]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: Schedule a delayed work to call wakeup()
[mirror_ubuntu-zesty-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
7a8e76a3
SR
8#include <linux/spinlock.h>
9#include <linux/debugfs.h>
10#include <linux/uaccess.h>
a81bd80a 11#include <linux/hardirq.h>
1744a21d 12#include <linux/kmemcheck.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
5a0e3ad6 16#include <linux/slab.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
79615760 23#include <asm/local.h>
182e9f5f
SR
24#include "trace.h"
25
d1b182a8
SR
26/*
27 * The ring buffer header is special. We must manually up keep it.
28 */
29int ring_buffer_print_entry_header(struct trace_seq *s)
30{
31 int ret;
32
334d4169
LJ
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
44
45 return ret;
46}
47
5cc98548
SR
48/*
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
53 *
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
57 *
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
61 *
62 * Here's some silly ASCII art.
63 *
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
73 *
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
95 *
96 *
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
106 *
107 *
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
111 *
112 * We will be using cmpxchg soon to make all this lockless.
113 *
114 */
115
033601a3
SR
116/*
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
122 *
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
125 *
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
129 *
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
132 */
133
134/*
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
137 *
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
143 */
144
145enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
148};
149
150enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
153};
154
5e39841c 155static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 156
474d32b6
SR
157#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158
a3583244
SR
159/**
160 * tracing_on - enable all tracing buffers
161 *
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
164 */
165void tracing_on(void)
166{
033601a3 167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 168}
c4f50183 169EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
170
171/**
172 * tracing_off - turn off all tracing buffers
173 *
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
178 */
179void tracing_off(void)
180{
033601a3
SR
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182}
c4f50183 183EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
184
185/**
186 * tracing_off_permanent - permanently disable ring buffers
187 *
188 * This function, once called, will disable all ring buffers
c3706f00 189 * permanently.
033601a3
SR
190 */
191void tracing_off_permanent(void)
192{
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
194}
195
988ae9d6
SR
196/**
197 * tracing_is_on - show state of ring buffers enabled
198 */
199int tracing_is_on(void)
200{
201 return ring_buffer_flags == RB_BUFFERS_ON;
202}
203EXPORT_SYMBOL_GPL(tracing_is_on);
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169 207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 208#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 209
2271048d
SR
210#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211# define RB_FORCE_8BYTE_ALIGNMENT 0
212# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
213#else
214# define RB_FORCE_8BYTE_ALIGNMENT 1
215# define RB_ARCH_ALIGNMENT 8U
216#endif
217
334d4169
LJ
218/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
220
221enum {
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
224};
225
69d1b839
SR
226#define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
228
2d622719
TZ
229static inline int rb_null_event(struct ring_buffer_event *event)
230{
a1863c21 231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
232}
233
234static void rb_event_set_padding(struct ring_buffer_event *event)
235{
a1863c21 236 /* padding has a NULL time_delta */
334d4169 237 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
238 event->time_delta = 0;
239}
240
34a148bf 241static unsigned
2d622719 242rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
243{
244 unsigned length;
245
334d4169
LJ
246 if (event->type_len)
247 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
248 else
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
251}
252
69d1b839
SR
253/*
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
256 * time extend.
257 */
258static inline unsigned
2d622719
TZ
259rb_event_length(struct ring_buffer_event *event)
260{
334d4169 261 switch (event->type_len) {
7a8e76a3 262 case RINGBUF_TYPE_PADDING:
2d622719
TZ
263 if (rb_null_event(event))
264 /* undefined */
265 return -1;
334d4169 266 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
267
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
270
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
273
274 case RINGBUF_TYPE_DATA:
2d622719 275 return rb_event_data_length(event);
7a8e76a3
SR
276 default:
277 BUG();
278 }
279 /* not hit */
280 return 0;
281}
282
69d1b839
SR
283/*
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
286 */
287static inline unsigned
288rb_event_ts_length(struct ring_buffer_event *event)
289{
290 unsigned len = 0;
291
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
296 }
297 return len + rb_event_length(event);
298}
299
7a8e76a3
SR
300/**
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
69d1b839
SR
303 *
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
7a8e76a3
SR
309 */
310unsigned ring_buffer_event_length(struct ring_buffer_event *event)
311{
69d1b839
SR
312 unsigned length;
313
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
316
317 length = rb_event_length(event);
334d4169 318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
319 return length;
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
323 return length;
7a8e76a3 324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
326
327/* inline for ring buffer fast paths */
34a148bf 328static void *
7a8e76a3
SR
329rb_event_data(struct ring_buffer_event *event)
330{
69d1b839
SR
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
334d4169 333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 334 /* If length is in len field, then array[0] has the data */
334d4169 335 if (event->type_len)
7a8e76a3
SR
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
339}
340
341/**
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
344 */
345void *ring_buffer_event_data(struct ring_buffer_event *event)
346{
347 return rb_event_data(event);
348}
c4f50183 349EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
350
351#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 352 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
353
354#define TS_SHIFT 27
355#define TS_MASK ((1ULL << TS_SHIFT) - 1)
356#define TS_DELTA_TEST (~TS_MASK)
357
66a8cb95
SR
358/* Flag when events were overwritten */
359#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
360/* Missed count stored at end */
361#define RB_MISSED_STORED (1 << 30)
66a8cb95 362
abc9b56d 363struct buffer_data_page {
e4c2ce82 364 u64 time_stamp; /* page time stamp */
c3706f00 365 local_t commit; /* write committed index */
abc9b56d
SR
366 unsigned char data[]; /* data of buffer page */
367};
368
77ae365e
SR
369/*
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
375 * lockless.
376 */
abc9b56d 377struct buffer_page {
778c55d4 378 struct list_head list; /* list of buffer pages */
abc9b56d 379 local_t write; /* index for next write */
6f807acd 380 unsigned read; /* index for next read */
778c55d4 381 local_t entries; /* entries on this page */
ff0ff84a 382 unsigned long real_end; /* real end of data */
abc9b56d 383 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
384};
385
77ae365e
SR
386/*
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
391 *
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
395 *
396 * The counter is 20 bits, and the state data is 12.
397 */
398#define RB_WRITE_MASK 0xfffff
399#define RB_WRITE_INTCNT (1 << 20)
400
044fa782 401static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 402{
044fa782 403 local_set(&bpage->commit, 0);
abc9b56d
SR
404}
405
474d32b6
SR
406/**
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
409 *
410 * Returns the amount of data on the page, including buffer page header.
411 */
ef7a4a16
SR
412size_t ring_buffer_page_len(void *page)
413{
474d32b6
SR
414 return local_read(&((struct buffer_data_page *)page)->commit)
415 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
416}
417
ed56829c
SR
418/*
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420 * this issue out.
421 */
34a148bf 422static void free_buffer_page(struct buffer_page *bpage)
ed56829c 423{
34a148bf 424 free_page((unsigned long)bpage->page);
e4c2ce82 425 kfree(bpage);
ed56829c
SR
426}
427
7a8e76a3
SR
428/*
429 * We need to fit the time_stamp delta into 27 bits.
430 */
431static inline int test_time_stamp(u64 delta)
432{
433 if (delta & TS_DELTA_TEST)
434 return 1;
435 return 0;
436}
437
474d32b6 438#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 439
be957c44
SR
440/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
442
d1b182a8
SR
443int ring_buffer_print_page_header(struct trace_seq *s)
444{
445 struct buffer_data_page field;
446 int ret;
447
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
d1b182a8
SR
452
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 455 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
d1b182a8 458
66a8cb95
SR
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
462 1,
463 (unsigned int)is_signed_type(long));
464
d1b182a8 465 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 467 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
d1b182a8
SR
470
471 return ret;
472}
473
7a8e76a3
SR
474/*
475 * head_page == tail_page && head == tail then buffer is empty.
476 */
477struct ring_buffer_per_cpu {
478 int cpu;
985023de 479 atomic_t record_disabled;
7a8e76a3 480 struct ring_buffer *buffer;
77ae365e 481 spinlock_t reader_lock; /* serialize readers */
445c8951 482 arch_spinlock_t lock;
7a8e76a3 483 struct lock_class_key lock_key;
3adc54fa 484 struct list_head *pages;
6f807acd
SR
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
c3706f00 487 struct buffer_page *commit_page; /* committed pages */
d769041f 488 struct buffer_page *reader_page;
66a8cb95
SR
489 unsigned long lost_events;
490 unsigned long last_overrun;
77ae365e
SR
491 local_t commit_overrun;
492 local_t overrun;
e4906eff 493 local_t entries;
fa743953
SR
494 local_t committing;
495 local_t commits;
77ae365e 496 unsigned long read;
7a8e76a3
SR
497 u64 write_stamp;
498 u64 read_stamp;
7a8e76a3
SR
499};
500
501struct ring_buffer {
7a8e76a3
SR
502 unsigned pages;
503 unsigned flags;
504 int cpus;
7a8e76a3 505 atomic_t record_disabled;
00f62f61 506 cpumask_var_t cpumask;
7a8e76a3 507
1f8a6a10
PZ
508 struct lock_class_key *reader_lock_key;
509
7a8e76a3
SR
510 struct mutex mutex;
511
512 struct ring_buffer_per_cpu **buffers;
554f786e 513
59222efe 514#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
515 struct notifier_block cpu_notify;
516#endif
37886f6a 517 u64 (*clock)(void);
7a8e76a3
SR
518};
519
520struct ring_buffer_iter {
521 struct ring_buffer_per_cpu *cpu_buffer;
522 unsigned long head;
523 struct buffer_page *head_page;
492a74f4
SR
524 struct buffer_page *cache_reader_page;
525 unsigned long cache_read;
7a8e76a3
SR
526 u64 read_stamp;
527};
528
f536aafc 529/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
530#define RB_WARN_ON(b, cond) \
531 ({ \
532 int _____ret = unlikely(cond); \
533 if (_____ret) { \
534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 struct ring_buffer_per_cpu *__b = \
536 (void *)b; \
537 atomic_inc(&__b->buffer->record_disabled); \
538 } else \
539 atomic_inc(&b->record_disabled); \
540 WARN_ON(1); \
541 } \
542 _____ret; \
3e89c7bb 543 })
f536aafc 544
37886f6a
SR
545/* Up this if you want to test the TIME_EXTENTS and normalization */
546#define DEBUG_SHIFT 0
547
6d3f1e12 548static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
549{
550 /* shift to debug/test normalization and TIME_EXTENTS */
551 return buffer->clock() << DEBUG_SHIFT;
552}
553
37886f6a
SR
554u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
555{
556 u64 time;
557
558 preempt_disable_notrace();
6d3f1e12 559 time = rb_time_stamp(buffer);
37886f6a
SR
560 preempt_enable_no_resched_notrace();
561
562 return time;
563}
564EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
565
566void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567 int cpu, u64 *ts)
568{
569 /* Just stupid testing the normalize function and deltas */
570 *ts >>= DEBUG_SHIFT;
571}
572EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
573
77ae365e
SR
574/*
575 * Making the ring buffer lockless makes things tricky.
576 * Although writes only happen on the CPU that they are on,
577 * and they only need to worry about interrupts. Reads can
578 * happen on any CPU.
579 *
580 * The reader page is always off the ring buffer, but when the
581 * reader finishes with a page, it needs to swap its page with
582 * a new one from the buffer. The reader needs to take from
583 * the head (writes go to the tail). But if a writer is in overwrite
584 * mode and wraps, it must push the head page forward.
585 *
586 * Here lies the problem.
587 *
588 * The reader must be careful to replace only the head page, and
589 * not another one. As described at the top of the file in the
590 * ASCII art, the reader sets its old page to point to the next
591 * page after head. It then sets the page after head to point to
592 * the old reader page. But if the writer moves the head page
593 * during this operation, the reader could end up with the tail.
594 *
595 * We use cmpxchg to help prevent this race. We also do something
596 * special with the page before head. We set the LSB to 1.
597 *
598 * When the writer must push the page forward, it will clear the
599 * bit that points to the head page, move the head, and then set
600 * the bit that points to the new head page.
601 *
602 * We also don't want an interrupt coming in and moving the head
603 * page on another writer. Thus we use the second LSB to catch
604 * that too. Thus:
605 *
606 * head->list->prev->next bit 1 bit 0
607 * ------- -------
608 * Normal page 0 0
609 * Points to head page 0 1
610 * New head page 1 0
611 *
612 * Note we can not trust the prev pointer of the head page, because:
613 *
614 * +----+ +-----+ +-----+
615 * | |------>| T |---X--->| N |
616 * | |<------| | | |
617 * +----+ +-----+ +-----+
618 * ^ ^ |
619 * | +-----+ | |
620 * +----------| R |----------+ |
621 * | |<-----------+
622 * +-----+
623 *
624 * Key: ---X--> HEAD flag set in pointer
625 * T Tail page
626 * R Reader page
627 * N Next page
628 *
629 * (see __rb_reserve_next() to see where this happens)
630 *
631 * What the above shows is that the reader just swapped out
632 * the reader page with a page in the buffer, but before it
633 * could make the new header point back to the new page added
634 * it was preempted by a writer. The writer moved forward onto
635 * the new page added by the reader and is about to move forward
636 * again.
637 *
638 * You can see, it is legitimate for the previous pointer of
639 * the head (or any page) not to point back to itself. But only
640 * temporarially.
641 */
642
643#define RB_PAGE_NORMAL 0UL
644#define RB_PAGE_HEAD 1UL
645#define RB_PAGE_UPDATE 2UL
646
647
648#define RB_FLAG_MASK 3UL
649
650/* PAGE_MOVED is not part of the mask */
651#define RB_PAGE_MOVED 4UL
652
653/*
654 * rb_list_head - remove any bit
655 */
656static struct list_head *rb_list_head(struct list_head *list)
657{
658 unsigned long val = (unsigned long)list;
659
660 return (struct list_head *)(val & ~RB_FLAG_MASK);
661}
662
663/*
6d3f1e12 664 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
665 *
666 * Because the reader may move the head_page pointer, we can
667 * not trust what the head page is (it may be pointing to
668 * the reader page). But if the next page is a header page,
669 * its flags will be non zero.
670 */
42b16b3f 671static inline int
77ae365e
SR
672rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673 struct buffer_page *page, struct list_head *list)
674{
675 unsigned long val;
676
677 val = (unsigned long)list->next;
678
679 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680 return RB_PAGE_MOVED;
681
682 return val & RB_FLAG_MASK;
683}
684
685/*
686 * rb_is_reader_page
687 *
688 * The unique thing about the reader page, is that, if the
689 * writer is ever on it, the previous pointer never points
690 * back to the reader page.
691 */
692static int rb_is_reader_page(struct buffer_page *page)
693{
694 struct list_head *list = page->list.prev;
695
696 return rb_list_head(list->next) != &page->list;
697}
698
699/*
700 * rb_set_list_to_head - set a list_head to be pointing to head.
