages;
1504 int retries, success;
7a8e76a3 1505
5389f6fa 1506 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1507 /*
1508 * We are holding the reader lock, so the reader page won't be swapped
1509 * in the ring buffer. Now we are racing with the writer trying to
1510 * move head page and the tail page.
1511 * We are going to adapt the reader page update process where:
1512 * 1. We first splice the start and end of list of new pages between
1513 * the head page and its previous page.
1514 * 2. We cmpxchg the prev_page->next to point from head page to the
1515 * start of new pages list.
1516 * 3. Finally, we update the head->prev to the end of new list.
1517 *
1518 * We will try this process 10 times, to make sure that we don't keep
1519 * spinning.
1520 */
1521 retries = 10;
1522 success = 0;
1523 while (retries--) {
1524 struct list_head *head_page, *prev_page, *r;
1525 struct list_head *last_page, *first_page;
1526 struct list_head *head_page_with_bit;
77ae365e 1527
5040b4b7 1528 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1529 if (!head_page)
1530 break;
5040b4b7
VN
1531 prev_page = head_page->prev;
1532
1533 first_page = pages->next;
1534 last_page = pages->prev;
1535
1536 head_page_with_bit = (struct list_head *)
1537 ((unsigned long)head_page | RB_PAGE_HEAD);
1538
1539 last_page->next = head_page_with_bit;
1540 first_page->prev = prev_page;
1541
1542 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1543
1544 if (r == head_page_with_bit) {
1545 /*
1546 * yay, we replaced the page pointer to our new list,
1547 * now, we just have to update to head page's prev
1548 * pointer to point to end of list
1549 */
1550 head_page->prev = last_page;
1551 success = 1;
1552 break;
1553 }
7a8e76a3 1554 }
7a8e76a3 1555
5040b4b7
VN
1556 if (success)
1557 INIT_LIST_HEAD(pages);
1558 /*
1559 * If we weren't successful in adding in new pages, warn and stop
1560 * tracing
1561 */
1562 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1563 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1564
1565 /* free pages if they weren't inserted */
1566 if (!success) {
1567 struct buffer_page *bpage, *tmp;
1568 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1569 list) {
1570 list_del_init(&bpage->list);
1571 free_buffer_page(bpage);
1572 }
1573 }
1574 return success;
7a8e76a3
SR
1575}
1576
83f40318 1577static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1578{
5040b4b7
VN
1579 int success;
1580
438ced17 1581 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1582 success = rb_insert_pages(cpu_buffer);
438ced17 1583 else
5040b4b7
VN
1584 success = rb_remove_pages(cpu_buffer,
1585 -cpu_buffer->nr_pages_to_update);
83f40318 1586
5040b4b7
VN
1587 if (success)
1588 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1589}
1590
1591static void update_pages_handler(struct work_struct *work)
1592{
1593 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1594 struct ring_buffer_per_cpu, update_pages_work);
1595 rb_update_pages(cpu_buffer);
05fdd70d 1596 complete(&cpu_buffer->update_done);
438ced17
VN
1597}
1598
7a8e76a3
SR
1599/**
1600 * ring_buffer_resize - resize the ring buffer
1601 * @buffer: the buffer to resize.
1602 * @size: the new size.
1603 *
7a8e76a3
SR
1604 * Minimum size is 2 * BUF_PAGE_SIZE.
1605 *
83f40318 1606 * Returns 0 on success and < 0 on failure.
7a8e76a3 1607 */
438ced17
VN
1608int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1609 int cpu_id)
7a8e76a3
SR
1610{
1611 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1612 unsigned nr_pages;
83f40318 1613 int cpu, err = 0;
7a8e76a3 1614
ee51a1de
IM
1615 /*
1616 * Always succeed at resizing a non-existent buffer:
1617 */
1618 if (!buffer)
1619 return size;
1620
6a31e1f1
SR
1621 /* Make sure the requested buffer exists */
1622 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1623 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1624 return size;
1625
7a8e76a3
SR
1626 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1627 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1628
1629 /* we need a minimum of two pages */
1630 if (size < BUF_PAGE_SIZE * 2)
1631 size = BUF_PAGE_SIZE * 2;
1632
83f40318 1633 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1634
83f40318
VN
1635 /*
1636 * Don't succeed if resizing is disabled, as a reader might be
1637 * manipulating the ring buffer and is expecting a sane state while
1638 * this is true.
1639 */
1640 if (atomic_read(&buffer->resize_disabled))
1641 return -EBUSY;
18421015 1642
83f40318 1643 /* prevent another thread from changing buffer sizes */
7a8e76a3 1644 mutex_lock(&buffer->mutex);
7a8e76a3 1645
438ced17
VN
1646 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1647 /* calculate the pages to update */
7a8e76a3
SR
1648 for_each_buffer_cpu(buffer, cpu) {
1649 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1650
438ced17
VN
1651 cpu_buffer->nr_pages_to_update = nr_pages -
1652 cpu_buffer->nr_pages;
438ced17
VN
1653 /*
1654 * nothing more to do for removing pages or no update
1655 */
1656 if (cpu_buffer->nr_pages_to_update <= 0)
1657 continue;
d7ec4bfe 1658 /*
438ced17
VN
1659 * to add pages, make sure all new pages can be
1660 * allocated without receiving ENOMEM
d7ec4bfe 1661 */
438ced17
VN
1662 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1663 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1664 &cpu_buffer->new_pages, cpu)) {
438ced17 1665 /* not enough memory for new pages */
83f40318
VN
1666 err = -ENOMEM;
1667 goto out_err;
1668 }
1669 }
1670
1671 get_online_cpus();
1672 /*
1673 * Fire off all the required work handlers
05fdd70d 1674 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1675 * since we can change their buffer sizes without any race.
1676 */
1677 for_each_buffer_cpu(buffer, cpu) {
1678 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1679 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1680 continue;
1681
05fdd70d
VN
1682 if (cpu_online(cpu))
1683 schedule_work_on(cpu,
1684 &cpu_buffer->update_pages_work);
1685 else
1686 rb_update_pages(cpu_buffer);
7a8e76a3 1687 }
7a8e76a3 1688
438ced17
VN
1689 /* wait for all the updates to complete */
1690 for_each_buffer_cpu(buffer, cpu) {
1691 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1692 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1693 continue;
1694
05fdd70d
VN
1695 if (cpu_online(cpu))
1696 wait_for_completion(&cpu_buffer->update_done);
83f40318 1697 cpu_buffer->nr_pages_to_update = 0;
438ced17 1698 }
83f40318
VN
1699
1700 put_online_cpus();
438ced17 1701 } else {
8e49f418
VN
1702 /* Make sure this CPU has been intitialized */
1703 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1704 goto out;
1705
438ced17 1706 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1707
438ced17
VN
1708 if (nr_pages == cpu_buffer->nr_pages)
1709 goto out;
7a8e76a3 1710
438ced17
VN
1711 cpu_buffer->nr_pages_to_update = nr_pages -
1712 cpu_buffer->nr_pages;
1713
1714 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1715 if (cpu_buffer->nr_pages_to_update > 0 &&
1716 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1717 &cpu_buffer->new_pages, cpu_id)) {
1718 err = -ENOMEM;
1719 goto out_err;
1720 }
438ced17 1721
83f40318
VN
1722 get_online_cpus();
1723
1724 if (cpu_online(cpu_id)) {
1725 schedule_work_on(cpu_id,
1726 &cpu_buffer->update_pages_work);
05fdd70d 1727 wait_for_completion(&cpu_buffer->update_done);
83f40318
VN
1728 } else
1729 rb_update_pages(cpu_buffer);
1730
83f40318 1731 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1732 put_online_cpus();
438ced17 1733 }
7a8e76a3
SR
1734
1735 out:
659f451f
SR
1736 /*
1737 * The ring buffer resize can happen with the ring buffer
1738 * enabled, so that the update disturbs the tracing as little
1739 * as possible. But if the buffer is disabled, we do not need
1740 * to worry about that, and we can take the time to verify
1741 * that the buffer is not corrupt.
1742 */
1743 if (atomic_read(&buffer->record_disabled)) {
1744 atomic_inc(&buffer->record_disabled);
1745 /*
1746 * Even though the buffer was disabled, we must make sure
1747 * that it is truly disabled before calling rb_check_pages.
1748 * There could have been a race between checking
1749 * record_disable and incrementing it.
1750 */
1751 synchronize_sched();
1752 for_each_buffer_cpu(buffer, cpu) {
1753 cpu_buffer = buffer->buffers[cpu];
1754 rb_check_pages(cpu_buffer);
1755 }
1756 atomic_dec(&buffer->record_disabled);
1757 }
1758
7a8e76a3 1759 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1760 return size;
1761
83f40318 1762 out_err:
438ced17
VN
1763 for_each_buffer_cpu(buffer, cpu) {
1764 struct buffer_page *bpage, *tmp;
83f40318 1765
438ced17 1766 cpu_buffer = buffer->buffers[cpu];
438ced17 1767 cpu_buffer->nr_pages_to_update = 0;
83f40318 1768
438ced17
VN
1769 if (list_empty(&cpu_buffer->new_pages))
1770 continue;
83f40318 1771
438ced17
VN
1772 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1773 list) {
1774 list_del_init(&bpage->list);
1775 free_buffer_page(bpage);
1776 }
7a8e76a3 1777 }
641d2f63 1778 mutex_unlock(&buffer->mutex);
83f40318 1779 return err;
7a8e76a3 1780}
c4f50183 1781EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1782
750912fa
DS
1783void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1784{
1785 mutex_lock(&buffer->mutex);
1786 if (val)
1787 buffer->flags |= RB_FL_OVERWRITE;
1788 else
1789 buffer->flags &= ~RB_FL_OVERWRITE;
1790 mutex_unlock(&buffer->mutex);
1791}
1792EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1793
8789a9e7 1794static inline void *
044fa782 1795__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1796{
044fa782 1797 return bpage->data + index;
8789a9e7
SR
1798}
1799
044fa782 1800static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1801{
044fa782 1802 return bpage->page->data + index;
7a8e76a3
SR
1803}
1804
1805static inline struct ring_buffer_event *
d769041f 1806rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1807{
6f807acd
SR
1808 return __rb_page_index(cpu_buffer->reader_page,
1809 cpu_buffer->reader_page->read);
1810}
1811
7a8e76a3
SR
1812static inline struct ring_buffer_event *
1813rb_iter_head_event(struct ring_buffer_iter *iter)
1814{
6f807acd 1815 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1816}
1817
bf41a158
SR
1818static inline unsigned rb_page_commit(struct buffer_page *bpage)
1819{
abc9b56d 1820 return local_read(&bpage->page->commit);
bf41a158
SR
1821}
1822
25985edc 1823/* Size is determined by what has been committed */
bf41a158
SR
1824static inline unsigned rb_page_size(struct buffer_page *bpage)
1825{
1826 return rb_page_commit(bpage);
1827}
1828
1829static inline unsigned
1830rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1831{
1832 return rb_page_commit(cpu_buffer->commit_page);
1833}
1834
bf41a158
SR
1835static inline unsigned
1836rb_event_index(struct ring_buffer_event *event)
1837{
1838 unsigned long addr = (unsigned long)event;
1839
22f470f8 1840 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1841}
1842
0f0c85fc 1843static inline int
fa743953
SR
1844rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1845 struct ring_buffer_event *event)
bf41a158
SR
1846{
1847 unsigned long addr = (unsigned long)event;
1848 unsigned long index;
1849
1850 index = rb_event_index(event);
1851 addr &= PAGE_MASK;
1852
1853 return cpu_buffer->commit_page->page == (void *)addr &&
1854 rb_commit_index(cpu_buffer) == index;
1855}
1856
34a148bf 1857static void
bf41a158 1858rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1859{
77ae365e
SR
1860 unsigned long max_count;
1861
bf41a158
SR
1862 /*
1863 * We only race with interrupts and NMIs on this CPU.
1864 * If we own the commit event, then we can commit
1865 * all others that interrupted us, since the interruptions
1866 * are in stack format (they finish before they come
1867 * back to us). This allows us to do a simple loop to
1868 * assign the commit to the tail.
