]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/trace/ring_buffer.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
af658dca 6#include <linux/trace_events.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
e6017571 9#include <linux/sched/clock.h>
0b07436d 10#include <linux/trace_seq.h>
7a8e76a3 11#include <linux/spinlock.h>
15693458 12#include <linux/irq_work.h>
7a8e76a3 13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3 26
79615760 27#include <asm/local.h>
182e9f5f 28
83f40318
VN
29static void update_pages_handler(struct work_struct *work);
30
d1b182a8
SR
31/*
32 * The ring buffer header is special. We must manually up keep it.
33 */
34int ring_buffer_print_entry_header(struct trace_seq *s)
35{
c0cd93aa
SRRH
36 trace_seq_puts(s, "# compressed entry header\n");
37 trace_seq_puts(s, "\ttype_len : 5 bits\n");
38 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
39 trace_seq_puts(s, "\tarray : 32 bits\n");
40 trace_seq_putc(s, '\n');
41 trace_seq_printf(s, "\tpadding : type == %d\n",
42 RINGBUF_TYPE_PADDING);
43 trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 RINGBUF_TYPE_TIME_EXTEND);
45 trace_seq_printf(s, "\tdata max type_len == %d\n",
46 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47
48 return !trace_seq_has_overflowed(s);
d1b182a8
SR
49}
50
5cc98548
SR
51/*
52 * The ring buffer is made up of a list of pages. A separate list of pages is
53 * allocated for each CPU. A writer may only write to a buffer that is
54 * associated with the CPU it is currently executing on. A reader may read
55 * from any per cpu buffer.
56 *
57 * The reader is special. For each per cpu buffer, the reader has its own
58 * reader page. When a reader has read the entire reader page, this reader
59 * page is swapped with another page in the ring buffer.
60 *
61 * Now, as long as the writer is off the reader page, the reader can do what
62 * ever it wants with that page. The writer will never write to that page
63 * again (as long as it is out of the ring buffer).
64 *
65 * Here's some silly ASCII art.
66 *
67 * +------+
68 * |reader| RING BUFFER
69 * |page |
70 * +------+ +---+ +---+ +---+
71 * | |-->| |-->| |
72 * +---+ +---+ +---+
73 * ^ |
74 * | |
75 * +---------------+
76 *
77 *
78 * +------+
79 * |reader| RING BUFFER
80 * |page |------------------v
81 * +------+ +---+ +---+ +---+
82 * | |-->| |-->| |
83 * +---+ +---+ +---+
84 * ^ |
85 * | |
86 * +---------------+
87 *
88 *
89 * +------+
90 * |reader| RING BUFFER
91 * |page |------------------v
92 * +------+ +---+ +---+ +---+
93 * ^ | |-->| |-->| |
94 * | +---+ +---+ +---+
95 * | |
96 * | |
97 * +------------------------------+
98 *
99 *
100 * +------+
101 * |buffer| RING BUFFER
102 * |page |------------------v
103 * +------+ +---+ +---+ +---+
104 * ^ | | | |-->| |
105 * | New +---+ +---+ +---+
106 * | Reader------^ |
107 * | page |
108 * +------------------------------+
109 *
110 *
111 * After we make this swap, the reader can hand this page off to the splice
112 * code and be done with it. It can even allocate a new page if it needs to
113 * and swap that into the ring buffer.
114 *
115 * We will be using cmpxchg soon to make all this lockless.
116 *
117 */
118
499e5470
SR
119/* Used for individual buffers (after the counter) */
120#define RB_BUFFER_OFF (1 << 20)
a3583244 121
499e5470 122#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 123
e3d6bf0a 124#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 125#define RB_ALIGNMENT 4U
334d4169 126#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 127#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 128
649508f6 129#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
130# define RB_FORCE_8BYTE_ALIGNMENT 0
131# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132#else
133# define RB_FORCE_8BYTE_ALIGNMENT 1
134# define RB_ARCH_ALIGNMENT 8U
135#endif
136
649508f6
JH
137#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138
334d4169
LJ
139/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
140#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
141
142enum {
143 RB_LEN_TIME_EXTEND = 8,
144 RB_LEN_TIME_STAMP = 16,
145};
146
69d1b839
SR
147#define skip_time_extend(event) \
148 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149
2d622719
TZ
150static inline int rb_null_event(struct ring_buffer_event *event)
151{
a1863c21 152 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
153}
154
155static void rb_event_set_padding(struct ring_buffer_event *event)
156{
a1863c21 157 /* padding has a NULL time_delta */
334d4169 158 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
159 event->time_delta = 0;
160}
161
34a148bf 162static unsigned
2d622719 163rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
164{
165 unsigned length;
166
334d4169
LJ
167 if (event->type_len)
168 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
169 else
170 length = event->array[0];
171 return length + RB_EVNT_HDR_SIZE;
172}
173
69d1b839
SR
174/*
175 * Return the length of the given event. Will return
176 * the length of the time extend if the event is a
177 * time extend.
178 */
179static inline unsigned
2d622719
TZ
180rb_event_length(struct ring_buffer_event *event)
181{
334d4169 182 switch (event->type_len) {
7a8e76a3 183 case RINGBUF_TYPE_PADDING:
2d622719
TZ
184 if (rb_null_event(event))
185 /* undefined */
186 return -1;
334d4169 187 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
188
189 case RINGBUF_TYPE_TIME_EXTEND:
190 return RB_LEN_TIME_EXTEND;
191
192 case RINGBUF_TYPE_TIME_STAMP:
193 return RB_LEN_TIME_STAMP;
194
195 case RINGBUF_TYPE_DATA:
2d622719 196 return rb_event_data_length(event);
7a8e76a3
SR
197 default:
198 BUG();
199 }
200 /* not hit */
201 return 0;
202}
203
69d1b839
SR
204/*
205 * Return total length of time extend and data,
206 * or just the event length for all other events.
207 */
208static inline unsigned
209rb_event_ts_length(struct ring_buffer_event *event)
210{
211 unsigned len = 0;
212
213 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
214 /* time extends include the data event after it */
215 len = RB_LEN_TIME_EXTEND;
216 event = skip_time_extend(event);
217 }
218 return len + rb_event_length(event);
219}
220
7a8e76a3
SR
221/**
222 * ring_buffer_event_length - return the length of the event
223 * @event: the event to get the length of
69d1b839
SR
224 *
225 * Returns the size of the data load of a data event.
226 * If the event is something other than a data event, it
227 * returns the size of the event itself. With the exception
228 * of a TIME EXTEND, where it still returns the size of the
229 * data load of the data event after it.
7a8e76a3
SR
230 */
231unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232{
69d1b839
SR
233 unsigned length;
234
235 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
236 event = skip_time_extend(event);
237
238 length = rb_event_length(event);
334d4169 239 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
240 return length;
241 length -= RB_EVNT_HDR_SIZE;
242 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
243 length -= sizeof(event->array[0]);
244 return length;
7a8e76a3 245}
c4f50183 246EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
247
248/* inline for ring buffer fast paths */
929ddbf3 249static __always_inline void *
7a8e76a3
SR
250rb_event_data(struct ring_buffer_event *event)
251{
69d1b839
SR
252 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
253 event = skip_time_extend(event);
334d4169 254 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 255 /* If length is in len field, then array[0] has the data */
334d4169 256 if (event->type_len)
7a8e76a3
SR
257 return (void *)&event->array[0];
258 /* Otherwise length is in array[0] and array[1] has the data */
259 return (void *)&event->array[1];
260}
261
262/**
263 * ring_buffer_event_data - return the data of the event
264 * @event: the event to get the data from
265 */
266void *ring_buffer_event_data(struct ring_buffer_event *event)
267{
268 return rb_event_data(event);
269}
c4f50183 270EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
271
272#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 273 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
274
275#define TS_SHIFT 27
276#define TS_MASK ((1ULL << TS_SHIFT) - 1)
277#define TS_DELTA_TEST (~TS_MASK)
278
66a8cb95
SR
279/* Flag when events were overwritten */
280#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
281/* Missed count stored at end */
282#define RB_MISSED_STORED (1 << 30)
66a8cb95 283
abc9b56d 284struct buffer_data_page {
e4c2ce82 285 u64 time_stamp; /* page time stamp */
c3706f00 286 local_t commit; /* write committed index */
649508f6 287 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
288};
289
77ae365e
SR
290/*
291 * Note, the buffer_page list must be first. The buffer pages
292 * are allocated in cache lines, which means that each buffer
293 * page will be at the beginning of a cache line, and thus
294 * the least significant bits will be zero. We use this to
295 * add flags in the list struct pointers, to make the ring buffer
296 * lockless.
297 */
abc9b56d 298struct buffer_page {
778c55d4 299 struct list_head list; /* list of buffer pages */
abc9b56d 300 local_t write; /* index for next write */
6f807acd 301 unsigned read; /* index for next read */
778c55d4 302 local_t entries; /* entries on this page */
ff0ff84a 303 unsigned long real_end; /* real end of data */
abc9b56d 304 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
305};
306
77ae365e
SR
307/*
308 * The buffer page counters, write and entries, must be reset
309 * atomically when crossing page boundaries. To synchronize this
310 * update, two counters are inserted into the number. One is
311 * the actual counter for the write position or count on the page.
312 *
313 * The other is a counter of updaters. Before an update happens
314 * the update partition of the counter is incremented. This will
315 * allow the updater to update the counter atomically.
316 *
317 * The counter is 20 bits, and the state data is 12.
318 */
319#define RB_WRITE_MASK 0xfffff
320#define RB_WRITE_INTCNT (1 << 20)
321
044fa782 322static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 323{
044fa782 324 local_set(&bpage->commit, 0);
abc9b56d
SR
325}
326
474d32b6
SR
327/**
328 * ring_buffer_page_len - the size of data on the page.
329 * @page: The page to read
330 *
331 * Returns the amount of data on the page, including buffer page header.
332 */
ef7a4a16
SR
333size_t ring_buffer_page_len(void *page)
334{
474d32b6
SR
335 return local_read(&((struct buffer_data_page *)page)->commit)
336 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
337}
338
ed56829c
SR
339/*
340 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
341 * this issue out.
342 */
34a148bf 343static void free_buffer_page(struct buffer_page *bpage)
ed56829c 344{
34a148bf 345 free_page((unsigned long)bpage->page);
e4c2ce82 346 kfree(bpage);
ed56829c
SR
347}
348
7a8e76a3
SR
349/*
350 * We need to fit the time_stamp delta into 27 bits.
351 */
352static inline int test_time_stamp(u64 delta)
353{
354 if (delta & TS_DELTA_TEST)
355 return 1;
356 return 0;
357}
358
474d32b6 359#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 360
be957c44
SR
361/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
362#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363
d1b182a8
SR
364int ring_buffer_print_page_header(struct trace_seq *s)
365{
366 struct buffer_data_page field;
c0cd93aa
SRRH
367
368 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
369 "offset:0;\tsize:%u;\tsigned:%u;\n",
370 (unsigned int)sizeof(field.time_stamp),
371 (unsigned int)is_signed_type(u64));
372
373 trace_seq_printf(s, "\tfield: local_t commit;\t"
374 "offset:%u;\tsize:%u;\tsigned:%u;\n",
375 (unsigned int)offsetof(typeof(field), commit),
376 (unsigned int)sizeof(field.commit),
377 (unsigned int)is_signed_type(long));
378
379 trace_seq_printf(s, "\tfield: int overwrite;\t"
380 "offset:%u;\tsize:%u;\tsigned:%u;\n",
381 (unsigned int)offsetof(typeof(field), commit),
382 1,
383 (unsigned int)is_signed_type(long));
384
385 trace_seq_printf(s, "\tfield: char data;\t"
386 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)offsetof(typeof(field), data),
388 (unsigned int)BUF_PAGE_SIZE,
389 (unsigned int)is_signed_type(char));
390
391 return !trace_seq_has_overflowed(s);
d1b182a8
SR
392}
393
15693458
SRRH
394struct rb_irq_work {
395 struct irq_work work;
396 wait_queue_head_t waiters;
1e0d6714 397 wait_queue_head_t full_waiters;
15693458 398 bool waiters_pending;
1e0d6714
SRRH
399 bool full_waiters_pending;
400 bool wakeup_full;
15693458
SRRH
401};
402
fcc742ea
SRRH
403/*
404 * Structure to hold event state and handle nested events.
405 */
406struct rb_event_info {
407 u64 ts;
408 u64 delta;
409 unsigned long length;
410 struct buffer_page *tail_page;
411 int add_timestamp;
412};
413
a497adb4
SRRH
414/*
415 * Used for which event context the event is in.
416 * NMI = 0
417 * IRQ = 1
418 * SOFTIRQ = 2
419 * NORMAL = 3
420 *
421 * See trace_recursive_lock() comment below for more details.
422 */
423enum {
424 RB_CTX_NMI,
425 RB_CTX_IRQ,
426 RB_CTX_SOFTIRQ,
427 RB_CTX_NORMAL,
428 RB_CTX_MAX
429};
430
7a8e76a3
SR
431/*
432 * head_page == tail_page && head == tail then buffer is empty.
433 */
434struct ring_buffer_per_cpu {
435 int cpu;
985023de 436 atomic_t record_disabled;
7a8e76a3 437 struct ring_buffer *buffer;
5389f6fa 438 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 439 arch_spinlock_t lock;
7a8e76a3 440 struct lock_class_key lock_key;
9b94a8fb 441 unsigned long nr_pages;
58a09ec6 442 unsigned int current_context;
3adc54fa 443 struct list_head *pages;
6f807acd
SR
444 struct buffer_page *head_page; /* read from head */
445 struct buffer_page *tail_page; /* write to tail */
c3706f00 446 struct buffer_page *commit_page; /* committed pages */
d769041f 447 struct buffer_page *reader_page;
66a8cb95
SR
448 unsigned long lost_events;
449 unsigned long last_overrun;
c64e148a 450 local_t entries_bytes;
e4906eff 451 local_t entries;
884bfe89
SP
452 local_t overrun;
453 local_t commit_overrun;
454 local_t dropped_events;
fa743953
SR
455 local_t committing;
456 local_t commits;
77ae365e 457 unsigned long read;
c64e148a 458 unsigned long read_bytes;
7a8e76a3
SR
459 u64 write_stamp;
460 u64 read_stamp;
438ced17 461 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 462 long nr_pages_to_update;
438ced17 463 struct list_head new_pages; /* new pages to add */
83f40318 464 struct work_struct update_pages_work;
05fdd70d 465 struct completion update_done;
15693458
SRRH
466
467 struct rb_irq_work irq_work;
7a8e76a3
SR
468};
469
470struct ring_buffer {
7a8e76a3
SR
471 unsigned flags;
472 int cpus;
7a8e76a3 473 atomic_t record_disabled;
83f40318 474 atomic_t resize_disabled;
00f62f61 475 cpumask_var_t cpumask;
7a8e76a3 476
1f8a6a10
PZ
477 struct lock_class_key *reader_lock_key;
478
7a8e76a3
SR
479 struct mutex mutex;
480
481 struct ring_buffer_per_cpu **buffers;
554f786e 482
b32614c0 483 struct hlist_node node;
37886f6a 484 u64 (*clock)(void);
15693458
SRRH
485
486 struct rb_irq_work irq_work;
7a8e76a3
SR
487};
488
489struct ring_buffer_iter {
490 struct ring_buffer_per_cpu *cpu_buffer;
491 unsigned long head;
492 struct buffer_page *head_page;
492a74f4
SR
493 struct buffer_page *cache_reader_page;
494 unsigned long cache_read;
7a8e76a3
SR
495 u64 read_stamp;
496};
497
15693458
SRRH
498/*
499 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
500 *
501 * Schedules a delayed work to wake up any task that is blocked on the
502 * ring buffer waiters queue.
503 */
504static void rb_wake_up_waiters(struct irq_work *work)
505{
506 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
507
508 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
509 if (rbwork->wakeup_full) {
510 rbwork->wakeup_full = false;
511 wake_up_all(&rbwork->full_waiters);
512 }
15693458
SRRH
513}
514
515/**
516 * ring_buffer_wait - wait for input to the ring buffer
517 * @buffer: buffer to wait on
518 * @cpu: the cpu buffer to wait on
e30f53aa 519 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
520 *
521 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
522 * as data is added to any of the @buffer's cpu buffers. Otherwise
523 * it will wait for data to be added to a specific cpu buffer.
524 */
e30f53aa 525int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
15693458 526{
e30f53aa 527 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
528 DEFINE_WAIT(wait);
529 struct rb_irq_work *work;
e30f53aa 530 int ret = 0;
15693458
SRRH
531
532 /*
533 * Depending on what the caller is waiting for, either any
534 * data in any cpu buffer, or a specific buffer, put the
535 * caller on the appropriate wait queue.
536 */
1e0d6714 537 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 538 work = &buffer->irq_work;
1e0d6714
SRRH
539 /* Full only makes sense on per cpu reads */
540 full = false;
541 } else {
8b8b3683
SRRH
542 if (!cpumask_test_cpu(cpu, buffer->cpumask))
543 return -ENODEV;
15693458
SRRH
544 cpu_buffer = buffer->buffers[cpu];
545 work = &cpu_buffer->irq_work;
546 }
547
548
e30f53aa 549 while (true) {
1e0d6714
SRRH
550 if (full)
551 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
552 else
553 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
554
555 /*
556 * The events can happen in critical sections where
557 * checking a work queue can cause deadlocks.
558 * After adding a task to the queue, this flag is set
559 * only to notify events to try to wake up the queue
560 * using irq_work.
561 *
562 * We don't clear it even if the buffer is no longer
563 * empty. The flag only causes the next event to run
564 * irq_work to do the work queue wake up. The worse
565 * that can happen if we race with !trace_empty() is that
566 * an event will cause an irq_work to try to wake up
567 * an empty queue.
568 *
569 * There's no reason to protect this flag either, as
570 * the work queue and irq_work logic will do the necessary
571 * synchronization for the wake ups. The only thing
572 * that is necessary is that the wake up happens after
573 * a task has been queued. It's OK for spurious wake ups.
574 */
1e0d6714
SRRH
575 if (full)
576 work->full_waiters_pending = true;
577 else
578 work->waiters_pending = true;
e30f53aa
RV
579
580 if (signal_pending(current)) {
581 ret = -EINTR;
582 break;
583 }
584
585 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
586 break;
587
588 if (cpu != RING_BUFFER_ALL_CPUS &&
589 !ring_buffer_empty_cpu(buffer, cpu)) {
590 unsigned long flags;
591 bool pagebusy;
592
593 if (!full)
594 break;
595
596 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
597 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
598 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
599
600 if (!pagebusy)
601 break;
602 }
15693458 603
15693458 604 schedule();
e30f53aa 605 }
15693458 606
1e0d6714
SRRH
607 if (full)
608 finish_wait(&work->full_waiters, &wait);
609 else
610 finish_wait(&work->waiters, &wait);
e30f53aa
RV
611
612 return ret;
15693458
SRRH
613}
614
615/**
616 * ring_buffer_poll_wait - poll on buffer input
617 * @buffer: buffer to wait on
618 * @cpu: the cpu buffer to wait on
619 * @filp: the file descriptor
620 * @poll_table: The poll descriptor
621 *
622 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
623 * as data is added to any of the @buffer's cpu buffers. Otherwise
624 * it will wait for data to be added to a specific cpu buffer.