701 */
702static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703 struct list_head *list)
704{
705 unsigned long *ptr;
706
707 ptr = (unsigned long *)&list->next;
708 *ptr |= RB_PAGE_HEAD;
709 *ptr &= ~RB_PAGE_UPDATE;
710}
711
712/*
713 * rb_head_page_activate - sets up head page
714 */
715static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
716{
717 struct buffer_page *head;
718
719 head = cpu_buffer->head_page;
720 if (!head)
721 return;
722
723 /*
724 * Set the previous list pointer to have the HEAD flag.
725 */
726 rb_set_list_to_head(cpu_buffer, head->list.prev);
727}
728
729static void rb_list_head_clear(struct list_head *list)
730{
731 unsigned long *ptr = (unsigned long *)&list->next;
732
733 *ptr &= ~RB_FLAG_MASK;
734}
735
736/*
737 * rb_head_page_dactivate - clears head page ptr (for free list)
738 */
739static void
740rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
741{
742 struct list_head *hd;
743
744 /* Go through the whole list and clear any pointers found. */
745 rb_list_head_clear(cpu_buffer->pages);
746
747 list_for_each(hd, cpu_buffer->pages)
748 rb_list_head_clear(hd);
749}
750
751static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752 struct buffer_page *head,
753 struct buffer_page *prev,
754 int old_flag, int new_flag)
755{
756 struct list_head *list;
757 unsigned long val = (unsigned long)&head->list;
758 unsigned long ret;
759
760 list = &prev->list;
761
762 val &= ~RB_FLAG_MASK;
763
08a40816
SR
764 ret = cmpxchg((unsigned long *)&list->next,
765 val | old_flag, val | new_flag);
77ae365e
SR
766
767 /* check if the reader took the page */
768 if ((ret & ~RB_FLAG_MASK) != val)
769 return RB_PAGE_MOVED;
770
771 return ret & RB_FLAG_MASK;
772}
773
774static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775 struct buffer_page *head,
776 struct buffer_page *prev,
777 int old_flag)
778{
779 return rb_head_page_set(cpu_buffer, head, prev,
780 old_flag, RB_PAGE_UPDATE);
781}
782
783static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784 struct buffer_page *head,
785 struct buffer_page *prev,
786 int old_flag)
787{
788 return rb_head_page_set(cpu_buffer, head, prev,
789 old_flag, RB_PAGE_HEAD);
790}
791
792static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793 struct buffer_page *head,
794 struct buffer_page *prev,
795 int old_flag)
796{
797 return rb_head_page_set(cpu_buffer, head, prev,
798 old_flag, RB_PAGE_NORMAL);
799}
800
801static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802 struct buffer_page **bpage)
803{
804 struct list_head *p = rb_list_head((*bpage)->list.next);
805
806 *bpage = list_entry(p, struct buffer_page, list);
807}
808
809static struct buffer_page *
810rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
811{
812 struct buffer_page *head;
813 struct buffer_page *page;
814 struct list_head *list;
815 int i;
816
817 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818 return NULL;
819
820 /* sanity check */
821 list = cpu_buffer->pages;
822 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823 return NULL;
824
825 page = head = cpu_buffer->head_page;
826 /*
827 * It is possible that the writer moves the header behind
828 * where we started, and we miss in one loop.
829 * A second loop should grab the header, but we'll do
830 * three loops just because I'm paranoid.
831 */
832 for (i = 0; i < 3; i++) {
833 do {
834 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835 cpu_buffer->head_page = page;
836 return page;
837 }
838 rb_inc_page(cpu_buffer, &page);
839 } while (page != head);
840 }
841
842 RB_WARN_ON(cpu_buffer, 1);
843
844 return NULL;
845}
846
847static int rb_head_page_replace(struct buffer_page *old,
848 struct buffer_page *new)
849{
850 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851 unsigned long val;
852 unsigned long ret;
853
854 val = *ptr & ~RB_FLAG_MASK;
855 val |= RB_PAGE_HEAD;
856
08a40816 857 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
858
859 return ret == val;
860}
861
862/*
863 * rb_tail_page_update - move the tail page forward
864 *
865 * Returns 1 if moved tail page, 0 if someone else did.
866 */
867static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868 struct buffer_page *tail_page,
869 struct buffer_page *next_page)
870{
871 struct buffer_page *old_tail;
872 unsigned long old_entries;
873 unsigned long old_write;
874 int ret = 0;
875
876 /*
877 * The tail page now needs to be moved forward.
878 *
879 * We need to reset the tail page, but without messing
880 * with possible erasing of data brought in by interrupts
881 * that have moved the tail page and are currently on it.
882 *
883 * We add a counter to the write field to denote this.
884 */
885 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
887
888 /*
889 * Just make sure we have seen our old_write and synchronize
890 * with any interrupts that come in.
891 */
892 barrier();
893
894 /*
895 * If the tail page is still the same as what we think
896 * it is, then it is up to us to update the tail
897 * pointer.
898 */
899 if (tail_page == cpu_buffer->tail_page) {
900 /* Zero the write counter */
901 unsigned long val = old_write & ~RB_WRITE_MASK;
902 unsigned long eval = old_entries & ~RB_WRITE_MASK;
903
904 /*
905 * This will only succeed if an interrupt did
906 * not come in and change it. In which case, we
907 * do not want to modify it.
da706d8b
LJ
908 *
909 * We add (void) to let the compiler know that we do not care
910 * about the return value of these functions. We use the
911 * cmpxchg to only update if an interrupt did not already
912 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 913 */
da706d8b
LJ
914 (void)local_cmpxchg(&next_page->write, old_write, val);
915 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
916
917 /*
918 * No need to worry about races with clearing out the commit.
919 * it only can increment when a commit takes place. But that
920 * only happens in the outer most nested commit.
921 */
922 local_set(&next_page->page->commit, 0);
923
924 old_tail = cmpxchg(&cpu_buffer->tail_page,
925 tail_page, next_page);
926
927 if (old_tail == tail_page)
928 ret = 1;
929 }
930
931 return ret;
932}
933
934static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935 struct buffer_page *bpage)
936{
937 unsigned long val = (unsigned long)bpage;
938
939 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940 return 1;
941
942 return 0;
943}
944
945/**
946 * rb_check_list - make sure a pointer to a list has the last bits zero
947 */
948static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949 struct list_head *list)
950{
951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952 return 1;
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954 return 1;
955 return 0;
956}
957
7a8e76a3
SR
958/**
959 * check_pages - integrity check of buffer pages
960 * @cpu_buffer: CPU buffer with pages to test
961 *
c3706f00 962 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
963 * been corrupted.
964 */
965static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
966{
3adc54fa 967 struct list_head *head = cpu_buffer->pages;
044fa782 968 struct buffer_page *bpage, *tmp;
7a8e76a3 969
77ae365e
SR
970 rb_head_page_deactivate(cpu_buffer);
971
3e89c7bb
SR
972 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973 return -1;
974 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975 return -1;
7a8e76a3 976
77ae365e
SR
977 if (rb_check_list(cpu_buffer, head))
978 return -1;
979
044fa782 980 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 981 if (RB_WARN_ON(cpu_buffer,
044fa782 982 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
983 return -1;
984 if (RB_WARN_ON(cpu_buffer,
044fa782 985 bpage->list.prev->next != &bpage->list))
3e89c7bb 986 return -1;
77ae365e
SR
987 if (rb_check_list(cpu_buffer, &bpage->list))
988 return -1;
7a8e76a3
SR
989 }
990
77ae365e
SR
991 rb_head_page_activate(cpu_buffer);
992
7a8e76a3
SR
993 return 0;
994}
995
7a8e76a3
SR
996static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997 unsigned nr_pages)
998{
044fa782 999 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1000 unsigned long addr;
1001 LIST_HEAD(pages);
1002 unsigned i;
1003
3adc54fa
SR
1004 WARN_ON(!nr_pages);
1005
7a8e76a3 1006 for (i = 0; i < nr_pages; i++) {
044fa782 1007 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 1008 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 1009 if (!bpage)
e4c2ce82 1010 goto free_pages;
77ae365e
SR
1011
1012 rb_check_bpage(cpu_buffer, bpage);
1013
044fa782 1014 list_add(&bpage->list, &pages);
e4c2ce82 1015
7a8e76a3
SR
1016 addr = __get_free_page(GFP_KERNEL);
1017 if (!addr)
1018 goto free_pages;
044fa782
SR
1019 bpage->page = (void *)addr;
1020 rb_init_page(bpage->page);
7a8e76a3
SR
1021 }
1022
3adc54fa
SR
1023 /*
1024 * The ring buffer page list is a circular list that does not
1025 * start and end with a list head. All page list items point to
1026 * other pages.
1027 */
1028 cpu_buffer->pages = pages.next;
1029 list_del(&pages);
7a8e76a3
SR
1030
1031 rb_check_pages(cpu_buffer);
1032
1033 return 0;
1034
1035 free_pages:
044fa782
SR
1036 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1037 list_del_init(&bpage->list);
1038 free_buffer_page(bpage);
7a8e76a3
SR
1039 }
1040 return -ENOMEM;
1041}
1042
1043static struct ring_buffer_per_cpu *
1044rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1045{
1046 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1047 struct buffer_page *bpage;
d769041f 1048 unsigned long addr;
7a8e76a3
SR
1049 int ret;
1050
1051 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052 GFP_KERNEL, cpu_to_node(cpu));
1053 if (!cpu_buffer)
1054 return NULL;
1055
1056 cpu_buffer->cpu = cpu;
1057 cpu_buffer->buffer = buffer;
f83c9d0f 1058 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1059 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1060 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
7a8e76a3 1061
044fa782 1062 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1063 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1064 if (!bpage)
e4c2ce82
SR
1065 goto fail_free_buffer;
1066
77ae365e
SR
1067 rb_check_bpage(cpu_buffer, bpage);
1068
044fa782 1069 cpu_buffer->reader_page = bpage;
d769041f
SR
1070 addr = __get_free_page(GFP_KERNEL);
1071 if (!addr)
e4c2ce82 1072 goto fail_free_reader;
044fa782
SR
1073 bpage->page = (void *)addr;
1074 rb_init_page(bpage->page);
e4c2ce82 1075
d769041f 1076 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1077
7a8e76a3
SR
1078 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1079 if (ret < 0)
d769041f 1080 goto fail_free_reader;
7a8e76a3
SR
1081
1082 cpu_buffer->head_page
3adc54fa 1083 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1084 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1085
77ae365e
SR
1086 rb_head_page_activate(cpu_buffer);
1087
7a8e76a3
SR
1088 return cpu_buffer;
1089
d769041f
SR
1090 fail_free_reader:
1091 free_buffer_page(cpu_buffer->reader_page);
1092
7a8e76a3
SR
1093 fail_free_buffer:
1094 kfree(cpu_buffer);
1095 return NULL;
1096}
1097
1098static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1099{
3adc54fa 1100 struct list_head *head = cpu_buffer->pages;
044fa782 1101 struct buffer_page *bpage, *tmp;
7a8e76a3 1102
d769041f
SR
1103 free_buffer_page(cpu_buffer->reader_page);
1104
77ae365e
SR
1105 rb_head_page_deactivate(cpu_buffer);
1106
3adc54fa
SR
1107 if (head) {
1108 list_for_each_entry_safe(bpage, tmp, head, list) {
1109 list_del_init(&bpage->list);
1110 free_buffer_page(bpage);
1111 }
1112 bpage = list_entry(head, struct buffer_page, list);
044fa782 1113 free_buffer_page(bpage);
7a8e76a3 1114 }
3adc54fa 1115
7a8e76a3
SR
1116 kfree(cpu_buffer);
1117}
1118
59222efe 1119#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1120static int rb_cpu_notify(struct notifier_block *self,
1121 unsigned long action, void *hcpu);
554f786e
SR
1122#endif
1123
7a8e76a3
SR
1124/**
1125 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1126 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1127 * @flags: attributes to set for the ring buffer.
1128 *
1129 * Currently the only flag that is available is the RB_FL_OVERWRITE
1130 * flag. This flag means that the buffer will overwrite old data
1131 * when the buffer wraps. If this flag is not set, the buffer will
1132 * drop data when the tail hits the head.
1133 */
1f8a6a10
PZ
1134struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1135 struct lock_class_key *key)
7a8e76a3
SR
1136{
1137 struct ring_buffer *buffer;
1138 int bsize;
1139 int cpu;
1140
1141 /* keep it in its own cache line */
1142 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1143 GFP_KERNEL);
1144 if (!buffer)
1145 return NULL;
1146
9e01c1b7
RR
1147 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1148 goto fail_free_buffer;
1149
7a8e76a3
SR
1150 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1151 buffer->flags = flags;
37886f6a 1152 buffer->clock = trace_clock_local;
1f8a6a10 1153 buffer->reader_lock_key = key;
7a8e76a3
SR
1154
1155 /* need at least two pages */
5f78abee
SR
1156 if (buffer->pages < 2)
1157 buffer->pages = 2;
7a8e76a3 1158
3bf832ce
FW
1159 /*
1160 * In case of non-hotplug cpu, if the ring-buffer is allocated
1161 * in early initcall, it will not be notified of secondary cpus.
1162 * In that off case, we need to allocate for all possible cpus.
1163 */
1164#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1165 get_online_cpus();
1166 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1167#else
1168 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1169#endif
7a8e76a3
SR
1170 buffer->cpus = nr_cpu_ids;
1171
1172 bsize = sizeof(void *) * nr_cpu_ids;
1173 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1174 GFP_KERNEL);
1175 if (!buffer->buffers)
9e01c1b7 1176 goto fail_free_cpumask;
7a8e76a3
SR
1177
1178 for_each_buffer_cpu(buffer, cpu) {
1179 buffer->buffers[cpu] =
1180 rb_allocate_cpu_buffer(buffer, cpu);
1181 if (!buffer->buffers[cpu])
1182 goto fail_free_buffers;
1183 }
1184
59222efe 1185#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1186 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1187 buffer->cpu_notify.priority = 0;
1188 register_cpu_notifier(&buffer->cpu_notify);
1189#endif
1190
1191 put_online_cpus();
7a8e76a3
SR
1192 mutex_init(&buffer->mutex);
1193
1194 return buffer;
1195
1196 fail_free_buffers:
1197 for_each_buffer_cpu(buffer, cpu) {
1198 if (buffer->buffers[cpu])
1199 rb_free_cpu_buffer(buffer->buffers[cpu]);
1200 }
1201 kfree(buffer->buffers);
1202
9e01c1b7
RR
1203 fail_free_cpumask:
1204 free_cpumask_var(buffer->cpumask);
554f786e 1205 put_online_cpus();
9e01c1b7 1206
7a8e76a3
SR
1207 fail_free_buffer:
1208 kfree(buffer);
1209 return NULL;
1210}
1f8a6a10 1211EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1212
1213/**
1214 * ring_buffer_free - free a ring buffer.