1869 */
a8ccf1d6 1870 again:
438ced17 1871 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1872
bf41a158 1873 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1874 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1875 return;
1876 if (RB_WARN_ON(cpu_buffer,
1877 rb_is_reader_page(cpu_buffer->tail_page)))
1878 return;
1879 local_set(&cpu_buffer->commit_page->page->commit,
1880 rb_page_write(cpu_buffer->commit_page));
bf41a158 1881 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1882 cpu_buffer->write_stamp =
1883 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1884 /* add barrier to keep gcc from optimizing too much */
1885 barrier();
1886 }
1887 while (rb_commit_index(cpu_buffer) !=
1888 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1889
1890 local_set(&cpu_buffer->commit_page->page->commit,
1891 rb_page_write(cpu_buffer->commit_page));
1892 RB_WARN_ON(cpu_buffer,
1893 local_read(&cpu_buffer->commit_page->page->commit) &
1894 ~RB_WRITE_MASK);
bf41a158
SR
1895 barrier();
1896 }
a8ccf1d6
SR
1897
1898 /* again, keep gcc from optimizing */
1899 barrier();
1900
1901 /*
1902 * If an interrupt came in just after the first while loop
1903 * and pushed the tail page forward, we will be left with
1904 * a dangling commit that will never go forward.
1905 */
1906 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1907 goto again;
7a8e76a3
SR
1908}
1909
d769041f 1910static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1911{
abc9b56d 1912 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1913 cpu_buffer->reader_page->read = 0;
d769041f
SR
1914}
1915
34a148bf 1916static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1917{
1918 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1919
1920 /*
1921 * The iterator could be on the reader page (it starts there).
1922 * But the head could have moved, since the reader was
1923 * found. Check for this case and assign the iterator
1924 * to the head page instead of next.
1925 */
1926 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1927 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1928 else
1929 rb_inc_page(cpu_buffer, &iter->head_page);
1930
abc9b56d 1931 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1932 iter->head = 0;
1933}
1934
69d1b839
SR
1935/* Slow path, do not inline */
1936static noinline struct ring_buffer_event *
1937rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1938{
1939 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1940
1941 /* Not the first event on the page? */
1942 if (rb_event_index(event)) {
1943 event->time_delta = delta & TS_MASK;
1944 event->array[0] = delta >> TS_SHIFT;
1945 } else {
1946 /* nope, just zero it */
1947 event->time_delta = 0;
1948 event->array[0] = 0;
1949 }
1950
1951 return skip_time_extend(event);
1952}
1953
7a8e76a3 1954/**
01e3e710 1955 * rb_update_event - update event type and data
7a8e76a3
SR
1956 * @event: the even to update
1957 * @type: the type of event
1958 * @length: the size of the event field in the ring buffer
1959 *
1960 * Update the type and data fields of the event. The length
1961 * is the actual size that is written to the ring buffer,
1962 * and with this, we can determine what to place into the
1963 * data field.
1964 */
34a148bf 1965static void
69d1b839
SR
1966rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1967 struct ring_buffer_event *event, unsigned length,
1968 int add_timestamp, u64 delta)
7a8e76a3 1969{
69d1b839
SR
1970 /* Only a commit updates the timestamp */
1971 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1972 delta = 0;
7a8e76a3 1973
69d1b839
SR
1974 /*
1975 * If we need to add a timestamp, then we
1976 * add it to the start of the resevered space.
1977 */
1978 if (unlikely(add_timestamp)) {
1979 event = rb_add_time_stamp(event, delta);
1980 length -= RB_LEN_TIME_EXTEND;
1981 delta = 0;
7a8e76a3 1982 }
69d1b839
SR
1983
1984 event->time_delta = delta;
1985 length -= RB_EVNT_HDR_SIZE;
1986 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1987 event->type_len = 0;
1988 event->array[0] = length;
1989 } else
1990 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1991}
1992
77ae365e
SR
1993/*
1994 * rb_handle_head_page - writer hit the head page
1995 *
1996 * Returns: +1 to retry page
1997 * 0 to continue
1998 * -1 on error
1999 */
2000static int
2001rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2002 struct buffer_page *tail_page,
2003 struct buffer_page *next_page)
2004{
2005 struct buffer_page *new_head;
2006 int entries;
2007 int type;
2008 int ret;
2009
2010 entries = rb_page_entries(next_page);
2011
2012 /*
2013 * The hard part is here. We need to move the head
2014 * forward, and protect against both readers on
2015 * other CPUs and writers coming in via interrupts.
2016 */
2017 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2018 RB_PAGE_HEAD);
2019
2020 /*
2021 * type can be one of four:
2022 * NORMAL - an interrupt already moved it for us
2023 * HEAD - we are the first to get here.
2024 * UPDATE - we are the interrupt interrupting
2025 * a current move.
2026 * MOVED - a reader on another CPU moved the next
2027 * pointer to its reader page. Give up
2028 * and try again.
2029 */
2030
2031 switch (type) {
2032 case RB_PAGE_HEAD:
2033 /*
2034 * We changed the head to UPDATE, thus
2035 * it is our responsibility to update
2036 * the counters.
2037 */
2038 local_add(entries, &cpu_buffer->overrun);
c64e148a 2039 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2040
2041 /*
2042 * The entries will be zeroed out when we move the
2043 * tail page.
2044 */
2045
2046 /* still more to do */
2047 break;
2048
2049 case RB_PAGE_UPDATE:
2050 /*
2051 * This is an interrupt that interrupt the
2052 * previous update. Still more to do.
2053 */
2054 break;
2055 case RB_PAGE_NORMAL:
2056 /*
2057 * An interrupt came in before the update
2058 * and processed this for us.
2059 * Nothing left to do.
2060 */
2061 return 1;
2062 case RB_PAGE_MOVED:
2063 /*
2064 * The reader is on another CPU and just did
2065 * a swap with our next_page.
2066 * Try again.
2067 */
2068 return 1;
2069 default:
2070 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2071 return -1;
2072 }
2073
2074 /*
2075 * Now that we are here, the old head pointer is
2076 * set to UPDATE. This will keep the reader from
2077 * swapping the head page with the reader page.
2078 * The reader (on another CPU) will spin till
2079 * we are finished.
2080 *
2081 * We just need to protect against interrupts
2082 * doing the job. We will set the next pointer
2083 * to HEAD. After that, we set the old pointer
2084 * to NORMAL, but only if it was HEAD before.
2085 * otherwise we are an interrupt, and only
2086 * want the outer most commit to reset it.
2087 */
2088 new_head = next_page;
2089 rb_inc_page(cpu_buffer, &new_head);
2090
2091 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2092 RB_PAGE_NORMAL);
2093
2094 /*
2095 * Valid returns are:
2096 * HEAD - an interrupt came in and already set it.
2097 * NORMAL - One of two things:
2098 * 1) We really set it.
2099 * 2) A bunch of interrupts came in and moved
2100 * the page forward again.
2101 */
2102 switch (ret) {
2103 case RB_PAGE_HEAD:
2104 case RB_PAGE_NORMAL:
2105 /* OK */
2106 break;
2107 default:
2108 RB_WARN_ON(cpu_buffer, 1);
2109 return -1;
2110 }
2111
2112 /*
2113 * It is possible that an interrupt came in,
2114 * set the head up, then more interrupts came in
2115 * and moved it again. When we get back here,
2116 * the page would have been set to NORMAL but we
2117 * just set it back to HEAD.
2118 *
2119 * How do you detect this? Well, if that happened
2120 * the tail page would have moved.
2121 */
2122 if (ret == RB_PAGE_NORMAL) {
2123 /*
2124 * If the tail had moved passed next, then we need
2125 * to reset the pointer.
2126 */
2127 if (cpu_buffer->tail_page != tail_page &&
2128 cpu_buffer->tail_page != next_page)
2129 rb_head_page_set_normal(cpu_buffer, new_head,
2130 next_page,
2131 RB_PAGE_HEAD);
2132 }
2133
2134 /*
2135 * If this was the outer most commit (the one that
2136 * changed the original pointer from HEAD to UPDATE),
2137 * then it is up to us to reset it to NORMAL.
2138 */
2139 if (type == RB_PAGE_HEAD) {
2140 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2141 tail_page,
2142 RB_PAGE_UPDATE);
2143 if (RB_WARN_ON(cpu_buffer,
2144 ret != RB_PAGE_UPDATE))
2145 return -1;
2146 }
2147
2148 return 0;
2149}
2150
34a148bf 2151static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2152{
2153 struct ring_buffer_event event; /* Used only for sizeof array */
2154
2155 /* zero length can cause confusions */
2156 if (!length)
2157 length = 1;
2158
2271048d 2159 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2160 length += sizeof(event.array[0]);
2161
2162 length += RB_EVNT_HDR_SIZE;
2271048d 2163 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2164
2165 return length;
2166}
2167
c7b09308
SR
2168static inline void
2169rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2170 struct buffer_page *tail_page,
2171 unsigned long tail, unsigned long length)
2172{
2173 struct ring_buffer_event *event;
2174
2175 /*
2176 * Only the event that crossed the page boundary
2177 * must fill the old tail_page with padding.
2178 */
2179 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2180 /*
2181 * If the page was filled, then we still need
2182 * to update the real_end. Reset it to zero
2183 * and the reader will ignore it.
2184 */
2185 if (tail == BUF_PAGE_SIZE)
2186 tail_page->real_end = 0;
2187
c7b09308
SR
2188 local_sub(length, &tail_page->write);
2189 return;
2190 }
2191
2192 event = __rb_page_index(tail_page, tail);
b0b7065b 2193 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2194
c64e148a
VN
2195 /* account for padding bytes */
2196 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2197
ff0ff84a
SR
2198 /*
2199 * Save the original length to the meta data.
2200 * This will be used by the reader to add lost event
2201 * counter.
2202 */
2203 tail_page->real_end = tail;
2204
c7b09308
SR
2205 /*
2206 * If this event is bigger than the minimum size, then
2207 * we need to be careful that we don't subtract the
2208 * write counter enough to allow another writer to slip
2209 * in on this page.
2210 * We put in a discarded commit instead, to make sure
2211 * that this space is not used again.
2212 *
2213 * If we are less than the minimum size, we don't need to
2214 * worry about it.
2215 */
2216 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2217 /* No room for any events */
2218
2219 /* Mark the rest of the page with padding */
2220 rb_event_set_padding(event);
2221
2222 /* Set the write back to the previous setting */
2223 local_sub(length, &tail_page->write);
2224 return;
2225 }
2226
2227 /* Put in a discarded event */
2228 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2229 event->type_len = RINGBUF_TYPE_PADDING;
2230 /* time delta must be non zero */
2231 event->time_delta = 1;
c7b09308
SR
2232
2233 /* Set write to end of buffer */
2234 length = (tail + length) - BUF_PAGE_SIZE;
2235 local_sub(length, &tail_page->write);
2236}
6634ff26 2237
747e94ae
SR
2238/*
2239 * This is the slow path, force gcc not to inline it.
2240 */
2241static noinline struct ring_buffer_event *
6634ff26
SR
2242rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2243 unsigned long length, unsigned long tail,
e8bc43e8 2244 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2245{
5a50e33c 2246 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2247 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2248 struct buffer_page *next_page;
2249 int ret;
aa20ae84
SR
2250
2251 next_page = tail_page;
2252
aa20ae84
SR
2253 rb_inc_page(cpu_buffer, &next_page);
2254
aa20ae84
SR
2255 /*
2256 * If for some reason, we had an interrupt storm that made
2257 * it all the way around the buffer, bail, and warn
2258 * about it.
2259 */
2260 if (unlikely(next_page == commit_page)) {
77ae365e 2261 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2262 goto out_reset;
2263 }
2264
77ae365e
SR
2265 /*
2266 * This is where the fun begins!
2267 *
2268 * We are fighting against races between a reader that
2269 * could be on another CPU trying to swap its reader
2270 * page with the buffer head.
2271 *
2272 * We are also fighting against interrupts coming in and
2273 * moving the head or tail on us as well.
2274 *
2275 * If the next page is the head page then we have filled
2276 * the buffer, unless the commit page is still on the
2277 * reader page.
2278 */
2279 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2280
77ae365e
SR
2281 /*
2282 * If the commit is not on the reader page, then
2283 * move the header page.