625 *
626 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
627 * zero otherwise.
628 */
629int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
630 struct file *filp, poll_table *poll_table)
631{
632 struct ring_buffer_per_cpu *cpu_buffer;
633 struct rb_irq_work *work;
634
15693458
SRRH
635 if (cpu == RING_BUFFER_ALL_CPUS)
636 work = &buffer->irq_work;
637 else {
6721cb60
SRRH
638 if (!cpumask_test_cpu(cpu, buffer->cpumask))
639 return -EINVAL;
640
15693458
SRRH
641 cpu_buffer = buffer->buffers[cpu];
642 work = &cpu_buffer->irq_work;
643 }
644
15693458 645 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
646 work->waiters_pending = true;
647 /*
648 * There's a tight race between setting the waiters_pending and
649 * checking if the ring buffer is empty. Once the waiters_pending bit
650 * is set, the next event will wake the task up, but we can get stuck
651 * if there's only a single event in.
652 *
653 * FIXME: Ideally, we need a memory barrier on the writer side as well,
654 * but adding a memory barrier to all events will cause too much of a
655 * performance hit in the fast path. We only need a memory barrier when
656 * the buffer goes from empty to having content. But as this race is
657 * extremely small, and it's not a problem if another event comes in, we
658 * will fix it later.
659 */
660 smp_mb();
15693458
SRRH
661
662 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
663 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
664 return POLLIN | POLLRDNORM;
665 return 0;
666}
667
f536aafc 668/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
669#define RB_WARN_ON(b, cond) \
670 ({ \
671 int _____ret = unlikely(cond); \
672 if (_____ret) { \
673 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
674 struct ring_buffer_per_cpu *__b = \
675 (void *)b; \
676 atomic_inc(&__b->buffer->record_disabled); \
677 } else \
678 atomic_inc(&b->record_disabled); \
679 WARN_ON(1); \
680 } \
681 _____ret; \
3e89c7bb 682 })
f536aafc 683
37886f6a
SR
684/* Up this if you want to test the TIME_EXTENTS and normalization */
685#define DEBUG_SHIFT 0
686
6d3f1e12 687static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
688{
689 /* shift to debug/test normalization and TIME_EXTENTS */
690 return buffer->clock() << DEBUG_SHIFT;
691}
692
37886f6a
SR
693u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
694{
695 u64 time;
696
697 preempt_disable_notrace();
6d3f1e12 698 time = rb_time_stamp(buffer);
37886f6a
SR
699 preempt_enable_no_resched_notrace();
700
701 return time;
702}
703EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
704
705void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
706 int cpu, u64 *ts)
707{
708 /* Just stupid testing the normalize function and deltas */
709 *ts >>= DEBUG_SHIFT;
710}
711EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
712
77ae365e
SR
713/*
714 * Making the ring buffer lockless makes things tricky.
715 * Although writes only happen on the CPU that they are on,
716 * and they only need to worry about interrupts. Reads can
717 * happen on any CPU.
718 *
719 * The reader page is always off the ring buffer, but when the
720 * reader finishes with a page, it needs to swap its page with
721 * a new one from the buffer. The reader needs to take from
722 * the head (writes go to the tail). But if a writer is in overwrite
723 * mode and wraps, it must push the head page forward.
724 *
725 * Here lies the problem.
726 *
727 * The reader must be careful to replace only the head page, and
728 * not another one. As described at the top of the file in the
729 * ASCII art, the reader sets its old page to point to the next
730 * page after head. It then sets the page after head to point to
731 * the old reader page. But if the writer moves the head page
732 * during this operation, the reader could end up with the tail.
733 *
734 * We use cmpxchg to help prevent this race. We also do something
735 * special with the page before head. We set the LSB to 1.
736 *
737 * When the writer must push the page forward, it will clear the
738 * bit that points to the head page, move the head, and then set
739 * the bit that points to the new head page.
740 *
741 * We also don't want an interrupt coming in and moving the head
742 * page on another writer. Thus we use the second LSB to catch
743 * that too. Thus:
744 *
745 * head->list->prev->next bit 1 bit 0
746 * ------- -------
747 * Normal page 0 0
748 * Points to head page 0 1
749 * New head page 1 0
750 *
751 * Note we can not trust the prev pointer of the head page, because:
752 *
753 * +----+ +-----+ +-----+
754 * | |------>| T |---X--->| N |
755 * | |<------| | | |
756 * +----+ +-----+ +-----+
757 * ^ ^ |
758 * | +-----+ | |
759 * +----------| R |----------+ |
760 * | |<-----------+
761 * +-----+
762 *
763 * Key: ---X--> HEAD flag set in pointer
764 * T Tail page
765 * R Reader page
766 * N Next page
767 *
768 * (see __rb_reserve_next() to see where this happens)
769 *
770 * What the above shows is that the reader just swapped out
771 * the reader page with a page in the buffer, but before it
772 * could make the new header point back to the new page added
773 * it was preempted by a writer. The writer moved forward onto
774 * the new page added by the reader and is about to move forward
775 * again.
776 *
777 * You can see, it is legitimate for the previous pointer of
778 * the head (or any page) not to point back to itself. But only
779 * temporarially.
780 */
781
782#define RB_PAGE_NORMAL 0UL
783#define RB_PAGE_HEAD 1UL
784#define RB_PAGE_UPDATE 2UL
785
786
787#define RB_FLAG_MASK 3UL
788
789/* PAGE_MOVED is not part of the mask */
790#define RB_PAGE_MOVED 4UL
791
792/*
793 * rb_list_head - remove any bit
794 */
795static struct list_head *rb_list_head(struct list_head *list)
796{
797 unsigned long val = (unsigned long)list;
798
799 return (struct list_head *)(val & ~RB_FLAG_MASK);
800}
801
802/*
6d3f1e12 803 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
804 *
805 * Because the reader may move the head_page pointer, we can
806 * not trust what the head page is (it may be pointing to
807 * the reader page). But if the next page is a header page,
808 * its flags will be non zero.
809 */
42b16b3f 810static inline int
77ae365e
SR
811rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
812 struct buffer_page *page, struct list_head *list)
813{
814 unsigned long val;
815
816 val = (unsigned long)list->next;
817
818 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
819 return RB_PAGE_MOVED;
820
821 return val & RB_FLAG_MASK;
822}
823
824/*
825 * rb_is_reader_page
826 *
827 * The unique thing about the reader page, is that, if the
828 * writer is ever on it, the previous pointer never points
829 * back to the reader page.
830 */
06ca3209 831static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
832{
833 struct list_head *list = page->list.prev;
834
835 return rb_list_head(list->next) != &page->list;
836}
837
838/*
839 * rb_set_list_to_head - set a list_head to be pointing to head.
840 */
841static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
842 struct list_head *list)
843{
844 unsigned long *ptr;
845
846 ptr = (unsigned long *)&list->next;
847 *ptr |= RB_PAGE_HEAD;
848 *ptr &= ~RB_PAGE_UPDATE;
849}
850
851/*
852 * rb_head_page_activate - sets up head page
853 */
854static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
855{
856 struct buffer_page *head;
857
858 head = cpu_buffer->head_page;
859 if (!head)
860 return;
861
862 /*
863 * Set the previous list pointer to have the HEAD flag.
864 */
865 rb_set_list_to_head(cpu_buffer, head->list.prev);
866}
867
868static void rb_list_head_clear(struct list_head *list)
869{
870 unsigned long *ptr = (unsigned long *)&list->next;
871
872 *ptr &= ~RB_FLAG_MASK;
873}
874
875/*
876 * rb_head_page_dactivate - clears head page ptr (for free list)
877 */
878static void
879rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
880{
881 struct list_head *hd;
882
883 /* Go through the whole list and clear any pointers found. */
884 rb_list_head_clear(cpu_buffer->pages);
885
886 list_for_each(hd, cpu_buffer->pages)
887 rb_list_head_clear(hd);
888}
889
890static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
891 struct buffer_page *head,
892 struct buffer_page *prev,
893 int old_flag, int new_flag)
894{
895 struct list_head *list;
896 unsigned long val = (unsigned long)&head->list;
897 unsigned long ret;
898
899 list = &prev->list;
900
901 val &= ~RB_FLAG_MASK;
902
08a40816
SR
903 ret = cmpxchg((unsigned long *)&list->next,
904 val | old_flag, val | new_flag);
77ae365e
SR
905
906 /* check if the reader took the page */
907 if ((ret & ~RB_FLAG_MASK) != val)
908 return RB_PAGE_MOVED;
909
910 return ret & RB_FLAG_MASK;
911}
912
913static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
914 struct buffer_page *head,
915 struct buffer_page *prev,
916 int old_flag)
917{
918 return rb_head_page_set(cpu_buffer, head, prev,
919 old_flag, RB_PAGE_UPDATE);
920}
921
922static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
923 struct buffer_page *head,
924 struct buffer_page *prev,
925 int old_flag)
926{
927 return rb_head_page_set(cpu_buffer, head, prev,
928 old_flag, RB_PAGE_HEAD);
929}
930
931static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
932 struct buffer_page *head,
933 struct buffer_page *prev,
934 int old_flag)
935{
936 return rb_head_page_set(cpu_buffer, head, prev,
937 old_flag, RB_PAGE_NORMAL);
938}
939
940static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
941 struct buffer_page **bpage)
942{
943 struct list_head *p = rb_list_head((*bpage)->list.next);
944
945 *bpage = list_entry(p, struct buffer_page, list);
946}
947
948static struct buffer_page *
949rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
950{
951 struct buffer_page *head;
952 struct buffer_page *page;
953 struct list_head *list;
954 int i;
955
956 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
957 return NULL;
958
959 /* sanity check */
960 list = cpu_buffer->pages;
961 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
962 return NULL;
963
964 page = head = cpu_buffer->head_page;
965 /*
966 * It is possible that the writer moves the header behind
967 * where we started, and we miss in one loop.
968 * A second loop should grab the header, but we'll do
969 * three loops just because I'm paranoid.
970 */
971 for (i = 0; i < 3; i++) {
972 do {
973 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
974 cpu_buffer->head_page = page;
975 return page;
976 }
977 rb_inc_page(cpu_buffer, &page);
978 } while (page != head);
979 }
980
981 RB_WARN_ON(cpu_buffer, 1);
982
983 return NULL;
984}
985
986static int rb_head_page_replace(struct buffer_page *old,
987 struct buffer_page *new)
988{
989 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
990 unsigned long val;
991 unsigned long ret;
992
993 val = *ptr & ~RB_FLAG_MASK;
994 val |= RB_PAGE_HEAD;
995
08a40816 996 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
997
998 return ret == val;
999}
1000
1001/*
1002 * rb_tail_page_update - move the tail page forward
77ae365e 1003 */
70004986 1004static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1005 struct buffer_page *tail_page,
1006 struct buffer_page *next_page)
1007{
77ae365e
SR
1008 unsigned long old_entries;
1009 unsigned long old_write;
77ae365e
SR
1010
1011 /*
1012 * The tail page now needs to be moved forward.
1013 *
1014 * We need to reset the tail page, but without messing
1015 * with possible erasing of data brought in by interrupts
1016 * that have moved the tail page and are currently on it.
1017 *
1018 * We add a counter to the write field to denote this.
1019 */
1020 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1021 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1022
1023 /*
1024 * Just make sure we have seen our old_write and synchronize
1025 * with any interrupts that come in.
1026 */
1027 barrier();
1028
1029 /*
1030 * If the tail page is still the same as what we think
1031 * it is, then it is up to us to update the tail
1032 * pointer.
1033 */
8573636e 1034 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1035 /* Zero the write counter */
1036 unsigned long val = old_write & ~RB_WRITE_MASK;
1037 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1038
1039 /*
1040 * This will only succeed if an interrupt did
1041 * not come in and change it. In which case, we
1042 * do not want to modify it.
da706d8b
LJ
1043 *
1044 * We add (void) to let the compiler know that we do not care
1045 * about the return value of these functions. We use the
1046 * cmpxchg to only update if an interrupt did not already
1047 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1048 */
da706d8b
LJ
1049 (void)local_cmpxchg(&next_page->write, old_write, val);
1050 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1051
1052 /*
1053 * No need to worry about races with clearing out the commit.
1054 * it only can increment when a commit takes place. But that
1055 * only happens in the outer most nested commit.
1056 */
1057 local_set(&next_page->page->commit, 0);
1058
70004986
SRRH
1059 /* Again, either we update tail_page or an interrupt does */
1060 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1061 }
77ae365e
SR
1062}
1063
1064static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1065 struct buffer_page *bpage)
1066{
1067 unsigned long val = (unsigned long)bpage;
1068
1069 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1070 return 1;
1071
1072 return 0;
1073}
1074
1075/**
1076 * rb_check_list - make sure a pointer to a list has the last bits zero
1077 */
1078static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1079 struct list_head *list)
1080{
1081 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1082 return 1;
1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1084 return 1;
1085 return 0;
1086}
1087
7a8e76a3 1088/**
d611851b 1089 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1090 * @cpu_buffer: CPU buffer with pages to test
1091 *
c3706f00 1092 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1093 * been corrupted.
1094 */
1095static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1096{
3adc54fa 1097 struct list_head *head = cpu_buffer->pages;
044fa782 1098 struct buffer_page *bpage, *tmp;
7a8e76a3 1099
308f7eeb
SR
1100 /* Reset the head page if it exists */
1101 if (cpu_buffer->head_page)
1102 rb_set_head_page(cpu_buffer);
1103
77ae365e
SR
1104 rb_head_page_deactivate(cpu_buffer);
1105
3e89c7bb
SR
1106 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1107 return -1;
1108 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1109 return -1;
7a8e76a3 1110
77ae365e
SR
1111 if (rb_check_list(cpu_buffer, head))
1112 return -1;
1113
044fa782 1114 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1115 if (RB_WARN_ON(cpu_buffer,
044fa782 1116 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer,
044fa782 1119 bpage->list.prev->next != &bpage->list))
3e89c7bb 1120 return -1;
77ae365e
SR
1121 if (rb_check_list(cpu_buffer, &bpage->list))
1122 return -1;
7a8e76a3
SR
1123 }
1124
77ae365e
SR
1125 rb_head_page_activate(cpu_buffer);
1126
7a8e76a3
SR
1127 return 0;
1128}
1129
9b94a8fb 1130static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1131{
044fa782 1132 struct buffer_page *bpage, *tmp;
9b94a8fb 1133 long i;
3adc54fa 1134
7a8e76a3 1135 for (i = 0; i < nr_pages; i++) {
7ea59064 1136 struct page *page;
d7ec4bfe
VN
1137 /*
1138 * __GFP_NORETRY flag makes sure that the allocation fails
1139 * gracefully without invoking oom-killer and the system is
1140 * not destabilized.
1141 */
044fa782 1142 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1143 GFP_KERNEL | __GFP_NORETRY,
438ced17 1144 cpu_to_node(cpu));
044fa782 1145 if (!bpage)
e4c2ce82 1146 goto free_pages;
77ae365e 1147
438ced17 1148 list_add(&bpage->list, pages);
77ae365e 1149
438ced17 1150 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1151 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1152 if (!page)
7a8e76a3 1153 goto free_pages;
7ea59064 1154 bpage->page = page_address(page);
044fa782 1155 rb_init_page(bpage->page);
7a8e76a3
SR
1156 }
1157
438ced17
VN
1158 return 0;
1159
1160free_pages:
1161 list_for_each_entry_safe(bpage, tmp, pages, list) {
1162 list_del_init(&bpage->list);
1163 free_buffer_page(bpage);
1164 }
1165
1166 return -ENOMEM;
1167}
1168
1169static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1170 unsigned long nr_pages)
438ced17
VN
1171{
1172 LIST_HEAD(pages);
1173
1174 WARN_ON(!nr_pages);
1175
1176 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1177 return -ENOMEM;
1178
3adc54fa
SR
1179 /*
1180 * The ring buffer page list is a circular list that does not
1181 * start and end with a list head. All page list items point to
1182 * other pages.
1183 */
1184 cpu_buffer->pages = pages.next;
1185 list_del(&pages);
7a8e76a3 1186
438ced17
VN
1187 cpu_buffer->nr_pages = nr_pages;
1188
7a8e76a3
SR
1189 rb_check_pages(cpu_buffer);
1190
1191 return 0;
7a8e76a3
SR
1192}
1193
1194static struct ring_buffer_per_cpu *
9b94a8fb 1195rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1196{
1197 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1198 struct buffer_page *bpage;
7ea59064 1199 struct page *page;
7a8e76a3
SR
1200 int ret;
1201
1202 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1203 GFP_KERNEL, cpu_to_node(cpu));
1204 if (!cpu_buffer)
1205 return NULL;
1206
1207 cpu_buffer->cpu = cpu;
1208 cpu_buffer->buffer = buffer;
5389f6fa 1209 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1210 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1211 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1212 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1213 init_completion(&cpu_buffer->update_done);
15693458 1214 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1215 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1216 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1217
044fa782 1218 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1219 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1220 if (!bpage)
e4c2ce82
SR
1221 goto fail_free_buffer;
1222
77ae365e
SR
1223 rb_check_bpage(cpu_buffer, bpage);
1224
044fa782 1225 cpu_buffer->reader_page = bpage;
7ea59064
VN
1226 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1227 if (!page)
e4c2ce82 1228 goto fail_free_reader;
7ea59064 1229 bpage->page = page_address(page);
044fa782 1230 rb_init_page(bpage->page);
e4c2ce82 1231
d769041f 1232 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1233 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1234
438ced17 1235 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1236 if (ret < 0)
d769041f 1237 goto fail_free_reader;
7a8e76a3
SR
1238
1239 cpu_buffer->head_page
3adc54fa 1240 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1241 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1242
77ae365e
SR
1243 rb_head_page_activate(cpu_buffer);
1244
7a8e76a3
SR
1245 return cpu_buffer;
1246
d769041f
SR
1247 fail_free_reader:
1248 free_buffer_page(cpu_buffer->reader_page);
1249
7a8e76a3
SR
1250 fail_free_buffer:
1251 kfree(cpu_buffer);
1252 return NULL;
1253}
1254
1255static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1256{
3adc54fa 1257 struct list_head *head = cpu_buffer->pages;
044fa782 1258 struct buffer_page *bpage, *tmp;
7a8e76a3 1259
d769041f
SR
1260 free_buffer_page(cpu_buffer->reader_page);
1261
77ae365e
SR
1262 rb_head_page_deactivate(cpu_buffer);
1263
3adc54fa
SR
1264 if (head) {
1265 list_for_each_entry_safe(bpage, tmp, head, list) {
1266 list_del_init(&bpage->list);
1267 free_buffer_page(bpage);
1268 }
1269 bpage = list_entry(head, struct buffer_page, list);
044fa782 1270 free_buffer_page(bpage);
7a8e76a3 1271 }
3adc54fa 1272
7a8e76a3
SR
1273 kfree(cpu_buffer);
1274}
1275
1276/**
d611851b 1277 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1278 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1279 * @flags: attributes to set for the ring buffer.