1215 * @buffer: the buffer to free.
1216 */
1217void
1218ring_buffer_free(struct ring_buffer *buffer)
1219{
1220 int cpu;
1221
554f786e
SR
1222 get_online_cpus();
1223
59222efe 1224#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1225 unregister_cpu_notifier(&buffer->cpu_notify);
1226#endif
1227
7a8e76a3
SR
1228 for_each_buffer_cpu(buffer, cpu)
1229 rb_free_cpu_buffer(buffer->buffers[cpu]);
1230
554f786e
SR
1231 put_online_cpus();
1232
bd3f0221 1233 kfree(buffer->buffers);
9e01c1b7
RR
1234 free_cpumask_var(buffer->cpumask);
1235
7a8e76a3
SR
1236 kfree(buffer);
1237}
c4f50183 1238EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1239
37886f6a
SR
1240void ring_buffer_set_clock(struct ring_buffer *buffer,
1241 u64 (*clock)(void))
1242{
1243 buffer->clock = clock;
1244}
1245
7a8e76a3
SR
1246static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1247
1248static void
1249rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1250{
044fa782 1251 struct buffer_page *bpage;
7a8e76a3
SR
1252 struct list_head *p;
1253 unsigned i;
1254
f7112949 1255 spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1256 rb_head_page_deactivate(cpu_buffer);
1257
7a8e76a3 1258 for (i = 0; i < nr_pages; i++) {
3adc54fa 1259 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1260 goto out;
3adc54fa 1261 p = cpu_buffer->pages->next;
044fa782
SR
1262 bpage = list_entry(p, struct buffer_page, list);
1263 list_del_init(&bpage->list);
1264 free_buffer_page(bpage);
7a8e76a3 1265 }
3adc54fa 1266 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1267 goto out;
7a8e76a3
SR
1268
1269 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1270 rb_check_pages(cpu_buffer);
1271
292f60c0 1272out:
dd7f5943 1273 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1274}
1275
1276static void
1277rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1278 struct list_head *pages, unsigned nr_pages)
1279{
044fa782 1280 struct buffer_page *bpage;
7a8e76a3
SR
1281 struct list_head *p;
1282 unsigned i;
1283
77ae365e
SR
1284 spin_lock_irq(&cpu_buffer->reader_lock);
1285 rb_head_page_deactivate(cpu_buffer);
1286
7a8e76a3 1287 for (i = 0; i < nr_pages; i++) {
3e89c7bb 1288 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
292f60c0 1289 goto out;
7a8e76a3 1290 p = pages->next;
044fa782
SR
1291 bpage = list_entry(p, struct buffer_page, list);
1292 list_del_init(&bpage->list);
3adc54fa 1293 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1294 }
1295 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1296 rb_check_pages(cpu_buffer);
1297
292f60c0 1298out:
dd7f5943 1299 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1300}
1301
1302/**
1303 * ring_buffer_resize - resize the ring buffer
1304 * @buffer: the buffer to resize.
1305 * @size: the new size.
1306 *
7a8e76a3
SR
1307 * Minimum size is 2 * BUF_PAGE_SIZE.
1308 *
1309 * Returns -1 on failure.
1310 */
1311int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1312{
1313 struct ring_buffer_per_cpu *cpu_buffer;
1314 unsigned nr_pages, rm_pages, new_pages;
044fa782 1315 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1316 unsigned long buffer_size;
1317 unsigned long addr;
1318 LIST_HEAD(pages);
1319 int i, cpu;
1320
ee51a1de
IM
1321 /*
1322 * Always succeed at resizing a non-existent buffer:
1323 */
1324 if (!buffer)
1325 return size;
1326
7a8e76a3
SR
1327 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1328 size *= BUF_PAGE_SIZE;
1329 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1330
1331 /* we need a minimum of two pages */
1332 if (size < BUF_PAGE_SIZE * 2)
1333 size = BUF_PAGE_SIZE * 2;
1334
1335 if (size == buffer_size)
1336 return size;
1337
18421015
SR
1338 atomic_inc(&buffer->record_disabled);
1339
1340 /* Make sure all writers are done with this buffer. */
1341 synchronize_sched();
1342
7a8e76a3 1343 mutex_lock(&buffer->mutex);
554f786e 1344 get_online_cpus();
7a8e76a3
SR
1345
1346 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1347
1348 if (size < buffer_size) {
1349
1350 /* easy case, just free pages */
554f786e
SR
1351 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1352 goto out_fail;
7a8e76a3
SR
1353
1354 rm_pages = buffer->pages - nr_pages;
1355
1356 for_each_buffer_cpu(buffer, cpu) {
1357 cpu_buffer = buffer->buffers[cpu];
1358 rb_remove_pages(cpu_buffer, rm_pages);
1359 }
1360 goto out;
1361 }
1362
1363 /*
1364 * This is a bit more difficult. We only want to add pages
1365 * when we can allocate enough for all CPUs. We do this
1366 * by allocating all the pages and storing them on a local
1367 * link list. If we succeed in our allocation, then we
1368 * add these pages to the cpu_buffers. Otherwise we just free
1369 * them all and return -ENOMEM;
1370 */
554f786e
SR
1371 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1372 goto out_fail;
f536aafc 1373
7a8e76a3
SR
1374 new_pages = nr_pages - buffer->pages;
1375
1376 for_each_buffer_cpu(buffer, cpu) {
1377 for (i = 0; i < new_pages; i++) {
044fa782 1378 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1379 cache_line_size()),
1380 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1381 if (!bpage)
e4c2ce82 1382 goto free_pages;
044fa782 1383 list_add(&bpage->list, &pages);
7a8e76a3
SR
1384 addr = __get_free_page(GFP_KERNEL);
1385 if (!addr)
1386 goto free_pages;
044fa782
SR
1387 bpage->page = (void *)addr;
1388 rb_init_page(bpage->page);
7a8e76a3
SR
1389 }
1390 }
1391
1392 for_each_buffer_cpu(buffer, cpu) {
1393 cpu_buffer = buffer->buffers[cpu];
1394 rb_insert_pages(cpu_buffer, &pages, new_pages);
1395 }
1396
554f786e
SR
1397 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1398 goto out_fail;
7a8e76a3
SR
1399
1400 out:
1401 buffer->pages = nr_pages;
554f786e 1402 put_online_cpus();
7a8e76a3
SR
1403 mutex_unlock(&buffer->mutex);
1404
18421015
SR
1405 atomic_dec(&buffer->record_disabled);
1406
7a8e76a3
SR
1407 return size;
1408
1409 free_pages:
044fa782
SR
1410 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1411 list_del_init(&bpage->list);
1412 free_buffer_page(bpage);
7a8e76a3 1413 }
554f786e 1414 put_online_cpus();
641d2f63 1415 mutex_unlock(&buffer->mutex);
18421015 1416 atomic_dec(&buffer->record_disabled);
7a8e76a3 1417 return -ENOMEM;
554f786e
SR
1418
1419 /*
1420 * Something went totally wrong, and we are too paranoid
1421 * to even clean up the mess.
1422 */
1423 out_fail:
1424 put_online_cpus();
1425 mutex_unlock(&buffer->mutex);
18421015 1426 atomic_dec(&buffer->record_disabled);
554f786e 1427 return -1;
7a8e76a3 1428}
c4f50183 1429EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1430
750912fa
DS
1431void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1432{
1433 mutex_lock(&buffer->mutex);
1434 if (val)
1435 buffer->flags |= RB_FL_OVERWRITE;
1436 else
1437 buffer->flags &= ~RB_FL_OVERWRITE;
1438 mutex_unlock(&buffer->mutex);
1439}
1440EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1441
8789a9e7 1442static inline void *
044fa782 1443__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1444{
044fa782 1445 return bpage->data + index;
8789a9e7
SR
1446}
1447
044fa782 1448static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1449{
044fa782 1450 return bpage->page->data + index;
7a8e76a3
SR
1451}
1452
1453static inline struct ring_buffer_event *
d769041f 1454rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1455{
6f807acd
SR
1456 return __rb_page_index(cpu_buffer->reader_page,
1457 cpu_buffer->reader_page->read);
1458}
1459
7a8e76a3
SR
1460static inline struct ring_buffer_event *
1461rb_iter_head_event(struct ring_buffer_iter *iter)
1462{
6f807acd 1463 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1464}
1465
77ae365e 1466static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1467{
77ae365e 1468 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1469}
1470
1471static inline unsigned rb_page_commit(struct buffer_page *bpage)
1472{
abc9b56d 1473 return local_read(&bpage->page->commit);
bf41a158
SR
1474}
1475
77ae365e
SR
1476static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1477{
1478 return local_read(&bpage->entries) & RB_WRITE_MASK;
1479}
1480
25985edc 1481/* Size is determined by what has been committed */
bf41a158
SR
1482static inline unsigned rb_page_size(struct buffer_page *bpage)
1483{
1484 return rb_page_commit(bpage);
1485}
1486
1487static inline unsigned
1488rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1489{
1490 return rb_page_commit(cpu_buffer->commit_page);
1491}
1492
bf41a158
SR
1493static inline unsigned
1494rb_event_index(struct ring_buffer_event *event)
1495{
1496 unsigned long addr = (unsigned long)event;
1497
22f470f8 1498 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1499}
1500
0f0c85fc 1501static inline int
fa743953
SR
1502rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1503 struct ring_buffer_event *event)
bf41a158
SR
1504{
1505 unsigned long addr = (unsigned long)event;
1506 unsigned long index;
1507
1508 index = rb_event_index(event);
1509 addr &= PAGE_MASK;
1510
1511 return cpu_buffer->commit_page->page == (void *)addr &&
1512 rb_commit_index(cpu_buffer) == index;
1513}
1514
34a148bf 1515static void
bf41a158 1516rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1517{
77ae365e
SR
1518 unsigned long max_count;
1519
bf41a158
SR
1520 /*
1521 * We only race with interrupts and NMIs on this CPU.
1522 * If we own the commit event, then we can commit
1523 * all others that interrupted us, since the interruptions
1524 * are in stack format (they finish before they come
1525 * back to us). This allows us to do a simple loop to
1526 * assign the commit to the tail.
1527 */
a8ccf1d6 1528 again:
77ae365e
SR
1529 max_count = cpu_buffer->buffer->pages * 100;
1530
bf41a158 1531 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1532 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1533 return;
1534 if (RB_WARN_ON(cpu_buffer,
1535 rb_is_reader_page(cpu_buffer->tail_page)))
1536 return;
1537 local_set(&cpu_buffer->commit_page->page->commit,
1538 rb_page_write(cpu_buffer->commit_page));
bf41a158 1539 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1540 cpu_buffer->write_stamp =
1541 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1542 /* add barrier to keep gcc from optimizing too much */
1543 barrier();
1544 }
1545 while (rb_commit_index(cpu_buffer) !=
1546 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1547
1548 local_set(&cpu_buffer->commit_page->page->commit,
1549 rb_page_write(cpu_buffer->commit_page));
1550 RB_WARN_ON(cpu_buffer,
1551 local_read(&cpu_buffer->commit_page->page->commit) &
1552 ~RB_WRITE_MASK);
bf41a158
SR
1553 barrier();
1554 }
a8ccf1d6
SR
1555
1556 /* again, keep gcc from optimizing */
1557 barrier();
1558
1559 /*
1560 * If an interrupt came in just after the first while loop
1561 * and pushed the tail page forward, we will be left with
1562 * a dangling commit that will never go forward.
1563 */
1564 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1565 goto again;
7a8e76a3
SR
1566}
1567
d769041f 1568static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1569{
abc9b56d 1570 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1571 cpu_buffer->reader_page->read = 0;
d769041f
SR
1572}
1573
34a148bf 1574static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1575{
1576 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1577
1578 /*
1579 * The iterator could be on the reader page (it starts there).
1580 * But the head could have moved, since the reader was
1581 * found. Check for this case and assign the iterator
1582 * to the head page instead of next.
1583 */
1584 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1585 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1586 else
1587 rb_inc_page(cpu_buffer, &iter->head_page);
1588
abc9b56d 1589 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1590 iter->head = 0;
1591}
1592
69d1b839
SR
1593/* Slow path, do not inline */
1594static noinline struct ring_buffer_event *
1595rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1596{
1597 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1598
1599 /* Not the first event on the page? */
1600 if (rb_event_index(event)) {
1601 event->time_delta = delta & TS_MASK;
1602 event->array[0] = delta >> TS_SHIFT;
1603 } else {
1604 /* nope, just zero it */
1605 event->time_delta = 0;
1606 event->array[0] = 0;
1607 }
1608
1609 return skip_time_extend(event);
1610}
1611
7a8e76a3
SR
1612/**
1613 * ring_buffer_update_event - update event type and data
1614 * @event: the even to update
1615 * @type: the type of event
1616 * @length: the size of the event field in the ring buffer
1617 *
1618 * Update the type and data fields of the event. The length
1619 * is the actual size that is written to the ring buffer,
1620 * and with this, we can determine what to place into the
1621 * data field.
1622 */
34a148bf 1623static void
69d1b839
SR
1624rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1625 struct ring_buffer_event *event, unsigned length,
1626 int add_timestamp, u64 delta)
7a8e76a3 1627{
69d1b839
SR
1628 /* Only a commit updates the timestamp */
1629 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1630 delta = 0;
7a8e76a3 1631
69d1b839
SR
1632 /*
1633 * If we need to add a timestamp, then we
1634 * add it to the start of the resevered space.
1635 */
1636 if (unlikely(add_timestamp)) {
1637 event = rb_add_time_stamp(event, delta);
1638 length -= RB_LEN_TIME_EXTEND;
1639 delta = 0;
7a8e76a3 1640 }
69d1b839
SR
1641
1642 event->time_delta = delta;
1643 length -= RB_EVNT_HDR_SIZE;
1644 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1645 event->type_len = 0;
1646 event->array[0] = length;
1647 } else
1648 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1649}
1650
77ae365e
SR
1651/*
1652 * rb_handle_head_page - writer hit the head page
1653 *
1654 * Returns: +1 to retry page
1655 * 0 to continue
1656 * -1 on error
1657 */
1658static int
1659rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1660 struct buffer_page *tail_page,
1661 struct buffer_page *next_page)
1662{
1663 struct buffer_page *new_head;
1664 int entries;
1665 int type;
1666 int ret;
1667
1668 entries = rb_page_entries(next_page);
1669
1670 /*
1671 * The hard part is here. We need to move the head
1672 * forward, and protect against both readers on
1673 * other CPUs and writers coming in via interrupts.
1674 */
1675 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1676 RB_PAGE_HEAD);
1677
1678 /*
1679 * type can be one of four:
1680 * NORMAL - an interrupt already moved it for us
1681 * HEAD - we are the first to get here.
1682 * UPDATE - we are the interrupt interrupting
1683 * a current move.
1684 * MOVED - a reader on another CPU moved the next
1685 * pointer to its reader page. Give up
1686 * and try again.