2284 */
2285 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2286 /*
2287 * If we are not in overwrite mode,
2288 * this is easy, just stop here.
2289 */
884bfe89
SP
2290 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2291 local_inc(&cpu_buffer->dropped_events);
77ae365e 2292 goto out_reset;
884bfe89 2293 }
77ae365e
SR
2294
2295 ret = rb_handle_head_page(cpu_buffer,
2296 tail_page,
2297 next_page);
2298 if (ret < 0)
2299 goto out_reset;
2300 if (ret)
2301 goto out_again;
2302 } else {
2303 /*
2304 * We need to be careful here too. The
2305 * commit page could still be on the reader
2306 * page. We could have a small buffer, and
2307 * have filled up the buffer with events
2308 * from interrupts and such, and wrapped.
2309 *
2310 * Note, if the tail page is also the on the
2311 * reader_page, we let it move out.
2312 */
2313 if (unlikely((cpu_buffer->commit_page !=
2314 cpu_buffer->tail_page) &&
2315 (cpu_buffer->commit_page ==
2316 cpu_buffer->reader_page))) {
2317 local_inc(&cpu_buffer->commit_overrun);
2318 goto out_reset;
2319 }
aa20ae84
SR
2320 }
2321 }
2322
77ae365e
SR
2323 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2324 if (ret) {
2325 /*
2326 * Nested commits always have zero deltas, so
2327 * just reread the time stamp
2328 */
e8bc43e8
SR
2329 ts = rb_time_stamp(buffer);
2330 next_page->page->time_stamp = ts;
aa20ae84
SR
2331 }
2332
77ae365e 2333 out_again:
aa20ae84 2334
77ae365e 2335 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2336
2337 /* fail and let the caller try again */
2338 return ERR_PTR(-EAGAIN);
2339
45141d46 2340 out_reset:
6f3b3440 2341 /* reset write */
c7b09308 2342 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2343
bf41a158 2344 return NULL;
7a8e76a3
SR
2345}
2346
6634ff26
SR
2347static struct ring_buffer_event *
2348__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2349 unsigned long length, u64 ts,
2350 u64 delta, int add_timestamp)
6634ff26 2351{
5a50e33c 2352 struct buffer_page *tail_page;
6634ff26
SR
2353 struct ring_buffer_event *event;
2354 unsigned long tail, write;
2355
69d1b839
SR
2356 /*
2357 * If the time delta since the last event is too big to
2358 * hold in the time field of the event, then we append a
2359 * TIME EXTEND event ahead of the data event.
2360 */
2361 if (unlikely(add_timestamp))
2362 length += RB_LEN_TIME_EXTEND;
2363
6634ff26
SR
2364 tail_page = cpu_buffer->tail_page;
2365 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2366
2367 /* set write to only the index of the write */
2368 write &= RB_WRITE_MASK;
6634ff26
SR
2369 tail = write - length;
2370
2371 /* See if we shot pass the end of this buffer page */
747e94ae 2372 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2373 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2374 tail_page, ts);
6634ff26
SR
2375
2376 /* We reserved something on the buffer */
2377
6634ff26 2378 event = __rb_page_index(tail_page, tail);
1744a21d 2379 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2380 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2381
69d1b839 2382 local_inc(&tail_page->entries);
6634ff26
SR
2383
2384 /*
fa743953
SR
2385 * If this is the first commit on the page, then update
2386 * its timestamp.
6634ff26 2387 */
fa743953 2388 if (!tail)
e8bc43e8 2389 tail_page->page->time_stamp = ts;
6634ff26 2390
c64e148a
VN
2391 /* account for these added bytes */
2392 local_add(length, &cpu_buffer->entries_bytes);
2393
6634ff26
SR
2394 return event;
2395}
2396
edd813bf
SR
2397static inline int
2398rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2399 struct ring_buffer_event *event)
2400{
2401 unsigned long new_index, old_index;
2402 struct buffer_page *bpage;
2403 unsigned long index;
2404 unsigned long addr;
2405
2406 new_index = rb_event_index(event);
69d1b839 2407 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2408 addr = (unsigned long)event;
2409 addr &= PAGE_MASK;
2410
2411 bpage = cpu_buffer->tail_page;
2412
2413 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2414 unsigned long write_mask =
2415 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2416 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2417 /*
2418 * This is on the tail page. It is possible that
2419 * a write could come in and move the tail page
2420 * and write to the next page. That is fine
2421 * because we just shorten what is on this page.
2422 */
77ae365e
SR
2423 old_index += write_mask;
2424 new_index += write_mask;
edd813bf 2425 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2426 if (index == old_index) {
2427 /* update counters */
2428 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2429 return 1;
c64e148a 2430 }
edd813bf
SR
2431 }
2432
2433 /* could not discard */
2434 return 0;
2435}
2436
fa743953
SR
2437static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2438{
2439 local_inc(&cpu_buffer->committing);
2440 local_inc(&cpu_buffer->commits);
2441}
2442
d9abde21 2443static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2444{
2445 unsigned long commits;
2446
2447 if (RB_WARN_ON(cpu_buffer,
2448 !local_read(&cpu_buffer->committing)))
2449 return;
2450
2451 again:
2452 commits = local_read(&cpu_buffer->commits);
2453 /* synchronize with interrupts */
2454 barrier();
2455 if (local_read(&cpu_buffer->committing) == 1)
2456 rb_set_commit_to_write(cpu_buffer);
2457
2458 local_dec(&cpu_buffer->committing);
2459
2460 /* synchronize with interrupts */
2461 barrier();
2462
2463 /*
2464 * Need to account for interrupts coming in between the
2465 * updating of the commit page and the clearing of the
2466 * committing counter.
2467 */
2468 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2469 !local_read(&cpu_buffer->committing)) {
2470 local_inc(&cpu_buffer->committing);
2471 goto again;
2472 }
2473}
2474
7a8e76a3 2475static struct ring_buffer_event *
62f0b3eb
SR
2476rb_reserve_next_event(struct ring_buffer *buffer,
2477 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2478 unsigned long length)
7a8e76a3
SR
2479{
2480 struct ring_buffer_event *event;
69d1b839 2481 u64 ts, delta;
818e3dd3 2482 int nr_loops = 0;
69d1b839 2483 int add_timestamp;
140ff891 2484 u64 diff;
7a8e76a3 2485
fa743953
SR
2486 rb_start_commit(cpu_buffer);
2487
85bac32c 2488#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2489 /*
2490 * Due to the ability to swap a cpu buffer from a buffer
2491 * it is possible it was swapped before we committed.
2492 * (committing stops a swap). We check for it here and
2493 * if it happened, we have to fail the write.
2494 */
2495 barrier();
2496 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2497 local_dec(&cpu_buffer->committing);
2498 local_dec(&cpu_buffer->commits);
2499 return NULL;
2500 }
85bac32c 2501#endif
62f0b3eb 2502
be957c44 2503 length = rb_calculate_event_length(length);
bf41a158 2504 again:
69d1b839
SR
2505 add_timestamp = 0;
2506 delta = 0;
2507
818e3dd3
SR
2508 /*
2509 * We allow for interrupts to reenter here and do a trace.
2510 * If one does, it will cause this original code to loop
2511 * back here. Even with heavy interrupts happening, this
2512 * should only happen a few times in a row. If this happens
2513 * 1000 times in a row, there must be either an interrupt
2514 * storm or we have something buggy.
2515 * Bail!
2516 */
3e89c7bb 2517 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2518 goto out_fail;
818e3dd3 2519
6d3f1e12 2520 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2521 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2522
140ff891
SR
2523 /* make sure this diff is calculated here */
2524 barrier();
bf41a158 2525
140ff891
SR
2526 /* Did the write stamp get updated already? */
2527 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2528 delta = diff;
2529 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2530 int local_clock_stable = 1;
2531#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2532 local_clock_stable = sched_clock_stable;
2533#endif
69d1b839 2534 WARN_ONCE(delta > (1ULL << 59),
31274d72 2535 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2536 (unsigned long long)delta,
2537 (unsigned long long)ts,
31274d72
JO
2538 (unsigned long long)cpu_buffer->write_stamp,
2539 local_clock_stable ? "" :
2540 "If you just came from a suspend/resume,\n"
2541 "please switch to the trace global clock:\n"
2542 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2543 add_timestamp = 1;
7a8e76a3 2544 }
168b6b1d 2545 }
7a8e76a3 2546
69d1b839
SR
2547 event = __rb_reserve_next(cpu_buffer, length, ts,
2548 delta, add_timestamp);
168b6b1d 2549 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2550 goto again;
2551
fa743953
SR
2552 if (!event)
2553 goto out_fail;
7a8e76a3 2554
7a8e76a3 2555 return event;
fa743953
SR
2556
2557 out_fail:
2558 rb_end_commit(cpu_buffer);
2559 return NULL;
7a8e76a3
SR
2560}
2561
1155de47
PM
2562#ifdef CONFIG_TRACING
2563
567cd4da
SR
2564/*
2565 * The lock and unlock are done within a preempt disable section.
2566 * The current_context per_cpu variable can only be modified
2567 * by the current task between lock and unlock. But it can
2568 * be modified more than once via an interrupt. To pass this
2569 * information from the lock to the unlock without having to
2570 * access the 'in_interrupt()' functions again (which do show
2571 * a bit of overhead in something as critical as function tracing,
2572 * we use a bitmask trick.
2573 *
2574 * bit 0 = NMI context
2575 * bit 1 = IRQ context
2576 * bit 2 = SoftIRQ context
2577 * bit 3 = normal context.
2578 *
2579 * This works because this is the order of contexts that can
2580 * preempt other contexts. A SoftIRQ never preempts an IRQ
2581 * context.
2582 *
2583 * When the context is determined, the corresponding bit is
2584 * checked and set (if it was set, then a recursion of that context
2585 * happened).
2586 *
2587 * On unlock, we need to clear this bit. To do so, just subtract
2588 * 1 from the current_context and AND it to itself.
2589 *
2590 * (binary)
2591 * 101 - 1 = 100
2592 * 101 & 100 = 100 (clearing bit zero)
2593 *
2594 * 1010 - 1 = 1001
2595 * 1010 & 1001 = 1000 (clearing bit 1)
2596 *
2597 * The least significant bit can be cleared this way, and it
2598 * just so happens that it is the same bit corresponding to
2599 * the current context.
2600 */
2601static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2602
567cd4da 2603static __always_inline int trace_recursive_lock(void)
261842b7 2604{
567cd4da
SR
2605 unsigned int val = this_cpu_read(current_context);
2606 int bit;
d9abde21 2607
567cd4da
SR
2608 if (in_interrupt()) {
2609 if (in_nmi())
2610 bit = 0;
2611 else if (in_irq())
2612 bit = 1;
2613 else
2614 bit = 2;
2615 } else
2616 bit = 3;
d9abde21 2617
567cd4da
SR
2618 if (unlikely(val & (1 << bit)))
2619 return 1;
d9abde21 2620
567cd4da
SR
2621 val |= (1 << bit);
2622 this_cpu_write(current_context, val);
d9abde21 2623
567cd4da 2624 return 0;
261842b7
SR
2625}
2626
567cd4da 2627static __always_inline void trace_recursive_unlock(void)
261842b7 2628{
567cd4da 2629 unsigned int val = this_cpu_read(current_context);
261842b7 2630
567cd4da
SR
2631 val--;
2632 val &= this_cpu_read(current_context);
2633 this_cpu_write(current_context, val);
261842b7
SR
2634}
2635
1155de47
PM
2636#else
2637
2638#define trace_recursive_lock() (0)
2639#define trace_recursive_unlock() do { } while (0)
2640
2641#endif
2642
7a8e76a3
SR
2643/**
2644 * ring_buffer_lock_reserve - reserve a part of the buffer
2645 * @buffer: the ring buffer to reserve from
2646 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2647 *
2648 * Returns a reseverd event on the ring buffer to copy directly to.
2649 * The user of this interface will need to get the body to write into
2650 * and can use the ring_buffer_event_data() interface.
2651 *
2652 * The length is the length of the data needed, not the event length
2653 * which also includes the event header.