1280 *
1281 * Currently the only flag that is available is the RB_FL_OVERWRITE
1282 * flag. This flag means that the buffer will overwrite old data
1283 * when the buffer wraps. If this flag is not set, the buffer will
1284 * drop data when the tail hits the head.
1285 */
1f8a6a10
PZ
1286struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1287 struct lock_class_key *key)
7a8e76a3
SR
1288{
1289 struct ring_buffer *buffer;
9b94a8fb 1290 long nr_pages;
7a8e76a3 1291 int bsize;
9b94a8fb 1292 int cpu;
b32614c0 1293 int ret;
7a8e76a3
SR
1294
1295 /* keep it in its own cache line */
1296 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1297 GFP_KERNEL);
1298 if (!buffer)
1299 return NULL;
1300
b18cc3de 1301 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1302 goto fail_free_buffer;
1303
438ced17 1304 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1305 buffer->flags = flags;
37886f6a 1306 buffer->clock = trace_clock_local;
1f8a6a10 1307 buffer->reader_lock_key = key;
7a8e76a3 1308
15693458 1309 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1310 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1311
7a8e76a3 1312 /* need at least two pages */
438ced17
VN
1313 if (nr_pages < 2)
1314 nr_pages = 2;
7a8e76a3 1315
7a8e76a3
SR
1316 buffer->cpus = nr_cpu_ids;
1317
1318 bsize = sizeof(void *) * nr_cpu_ids;
1319 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1320 GFP_KERNEL);
1321 if (!buffer->buffers)
9e01c1b7 1322 goto fail_free_cpumask;
7a8e76a3 1323
b32614c0
SAS
1324 cpu = raw_smp_processor_id();
1325 cpumask_set_cpu(cpu, buffer->cpumask);
1326 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1327 if (!buffer->buffers[cpu])
1328 goto fail_free_buffers;
7a8e76a3 1329
b32614c0
SAS
1330 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1331 if (ret < 0)
1332 goto fail_free_buffers;
554f786e 1333
7a8e76a3
SR
1334 mutex_init(&buffer->mutex);
1335
1336 return buffer;
1337
1338 fail_free_buffers:
1339 for_each_buffer_cpu(buffer, cpu) {
1340 if (buffer->buffers[cpu])
1341 rb_free_cpu_buffer(buffer->buffers[cpu]);
1342 }
1343 kfree(buffer->buffers);
1344
9e01c1b7
RR
1345 fail_free_cpumask:
1346 free_cpumask_var(buffer->cpumask);
1347
7a8e76a3
SR
1348 fail_free_buffer:
1349 kfree(buffer);
1350 return NULL;
1351}
1f8a6a10 1352EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1353
1354/**
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1357 */
1358void
1359ring_buffer_free(struct ring_buffer *buffer)
1360{
1361 int cpu;
1362
b32614c0 1363 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1364
7a8e76a3
SR
1365 for_each_buffer_cpu(buffer, cpu)
1366 rb_free_cpu_buffer(buffer->buffers[cpu]);
1367
bd3f0221 1368 kfree(buffer->buffers);
9e01c1b7
RR
1369 free_cpumask_var(buffer->cpumask);
1370
7a8e76a3
SR
1371 kfree(buffer);
1372}
c4f50183 1373EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1374
37886f6a
SR
1375void ring_buffer_set_clock(struct ring_buffer *buffer,
1376 u64 (*clock)(void))
1377{
1378 buffer->clock = clock;
1379}
1380
7a8e76a3
SR
1381static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1382
83f40318
VN
1383static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1384{
1385 return local_read(&bpage->entries) & RB_WRITE_MASK;
1386}
1387
1388static inline unsigned long rb_page_write(struct buffer_page *bpage)
1389{
1390 return local_read(&bpage->write) & RB_WRITE_MASK;
1391}
1392
5040b4b7 1393static int
9b94a8fb 1394rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1395{
83f40318
VN
1396 struct list_head *tail_page, *to_remove, *next_page;
1397 struct buffer_page *to_remove_page, *tmp_iter_page;
1398 struct buffer_page *last_page, *first_page;
9b94a8fb 1399 unsigned long nr_removed;
83f40318
VN
1400 unsigned long head_bit;
1401 int page_entries;
1402
1403 head_bit = 0;
7a8e76a3 1404
5389f6fa 1405 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1406 atomic_inc(&cpu_buffer->record_disabled);
1407 /*
1408 * We don't race with the readers since we have acquired the reader
1409 * lock. We also don't race with writers after disabling recording.
1410 * This makes it easy to figure out the first and the last page to be
1411 * removed from the list. We unlink all the pages in between including
1412 * the first and last pages. This is done in a busy loop so that we
1413 * lose the least number of traces.
1414 * The pages are freed after we restart recording and unlock readers.
1415 */
1416 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1417
83f40318
VN
1418 /*
1419 * tail page might be on reader page, we remove the next page
1420 * from the ring buffer
1421 */
1422 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1423 tail_page = rb_list_head(tail_page->next);
1424 to_remove = tail_page;
1425
1426 /* start of pages to remove */
1427 first_page = list_entry(rb_list_head(to_remove->next),
1428 struct buffer_page, list);
1429
1430 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1431 to_remove = rb_list_head(to_remove)->next;
1432 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1433 }
7a8e76a3 1434
83f40318 1435 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1436
83f40318
VN
1437 /*
1438 * Now we remove all pages between tail_page and next_page.
1439 * Make sure that we have head_bit value preserved for the
1440 * next page
1441 */
1442 tail_page->next = (struct list_head *)((unsigned long)next_page |
1443 head_bit);
1444 next_page = rb_list_head(next_page);
1445 next_page->prev = tail_page;
1446
1447 /* make sure pages points to a valid page in the ring buffer */
1448 cpu_buffer->pages = next_page;
1449
1450 /* update head page */
1451 if (head_bit)
1452 cpu_buffer->head_page = list_entry(next_page,
1453 struct buffer_page, list);
1454
1455 /*
1456 * change read pointer to make sure any read iterators reset
1457 * themselves
1458 */
1459 cpu_buffer->read = 0;
1460
1461 /* pages are removed, resume tracing and then free the pages */
1462 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1463 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1464
1465 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1466
1467 /* last buffer page to remove */
1468 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1469 list);
1470 tmp_iter_page = first_page;
1471
1472 do {
1473 to_remove_page = tmp_iter_page;
1474 rb_inc_page(cpu_buffer, &tmp_iter_page);
1475
1476 /* update the counters */
1477 page_entries = rb_page_entries(to_remove_page);
1478 if (page_entries) {
1479 /*
1480 * If something was added to this page, it was full
1481 * since it is not the tail page. So we deduct the
1482 * bytes consumed in ring buffer from here.
48fdc72f 1483 * Increment overrun to account for the lost events.
83f40318 1484 */
48fdc72f 1485 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1486 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1487 }
1488
1489 /*
1490 * We have already removed references to this list item, just
1491 * free up the buffer_page and its page
1492 */
1493 free_buffer_page(to_remove_page);
1494 nr_removed--;
1495
1496 } while (to_remove_page != last_page);
1497
1498 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1499
1500 return nr_removed == 0;
7a8e76a3
SR
1501}
1502
5040b4b7
VN
1503static int
1504rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1505{
5040b4b7
VN
1506 struct list_head *pages = &cpu_buffer->new_pages;
1507 int retries, success;
7a8e76a3 1508
5389f6fa 1509 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1510 /*
1511 * We are holding the reader lock, so the reader page won't be swapped
1512 * in the ring buffer. Now we are racing with the writer trying to
1513 * move head page and the tail page.
1514 * We are going to adapt the reader page update process where:
1515 * 1. We first splice the start and end of list of new pages between
1516 * the head page and its previous page.
1517 * 2. We cmpxchg the prev_page->next to point from head page to the
1518 * start of new pages list.
1519 * 3. Finally, we update the head->prev to the end of new list.
1520 *
1521 * We will try this process 10 times, to make sure that we don't keep
1522 * spinning.
1523 */
1524 retries = 10;
1525 success = 0;
1526 while (retries--) {
1527 struct list_head *head_page, *prev_page, *r;
1528 struct list_head *last_page, *first_page;
1529 struct list_head *head_page_with_bit;
77ae365e 1530
5040b4b7 1531 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1532 if (!head_page)
1533 break;
5040b4b7
VN
1534 prev_page = head_page->prev;
1535
1536 first_page = pages->next;
1537 last_page = pages->prev;
1538
1539 head_page_with_bit = (struct list_head *)
1540 ((unsigned long)head_page | RB_PAGE_HEAD);
1541
1542 last_page->next = head_page_with_bit;
1543 first_page->prev = prev_page;
1544
1545 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1546
1547 if (r == head_page_with_bit) {
1548 /*
1549 * yay, we replaced the page pointer to our new list,
1550 * now, we just have to update to head page's prev
1551 * pointer to point to end of list
1552 */
1553 head_page->prev = last_page;
1554 success = 1;
1555 break;
1556 }
7a8e76a3 1557 }
7a8e76a3 1558
5040b4b7
VN
1559 if (success)
1560 INIT_LIST_HEAD(pages);
1561 /*
1562 * If we weren't successful in adding in new pages, warn and stop
1563 * tracing
1564 */
1565 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1566 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1567
1568 /* free pages if they weren't inserted */
1569 if (!success) {
1570 struct buffer_page *bpage, *tmp;
1571 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1572 list) {
1573 list_del_init(&bpage->list);
1574 free_buffer_page(bpage);
1575 }
1576 }
1577 return success;
7a8e76a3
SR
1578}
1579
83f40318 1580static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1581{
5040b4b7
VN
1582 int success;
1583
438ced17 1584 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1585 success = rb_insert_pages(cpu_buffer);
438ced17 1586 else
5040b4b7
VN
1587 success = rb_remove_pages(cpu_buffer,
1588 -cpu_buffer->nr_pages_to_update);
83f40318 1589
5040b4b7
VN
1590 if (success)
1591 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1592}
1593
1594static void update_pages_handler(struct work_struct *work)
1595{
1596 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1597 struct ring_buffer_per_cpu, update_pages_work);
1598 rb_update_pages(cpu_buffer);
05fdd70d 1599 complete(&cpu_buffer->update_done);
438ced17
VN
1600}
1601
7a8e76a3
SR
1602/**
1603 * ring_buffer_resize - resize the ring buffer
1604 * @buffer: the buffer to resize.
1605 * @size: the new size.
d611851b 1606 * @cpu_id: the cpu buffer to resize
7a8e76a3 1607 *
7a8e76a3
SR
1608 * Minimum size is 2 * BUF_PAGE_SIZE.
1609 *
83f40318 1610 * Returns 0 on success and < 0 on failure.
7a8e76a3 1611 */
438ced17
VN
1612int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1613 int cpu_id)
7a8e76a3
SR
1614{
1615 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1616 unsigned long nr_pages;
83f40318 1617 int cpu, err = 0;
7a8e76a3 1618
ee51a1de
IM
1619 /*
1620 * Always succeed at resizing a non-existent buffer:
1621 */
1622 if (!buffer)
1623 return size;
1624
6a31e1f1
SR
1625 /* Make sure the requested buffer exists */
1626 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1627 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1628 return size;
1629
59643d15 1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1631
1632 /* we need a minimum of two pages */
59643d15
SRRH
1633 if (nr_pages < 2)
1634 nr_pages = 2;
7a8e76a3 1635
59643d15 1636 size = nr_pages * BUF_PAGE_SIZE;
18421015 1637
83f40318
VN
1638 /*
1639 * Don't succeed if resizing is disabled, as a reader might be
1640 * manipulating the ring buffer and is expecting a sane state while
1641 * this is true.
1642 */
1643 if (atomic_read(&buffer->resize_disabled))
1644 return -EBUSY;
18421015 1645
83f40318 1646 /* prevent another thread from changing buffer sizes */
7a8e76a3 1647 mutex_lock(&buffer->mutex);
7a8e76a3 1648
438ced17
VN
1649 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1650 /* calculate the pages to update */
7a8e76a3
SR
1651 for_each_buffer_cpu(buffer, cpu) {
1652 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1653
438ced17
VN
1654 cpu_buffer->nr_pages_to_update = nr_pages -
1655 cpu_buffer->nr_pages;
438ced17
VN
1656 /*
1657 * nothing more to do for removing pages or no update
1658 */
1659 if (cpu_buffer->nr_pages_to_update <= 0)
1660 continue;
d7ec4bfe 1661 /*
438ced17
VN
1662 * to add pages, make sure all new pages can be
1663 * allocated without receiving ENOMEM
d7ec4bfe 1664 */
438ced17
VN
1665 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1666 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1667 &cpu_buffer->new_pages, cpu)) {
438ced17 1668 /* not enough memory for new pages */
83f40318
VN
1669 err = -ENOMEM;
1670 goto out_err;
1671 }
1672 }
1673
1674 get_online_cpus();
1675 /*
1676 * Fire off all the required work handlers
05fdd70d 1677 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1678 * since we can change their buffer sizes without any race.
1679 */
1680 for_each_buffer_cpu(buffer, cpu) {
1681 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1682 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1683 continue;
1684
021c5b34
CM
1685 /* Can't run something on an offline CPU. */
1686 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1687 rb_update_pages(cpu_buffer);
1688 cpu_buffer->nr_pages_to_update = 0;
1689 } else {
05fdd70d
VN
1690 schedule_work_on(cpu,
1691 &cpu_buffer->update_pages_work);
f5eb5588 1692 }
7a8e76a3 1693 }
7a8e76a3 1694
438ced17
VN
1695 /* wait for all the updates to complete */
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1698 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1699 continue;
1700
05fdd70d
VN
1701 if (cpu_online(cpu))
1702 wait_for_completion(&cpu_buffer->update_done);
83f40318 1703 cpu_buffer->nr_pages_to_update = 0;
438ced17 1704 }
83f40318
VN
1705
1706 put_online_cpus();
438ced17 1707 } else {
8e49f418
VN
1708 /* Make sure this CPU has been intitialized */
1709 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1710 goto out;
1711
438ced17 1712 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1713
438ced17
VN
1714 if (nr_pages == cpu_buffer->nr_pages)
1715 goto out;
7a8e76a3 1716
438ced17
VN
1717 cpu_buffer->nr_pages_to_update = nr_pages -
1718 cpu_buffer->nr_pages;
1719
1720 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1721 if (cpu_buffer->nr_pages_to_update > 0 &&
1722 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1723 &cpu_buffer->new_pages, cpu_id)) {
1724 err = -ENOMEM;
1725 goto out_err;
1726 }
438ced17 1727
83f40318
VN
1728 get_online_cpus();
1729
021c5b34
CM
1730 /* Can't run something on an offline CPU. */
1731 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1732 rb_update_pages(cpu_buffer);
1733 else {
83f40318
VN
1734 schedule_work_on(cpu_id,
1735 &cpu_buffer->update_pages_work);
05fdd70d 1736 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1737 }
83f40318 1738
83f40318 1739 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1740 put_online_cpus();
438ced17 1741 }
7a8e76a3
SR
1742
1743 out:
659f451f
SR
1744 /*
1745 * The ring buffer resize can happen with the ring buffer
1746 * enabled, so that the update disturbs the tracing as little
1747 * as possible. But if the buffer is disabled, we do not need
1748 * to worry about that, and we can take the time to verify
1749 * that the buffer is not corrupt.
1750 */
1751 if (atomic_read(&buffer->record_disabled)) {
1752 atomic_inc(&buffer->record_disabled);
1753 /*
1754 * Even though the buffer was disabled, we must make sure
1755 * that it is truly disabled before calling rb_check_pages.
1756 * There could have been a race between checking
1757 * record_disable and incrementing it.
1758 */
1759 synchronize_sched();
1760 for_each_buffer_cpu(buffer, cpu) {
1761 cpu_buffer = buffer->buffers[cpu];
1762 rb_check_pages(cpu_buffer);
1763 }
1764 atomic_dec(&buffer->record_disabled);
1765 }
1766
7a8e76a3 1767 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1768 return size;
1769
83f40318 1770 out_err:
438ced17
VN
1771 for_each_buffer_cpu(buffer, cpu) {
1772 struct buffer_page *bpage, *tmp;
83f40318 1773
438ced17 1774 cpu_buffer = buffer->buffers[cpu];
438ced17 1775 cpu_buffer->nr_pages_to_update = 0;
83f40318 1776
438ced17
VN
1777 if (list_empty(&cpu_buffer->new_pages))
1778 continue;
83f40318 1779
438ced17
VN
1780 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1781 list) {
1782 list_del_init(&bpage->list);
1783 free_buffer_page(bpage);
1784 }
7a8e76a3 1785 }
641d2f63 1786 mutex_unlock(&buffer->mutex);
83f40318 1787 return err;
7a8e76a3 1788}
c4f50183 1789EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1790
750912fa
DS
1791void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1792{
1793 mutex_lock(&buffer->mutex);
1794 if (val)
1795 buffer->flags |= RB_FL_OVERWRITE;
1796 else
1797 buffer->flags &= ~RB_FL_OVERWRITE;
1798 mutex_unlock(&buffer->mutex);
1799}
1800EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1801
2289d567 1802static __always_inline void *
044fa782 1803__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1804{
044fa782 1805 return bpage->data + index;
8789a9e7
SR
1806}
1807
2289d567 1808static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1809{
044fa782 1810 return bpage->page->data + index;
7a8e76a3
SR
1811}
1812
2289d567 1813static __always_inline struct ring_buffer_event *
d769041f 1814rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1815{
6f807acd
SR
1816 return __rb_page_index(cpu_buffer->reader_page,
1817 cpu_buffer->reader_page->read);
1818}
1819
2289d567 1820static __always_inline struct ring_buffer_event *
7a8e76a3
SR
1821rb_iter_head_event(struct ring_buffer_iter *iter)
1822{
6f807acd 1823 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1824}
1825
2289d567 1826static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
bf41a158 1827{
abc9b56d 1828 return local_read(&bpage->page->commit);
bf41a158
SR
1829}
1830
25985edc 1831/* Size is determined by what has been committed */
2289d567 1832static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
1833{
1834 return rb_page_commit(bpage);
1835}
1836
2289d567 1837static __always_inline unsigned
bf41a158
SR
1838rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1839{
1840 return rb_page_commit(cpu_buffer->commit_page);
1841}
1842
2289d567 1843static __always_inline unsigned
bf41a158
SR
1844rb_event_index(struct ring_buffer_event *event)
1845{
1846 unsigned long addr = (unsigned long)event;
1847
22f470f8 1848 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1849}
1850
34a148bf 1851static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1852{
1853 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1854
1855 /*
1856 * The iterator could be on the reader page (it starts there).
1857 * But the head could have moved, since the reader was
1858 * found. Check for this case and assign the iterator
1859 * to the head page instead of next.
1860 */
1861 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1862 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1863 else
1864 rb_inc_page(cpu_buffer, &iter->head_page);
1865
abc9b56d 1866 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1867 iter->head = 0;
1868}
1869
77ae365e
SR
1870/*
1871 * rb_handle_head_page - writer hit the head page
1872 *
1873 * Returns: +1 to retry page
1874 * 0 to continue
1875 * -1 on error
1876 */
1877static int
1878rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1879 struct buffer_page *tail_page,
1880 struct buffer_page *next_page)
1881{
1882 struct buffer_page *new_head;
1883 int entries;
1884 int type;
1885 int ret;
1886
1887 entries = rb_page_entries(next_page);
1888
1889 /*
1890 * The hard part is here. We need to move the head
1891 * forward, and protect against both readers on
1892 * other CPUs and writers coming in via interrupts.