1687 */
1688
1689 switch (type) {
1690 case RB_PAGE_HEAD:
1691 /*
1692 * We changed the head to UPDATE, thus
1693 * it is our responsibility to update
1694 * the counters.
1695 */
1696 local_add(entries, &cpu_buffer->overrun);
1697
1698 /*
1699 * The entries will be zeroed out when we move the
1700 * tail page.
1701 */
1702
1703 /* still more to do */
1704 break;
1705
1706 case RB_PAGE_UPDATE:
1707 /*
1708 * This is an interrupt that interrupt the
1709 * previous update. Still more to do.
1710 */
1711 break;
1712 case RB_PAGE_NORMAL:
1713 /*
1714 * An interrupt came in before the update
1715 * and processed this for us.
1716 * Nothing left to do.
1717 */
1718 return 1;
1719 case RB_PAGE_MOVED:
1720 /*
1721 * The reader is on another CPU and just did
1722 * a swap with our next_page.
1723 * Try again.
1724 */
1725 return 1;
1726 default:
1727 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1728 return -1;
1729 }
1730
1731 /*
1732 * Now that we are here, the old head pointer is
1733 * set to UPDATE. This will keep the reader from
1734 * swapping the head page with the reader page.
1735 * The reader (on another CPU) will spin till
1736 * we are finished.
1737 *
1738 * We just need to protect against interrupts
1739 * doing the job. We will set the next pointer
1740 * to HEAD. After that, we set the old pointer
1741 * to NORMAL, but only if it was HEAD before.
1742 * otherwise we are an interrupt, and only
1743 * want the outer most commit to reset it.
1744 */
1745 new_head = next_page;
1746 rb_inc_page(cpu_buffer, &new_head);
1747
1748 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1749 RB_PAGE_NORMAL);
1750
1751 /*
1752 * Valid returns are:
1753 * HEAD - an interrupt came in and already set it.
1754 * NORMAL - One of two things:
1755 * 1) We really set it.
1756 * 2) A bunch of interrupts came in and moved
1757 * the page forward again.
1758 */
1759 switch (ret) {
1760 case RB_PAGE_HEAD:
1761 case RB_PAGE_NORMAL:
1762 /* OK */
1763 break;
1764 default:
1765 RB_WARN_ON(cpu_buffer, 1);
1766 return -1;
1767 }
1768
1769 /*
1770 * It is possible that an interrupt came in,
1771 * set the head up, then more interrupts came in
1772 * and moved it again. When we get back here,
1773 * the page would have been set to NORMAL but we
1774 * just set it back to HEAD.
1775 *
1776 * How do you detect this? Well, if that happened
1777 * the tail page would have moved.
1778 */
1779 if (ret == RB_PAGE_NORMAL) {
1780 /*
1781 * If the tail had moved passed next, then we need
1782 * to reset the pointer.
1783 */
1784 if (cpu_buffer->tail_page != tail_page &&
1785 cpu_buffer->tail_page != next_page)
1786 rb_head_page_set_normal(cpu_buffer, new_head,
1787 next_page,
1788 RB_PAGE_HEAD);
1789 }
1790
1791 /*
1792 * If this was the outer most commit (the one that
1793 * changed the original pointer from HEAD to UPDATE),
1794 * then it is up to us to reset it to NORMAL.
1795 */
1796 if (type == RB_PAGE_HEAD) {
1797 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1798 tail_page,
1799 RB_PAGE_UPDATE);
1800 if (RB_WARN_ON(cpu_buffer,
1801 ret != RB_PAGE_UPDATE))
1802 return -1;
1803 }
1804
1805 return 0;
1806}
1807
34a148bf 1808static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1809{
1810 struct ring_buffer_event event; /* Used only for sizeof array */
1811
1812 /* zero length can cause confusions */
1813 if (!length)
1814 length = 1;
1815
2271048d 1816 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1817 length += sizeof(event.array[0]);
1818
1819 length += RB_EVNT_HDR_SIZE;
2271048d 1820 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1821
1822 return length;
1823}
1824
c7b09308
SR
1825static inline void
1826rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1827 struct buffer_page *tail_page,
1828 unsigned long tail, unsigned long length)
1829{
1830 struct ring_buffer_event *event;
1831
1832 /*
1833 * Only the event that crossed the page boundary
1834 * must fill the old tail_page with padding.
1835 */
1836 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
1837 /*
1838 * If the page was filled, then we still need
1839 * to update the real_end. Reset it to zero
1840 * and the reader will ignore it.
1841 */
1842 if (tail == BUF_PAGE_SIZE)
1843 tail_page->real_end = 0;
1844
c7b09308
SR
1845 local_sub(length, &tail_page->write);
1846 return;
1847 }
1848
1849 event = __rb_page_index(tail_page, tail);
b0b7065b 1850 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 1851
ff0ff84a
SR
1852 /*
1853 * Save the original length to the meta data.
1854 * This will be used by the reader to add lost event
1855 * counter.
1856 */
1857 tail_page->real_end = tail;
1858
c7b09308
SR
1859 /*
1860 * If this event is bigger than the minimum size, then
1861 * we need to be careful that we don't subtract the
1862 * write counter enough to allow another writer to slip
1863 * in on this page.
1864 * We put in a discarded commit instead, to make sure
1865 * that this space is not used again.
1866 *
1867 * If we are less than the minimum size, we don't need to
1868 * worry about it.
1869 */
1870 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1871 /* No room for any events */
1872
1873 /* Mark the rest of the page with padding */
1874 rb_event_set_padding(event);
1875
1876 /* Set the write back to the previous setting */
1877 local_sub(length, &tail_page->write);
1878 return;
1879 }
1880
1881 /* Put in a discarded event */
1882 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1883 event->type_len = RINGBUF_TYPE_PADDING;
1884 /* time delta must be non zero */
1885 event->time_delta = 1;
c7b09308
SR
1886
1887 /* Set write to end of buffer */
1888 length = (tail + length) - BUF_PAGE_SIZE;
1889 local_sub(length, &tail_page->write);
1890}
6634ff26 1891
747e94ae
SR
1892/*
1893 * This is the slow path, force gcc not to inline it.
1894 */
1895static noinline struct ring_buffer_event *
6634ff26
SR
1896rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1897 unsigned long length, unsigned long tail,
e8bc43e8 1898 struct buffer_page *tail_page, u64 ts)
7a8e76a3 1899{
5a50e33c 1900 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1901 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1902 struct buffer_page *next_page;
1903 int ret;
aa20ae84
SR
1904
1905 next_page = tail_page;
1906
aa20ae84
SR
1907 rb_inc_page(cpu_buffer, &next_page);
1908
aa20ae84
SR
1909 /*
1910 * If for some reason, we had an interrupt storm that made
1911 * it all the way around the buffer, bail, and warn
1912 * about it.
1913 */
1914 if (unlikely(next_page == commit_page)) {
77ae365e 1915 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1916 goto out_reset;
1917 }
1918
77ae365e
SR
1919 /*
1920 * This is where the fun begins!
1921 *
1922 * We are fighting against races between a reader that
1923 * could be on another CPU trying to swap its reader
1924 * page with the buffer head.
1925 *
1926 * We are also fighting against interrupts coming in and
1927 * moving the head or tail on us as well.
1928 *
1929 * If the next page is the head page then we have filled
1930 * the buffer, unless the commit page is still on the
1931 * reader page.
1932 */
1933 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1934
77ae365e
SR
1935 /*
1936 * If the commit is not on the reader page, then
1937 * move the header page.
1938 */
1939 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1940 /*
1941 * If we are not in overwrite mode,
1942 * this is easy, just stop here.
1943 */
1944 if (!(buffer->flags & RB_FL_OVERWRITE))
1945 goto out_reset;
1946
1947 ret = rb_handle_head_page(cpu_buffer,
1948 tail_page,
1949 next_page);
1950 if (ret < 0)
1951 goto out_reset;
1952 if (ret)
1953 goto out_again;
1954 } else {
1955 /*
1956 * We need to be careful here too. The
1957 * commit page could still be on the reader
1958 * page. We could have a small buffer, and
1959 * have filled up the buffer with events
1960 * from interrupts and such, and wrapped.
1961 *
1962 * Note, if the tail page is also the on the
1963 * reader_page, we let it move out.
1964 */
1965 if (unlikely((cpu_buffer->commit_page !=
1966 cpu_buffer->tail_page) &&
1967 (cpu_buffer->commit_page ==
1968 cpu_buffer->reader_page))) {
1969 local_inc(&cpu_buffer->commit_overrun);
1970 goto out_reset;
1971 }
aa20ae84
SR
1972 }
1973 }
1974
77ae365e
SR
1975 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1976 if (ret) {
1977 /*
1978 * Nested commits always have zero deltas, so
1979 * just reread the time stamp
1980 */
e8bc43e8
SR
1981 ts = rb_time_stamp(buffer);
1982 next_page->page->time_stamp = ts;
aa20ae84
SR
1983 }
1984
77ae365e 1985 out_again:
aa20ae84 1986
77ae365e 1987 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1988
1989 /* fail and let the caller try again */
1990 return ERR_PTR(-EAGAIN);
1991
45141d46 1992 out_reset:
6f3b3440 1993 /* reset write */
c7b09308 1994 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1995
bf41a158 1996 return NULL;
7a8e76a3
SR
1997}
1998
6634ff26
SR
1999static struct ring_buffer_event *
2000__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2001 unsigned long length, u64 ts,
2002 u64 delta, int add_timestamp)
6634ff26 2003{
5a50e33c 2004 struct buffer_page *tail_page;
6634ff26
SR
2005 struct ring_buffer_event *event;
2006 unsigned long tail, write;
2007
69d1b839
SR
2008 /*
2009 * If the time delta since the last event is too big to
2010 * hold in the time field of the event, then we append a
2011 * TIME EXTEND event ahead of the data event.
2012 */
2013 if (unlikely(add_timestamp))
2014 length += RB_LEN_TIME_EXTEND;
2015
6634ff26
SR
2016 tail_page = cpu_buffer->tail_page;
2017 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2018
2019 /* set write to only the index of the write */
2020 write &= RB_WRITE_MASK;
6634ff26
SR
2021 tail = write - length;
2022
2023 /* See if we shot pass the end of this buffer page */
747e94ae 2024 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2025 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2026 tail_page, ts);
6634ff26
SR
2027
2028 /* We reserved something on the buffer */
2029
6634ff26 2030 event = __rb_page_index(tail_page, tail);
1744a21d 2031 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2032 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2033
69d1b839 2034 local_inc(&tail_page->entries);
6634ff26
SR
2035
2036 /*
fa743953
SR
2037 * If this is the first commit on the page, then update
2038 * its timestamp.
6634ff26 2039 */
fa743953 2040 if (!tail)
e8bc43e8 2041 tail_page->page->time_stamp = ts;
6634ff26
SR
2042
2043 return event;
2044}
2045
edd813bf
SR
2046static inline int
2047rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2048 struct ring_buffer_event *event)
2049{
2050 unsigned long new_index, old_index;
2051 struct buffer_page *bpage;
2052 unsigned long index;
2053 unsigned long addr;
2054
2055 new_index = rb_event_index(event);
69d1b839 2056 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2057 addr = (unsigned long)event;
2058 addr &= PAGE_MASK;
2059
2060 bpage = cpu_buffer->tail_page;
2061
2062 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2063 unsigned long write_mask =
2064 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
2065 /*
2066 * This is on the tail page. It is possible that
2067 * a write could come in and move the tail page
2068 * and write to the next page. That is fine
2069 * because we just shorten what is on this page.
2070 */
77ae365e
SR
2071 old_index += write_mask;
2072 new_index += write_mask;
edd813bf
SR
2073 index = local_cmpxchg(&bpage->write, old_index, new_index);
2074 if (index == old_index)
2075 return 1;
2076 }
2077
2078 /* could not discard */
2079 return 0;
2080}
2081
fa743953
SR
2082static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2083{
2084 local_inc(&cpu_buffer->committing);
2085 local_inc(&cpu_buffer->commits);
2086}
2087
d9abde21 2088static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2089{
2090 unsigned long commits;
2091
2092 if (RB_WARN_ON(cpu_buffer,
2093 !local_read(&cpu_buffer->committing)))
2094 return;
2095
2096 again:
2097 commits = local_read(&cpu_buffer->commits);
2098 /* synchronize with interrupts */
2099 barrier();
2100 if (local_read(&cpu_buffer->committing) == 1)
2101 rb_set_commit_to_write(cpu_buffer);
2102
2103 local_dec(&cpu_buffer->committing);
2104
2105 /* synchronize with interrupts */
2106 barrier();
2107
2108 /*
2109 * Need to account for interrupts coming in between the
2110 * updating of the commit page and the clearing of the
2111 * committing counter.
2112 */
2113 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2114 !local_read(&cpu_buffer->committing)) {
2115 local_inc(&cpu_buffer->committing);
2116 goto again;
2117 }
2118}
2119
7a8e76a3 2120static struct ring_buffer_event *
62f0b3eb
SR
2121rb_reserve_next_event(struct ring_buffer *buffer,
2122 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2123 unsigned long length)
7a8e76a3
SR
2124{
2125 struct ring_buffer_event *event;
69d1b839 2126 u64 ts, delta;
818e3dd3 2127 int nr_loops = 0;
69d1b839 2128 int add_timestamp;
140ff891 2129 u64 diff;
7a8e76a3 2130
fa743953
SR
2131 rb_start_commit(cpu_buffer);
2132
85bac32c 2133#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2134 /*
2135 * Due to the ability to swap a cpu buffer from a buffer
2136 * it is possible it was swapped before we committed.
2137 * (committing stops a swap). We check for it here and
2138 * if it happened, we have to fail the write.
2139 */
2140 barrier();
2141 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2142 local_dec(&cpu_buffer->committing);
2143 local_dec(&cpu_buffer->commits);
2144 return NULL;
2145 }
85bac32c 2146#endif
62f0b3eb 2147
be957c44 2148 length = rb_calculate_event_length(length);
bf41a158 2149 again:
69d1b839
SR
2150 add_timestamp = 0;
2151 delta = 0;
2152
818e3dd3
SR
2153 /*
2154 * We allow for interrupts to reenter here and do a trace.
2155 * If one does, it will cause this original code to loop
2156 * back here. Even with heavy interrupts happening, this
2157 * should only happen a few times in a row. If this happens
2158 * 1000 times in a row, there must be either an interrupt
2159 * storm or we have something buggy.
2160 * Bail!