2654 *
2655 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2656 * If NULL is returned, then nothing has been allocated or locked.
2657 */
2658struct ring_buffer_event *
0a987751 2659ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2660{
2661 struct ring_buffer_per_cpu *cpu_buffer;
2662 struct ring_buffer_event *event;
5168ae50 2663 int cpu;
7a8e76a3 2664
033601a3 2665 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2666 return NULL;
2667
bf41a158 2668 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2669 preempt_disable_notrace();
bf41a158 2670
52fbe9cd
LJ
2671 if (atomic_read(&buffer->record_disabled))
2672 goto out_nocheck;
2673
261842b7
SR
2674 if (trace_recursive_lock())
2675 goto out_nocheck;
2676
7a8e76a3
SR
2677 cpu = raw_smp_processor_id();
2678
9e01c1b7 2679 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2680 goto out;
7a8e76a3
SR
2681
2682 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2683
2684 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2685 goto out;
7a8e76a3 2686
be957c44 2687 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2688 goto out;
7a8e76a3 2689
62f0b3eb 2690 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2691 if (!event)
d769041f 2692 goto out;
7a8e76a3
SR
2693
2694 return event;
2695
d769041f 2696 out:
261842b7
SR
2697 trace_recursive_unlock();
2698
2699 out_nocheck:
5168ae50 2700 preempt_enable_notrace();
7a8e76a3
SR
2701 return NULL;
2702}
c4f50183 2703EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2704
a1863c21
SR
2705static void
2706rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2707 struct ring_buffer_event *event)
2708{
69d1b839
SR
2709 u64 delta;
2710
fa743953
SR
2711 /*
2712 * The event first in the commit queue updates the
2713 * time stamp.
2714 */
69d1b839
SR
2715 if (rb_event_is_commit(cpu_buffer, event)) {
2716 /*
2717 * A commit event that is first on a page
2718 * updates the write timestamp with the page stamp
2719 */
2720 if (!rb_event_index(event))
2721 cpu_buffer->write_stamp =
2722 cpu_buffer->commit_page->page->time_stamp;
2723 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2724 delta = event->array[0];
2725 delta <<= TS_SHIFT;
2726 delta += event->time_delta;
2727 cpu_buffer->write_stamp += delta;
2728 } else
2729 cpu_buffer->write_stamp += event->time_delta;
2730 }
a1863c21 2731}
bf41a158 2732
a1863c21
SR
2733static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2734 struct ring_buffer_event *event)
2735{
2736 local_inc(&cpu_buffer->entries);
2737 rb_update_write_stamp(cpu_buffer, event);
fa743953 2738 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2739}
2740
15693458
SRRH
2741static __always_inline void
2742rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2743{
2744 if (buffer->irq_work.waiters_pending) {
2745 buffer->irq_work.waiters_pending = false;
2746 /* irq_work_queue() supplies it's own memory barriers */
2747 irq_work_queue(&buffer->irq_work.work);
2748 }
2749
2750 if (cpu_buffer->irq_work.waiters_pending) {
2751 cpu_buffer->irq_work.waiters_pending = false;
2752 /* irq_work_queue() supplies it's own memory barriers */
2753 irq_work_queue(&cpu_buffer->irq_work.work);
2754 }
2755}
2756
7a8e76a3
SR
2757/**
2758 * ring_buffer_unlock_commit - commit a reserved
2759 * @buffer: The buffer to commit to
2760 * @event: The event pointer to commit.
7a8e76a3
SR
2761 *
2762 * This commits the data to the ring buffer, and releases any locks held.
2763 *
2764 * Must be paired with ring_buffer_lock_reserve.
2765 */
2766int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2767 struct ring_buffer_event *event)
7a8e76a3
SR
2768{
2769 struct ring_buffer_per_cpu *cpu_buffer;
2770 int cpu = raw_smp_processor_id();
2771
2772 cpu_buffer = buffer->buffers[cpu];
2773
7a8e76a3
SR
2774 rb_commit(cpu_buffer, event);
2775
15693458
SRRH
2776 rb_wakeups(buffer, cpu_buffer);
2777
261842b7
SR
2778 trace_recursive_unlock();
2779
5168ae50 2780 preempt_enable_notrace();
7a8e76a3
SR
2781
2782 return 0;
2783}
c4f50183 2784EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2785
f3b9aae1
FW
2786static inline void rb_event_discard(struct ring_buffer_event *event)
2787{
69d1b839
SR
2788 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2789 event = skip_time_extend(event);
2790
334d4169
LJ
2791 /* array[0] holds the actual length for the discarded event */
2792 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2793 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2794 /* time delta must be non zero */
2795 if (!event->time_delta)
2796 event->time_delta = 1;
2797}
2798
a1863c21
SR
2799/*
2800 * Decrement the entries to the page that an event is on.
2801 * The event does not even need to exist, only the pointer
2802 * to the page it is on. This may only be called before the commit
2803 * takes place.
2804 */
2805static inline void
2806rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2807 struct ring_buffer_event *event)
2808{
2809 unsigned long addr = (unsigned long)event;
2810 struct buffer_page *bpage = cpu_buffer->commit_page;
2811 struct buffer_page *start;
2812
2813 addr &= PAGE_MASK;
2814
2815 /* Do the likely case first */
2816 if (likely(bpage->page == (void *)addr)) {
2817 local_dec(&bpage->entries);
2818 return;
2819 }
2820
2821 /*
2822 * Because the commit page may be on the reader page we
2823 * start with the next page and check the end loop there.
2824 */
2825 rb_inc_page(cpu_buffer, &bpage);
2826 start = bpage;
2827 do {
2828 if (bpage->page == (void *)addr) {
2829 local_dec(&bpage->entries);
2830 return;
2831 }
2832 rb_inc_page(cpu_buffer, &bpage);
2833 } while (bpage != start);
2834
2835 /* commit not part of this buffer?? */
2836 RB_WARN_ON(cpu_buffer, 1);
2837}
2838
fa1b47dd
SR
2839/**
2840 * ring_buffer_commit_discard - discard an event that has not been committed
2841 * @buffer: the ring buffer
2842 * @event: non committed event to discard
2843 *
dc892f73
SR
2844 * Sometimes an event that is in the ring buffer needs to be ignored.
2845 * This function lets the user discard an event in the ring buffer
2846 * and then that event will not be read later.
2847 *
2848 * This function only works if it is called before the the item has been
2849 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2850 * if another event has not been added behind it.
2851 *
2852 * If another event has been added behind it, it will set the event
2853 * up as discarded, and perform the commit.
2854 *
2855 * If this function is called, do not call ring_buffer_unlock_commit on
2856 * the event.
2857 */
2858void ring_buffer_discard_commit(struct ring_buffer *buffer,
2859 struct ring_buffer_event *event)
2860{
2861 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2862 int cpu;
2863
2864 /* The event is discarded regardless */
f3b9aae1 2865 rb_event_discard(event);
fa1b47dd 2866
fa743953
SR
2867 cpu = smp_processor_id();
2868 cpu_buffer = buffer->buffers[cpu];
2869
fa1b47dd
SR
2870 /*
2871 * This must only be called if the event has not been
2872 * committed yet. Thus we can assume that preemption
2873 * is still disabled.
2874 */
fa743953 2875 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2876
a1863c21 2877 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2878 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2879 goto out;
fa1b47dd
SR
2880
2881 /*
2882 * The commit is still visible by the reader, so we
a1863c21 2883 * must still update the timestamp.
fa1b47dd 2884 */
a1863c21 2885 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2886 out:
fa743953 2887 rb_end_commit(cpu_buffer);
fa1b47dd 2888
f3b9aae1
FW
2889 trace_recursive_unlock();
2890
5168ae50 2891 preempt_enable_notrace();
fa1b47dd
SR
2892
2893}
2894EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2895
7a8e76a3
SR
2896/**
2897 * ring_buffer_write - write data to the buffer without reserving
2898 * @buffer: The ring buffer to write to.
2899 * @length: The length of the data being written (excluding the event header)
2900 * @data: The data to write to the buffer.
2901 *
2902 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2903 * one function. If you already have the data to write to the buffer, it
2904 * may be easier to simply call this function.
2905 *
2906 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2907 * and not the length of the event which would hold the header.
2908 */
2909int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2910 unsigned long length,
2911 void *data)
7a8e76a3
SR
2912{
2913 struct ring_buffer_per_cpu *cpu_buffer;
2914 struct ring_buffer_event *event;
7a8e76a3
SR
2915 void *body;
2916 int ret = -EBUSY;
5168ae50 2917 int cpu;
7a8e76a3 2918
033601a3 2919 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2920 return -EBUSY;
2921
5168ae50 2922 preempt_disable_notrace();
bf41a158 2923
52fbe9cd
LJ
2924 if (atomic_read(&buffer->record_disabled))
2925 goto out;
2926
7a8e76a3
SR
2927 cpu = raw_smp_processor_id();
2928
9e01c1b7 2929 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2930 goto out;
7a8e76a3
SR
2931
2932 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2933
2934 if (atomic_read(&cpu_buffer->record_disabled))
2935 goto out;
2936
be957c44
SR
2937 if (length > BUF_MAX_DATA_SIZE)
2938 goto out;
2939
62f0b3eb 2940 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2941 if (!event)
2942 goto out;
2943
2944 body = rb_event_data(event);
2945
2946 memcpy(body, data, length);
2947
2948 rb_commit(cpu_buffer, event);
2949
15693458
SRRH
2950 rb_wakeups(buffer, cpu_buffer);
2951
7a8e76a3
SR
2952 ret = 0;
2953 out:
5168ae50 2954 preempt_enable_notrace();
7a8e76a3
SR
2955
2956 return ret;
2957}
c4f50183 2958EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2959
34a148bf 2960static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2961{
2962 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2963 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2964 struct buffer_page *commit = cpu_buffer->commit_page;
2965
77ae365e
SR
2966 /* In case of error, head will be NULL */
2967 if (unlikely(!head))
2968 return 1;
2969
bf41a158
SR
2970 return reader->read == rb_page_commit(reader) &&
2971 (commit == reader ||
2972 (commit == head &&
2973 head->read == rb_page_commit(commit)));
2974}
2975
7a8e76a3
SR
2976/**
2977 * ring_buffer_record_disable - stop all writes into the buffer
2978 * @buffer: The ring buffer to stop writes to.
2979 *
2980 * This prevents all writes to the buffer. Any attempt to write
2981 * to the buffer after this will fail and return NULL.
2982 *
2983 * The caller should call synchronize_sched() after this.
2984 */
2985void ring_buffer_record_disable(struct ring_buffer *buffer)
2986{
2987 atomic_inc(&buffer->record_disabled);
2988}
c4f50183 2989EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2990
2991/**
2992 * ring_buffer_record_enable - enable writes to the buffer
2993 * @buffer: The ring buffer to enable writes
2994 *
2995 * Note, multiple disables will need the same number of enables
c41b20e7 2996 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2997 */
2998void ring_buffer_record_enable(struct ring_buffer *buffer)
2999{
3000 atomic_dec(&buffer->record_disabled);
3001}
c4f50183 3002EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3003
499e5470
SR
3004/**
3005 * ring_buffer_record_off - stop all writes into the buffer
3006 * @buffer: The ring buffer to stop writes to.
3007 *
3008 * This prevents all writes to the buffer. Any attempt to write
3009 * to the buffer after this will fail and return NULL.
3010 *
3011 * This is different than ring_buffer_record_disable() as
87abb3b1 3012 * it works like an on/off switch, where as the disable() version
499e5470
SR
3013 * must be paired with a enable().
3014 */
3015void ring_buffer_record_off(struct ring_buffer *buffer)
3016{
3017 unsigned int rd;
3018 unsigned int new_rd;
3019
3020 do {
3021 rd = atomic_read(&buffer->record_disabled);
3022 new_rd = rd | RB_BUFFER_OFF;
3023 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3024}
3025EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3026
3027/**
3028 * ring_buffer_record_on - restart writes into the buffer
3029 * @buffer: The ring buffer to start writes to.
3030 *
3031 * This enables all writes to the buffer that was disabled by
3032 * ring_buffer_record_off().