1893 */
1894 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1895 RB_PAGE_HEAD);
1896
1897 /*
1898 * type can be one of four:
1899 * NORMAL - an interrupt already moved it for us
1900 * HEAD - we are the first to get here.
1901 * UPDATE - we are the interrupt interrupting
1902 * a current move.
1903 * MOVED - a reader on another CPU moved the next
1904 * pointer to its reader page. Give up
1905 * and try again.
1906 */
1907
1908 switch (type) {
1909 case RB_PAGE_HEAD:
1910 /*
1911 * We changed the head to UPDATE, thus
1912 * it is our responsibility to update
1913 * the counters.
1914 */
1915 local_add(entries, &cpu_buffer->overrun);
c64e148a 1916 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
1917
1918 /*
1919 * The entries will be zeroed out when we move the
1920 * tail page.
1921 */
1922
1923 /* still more to do */
1924 break;
1925
1926 case RB_PAGE_UPDATE:
1927 /*
1928 * This is an interrupt that interrupt the
1929 * previous update. Still more to do.
1930 */
1931 break;
1932 case RB_PAGE_NORMAL:
1933 /*
1934 * An interrupt came in before the update
1935 * and processed this for us.
1936 * Nothing left to do.
1937 */
1938 return 1;
1939 case RB_PAGE_MOVED:
1940 /*
1941 * The reader is on another CPU and just did
1942 * a swap with our next_page.
1943 * Try again.
1944 */
1945 return 1;
1946 default:
1947 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1948 return -1;
1949 }
1950
1951 /*
1952 * Now that we are here, the old head pointer is
1953 * set to UPDATE. This will keep the reader from
1954 * swapping the head page with the reader page.
1955 * The reader (on another CPU) will spin till
1956 * we are finished.
1957 *
1958 * We just need to protect against interrupts
1959 * doing the job. We will set the next pointer
1960 * to HEAD. After that, we set the old pointer
1961 * to NORMAL, but only if it was HEAD before.
1962 * otherwise we are an interrupt, and only
1963 * want the outer most commit to reset it.
1964 */
1965 new_head = next_page;
1966 rb_inc_page(cpu_buffer, &new_head);
1967
1968 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1969 RB_PAGE_NORMAL);
1970
1971 /*
1972 * Valid returns are:
1973 * HEAD - an interrupt came in and already set it.
1974 * NORMAL - One of two things:
1975 * 1) We really set it.
1976 * 2) A bunch of interrupts came in and moved
1977 * the page forward again.
1978 */
1979 switch (ret) {
1980 case RB_PAGE_HEAD:
1981 case RB_PAGE_NORMAL:
1982 /* OK */
1983 break;
1984 default:
1985 RB_WARN_ON(cpu_buffer, 1);
1986 return -1;
1987 }
1988
1989 /*
1990 * It is possible that an interrupt came in,
1991 * set the head up, then more interrupts came in
1992 * and moved it again. When we get back here,
1993 * the page would have been set to NORMAL but we
1994 * just set it back to HEAD.
1995 *
1996 * How do you detect this? Well, if that happened
1997 * the tail page would have moved.
1998 */
1999 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2000 struct buffer_page *buffer_tail_page;
2001
2002 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2003 /*
2004 * If the tail had moved passed next, then we need
2005 * to reset the pointer.
2006 */
8573636e
SRRH
2007 if (buffer_tail_page != tail_page &&
2008 buffer_tail_page != next_page)
77ae365e
SR
2009 rb_head_page_set_normal(cpu_buffer, new_head,
2010 next_page,
2011 RB_PAGE_HEAD);
2012 }
2013
2014 /*
2015 * If this was the outer most commit (the one that
2016 * changed the original pointer from HEAD to UPDATE),
2017 * then it is up to us to reset it to NORMAL.
2018 */
2019 if (type == RB_PAGE_HEAD) {
2020 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2021 tail_page,
2022 RB_PAGE_UPDATE);
2023 if (RB_WARN_ON(cpu_buffer,
2024 ret != RB_PAGE_UPDATE))
2025 return -1;
2026 }
2027
2028 return 0;
2029}
2030
c7b09308
SR
2031static inline void
2032rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2033 unsigned long tail, struct rb_event_info *info)
c7b09308 2034{
fcc742ea 2035 struct buffer_page *tail_page = info->tail_page;
c7b09308 2036 struct ring_buffer_event *event;
fcc742ea 2037 unsigned long length = info->length;
c7b09308
SR
2038
2039 /*
2040 * Only the event that crossed the page boundary
2041 * must fill the old tail_page with padding.
2042 */
2043 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2044 /*
2045 * If the page was filled, then we still need
2046 * to update the real_end. Reset it to zero
2047 * and the reader will ignore it.
2048 */
2049 if (tail == BUF_PAGE_SIZE)
2050 tail_page->real_end = 0;
2051
c7b09308
SR
2052 local_sub(length, &tail_page->write);
2053 return;
2054 }
2055
2056 event = __rb_page_index(tail_page, tail);
b0b7065b 2057 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2058
c64e148a
VN
2059 /* account for padding bytes */
2060 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
ff0ff84a
SR
2062 /*
2063 * Save the original length to the meta data.
2064 * This will be used by the reader to add lost event
2065 * counter.
2066 */
2067 tail_page->real_end = tail;
2068
c7b09308
SR
2069 /*
2070 * If this event is bigger than the minimum size, then
2071 * we need to be careful that we don't subtract the
2072 * write counter enough to allow another writer to slip
2073 * in on this page.
2074 * We put in a discarded commit instead, to make sure
2075 * that this space is not used again.
2076 *
2077 * If we are less than the minimum size, we don't need to
2078 * worry about it.
2079 */
2080 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081 /* No room for any events */
2082
2083 /* Mark the rest of the page with padding */
2084 rb_event_set_padding(event);
2085
2086 /* Set the write back to the previous setting */
2087 local_sub(length, &tail_page->write);
2088 return;
2089 }
2090
2091 /* Put in a discarded event */
2092 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093 event->type_len = RINGBUF_TYPE_PADDING;
2094 /* time delta must be non zero */
2095 event->time_delta = 1;
c7b09308
SR
2096
2097 /* Set write to end of buffer */
2098 length = (tail + length) - BUF_PAGE_SIZE;
2099 local_sub(length, &tail_page->write);
2100}
6634ff26 2101
4239c38f
SRRH
2102static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2103
747e94ae
SR
2104/*
2105 * This is the slow path, force gcc not to inline it.
2106 */
2107static noinline struct ring_buffer_event *
6634ff26 2108rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2109 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2110{
fcc742ea 2111 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2112 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2113 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2114 struct buffer_page *next_page;
2115 int ret;
aa20ae84
SR
2116
2117 next_page = tail_page;
2118
aa20ae84
SR
2119 rb_inc_page(cpu_buffer, &next_page);
2120
aa20ae84
SR
2121 /*
2122 * If for some reason, we had an interrupt storm that made
2123 * it all the way around the buffer, bail, and warn
2124 * about it.
2125 */
2126 if (unlikely(next_page == commit_page)) {
77ae365e 2127 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2128 goto out_reset;
2129 }
2130
77ae365e
SR
2131 /*
2132 * This is where the fun begins!
2133 *
2134 * We are fighting against races between a reader that
2135 * could be on another CPU trying to swap its reader
2136 * page with the buffer head.
2137 *
2138 * We are also fighting against interrupts coming in and
2139 * moving the head or tail on us as well.
2140 *
2141 * If the next page is the head page then we have filled
2142 * the buffer, unless the commit page is still on the
2143 * reader page.
2144 */
2145 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2146
77ae365e
SR
2147 /*
2148 * If the commit is not on the reader page, then
2149 * move the header page.
2150 */
2151 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2152 /*
2153 * If we are not in overwrite mode,
2154 * this is easy, just stop here.
2155 */
884bfe89
SP
2156 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2157 local_inc(&cpu_buffer->dropped_events);
77ae365e 2158 goto out_reset;
884bfe89 2159 }
77ae365e
SR
2160
2161 ret = rb_handle_head_page(cpu_buffer,
2162 tail_page,
2163 next_page);
2164 if (ret < 0)
2165 goto out_reset;
2166 if (ret)
2167 goto out_again;
2168 } else {
2169 /*
2170 * We need to be careful here too. The
2171 * commit page could still be on the reader
2172 * page. We could have a small buffer, and
2173 * have filled up the buffer with events
2174 * from interrupts and such, and wrapped.
2175 *
2176 * Note, if the tail page is also the on the
2177 * reader_page, we let it move out.
2178 */
2179 if (unlikely((cpu_buffer->commit_page !=
2180 cpu_buffer->tail_page) &&
2181 (cpu_buffer->commit_page ==
2182 cpu_buffer->reader_page))) {
2183 local_inc(&cpu_buffer->commit_overrun);
2184 goto out_reset;
2185 }
aa20ae84
SR
2186 }
2187 }
2188
70004986 2189 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2190
77ae365e 2191 out_again:
aa20ae84 2192
fcc742ea 2193 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2194
4239c38f
SRRH
2195 /* Commit what we have for now. */
2196 rb_end_commit(cpu_buffer);
2197 /* rb_end_commit() decs committing */
2198 local_inc(&cpu_buffer->committing);
2199
aa20ae84
SR
2200 /* fail and let the caller try again */
2201 return ERR_PTR(-EAGAIN);
2202
45141d46 2203 out_reset:
6f3b3440 2204 /* reset write */
fcc742ea 2205 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2206
bf41a158 2207 return NULL;
7a8e76a3
SR
2208}
2209
d90fd774
SRRH
2210/* Slow path, do not inline */
2211static noinline struct ring_buffer_event *
2212rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
9826b273 2213{
d90fd774 2214 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2215
d90fd774
SRRH
2216 /* Not the first event on the page? */
2217 if (rb_event_index(event)) {
2218 event->time_delta = delta & TS_MASK;
2219 event->array[0] = delta >> TS_SHIFT;
2220 } else {
2221 /* nope, just zero it */
2222 event->time_delta = 0;
2223 event->array[0] = 0;
2224 }
a4543a2f 2225
d90fd774
SRRH
2226 return skip_time_extend(event);
2227}
a4543a2f 2228
cdb2a0a9 2229static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2230 struct ring_buffer_event *event);
2231
d90fd774
SRRH
2232/**
2233 * rb_update_event - update event type and data
2234 * @event: the event to update
2235 * @type: the type of event
2236 * @length: the size of the event field in the ring buffer
2237 *
2238 * Update the type and data fields of the event. The length
2239 * is the actual size that is written to the ring buffer,
2240 * and with this, we can determine what to place into the
2241 * data field.
2242 */
b7dc42fd 2243static void
d90fd774
SRRH
2244rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2245 struct ring_buffer_event *event,
2246 struct rb_event_info *info)
2247{
2248 unsigned length = info->length;
2249 u64 delta = info->delta;
a4543a2f 2250
b7dc42fd
SRRH
2251 /* Only a commit updates the timestamp */
2252 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2253 delta = 0;
2254
a4543a2f 2255 /*
d90fd774
SRRH
2256 * If we need to add a timestamp, then we
2257 * add it to the start of the resevered space.
a4543a2f 2258 */
d90fd774
SRRH
2259 if (unlikely(info->add_timestamp)) {
2260 event = rb_add_time_stamp(event, delta);
2261 length -= RB_LEN_TIME_EXTEND;
2262 delta = 0;
a4543a2f
SRRH
2263 }
2264
d90fd774
SRRH
2265 event->time_delta = delta;
2266 length -= RB_EVNT_HDR_SIZE;
2267 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2268 event->type_len = 0;
2269 event->array[0] = length;
2270 } else
2271 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2272}
2273
2274static unsigned rb_calculate_event_length(unsigned length)
2275{
2276 struct ring_buffer_event event; /* Used only for sizeof array */
2277
2278 /* zero length can cause confusions */
2279 if (!length)
2280 length++;
2281
2282 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2283 length += sizeof(event.array[0]);
2284
2285 length += RB_EVNT_HDR_SIZE;
2286 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2287
2288 /*
2289 * In case the time delta is larger than the 27 bits for it
2290 * in the header, we need to add a timestamp. If another
2291 * event comes in when trying to discard this one to increase
2292 * the length, then the timestamp will be added in the allocated
2293 * space of this event. If length is bigger than the size needed
2294 * for the TIME_EXTEND, then padding has to be used. The events
2295 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2296 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2297 * As length is a multiple of 4, we only need to worry if it
2298 * is 12 (RB_LEN_TIME_EXTEND + 4).
2299 */
2300 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2301 length += RB_ALIGNMENT;
2302
2303 return length;
2304}
2305
2306#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2307static inline bool sched_clock_stable(void)
2308{
2309 return true;
2310}
2311#endif
2312
2313static inline int
2314rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2315 struct ring_buffer_event *event)
2316{
2317 unsigned long new_index, old_index;
2318 struct buffer_page *bpage;
2319 unsigned long index;
2320 unsigned long addr;
2321
2322 new_index = rb_event_index(event);
2323 old_index = new_index + rb_event_ts_length(event);
2324 addr = (unsigned long)event;
2325 addr &= PAGE_MASK;
2326
8573636e 2327 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2328
2329 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2330 unsigned long write_mask =
2331 local_read(&bpage->write) & ~RB_WRITE_MASK;
2332 unsigned long event_length = rb_event_length(event);
2333 /*
2334 * This is on the tail page. It is possible that
2335 * a write could come in and move the tail page
2336 * and write to the next page. That is fine
2337 * because we just shorten what is on this page.
2338 */
2339 old_index += write_mask;
2340 new_index += write_mask;
2341 index = local_cmpxchg(&bpage->write, old_index, new_index);
2342 if (index == old_index) {
2343 /* update counters */
2344 local_sub(event_length, &cpu_buffer->entries_bytes);
2345 return 1;
2346 }
2347 }
2348
2349 /* could not discard */
2350 return 0;
2351}
2352
2353static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2354{
2355 local_inc(&cpu_buffer->committing);
2356 local_inc(&cpu_buffer->commits);
2357}
2358
38e11df1 2359static __always_inline void
d90fd774
SRRH
2360rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2361{
2362 unsigned long max_count;
2363
2364 /*
2365 * We only race with interrupts and NMIs on this CPU.
2366 * If we own the commit event, then we can commit
2367 * all others that interrupted us, since the interruptions
2368 * are in stack format (they finish before they come
2369 * back to us). This allows us to do a simple loop to
2370 * assign the commit to the tail.
2371 */
2372 again:
2373 max_count = cpu_buffer->nr_pages * 100;
2374
8573636e 2375 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2376 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2377 return;
2378 if (RB_WARN_ON(cpu_buffer,
2379 rb_is_reader_page(cpu_buffer->tail_page)))
2380 return;
2381 local_set(&cpu_buffer->commit_page->page->commit,
2382 rb_page_write(cpu_buffer->commit_page));
2383 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
70004986
SRRH
2384 /* Only update the write stamp if the page has an event */
2385 if (rb_page_write(cpu_buffer->commit_page))
2386 cpu_buffer->write_stamp =
2387 cpu_buffer->commit_page->page->time_stamp;
d90fd774
SRRH
2388 /* add barrier to keep gcc from optimizing too much */
2389 barrier();
2390 }
2391 while (rb_commit_index(cpu_buffer) !=
2392 rb_page_write(cpu_buffer->commit_page)) {
2393
2394 local_set(&cpu_buffer->commit_page->page->commit,
2395 rb_page_write(cpu_buffer->commit_page));
2396 RB_WARN_ON(cpu_buffer,
2397 local_read(&cpu_buffer->commit_page->page->commit) &
2398 ~RB_WRITE_MASK);
2399 barrier();
2400 }
2401
2402 /* again, keep gcc from optimizing */
2403 barrier();
2404
2405 /*
2406 * If an interrupt came in just after the first while loop
2407 * and pushed the tail page forward, we will be left with
2408 * a dangling commit that will never go forward.
2409 */
8573636e 2410 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2411 goto again;
2412}
2413
38e11df1 2414static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2415{
2416 unsigned long commits;
2417
2418 if (RB_WARN_ON(cpu_buffer,
2419 !local_read(&cpu_buffer->committing)))
2420 return;
2421
2422 again:
2423 commits = local_read(&cpu_buffer->commits);
2424 /* synchronize with interrupts */
2425 barrier();
2426 if (local_read(&cpu_buffer->committing) == 1)
2427 rb_set_commit_to_write(cpu_buffer);
2428
2429 local_dec(&cpu_buffer->committing);
2430
2431 /* synchronize with interrupts */
2432 barrier();
2433
2434 /*
2435 * Need to account for interrupts coming in between the
2436 * updating of the commit page and the clearing of the
2437 * committing counter.
2438 */
2439 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2440 !local_read(&cpu_buffer->committing)) {
2441 local_inc(&cpu_buffer->committing);
2442 goto again;
2443 }
2444}
2445
2446static inline void rb_event_discard(struct ring_buffer_event *event)
2447{
2448 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2449 event = skip_time_extend(event);
2450
2451 /* array[0] holds the actual length for the discarded event */
2452 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2453 event->type_len = RINGBUF_TYPE_PADDING;
2454 /* time delta must be non zero */
2455 if (!event->time_delta)
2456 event->time_delta = 1;
2457}
2458
babe3fce 2459static __always_inline bool
d90fd774
SRRH
2460rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2461 struct ring_buffer_event *event)
2462{
2463 unsigned long addr = (unsigned long)event;
2464 unsigned long index;
2465
2466 index = rb_event_index(event);
2467 addr &= PAGE_MASK;
2468
2469 return cpu_buffer->commit_page->page == (void *)addr &&
2470 rb_commit_index(cpu_buffer) == index;
2471}
2472
babe3fce 2473static __always_inline void
d90fd774
SRRH
2474rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2475 struct ring_buffer_event *event)
2476{
2477 u64 delta;
2478
2479 /*
2480 * The event first in the commit queue updates the
2481 * time stamp.