2161 */
3e89c7bb 2162 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2163 goto out_fail;
818e3dd3 2164
6d3f1e12 2165 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2166 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2167
140ff891
SR
2168 /* make sure this diff is calculated here */
2169 barrier();
bf41a158 2170
140ff891
SR
2171 /* Did the write stamp get updated already? */
2172 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2173 delta = diff;
2174 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2175 int local_clock_stable = 1;
2176#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2177 local_clock_stable = sched_clock_stable;
2178#endif
69d1b839 2179 WARN_ONCE(delta > (1ULL << 59),
31274d72 2180 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2181 (unsigned long long)delta,
2182 (unsigned long long)ts,
31274d72
JO
2183 (unsigned long long)cpu_buffer->write_stamp,
2184 local_clock_stable ? "" :
2185 "If you just came from a suspend/resume,\n"
2186 "please switch to the trace global clock:\n"
2187 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2188 add_timestamp = 1;
7a8e76a3 2189 }
168b6b1d 2190 }
7a8e76a3 2191
69d1b839
SR
2192 event = __rb_reserve_next(cpu_buffer, length, ts,
2193 delta, add_timestamp);
168b6b1d 2194 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2195 goto again;
2196
fa743953
SR
2197 if (!event)
2198 goto out_fail;
7a8e76a3 2199
7a8e76a3 2200 return event;
fa743953
SR
2201
2202 out_fail:
2203 rb_end_commit(cpu_buffer);
2204 return NULL;
7a8e76a3
SR
2205}
2206
1155de47
PM
2207#ifdef CONFIG_TRACING
2208
aa18efb2 2209#define TRACE_RECURSIVE_DEPTH 16
261842b7 2210
d9abde21
SR
2211/* Keep this code out of the fast path cache */
2212static noinline void trace_recursive_fail(void)
261842b7 2213{
aa18efb2
SR
2214 /* Disable all tracing before we do anything else */
2215 tracing_off_permanent();
261842b7 2216
7d7d2b80 2217 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2 2218 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
b1cff0ad 2219 trace_recursion_buffer(),
aa18efb2
SR
2220 hardirq_count() >> HARDIRQ_SHIFT,
2221 softirq_count() >> SOFTIRQ_SHIFT,
2222 in_nmi());
261842b7 2223
aa18efb2 2224 WARN_ON_ONCE(1);
d9abde21
SR
2225}
2226
2227static inline int trace_recursive_lock(void)
2228{
b1cff0ad 2229 trace_recursion_inc();
d9abde21 2230
b1cff0ad 2231 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
d9abde21
SR
2232 return 0;
2233
2234 trace_recursive_fail();
2235
aa18efb2 2236 return -1;
261842b7
SR
2237}
2238
d9abde21 2239static inline void trace_recursive_unlock(void)
261842b7 2240{
b1cff0ad 2241 WARN_ON_ONCE(!trace_recursion_buffer());
261842b7 2242
b1cff0ad 2243 trace_recursion_dec();
261842b7
SR
2244}
2245
1155de47
PM
2246#else
2247
2248#define trace_recursive_lock() (0)
2249#define trace_recursive_unlock() do { } while (0)
2250
2251#endif
2252
7a8e76a3
SR
2253/**
2254 * ring_buffer_lock_reserve - reserve a part of the buffer
2255 * @buffer: the ring buffer to reserve from
2256 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2257 *
2258 * Returns a reseverd event on the ring buffer to copy directly to.
2259 * The user of this interface will need to get the body to write into
2260 * and can use the ring_buffer_event_data() interface.
2261 *
2262 * The length is the length of the data needed, not the event length
2263 * which also includes the event header.
2264 *
2265 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2266 * If NULL is returned, then nothing has been allocated or locked.
2267 */
2268struct ring_buffer_event *
0a987751 2269ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2270{
2271 struct ring_buffer_per_cpu *cpu_buffer;
2272 struct ring_buffer_event *event;
5168ae50 2273 int cpu;
7a8e76a3 2274
033601a3 2275 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2276 return NULL;
2277
bf41a158 2278 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2279 preempt_disable_notrace();
bf41a158 2280
52fbe9cd
LJ
2281 if (atomic_read(&buffer->record_disabled))
2282 goto out_nocheck;
2283
261842b7
SR
2284 if (trace_recursive_lock())
2285 goto out_nocheck;
2286
7a8e76a3
SR
2287 cpu = raw_smp_processor_id();
2288
9e01c1b7 2289 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2290 goto out;
7a8e76a3
SR
2291
2292 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2293
2294 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2295 goto out;
7a8e76a3 2296
be957c44 2297 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2298 goto out;
7a8e76a3 2299
62f0b3eb 2300 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2301 if (!event)
d769041f 2302 goto out;
7a8e76a3
SR
2303
2304 return event;
2305
d769041f 2306 out:
261842b7
SR
2307 trace_recursive_unlock();
2308
2309 out_nocheck:
5168ae50 2310 preempt_enable_notrace();
7a8e76a3
SR
2311 return NULL;
2312}
c4f50183 2313EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2314
a1863c21
SR
2315static void
2316rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2317 struct ring_buffer_event *event)
2318{
69d1b839
SR
2319 u64 delta;
2320
fa743953
SR
2321 /*
2322 * The event first in the commit queue updates the
2323 * time stamp.
2324 */
69d1b839
SR
2325 if (rb_event_is_commit(cpu_buffer, event)) {
2326 /*
2327 * A commit event that is first on a page
2328 * updates the write timestamp with the page stamp
2329 */
2330 if (!rb_event_index(event))
2331 cpu_buffer->write_stamp =
2332 cpu_buffer->commit_page->page->time_stamp;
2333 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2334 delta = event->array[0];
2335 delta <<= TS_SHIFT;
2336 delta += event->time_delta;
2337 cpu_buffer->write_stamp += delta;
2338 } else
2339 cpu_buffer->write_stamp += event->time_delta;
2340 }
a1863c21 2341}
bf41a158 2342
a1863c21
SR
2343static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2344 struct ring_buffer_event *event)
2345{
2346 local_inc(&cpu_buffer->entries);
2347 rb_update_write_stamp(cpu_buffer, event);
fa743953 2348 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2349}
2350
2351/**
2352 * ring_buffer_unlock_commit - commit a reserved
2353 * @buffer: The buffer to commit to
2354 * @event: The event pointer to commit.
7a8e76a3
SR
2355 *
2356 * This commits the data to the ring buffer, and releases any locks held.
2357 *
2358 * Must be paired with ring_buffer_lock_reserve.
2359 */
2360int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2361 struct ring_buffer_event *event)
7a8e76a3
SR
2362{
2363 struct ring_buffer_per_cpu *cpu_buffer;
2364 int cpu = raw_smp_processor_id();
2365
2366 cpu_buffer = buffer->buffers[cpu];
2367
7a8e76a3
SR
2368 rb_commit(cpu_buffer, event);
2369
261842b7
SR
2370 trace_recursive_unlock();
2371
5168ae50 2372 preempt_enable_notrace();
7a8e76a3
SR
2373
2374 return 0;
2375}
c4f50183 2376EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2377
f3b9aae1
FW
2378static inline void rb_event_discard(struct ring_buffer_event *event)
2379{
69d1b839
SR
2380 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2381 event = skip_time_extend(event);
2382
334d4169
LJ
2383 /* array[0] holds the actual length for the discarded event */
2384 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2385 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2386 /* time delta must be non zero */
2387 if (!event->time_delta)
2388 event->time_delta = 1;
2389}
2390
a1863c21
SR
2391/*
2392 * Decrement the entries to the page that an event is on.
2393 * The event does not even need to exist, only the pointer
2394 * to the page it is on. This may only be called before the commit
2395 * takes place.
2396 */
2397static inline void
2398rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2399 struct ring_buffer_event *event)
2400{
2401 unsigned long addr = (unsigned long)event;
2402 struct buffer_page *bpage = cpu_buffer->commit_page;
2403 struct buffer_page *start;
2404
2405 addr &= PAGE_MASK;
2406
2407 /* Do the likely case first */
2408 if (likely(bpage->page == (void *)addr)) {
2409 local_dec(&bpage->entries);
2410 return;
2411 }
2412
2413 /*
2414 * Because the commit page may be on the reader page we
2415 * start with the next page and check the end loop there.
2416 */
2417 rb_inc_page(cpu_buffer, &bpage);
2418 start = bpage;
2419 do {
2420 if (bpage->page == (void *)addr) {
2421 local_dec(&bpage->entries);
2422 return;
2423 }
2424 rb_inc_page(cpu_buffer, &bpage);
2425 } while (bpage != start);
2426
2427 /* commit not part of this buffer?? */
2428 RB_WARN_ON(cpu_buffer, 1);
2429}
2430
fa1b47dd
SR
2431/**
2432 * ring_buffer_commit_discard - discard an event that has not been committed
2433 * @buffer: the ring buffer
2434 * @event: non committed event to discard
2435 *
dc892f73
SR
2436 * Sometimes an event that is in the ring buffer needs to be ignored.
2437 * This function lets the user discard an event in the ring buffer
2438 * and then that event will not be read later.
2439 *
2440 * This function only works if it is called before the the item has been
2441 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2442 * if another event has not been added behind it.
2443 *
2444 * If another event has been added behind it, it will set the event
2445 * up as discarded, and perform the commit.
2446 *
2447 * If this function is called, do not call ring_buffer_unlock_commit on
2448 * the event.
2449 */
2450void ring_buffer_discard_commit(struct ring_buffer *buffer,
2451 struct ring_buffer_event *event)
2452{
2453 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2454 int cpu;
2455
2456 /* The event is discarded regardless */
f3b9aae1 2457 rb_event_discard(event);
fa1b47dd 2458
fa743953
SR
2459 cpu = smp_processor_id();
2460 cpu_buffer = buffer->buffers[cpu];
2461
fa1b47dd
SR
2462 /*
2463 * This must only be called if the event has not been
2464 * committed yet. Thus we can assume that preemption
2465 * is still disabled.
2466 */
fa743953 2467 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2468
a1863c21 2469 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2470 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2471 goto out;
fa1b47dd
SR
2472
2473 /*
2474 * The commit is still visible by the reader, so we
a1863c21 2475 * must still update the timestamp.
fa1b47dd 2476 */
a1863c21 2477 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2478 out:
fa743953 2479 rb_end_commit(cpu_buffer);
fa1b47dd 2480
f3b9aae1
FW
2481 trace_recursive_unlock();
2482
5168ae50 2483 preempt_enable_notrace();
fa1b47dd
SR
2484
2485}
2486EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2487
7a8e76a3
SR
2488/**
2489 * ring_buffer_write - write data to the buffer without reserving
2490 * @buffer: The ring buffer to write to.
2491 * @length: The length of the data being written (excluding the event header)
2492 * @data: The data to write to the buffer.
2493 *
2494 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2495 * one function. If you already have the data to write to the buffer, it
2496 * may be easier to simply call this function.
2497 *
2498 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2499 * and not the length of the event which would hold the header.
2500 */
2501int ring_buffer_write(struct ring_buffer *buffer,
2502 unsigned long length,
2503 void *data)
2504{
2505 struct ring_buffer_per_cpu *cpu_buffer;
2506 struct ring_buffer_event *event;
7a8e76a3
SR
2507 void *body;
2508 int ret = -EBUSY;
5168ae50 2509 int cpu;
7a8e76a3 2510
033601a3 2511 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2512 return -EBUSY;
2513
5168ae50 2514 preempt_disable_notrace();
bf41a158 2515
52fbe9cd
LJ
2516 if (atomic_read(&buffer->record_disabled))
2517 goto out;
2518
7a8e76a3
SR
2519 cpu = raw_smp_processor_id();
2520
9e01c1b7 2521 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2522 goto out;
7a8e76a3
SR
2523
2524 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2525
2526 if (atomic_read(&cpu_buffer->record_disabled))
2527 goto out;
2528
be957c44
SR
2529 if (length > BUF_MAX_DATA_SIZE)
2530 goto out;
2531
62f0b3eb 2532 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2533 if (!event)
2534 goto out;
2535
2536 body = rb_event_data(event);
2537
2538 memcpy(body, data, length);
2539
2540 rb_commit(cpu_buffer, event);
2541
2542 ret = 0;
2543 out:
5168ae50 2544 preempt_enable_notrace();
7a8e76a3
SR
2545
2546 return ret;
2547}
c4f50183 2548EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2549
34a148bf 2550static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2551{
2552 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2553 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2554 struct buffer_page *commit = cpu_buffer->commit_page;
2555
77ae365e
SR
2556 /* In case of error, head will be NULL */
2557 if (unlikely(!head))
2558 return 1;
2559
bf41a158
SR
2560 return reader->read == rb_page_commit(reader) &&
2561 (commit == reader ||
2562 (commit == head &&
2563 head->read == rb_page_commit(commit)));
2564}
2565
7a8e76a3
SR
2566/**
2567 * ring_buffer_record_disable - stop all writes into the buffer
2568 * @buffer: The ring buffer to stop writes to.
2569 *
2570 * This prevents all writes to the buffer. Any attempt to write
2571 * to the buffer after this will fail and return NULL.
2572 *
2573 * The caller should call synchronize_sched() after this.
2574 */
2575void ring_buffer_record_disable(struct ring_buffer *buffer)
2576{
2577 atomic_inc(&buffer->record_disabled);
2578}
c4f50183 2579EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2580
2581/**
2582 * ring_buffer_record_enable - enable writes to the buffer
2583 * @buffer: The ring buffer to enable writes
2584 *
2585 * Note, multiple disables will need the same number of enables
c41b20e7 2586 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2587 */
2588void ring_buffer_record_enable(struct ring_buffer *buffer)
2589{
2590 atomic_dec(&buffer->record_disabled);
2591}
c4f50183 2592EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2593
2594/**
2595 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2596 * @buffer: The ring buffer to stop writes to.
2597 * @cpu: The CPU buffer to stop
2598 *
2599 * This prevents all writes to the buffer. Any attempt to write
2600 * to the buffer after this will fail and return NULL.
2601 *
2602 * The caller should call synchronize_sched() after this.
2603 */
2604void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2605{
2606 struct ring_buffer_per_cpu *cpu_buffer;
2607
9e01c1b7 2608 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2609 return;
7a8e76a3
SR
2610
2611 cpu_buffer = buffer->buffers[cpu];
2612 atomic_inc(&cpu_buffer->record_disabled);
2613}
c4f50183 2614EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2615
2616/**
2617 * ring_buffer_record_enable_cpu - enable writes to the buffer
2618 * @buffer: The ring buffer to enable writes
2619 * @cpu: The CPU to enable.
2620 *
2621 * Note, multiple disables will need the same number of enables
c41b20e7 2622 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2623 */
2624void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2625{
2626 struct ring_buffer_per_cpu *cpu_buffer;
2627
9e01c1b7 2628 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2629 return;
7a8e76a3
SR
2630
2631 cpu_buffer = buffer->buffers[cpu];
2632 atomic_dec(&cpu_buffer->record_disabled);
2633}
c4f50183 2634EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 2635
f6195aa0
SR
2636/*
2637 * The total entries in the ring buffer is the running counter
2638 * of entries entered into the ring buffer, minus the sum of
2639 * the entries read from the ring buffer and the number of
2640 * entries that were overwritten.