3033 *
3034 * This is different than ring_buffer_record_enable() as
87abb3b1 3035 * it works like an on/off switch, where as the enable() version
499e5470
SR
3036 * must be paired with a disable().
3037 */
3038void ring_buffer_record_on(struct ring_buffer *buffer)
3039{
3040 unsigned int rd;
3041 unsigned int new_rd;
3042
3043 do {
3044 rd = atomic_read(&buffer->record_disabled);
3045 new_rd = rd & ~RB_BUFFER_OFF;
3046 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3047}
3048EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3049
3050/**
3051 * ring_buffer_record_is_on - return true if the ring buffer can write
3052 * @buffer: The ring buffer to see if write is enabled
3053 *
3054 * Returns true if the ring buffer is in a state that it accepts writes.
3055 */
3056int ring_buffer_record_is_on(struct ring_buffer *buffer)
3057{
3058 return !atomic_read(&buffer->record_disabled);
3059}
3060
7a8e76a3
SR
3061/**
3062 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3063 * @buffer: The ring buffer to stop writes to.
3064 * @cpu: The CPU buffer to stop
3065 *
3066 * This prevents all writes to the buffer. Any attempt to write
3067 * to the buffer after this will fail and return NULL.
3068 *
3069 * The caller should call synchronize_sched() after this.
3070 */
3071void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3072{
3073 struct ring_buffer_per_cpu *cpu_buffer;
3074
9e01c1b7 3075 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3076 return;
7a8e76a3
SR
3077
3078 cpu_buffer = buffer->buffers[cpu];
3079 atomic_inc(&cpu_buffer->record_disabled);
3080}
c4f50183 3081EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3082
3083/**
3084 * ring_buffer_record_enable_cpu - enable writes to the buffer
3085 * @buffer: The ring buffer to enable writes
3086 * @cpu: The CPU to enable.
3087 *
3088 * Note, multiple disables will need the same number of enables
c41b20e7 3089 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3090 */
3091void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3092{
3093 struct ring_buffer_per_cpu *cpu_buffer;
3094
9e01c1b7 3095 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3096 return;
7a8e76a3
SR
3097
3098 cpu_buffer = buffer->buffers[cpu];
3099 atomic_dec(&cpu_buffer->record_disabled);
3100}
c4f50183 3101EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3102
f6195aa0
SR
3103/*
3104 * The total entries in the ring buffer is the running counter
3105 * of entries entered into the ring buffer, minus the sum of
3106 * the entries read from the ring buffer and the number of
3107 * entries that were overwritten.
3108 */
3109static inline unsigned long
3110rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3111{
3112 return local_read(&cpu_buffer->entries) -
3113 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3114}
3115
c64e148a
VN
3116/**
3117 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3118 * @buffer: The ring buffer
3119 * @cpu: The per CPU buffer to read from.
3120 */
50ecf2c3 3121u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3122{
3123 unsigned long flags;
3124 struct ring_buffer_per_cpu *cpu_buffer;
3125 struct buffer_page *bpage;
da830e58 3126 u64 ret = 0;
c64e148a
VN
3127
3128 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3129 return 0;
3130
3131 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3132 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3133 /*
3134 * if the tail is on reader_page, oldest time stamp is on the reader
3135 * page
3136 */
3137 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3138 bpage = cpu_buffer->reader_page;
3139 else
3140 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3141 if (bpage)
3142 ret = bpage->page->time_stamp;
7115e3fc 3143 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3144
3145 return ret;
3146}
3147EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3148
3149/**
3150 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3151 * @buffer: The ring buffer
3152 * @cpu: The per CPU buffer to read from.
3153 */
3154unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3155{
3156 struct ring_buffer_per_cpu *cpu_buffer;
3157 unsigned long ret;
3158
3159 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3160 return 0;
3161
3162 cpu_buffer = buffer->buffers[cpu];
3163 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3164
3165 return ret;
3166}
3167EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3168
7a8e76a3
SR
3169/**
3170 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3171 * @buffer: The ring buffer
3172 * @cpu: The per CPU buffer to get the entries from.
3173 */
3174unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3175{
3176 struct ring_buffer_per_cpu *cpu_buffer;
3177
9e01c1b7 3178 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3179 return 0;
7a8e76a3
SR
3180
3181 cpu_buffer = buffer->buffers[cpu];
554f786e 3182
f6195aa0 3183 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3184}
c4f50183 3185EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3186
3187/**
884bfe89
SP
3188 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3189 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3190 * @buffer: The ring buffer
3191 * @cpu: The per CPU buffer to get the number of overruns from
3192 */
3193unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3194{
3195 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3196 unsigned long ret;
7a8e76a3 3197
9e01c1b7 3198 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3199 return 0;
7a8e76a3
SR
3200
3201 cpu_buffer = buffer->buffers[cpu];
77ae365e 3202 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3203
3204 return ret;
7a8e76a3 3205}
c4f50183 3206EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3207
f0d2c681 3208/**
884bfe89
SP
3209 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3210 * commits failing due to the buffer wrapping around while there are uncommitted
3211 * events, such as during an interrupt storm.
f0d2c681
SR
3212 * @buffer: The ring buffer
3213 * @cpu: The per CPU buffer to get the number of overruns from
3214 */
3215unsigned long
3216ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3217{
3218 struct ring_buffer_per_cpu *cpu_buffer;
3219 unsigned long ret;
3220
3221 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3222 return 0;
3223
3224 cpu_buffer = buffer->buffers[cpu];
77ae365e 3225 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3226
3227 return ret;
3228}
3229EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3230
884bfe89
SP
3231/**
3232 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3233 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to get the number of overruns from
3236 */
3237unsigned long
3238ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3239{
3240 struct ring_buffer_per_cpu *cpu_buffer;
3241 unsigned long ret;
3242
3243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 return 0;
3245
3246 cpu_buffer = buffer->buffers[cpu];
3247 ret = local_read(&cpu_buffer->dropped_events);
3248
3249 return ret;
3250}
3251EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3252
ad964704
SRRH
3253/**
3254 * ring_buffer_read_events_cpu - get the number of events successfully read
3255 * @buffer: The ring buffer
3256 * @cpu: The per CPU buffer to get the number of events read
3257 */
3258unsigned long
3259ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3260{
3261 struct ring_buffer_per_cpu *cpu_buffer;
3262
3263 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264 return 0;
3265
3266 cpu_buffer = buffer->buffers[cpu];
3267 return cpu_buffer->read;
3268}
3269EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3270
7a8e76a3
SR
3271/**
3272 * ring_buffer_entries - get the number of entries in a buffer
3273 * @buffer: The ring buffer
3274 *
3275 * Returns the total number of entries in the ring buffer
3276 * (all CPU entries)
3277 */
3278unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3279{
3280 struct ring_buffer_per_cpu *cpu_buffer;
3281 unsigned long entries = 0;
3282 int cpu;
3283
3284 /* if you care about this being correct, lock the buffer */
3285 for_each_buffer_cpu(buffer, cpu) {
3286 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3287 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3288 }
3289
3290 return entries;
3291}
c4f50183 3292EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3293
3294/**
67b394f7 3295 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3296 * @buffer: The ring buffer
3297 *
3298 * Returns the total number of overruns in the ring buffer
3299 * (all CPU entries)
3300 */
3301unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3302{
3303 struct ring_buffer_per_cpu *cpu_buffer;
3304 unsigned long overruns = 0;
3305 int cpu;
3306
3307 /* if you care about this being correct, lock the buffer */
3308 for_each_buffer_cpu(buffer, cpu) {
3309 cpu_buffer = buffer->buffers[cpu];
77ae365e 3310 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3311 }
3312
3313 return overruns;
3314}
c4f50183 3315EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3316
642edba5 3317static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3318{
3319 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3320
d769041f
SR
3321 /* Iterator usage is expected to have record disabled */
3322 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3323 iter->head_page = rb_set_head_page(cpu_buffer);
3324 if (unlikely(!iter->head_page))
3325 return;
3326 iter->head = iter->head_page->read;
d769041f
SR
3327 } else {
3328 iter->head_page = cpu_buffer->reader_page;
6f807acd 3329 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3330 }
3331 if (iter->head)
3332 iter->read_stamp = cpu_buffer->read_stamp;
3333 else
abc9b56d 3334 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3335 iter->cache_reader_page = cpu_buffer->reader_page;
3336 iter->cache_read = cpu_buffer->read;
642edba5 3337}
f83c9d0f 3338
642edba5
SR
3339/**
3340 * ring_buffer_iter_reset - reset an iterator
3341 * @iter: The iterator to reset
3342 *
3343 * Resets the iterator, so that it will start from the beginning
3344 * again.
3345 */
3346void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3347{
554f786e 3348 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3349 unsigned long flags;
3350
554f786e
SR
3351 if (!iter)
3352 return;
3353
3354 cpu_buffer = iter->cpu_buffer;
3355
5389f6fa 3356 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3357 rb_iter_reset(iter);
5389f6fa 3358 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3359}
c4f50183 3360EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3361
3362/**
3363 * ring_buffer_iter_empty - check if an iterator has no more to read
3364 * @iter: The iterator to check
3365 */
3366int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3367{
3368 struct ring_buffer_per_cpu *cpu_buffer;
3369
3370 cpu_buffer = iter->cpu_buffer;
3371
bf41a158
SR
3372 return iter->head_page == cpu_buffer->commit_page &&
3373 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3374}
c4f50183 3375EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3376
3377static void
3378rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3379 struct ring_buffer_event *event)
3380{
3381 u64 delta;
3382
334d4169 3383 switch (event->type_len) {
7a8e76a3
SR
3384 case RINGBUF_TYPE_PADDING:
3385 return;
3386
3387 case RINGBUF_TYPE_TIME_EXTEND:
3388 delta = event->array[0];
3389 delta <<= TS_SHIFT;
3390 delta += event->time_delta;
3391 cpu_buffer->read_stamp += delta;
3392 return;
3393
3394 case RINGBUF_TYPE_TIME_STAMP:
3395 /* FIXME: not implemented */
3396 return;
3397
3398 case RINGBUF_TYPE_DATA:
3399 cpu_buffer->read_stamp += event->time_delta;
3400 return;
3401
3402 default:
3403 BUG();
3404 }
3405 return;
3406}
3407
3408static void
3409rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3410 struct ring_buffer_event *event)
3411{
3412 u64 delta;
3413
334d4169 3414 switch (event->type_len) {
7a8e76a3
SR
3415 case RINGBUF_TYPE_PADDING:
3416 return;
3417
3418 case RINGBUF_TYPE_TIME_EXTEND:
3419 delta = event->array[0];
3420 delta <<= TS_SHIFT;
3421 delta += event->time_delta;
3422 iter->read_stamp += delta;
3423 return;
3424
3425 case RINGBUF_TYPE_TIME_STAMP:
3426 /* FIXME: not implemented */
3427 return;
3428
3429 case RINGBUF_TYPE_DATA:
3430 iter->read_stamp += event->time_delta;
3431 return;
3432
3433 default:
3434 BUG();
3435 }
3436 return;
3437}
3438
d769041f
SR
3439static struct buffer_page *
3440rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3441{
d769041f 3442 struct buffer_page *reader = NULL;
66a8cb95 3443 unsigned long overwrite;
d769041f 3444 unsigned long flags;
818e3dd3 3445 int nr_loops = 0;
77ae365e 3446 int ret;
d769041f 3447
3e03fb7f 3448 local_irq_save(flags);
0199c4e6 3449 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3450
3451 again:
818e3dd3
SR
3452 /*
3453 * This should normally only loop twice. But because the
3454 * start of the reader inserts an empty page, it causes
3455 * a case where we will loop three times. There should be no
3456 * reason to loop four times (that I know of).
3457 */
3e89c7bb 3458 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3459 reader = NULL;
3460 goto out;
3461 }
3462
d769041f
SR
3463 reader = cpu_buffer->reader_page;
3464
3465 /* If there's more to read, return this page */
bf41a158 3466 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3467 goto out;
3468
3469 /* Never should we have an index greater than the size */
3e89c7bb
SR
3470 if (RB_WARN_ON(cpu_buffer,
3471 cpu_buffer->reader_page->read > rb_page_size(reader)))
3472 goto out;
d769041f
SR
3473
3474 /* check if we caught up to the tail */
3475 reader = NULL;
bf41a158 3476 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3477 goto out;
7a8e76a3 3478
a5fb8331
SR
3479 /* Don't bother swapping if the ring buffer is empty */
3480 if (rb_num_of_entries(cpu_buffer) == 0)
3481 goto out;
3482
7a8e76a3 3483 /*
d769041f 3484 * Reset the reader page to size zero.