2482 */
2483 if (rb_event_is_commit(cpu_buffer, event)) {
2484 /*
2485 * A commit event that is first on a page
2486 * updates the write timestamp with the page stamp
2487 */
2488 if (!rb_event_index(event))
2489 cpu_buffer->write_stamp =
2490 cpu_buffer->commit_page->page->time_stamp;
2491 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2492 delta = event->array[0];
2493 delta <<= TS_SHIFT;
2494 delta += event->time_delta;
2495 cpu_buffer->write_stamp += delta;
2496 } else
2497 cpu_buffer->write_stamp += event->time_delta;
2498 }
2499}
2500
2501static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2502 struct ring_buffer_event *event)
2503{
2504 local_inc(&cpu_buffer->entries);
2505 rb_update_write_stamp(cpu_buffer, event);
2506 rb_end_commit(cpu_buffer);
2507}
2508
2509static __always_inline void
2510rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2511{
2512 bool pagebusy;
2513
2514 if (buffer->irq_work.waiters_pending) {
2515 buffer->irq_work.waiters_pending = false;
2516 /* irq_work_queue() supplies it's own memory barriers */
2517 irq_work_queue(&buffer->irq_work.work);
2518 }
2519
2520 if (cpu_buffer->irq_work.waiters_pending) {
2521 cpu_buffer->irq_work.waiters_pending = false;
2522 /* irq_work_queue() supplies it's own memory barriers */
2523 irq_work_queue(&cpu_buffer->irq_work.work);
2524 }
2525
2526 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2527
2528 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2529 cpu_buffer->irq_work.wakeup_full = true;
2530 cpu_buffer->irq_work.full_waiters_pending = false;
2531 /* irq_work_queue() supplies it's own memory barriers */
2532 irq_work_queue(&cpu_buffer->irq_work.work);
2533 }
2534}
2535
2536/*
2537 * The lock and unlock are done within a preempt disable section.
2538 * The current_context per_cpu variable can only be modified
2539 * by the current task between lock and unlock. But it can
2540 * be modified more than once via an interrupt. To pass this
2541 * information from the lock to the unlock without having to
2542 * access the 'in_interrupt()' functions again (which do show
2543 * a bit of overhead in something as critical as function tracing,
2544 * we use a bitmask trick.
2545 *
2546 * bit 0 = NMI context
2547 * bit 1 = IRQ context
2548 * bit 2 = SoftIRQ context
2549 * bit 3 = normal context.
2550 *
2551 * This works because this is the order of contexts that can
2552 * preempt other contexts. A SoftIRQ never preempts an IRQ
2553 * context.
2554 *
2555 * When the context is determined, the corresponding bit is
2556 * checked and set (if it was set, then a recursion of that context
2557 * happened).
2558 *
2559 * On unlock, we need to clear this bit. To do so, just subtract
2560 * 1 from the current_context and AND it to itself.
2561 *
2562 * (binary)
2563 * 101 - 1 = 100
2564 * 101 & 100 = 100 (clearing bit zero)
2565 *
2566 * 1010 - 1 = 1001
2567 * 1010 & 1001 = 1000 (clearing bit 1)
2568 *
2569 * The least significant bit can be cleared this way, and it
2570 * just so happens that it is the same bit corresponding to
2571 * the current context.
2572 */
2573
2574static __always_inline int
2575trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2576{
2577 unsigned int val = cpu_buffer->current_context;
2578 int bit;
2579
2580 if (in_interrupt()) {
2581 if (in_nmi())
2582 bit = RB_CTX_NMI;
2583 else if (in_irq())
2584 bit = RB_CTX_IRQ;
2585 else
2586 bit = RB_CTX_SOFTIRQ;
2587 } else
2588 bit = RB_CTX_NORMAL;
2589
2590 if (unlikely(val & (1 << bit)))
2591 return 1;
2592
2593 val |= (1 << bit);
2594 cpu_buffer->current_context = val;
2595
2596 return 0;
2597}
2598
2599static __always_inline void
2600trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2601{
2602 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2603}
2604
2605/**
2606 * ring_buffer_unlock_commit - commit a reserved
2607 * @buffer: The buffer to commit to
2608 * @event: The event pointer to commit.
2609 *
2610 * This commits the data to the ring buffer, and releases any locks held.
2611 *
2612 * Must be paired with ring_buffer_lock_reserve.
2613 */
2614int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2615 struct ring_buffer_event *event)
2616{
2617 struct ring_buffer_per_cpu *cpu_buffer;
2618 int cpu = raw_smp_processor_id();
2619
2620 cpu_buffer = buffer->buffers[cpu];
2621
2622 rb_commit(cpu_buffer, event);
2623
2624 rb_wakeups(buffer, cpu_buffer);
2625
2626 trace_recursive_unlock(cpu_buffer);
2627
2628 preempt_enable_notrace();
2629
2630 return 0;
2631}
2632EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2633
2634static noinline void
2635rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2636 struct rb_event_info *info)
2637{
d90fd774
SRRH
2638 WARN_ONCE(info->delta > (1ULL << 59),
2639 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2640 (unsigned long long)info->delta,
2641 (unsigned long long)info->ts,
2642 (unsigned long long)cpu_buffer->write_stamp,
2643 sched_clock_stable() ? "" :
2644 "If you just came from a suspend/resume,\n"
2645 "please switch to the trace global clock:\n"
2646 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
b7dc42fd 2647 info->add_timestamp = 1;
9826b273
SRRH
2648}
2649
6634ff26
SR
2650static struct ring_buffer_event *
2651__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2652 struct rb_event_info *info)
6634ff26 2653{
6634ff26 2654 struct ring_buffer_event *event;
fcc742ea 2655 struct buffer_page *tail_page;
6634ff26 2656 unsigned long tail, write;
b7dc42fd
SRRH
2657
2658 /*
2659 * If the time delta since the last event is too big to
2660 * hold in the time field of the event, then we append a
2661 * TIME EXTEND event ahead of the data event.
2662 */
2663 if (unlikely(info->add_timestamp))
2664 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2665
8573636e
SRRH
2666 /* Don't let the compiler play games with cpu_buffer->tail_page */
2667 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2668 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2669
2670 /* set write to only the index of the write */
2671 write &= RB_WRITE_MASK;
fcc742ea 2672 tail = write - info->length;
6634ff26 2673
6634ff26 2674 /*
a4543a2f 2675 * If this is the first commit on the page, then it has the same
b7dc42fd 2676 * timestamp as the page itself.
6634ff26 2677 */
b7dc42fd 2678 if (!tail)
a4543a2f
SRRH
2679 info->delta = 0;
2680
b7dc42fd
SRRH
2681 /* See if we shot pass the end of this buffer page */
2682 if (unlikely(write > BUF_PAGE_SIZE))
2683 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2684
b7dc42fd
SRRH
2685 /* We reserved something on the buffer */
2686
2687 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2688 kmemcheck_annotate_bitfield(event, bitfield);
2689 rb_update_event(cpu_buffer, event, info);
2690
2691 local_inc(&tail_page->entries);
6634ff26 2692
b7dc42fd
SRRH
2693 /*
2694 * If this is the first commit on the page, then update
2695 * its timestamp.
2696 */
2697 if (!tail)
2698 tail_page->page->time_stamp = info->ts;
2699
c64e148a 2700 /* account for these added bytes */
fcc742ea 2701 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2702
6634ff26
SR
2703 return event;
2704}
2705
fa7ffb39 2706static __always_inline struct ring_buffer_event *
62f0b3eb
SR
2707rb_reserve_next_event(struct ring_buffer *buffer,
2708 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2709 unsigned long length)
7a8e76a3
SR
2710{
2711 struct ring_buffer_event *event;
fcc742ea 2712 struct rb_event_info info;
818e3dd3 2713 int nr_loops = 0;
b7dc42fd 2714 u64 diff;
7a8e76a3 2715
fa743953
SR
2716 rb_start_commit(cpu_buffer);
2717
85bac32c 2718#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2719 /*
2720 * Due to the ability to swap a cpu buffer from a buffer
2721 * it is possible it was swapped before we committed.
2722 * (committing stops a swap). We check for it here and
2723 * if it happened, we have to fail the write.
2724 */
2725 barrier();
2726 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2727 local_dec(&cpu_buffer->committing);
2728 local_dec(&cpu_buffer->commits);
2729 return NULL;
2730 }
85bac32c 2731#endif
b7dc42fd 2732
fcc742ea 2733 info.length = rb_calculate_event_length(length);
a4543a2f 2734 again:
b7dc42fd
SRRH
2735 info.add_timestamp = 0;
2736 info.delta = 0;
2737
818e3dd3
SR
2738 /*
2739 * We allow for interrupts to reenter here and do a trace.
2740 * If one does, it will cause this original code to loop
2741 * back here. Even with heavy interrupts happening, this
2742 * should only happen a few times in a row. If this happens
2743 * 1000 times in a row, there must be either an interrupt
2744 * storm or we have something buggy.
2745 * Bail!
2746 */
3e89c7bb 2747 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2748 goto out_fail;
818e3dd3 2749
b7dc42fd
SRRH
2750 info.ts = rb_time_stamp(cpu_buffer->buffer);
2751 diff = info.ts - cpu_buffer->write_stamp;
2752
2753 /* make sure this diff is calculated here */
2754 barrier();
2755
2756 /* Did the write stamp get updated already? */
2757 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2758 info.delta = diff;
2759 if (unlikely(test_time_stamp(info.delta)))
2760 rb_handle_timestamp(cpu_buffer, &info);
2761 }
2762
fcc742ea
SRRH
2763 event = __rb_reserve_next(cpu_buffer, &info);
2764
bd1b7cd3
SRRH
2765 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2766 if (info.add_timestamp)
2767 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2768 goto again;
bd1b7cd3 2769 }
bf41a158 2770
fa743953
SR
2771 if (!event)
2772 goto out_fail;
7a8e76a3 2773
7a8e76a3 2774 return event;
fa743953
SR
2775
2776 out_fail:
2777 rb_end_commit(cpu_buffer);
2778 return NULL;
7a8e76a3
SR
2779}
2780
2781/**
2782 * ring_buffer_lock_reserve - reserve a part of the buffer
2783 * @buffer: the ring buffer to reserve from
2784 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2785 *
2786 * Returns a reseverd event on the ring buffer to copy directly to.
2787 * The user of this interface will need to get the body to write into
2788 * and can use the ring_buffer_event_data() interface.
2789 *
2790 * The length is the length of the data needed, not the event length
2791 * which also includes the event header.
2792 *
2793 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2794 * If NULL is returned, then nothing has been allocated or locked.
2795 */
2796struct ring_buffer_event *
0a987751 2797ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2798{
2799 struct ring_buffer_per_cpu *cpu_buffer;
2800 struct ring_buffer_event *event;
5168ae50 2801 int cpu;
7a8e76a3 2802
bf41a158 2803 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2804 preempt_disable_notrace();
bf41a158 2805
3205f806 2806 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2807 goto out;
261842b7 2808
7a8e76a3
SR
2809 cpu = raw_smp_processor_id();
2810
3205f806 2811 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2812 goto out;
7a8e76a3
SR
2813
2814 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2815
3205f806 2816 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2817 goto out;
7a8e76a3 2818
3205f806 2819 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2820 goto out;
7a8e76a3 2821
58a09ec6
SRRH
2822 if (unlikely(trace_recursive_lock(cpu_buffer)))
2823 goto out;
2824
62f0b3eb 2825 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2826 if (!event)
58a09ec6 2827 goto out_unlock;
7a8e76a3
SR
2828
2829 return event;
2830
58a09ec6
SRRH
2831 out_unlock:
2832 trace_recursive_unlock(cpu_buffer);
d769041f 2833 out:
5168ae50 2834 preempt_enable_notrace();
7a8e76a3
SR
2835 return NULL;
2836}
c4f50183 2837EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2838
a1863c21
SR
2839/*
2840 * Decrement the entries to the page that an event is on.
2841 * The event does not even need to exist, only the pointer
2842 * to the page it is on. This may only be called before the commit
2843 * takes place.
2844 */
2845static inline void
2846rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2847 struct ring_buffer_event *event)
2848{
2849 unsigned long addr = (unsigned long)event;
2850 struct buffer_page *bpage = cpu_buffer->commit_page;
2851 struct buffer_page *start;
2852
2853 addr &= PAGE_MASK;
2854
2855 /* Do the likely case first */
2856 if (likely(bpage->page == (void *)addr)) {
2857 local_dec(&bpage->entries);
2858 return;
2859 }
2860
2861 /*
2862 * Because the commit page may be on the reader page we
2863 * start with the next page and check the end loop there.
2864 */
2865 rb_inc_page(cpu_buffer, &bpage);
2866 start = bpage;
2867 do {
2868 if (bpage->page == (void *)addr) {
2869 local_dec(&bpage->entries);
2870 return;
2871 }
2872 rb_inc_page(cpu_buffer, &bpage);
2873 } while (bpage != start);
2874
2875 /* commit not part of this buffer?? */
2876 RB_WARN_ON(cpu_buffer, 1);
2877}
2878
fa1b47dd
SR
2879/**
2880 * ring_buffer_commit_discard - discard an event that has not been committed
2881 * @buffer: the ring buffer
2882 * @event: non committed event to discard
2883 *
dc892f73
SR
2884 * Sometimes an event that is in the ring buffer needs to be ignored.
2885 * This function lets the user discard an event in the ring buffer
2886 * and then that event will not be read later.
2887 *
2888 * This function only works if it is called before the the item has been
2889 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2890 * if another event has not been added behind it.
2891 *
2892 * If another event has been added behind it, it will set the event
2893 * up as discarded, and perform the commit.
2894 *
2895 * If this function is called, do not call ring_buffer_unlock_commit on
2896 * the event.
2897 */
2898void ring_buffer_discard_commit(struct ring_buffer *buffer,
2899 struct ring_buffer_event *event)
2900{
2901 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2902 int cpu;
2903
2904 /* The event is discarded regardless */
f3b9aae1 2905 rb_event_discard(event);
fa1b47dd 2906
fa743953
SR
2907 cpu = smp_processor_id();
2908 cpu_buffer = buffer->buffers[cpu];
2909
fa1b47dd
SR
2910 /*
2911 * This must only be called if the event has not been
2912 * committed yet. Thus we can assume that preemption
2913 * is still disabled.
2914 */
fa743953 2915 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2916
a1863c21 2917 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2918 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2919 goto out;
fa1b47dd
SR
2920
2921 /*
2922 * The commit is still visible by the reader, so we
a1863c21 2923 * must still update the timestamp.
fa1b47dd 2924 */
a1863c21 2925 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2926 out:
fa743953 2927 rb_end_commit(cpu_buffer);
fa1b47dd 2928
58a09ec6 2929 trace_recursive_unlock(cpu_buffer);
f3b9aae1 2930
5168ae50 2931 preempt_enable_notrace();
fa1b47dd
SR
2932
2933}
2934EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2935
7a8e76a3
SR
2936/**
2937 * ring_buffer_write - write data to the buffer without reserving
2938 * @buffer: The ring buffer to write to.
2939 * @length: The length of the data being written (excluding the event header)
2940 * @data: The data to write to the buffer.
2941 *
2942 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2943 * one function. If you already have the data to write to the buffer, it
2944 * may be easier to simply call this function.
2945 *
2946 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2947 * and not the length of the event which would hold the header.
2948 */
2949int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2950 unsigned long length,
2951 void *data)
7a8e76a3
SR
2952{
2953 struct ring_buffer_per_cpu *cpu_buffer;
2954 struct ring_buffer_event *event;
7a8e76a3
SR
2955 void *body;
2956 int ret = -EBUSY;
5168ae50 2957 int cpu;
7a8e76a3 2958
5168ae50 2959 preempt_disable_notrace();
bf41a158 2960
52fbe9cd
LJ
2961 if (atomic_read(&buffer->record_disabled))
2962 goto out;
2963
7a8e76a3
SR
2964 cpu = raw_smp_processor_id();
2965
9e01c1b7 2966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2967 goto out;
7a8e76a3
SR
2968
2969 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2970
2971 if (atomic_read(&cpu_buffer->record_disabled))
2972 goto out;
2973
be957c44
SR
2974 if (length > BUF_MAX_DATA_SIZE)
2975 goto out;
2976
985e871b
SRRH
2977 if (unlikely(trace_recursive_lock(cpu_buffer)))
2978 goto out;
2979
62f0b3eb 2980 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2981 if (!event)
985e871b 2982 goto out_unlock;
7a8e76a3
SR
2983
2984 body = rb_event_data(event);
2985
2986 memcpy(body, data, length);
2987
2988 rb_commit(cpu_buffer, event);
2989
15693458
SRRH
2990 rb_wakeups(buffer, cpu_buffer);
2991
7a8e76a3 2992 ret = 0;
985e871b
SRRH
2993
2994 out_unlock:
2995 trace_recursive_unlock(cpu_buffer);
2996
7a8e76a3 2997 out:
5168ae50 2998 preempt_enable_notrace();
7a8e76a3
SR
2999
3000 return ret;
3001}
c4f50183 3002EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3003
da58834c 3004static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3005{
3006 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3007 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3008 struct buffer_page *commit = cpu_buffer->commit_page;
3009
77ae365e
SR
3010 /* In case of error, head will be NULL */
3011 if (unlikely(!head))
da58834c 3012 return true;
77ae365e 3013
bf41a158
SR
3014 return reader->read == rb_page_commit(reader) &&
3015 (commit == reader ||
3016 (commit == head &&
3017 head->read == rb_page_commit(commit)));
3018}
3019
7a8e76a3
SR
3020/**
3021 * ring_buffer_record_disable - stop all writes into the buffer
3022 * @buffer: The ring buffer to stop writes to.
3023 *
3024 * This prevents all writes to the buffer. Any attempt to write
3025 * to the buffer after this will fail and return NULL.
3026 *
3027 * The caller should call synchronize_sched() after this.
3028 */
3029void ring_buffer_record_disable(struct ring_buffer *buffer)
3030{
3031 atomic_inc(&buffer->record_disabled);
3032}
c4f50183 3033EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3034
3035/**
3036 * ring_buffer_record_enable - enable writes to the buffer
3037 * @buffer: The ring buffer to enable writes
3038 *
3039 * Note, multiple disables will need the same number of enables
c41b20e7 3040 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3041 */
3042void ring_buffer_record_enable(struct ring_buffer *buffer)
3043{
3044 atomic_dec(&buffer->record_disabled);
3045}
c4f50183 3046EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3047
499e5470
SR
3048/**
3049 * ring_buffer_record_off - stop all writes into the buffer
3050 * @buffer: The ring buffer to stop writes to.
3051 *
3052 * This prevents all writes to the buffer. Any attempt to write
3053 * to the buffer after this will fail and return NULL.
3054 *
3055 * This is different than ring_buffer_record_disable() as
87abb3b1 3056 * it works like an on/off switch, where as the disable() version
499e5470
SR
3057 * must be paired with a enable().
3058 */
3059void ring_buffer_record_off(struct ring_buffer *buffer)
3060{
3061 unsigned int rd;
3062 unsigned int new_rd;
3063
3064 do {
3065 rd = atomic_read(&buffer->record_disabled);
3066 new_rd = rd | RB_BUFFER_OFF;
3067 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068}
3069EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3070
3071/**
3072 * ring_buffer_record_on - restart writes into the buffer
3073 * @buffer: The ring buffer to start writes to.
3074 *
3075 * This enables all writes to the buffer that was disabled by
3076 * ring_buffer_record_off().
3077 *
3078 * This is different than ring_buffer_record_enable() as
87abb3b1 3079 * it works like an on/off switch, where as the enable() version
499e5470
SR
3080 * must be paired with a disable().
3081 */
3082void ring_buffer_record_on(struct ring_buffer *buffer)
3083{
3084 unsigned int rd;
3085 unsigned int new_rd;
3086
3087 do {
3088 rd = atomic_read(&buffer->record_disabled);
3089 new_rd = rd & ~RB_BUFFER_OFF;
3090 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3091}
3092EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3093
3094/**
3095 * ring_buffer_record_is_on - return true if the ring buffer can write
3096 * @buffer: The ring buffer to see if write is enabled
3097 *
3098 * Returns true if the ring buffer is in a state that it accepts writes.