2641 */
2642static inline unsigned long
2643rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2644{
2645 return local_read(&cpu_buffer->entries) -
2646 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2647}
2648
7a8e76a3
SR
2649/**
2650 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2651 * @buffer: The ring buffer
2652 * @cpu: The per CPU buffer to get the entries from.
2653 */
2654unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2655{
2656 struct ring_buffer_per_cpu *cpu_buffer;
2657
9e01c1b7 2658 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2659 return 0;
7a8e76a3
SR
2660
2661 cpu_buffer = buffer->buffers[cpu];
554f786e 2662
f6195aa0 2663 return rb_num_of_entries(cpu_buffer);
7a8e76a3 2664}
c4f50183 2665EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2666
2667/**
2668 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2669 * @buffer: The ring buffer
2670 * @cpu: The per CPU buffer to get the number of overruns from
2671 */
2672unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2673{
2674 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2675 unsigned long ret;
7a8e76a3 2676
9e01c1b7 2677 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2678 return 0;
7a8e76a3
SR
2679
2680 cpu_buffer = buffer->buffers[cpu];
77ae365e 2681 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2682
2683 return ret;
7a8e76a3 2684}
c4f50183 2685EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2686
f0d2c681
SR
2687/**
2688 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2689 * @buffer: The ring buffer
2690 * @cpu: The per CPU buffer to get the number of overruns from
2691 */
2692unsigned long
2693ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2694{
2695 struct ring_buffer_per_cpu *cpu_buffer;
2696 unsigned long ret;
2697
2698 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2699 return 0;
2700
2701 cpu_buffer = buffer->buffers[cpu];
77ae365e 2702 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2703
2704 return ret;
2705}
2706EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2707
7a8e76a3
SR
2708/**
2709 * ring_buffer_entries - get the number of entries in a buffer
2710 * @buffer: The ring buffer
2711 *
2712 * Returns the total number of entries in the ring buffer
2713 * (all CPU entries)
2714 */
2715unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2716{
2717 struct ring_buffer_per_cpu *cpu_buffer;
2718 unsigned long entries = 0;
2719 int cpu;
2720
2721 /* if you care about this being correct, lock the buffer */
2722 for_each_buffer_cpu(buffer, cpu) {
2723 cpu_buffer = buffer->buffers[cpu];
f6195aa0 2724 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
2725 }
2726
2727 return entries;
2728}
c4f50183 2729EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2730
2731/**
67b394f7 2732 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2733 * @buffer: The ring buffer
2734 *
2735 * Returns the total number of overruns in the ring buffer
2736 * (all CPU entries)
2737 */
2738unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2739{
2740 struct ring_buffer_per_cpu *cpu_buffer;
2741 unsigned long overruns = 0;
2742 int cpu;
2743
2744 /* if you care about this being correct, lock the buffer */
2745 for_each_buffer_cpu(buffer, cpu) {
2746 cpu_buffer = buffer->buffers[cpu];
77ae365e 2747 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2748 }
2749
2750 return overruns;
2751}
c4f50183 2752EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2753
642edba5 2754static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2755{
2756 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2757
d769041f
SR
2758 /* Iterator usage is expected to have record disabled */
2759 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2760 iter->head_page = rb_set_head_page(cpu_buffer);
2761 if (unlikely(!iter->head_page))
2762 return;
2763 iter->head = iter->head_page->read;
d769041f
SR
2764 } else {
2765 iter->head_page = cpu_buffer->reader_page;
6f807acd 2766 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2767 }
2768 if (iter->head)
2769 iter->read_stamp = cpu_buffer->read_stamp;
2770 else
abc9b56d 2771 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
2772 iter->cache_reader_page = cpu_buffer->reader_page;
2773 iter->cache_read = cpu_buffer->read;
642edba5 2774}
f83c9d0f 2775
642edba5
SR
2776/**
2777 * ring_buffer_iter_reset - reset an iterator
2778 * @iter: The iterator to reset
2779 *
2780 * Resets the iterator, so that it will start from the beginning
2781 * again.
2782 */
2783void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2784{
554f786e 2785 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2786 unsigned long flags;
2787
554f786e
SR
2788 if (!iter)
2789 return;
2790
2791 cpu_buffer = iter->cpu_buffer;
2792
642edba5
SR
2793 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2794 rb_iter_reset(iter);
f83c9d0f 2795 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2796}
c4f50183 2797EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2798
2799/**
2800 * ring_buffer_iter_empty - check if an iterator has no more to read
2801 * @iter: The iterator to check
2802 */
2803int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2804{
2805 struct ring_buffer_per_cpu *cpu_buffer;
2806
2807 cpu_buffer = iter->cpu_buffer;
2808
bf41a158
SR
2809 return iter->head_page == cpu_buffer->commit_page &&
2810 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2811}
c4f50183 2812EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2813
2814static void
2815rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2816 struct ring_buffer_event *event)
2817{
2818 u64 delta;
2819
334d4169 2820 switch (event->type_len) {
7a8e76a3
SR
2821 case RINGBUF_TYPE_PADDING:
2822 return;
2823
2824 case RINGBUF_TYPE_TIME_EXTEND:
2825 delta = event->array[0];
2826 delta <<= TS_SHIFT;
2827 delta += event->time_delta;
2828 cpu_buffer->read_stamp += delta;
2829 return;
2830
2831 case RINGBUF_TYPE_TIME_STAMP:
2832 /* FIXME: not implemented */
2833 return;
2834
2835 case RINGBUF_TYPE_DATA:
2836 cpu_buffer->read_stamp += event->time_delta;
2837 return;
2838
2839 default:
2840 BUG();
2841 }
2842 return;
2843}
2844
2845static void
2846rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2847 struct ring_buffer_event *event)
2848{
2849 u64 delta;
2850
334d4169 2851 switch (event->type_len) {
7a8e76a3
SR
2852 case RINGBUF_TYPE_PADDING:
2853 return;
2854
2855 case RINGBUF_TYPE_TIME_EXTEND:
2856 delta = event->array[0];
2857 delta <<= TS_SHIFT;
2858 delta += event->time_delta;
2859 iter->read_stamp += delta;
2860 return;
2861
2862 case RINGBUF_TYPE_TIME_STAMP:
2863 /* FIXME: not implemented */
2864 return;
2865
2866 case RINGBUF_TYPE_DATA:
2867 iter->read_stamp += event->time_delta;
2868 return;
2869
2870 default:
2871 BUG();
2872 }
2873 return;
2874}
2875
d769041f
SR
2876static struct buffer_page *
2877rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2878{
d769041f 2879 struct buffer_page *reader = NULL;
66a8cb95 2880 unsigned long overwrite;
d769041f 2881 unsigned long flags;
818e3dd3 2882 int nr_loops = 0;
77ae365e 2883 int ret;
d769041f 2884
3e03fb7f 2885 local_irq_save(flags);
0199c4e6 2886 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
2887
2888 again:
818e3dd3
SR
2889 /*
2890 * This should normally only loop twice. But because the
2891 * start of the reader inserts an empty page, it causes
2892 * a case where we will loop three times. There should be no
2893 * reason to loop four times (that I know of).
2894 */
3e89c7bb 2895 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2896 reader = NULL;
2897 goto out;
2898 }
2899
d769041f
SR
2900 reader = cpu_buffer->reader_page;
2901
2902 /* If there's more to read, return this page */
bf41a158 2903 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2904 goto out;
2905
2906 /* Never should we have an index greater than the size */
3e89c7bb
SR
2907 if (RB_WARN_ON(cpu_buffer,
2908 cpu_buffer->reader_page->read > rb_page_size(reader)))
2909 goto out;
d769041f
SR
2910
2911 /* check if we caught up to the tail */
2912 reader = NULL;
bf41a158 2913 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2914 goto out;
7a8e76a3
SR
2915
2916 /*
d769041f 2917 * Reset the reader page to size zero.
7a8e76a3 2918 */
77ae365e
SR
2919 local_set(&cpu_buffer->reader_page->write, 0);
2920 local_set(&cpu_buffer->reader_page->entries, 0);
2921 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 2922 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 2923
77ae365e
SR
2924 spin:
2925 /*
2926 * Splice the empty reader page into the list around the head.
2927 */
2928 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 2929 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 2930 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2931
3adc54fa
SR
2932 /*
2933 * cpu_buffer->pages just needs to point to the buffer, it
2934 * has no specific buffer page to point to. Lets move it out
25985edc 2935 * of our way so we don't accidentally swap it.
3adc54fa
SR
2936 */
2937 cpu_buffer->pages = reader->list.prev;
2938
77ae365e
SR
2939 /* The reader page will be pointing to the new head */
2940 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2941
66a8cb95
SR
2942 /*
2943 * We want to make sure we read the overruns after we set up our
2944 * pointers to the next object. The writer side does a
2945 * cmpxchg to cross pages which acts as the mb on the writer
2946 * side. Note, the reader will constantly fail the swap
2947 * while the writer is updating the pointers, so this
2948 * guarantees that the overwrite recorded here is the one we
2949 * want to compare with the last_overrun.
2950 */
2951 smp_mb();
2952 overwrite = local_read(&(cpu_buffer->overrun));
2953
77ae365e
SR
2954 /*
2955 * Here's the tricky part.
2956 *
2957 * We need to move the pointer past the header page.
2958 * But we can only do that if a writer is not currently
2959 * moving it. The page before the header page has the
2960 * flag bit '1' set if it is pointing to the page we want.
2961 * but if the writer is in the process of moving it
2962 * than it will be '2' or already moved '0'.
2963 */
2964
2965 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2966
2967 /*
77ae365e 2968 * If we did not convert it, then we must try again.
7a8e76a3 2969 */
77ae365e
SR
2970 if (!ret)
2971 goto spin;
7a8e76a3 2972
77ae365e
SR
2973 /*
2974 * Yeah! We succeeded in replacing the page.
2975 *
2976 * Now make the new head point back to the reader page.
2977 */
5ded3dc6 2978 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 2979 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2980
2981 /* Finally update the reader page to the new head */
2982 cpu_buffer->reader_page = reader;
2983 rb_reset_reader_page(cpu_buffer);
2984
66a8cb95
SR
2985 if (overwrite != cpu_buffer->last_overrun) {
2986 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2987 cpu_buffer->last_overrun = overwrite;
2988 }
2989
d769041f
SR
2990 goto again;
2991
2992 out:
0199c4e6 2993 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 2994 local_irq_restore(flags);
d769041f
SR
2995
2996 return reader;
2997}
2998
2999static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3000{
3001 struct ring_buffer_event *event;
3002 struct buffer_page *reader;
3003 unsigned length;
3004
3005 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3006
d769041f 3007 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3008 if (RB_WARN_ON(cpu_buffer, !reader))
3009 return;
7a8e76a3 3010
d769041f
SR
3011 event = rb_reader_event(cpu_buffer);
3012
a1863c21 3013 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3014 cpu_buffer->read++;
d769041f
SR
3015
3016 rb_update_read_stamp(cpu_buffer, event);
3017
3018 length = rb_event_length(event);
6f807acd 3019 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3020}
3021
3022static void rb_advance_iter(struct ring_buffer_iter *iter)
3023{
7a8e76a3
SR
3024 struct ring_buffer_per_cpu *cpu_buffer;
3025 struct ring_buffer_event *event;
3026 unsigned length;
3027
3028 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3029
3030 /*
3031 * Check if we are at the end of the buffer.
3032 */
bf41a158 3033 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3034 /* discarded commits can make the page empty */
3035 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3036 return;
d769041f 3037 rb_inc_iter(iter);
7a8e76a3
SR
3038 return;
3039 }
3040
3041 event = rb_iter_head_event(iter);
3042
3043 length = rb_event_length(event);
3044
3045 /*
3046 * This should not be called to advance the header if we are
3047 * at the tail of the buffer.
3048 */
3e89c7bb 3049 if (RB_WARN_ON(cpu_buffer,
f536aafc 3050 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3051 (iter->head + length > rb_commit_index(cpu_buffer))))
3052 return;
7a8e76a3
SR
3053
3054 rb_update_iter_read_stamp(iter, event);
3055
3056 iter->head += length;
3057
3058 /* check for end of page padding */
bf41a158
SR
3059 if ((iter->head >= rb_page_size(iter->head_page)) &&
3060 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3061 rb_advance_iter(iter);
3062}
3063
66a8cb95
SR
3064static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3065{
3066 return cpu_buffer->lost_events;
3067}
3068
f83c9d0f 3069static struct ring_buffer_event *
66a8cb95
SR
3070rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3071 unsigned long *lost_events)
7a8e76a3 3072{
7a8e76a3 3073 struct ring_buffer_event *event;
d769041f 3074 struct buffer_page *reader;
818e3dd3 3075 int nr_loops = 0;
7a8e76a3 3076
7a8e76a3 3077 again:
818e3dd3 3078 /*
69d1b839
SR
3079 * We repeat when a time extend is encountered.
3080 * Since the time extend is always attached to a data event,
3081 * we should never loop more than once.
3082 * (We never hit the following condition more than twice).
818e3dd3 3083 */
69d1b839 3084 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3085 return NULL;
818e3dd3 3086
d769041f
SR
3087 reader = rb_get_reader_page(cpu_buffer);
3088 if (!reader)
7a8e76a3
SR
3089 return NULL;
3090
d769041f 3091 event = rb_reader_event(cpu_buffer);
7a8e76a3 3092
334d4169 3093 switch (event->type_len) {
7a8e76a3 3094 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3095 if (rb_null_event(event))
3096 RB_WARN_ON(cpu_buffer, 1);
3097 /*
3098 * Because the writer could be discarding every
3099 * event it creates (which would probably be bad)
3100 * if we were to go back to "again" then we may never
3101 * catch up, and will trigger the warn on, or lock
3102 * the box. Return the padding, and we will release
3103 * the current locks, and try again.
3104 */
2d622719 3105 return event;
7a8e76a3
SR
3106
3107 case RINGBUF_TYPE_TIME_EXTEND:
3108 /* Internal data, OK to advance */
d769041f 3109 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3110 goto again;
3111
3112 case RINGBUF_TYPE_TIME_STAMP:
3113 /* FIXME: not implemented */
d769041f 3114 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3115 goto again;
3116
3117 case RINGBUF_TYPE_DATA:
3118 if (ts) {
3119 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3120 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3121 cpu_buffer->cpu, ts);
7a8e76a3 3122 }
66a8cb95
SR
3123 if (lost_events)
3124 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3125 return event;
3126
3127 default:
3128 BUG();
3129 }
3130
3131 return NULL;
3132}
c4f50183 3133EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3134
f83c9d0f
SR
3135static struct ring_buffer_event *
3136rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3137{
3138 struct ring_buffer *buffer;
3139 struct ring_buffer_per_cpu *cpu_buffer;
3140 struct ring_buffer_event *event;
818e3dd3 3141 int nr_loops = 0;
7a8e76a3 3142
7a8e76a3
SR
3143 cpu_buffer = iter->cpu_buffer;
3144 buffer = cpu_buffer->buffer;
3145
492a74f4
SR
3146 /*
3147 * Check if someone performed a consuming read to
3148 * the buffer. A consuming read invalidates the iterator
3149 * and we need to reset the iterator in this case.