7a8e76a3 3485 */
77ae365e
SR
3486 local_set(&cpu_buffer->reader_page->write, 0);
3487 local_set(&cpu_buffer->reader_page->entries, 0);
3488 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3489 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3490
77ae365e
SR
3491 spin:
3492 /*
3493 * Splice the empty reader page into the list around the head.
3494 */
3495 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3496 if (!reader)
3497 goto out;
0e1ff5d7 3498 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3499 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3500
3adc54fa
SR
3501 /*
3502 * cpu_buffer->pages just needs to point to the buffer, it
3503 * has no specific buffer page to point to. Lets move it out
25985edc 3504 * of our way so we don't accidentally swap it.
3adc54fa
SR
3505 */
3506 cpu_buffer->pages = reader->list.prev;
3507
77ae365e
SR
3508 /* The reader page will be pointing to the new head */
3509 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3510
66a8cb95
SR
3511 /*
3512 * We want to make sure we read the overruns after we set up our
3513 * pointers to the next object. The writer side does a
3514 * cmpxchg to cross pages which acts as the mb on the writer
3515 * side. Note, the reader will constantly fail the swap
3516 * while the writer is updating the pointers, so this
3517 * guarantees that the overwrite recorded here is the one we
3518 * want to compare with the last_overrun.
3519 */
3520 smp_mb();
3521 overwrite = local_read(&(cpu_buffer->overrun));
3522
77ae365e
SR
3523 /*
3524 * Here's the tricky part.
3525 *
3526 * We need to move the pointer past the header page.
3527 * But we can only do that if a writer is not currently
3528 * moving it. The page before the header page has the
3529 * flag bit '1' set if it is pointing to the page we want.
3530 * but if the writer is in the process of moving it
3531 * than it will be '2' or already moved '0'.
3532 */
3533
3534 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3535
3536 /*
77ae365e 3537 * If we did not convert it, then we must try again.
7a8e76a3 3538 */
77ae365e
SR
3539 if (!ret)
3540 goto spin;
7a8e76a3 3541
77ae365e
SR
3542 /*
3543 * Yeah! We succeeded in replacing the page.
3544 *
3545 * Now make the new head point back to the reader page.
3546 */
5ded3dc6 3547 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3548 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3549
3550 /* Finally update the reader page to the new head */
3551 cpu_buffer->reader_page = reader;
3552 rb_reset_reader_page(cpu_buffer);
3553
66a8cb95
SR
3554 if (overwrite != cpu_buffer->last_overrun) {
3555 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3556 cpu_buffer->last_overrun = overwrite;
3557 }
3558
d769041f
SR
3559 goto again;
3560
3561 out:
0199c4e6 3562 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3563 local_irq_restore(flags);
d769041f
SR
3564
3565 return reader;
3566}
3567
3568static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3569{
3570 struct ring_buffer_event *event;
3571 struct buffer_page *reader;
3572 unsigned length;
3573
3574 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3575
d769041f 3576 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3577 if (RB_WARN_ON(cpu_buffer, !reader))
3578 return;
7a8e76a3 3579
d769041f
SR
3580 event = rb_reader_event(cpu_buffer);
3581
a1863c21 3582 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3583 cpu_buffer->read++;
d769041f
SR
3584
3585 rb_update_read_stamp(cpu_buffer, event);
3586
3587 length = rb_event_length(event);
6f807acd 3588 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3589}
3590
3591static void rb_advance_iter(struct ring_buffer_iter *iter)
3592{
7a8e76a3
SR
3593 struct ring_buffer_per_cpu *cpu_buffer;
3594 struct ring_buffer_event *event;
3595 unsigned length;
3596
3597 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3598
3599 /*
3600 * Check if we are at the end of the buffer.
3601 */
bf41a158 3602 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3603 /* discarded commits can make the page empty */
3604 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3605 return;
d769041f 3606 rb_inc_iter(iter);
7a8e76a3
SR
3607 return;
3608 }
3609
3610 event = rb_iter_head_event(iter);
3611
3612 length = rb_event_length(event);
3613
3614 /*
3615 * This should not be called to advance the header if we are
3616 * at the tail of the buffer.
3617 */
3e89c7bb 3618 if (RB_WARN_ON(cpu_buffer,
f536aafc 3619 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3620 (iter->head + length > rb_commit_index(cpu_buffer))))
3621 return;
7a8e76a3
SR
3622
3623 rb_update_iter_read_stamp(iter, event);
3624
3625 iter->head += length;
3626
3627 /* check for end of page padding */
bf41a158
SR
3628 if ((iter->head >= rb_page_size(iter->head_page)) &&
3629 (iter->head_page != cpu_buffer->commit_page))
771e0384 3630 rb_inc_iter(iter);
7a8e76a3
SR
3631}
3632
66a8cb95
SR
3633static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3634{
3635 return cpu_buffer->lost_events;
3636}
3637
f83c9d0f 3638static struct ring_buffer_event *
66a8cb95
SR
3639rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3640 unsigned long *lost_events)
7a8e76a3 3641{
7a8e76a3 3642 struct ring_buffer_event *event;
d769041f 3643 struct buffer_page *reader;
818e3dd3 3644 int nr_loops = 0;
7a8e76a3 3645
7a8e76a3 3646 again:
818e3dd3 3647 /*
69d1b839
SR
3648 * We repeat when a time extend is encountered.
3649 * Since the time extend is always attached to a data event,
3650 * we should never loop more than once.
3651 * (We never hit the following condition more than twice).
818e3dd3 3652 */
69d1b839 3653 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3654 return NULL;
818e3dd3 3655
d769041f
SR
3656 reader = rb_get_reader_page(cpu_buffer);
3657 if (!reader)
7a8e76a3
SR
3658 return NULL;
3659
d769041f 3660 event = rb_reader_event(cpu_buffer);
7a8e76a3 3661
334d4169 3662 switch (event->type_len) {
7a8e76a3 3663 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3664 if (rb_null_event(event))
3665 RB_WARN_ON(cpu_buffer, 1);
3666 /*
3667 * Because the writer could be discarding every
3668 * event it creates (which would probably be bad)
3669 * if we were to go back to "again" then we may never
3670 * catch up, and will trigger the warn on, or lock
3671 * the box. Return the padding, and we will release
3672 * the current locks, and try again.
3673 */
2d622719 3674 return event;
7a8e76a3
SR
3675
3676 case RINGBUF_TYPE_TIME_EXTEND:
3677 /* Internal data, OK to advance */
d769041f 3678 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3679 goto again;
3680
3681 case RINGBUF_TYPE_TIME_STAMP:
3682 /* FIXME: not implemented */
d769041f 3683 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3684 goto again;
3685
3686 case RINGBUF_TYPE_DATA:
3687 if (ts) {
3688 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3689 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3690 cpu_buffer->cpu, ts);
7a8e76a3 3691 }
66a8cb95
SR
3692 if (lost_events)
3693 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3694 return event;
3695
3696 default:
3697 BUG();
3698 }
3699
3700 return NULL;
3701}
c4f50183 3702EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3703
f83c9d0f
SR
3704static struct ring_buffer_event *
3705rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3706{
3707 struct ring_buffer *buffer;
3708 struct ring_buffer_per_cpu *cpu_buffer;
3709 struct ring_buffer_event *event;
818e3dd3 3710 int nr_loops = 0;
7a8e76a3 3711
7a8e76a3
SR
3712 cpu_buffer = iter->cpu_buffer;
3713 buffer = cpu_buffer->buffer;
3714
492a74f4
SR
3715 /*
3716 * Check if someone performed a consuming read to
3717 * the buffer. A consuming read invalidates the iterator
3718 * and we need to reset the iterator in this case.
3719 */
3720 if (unlikely(iter->cache_read != cpu_buffer->read ||
3721 iter->cache_reader_page != cpu_buffer->reader_page))
3722 rb_iter_reset(iter);
3723
7a8e76a3 3724 again:
3c05d748
SR
3725 if (ring_buffer_iter_empty(iter))
3726 return NULL;
3727
818e3dd3 3728 /*
69d1b839
SR
3729 * We repeat when a time extend is encountered.
3730 * Since the time extend is always attached to a data event,
3731 * we should never loop more than once.
3732 * (We never hit the following condition more than twice).
818e3dd3 3733 */
69d1b839 3734 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3735 return NULL;
818e3dd3 3736
7a8e76a3
SR
3737 if (rb_per_cpu_empty(cpu_buffer))
3738 return NULL;
3739
3c05d748
SR
3740 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3741 rb_inc_iter(iter);
3742 goto again;
3743 }
3744
7a8e76a3
SR
3745 event = rb_iter_head_event(iter);
3746
334d4169 3747 switch (event->type_len) {
7a8e76a3 3748 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3749 if (rb_null_event(event)) {
3750 rb_inc_iter(iter);
3751 goto again;
3752 }
3753 rb_advance_iter(iter);
3754 return event;
7a8e76a3
SR
3755
3756 case RINGBUF_TYPE_TIME_EXTEND:
3757 /* Internal data, OK to advance */
3758 rb_advance_iter(iter);
3759 goto again;
3760
3761 case RINGBUF_TYPE_TIME_STAMP:
3762 /* FIXME: not implemented */
3763 rb_advance_iter(iter);
3764 goto again;
3765
3766 case RINGBUF_TYPE_DATA:
3767 if (ts) {
3768 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3769 ring_buffer_normalize_time_stamp(buffer,
3770 cpu_buffer->cpu, ts);
7a8e76a3
SR
3771 }
3772 return event;
3773
3774 default:
3775 BUG();
3776 }
3777
3778 return NULL;
3779}
c4f50183 3780EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3781
8d707e8e
SR
3782static inline int rb_ok_to_lock(void)
3783{
3784 /*
3785 * If an NMI die dumps out the content of the ring buffer
3786 * do not grab locks. We also permanently disable the ring
3787 * buffer too. A one time deal is all you get from reading
3788 * the ring buffer from an NMI.
3789 */
464e85eb 3790 if (likely(!in_nmi()))
8d707e8e
SR
3791 return 1;
3792
3793 tracing_off_permanent();
3794 return 0;
3795}
3796
f83c9d0f
SR
3797/**
3798 * ring_buffer_peek - peek at the next event to be read
3799 * @buffer: The ring buffer to read
3800 * @cpu: The cpu to peak at
3801 * @ts: The timestamp counter of this event.
66a8cb95 3802 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3803 *
3804 * This will return the event that will be read next, but does
3805 * not consume the data.
3806 */
3807struct ring_buffer_event *
66a8cb95
SR
3808ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3809 unsigned long *lost_events)
f83c9d0f
SR
3810{
3811 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3812 struct ring_buffer_event *event;
f83c9d0f 3813 unsigned long flags;
8d707e8e 3814 int dolock;
f83c9d0f 3815
554f786e 3816 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3817 return NULL;
554f786e 3818
8d707e8e 3819 dolock = rb_ok_to_lock();
2d622719 3820 again:
8d707e8e
SR
3821 local_irq_save(flags);
3822 if (dolock)
5389f6fa 3823 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3824 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3825 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3826 rb_advance_reader(cpu_buffer);
8d707e8e 3827 if (dolock)
5389f6fa 3828 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3829 local_irq_restore(flags);
f83c9d0f 3830
1b959e18 3831 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3832 goto again;
2d622719 3833
f83c9d0f
SR
3834 return event;
3835}
3836
3837/**
3838 * ring_buffer_iter_peek - peek at the next event to be read
3839 * @iter: The ring buffer iterator
3840 * @ts: The timestamp counter of this event.
3841 *
3842 * This will return the event that will be read next, but does
3843 * not increment the iterator.