3099 */
3100int ring_buffer_record_is_on(struct ring_buffer *buffer)
3101{
3102 return !atomic_read(&buffer->record_disabled);
3103}
3104
7a8e76a3
SR
3105/**
3106 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3107 * @buffer: The ring buffer to stop writes to.
3108 * @cpu: The CPU buffer to stop
3109 *
3110 * This prevents all writes to the buffer. Any attempt to write
3111 * to the buffer after this will fail and return NULL.
3112 *
3113 * The caller should call synchronize_sched() after this.
3114 */
3115void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3116{
3117 struct ring_buffer_per_cpu *cpu_buffer;
3118
9e01c1b7 3119 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3120 return;
7a8e76a3
SR
3121
3122 cpu_buffer = buffer->buffers[cpu];
3123 atomic_inc(&cpu_buffer->record_disabled);
3124}
c4f50183 3125EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3126
3127/**
3128 * ring_buffer_record_enable_cpu - enable writes to the buffer
3129 * @buffer: The ring buffer to enable writes
3130 * @cpu: The CPU to enable.
3131 *
3132 * Note, multiple disables will need the same number of enables
c41b20e7 3133 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3134 */
3135void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3136{
3137 struct ring_buffer_per_cpu *cpu_buffer;
3138
9e01c1b7 3139 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3140 return;
7a8e76a3
SR
3141
3142 cpu_buffer = buffer->buffers[cpu];
3143 atomic_dec(&cpu_buffer->record_disabled);
3144}
c4f50183 3145EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3146
f6195aa0
SR
3147/*
3148 * The total entries in the ring buffer is the running counter
3149 * of entries entered into the ring buffer, minus the sum of
3150 * the entries read from the ring buffer and the number of
3151 * entries that were overwritten.
3152 */
3153static inline unsigned long
3154rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3155{
3156 return local_read(&cpu_buffer->entries) -
3157 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3158}
3159
c64e148a
VN
3160/**
3161 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3162 * @buffer: The ring buffer
3163 * @cpu: The per CPU buffer to read from.
3164 */
50ecf2c3 3165u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3166{
3167 unsigned long flags;
3168 struct ring_buffer_per_cpu *cpu_buffer;
3169 struct buffer_page *bpage;
da830e58 3170 u64 ret = 0;
c64e148a
VN
3171
3172 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3173 return 0;
3174
3175 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3176 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3177 /*
3178 * if the tail is on reader_page, oldest time stamp is on the reader
3179 * page
3180 */
3181 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3182 bpage = cpu_buffer->reader_page;
3183 else
3184 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3185 if (bpage)
3186 ret = bpage->page->time_stamp;
7115e3fc 3187 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3188
3189 return ret;
3190}
3191EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3192
3193/**
3194 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3195 * @buffer: The ring buffer
3196 * @cpu: The per CPU buffer to read from.
3197 */
3198unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3199{
3200 struct ring_buffer_per_cpu *cpu_buffer;
3201 unsigned long ret;
3202
3203 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3204 return 0;
3205
3206 cpu_buffer = buffer->buffers[cpu];
3207 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3208
3209 return ret;
3210}
3211EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3212
7a8e76a3
SR
3213/**
3214 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3215 * @buffer: The ring buffer
3216 * @cpu: The per CPU buffer to get the entries from.
3217 */
3218unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3219{
3220 struct ring_buffer_per_cpu *cpu_buffer;
3221
9e01c1b7 3222 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3223 return 0;
7a8e76a3
SR
3224
3225 cpu_buffer = buffer->buffers[cpu];
554f786e 3226
f6195aa0 3227 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3228}
c4f50183 3229EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3230
3231/**
884bfe89
SP
3232 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3233 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to get the number of overruns from
3236 */
3237unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3238{
3239 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3240 unsigned long ret;
7a8e76a3 3241
9e01c1b7 3242 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3243 return 0;
7a8e76a3
SR
3244
3245 cpu_buffer = buffer->buffers[cpu];
77ae365e 3246 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3247
3248 return ret;
7a8e76a3 3249}
c4f50183 3250EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3251
f0d2c681 3252/**
884bfe89
SP
3253 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3254 * commits failing due to the buffer wrapping around while there are uncommitted
3255 * events, such as during an interrupt storm.
f0d2c681
SR
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to get the number of overruns from
3258 */
3259unsigned long
3260ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3261{
3262 struct ring_buffer_per_cpu *cpu_buffer;
3263 unsigned long ret;
3264
3265 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266 return 0;
3267
3268 cpu_buffer = buffer->buffers[cpu];
77ae365e 3269 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3270
3271 return ret;
3272}
3273EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3274
884bfe89
SP
3275/**
3276 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3277 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3278 * @buffer: The ring buffer
3279 * @cpu: The per CPU buffer to get the number of overruns from
3280 */
3281unsigned long
3282ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3283{
3284 struct ring_buffer_per_cpu *cpu_buffer;
3285 unsigned long ret;
3286
3287 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3288 return 0;
3289
3290 cpu_buffer = buffer->buffers[cpu];
3291 ret = local_read(&cpu_buffer->dropped_events);
3292
3293 return ret;
3294}
3295EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3296
ad964704
SRRH
3297/**
3298 * ring_buffer_read_events_cpu - get the number of events successfully read
3299 * @buffer: The ring buffer
3300 * @cpu: The per CPU buffer to get the number of events read
3301 */
3302unsigned long
3303ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3304{
3305 struct ring_buffer_per_cpu *cpu_buffer;
3306
3307 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3308 return 0;
3309
3310 cpu_buffer = buffer->buffers[cpu];
3311 return cpu_buffer->read;
3312}
3313EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3314
7a8e76a3
SR
3315/**
3316 * ring_buffer_entries - get the number of entries in a buffer
3317 * @buffer: The ring buffer
3318 *
3319 * Returns the total number of entries in the ring buffer
3320 * (all CPU entries)
3321 */
3322unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3323{
3324 struct ring_buffer_per_cpu *cpu_buffer;
3325 unsigned long entries = 0;
3326 int cpu;
3327
3328 /* if you care about this being correct, lock the buffer */
3329 for_each_buffer_cpu(buffer, cpu) {
3330 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3331 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3332 }
3333
3334 return entries;
3335}
c4f50183 3336EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3337
3338/**
67b394f7 3339 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3340 * @buffer: The ring buffer
3341 *
3342 * Returns the total number of overruns in the ring buffer
3343 * (all CPU entries)
3344 */
3345unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3346{
3347 struct ring_buffer_per_cpu *cpu_buffer;
3348 unsigned long overruns = 0;
3349 int cpu;
3350
3351 /* if you care about this being correct, lock the buffer */
3352 for_each_buffer_cpu(buffer, cpu) {
3353 cpu_buffer = buffer->buffers[cpu];
77ae365e 3354 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3355 }
3356
3357 return overruns;
3358}
c4f50183 3359EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3360
642edba5 3361static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3362{
3363 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3364
d769041f 3365 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3366 iter->head_page = cpu_buffer->reader_page;
3367 iter->head = cpu_buffer->reader_page->read;
3368
3369 iter->cache_reader_page = iter->head_page;
24607f11 3370 iter->cache_read = cpu_buffer->read;
651e22f2 3371
d769041f
SR
3372 if (iter->head)
3373 iter->read_stamp = cpu_buffer->read_stamp;
3374 else
abc9b56d 3375 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3376}
f83c9d0f 3377
642edba5
SR
3378/**
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3381 *
3382 * Resets the iterator, so that it will start from the beginning
3383 * again.
3384 */
3385void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386{
554f786e 3387 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3388 unsigned long flags;
3389
554f786e
SR
3390 if (!iter)
3391 return;
3392
3393 cpu_buffer = iter->cpu_buffer;
3394
5389f6fa 3395 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3396 rb_iter_reset(iter);
5389f6fa 3397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3398}
c4f50183 3399EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3400
3401/**
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3404 */
3405int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406{
3407 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
3408 struct buffer_page *reader;
3409 struct buffer_page *head_page;
3410 struct buffer_page *commit_page;
3411 unsigned commit;
7a8e76a3
SR
3412
3413 cpu_buffer = iter->cpu_buffer;
3414
78f7a45d
SRV
3415 /* Remember, trace recording is off when iterator is in use */
3416 reader = cpu_buffer->reader_page;
3417 head_page = cpu_buffer->head_page;
3418 commit_page = cpu_buffer->commit_page;
3419 commit = rb_page_commit(commit_page);
3420
3421 return ((iter->head_page == commit_page && iter->head == commit) ||
3422 (iter->head_page == reader && commit_page == head_page &&
3423 head_page->read == commit &&
3424 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 3425}
c4f50183 3426EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3427
3428static void
3429rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3430 struct ring_buffer_event *event)
3431{
3432 u64 delta;
3433
334d4169 3434 switch (event->type_len) {
7a8e76a3
SR
3435 case RINGBUF_TYPE_PADDING:
3436 return;
3437
3438 case RINGBUF_TYPE_TIME_EXTEND:
3439 delta = event->array[0];
3440 delta <<= TS_SHIFT;
3441 delta += event->time_delta;
3442 cpu_buffer->read_stamp += delta;
3443 return;
3444
3445 case RINGBUF_TYPE_TIME_STAMP:
3446 /* FIXME: not implemented */
3447 return;
3448
3449 case RINGBUF_TYPE_DATA:
3450 cpu_buffer->read_stamp += event->time_delta;
3451 return;
3452
3453 default:
3454 BUG();
3455 }
3456 return;
3457}
3458
3459static void
3460rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3461 struct ring_buffer_event *event)
3462{
3463 u64 delta;
3464
334d4169 3465 switch (event->type_len) {
7a8e76a3
SR
3466 case RINGBUF_TYPE_PADDING:
3467 return;
3468
3469 case RINGBUF_TYPE_TIME_EXTEND:
3470 delta = event->array[0];
3471 delta <<= TS_SHIFT;
3472 delta += event->time_delta;
3473 iter->read_stamp += delta;
3474 return;
3475
3476 case RINGBUF_TYPE_TIME_STAMP:
3477 /* FIXME: not implemented */
3478 return;
3479
3480 case RINGBUF_TYPE_DATA:
3481 iter->read_stamp += event->time_delta;
3482 return;
3483
3484 default:
3485 BUG();
3486 }
3487 return;
3488}
3489
d769041f
SR
3490static struct buffer_page *
3491rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3492{
d769041f 3493 struct buffer_page *reader = NULL;
66a8cb95 3494 unsigned long overwrite;
d769041f 3495 unsigned long flags;
818e3dd3 3496 int nr_loops = 0;
77ae365e 3497 int ret;
d769041f 3498
3e03fb7f 3499 local_irq_save(flags);
0199c4e6 3500 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3501
3502 again:
818e3dd3
SR
3503 /*
3504 * This should normally only loop twice. But because the
3505 * start of the reader inserts an empty page, it causes
3506 * a case where we will loop three times. There should be no
3507 * reason to loop four times (that I know of).
3508 */
3e89c7bb 3509 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3510 reader = NULL;
3511 goto out;
3512 }
3513
d769041f
SR
3514 reader = cpu_buffer->reader_page;
3515
3516 /* If there's more to read, return this page */
bf41a158 3517 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3518 goto out;
3519
3520 /* Never should we have an index greater than the size */
3e89c7bb
SR
3521 if (RB_WARN_ON(cpu_buffer,
3522 cpu_buffer->reader_page->read > rb_page_size(reader)))
3523 goto out;
d769041f
SR
3524
3525 /* check if we caught up to the tail */
3526 reader = NULL;
bf41a158 3527 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3528 goto out;
7a8e76a3 3529
a5fb8331
SR
3530 /* Don't bother swapping if the ring buffer is empty */
3531 if (rb_num_of_entries(cpu_buffer) == 0)
3532 goto out;
3533
7a8e76a3 3534 /*
d769041f 3535 * Reset the reader page to size zero.
7a8e76a3 3536 */
77ae365e
SR
3537 local_set(&cpu_buffer->reader_page->write, 0);
3538 local_set(&cpu_buffer->reader_page->entries, 0);
3539 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3540 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3541
77ae365e
SR
3542 spin:
3543 /*
3544 * Splice the empty reader page into the list around the head.
3545 */
3546 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3547 if (!reader)
3548 goto out;
0e1ff5d7 3549 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3550 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3551
3adc54fa
SR
3552 /*
3553 * cpu_buffer->pages just needs to point to the buffer, it
3554 * has no specific buffer page to point to. Lets move it out
25985edc 3555 * of our way so we don't accidentally swap it.
3adc54fa
SR
3556 */
3557 cpu_buffer->pages = reader->list.prev;
3558
77ae365e
SR
3559 /* The reader page will be pointing to the new head */
3560 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3561
66a8cb95
SR
3562 /*
3563 * We want to make sure we read the overruns after we set up our
3564 * pointers to the next object. The writer side does a
3565 * cmpxchg to cross pages which acts as the mb on the writer
3566 * side. Note, the reader will constantly fail the swap
3567 * while the writer is updating the pointers, so this
3568 * guarantees that the overwrite recorded here is the one we
3569 * want to compare with the last_overrun.
3570 */
3571 smp_mb();
3572 overwrite = local_read(&(cpu_buffer->overrun));
3573
77ae365e
SR
3574 /*
3575 * Here's the tricky part.
3576 *
3577 * We need to move the pointer past the header page.
3578 * But we can only do that if a writer is not currently
3579 * moving it. The page before the header page has the
3580 * flag bit '1' set if it is pointing to the page we want.
3581 * but if the writer is in the process of moving it
3582 * than it will be '2' or already moved '0'.
3583 */
3584
3585 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3586
3587 /*
77ae365e 3588 * If we did not convert it, then we must try again.
7a8e76a3 3589 */
77ae365e
SR
3590 if (!ret)
3591 goto spin;
7a8e76a3 3592
77ae365e
SR
3593 /*
3594 * Yeah! We succeeded in replacing the page.
3595 *
3596 * Now make the new head point back to the reader page.
3597 */
5ded3dc6 3598 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3599 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3600
3601 /* Finally update the reader page to the new head */
3602 cpu_buffer->reader_page = reader;
b81f472a 3603 cpu_buffer->reader_page->read = 0;
d769041f 3604
66a8cb95
SR
3605 if (overwrite != cpu_buffer->last_overrun) {
3606 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3607 cpu_buffer->last_overrun = overwrite;
3608 }
3609
d769041f
SR
3610 goto again;
3611
3612 out:
b81f472a
SRRH
3613 /* Update the read_stamp on the first event */
3614 if (reader && reader->read == 0)
3615 cpu_buffer->read_stamp = reader->page->time_stamp;
3616
0199c4e6 3617 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3618 local_irq_restore(flags);
d769041f
SR
3619
3620 return reader;
3621}
3622
3623static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3624{
3625 struct ring_buffer_event *event;
3626 struct buffer_page *reader;
3627 unsigned length;
3628
3629 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3630
d769041f 3631 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3632 if (RB_WARN_ON(cpu_buffer, !reader))
3633 return;
7a8e76a3 3634
d769041f
SR
3635 event = rb_reader_event(cpu_buffer);
3636
a1863c21 3637 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3638 cpu_buffer->read++;
d769041f
SR
3639
3640 rb_update_read_stamp(cpu_buffer, event);
3641
3642 length = rb_event_length(event);
6f807acd 3643 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3644}
3645
3646static void rb_advance_iter(struct ring_buffer_iter *iter)
3647{
7a8e76a3
SR
3648 struct ring_buffer_per_cpu *cpu_buffer;
3649 struct ring_buffer_event *event;
3650 unsigned length;
3651
3652 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3653
3654 /*
3655 * Check if we are at the end of the buffer.
3656 */
bf41a158 3657 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3658 /* discarded commits can make the page empty */
3659 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3660 return;
d769041f 3661 rb_inc_iter(iter);
7a8e76a3
SR
3662 return;
3663 }
3664
3665 event = rb_iter_head_event(iter);
3666
3667 length = rb_event_length(event);
3668
3669 /*
3670 * This should not be called to advance the header if we are
3671 * at the tail of the buffer.
3672 */
3e89c7bb 3673 if (RB_WARN_ON(cpu_buffer,
f536aafc 3674 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3675 (iter->head + length > rb_commit_index(cpu_buffer))))
3676 return;
7a8e76a3
SR
3677
3678 rb_update_iter_read_stamp(iter, event);
3679
3680 iter->head += length;
3681
3682 /* check for end of page padding */
bf41a158
SR
3683 if ((iter->head >= rb_page_size(iter->head_page)) &&
3684 (iter->head_page != cpu_buffer->commit_page))
771e0384 3685 rb_inc_iter(iter);
7a8e76a3
SR
3686}
3687
66a8cb95
SR
3688static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3689{
3690 return cpu_buffer->lost_events;
3691}
3692
f83c9d0f 3693static struct ring_buffer_event *
66a8cb95
SR
3694rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3695 unsigned long *lost_events)
7a8e76a3 3696{
7a8e76a3 3697 struct ring_buffer_event *event;
d769041f 3698 struct buffer_page *reader;
818e3dd3 3699 int nr_loops = 0;
7a8e76a3 3700
7a8e76a3 3701 again:
818e3dd3 3702 /*
69d1b839
SR
3703 * We repeat when a time extend is encountered.
3704 * Since the time extend is always attached to a data event,
3705 * we should never loop more than once.
3706 * (We never hit the following condition more than twice).
818e3dd3 3707 */
69d1b839 3708 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3709 return NULL;
818e3dd3 3710
d769041f
SR
3711 reader = rb_get_reader_page(cpu_buffer);
3712 if (!reader)
7a8e76a3
SR
3713 return NULL;
3714
d769041f 3715 event = rb_reader_event(cpu_buffer);
7a8e76a3 3716
334d4169 3717 switch (event->type_len) {
7a8e76a3 3718 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3719 if (rb_null_event(event))
3720 RB_WARN_ON(cpu_buffer, 1);
3721 /*
3722 * Because the writer could be discarding every
3723 * event it creates (which would probably be bad)
3724 * if we were to go back to "again" then we may never
3725 * catch up, and will trigger the warn on, or lock
3726 * the box. Return the padding, and we will release
3727 * the current locks, and try again.
3728 */
2d622719 3729 return event;
7a8e76a3
SR
3730
3731 case RINGBUF_TYPE_TIME_EXTEND:
3732 /* Internal data, OK to advance */
d769041f 3733 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3734 goto again;
3735
3736 case RINGBUF_TYPE_TIME_STAMP:
3737 /* FIXME: not implemented */
d769041f 3738 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3739 goto again;
3740
3741 case RINGBUF_TYPE_DATA:
3742 if (ts) {
3743 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3744 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3745 cpu_buffer->cpu, ts);
7a8e76a3 3746 }
66a8cb95
SR
3747 if (lost_events)
3748 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3749 return event;
3750
3751 default:
3752 BUG();
3753 }
3754
3755 return NULL;
3756}
c4f50183 3757EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3758
f83c9d0f
SR
3759static struct ring_buffer_event *
3760rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3761{
3762 struct ring_buffer *buffer;
3763 struct ring_buffer_per_cpu *cpu_buffer;
3764 struct ring_buffer_event *event;
818e3dd3 3765 int nr_loops = 0;
7a8e76a3 3766
7a8e76a3
SR
3767 cpu_buffer = iter->cpu_buffer;
3768 buffer = cpu_buffer->buffer;
3769
492a74f4
SR
3770 /*
3771 * Check if someone performed a consuming read to
3772 * the buffer. A consuming read invalidates the iterator
3773 * and we need to reset the iterator in this case.