3150 */
3151 if (unlikely(iter->cache_read != cpu_buffer->read ||
3152 iter->cache_reader_page != cpu_buffer->reader_page))
3153 rb_iter_reset(iter);
3154
7a8e76a3 3155 again:
3c05d748
SR
3156 if (ring_buffer_iter_empty(iter))
3157 return NULL;
3158
818e3dd3 3159 /*
69d1b839
SR
3160 * We repeat when a time extend is encountered.
3161 * Since the time extend is always attached to a data event,
3162 * we should never loop more than once.
3163 * (We never hit the following condition more than twice).
818e3dd3 3164 */
69d1b839 3165 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3166 return NULL;
818e3dd3 3167
7a8e76a3
SR
3168 if (rb_per_cpu_empty(cpu_buffer))
3169 return NULL;
3170
3c05d748
SR
3171 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3172 rb_inc_iter(iter);
3173 goto again;
3174 }
3175
7a8e76a3
SR
3176 event = rb_iter_head_event(iter);
3177
334d4169 3178 switch (event->type_len) {
7a8e76a3 3179 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3180 if (rb_null_event(event)) {
3181 rb_inc_iter(iter);
3182 goto again;
3183 }
3184 rb_advance_iter(iter);
3185 return event;
7a8e76a3
SR
3186
3187 case RINGBUF_TYPE_TIME_EXTEND:
3188 /* Internal data, OK to advance */
3189 rb_advance_iter(iter);
3190 goto again;
3191
3192 case RINGBUF_TYPE_TIME_STAMP:
3193 /* FIXME: not implemented */
3194 rb_advance_iter(iter);
3195 goto again;
3196
3197 case RINGBUF_TYPE_DATA:
3198 if (ts) {
3199 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3200 ring_buffer_normalize_time_stamp(buffer,
3201 cpu_buffer->cpu, ts);
7a8e76a3
SR
3202 }
3203 return event;
3204
3205 default:
3206 BUG();
3207 }
3208
3209 return NULL;
3210}
c4f50183 3211EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3212
8d707e8e
SR
3213static inline int rb_ok_to_lock(void)
3214{
3215 /*
3216 * If an NMI die dumps out the content of the ring buffer
3217 * do not grab locks. We also permanently disable the ring
3218 * buffer too. A one time deal is all you get from reading
3219 * the ring buffer from an NMI.
3220 */
464e85eb 3221 if (likely(!in_nmi()))
8d707e8e
SR
3222 return 1;
3223
3224 tracing_off_permanent();
3225 return 0;
3226}
3227
f83c9d0f
SR
3228/**
3229 * ring_buffer_peek - peek at the next event to be read
3230 * @buffer: The ring buffer to read
3231 * @cpu: The cpu to peak at
3232 * @ts: The timestamp counter of this event.
66a8cb95 3233 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3234 *
3235 * This will return the event that will be read next, but does
3236 * not consume the data.
3237 */
3238struct ring_buffer_event *
66a8cb95
SR
3239ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3240 unsigned long *lost_events)
f83c9d0f
SR
3241{
3242 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3243 struct ring_buffer_event *event;
f83c9d0f 3244 unsigned long flags;
8d707e8e 3245 int dolock;
f83c9d0f 3246
554f786e 3247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3248 return NULL;
554f786e 3249
8d707e8e 3250 dolock = rb_ok_to_lock();
2d622719 3251 again:
8d707e8e
SR
3252 local_irq_save(flags);
3253 if (dolock)
3254 spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3255 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3256 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3257 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3258 if (dolock)
3259 spin_unlock(&cpu_buffer->reader_lock);
3260 local_irq_restore(flags);
f83c9d0f 3261
1b959e18 3262 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3263 goto again;
2d622719 3264
f83c9d0f
SR
3265 return event;
3266}
3267
3268/**
3269 * ring_buffer_iter_peek - peek at the next event to be read
3270 * @iter: The ring buffer iterator
3271 * @ts: The timestamp counter of this event.
3272 *
3273 * This will return the event that will be read next, but does
3274 * not increment the iterator.
3275 */
3276struct ring_buffer_event *
3277ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3278{
3279 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3280 struct ring_buffer_event *event;
3281 unsigned long flags;
3282
2d622719 3283 again:
f83c9d0f
SR
3284 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3285 event = rb_iter_peek(iter, ts);
3286 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3287
1b959e18 3288 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3289 goto again;
2d622719 3290
f83c9d0f
SR
3291 return event;
3292}
3293
7a8e76a3
SR
3294/**
3295 * ring_buffer_consume - return an event and consume it
3296 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3297 * @cpu: the cpu to read the buffer from
3298 * @ts: a variable to store the timestamp (may be NULL)
3299 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3300 *
3301 * Returns the next event in the ring buffer, and that event is consumed.
3302 * Meaning, that sequential reads will keep returning a different event,
3303 * and eventually empty the ring buffer if the producer is slower.
3304 */
3305struct ring_buffer_event *
66a8cb95
SR
3306ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3307 unsigned long *lost_events)
7a8e76a3 3308{
554f786e
SR
3309 struct ring_buffer_per_cpu *cpu_buffer;
3310 struct ring_buffer_event *event = NULL;
f83c9d0f 3311 unsigned long flags;
8d707e8e
SR
3312 int dolock;
3313
3314 dolock = rb_ok_to_lock();
7a8e76a3 3315
2d622719 3316 again:
554f786e
SR
3317 /* might be called in atomic */
3318 preempt_disable();
3319
9e01c1b7 3320 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3321 goto out;
7a8e76a3 3322
554f786e 3323 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3324 local_irq_save(flags);
3325 if (dolock)
3326 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3327
66a8cb95
SR
3328 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3329 if (event) {
3330 cpu_buffer->lost_events = 0;
469535a5 3331 rb_advance_reader(cpu_buffer);
66a8cb95 3332 }
7a8e76a3 3333
8d707e8e
SR
3334 if (dolock)
3335 spin_unlock(&cpu_buffer->reader_lock);
3336 local_irq_restore(flags);
f83c9d0f 3337
554f786e
SR
3338 out:
3339 preempt_enable();
3340
1b959e18 3341 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3342 goto again;
2d622719 3343
7a8e76a3
SR
3344 return event;
3345}
c4f50183 3346EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3347
3348/**
72c9ddfd 3349 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3350 * @buffer: The ring buffer to read from
3351 * @cpu: The cpu buffer to iterate over
3352 *
72c9ddfd
DM
3353 * This performs the initial preparations necessary to iterate
3354 * through the buffer. Memory is allocated, buffer recording
3355 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3356 *
72c9ddfd
DM
3357 * Disabling buffer recordng prevents the reading from being
3358 * corrupted. This is not a consuming read, so a producer is not
3359 * expected.
3360 *
3361 * After a sequence of ring_buffer_read_prepare calls, the user is
3362 * expected to make at least one call to ring_buffer_prepare_sync.
3363 * Afterwards, ring_buffer_read_start is invoked to get things going
3364 * for real.
3365 *
3366 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3367 */
3368struct ring_buffer_iter *
72c9ddfd 3369ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3370{
3371 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3372 struct ring_buffer_iter *iter;
7a8e76a3 3373
9e01c1b7 3374 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3375 return NULL;
7a8e76a3
SR
3376
3377 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3378 if (!iter)
8aabee57 3379 return NULL;
7a8e76a3
SR
3380
3381 cpu_buffer = buffer->buffers[cpu];
3382
3383 iter->cpu_buffer = cpu_buffer;
3384
3385 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3386
3387 return iter;
3388}
3389EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3390
3391/**
3392 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3393 *
3394 * All previously invoked ring_buffer_read_prepare calls to prepare
3395 * iterators will be synchronized. Afterwards, read_buffer_read_start
3396 * calls on those iterators are allowed.
3397 */
3398void
3399ring_buffer_read_prepare_sync(void)
3400{
7a8e76a3 3401 synchronize_sched();
72c9ddfd
DM
3402}
3403EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3404
3405/**
3406 * ring_buffer_read_start - start a non consuming read of the buffer
3407 * @iter: The iterator returned by ring_buffer_read_prepare
3408 *
3409 * This finalizes the startup of an iteration through the buffer.
3410 * The iterator comes from a call to ring_buffer_read_prepare and
3411 * an intervening ring_buffer_read_prepare_sync must have been
3412 * performed.
3413 *
3414 * Must be paired with ring_buffer_finish.
3415 */
3416void
3417ring_buffer_read_start(struct ring_buffer_iter *iter)
3418{
3419 struct ring_buffer_per_cpu *cpu_buffer;
3420 unsigned long flags;
3421
3422 if (!iter)
3423 return;
3424
3425 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3426
f83c9d0f 3427 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3428 arch_spin_lock(&cpu_buffer->lock);
642edba5 3429 rb_iter_reset(iter);
0199c4e6 3430 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3431 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3432}
c4f50183 3433EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3434
3435/**
3436 * ring_buffer_finish - finish reading the iterator of the buffer
3437 * @iter: The iterator retrieved by ring_buffer_start
3438 *
3439 * This re-enables the recording to the buffer, and frees the
3440 * iterator.
3441 */
3442void
3443ring_buffer_read_finish(struct ring_buffer_iter *iter)
3444{
3445 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3446
3447 atomic_dec(&cpu_buffer->record_disabled);
3448 kfree(iter);
3449}
c4f50183 3450EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3451
3452/**
3453 * ring_buffer_read - read the next item in the ring buffer by the iterator
3454 * @iter: The ring buffer iterator
3455 * @ts: The time stamp of the event read.
3456 *
3457 * This reads the next event in the ring buffer and increments the iterator.
3458 */
3459struct ring_buffer_event *
3460ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3461{
3462 struct ring_buffer_event *event;
f83c9d0f
SR
3463 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3464 unsigned long flags;
7a8e76a3 3465
f83c9d0f 3466 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3467 again:
f83c9d0f 3468 event = rb_iter_peek(iter, ts);
7a8e76a3 3469 if (!event)
f83c9d0f 3470 goto out;
7a8e76a3 3471
7e9391cf
SR
3472 if (event->type_len == RINGBUF_TYPE_PADDING)
3473 goto again;
3474
7a8e76a3 3475 rb_advance_iter(iter);
f83c9d0f
SR
3476 out:
3477 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3478
3479 return event;
3480}
c4f50183 3481EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3482
3483/**
3484 * ring_buffer_size - return the size of the ring buffer (in bytes)
3485 * @buffer: The ring buffer.
3486 */
3487unsigned long ring_buffer_size(struct ring_buffer *buffer)
3488{
3489 return BUF_PAGE_SIZE * buffer->pages;
3490}
c4f50183 3491EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3492
3493static void
3494rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3495{
77ae365e
SR
3496 rb_head_page_deactivate(cpu_buffer);
3497
7a8e76a3 3498 cpu_buffer->head_page
3adc54fa 3499 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3500 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3501 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3502 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3503
6f807acd 3504 cpu_buffer->head_page->read = 0;
bf41a158
SR
3505
3506 cpu_buffer->tail_page = cpu_buffer->head_page;
3507 cpu_buffer->commit_page = cpu_buffer->head_page;
3508
3509 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3510 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3511 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3512 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3513 cpu_buffer->reader_page->read = 0;
7a8e76a3 3514
77ae365e
SR
3515 local_set(&cpu_buffer->commit_overrun, 0);
3516 local_set(&cpu_buffer->overrun, 0);
e4906eff 3517 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3518 local_set(&cpu_buffer->committing, 0);
3519 local_set(&cpu_buffer->commits, 0);
77ae365e 3520 cpu_buffer->read = 0;
69507c06
SR
3521
3522 cpu_buffer->write_stamp = 0;
3523 cpu_buffer->read_stamp = 0;
77ae365e 3524
66a8cb95
SR
3525 cpu_buffer->lost_events = 0;
3526 cpu_buffer->last_overrun = 0;
3527
77ae365e 3528 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3529}
3530
3531/**
3532 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3533 * @buffer: The ring buffer to reset a per cpu buffer of
3534 * @cpu: The CPU buffer to be reset
3535 */
3536void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3537{
3538 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3539 unsigned long flags;
3540
9e01c1b7 3541 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3542 return;
7a8e76a3 3543
41ede23e
SR
3544 atomic_inc(&cpu_buffer->record_disabled);
3545
f83c9d0f
SR
3546 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3547
41b6a95d
SR
3548 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3549 goto out;
3550
0199c4e6 3551 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3552
3553 rb_reset_cpu(cpu_buffer);
3554
0199c4e6 3555 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3556
41b6a95d 3557 out:
f83c9d0f 3558 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3559
3560 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3561}
c4f50183 3562EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3563
3564/**
3565 * ring_buffer_reset - reset a ring buffer
3566 * @buffer: The ring buffer to reset all cpu buffers
3567 */
3568void ring_buffer_reset(struct ring_buffer *buffer)
3569{
7a8e76a3
SR
3570 int cpu;
3571
7a8e76a3 3572 for_each_buffer_cpu(buffer, cpu)
d769041f 3573 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3574}
c4f50183 3575EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3576
3577/**
3578 * rind_buffer_empty - is the ring buffer empty?
3579 * @buffer: The ring buffer to test
3580 */
3581int ring_buffer_empty(struct ring_buffer *buffer)
3582{
3583 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3584 unsigned long flags;
8d707e8e 3585 int dolock;
7a8e76a3 3586 int cpu;
d4788207 3587 int ret;
7a8e76a3 3588
8d707e8e 3589 dolock = rb_ok_to_lock();
7a8e76a3
SR
3590
3591 /* yes this is racy, but if you don't like the race, lock the buffer */
3592 for_each_buffer_cpu(buffer, cpu) {
3593 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3594 local_irq_save(flags);
3595 if (dolock)
3596 spin_lock(&cpu_buffer->reader_lock);
d4788207 3597 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3598 if (dolock)
3599 spin_unlock(&cpu_buffer->reader_lock);
3600 local_irq_restore(flags);
3601
d4788207 3602 if (!ret)
7a8e76a3
SR
3603 return 0;
3604 }
554f786e 3605
7a8e76a3
SR
3606 return 1;
3607}
c4f50183 3608EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3609
3610/**
3611 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3612 * @buffer: The ring buffer
3613 * @cpu: The CPU buffer to test
3614 */
3615int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3616{
3617 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3618 unsigned long flags;
8d707e8e 3619 int dolock;
8aabee57 3620 int ret;
7a8e76a3 3621
9e01c1b7 3622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3623 return 1;
7a8e76a3 3624
8d707e8e
SR
3625 dolock = rb_ok_to_lock();
3626
7a8e76a3 3627 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3628 local_irq_save(flags);
3629 if (dolock)
3630 spin_lock(&cpu_buffer->reader_lock);
554f786e 3631 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3632 if (dolock)
3633 spin_unlock(&cpu_buffer->reader_lock);
3634 local_irq_restore(flags);
554f786e
SR
3635
3636 return ret;
7a8e76a3 3637}
c4f50183 3638EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3639
85bac32c 3640#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3641/**
3642 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3643 * @buffer_a: One buffer to swap with
3644 * @buffer_b: The other buffer to swap with
3645 *
3646 * This function is useful for tracers that want to take a "snapshot"
3647 * of a CPU buffer and has another back up buffer lying around.