3844 */
3845struct ring_buffer_event *
3846ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3847{
3848 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3849 struct ring_buffer_event *event;
3850 unsigned long flags;
3851
2d622719 3852 again:
5389f6fa 3853 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3854 event = rb_iter_peek(iter, ts);
5389f6fa 3855 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3856
1b959e18 3857 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3858 goto again;
2d622719 3859
f83c9d0f
SR
3860 return event;
3861}
3862
7a8e76a3
SR
3863/**
3864 * ring_buffer_consume - return an event and consume it
3865 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3866 * @cpu: the cpu to read the buffer from
3867 * @ts: a variable to store the timestamp (may be NULL)
3868 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3869 *
3870 * Returns the next event in the ring buffer, and that event is consumed.
3871 * Meaning, that sequential reads will keep returning a different event,
3872 * and eventually empty the ring buffer if the producer is slower.
3873 */
3874struct ring_buffer_event *
66a8cb95
SR
3875ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3876 unsigned long *lost_events)
7a8e76a3 3877{
554f786e
SR
3878 struct ring_buffer_per_cpu *cpu_buffer;
3879 struct ring_buffer_event *event = NULL;
f83c9d0f 3880 unsigned long flags;
8d707e8e
SR
3881 int dolock;
3882
3883 dolock = rb_ok_to_lock();
7a8e76a3 3884
2d622719 3885 again:
554f786e
SR
3886 /* might be called in atomic */
3887 preempt_disable();
3888
9e01c1b7 3889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3890 goto out;
7a8e76a3 3891
554f786e 3892 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3893 local_irq_save(flags);
3894 if (dolock)
5389f6fa 3895 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3896
66a8cb95
SR
3897 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3898 if (event) {
3899 cpu_buffer->lost_events = 0;
469535a5 3900 rb_advance_reader(cpu_buffer);
66a8cb95 3901 }
7a8e76a3 3902
8d707e8e 3903 if (dolock)
5389f6fa 3904 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3905 local_irq_restore(flags);
f83c9d0f 3906
554f786e
SR
3907 out:
3908 preempt_enable();
3909
1b959e18 3910 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3911 goto again;
2d622719 3912
7a8e76a3
SR
3913 return event;
3914}
c4f50183 3915EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3916
3917/**
72c9ddfd 3918 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3919 * @buffer: The ring buffer to read from
3920 * @cpu: The cpu buffer to iterate over
3921 *
72c9ddfd
DM
3922 * This performs the initial preparations necessary to iterate
3923 * through the buffer. Memory is allocated, buffer recording
3924 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3925 *
72c9ddfd
DM
3926 * Disabling buffer recordng prevents the reading from being
3927 * corrupted. This is not a consuming read, so a producer is not
3928 * expected.
3929 *
3930 * After a sequence of ring_buffer_read_prepare calls, the user is
3931 * expected to make at least one call to ring_buffer_prepare_sync.
3932 * Afterwards, ring_buffer_read_start is invoked to get things going
3933 * for real.
3934 *
3935 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3936 */
3937struct ring_buffer_iter *
72c9ddfd 3938ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3939{
3940 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3941 struct ring_buffer_iter *iter;
7a8e76a3 3942
9e01c1b7 3943 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3944 return NULL;
7a8e76a3
SR
3945
3946 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3947 if (!iter)
8aabee57 3948 return NULL;
7a8e76a3
SR
3949
3950 cpu_buffer = buffer->buffers[cpu];
3951
3952 iter->cpu_buffer = cpu_buffer;
3953
83f40318 3954 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3955 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3956
3957 return iter;
3958}
3959EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3960
3961/**
3962 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3963 *
3964 * All previously invoked ring_buffer_read_prepare calls to prepare
3965 * iterators will be synchronized. Afterwards, read_buffer_read_start
3966 * calls on those iterators are allowed.
3967 */
3968void
3969ring_buffer_read_prepare_sync(void)
3970{
7a8e76a3 3971 synchronize_sched();
72c9ddfd
DM
3972}
3973EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3974
3975/**
3976 * ring_buffer_read_start - start a non consuming read of the buffer
3977 * @iter: The iterator returned by ring_buffer_read_prepare
3978 *
3979 * This finalizes the startup of an iteration through the buffer.
3980 * The iterator comes from a call to ring_buffer_read_prepare and
3981 * an intervening ring_buffer_read_prepare_sync must have been
3982 * performed.
3983 *
3984 * Must be paired with ring_buffer_finish.
3985 */
3986void
3987ring_buffer_read_start(struct ring_buffer_iter *iter)
3988{
3989 struct ring_buffer_per_cpu *cpu_buffer;
3990 unsigned long flags;
3991
3992 if (!iter)
3993 return;
3994
3995 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3996
5389f6fa 3997 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3998 arch_spin_lock(&cpu_buffer->lock);
642edba5 3999 rb_iter_reset(iter);
0199c4e6 4000 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4001 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4002}
c4f50183 4003EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4004
4005/**
4006 * ring_buffer_finish - finish reading the iterator of the buffer
4007 * @iter: The iterator retrieved by ring_buffer_start
4008 *
4009 * This re-enables the recording to the buffer, and frees the
4010 * iterator.
4011 */
4012void
4013ring_buffer_read_finish(struct ring_buffer_iter *iter)
4014{
4015 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4016 unsigned long flags;
7a8e76a3 4017
659f451f
SR
4018 /*
4019 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4020 * to check the integrity of the ring buffer.
4021 * Must prevent readers from trying to read, as the check
4022 * clears the HEAD page and readers require it.
659f451f 4023 */
9366c1ba 4024 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4025 rb_check_pages(cpu_buffer);
9366c1ba 4026 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4027
7a8e76a3 4028 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4029 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4030 kfree(iter);
4031}
c4f50183 4032EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4033
4034/**
4035 * ring_buffer_read - read the next item in the ring buffer by the iterator
4036 * @iter: The ring buffer iterator
4037 * @ts: The time stamp of the event read.
4038 *
4039 * This reads the next event in the ring buffer and increments the iterator.
4040 */
4041struct ring_buffer_event *
4042ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4043{
4044 struct ring_buffer_event *event;
f83c9d0f
SR
4045 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4046 unsigned long flags;
7a8e76a3 4047
5389f6fa 4048 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4049 again:
f83c9d0f 4050 event = rb_iter_peek(iter, ts);
7a8e76a3 4051 if (!event)
f83c9d0f 4052 goto out;
7a8e76a3 4053
7e9391cf
SR
4054 if (event->type_len == RINGBUF_TYPE_PADDING)
4055 goto again;
4056
7a8e76a3 4057 rb_advance_iter(iter);
f83c9d0f 4058 out:
5389f6fa 4059 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4060
4061 return event;
4062}
c4f50183 4063EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4064
4065/**
4066 * ring_buffer_size - return the size of the ring buffer (in bytes)
4067 * @buffer: The ring buffer.
4068 */
438ced17 4069unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4070{
438ced17
VN
4071 /*
4072 * Earlier, this method returned
4073 * BUF_PAGE_SIZE * buffer->nr_pages
4074 * Since the nr_pages field is now removed, we have converted this to
4075 * return the per cpu buffer value.
4076 */
4077 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4078 return 0;
4079
4080 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4081}
c4f50183 4082EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4083
4084static void
4085rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4086{
77ae365e
SR
4087 rb_head_page_deactivate(cpu_buffer);
4088
7a8e76a3 4089 cpu_buffer->head_page
3adc54fa 4090 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4091 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4092 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4093 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4094
6f807acd 4095 cpu_buffer->head_page->read = 0;
bf41a158
SR
4096
4097 cpu_buffer->tail_page = cpu_buffer->head_page;
4098 cpu_buffer->commit_page = cpu_buffer->head_page;
4099
4100 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4101 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4102 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4103 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4104 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4105 cpu_buffer->reader_page->read = 0;
7a8e76a3 4106
c64e148a 4107 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4108 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4109 local_set(&cpu_buffer->commit_overrun, 0);
4110 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4111 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4112 local_set(&cpu_buffer->committing, 0);
4113 local_set(&cpu_buffer->commits, 0);
77ae365e 4114 cpu_buffer->read = 0;
c64e148a 4115 cpu_buffer->read_bytes = 0;
69507c06
SR
4116
4117 cpu_buffer->write_stamp = 0;
4118 cpu_buffer->read_stamp = 0;
77ae365e 4119
66a8cb95
SR
4120 cpu_buffer->lost_events = 0;
4121 cpu_buffer->last_overrun = 0;
4122
77ae365e 4123 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4124}
4125
4126/**
4127 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4128 * @buffer: The ring buffer to reset a per cpu buffer of
4129 * @cpu: The CPU buffer to be reset
4130 */
4131void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4132{
4133 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4134 unsigned long flags;
4135
9e01c1b7 4136 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4137 return;
7a8e76a3 4138
83f40318 4139 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4140 atomic_inc(&cpu_buffer->record_disabled);
4141
83f40318
VN
4142 /* Make sure all commits have finished */
4143 synchronize_sched();
4144
5389f6fa 4145 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4146
41b6a95d
SR
4147 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4148 goto out;
4149
0199c4e6 4150 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4151
4152 rb_reset_cpu(cpu_buffer);
4153
0199c4e6 4154 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4155
41b6a95d 4156 out:
5389f6fa 4157 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4158
4159 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4160 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4161}
c4f50183 4162EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4163
4164/**
4165 * ring_buffer_reset - reset a ring buffer
4166 * @buffer: The ring buffer to reset all cpu buffers
4167 */
4168void ring_buffer_reset(struct ring_buffer *buffer)
4169{
7a8e76a3
SR
4170 int cpu;
4171
7a8e76a3 4172 for_each_buffer_cpu(buffer, cpu)
d769041f 4173 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4174}
c4f50183 4175EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4176
4177/**
4178 * rind_buffer_empty - is the ring buffer empty?
4179 * @buffer: The ring buffer to test
4180 */
4181int ring_buffer_empty(struct ring_buffer *buffer)
4182{
4183 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4184 unsigned long flags;
8d707e8e 4185 int dolock;
7a8e76a3 4186 int cpu;
d4788207 4187 int ret;
7a8e76a3 4188
8d707e8e 4189 dolock = rb_ok_to_lock();
7a8e76a3
SR
4190
4191 /* yes this is racy, but if you don't like the race, lock the buffer */
4192 for_each_buffer_cpu(buffer, cpu) {
4193 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4194 local_irq_save(flags);
4195 if (dolock)
5389f6fa 4196 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4197 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4198 if (dolock)
5389f6fa 4199 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4200 local_irq_restore(flags);
4201
d4788207 4202 if (!ret)
7a8e76a3
SR
4203 return 0;
4204 }
554f786e 4205
7a8e76a3
SR
4206 return 1;
4207}
c4f50183 4208EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4209
4210/**
4211 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4212 * @buffer: The ring buffer
4213 * @cpu: The CPU buffer to test
4214 */
4215int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4216{
4217 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4218 unsigned long flags;
8d707e8e 4219 int dolock;
8aabee57 4220 int ret;
7a8e76a3 4221
9e01c1b7 4222 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4223 return 1;
7a8e76a3 4224
8d707e8e
SR
4225 dolock = rb_ok_to_lock();
4226
7a8e76a3 4227 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4228 local_irq_save(flags);
4229 if (dolock)
5389f6fa 4230 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4231 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4232 if (dolock)
5389f6fa 4233 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4234 local_irq_restore(flags);
554f786e
SR
4235
4236 return ret;
7a8e76a3 4237}
c4f50183 4238EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4239
85bac32c 4240#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4241/**
4242 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4243 * @buffer_a: One buffer to swap with
4244 * @buffer_b: The other buffer to swap with
4245 *
4246 * This function is useful for tracers that want to take a "snapshot"
4247 * of a CPU buffer and has another back up buffer lying around.
4248 * it is expected that the tracer handles the cpu buffer not being
4249 * used at the moment.
4250 */
4251int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4252 struct ring_buffer *buffer_b, int cpu)
4253{
4254 struct ring_buffer_per_cpu *cpu_buffer_a;
4255 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4256 int ret = -EINVAL;
4257
9e01c1b7
RR
4258 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4259 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4260 goto out;
7a8e76a3 4261
438ced17
VN
4262 cpu_buffer_a = buffer_a->buffers[cpu];
4263 cpu_buffer_b = buffer_b->buffers[cpu];
4264
7a8e76a3 4265 /* At least make sure the two buffers are somewhat the same */
438ced17 4266 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4267 goto out;
4268
4269 ret = -EAGAIN;
7a8e76a3 4270
97b17efe 4271 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4272 goto out;
97b17efe
SR
4273
4274 if (atomic_read(&buffer_a->record_disabled))
554f786e 4275 goto out;
97b17efe
SR
4276
4277 if (atomic_read(&buffer_b->record_disabled))
554f786e 4278 goto out;
97b17efe 4279
97b17efe 4280 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4281 goto out;
97b17efe
SR
4282
4283 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4284 goto out;
97b17efe 4285
7a8e76a3
SR
4286 /*
4287 * We can't do a synchronize_sched here because this
4288 * function can be called in atomic context.
4289 * Normally this will be called from the same CPU as cpu.
4290 * If not it's up to the caller to protect this.
4291 */
4292 atomic_inc(&cpu_buffer_a->record_disabled);
4293 atomic_inc(&cpu_buffer_b->record_disabled);
4294
98277991
SR
4295 ret = -EBUSY;
4296 if (local_read(&cpu_buffer_a->committing))
4297 goto out_dec;
4298 if (local_read(&cpu_buffer_b->committing))
4299 goto out_dec;
4300
7a8e76a3
SR
4301 buffer_a->buffers[cpu] = cpu_buffer_b;
4302 buffer_b->buffers[cpu] = cpu_buffer_a;
4303
4304 cpu_buffer_b->buffer = buffer_a;
4305 cpu_buffer_a->buffer = buffer_b;
4306
98277991
SR
4307 ret = 0;
4308
4309out_dec:
7a8e76a3
SR
4310 atomic_dec(&cpu_buffer_a->record_disabled);
4311 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4312out:
554f786e 4313 return ret;
7a8e76a3 4314}
c4f50183 4315EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4316#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4317
8789a9e7
SR
4318/**
4319 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4320 * @buffer: the buffer to allocate for.
4321 *
4322 * This function is used in conjunction with ring_buffer_read_page.
4323 * When reading a full page from the ring buffer, these functions
4324 * can be used to speed up the process. The calling function should
4325 * allocate a few pages first with this function. Then when it
4326 * needs to get pages from the ring buffer, it passes the result
4327 * of this function into ring_buffer_read_page, which will swap
4328 * the page that was allocated, with the read page of the buffer.
4329 *
4330 * Returns:
4331 * The page allocated, or NULL on error.
4332 */
7ea59064 4333void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4334{
044fa782 4335 struct buffer_data_page *bpage;
7ea59064 4336 struct page *page;
8789a9e7 4337
d7ec4bfe
VN
4338 page = alloc_pages_node(cpu_to_node(cpu),
4339 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4340 if (!page)
8789a9e7
SR
4341 return NULL;
4342
7ea59064 4343 bpage = page_address(page);
8789a9e7 4344
ef7a4a16
SR
4345 rb_init_page(bpage);
4346
044fa782 4347 return bpage;
8789a9e7 4348}
d6ce96da 4349EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4350
4351/**
4352 * ring_buffer_free_read_page - free an allocated read page
4353 * @buffer: the buffer the page was allocate for
4354 * @data: the page to free
4355 *
4356 * Free a page allocated from ring_buffer_alloc_read_page.
4357 */
4358void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4359{
4360 free_page((unsigned long)data);
4361}
d6ce96da 4362EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4363
4364/**
4365 * ring_buffer_read_page - extract a page from the ring buffer
4366 * @buffer: buffer to extract from
4367 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4368 * @len: amount to extract
8789a9e7
SR
4369 * @cpu: the cpu of the buffer to extract
4370 * @full: should the extraction only happen when the page is full.
4371 *
4372 * This function will pull out a page from the ring buffer and consume it.
4373 * @data_page must be the address of the variable that was returned
4374 * from ring_buffer_alloc_read_page. This is because the page might be used
4375 * to swap with a page in the ring buffer.
4376 *
4377 * for example:
b85fa01e 4378 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4379 * if (!rpage)
4380 * return error;
ef7a4a16 4381 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4382 * if (ret >= 0)
4383 * process_page(rpage, ret);
8789a9e7
SR
4384 *
4385 * When @full is set, the function will not return true unless
4386 * the writer is off the reader page.
4387 *
4388 * Note: it is up to the calling functions to handle sleeps and wakeups.
4389 * The ring buffer can be used anywhere in the kernel and can not
4390 * blindly call wake_up. The layer that uses the ring buffer must be
4391 * responsible for that.
4392 *
4393 * Returns:
667d2412
LJ
4394 * >=0 if data has been transferred, returns the offset of consumed data.
4395 * <0 if no data has been transferred.
8789a9e7
SR
4396 */
4397int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4398 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4399{
4400 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4401 struct ring_buffer_event *event;
044fa782 4402 struct buffer_data_page *bpage;
ef7a4a16 4403 struct buffer_page *reader;
ff0ff84a 4404 unsigned long missed_events;
8789a9e7 4405 unsigned long flags;
ef7a4a16 4406 unsigned int commit;
667d2412 4407 unsigned int read;
4f3640f8 4408 u64 save_timestamp;
667d2412 4409 int ret = -1;
8789a9e7 4410
554f786e
SR
4411 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4412 goto out;
4413
474d32b6
SR
4414 /*
4415 * If len is not big enough to hold the page header, then
4416 * we can not copy anything.
4417 */
4418 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4419 goto out;
474d32b6
SR
4420
4421 len -= BUF_PAGE_HDR_SIZE;
4422
8789a9e7 4423 if (!data_page)
554f786e 4424 goto out;
8789a9e7 4425
044fa782
SR
4426 bpage = *data_page;
4427 if (!bpage)
554f786e 4428 goto out;
8789a9e7 4429
5389f6fa 4430 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4431
ef7a4a16
SR
4432 reader = rb_get_reader_page(cpu_buffer);
4433 if (!reader)
554f786e 4434 goto out_unlock;
8789a9e7 4435
ef7a4a16
SR
4436 event = rb_reader_event(cpu_buffer);
4437
4438 read = reader->read;
4439 commit = rb_page_commit(reader);
667d2412 4440
66a8cb95 4441 /* Check if any events were dropped */
ff0ff84a 4442 missed_events = cpu_buffer->lost_events;
66a8cb95 4443
8789a9e7 4444 /*
474d32b6
SR
4445 * If this page has been partially read or
4446 * if len is not big enough to read the rest of the page or
4447 * a writer is still on the page, then
4448 * we must copy the data from the page to the buffer.
4449 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4450 */
474d32b6 4451 if (read || (len < (commit - read)) ||
ef7a4a16 4452 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4453 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4454 unsigned int rpos = read;
4455 unsigned int pos = 0;
ef7a4a16 4456 unsigned int size;
8789a9e7
SR
4457
4458 if (full)
554f786e 4459 goto out_unlock;
8789a9e7 4460
ef7a4a16
SR
4461 if (len > (commit - read))
4462 len = (commit - read);
4463
69d1b839
SR
4464 /* Always keep the time extend and data together */
4465 size = rb_event_ts_length(event);
ef7a4a16
SR
4466
4467 if (len < size)
554f786e 4468 goto out_unlock;
ef7a4a16 4469
4f3640f8
SR
4470 /* save the current timestamp, since the user will need it */
4471 save_timestamp = cpu_buffer->read_stamp;
4472
ef7a4a16
SR
4473 /* Need to copy one event at a time */
4474 do {
e1e35927
DS
4475 /* We need the size of one event, because
4476 * rb_advance_reader only advances by one event,
4477 * whereas rb_event_ts_length may include the size of
4478 * one or two events.
4479 * We have already ensured there's enough space if this
4480 * is a time extend. */
4481 size = rb_event_length(event);
474d32b6 4482 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4483
4484 len -= size;
4485
4486 rb_advance_reader(cpu_buffer);
474d32b6
SR
4487 rpos = reader->read;
4488 pos += size;
ef7a4a16 4489
18fab912
HY
4490 if (rpos >= commit)
4491 break;
4492
ef7a4a16 4493 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4494 /* Always keep the time extend and data together */
4495 size = rb_event_ts_length(event);
e1e35927 4496 } while (len >= size);
667d2412
LJ
4497
4498 /* update bpage */
ef7a4a16 4499 local_set(&bpage->commit, pos);
4f3640f8 4500 bpage->time_stamp = save_timestamp;
ef7a4a16 4501
474d32b6
SR
4502 /* we copied everything to the beginning */
4503 read = 0;
8789a9e7 4504 } else {
afbab76a 4505 /* update the entry counter */
77ae365e 4506 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4507 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4508
8789a9e7 4509 /* swap the pages */
044fa782 4510 rb_init_page(bpage);
ef7a4a16
SR
4511 bpage = reader->page;
4512 reader->page = *data_page;
4513 local_set(&reader->write, 0);
778c55d4 4514 local_set(&reader->entries, 0);
ef7a4a16 4515 reader->read = 0;
044fa782 4516 *data_page = bpage;
ff0ff84a
SR
4517
4518 /*
4519 * Use the real_end for the data size,
4520 * This gives us a chance to store the lost events
4521 * on the page.
4522 */
4523 if (reader->real_end)
4524 local_set(&bpage->commit, reader->real_end);
8789a9e7 4525 }
667d2412 4526 ret = read;
8789a9e7 4527
66a8cb95 4528 cpu_buffer->lost_events = 0;
2711ca23
SR
4529
4530 commit = local_read(&bpage->commit);
66a8cb95
SR
4531 /*
4532 * Set a flag in the commit field if we lost events
4533 */
ff0ff84a 4534 if (missed_events) {
ff0ff84a
SR
4535 /* If there is room at the end of the page to save the
4536 * missed events, then record it there.
4537 */
4538 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4539 memcpy(&bpage->data[commit], &missed_events,
4540 sizeof(missed_events));
4541 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4542 commit += sizeof(missed_events);
ff0ff84a 4543 }
66a8cb95 4544 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4545 }
66a8cb95 4546
2711ca23
SR
4547 /*
4548 * This page may be off to user land. Zero it out here.
4549 */
4550 if (commit < BUF_PAGE_SIZE)
4551 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4552
554f786e 4553 out_unlock:
5389f6fa 4554 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4555
554f786e 4556 out:
8789a9e7
SR
4557 return ret;
4558}
d6ce96da 4559EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4560
59222efe 4561#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4562static int rb_cpu_notify(struct notifier_block *self,
4563 unsigned long action, void *hcpu)
554f786e
SR
4564{
4565 struct ring_buffer *buffer =
4566 container_of(self, struct ring_buffer, cpu_notify);
4567 long cpu = (long)hcpu;
438ced17
VN
4568 int cpu_i, nr_pages_same;
4569 unsigned int nr_pages;
554f786e
SR
4570
4571 switch (action) {
4572 case CPU_UP_PREPARE:
4573 case CPU_UP_PREPARE_FROZEN:
3f237a79 4574 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4575 return NOTIFY_OK;
4576
438ced17
VN
4577 nr_pages = 0;
4578 nr_pages_same = 1;
4579 /* check if all cpu sizes are same */
4580 for_each_buffer_cpu(buffer, cpu_i) {
4581 /* fill in the size from first enabled cpu */
4582 if (nr_pages == 0)
4583 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4584 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4585 nr_pages_same = 0;
4586 break;
4587 }
4588 }
4589 /* allocate minimum pages, user can later expand it */
4590 if (!nr_pages_same)
4591 nr_pages = 2;
554f786e 4592 buffer->buffers[cpu] =
438ced17 4593 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4594 if (!buffer->buffers[cpu]) {
4595 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4596 cpu);
4597 return NOTIFY_OK;
4598 }
4599 smp_wmb();
3f237a79 4600 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4601 break;
4602 case CPU_DOWN_PREPARE:
4603 case CPU_DOWN_PREPARE_FROZEN:
4604 /*
4605 * Do nothing.
4606 * If we were to free the buffer, then the user would
4607 * lose any trace that was in the buffer.
4608 */
4609 break;
4610 default:
4611 break;
4612 }
4613 return NOTIFY_OK;
4614}
4615#endif