3774 */
3775 if (unlikely(iter->cache_read != cpu_buffer->read ||
3776 iter->cache_reader_page != cpu_buffer->reader_page))
3777 rb_iter_reset(iter);
3778
7a8e76a3 3779 again:
3c05d748
SR
3780 if (ring_buffer_iter_empty(iter))
3781 return NULL;
3782
818e3dd3 3783 /*
021de3d9
SRRH
3784 * We repeat when a time extend is encountered or we hit
3785 * the end of the page. Since the time extend is always attached
3786 * to a data event, we should never loop more than three times.
3787 * Once for going to next page, once on time extend, and
3788 * finally once to get the event.
3789 * (We never hit the following condition more than thrice).
818e3dd3 3790 */
021de3d9 3791 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3792 return NULL;
818e3dd3 3793
7a8e76a3
SR
3794 if (rb_per_cpu_empty(cpu_buffer))
3795 return NULL;
3796
10e83fd0 3797 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3798 rb_inc_iter(iter);
3799 goto again;
3800 }
3801
7a8e76a3
SR
3802 event = rb_iter_head_event(iter);
3803
334d4169 3804 switch (event->type_len) {
7a8e76a3 3805 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3806 if (rb_null_event(event)) {
3807 rb_inc_iter(iter);
3808 goto again;
3809 }
3810 rb_advance_iter(iter);
3811 return event;
7a8e76a3
SR
3812
3813 case RINGBUF_TYPE_TIME_EXTEND:
3814 /* Internal data, OK to advance */
3815 rb_advance_iter(iter);
3816 goto again;
3817
3818 case RINGBUF_TYPE_TIME_STAMP:
3819 /* FIXME: not implemented */
3820 rb_advance_iter(iter);
3821 goto again;
3822
3823 case RINGBUF_TYPE_DATA:
3824 if (ts) {
3825 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3826 ring_buffer_normalize_time_stamp(buffer,
3827 cpu_buffer->cpu, ts);
7a8e76a3
SR
3828 }
3829 return event;
3830
3831 default:
3832 BUG();
3833 }
3834
3835 return NULL;
3836}
c4f50183 3837EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3838
289a5a25 3839static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 3840{
289a5a25
SRRH
3841 if (likely(!in_nmi())) {
3842 raw_spin_lock(&cpu_buffer->reader_lock);
3843 return true;
3844 }
3845
8d707e8e
SR
3846 /*
3847 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
3848 * trylock must be used to prevent a deadlock if the NMI
3849 * preempted a task that holds the ring buffer locks. If
3850 * we get the lock then all is fine, if not, then continue
3851 * to do the read, but this can corrupt the ring buffer,
3852 * so it must be permanently disabled from future writes.
3853 * Reading from NMI is a oneshot deal.
8d707e8e 3854 */
289a5a25
SRRH
3855 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3856 return true;
8d707e8e 3857
289a5a25
SRRH
3858 /* Continue without locking, but disable the ring buffer */
3859 atomic_inc(&cpu_buffer->record_disabled);
3860 return false;
3861}
3862
3863static inline void
3864rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3865{
3866 if (likely(locked))
3867 raw_spin_unlock(&cpu_buffer->reader_lock);
3868 return;
8d707e8e
SR
3869}
3870
f83c9d0f
SR
3871/**
3872 * ring_buffer_peek - peek at the next event to be read
3873 * @buffer: The ring buffer to read
3874 * @cpu: The cpu to peak at
3875 * @ts: The timestamp counter of this event.
66a8cb95 3876 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3877 *
3878 * This will return the event that will be read next, but does
3879 * not consume the data.
3880 */
3881struct ring_buffer_event *
66a8cb95
SR
3882ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3883 unsigned long *lost_events)
f83c9d0f
SR
3884{
3885 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3886 struct ring_buffer_event *event;
f83c9d0f 3887 unsigned long flags;
289a5a25 3888 bool dolock;
f83c9d0f 3889
554f786e 3890 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3891 return NULL;
554f786e 3892
2d622719 3893 again:
8d707e8e 3894 local_irq_save(flags);
289a5a25 3895 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 3896 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3897 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3898 rb_advance_reader(cpu_buffer);
289a5a25 3899 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3900 local_irq_restore(flags);
f83c9d0f 3901
1b959e18 3902 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3903 goto again;
2d622719 3904
f83c9d0f
SR
3905 return event;
3906}
3907
3908/**
3909 * ring_buffer_iter_peek - peek at the next event to be read
3910 * @iter: The ring buffer iterator
3911 * @ts: The timestamp counter of this event.
3912 *
3913 * This will return the event that will be read next, but does
3914 * not increment the iterator.
3915 */
3916struct ring_buffer_event *
3917ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3918{
3919 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3920 struct ring_buffer_event *event;
3921 unsigned long flags;
3922
2d622719 3923 again:
5389f6fa 3924 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3925 event = rb_iter_peek(iter, ts);
5389f6fa 3926 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3927
1b959e18 3928 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3929 goto again;
2d622719 3930
f83c9d0f
SR
3931 return event;
3932}
3933
7a8e76a3
SR
3934/**
3935 * ring_buffer_consume - return an event and consume it
3936 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3937 * @cpu: the cpu to read the buffer from
3938 * @ts: a variable to store the timestamp (may be NULL)
3939 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3940 *
3941 * Returns the next event in the ring buffer, and that event is consumed.
3942 * Meaning, that sequential reads will keep returning a different event,
3943 * and eventually empty the ring buffer if the producer is slower.
3944 */
3945struct ring_buffer_event *
66a8cb95
SR
3946ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3947 unsigned long *lost_events)
7a8e76a3 3948{
554f786e
SR
3949 struct ring_buffer_per_cpu *cpu_buffer;
3950 struct ring_buffer_event *event = NULL;
f83c9d0f 3951 unsigned long flags;
289a5a25 3952 bool dolock;
7a8e76a3 3953
2d622719 3954 again:
554f786e
SR
3955 /* might be called in atomic */
3956 preempt_disable();
3957
9e01c1b7 3958 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3959 goto out;
7a8e76a3 3960
554f786e 3961 cpu_buffer = buffer->buffers[cpu];
8d707e8e 3962 local_irq_save(flags);
289a5a25 3963 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 3964
66a8cb95
SR
3965 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3966 if (event) {
3967 cpu_buffer->lost_events = 0;
469535a5 3968 rb_advance_reader(cpu_buffer);
66a8cb95 3969 }
7a8e76a3 3970
289a5a25 3971 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 3972 local_irq_restore(flags);
f83c9d0f 3973
554f786e
SR
3974 out:
3975 preempt_enable();
3976
1b959e18 3977 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3978 goto again;
2d622719 3979
7a8e76a3
SR
3980 return event;
3981}
c4f50183 3982EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3983
3984/**
72c9ddfd 3985 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3986 * @buffer: The ring buffer to read from
3987 * @cpu: The cpu buffer to iterate over
3988 *
72c9ddfd
DM
3989 * This performs the initial preparations necessary to iterate
3990 * through the buffer. Memory is allocated, buffer recording
3991 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3992 *
72c9ddfd
DM
3993 * Disabling buffer recordng prevents the reading from being
3994 * corrupted. This is not a consuming read, so a producer is not
3995 * expected.
3996 *
3997 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 3998 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
3999 * Afterwards, ring_buffer_read_start is invoked to get things going
4000 * for real.
4001 *
d611851b 4002 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4003 */
4004struct ring_buffer_iter *
72c9ddfd 4005ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4006{
4007 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4008 struct ring_buffer_iter *iter;
7a8e76a3 4009
9e01c1b7 4010 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4011 return NULL;
7a8e76a3
SR
4012
4013 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4014 if (!iter)
8aabee57 4015 return NULL;
7a8e76a3
SR
4016
4017 cpu_buffer = buffer->buffers[cpu];
4018
4019 iter->cpu_buffer = cpu_buffer;
4020
83f40318 4021 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4022 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4023
4024 return iter;
4025}
4026EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4027
4028/**
4029 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4030 *
4031 * All previously invoked ring_buffer_read_prepare calls to prepare
4032 * iterators will be synchronized. Afterwards, read_buffer_read_start
4033 * calls on those iterators are allowed.
4034 */
4035void
4036ring_buffer_read_prepare_sync(void)
4037{
7a8e76a3 4038 synchronize_sched();
72c9ddfd
DM
4039}
4040EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4041
4042/**
4043 * ring_buffer_read_start - start a non consuming read of the buffer
4044 * @iter: The iterator returned by ring_buffer_read_prepare
4045 *
4046 * This finalizes the startup of an iteration through the buffer.
4047 * The iterator comes from a call to ring_buffer_read_prepare and
4048 * an intervening ring_buffer_read_prepare_sync must have been
4049 * performed.
4050 *
d611851b 4051 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4052 */
4053void
4054ring_buffer_read_start(struct ring_buffer_iter *iter)
4055{
4056 struct ring_buffer_per_cpu *cpu_buffer;
4057 unsigned long flags;
4058
4059 if (!iter)
4060 return;
4061
4062 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4063
5389f6fa 4064 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4065 arch_spin_lock(&cpu_buffer->lock);
642edba5 4066 rb_iter_reset(iter);
0199c4e6 4067 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4068 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4069}
c4f50183 4070EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4071
4072/**
d611851b 4073 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4074 * @iter: The iterator retrieved by ring_buffer_start
4075 *
4076 * This re-enables the recording to the buffer, and frees the
4077 * iterator.
4078 */
4079void
4080ring_buffer_read_finish(struct ring_buffer_iter *iter)
4081{
4082 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4083 unsigned long flags;
7a8e76a3 4084
659f451f
SR
4085 /*
4086 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4087 * to check the integrity of the ring buffer.
4088 * Must prevent readers from trying to read, as the check
4089 * clears the HEAD page and readers require it.
659f451f 4090 */
9366c1ba 4091 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4092 rb_check_pages(cpu_buffer);
9366c1ba 4093 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4094
7a8e76a3 4095 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4096 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4097 kfree(iter);
4098}
c4f50183 4099EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4100
4101/**
4102 * ring_buffer_read - read the next item in the ring buffer by the iterator
4103 * @iter: The ring buffer iterator
4104 * @ts: The time stamp of the event read.
4105 *
4106 * This reads the next event in the ring buffer and increments the iterator.
4107 */
4108struct ring_buffer_event *
4109ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4110{
4111 struct ring_buffer_event *event;
f83c9d0f
SR
4112 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4113 unsigned long flags;
7a8e76a3 4114
5389f6fa 4115 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4116 again:
f83c9d0f 4117 event = rb_iter_peek(iter, ts);
7a8e76a3 4118 if (!event)
f83c9d0f 4119 goto out;
7a8e76a3 4120
7e9391cf
SR
4121 if (event->type_len == RINGBUF_TYPE_PADDING)
4122 goto again;
4123
7a8e76a3 4124 rb_advance_iter(iter);
f83c9d0f 4125 out:
5389f6fa 4126 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4127
4128 return event;
4129}
c4f50183 4130EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4131
4132/**
4133 * ring_buffer_size - return the size of the ring buffer (in bytes)
4134 * @buffer: The ring buffer.
4135 */
438ced17 4136unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4137{
438ced17
VN
4138 /*
4139 * Earlier, this method returned
4140 * BUF_PAGE_SIZE * buffer->nr_pages
4141 * Since the nr_pages field is now removed, we have converted this to
4142 * return the per cpu buffer value.
4143 */
4144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4145 return 0;
4146
4147 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4148}
c4f50183 4149EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4150
4151static void
4152rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4153{
77ae365e
SR
4154 rb_head_page_deactivate(cpu_buffer);
4155
7a8e76a3 4156 cpu_buffer->head_page
3adc54fa 4157 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4158 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4159 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4160 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4161
6f807acd 4162 cpu_buffer->head_page->read = 0;
bf41a158
SR
4163
4164 cpu_buffer->tail_page = cpu_buffer->head_page;
4165 cpu_buffer->commit_page = cpu_buffer->head_page;
4166
4167 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4168 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4169 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4170 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4171 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4172 cpu_buffer->reader_page->read = 0;
7a8e76a3 4173
c64e148a 4174 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4175 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4176 local_set(&cpu_buffer->commit_overrun, 0);
4177 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4178 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4179 local_set(&cpu_buffer->committing, 0);
4180 local_set(&cpu_buffer->commits, 0);
77ae365e 4181 cpu_buffer->read = 0;
c64e148a 4182 cpu_buffer->read_bytes = 0;
69507c06
SR
4183
4184 cpu_buffer->write_stamp = 0;
4185 cpu_buffer->read_stamp = 0;
77ae365e 4186
66a8cb95
SR
4187 cpu_buffer->lost_events = 0;
4188 cpu_buffer->last_overrun = 0;
4189
77ae365e 4190 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4191}
4192
4193/**
4194 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4195 * @buffer: The ring buffer to reset a per cpu buffer of
4196 * @cpu: The CPU buffer to be reset
4197 */
4198void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4199{
4200 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4201 unsigned long flags;
4202
9e01c1b7 4203 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4204 return;
7a8e76a3 4205
83f40318 4206 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4207 atomic_inc(&cpu_buffer->record_disabled);
4208
83f40318
VN
4209 /* Make sure all commits have finished */
4210 synchronize_sched();
4211
5389f6fa 4212 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4213
41b6a95d
SR
4214 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4215 goto out;
4216
0199c4e6 4217 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4218
4219 rb_reset_cpu(cpu_buffer);
4220
0199c4e6 4221 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4222
41b6a95d 4223 out:
5389f6fa 4224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4225
4226 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4227 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4228}
c4f50183 4229EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4230
4231/**
4232 * ring_buffer_reset - reset a ring buffer
4233 * @buffer: The ring buffer to reset all cpu buffers
4234 */
4235void ring_buffer_reset(struct ring_buffer *buffer)
4236{
7a8e76a3
SR
4237 int cpu;
4238
7a8e76a3 4239 for_each_buffer_cpu(buffer, cpu)
d769041f 4240 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4241}
c4f50183 4242EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4243
4244/**
4245 * rind_buffer_empty - is the ring buffer empty?
4246 * @buffer: The ring buffer to test
4247 */
3d4e204d 4248bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4249{
4250 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4251 unsigned long flags;
289a5a25 4252 bool dolock;
7a8e76a3 4253 int cpu;
d4788207 4254 int ret;
7a8e76a3
SR
4255
4256 /* yes this is racy, but if you don't like the race, lock the buffer */
4257 for_each_buffer_cpu(buffer, cpu) {
4258 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4259 local_irq_save(flags);
289a5a25 4260 dolock = rb_reader_lock(cpu_buffer);
d4788207 4261 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4262 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4263 local_irq_restore(flags);
4264
d4788207 4265 if (!ret)
3d4e204d 4266 return false;
7a8e76a3 4267 }
554f786e 4268
3d4e204d 4269 return true;
7a8e76a3 4270}
c4f50183 4271EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4272
4273/**
4274 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4275 * @buffer: The ring buffer
4276 * @cpu: The CPU buffer to test
4277 */
3d4e204d 4278bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4279{
4280 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4281 unsigned long flags;
289a5a25 4282 bool dolock;
8aabee57 4283 int ret;
7a8e76a3 4284
9e01c1b7 4285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4286 return true;
7a8e76a3
SR
4287
4288 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4289 local_irq_save(flags);
289a5a25 4290 dolock = rb_reader_lock(cpu_buffer);
554f786e 4291 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4292 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4293 local_irq_restore(flags);
554f786e
SR
4294
4295 return ret;
7a8e76a3 4296}
c4f50183 4297EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4298
85bac32c 4299#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4300/**
4301 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4302 * @buffer_a: One buffer to swap with
4303 * @buffer_b: The other buffer to swap with
4304 *
4305 * This function is useful for tracers that want to take a "snapshot"
4306 * of a CPU buffer and has another back up buffer lying around.
4307 * it is expected that the tracer handles the cpu buffer not being
4308 * used at the moment.
4309 */
4310int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4311 struct ring_buffer *buffer_b, int cpu)
4312{
4313 struct ring_buffer_per_cpu *cpu_buffer_a;
4314 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4315 int ret = -EINVAL;
4316
9e01c1b7
RR
4317 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4318 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4319 goto out;
7a8e76a3 4320
438ced17
VN
4321 cpu_buffer_a = buffer_a->buffers[cpu];
4322 cpu_buffer_b = buffer_b->buffers[cpu];
4323
7a8e76a3 4324 /* At least make sure the two buffers are somewhat the same */
438ced17 4325 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4326 goto out;
4327
4328 ret = -EAGAIN;
7a8e76a3 4329
97b17efe 4330 if (atomic_read(&buffer_a->record_disabled))
554f786e 4331 goto out;
97b17efe
SR
4332
4333 if (atomic_read(&buffer_b->record_disabled))
554f786e 4334 goto out;
97b17efe 4335
97b17efe 4336 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4337 goto out;
97b17efe
SR
4338
4339 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4340 goto out;
97b17efe 4341
7a8e76a3
SR
4342 /*
4343 * We can't do a synchronize_sched here because this
4344 * function can be called in atomic context.
4345 * Normally this will be called from the same CPU as cpu.
4346 * If not it's up to the caller to protect this.
4347 */
4348 atomic_inc(&cpu_buffer_a->record_disabled);
4349 atomic_inc(&cpu_buffer_b->record_disabled);
4350
98277991
SR
4351 ret = -EBUSY;
4352 if (local_read(&cpu_buffer_a->committing))
4353 goto out_dec;
4354 if (local_read(&cpu_buffer_b->committing))
4355 goto out_dec;
4356
7a8e76a3
SR
4357 buffer_a->buffers[cpu] = cpu_buffer_b;
4358 buffer_b->buffers[cpu] = cpu_buffer_a;
4359
4360 cpu_buffer_b->buffer = buffer_a;
4361 cpu_buffer_a->buffer = buffer_b;
4362
98277991
SR
4363 ret = 0;
4364
4365out_dec:
7a8e76a3
SR
4366 atomic_dec(&cpu_buffer_a->record_disabled);
4367 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4368out:
554f786e 4369 return ret;
7a8e76a3 4370}
c4f50183 4371EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4372#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4373
8789a9e7
SR
4374/**
4375 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4376 * @buffer: the buffer to allocate for.
d611851b 4377 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4378 *
4379 * This function is used in conjunction with ring_buffer_read_page.
4380 * When reading a full page from the ring buffer, these functions
4381 * can be used to speed up the process. The calling function should
4382 * allocate a few pages first with this function. Then when it
4383 * needs to get pages from the ring buffer, it passes the result
4384 * of this function into ring_buffer_read_page, which will swap
4385 * the page that was allocated, with the read page of the buffer.