3648 * it is expected that the tracer handles the cpu buffer not being
3649 * used at the moment.
3650 */
3651int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3652 struct ring_buffer *buffer_b, int cpu)
3653{
3654 struct ring_buffer_per_cpu *cpu_buffer_a;
3655 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3656 int ret = -EINVAL;
3657
9e01c1b7
RR
3658 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3659 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3660 goto out;
7a8e76a3
SR
3661
3662 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3663 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3664 goto out;
3665
3666 ret = -EAGAIN;
7a8e76a3 3667
97b17efe 3668 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3669 goto out;
97b17efe
SR
3670
3671 if (atomic_read(&buffer_a->record_disabled))
554f786e 3672 goto out;
97b17efe
SR
3673
3674 if (atomic_read(&buffer_b->record_disabled))
554f786e 3675 goto out;
97b17efe 3676
7a8e76a3
SR
3677 cpu_buffer_a = buffer_a->buffers[cpu];
3678 cpu_buffer_b = buffer_b->buffers[cpu];
3679
97b17efe 3680 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3681 goto out;
97b17efe
SR
3682
3683 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3684 goto out;
97b17efe 3685
7a8e76a3
SR
3686 /*
3687 * We can't do a synchronize_sched here because this
3688 * function can be called in atomic context.
3689 * Normally this will be called from the same CPU as cpu.
3690 * If not it's up to the caller to protect this.
3691 */
3692 atomic_inc(&cpu_buffer_a->record_disabled);
3693 atomic_inc(&cpu_buffer_b->record_disabled);
3694
98277991
SR
3695 ret = -EBUSY;
3696 if (local_read(&cpu_buffer_a->committing))
3697 goto out_dec;
3698 if (local_read(&cpu_buffer_b->committing))
3699 goto out_dec;
3700
7a8e76a3
SR
3701 buffer_a->buffers[cpu] = cpu_buffer_b;
3702 buffer_b->buffers[cpu] = cpu_buffer_a;
3703
3704 cpu_buffer_b->buffer = buffer_a;
3705 cpu_buffer_a->buffer = buffer_b;
3706
98277991
SR
3707 ret = 0;
3708
3709out_dec:
7a8e76a3
SR
3710 atomic_dec(&cpu_buffer_a->record_disabled);
3711 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3712out:
554f786e 3713 return ret;
7a8e76a3 3714}
c4f50183 3715EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3716#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3717
8789a9e7
SR
3718/**
3719 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3720 * @buffer: the buffer to allocate for.
3721 *
3722 * This function is used in conjunction with ring_buffer_read_page.
3723 * When reading a full page from the ring buffer, these functions
3724 * can be used to speed up the process. The calling function should
3725 * allocate a few pages first with this function. Then when it
3726 * needs to get pages from the ring buffer, it passes the result
3727 * of this function into ring_buffer_read_page, which will swap
3728 * the page that was allocated, with the read page of the buffer.
3729 *
3730 * Returns:
3731 * The page allocated, or NULL on error.
3732 */
3733void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3734{
044fa782 3735 struct buffer_data_page *bpage;
ef7a4a16 3736 unsigned long addr;
8789a9e7
SR
3737
3738 addr = __get_free_page(GFP_KERNEL);
3739 if (!addr)
3740 return NULL;
3741
044fa782 3742 bpage = (void *)addr;
8789a9e7 3743
ef7a4a16
SR
3744 rb_init_page(bpage);
3745
044fa782 3746 return bpage;
8789a9e7 3747}
d6ce96da 3748EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3749
3750/**
3751 * ring_buffer_free_read_page - free an allocated read page
3752 * @buffer: the buffer the page was allocate for
3753 * @data: the page to free
3754 *
3755 * Free a page allocated from ring_buffer_alloc_read_page.
3756 */
3757void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3758{
3759 free_page((unsigned long)data);
3760}
d6ce96da 3761EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3762
3763/**
3764 * ring_buffer_read_page - extract a page from the ring buffer
3765 * @buffer: buffer to extract from
3766 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3767 * @len: amount to extract
8789a9e7
SR
3768 * @cpu: the cpu of the buffer to extract
3769 * @full: should the extraction only happen when the page is full.
3770 *
3771 * This function will pull out a page from the ring buffer and consume it.
3772 * @data_page must be the address of the variable that was returned
3773 * from ring_buffer_alloc_read_page. This is because the page might be used
3774 * to swap with a page in the ring buffer.
3775 *
3776 * for example:
b85fa01e 3777 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3778 * if (!rpage)
3779 * return error;
ef7a4a16 3780 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3781 * if (ret >= 0)
3782 * process_page(rpage, ret);
8789a9e7
SR
3783 *
3784 * When @full is set, the function will not return true unless
3785 * the writer is off the reader page.
3786 *
3787 * Note: it is up to the calling functions to handle sleeps and wakeups.
3788 * The ring buffer can be used anywhere in the kernel and can not
3789 * blindly call wake_up. The layer that uses the ring buffer must be
3790 * responsible for that.
3791 *
3792 * Returns:
667d2412
LJ
3793 * >=0 if data has been transferred, returns the offset of consumed data.
3794 * <0 if no data has been transferred.
8789a9e7
SR
3795 */
3796int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3797 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3798{
3799 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3800 struct ring_buffer_event *event;
044fa782 3801 struct buffer_data_page *bpage;
ef7a4a16 3802 struct buffer_page *reader;
ff0ff84a 3803 unsigned long missed_events;
8789a9e7 3804 unsigned long flags;
ef7a4a16 3805 unsigned int commit;
667d2412 3806 unsigned int read;
4f3640f8 3807 u64 save_timestamp;
667d2412 3808 int ret = -1;
8789a9e7 3809
554f786e
SR
3810 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3811 goto out;
3812
474d32b6
SR
3813 /*
3814 * If len is not big enough to hold the page header, then
3815 * we can not copy anything.
3816 */
3817 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3818 goto out;
474d32b6
SR
3819
3820 len -= BUF_PAGE_HDR_SIZE;
3821
8789a9e7 3822 if (!data_page)
554f786e 3823 goto out;
8789a9e7 3824
044fa782
SR
3825 bpage = *data_page;
3826 if (!bpage)
554f786e 3827 goto out;
8789a9e7
SR
3828
3829 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3830
ef7a4a16
SR
3831 reader = rb_get_reader_page(cpu_buffer);
3832 if (!reader)
554f786e 3833 goto out_unlock;
8789a9e7 3834
ef7a4a16
SR
3835 event = rb_reader_event(cpu_buffer);
3836
3837 read = reader->read;
3838 commit = rb_page_commit(reader);
667d2412 3839
66a8cb95 3840 /* Check if any events were dropped */
ff0ff84a 3841 missed_events = cpu_buffer->lost_events;
66a8cb95 3842
8789a9e7 3843 /*
474d32b6
SR
3844 * If this page has been partially read or
3845 * if len is not big enough to read the rest of the page or
3846 * a writer is still on the page, then
3847 * we must copy the data from the page to the buffer.
3848 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3849 */
474d32b6 3850 if (read || (len < (commit - read)) ||
ef7a4a16 3851 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3852 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3853 unsigned int rpos = read;
3854 unsigned int pos = 0;
ef7a4a16 3855 unsigned int size;
8789a9e7
SR
3856
3857 if (full)
554f786e 3858 goto out_unlock;
8789a9e7 3859
ef7a4a16
SR
3860 if (len > (commit - read))
3861 len = (commit - read);
3862
69d1b839
SR
3863 /* Always keep the time extend and data together */
3864 size = rb_event_ts_length(event);
ef7a4a16
SR
3865
3866 if (len < size)
554f786e 3867 goto out_unlock;
ef7a4a16 3868
4f3640f8
SR
3869 /* save the current timestamp, since the user will need it */
3870 save_timestamp = cpu_buffer->read_stamp;
3871
ef7a4a16
SR
3872 /* Need to copy one event at a time */
3873 do {
e1e35927
DS
3874 /* We need the size of one event, because
3875 * rb_advance_reader only advances by one event,
3876 * whereas rb_event_ts_length may include the size of
3877 * one or two events.
3878 * We have already ensured there's enough space if this
3879 * is a time extend. */
3880 size = rb_event_length(event);
474d32b6 3881 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3882
3883 len -= size;
3884
3885 rb_advance_reader(cpu_buffer);
474d32b6
SR
3886 rpos = reader->read;
3887 pos += size;
ef7a4a16 3888
18fab912
HY
3889 if (rpos >= commit)
3890 break;
3891
ef7a4a16 3892 event = rb_reader_event(cpu_buffer);
69d1b839
SR
3893 /* Always keep the time extend and data together */
3894 size = rb_event_ts_length(event);
e1e35927 3895 } while (len >= size);
667d2412
LJ
3896
3897 /* update bpage */
ef7a4a16 3898 local_set(&bpage->commit, pos);
4f3640f8 3899 bpage->time_stamp = save_timestamp;
ef7a4a16 3900
474d32b6
SR
3901 /* we copied everything to the beginning */
3902 read = 0;
8789a9e7 3903 } else {
afbab76a 3904 /* update the entry counter */
77ae365e 3905 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3906
8789a9e7 3907 /* swap the pages */
044fa782 3908 rb_init_page(bpage);
ef7a4a16
SR
3909 bpage = reader->page;
3910 reader->page = *data_page;
3911 local_set(&reader->write, 0);
778c55d4 3912 local_set(&reader->entries, 0);
ef7a4a16 3913 reader->read = 0;
044fa782 3914 *data_page = bpage;
ff0ff84a
SR
3915
3916 /*
3917 * Use the real_end for the data size,
3918 * This gives us a chance to store the lost events
3919 * on the page.
3920 */
3921 if (reader->real_end)
3922 local_set(&bpage->commit, reader->real_end);
8789a9e7 3923 }
667d2412 3924 ret = read;
8789a9e7 3925
66a8cb95 3926 cpu_buffer->lost_events = 0;
2711ca23
SR
3927
3928 commit = local_read(&bpage->commit);
66a8cb95
SR
3929 /*
3930 * Set a flag in the commit field if we lost events
3931 */
ff0ff84a 3932 if (missed_events) {
ff0ff84a
SR
3933 /* If there is room at the end of the page to save the
3934 * missed events, then record it there.
3935 */
3936 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3937 memcpy(&bpage->data[commit], &missed_events,
3938 sizeof(missed_events));
3939 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 3940 commit += sizeof(missed_events);
ff0ff84a 3941 }
66a8cb95 3942 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 3943 }
66a8cb95 3944
2711ca23
SR
3945 /*
3946 * This page may be off to user land. Zero it out here.
3947 */
3948 if (commit < BUF_PAGE_SIZE)
3949 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3950
554f786e 3951 out_unlock:
8789a9e7
SR
3952 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3953
554f786e 3954 out:
8789a9e7
SR
3955 return ret;
3956}
d6ce96da 3957EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3958
1155de47 3959#ifdef CONFIG_TRACING
a3583244
SR
3960static ssize_t
3961rb_simple_read(struct file *filp, char __user *ubuf,
3962 size_t cnt, loff_t *ppos)
3963{
5e39841c 3964 unsigned long *p = filp->private_data;
a3583244
SR
3965 char buf[64];
3966 int r;
3967
033601a3
SR
3968 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3969 r = sprintf(buf, "permanently disabled\n");
3970 else
3971 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3972
3973 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3974}
3975
3976static ssize_t
3977rb_simple_write(struct file *filp, const char __user *ubuf,
3978 size_t cnt, loff_t *ppos)
3979{
5e39841c 3980 unsigned long *p = filp->private_data;
a3583244 3981 char buf[64];
5e39841c 3982 unsigned long val;
a3583244
SR
3983 int ret;
3984
3985 if (cnt >= sizeof(buf))
3986 return -EINVAL;
3987
3988 if (copy_from_user(&buf, ubuf, cnt))
3989 return -EFAULT;
3990
3991 buf[cnt] = 0;
3992
3993 ret = strict_strtoul(buf, 10, &val);
3994 if (ret < 0)
3995 return ret;
3996
033601a3
SR
3997 if (val)
3998 set_bit(RB_BUFFERS_ON_BIT, p);
3999 else
4000 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
4001
4002 (*ppos)++;
4003
4004 return cnt;
4005}
4006
5e2336a0 4007static const struct file_operations rb_simple_fops = {
a3583244
SR
4008 .open = tracing_open_generic,
4009 .read = rb_simple_read,
4010 .write = rb_simple_write,
6038f373 4011 .llseek = default_llseek,
a3583244
SR
4012};
4013
4014
4015static __init int rb_init_debugfs(void)
4016{
4017 struct dentry *d_tracer;
a3583244
SR
4018
4019 d_tracer = tracing_init_dentry();
4020
5452af66
FW
4021 trace_create_file("tracing_on", 0644, d_tracer,
4022 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
4023
4024 return 0;
4025}
4026
4027fs_initcall(rb_init_debugfs);
1155de47 4028#endif
554f786e 4029
59222efe 4030#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4031static int rb_cpu_notify(struct notifier_block *self,
4032 unsigned long action, void *hcpu)
554f786e
SR
4033{
4034 struct ring_buffer *buffer =
4035 container_of(self, struct ring_buffer, cpu_notify);
4036 long cpu = (long)hcpu;
4037
4038 switch (action) {
4039 case CPU_UP_PREPARE:
4040 case CPU_UP_PREPARE_FROZEN:
3f237a79 4041 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4042 return NOTIFY_OK;
4043
4044 buffer->buffers[cpu] =
4045 rb_allocate_cpu_buffer(buffer, cpu);
4046 if (!buffer->buffers[cpu]) {
4047 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4048 cpu);
4049 return NOTIFY_OK;
4050 }
4051 smp_wmb();
3f237a79 4052 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4053 break;
4054 case CPU_DOWN_PREPARE:
4055 case CPU_DOWN_PREPARE_FROZEN:
4056 /*
4057 * Do nothing.
4058 * If we were to free the buffer, then the user would
4059 * lose any trace that was in the buffer.
4060 */
4061 break;
4062 default:
4063 break;
4064 }
4065 return NOTIFY_OK;
4066}
4067#endif