4386 *
4387 * Returns:
4388 * The page allocated, or NULL on error.
4389 */
7ea59064 4390void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4391{
044fa782 4392 struct buffer_data_page *bpage;
7ea59064 4393 struct page *page;
8789a9e7 4394
d7ec4bfe
VN
4395 page = alloc_pages_node(cpu_to_node(cpu),
4396 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4397 if (!page)
8789a9e7
SR
4398 return NULL;
4399
7ea59064 4400 bpage = page_address(page);
8789a9e7 4401
ef7a4a16
SR
4402 rb_init_page(bpage);
4403
044fa782 4404 return bpage;
8789a9e7 4405}
d6ce96da 4406EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4407
4408/**
4409 * ring_buffer_free_read_page - free an allocated read page
4410 * @buffer: the buffer the page was allocate for
4411 * @data: the page to free
4412 *
4413 * Free a page allocated from ring_buffer_alloc_read_page.
4414 */
4415void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4416{
4417 free_page((unsigned long)data);
4418}
d6ce96da 4419EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4420
4421/**
4422 * ring_buffer_read_page - extract a page from the ring buffer
4423 * @buffer: buffer to extract from
4424 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4425 * @len: amount to extract
8789a9e7
SR
4426 * @cpu: the cpu of the buffer to extract
4427 * @full: should the extraction only happen when the page is full.
4428 *
4429 * This function will pull out a page from the ring buffer and consume it.
4430 * @data_page must be the address of the variable that was returned
4431 * from ring_buffer_alloc_read_page. This is because the page might be used
4432 * to swap with a page in the ring buffer.
4433 *
4434 * for example:
d611851b 4435 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
8789a9e7
SR
4436 * if (!rpage)
4437 * return error;
ef7a4a16 4438 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4439 * if (ret >= 0)
4440 * process_page(rpage, ret);
8789a9e7
SR
4441 *
4442 * When @full is set, the function will not return true unless
4443 * the writer is off the reader page.
4444 *
4445 * Note: it is up to the calling functions to handle sleeps and wakeups.
4446 * The ring buffer can be used anywhere in the kernel and can not
4447 * blindly call wake_up. The layer that uses the ring buffer must be
4448 * responsible for that.
4449 *
4450 * Returns:
667d2412
LJ
4451 * >=0 if data has been transferred, returns the offset of consumed data.
4452 * <0 if no data has been transferred.
8789a9e7
SR
4453 */
4454int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4455 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4456{
4457 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4458 struct ring_buffer_event *event;
044fa782 4459 struct buffer_data_page *bpage;
ef7a4a16 4460 struct buffer_page *reader;
ff0ff84a 4461 unsigned long missed_events;
8789a9e7 4462 unsigned long flags;
ef7a4a16 4463 unsigned int commit;
667d2412 4464 unsigned int read;
4f3640f8 4465 u64 save_timestamp;
667d2412 4466 int ret = -1;
8789a9e7 4467
554f786e
SR
4468 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4469 goto out;
4470
474d32b6
SR
4471 /*
4472 * If len is not big enough to hold the page header, then
4473 * we can not copy anything.
4474 */
4475 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4476 goto out;
474d32b6
SR
4477
4478 len -= BUF_PAGE_HDR_SIZE;
4479
8789a9e7 4480 if (!data_page)
554f786e 4481 goto out;
8789a9e7 4482
044fa782
SR
4483 bpage = *data_page;
4484 if (!bpage)
554f786e 4485 goto out;
8789a9e7 4486
5389f6fa 4487 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4488
ef7a4a16
SR
4489 reader = rb_get_reader_page(cpu_buffer);
4490 if (!reader)
554f786e 4491 goto out_unlock;
8789a9e7 4492
ef7a4a16
SR
4493 event = rb_reader_event(cpu_buffer);
4494
4495 read = reader->read;
4496 commit = rb_page_commit(reader);
667d2412 4497
66a8cb95 4498 /* Check if any events were dropped */
ff0ff84a 4499 missed_events = cpu_buffer->lost_events;
66a8cb95 4500
8789a9e7 4501 /*
474d32b6
SR
4502 * If this page has been partially read or
4503 * if len is not big enough to read the rest of the page or
4504 * a writer is still on the page, then
4505 * we must copy the data from the page to the buffer.
4506 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4507 */
474d32b6 4508 if (read || (len < (commit - read)) ||
ef7a4a16 4509 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4510 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4511 unsigned int rpos = read;
4512 unsigned int pos = 0;
ef7a4a16 4513 unsigned int size;
8789a9e7
SR
4514
4515 if (full)
554f786e 4516 goto out_unlock;
8789a9e7 4517
ef7a4a16
SR
4518 if (len > (commit - read))
4519 len = (commit - read);
4520
69d1b839
SR
4521 /* Always keep the time extend and data together */
4522 size = rb_event_ts_length(event);
ef7a4a16
SR
4523
4524 if (len < size)
554f786e 4525 goto out_unlock;
ef7a4a16 4526
4f3640f8
SR
4527 /* save the current timestamp, since the user will need it */
4528 save_timestamp = cpu_buffer->read_stamp;
4529
ef7a4a16
SR
4530 /* Need to copy one event at a time */
4531 do {
e1e35927
DS
4532 /* We need the size of one event, because
4533 * rb_advance_reader only advances by one event,
4534 * whereas rb_event_ts_length may include the size of
4535 * one or two events.
4536 * We have already ensured there's enough space if this
4537 * is a time extend. */
4538 size = rb_event_length(event);
474d32b6 4539 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4540
4541 len -= size;
4542
4543 rb_advance_reader(cpu_buffer);
474d32b6
SR
4544 rpos = reader->read;
4545 pos += size;
ef7a4a16 4546
18fab912
HY
4547 if (rpos >= commit)
4548 break;
4549
ef7a4a16 4550 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4551 /* Always keep the time extend and data together */
4552 size = rb_event_ts_length(event);
e1e35927 4553 } while (len >= size);
667d2412
LJ
4554
4555 /* update bpage */
ef7a4a16 4556 local_set(&bpage->commit, pos);
4f3640f8 4557 bpage->time_stamp = save_timestamp;
ef7a4a16 4558
474d32b6
SR
4559 /* we copied everything to the beginning */
4560 read = 0;
8789a9e7 4561 } else {
afbab76a 4562 /* update the entry counter */
77ae365e 4563 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4564 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4565
8789a9e7 4566 /* swap the pages */
044fa782 4567 rb_init_page(bpage);
ef7a4a16
SR
4568 bpage = reader->page;
4569 reader->page = *data_page;
4570 local_set(&reader->write, 0);
778c55d4 4571 local_set(&reader->entries, 0);
ef7a4a16 4572 reader->read = 0;
044fa782 4573 *data_page = bpage;
ff0ff84a
SR
4574
4575 /*
4576 * Use the real_end for the data size,
4577 * This gives us a chance to store the lost events
4578 * on the page.
4579 */
4580 if (reader->real_end)
4581 local_set(&bpage->commit, reader->real_end);
8789a9e7 4582 }
667d2412 4583 ret = read;
8789a9e7 4584
66a8cb95 4585 cpu_buffer->lost_events = 0;
2711ca23
SR
4586
4587 commit = local_read(&bpage->commit);
66a8cb95
SR
4588 /*
4589 * Set a flag in the commit field if we lost events
4590 */
ff0ff84a 4591 if (missed_events) {
ff0ff84a
SR
4592 /* If there is room at the end of the page to save the
4593 * missed events, then record it there.
4594 */
4595 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4596 memcpy(&bpage->data[commit], &missed_events,
4597 sizeof(missed_events));
4598 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4599 commit += sizeof(missed_events);
ff0ff84a 4600 }
66a8cb95 4601 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4602 }
66a8cb95 4603
2711ca23
SR
4604 /*
4605 * This page may be off to user land. Zero it out here.
4606 */
4607 if (commit < BUF_PAGE_SIZE)
4608 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4609
554f786e 4610 out_unlock:
5389f6fa 4611 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4612
554f786e 4613 out:
8789a9e7
SR
4614 return ret;
4615}
d6ce96da 4616EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4617
b32614c0
SAS
4618/*
4619 * We only allocate new buffers, never free them if the CPU goes down.
4620 * If we were to free the buffer, then the user would lose any trace that was in
4621 * the buffer.
4622 */
4623int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 4624{
b32614c0 4625 struct ring_buffer *buffer;
9b94a8fb
SRRH
4626 long nr_pages_same;
4627 int cpu_i;
4628 unsigned long nr_pages;
554f786e 4629
b32614c0
SAS
4630 buffer = container_of(node, struct ring_buffer, node);
4631 if (cpumask_test_cpu(cpu, buffer->cpumask))
4632 return 0;
4633
4634 nr_pages = 0;
4635 nr_pages_same = 1;
4636 /* check if all cpu sizes are same */
4637 for_each_buffer_cpu(buffer, cpu_i) {
4638 /* fill in the size from first enabled cpu */
4639 if (nr_pages == 0)
4640 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4641 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4642 nr_pages_same = 0;
4643 break;
554f786e 4644 }
554f786e 4645 }
b32614c0
SAS
4646 /* allocate minimum pages, user can later expand it */
4647 if (!nr_pages_same)
4648 nr_pages = 2;
4649 buffer->buffers[cpu] =
4650 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4651 if (!buffer->buffers[cpu]) {
4652 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4653 cpu);
4654 return -ENOMEM;
4655 }
4656 smp_wmb();
4657 cpumask_set_cpu(cpu, buffer->cpumask);
4658 return 0;
554f786e 4659}
6c43e554
SRRH
4660
4661#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4662/*
4663 * This is a basic integrity check of the ring buffer.
4664 * Late in the boot cycle this test will run when configured in.
4665 * It will kick off a thread per CPU that will go into a loop
4666 * writing to the per cpu ring buffer various sizes of data.
4667 * Some of the data will be large items, some small.
4668 *
4669 * Another thread is created that goes into a spin, sending out
4670 * IPIs to the other CPUs to also write into the ring buffer.
4671 * this is to test the nesting ability of the buffer.
4672 *
4673 * Basic stats are recorded and reported. If something in the
4674 * ring buffer should happen that's not expected, a big warning
4675 * is displayed and all ring buffers are disabled.
4676 */
4677static struct task_struct *rb_threads[NR_CPUS] __initdata;
4678
4679struct rb_test_data {
4680 struct ring_buffer *buffer;
4681 unsigned long events;
4682 unsigned long bytes_written;
4683 unsigned long bytes_alloc;
4684 unsigned long bytes_dropped;
4685 unsigned long events_nested;
4686 unsigned long bytes_written_nested;
4687 unsigned long bytes_alloc_nested;
4688 unsigned long bytes_dropped_nested;
4689 int min_size_nested;
4690 int max_size_nested;
4691 int max_size;
4692 int min_size;
4693 int cpu;
4694 int cnt;
4695};
4696
4697static struct rb_test_data rb_data[NR_CPUS] __initdata;
4698
4699/* 1 meg per cpu */
4700#define RB_TEST_BUFFER_SIZE 1048576
4701
4702static char rb_string[] __initdata =
4703 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4704 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4705 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4706
4707static bool rb_test_started __initdata;
4708
4709struct rb_item {
4710 int size;
4711 char str[];
4712};
4713
4714static __init int rb_write_something(struct rb_test_data *data, bool nested)
4715{
4716 struct ring_buffer_event *event;
4717 struct rb_item *item;
4718 bool started;
4719 int event_len;
4720 int size;
4721 int len;
4722 int cnt;
4723
4724 /* Have nested writes different that what is written */
4725 cnt = data->cnt + (nested ? 27 : 0);
4726
4727 /* Multiply cnt by ~e, to make some unique increment */
4728 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4729
4730 len = size + sizeof(struct rb_item);
4731
4732 started = rb_test_started;
4733 /* read rb_test_started before checking buffer enabled */
4734 smp_rmb();
4735
4736 event = ring_buffer_lock_reserve(data->buffer, len);
4737 if (!event) {
4738 /* Ignore dropped events before test starts. */
4739 if (started) {
4740 if (nested)
4741 data->bytes_dropped += len;
4742 else
4743 data->bytes_dropped_nested += len;
4744 }
4745 return len;
4746 }
4747
4748 event_len = ring_buffer_event_length(event);
4749
4750 if (RB_WARN_ON(data->buffer, event_len < len))
4751 goto out;
4752
4753 item = ring_buffer_event_data(event);
4754 item->size = size;
4755 memcpy(item->str, rb_string, size);
4756
4757 if (nested) {
4758 data->bytes_alloc_nested += event_len;
4759 data->bytes_written_nested += len;
4760 data->events_nested++;
4761 if (!data->min_size_nested || len < data->min_size_nested)
4762 data->min_size_nested = len;
4763 if (len > data->max_size_nested)
4764 data->max_size_nested = len;
4765 } else {
4766 data->bytes_alloc += event_len;
4767 data->bytes_written += len;
4768 data->events++;
4769 if (!data->min_size || len < data->min_size)
4770 data->max_size = len;
4771 if (len > data->max_size)
4772 data->max_size = len;
4773 }
4774
4775 out:
4776 ring_buffer_unlock_commit(data->buffer, event);
4777
4778 return 0;
4779}
4780
4781static __init int rb_test(void *arg)
4782{
4783 struct rb_test_data *data = arg;
4784
4785 while (!kthread_should_stop()) {
4786 rb_write_something(data, false);
4787 data->cnt++;
4788
4789 set_current_state(TASK_INTERRUPTIBLE);
4790 /* Now sleep between a min of 100-300us and a max of 1ms */
4791 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4792 }
4793
4794 return 0;
4795}
4796
4797static __init void rb_ipi(void *ignore)
4798{
4799 struct rb_test_data *data;
4800 int cpu = smp_processor_id();
4801
4802 data = &rb_data[cpu];
4803 rb_write_something(data, true);
4804}
4805
4806static __init int rb_hammer_test(void *arg)
4807{
4808 while (!kthread_should_stop()) {
4809
4810 /* Send an IPI to all cpus to write data! */
4811 smp_call_function(rb_ipi, NULL, 1);
4812 /* No sleep, but for non preempt, let others run */
4813 schedule();
4814 }
4815
4816 return 0;
4817}
4818
4819static __init int test_ringbuffer(void)
4820{
4821 struct task_struct *rb_hammer;
4822 struct ring_buffer *buffer;
4823 int cpu;
4824 int ret = 0;
4825
4826 pr_info("Running ring buffer tests...\n");
4827
4828 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4829 if (WARN_ON(!buffer))
4830 return 0;
4831
4832 /* Disable buffer so that threads can't write to it yet */
4833 ring_buffer_record_off(buffer);
4834
4835 for_each_online_cpu(cpu) {
4836 rb_data[cpu].buffer = buffer;
4837 rb_data[cpu].cpu = cpu;
4838 rb_data[cpu].cnt = cpu;
4839 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4840 "rbtester/%d", cpu);
62277de7 4841 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 4842 pr_cont("FAILED\n");
62277de7 4843 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
4844 goto out_free;
4845 }
4846
4847 kthread_bind(rb_threads[cpu], cpu);
4848 wake_up_process(rb_threads[cpu]);
4849 }
4850
4851 /* Now create the rb hammer! */
4852 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 4853 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 4854 pr_cont("FAILED\n");
62277de7 4855 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
4856 goto out_free;
4857 }
4858
4859 ring_buffer_record_on(buffer);
4860 /*
4861 * Show buffer is enabled before setting rb_test_started.
4862 * Yes there's a small race window where events could be
4863 * dropped and the thread wont catch it. But when a ring
4864 * buffer gets enabled, there will always be some kind of
4865 * delay before other CPUs see it. Thus, we don't care about
4866 * those dropped events. We care about events dropped after
4867 * the threads see that the buffer is active.
4868 */
4869 smp_wmb();
4870 rb_test_started = true;
4871
4872 set_current_state(TASK_INTERRUPTIBLE);
4873 /* Just run for 10 seconds */;
4874 schedule_timeout(10 * HZ);
4875
4876 kthread_stop(rb_hammer);
4877
4878 out_free:
4879 for_each_online_cpu(cpu) {
4880 if (!rb_threads[cpu])
4881 break;
4882 kthread_stop(rb_threads[cpu]);
4883 }
4884 if (ret) {
4885 ring_buffer_free(buffer);
4886 return ret;
4887 }
4888
4889 /* Report! */
4890 pr_info("finished\n");
4891 for_each_online_cpu(cpu) {
4892 struct ring_buffer_event *event;
4893 struct rb_test_data *data = &rb_data[cpu];
4894 struct rb_item *item;
4895 unsigned long total_events;
4896 unsigned long total_dropped;
4897 unsigned long total_written;
4898 unsigned long total_alloc;
4899 unsigned long total_read = 0;
4900 unsigned long total_size = 0;
4901 unsigned long total_len = 0;
4902 unsigned long total_lost = 0;
4903 unsigned long lost;
4904 int big_event_size;
4905 int small_event_size;
4906
4907 ret = -1;
4908
4909 total_events = data->events + data->events_nested;
4910 total_written = data->bytes_written + data->bytes_written_nested;
4911 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4912 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4913
4914 big_event_size = data->max_size + data->max_size_nested;
4915 small_event_size = data->min_size + data->min_size_nested;
4916
4917 pr_info("CPU %d:\n", cpu);
4918 pr_info(" events: %ld\n", total_events);
4919 pr_info(" dropped bytes: %ld\n", total_dropped);
4920 pr_info(" alloced bytes: %ld\n", total_alloc);
4921 pr_info(" written bytes: %ld\n", total_written);
4922 pr_info(" biggest event: %d\n", big_event_size);
4923 pr_info(" smallest event: %d\n", small_event_size);
4924
4925 if (RB_WARN_ON(buffer, total_dropped))
4926 break;
4927
4928 ret = 0;
4929
4930 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4931 total_lost += lost;
4932 item = ring_buffer_event_data(event);
4933 total_len += ring_buffer_event_length(event);
4934 total_size += item->size + sizeof(struct rb_item);
4935 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4936 pr_info("FAILED!\n");
4937 pr_info("buffer had: %.*s\n", item->size, item->str);
4938 pr_info("expected: %.*s\n", item->size, rb_string);
4939 RB_WARN_ON(buffer, 1);
4940 ret = -1;
4941 break;
4942 }
4943 total_read++;
4944 }
4945 if (ret)
4946 break;
4947
4948 ret = -1;
4949
4950 pr_info(" read events: %ld\n", total_read);
4951 pr_info(" lost events: %ld\n", total_lost);
4952 pr_info(" total events: %ld\n", total_lost + total_read);
4953 pr_info(" recorded len bytes: %ld\n", total_len);
4954 pr_info(" recorded size bytes: %ld\n", total_size);
4955 if (total_lost)
4956 pr_info(" With dropped events, record len and size may not match\n"
4957 " alloced and written from above\n");
4958 if (!total_lost) {
4959 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4960 total_size != total_written))
4961 break;
4962 }
4963 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4964 break;
4965
4966 ret = 0;
4967 }
4968 if (!ret)
4969 pr_info("Ring buffer PASSED!\n");
4970
4971 ring_buffer_free(buffer);
4972 return 0;
4973}
4974
4975late_initcall(test_ringbuffer);
4976#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */