]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/trace/trace_events_filter.c
treewide: kmalloc() -> kmalloc_array()
[mirror_ubuntu-hirsute-kernel.git] / kernel / trace / trace_events_filter.c
CommitLineData
7ce7e424
TZ
1/*
2 * trace_events_filter - generic event filtering
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
19 */
20
7ce7e424
TZ
21#include <linux/module.h>
22#include <linux/ctype.h>
ac1adc55 23#include <linux/mutex.h>
6fb2915d 24#include <linux/perf_event.h>
5a0e3ad6 25#include <linux/slab.h>
7ce7e424
TZ
26
27#include "trace.h"
4bda2d51 28#include "trace_output.h"
7ce7e424 29
49aa2951
SR
30#define DEFAULT_SYS_FILTER_MESSAGE \
31 "### global filter ###\n" \
32 "# Use this to set filters for multiple events.\n" \
33 "# Only events with the given fields will be affected.\n" \
34 "# If no events are modified, an error message will be displayed here"
35
80765597 36/* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
e9baef0d 37#define OPS \
80765597
SRV
38 C( OP_GLOB, "~" ), \
39 C( OP_NE, "!=" ), \
40 C( OP_EQ, "==" ), \
41 C( OP_LE, "<=" ), \
42 C( OP_LT, "<" ), \
43 C( OP_GE, ">=" ), \
44 C( OP_GT, ">" ), \
45 C( OP_BAND, "&" ), \
46 C( OP_MAX, NULL )
e9baef0d
SRV
47
48#undef C
80765597 49#define C(a, b) a
e9baef0d
SRV
50
51enum filter_op_ids { OPS };
8b372562 52
e9baef0d 53#undef C
80765597 54#define C(a, b) b
8b372562 55
80765597 56static const char * ops[] = { OPS };
8b372562 57
478325f1 58/*
80765597 59 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
478325f1
SRV
60 * pred_funcs_##type below must match the order of them above.
61 */
80765597 62#define PRED_FUNC_START OP_LE
478325f1
SRV
63#define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
64
e9baef0d 65#define ERRORS \
80765597
SRV
66 C(NONE, "No error"), \
67 C(INVALID_OP, "Invalid operator"), \
68 C(TOO_MANY_OPEN, "Too many '('"), \
69 C(TOO_MANY_CLOSE, "Too few '('"), \
70 C(MISSING_QUOTE, "Missing matching quote"), \
71 C(OPERAND_TOO_LONG, "Operand too long"), \
72 C(EXPECT_STRING, "Expecting string field"), \
73 C(EXPECT_DIGIT, "Expecting numeric field"), \
74 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
75 C(FIELD_NOT_FOUND, "Field not found"), \
76 C(ILLEGAL_INTVAL, "Illegal integer value"), \
77 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
78 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
79 C(INVALID_FILTER, "Meaningless filter expression"), \
80 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
81 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"),
e9baef0d
SRV
82
83#undef C
84#define C(a, b) FILT_ERR_##a
85
86enum { ERRORS };
87
88#undef C
89#define C(a, b) b
90
91static char *err_text[] = { ERRORS };
8b372562 92
80765597
SRV
93/* Called after a '!' character but "!=" and "!~" are not "not"s */
94static bool is_not(const char *str)
95{
96 switch (str[1]) {
97 case '=':
98 case '~':
99 return false;
100 }
101 return true;
102}
8b372562 103
80765597
SRV
104/**
105 * prog_entry - a singe entry in the filter program
106 * @target: Index to jump to on a branch (actually one minus the index)
107 * @when_to_branch: The value of the result of the predicate to do a branch
108 * @pred: The predicate to execute.
109 */
110struct prog_entry {
111 int target;
112 int when_to_branch;
113 struct filter_pred *pred;
8b372562
TZ
114};
115
80765597
SRV
116/**
117 * update_preds- assign a program entry a label target
118 * @prog: The program array
119 * @N: The index of the current entry in @prog
120 * @when_to_branch: What to assign a program entry for its branch condition
121 *
122 * The program entry at @N has a target that points to the index of a program
123 * entry that can have its target and when_to_branch fields updated.
124 * Update the current program entry denoted by index @N target field to be
125 * that of the updated entry. This will denote the entry to update if
126 * we are processing an "||" after an "&&"
127 */
128static void update_preds(struct prog_entry *prog, int N, int invert)
129{
130 int t, s;
131
132 t = prog[N].target;
133 s = prog[t].target;
134 prog[t].when_to_branch = invert;
135 prog[t].target = N;
136 prog[N].target = s;
137}
138
139struct filter_parse_error {
8b372562
TZ
140 int lasterr;
141 int lasterr_pos;
8b372562
TZ
142};
143
80765597
SRV
144static void parse_error(struct filter_parse_error *pe, int err, int pos)
145{
146 pe->lasterr = err;
147 pe->lasterr_pos = pos;
148}
149
150typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
151 struct filter_parse_error *pe,
152 struct filter_pred **pred);
153
154enum {
155 INVERT = 1,
156 PROCESS_AND = 2,
157 PROCESS_OR = 4,
61e9dea2
SR
158};
159
80765597
SRV
160/*
161 * Without going into a formal proof, this explains the method that is used in
162 * parsing the logical expressions.
163 *
164 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
165 * The first pass will convert it into the following program:
166 *
167 * n1: r=a; l1: if (!r) goto l4;
168 * n2: r=b; l2: if (!r) goto l4;
169 * n3: r=c; r=!r; l3: if (r) goto l4;
170 * n4: r=g; r=!r; l4: if (r) goto l5;
171 * n5: r=d; l5: if (r) goto T
172 * n6: r=e; l6: if (!r) goto l7;
173 * n7: r=f; r=!r; l7: if (!r) goto F
174 * T: return TRUE
175 * F: return FALSE
176 *
177 * To do this, we use a data structure to represent each of the above
178 * predicate and conditions that has:
179 *
180 * predicate, when_to_branch, invert, target
181 *
182 * The "predicate" will hold the function to determine the result "r".
183 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
184 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
185 * The "invert" holds whether the value should be reversed before testing.
186 * The "target" contains the label "l#" to jump to.
187 *
188 * A stack is created to hold values when parentheses are used.
189 *
190 * To simplify the logic, the labels will start at 0 and not 1.
191 *
192 * The possible invert values are 1 and 0. The number of "!"s that are in scope
193 * before the predicate determines the invert value, if the number is odd then
194 * the invert value is 1 and 0 otherwise. This means the invert value only
195 * needs to be toggled when a new "!" is introduced compared to what is stored
196 * on the stack, where parentheses were used.
197 *
198 * The top of the stack and "invert" are initialized to zero.
199 *
200 * ** FIRST PASS **
201 *
202 * #1 A loop through all the tokens is done:
203 *
204 * #2 If the token is an "(", the stack is push, and the current stack value
205 * gets the current invert value, and the loop continues to the next token.
206 * The top of the stack saves the "invert" value to keep track of what
207 * the current inversion is. As "!(a && !b || c)" would require all
208 * predicates being affected separately by the "!" before the parentheses.
209 * And that would end up being equivalent to "(!a || b) && !c"
210 *
211 * #3 If the token is an "!", the current "invert" value gets inverted, and
212 * the loop continues. Note, if the next token is a predicate, then
213 * this "invert" value is only valid for the current program entry,
214 * and does not affect other predicates later on.
215 *
216 * The only other acceptable token is the predicate string.
217 *
218 * #4 A new entry into the program is added saving: the predicate and the
219 * current value of "invert". The target is currently assigned to the
220 * previous program index (this will not be its final value).
221 *
222 * #5 We now enter another loop and look at the next token. The only valid
223 * tokens are ")", "&&", "||" or end of the input string "\0".
224 *
225 * #6 The invert variable is reset to the current value saved on the top of
226 * the stack.
227 *
228 * #7 The top of the stack holds not only the current invert value, but also
229 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
230 * precedence than "||". That is "a && b || c && d" is equivalent to
231 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
232 * to be processed. This is the case if an "&&" was the last token. If it was
233 * then we call update_preds(). This takes the program, the current index in
234 * the program, and the current value of "invert". More will be described
235 * below about this function.
236 *
237 * #8 If the next token is "&&" then we set a flag in the top of the stack
238 * that denotes that "&&" needs to be processed, break out of this loop
239 * and continue with the outer loop.
240 *
241 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
242 * This is called with the program, the current index in the program, but
243 * this time with an inverted value of "invert" (that is !invert). This is
244 * because the value taken will become the "when_to_branch" value of the
245 * program.
246 * Note, this is called when the next token is not an "&&". As stated before,
247 * "&&" takes higher precedence, and "||" should not be processed yet if the
248 * next logical operation is "&&".
249 *
250 * #10 If the next token is "||" then we set a flag in the top of the stack
251 * that denotes that "||" needs to be processed, break out of this loop
252 * and continue with the outer loop.
253 *
254 * #11 If this is the end of the input string "\0" then we break out of both
255 * loops.
256 *
257 * #12 Otherwise, the next token is ")", where we pop the stack and continue
258 * this inner loop.
259 *
260 * Now to discuss the update_pred() function, as that is key to the setting up
261 * of the program. Remember the "target" of the program is initialized to the
262 * previous index and not the "l" label. The target holds the index into the
263 * program that gets affected by the operand. Thus if we have something like
264 * "a || b && c", when we process "a" the target will be "-1" (undefined).
265 * When we process "b", its target is "0", which is the index of "a", as that's
266 * the predicate that is affected by "||". But because the next token after "b"
267 * is "&&" we don't call update_preds(). Instead continue to "c". As the
268 * next token after "c" is not "&&" but the end of input, we first process the
269 * "&&" by calling update_preds() for the "&&" then we process the "||" by
270 * callin updates_preds() with the values for processing "||".
271 *
272 * What does that mean? What update_preds() does is to first save the "target"
273 * of the program entry indexed by the current program entry's "target"
274 * (remember the "target" is initialized to previous program entry), and then
275 * sets that "target" to the current index which represents the label "l#".
276 * That entry's "when_to_branch" is set to the value passed in (the "invert"
277 * or "!invert"). Then it sets the current program entry's target to the saved
278 * "target" value (the old value of the program that had its "target" updated
279 * to the label).
280 *
281 * Looking back at "a || b && c", we have the following steps:
282 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
283 * "||" - flag that we need to process "||"; continue outer loop
284 * "b" - prog[1] = { "b", X, 0 }
285 * "&&" - flag that we need to process "&&"; continue outer loop
286 * (Notice we did not process "||")
287 * "c" - prog[2] = { "c", X, 1 }
288 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
289 * t = prog[2].target; // t = 1
290 * s = prog[t].target; // s = 0
291 * prog[t].target = 2; // Set target to "l2"
292 * prog[t].when_to_branch = 0;
293 * prog[2].target = s;
294 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
295 * t = prog[2].target; // t = 0
296 * s = prog[t].target; // s = -1
297 * prog[t].target = 2; // Set target to "l2"
298 * prog[t].when_to_branch = 1;
299 * prog[2].target = s;
300 *
301 * #13 Which brings us to the final step of the first pass, which is to set
302 * the last program entry's when_to_branch and target, which will be
303 * when_to_branch = 0; target = N; ( the label after the program entry after
304 * the last program entry processed above).
305 *
306 * If we denote "TRUE" to be the entry after the last program entry processed,
307 * and "FALSE" the program entry after that, we are now done with the first
308 * pass.
309 *
310 * Making the above "a || b && c" have a progam of:
311 * prog[0] = { "a", 1, 2 }
312 * prog[1] = { "b", 0, 2 }
313 * prog[2] = { "c", 0, 3 }
314 *
315 * Which translates into:
316 * n0: r = a; l0: if (r) goto l2;
317 * n1: r = b; l1: if (!r) goto l2;
318 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
319 * T: return TRUE; l3:
320 * F: return FALSE
321 *
322 * Although, after the first pass, the program is correct, it is
323 * inefficient. The simple sample of "a || b && c" could be easily been
324 * converted into:
325 * n0: r = a; if (r) goto T
326 * n1: r = b; if (!r) goto F
327 * n2: r = c; if (!r) goto F
328 * T: return TRUE;
329 * F: return FALSE;
330 *
331 * The First Pass is over the input string. The next too passes are over
332 * the program itself.
333 *
334 * ** SECOND PASS **
335 *
336 * Which brings us to the second pass. If a jump to a label has the
337 * same condition as that label, it can instead jump to its target.
338 * The original example of "a && !(!b || (c && g)) || d || e && !f"
339 * where the first pass gives us:
340 *
341 * n1: r=a; l1: if (!r) goto l4;
342 * n2: r=b; l2: if (!r) goto l4;
343 * n3: r=c; r=!r; l3: if (r) goto l4;
344 * n4: r=g; r=!r; l4: if (r) goto l5;
345 * n5: r=d; l5: if (r) goto T
346 * n6: r=e; l6: if (!r) goto l7;
347 * n7: r=f; r=!r; l7: if (!r) goto F:
348 * T: return TRUE;
349 * F: return FALSE
350 *
351 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
352 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
353 * to go directly to T. To accomplish this, we start from the last
354 * entry in the program and work our way back. If the target of the entry
355 * has the same "when_to_branch" then we could use that entry's target.
356 * Doing this, the above would end up as:
357 *
358 * n1: r=a; l1: if (!r) goto l4;
359 * n2: r=b; l2: if (!r) goto l4;
360 * n3: r=c; r=!r; l3: if (r) goto T;
361 * n4: r=g; r=!r; l4: if (r) goto T;
362 * n5: r=d; l5: if (r) goto T;
363 * n6: r=e; l6: if (!r) goto F;
364 * n7: r=f; r=!r; l7: if (!r) goto F;
365 * T: return TRUE
366 * F: return FALSE
367 *
368 * In that same pass, if the "when_to_branch" doesn't match, we can simply
369 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
370 * where "l4: if (r) goto T;", then we can convert l2 to be:
371 * "l2: if (!r) goto n5;".
372 *
373 * This will have the second pass give us:
374 * n1: r=a; l1: if (!r) goto n5;
375 * n2: r=b; l2: if (!r) goto n5;
376 * n3: r=c; r=!r; l3: if (r) goto T;
377 * n4: r=g; r=!r; l4: if (r) goto T;
378 * n5: r=d; l5: if (r) goto T
379 * n6: r=e; l6: if (!r) goto F;
380 * n7: r=f; r=!r; l7: if (!r) goto F
381 * T: return TRUE
382 * F: return FALSE
383 *
384 * Notice, all the "l#" labels are no longer used, and they can now
385 * be discarded.
386 *
387 * ** THIRD PASS **
388 *
389 * For the third pass we deal with the inverts. As they simply just
390 * make the "when_to_branch" get inverted, a simple loop over the
391 * program to that does: "when_to_branch ^= invert;" will do the
392 * job, leaving us with:
393 * n1: r=a; if (!r) goto n5;
394 * n2: r=b; if (!r) goto n5;
395 * n3: r=c: if (!r) goto T;
396 * n4: r=g; if (!r) goto T;
397 * n5: r=d; if (r) goto T
398 * n6: r=e; if (!r) goto F;
399 * n7: r=f; if (r) goto F
400 * T: return TRUE
401 * F: return FALSE
402 *
403 * As "r = a; if (!r) goto n5;" is obviously the same as
404 * "if (!a) goto n5;" without doing anything we can interperate the
405 * program as:
406 * n1: if (!a) goto n5;
407 * n2: if (!b) goto n5;
408 * n3: if (!c) goto T;
409 * n4: if (!g) goto T;
410 * n5: if (d) goto T
411 * n6: if (!e) goto F;
412 * n7: if (f) goto F
413 * T: return TRUE
414 * F: return FALSE
415 *
416 * Since the inverts are discarded at the end, there's no reason to store
417 * them in the program array (and waste memory). A separate array to hold
418 * the inverts is used and freed at the end.
419 */
420static struct prog_entry *
421predicate_parse(const char *str, int nr_parens, int nr_preds,
422 parse_pred_fn parse_pred, void *data,
423 struct filter_parse_error *pe)
424{
425 struct prog_entry *prog_stack;
426 struct prog_entry *prog;
427 const char *ptr = str;
428 char *inverts = NULL;
429 int *op_stack;
430 int *top;
431 int invert = 0;
432 int ret = -ENOMEM;
433 int len;
434 int N = 0;
435 int i;
436
437 nr_preds += 2; /* For TRUE and FALSE */
438
6da2ec56 439 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
80765597
SRV
440 if (!op_stack)
441 return ERR_PTR(-ENOMEM);
6da2ec56 442 prog_stack = kmalloc_array(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
80765597
SRV
443 if (!prog_stack) {
444 parse_error(pe, -ENOMEM, 0);
445 goto out_free;
446 }
6da2ec56 447 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
80765597
SRV
448 if (!inverts) {
449 parse_error(pe, -ENOMEM, 0);
450 goto out_free;
451 }
452
453 top = op_stack;
454 prog = prog_stack;
455 *top = 0;
456
457 /* First pass */
458 while (*ptr) { /* #1 */
459 const char *next = ptr++;
460
461 if (isspace(*next))
462 continue;
463
464 switch (*next) {
465 case '(': /* #2 */
466 if (top - op_stack > nr_parens)
467 return ERR_PTR(-EINVAL);
468 *(++top) = invert;
469 continue;
470 case '!': /* #3 */
471 if (!is_not(next))
472 break;
473 invert = !invert;
474 continue;
475 }
476
477 if (N >= nr_preds) {
478 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
479 goto out_free;
480 }
481
482 inverts[N] = invert; /* #4 */
483 prog[N].target = N-1;
484
485 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
486 if (len < 0) {
487 ret = len;
488 goto out_free;
489 }
490 ptr = next + len;
491
492 N++;
493
494 ret = -1;
495 while (1) { /* #5 */
496 next = ptr++;
497 if (isspace(*next))
498 continue;
499
500 switch (*next) {
501 case ')':
502 case '\0':
503 break;
504 case '&':
505 case '|':
506 if (next[1] == next[0]) {
507 ptr++;
508 break;
509 }
510 default:
511 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
512 next - str);
513 goto out_free;
514 }
515
516 invert = *top & INVERT;
517
518 if (*top & PROCESS_AND) { /* #7 */
519 update_preds(prog, N - 1, invert);
520 *top &= ~PROCESS_AND;
521 }
522 if (*next == '&') { /* #8 */
523 *top |= PROCESS_AND;
524 break;
525 }
526 if (*top & PROCESS_OR) { /* #9 */
527 update_preds(prog, N - 1, !invert);
528 *top &= ~PROCESS_OR;
529 }
530 if (*next == '|') { /* #10 */
531 *top |= PROCESS_OR;
532 break;
533 }
534 if (!*next) /* #11 */
535 goto out;
536
537 if (top == op_stack) {
538 ret = -1;
539 /* Too few '(' */
540 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
541 goto out_free;
542 }
543 top--; /* #12 */
544 }
545 }
546 out:
547 if (top != op_stack) {
548 /* Too many '(' */
549 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
550 goto out_free;
551 }
552
553 prog[N].pred = NULL; /* #13 */
554 prog[N].target = 1; /* TRUE */
555 prog[N+1].pred = NULL;
556 prog[N+1].target = 0; /* FALSE */
557 prog[N-1].target = N;
558 prog[N-1].when_to_branch = false;
559
560 /* Second Pass */
561 for (i = N-1 ; i--; ) {
562 int target = prog[i].target;
563 if (prog[i].when_to_branch == prog[target].when_to_branch)
564 prog[i].target = prog[target].target;
565 }
566
567 /* Third Pass */
568 for (i = 0; i < N; i++) {
569 invert = inverts[i] ^ prog[i].when_to_branch;
570 prog[i].when_to_branch = invert;
571 /* Make sure the program always moves forward */
572 if (WARN_ON(prog[i].target <= i)) {
573 ret = -EINVAL;
574 goto out_free;
575 }
576 }
577
578 return prog;
579out_free:
580 kfree(op_stack);
581 kfree(prog_stack);
582 kfree(inverts);
583 return ERR_PTR(ret);
584}
585
197e2eab 586#define DEFINE_COMPARISON_PRED(type) \
fdf5b679 587static int filter_pred_LT_##type(struct filter_pred *pred, void *event) \
197e2eab
LZ
588{ \
589 type *addr = (type *)(event + pred->offset); \
590 type val = (type)pred->val; \
80765597 591 return *addr < val; \
fdf5b679
SRRH
592} \
593static int filter_pred_LE_##type(struct filter_pred *pred, void *event) \
594{ \
595 type *addr = (type *)(event + pred->offset); \
596 type val = (type)pred->val; \
80765597 597 return *addr <= val; \
fdf5b679
SRRH
598} \
599static int filter_pred_GT_##type(struct filter_pred *pred, void *event) \
600{ \
601 type *addr = (type *)(event + pred->offset); \
602 type val = (type)pred->val; \
80765597 603 return *addr > val; \
fdf5b679
SRRH
604} \
605static int filter_pred_GE_##type(struct filter_pred *pred, void *event) \
606{ \
607 type *addr = (type *)(event + pred->offset); \
608 type val = (type)pred->val; \
80765597 609 return *addr >= val; \
fdf5b679
SRRH
610} \
611static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
612{ \
613 type *addr = (type *)(event + pred->offset); \
614 type val = (type)pred->val; \
80765597 615 return !!(*addr & val); \
fdf5b679
SRRH
616} \
617static const filter_pred_fn_t pred_funcs_##type[] = { \
fdf5b679 618 filter_pred_LE_##type, \
80765597 619 filter_pred_LT_##type, \
fdf5b679 620 filter_pred_GE_##type, \
80765597 621 filter_pred_GT_##type, \
fdf5b679
SRRH
622 filter_pred_BAND_##type, \
623};
624
197e2eab 625#define DEFINE_EQUALITY_PRED(size) \
58d9a597 626static int filter_pred_##size(struct filter_pred *pred, void *event) \
197e2eab
LZ
627{ \
628 u##size *addr = (u##size *)(event + pred->offset); \
629 u##size val = (u##size)pred->val; \
630 int match; \
631 \
632 match = (val == *addr) ^ pred->not; \
633 \
634 return match; \
635}
636
8b372562
TZ
637DEFINE_COMPARISON_PRED(s64);
638DEFINE_COMPARISON_PRED(u64);
639DEFINE_COMPARISON_PRED(s32);
640DEFINE_COMPARISON_PRED(u32);
641DEFINE_COMPARISON_PRED(s16);
642DEFINE_COMPARISON_PRED(u16);
643DEFINE_COMPARISON_PRED(s8);
644DEFINE_COMPARISON_PRED(u8);
645
646DEFINE_EQUALITY_PRED(64);
647DEFINE_EQUALITY_PRED(32);
648DEFINE_EQUALITY_PRED(16);
649DEFINE_EQUALITY_PRED(8);
650
e8808c10 651/* Filter predicate for fixed sized arrays of characters */
58d9a597 652static int filter_pred_string(struct filter_pred *pred, void *event)
7ce7e424
TZ
653{
654 char *addr = (char *)(event + pred->offset);
655 int cmp, match;
656
1889d209 657 cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
7ce7e424 658
1889d209 659 match = cmp ^ pred->not;
7ce7e424
TZ
660
661 return match;
662}
663
87a342f5 664/* Filter predicate for char * pointers */
58d9a597 665static int filter_pred_pchar(struct filter_pred *pred, void *event)
87a342f5
LZ
666{
667 char **addr = (char **)(event + pred->offset);
668 int cmp, match;
16da27a8 669 int len = strlen(*addr) + 1; /* including tailing '\0' */
87a342f5 670
16da27a8 671 cmp = pred->regex.match(*addr, &pred->regex, len);
87a342f5 672
1889d209 673 match = cmp ^ pred->not;
87a342f5
LZ
674
675 return match;
676}
677
e8808c10
FW
678/*
679 * Filter predicate for dynamic sized arrays of characters.
680 * These are implemented through a list of strings at the end
681 * of the entry.
682 * Also each of these strings have a field in the entry which
683 * contains its offset from the beginning of the entry.
684 * We have then first to get this field, dereference it
685 * and add it to the address of the entry, and at last we have
686 * the address of the string.
687 */
58d9a597 688static int filter_pred_strloc(struct filter_pred *pred, void *event)
e8808c10 689{
7d536cb3
LZ
690 u32 str_item = *(u32 *)(event + pred->offset);
691 int str_loc = str_item & 0xffff;
692 int str_len = str_item >> 16;
e8808c10
FW
693 char *addr = (char *)(event + str_loc);
694 int cmp, match;
695
1889d209 696 cmp = pred->regex.match(addr, &pred->regex, str_len);
e8808c10 697
1889d209 698 match = cmp ^ pred->not;
e8808c10
FW
699
700 return match;
701}
702
9f616680
DW
703/* Filter predicate for CPUs. */
704static int filter_pred_cpu(struct filter_pred *pred, void *event)
705{
706 int cpu, cmp;
9f616680
DW
707
708 cpu = raw_smp_processor_id();
709 cmp = pred->val;
710
711 switch (pred->op) {
712 case OP_EQ:
80765597
SRV
713 return cpu == cmp;
714 case OP_NE:
715 return cpu != cmp;
9f616680 716 case OP_LT:
80765597 717 return cpu < cmp;
9f616680 718 case OP_LE:
80765597 719 return cpu <= cmp;
9f616680 720 case OP_GT:
80765597 721 return cpu > cmp;
9f616680 722 case OP_GE:
80765597 723 return cpu >= cmp;
9f616680 724 default:
80765597 725 return 0;
9f616680 726 }
9f616680
DW
727}
728
729/* Filter predicate for COMM. */
730static int filter_pred_comm(struct filter_pred *pred, void *event)
731{
80765597 732 int cmp;
9f616680
DW
733
734 cmp = pred->regex.match(current->comm, &pred->regex,
80765597
SRV
735 TASK_COMM_LEN);
736 return cmp ^ pred->not;
9f616680
DW
737}
738
58d9a597 739static int filter_pred_none(struct filter_pred *pred, void *event)
0a19e53c
TZ
740{
741 return 0;
742}
743
d1303dd1
LZ
744/*
745 * regex_match_foo - Basic regex callbacks
746 *
747 * @str: the string to be searched
748 * @r: the regex structure containing the pattern string
749 * @len: the length of the string to be searched (including '\0')
750 *
751 * Note:
752 * - @str might not be NULL-terminated if it's of type DYN_STRING
10f20e9f 753 * or STATIC_STRING, unless @len is zero.
d1303dd1
LZ
754 */
755
1889d209
FW
756static int regex_match_full(char *str, struct regex *r, int len)
757{
10f20e9f
SRV
758 /* len of zero means str is dynamic and ends with '\0' */
759 if (!len)
760 return strcmp(str, r->pattern) == 0;
761
762 return strncmp(str, r->pattern, len) == 0;
1889d209
FW
763}
764
765static int regex_match_front(char *str, struct regex *r, int len)
766{
10f20e9f 767 if (len && len < r->len)
dc432c3d
SRV
768 return 0;
769
10f20e9f 770 return strncmp(str, r->pattern, r->len) == 0;
1889d209
FW
771}
772
773static int regex_match_middle(char *str, struct regex *r, int len)
774{
10f20e9f
SRV
775 if (!len)
776 return strstr(str, r->pattern) != NULL;
777
778 return strnstr(str, r->pattern, len) != NULL;
1889d209
FW
779}
780
781static int regex_match_end(char *str, struct regex *r, int len)
782{
a3291c14 783 int strlen = len - 1;
1889d209 784
a3291c14
LZ
785 if (strlen >= r->len &&
786 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
1889d209
FW
787 return 1;
788 return 0;
789}
790
60f1d5e3
MH
791static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
792{
793 if (glob_match(r->pattern, str))
794 return 1;
795 return 0;
796}
80765597 797
3f6fe06d
FW
798/**
799 * filter_parse_regex - parse a basic regex
800 * @buff: the raw regex
801 * @len: length of the regex
802 * @search: will point to the beginning of the string to compare
803 * @not: tell whether the match will have to be inverted
804 *
805 * This passes in a buffer containing a regex and this function will
1889d209
FW
806 * set search to point to the search part of the buffer and
807 * return the type of search it is (see enum above).
808 * This does modify buff.
809 *
810 * Returns enum type.
811 * search returns the pointer to use for comparison.
812 * not returns 1 if buff started with a '!'
813 * 0 otherwise.
814 */
3f6fe06d 815enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
1889d209
FW
816{
817 int type = MATCH_FULL;
818 int i;
819
820 if (buff[0] == '!') {
821 *not = 1;
822 buff++;
823 len--;
824 } else
825 *not = 0;
826
827 *search = buff;
828
829 for (i = 0; i < len; i++) {
830 if (buff[i] == '*') {
831 if (!i) {
1889d209 832 type = MATCH_END_ONLY;
60f1d5e3 833 } else if (i == len - 1) {
1889d209
FW
834 if (type == MATCH_END_ONLY)
835 type = MATCH_MIDDLE_ONLY;
836 else
837 type = MATCH_FRONT_ONLY;
838 buff[i] = 0;
839 break;
60f1d5e3 840 } else { /* pattern continues, use full glob */
07234021 841 return MATCH_GLOB;
1889d209 842 }
60f1d5e3 843 } else if (strchr("[?\\", buff[i])) {
07234021 844 return MATCH_GLOB;
1889d209
FW
845 }
846 }
07234021
SRV
847 if (buff[0] == '*')
848 *search = buff + 1;
1889d209
FW
849
850 return type;
851}
852
b0f1a59a 853static void filter_build_regex(struct filter_pred *pred)
1889d209
FW
854{
855 struct regex *r = &pred->regex;
b0f1a59a
LZ
856 char *search;
857 enum regex_type type = MATCH_FULL;
b0f1a59a
LZ
858
859 if (pred->op == OP_GLOB) {
80765597 860 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
b0f1a59a
LZ
861 r->len = strlen(search);
862 memmove(r->pattern, search, r->len+1);
863 }
1889d209
FW
864
865 switch (type) {
866 case MATCH_FULL:
867 r->match = regex_match_full;
868 break;
869 case MATCH_FRONT_ONLY:
870 r->match = regex_match_front;
871 break;
872 case MATCH_MIDDLE_ONLY:
873 r->match = regex_match_middle;
874 break;
875 case MATCH_END_ONLY:
876 r->match = regex_match_end;
877 break;
60f1d5e3
MH
878 case MATCH_GLOB:
879 r->match = regex_match_glob;
880 break;
1889d209 881 }
f30120fc
JO
882}
883
7ce7e424 884/* return 1 if event matches, 0 otherwise (discard) */
6fb2915d 885int filter_match_preds(struct event_filter *filter, void *rec)
7ce7e424 886{
80765597
SRV
887 struct prog_entry *prog;
888 int i;
7ce7e424 889
6d54057d 890 /* no filter is considered a match */
75b8e982
SR
891 if (!filter)
892 return 1;
893
80765597
SRV
894 prog = rcu_dereference_sched(filter->prog);
895 if (!prog)
6d54057d
SR
896 return 1;
897
80765597
SRV
898 for (i = 0; prog[i].pred; i++) {
899 struct filter_pred *pred = prog[i].pred;
900 int match = pred->fn(pred, rec);
901 if (match == prog[i].when_to_branch)
902 i = prog[i].target;
903 }
904 return prog[i].target;
7ce7e424 905}
17c873ec 906EXPORT_SYMBOL_GPL(filter_match_preds);
7ce7e424 907
8b372562
TZ
908static void remove_filter_string(struct event_filter *filter)
909{
75b8e982
SR
910 if (!filter)
911 return;
912
8b372562
TZ
913 kfree(filter->filter_string);
914 filter->filter_string = NULL;
915}
916
80765597 917static void append_filter_err(struct filter_parse_error *pe,
8b372562
TZ
918 struct event_filter *filter)
919{
559d4212 920 struct trace_seq *s;
80765597 921 int pos = pe->lasterr_pos;
559d4212
SRV
922 char *buf;
923 int len;
8b372562 924
559d4212 925 if (WARN_ON(!filter->filter_string))
4bda2d51 926 return;
7ce7e424 927
559d4212
SRV
928 s = kmalloc(sizeof(*s), GFP_KERNEL);
929 if (!s)
930 return;
931 trace_seq_init(s);
932
933 len = strlen(filter->filter_string);
934 if (pos > len)
80765597
SRV
935 pos = len;
936
937 /* indexing is off by one */
938 if (pos)
939 pos++;
559d4212
SRV
940
941 trace_seq_puts(s, filter->filter_string);
80765597
SRV
942 if (pe->lasterr > 0) {
943 trace_seq_printf(s, "\n%*s", pos, "^");
944 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
945 } else {
946 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
947 }
559d4212
SRV
948 trace_seq_putc(s, 0);
949 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
950 if (buf) {
951 kfree(filter->filter_string);
952 filter->filter_string = buf;
953 }
954 kfree(s);
7ce7e424
TZ
955}
956
7f1d2f82 957static inline struct event_filter *event_filter(struct trace_event_file *file)
f306cc82 958{
dcb0b557 959 return file->filter;
f306cc82
TZ
960}
961
e2912b09 962/* caller must hold event_mutex */
7f1d2f82 963void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
ac1adc55 964{
f306cc82 965 struct event_filter *filter = event_filter(file);
8b372562 966
8e254c1d 967 if (filter && filter->filter_string)
8b372562
TZ
968 trace_seq_printf(s, "%s\n", filter->filter_string);
969 else
146c3442 970 trace_seq_puts(s, "none\n");
ac1adc55
TZ
971}
972
8b372562 973void print_subsystem_event_filter(struct event_subsystem *system,
ac1adc55
TZ
974 struct trace_seq *s)
975{
75b8e982 976 struct event_filter *filter;
8b372562 977
00e95830 978 mutex_lock(&event_mutex);
75b8e982 979 filter = system->filter;
8e254c1d 980 if (filter && filter->filter_string)
8b372562
TZ
981 trace_seq_printf(s, "%s\n", filter->filter_string);
982 else
146c3442 983 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
00e95830 984 mutex_unlock(&event_mutex);
ac1adc55
TZ
985}
986
80765597 987static void free_prog(struct event_filter *filter)
c9c53ca0 988{
80765597 989 struct prog_entry *prog;
60705c89
SRRH
990 int i;
991
80765597
SRV
992 prog = rcu_access_pointer(filter->prog);
993 if (!prog)
994 return;
995
996 for (i = 0; prog[i].pred; i++)
997 kfree(prog[i].pred);
998 kfree(prog);
c9c53ca0
SR
999}
1000
7f1d2f82 1001static void filter_disable(struct trace_event_file *file)
f306cc82 1002{
0fc1b09f
SRRH
1003 unsigned long old_flags = file->flags;
1004
dcb0b557 1005 file->flags &= ~EVENT_FILE_FL_FILTERED;
0fc1b09f
SRRH
1006
1007 if (old_flags != file->flags)
1008 trace_buffered_event_disable();
f306cc82
TZ
1009}
1010
c9c53ca0 1011static void __free_filter(struct event_filter *filter)
2df75e41 1012{
8e254c1d
LZ
1013 if (!filter)
1014 return;
1015
80765597 1016 free_prog(filter);
57be8887 1017 kfree(filter->filter_string);
2df75e41 1018 kfree(filter);
6fb2915d
LZ
1019}
1020
bac5fb97
TZ
1021void free_event_filter(struct event_filter *filter)
1022{
1023 __free_filter(filter);
1024}
1025
7f1d2f82 1026static inline void __remove_filter(struct trace_event_file *file)
8e254c1d 1027{
f306cc82 1028 filter_disable(file);
dcb0b557 1029 remove_filter_string(file->filter);
f306cc82
TZ
1030}
1031
7967b3e0 1032static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
f306cc82
TZ
1033 struct trace_array *tr)
1034{
7f1d2f82 1035 struct trace_event_file *file;
8e254c1d 1036
f306cc82 1037 list_for_each_entry(file, &tr->events, list) {
bb9ef1cb 1038 if (file->system != dir)
8e254c1d 1039 continue;
f306cc82 1040 __remove_filter(file);
8e254c1d 1041 }
8e254c1d 1042}
7ce7e424 1043
7f1d2f82 1044static inline void __free_subsystem_filter(struct trace_event_file *file)
cfb180f3 1045{
dcb0b557
SRRH
1046 __free_filter(file->filter);
1047 file->filter = NULL;
f306cc82
TZ
1048}
1049
7967b3e0 1050static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
f306cc82
TZ
1051 struct trace_array *tr)
1052{
7f1d2f82 1053 struct trace_event_file *file;
cfb180f3 1054
f306cc82 1055 list_for_each_entry(file, &tr->events, list) {
80765597 1056 if (file->system != dir)
7ce7e424 1057 continue;
80765597 1058 __free_subsystem_filter(file);
8b372562 1059 }
80765597 1060}
8b372562 1061
80765597
SRV
1062int filter_assign_type(const char *type)
1063{
1064 if (strstr(type, "__data_loc") && strstr(type, "char"))
1065 return FILTER_DYN_STRING;
8b372562 1066
80765597
SRV
1067 if (strchr(type, '[') && strstr(type, "char"))
1068 return FILTER_STATIC_STRING;
8b372562 1069
80765597 1070 return FILTER_OTHER;
8b372562
TZ
1071}
1072
80765597
SRV
1073static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1074 int field_size, int field_is_signed)
8b372562 1075{
80765597
SRV
1076 filter_pred_fn_t fn = NULL;
1077 int pred_func_index = -1;
81570d9c 1078
80765597
SRV
1079 switch (op) {
1080 case OP_EQ:
1081 case OP_NE:
1082 break;
1083 default:
1084 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1085 return NULL;
1086 pred_func_index = op - PRED_FUNC_START;
1087 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1088 return NULL;
8b372562
TZ
1089 }
1090
80765597
SRV
1091 switch (field_size) {
1092 case 8:
1093 if (pred_func_index < 0)
1094 fn = filter_pred_64;
1095 else if (field_is_signed)
1096 fn = pred_funcs_s64[pred_func_index];
1097 else
1098 fn = pred_funcs_u64[pred_func_index];
1099 break;
1100 case 4:
1101 if (pred_func_index < 0)
1102 fn = filter_pred_32;
1103 else if (field_is_signed)
1104 fn = pred_funcs_s32[pred_func_index];
1105 else
1106 fn = pred_funcs_u32[pred_func_index];
1107 break;
1108 case 2:
1109 if (pred_func_index < 0)
1110 fn = filter_pred_16;
1111 else if (field_is_signed)
1112 fn = pred_funcs_s16[pred_func_index];
1113 else
1114 fn = pred_funcs_u16[pred_func_index];
1115 break;
1116 case 1:
1117 if (pred_func_index < 0)
1118 fn = filter_pred_8;
1119 else if (field_is_signed)
1120 fn = pred_funcs_s8[pred_func_index];
1121 else
1122 fn = pred_funcs_u8[pred_func_index];
1123 break;
61aaef55 1124 }
8b372562 1125
80765597 1126 return fn;
8b372562
TZ
1127}
1128
80765597
SRV
1129/* Called when a predicate is encountered by predicate_parse() */
1130static int parse_pred(const char *str, void *data,
1131 int pos, struct filter_parse_error *pe,
1132 struct filter_pred **pred_ptr)
8b372562 1133{
80765597
SRV
1134 struct trace_event_call *call = data;
1135 struct ftrace_event_field *field;
1136 struct filter_pred *pred = NULL;
1137 char num_buf[24]; /* Big enough to hold an address */
1138 char *field_name;
1139 char q;
1140 u64 val;
1141 int len;
1142 int ret;
1143 int op;
1144 int s;
1145 int i = 0;
8b372562 1146
80765597
SRV
1147 /* First find the field to associate to */
1148 while (isspace(str[i]))
1149 i++;
1150 s = i;
8b372562 1151
80765597
SRV
1152 while (isalnum(str[i]) || str[i] == '_')
1153 i++;
1154
1155 len = i - s;
1156
1157 if (!len)
1158 return -1;
1159
1160 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1161 if (!field_name)
1162 return -ENOMEM;
1163
1164 /* Make sure that the field exists */
7ce7e424 1165
80765597
SRV
1166 field = trace_find_event_field(call, field_name);
1167 kfree(field_name);
1168 if (!field) {
1169 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
bcabd91c
LZ
1170 return -EINVAL;
1171 }
1172
80765597
SRV
1173 while (isspace(str[i]))
1174 i++;
f66578a7 1175
80765597
SRV
1176 /* Make sure this op is supported */
1177 for (op = 0; ops[op]; op++) {
1178 /* This is why '<=' must come before '<' in ops[] */
1179 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1180 break;
1181 }
c9c53ca0 1182
80765597
SRV
1183 if (!ops[op]) {
1184 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1185 goto err_free;
c9c53ca0
SR
1186 }
1187
80765597 1188 i += strlen(ops[op]);
c9c53ca0 1189
80765597
SRV
1190 while (isspace(str[i]))
1191 i++;
f03f5979 1192
80765597 1193 s = i;
f03f5979 1194
80765597
SRV
1195 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1196 if (!pred)
1197 return -ENOMEM;
f03f5979 1198
80765597
SRV
1199 pred->field = field;
1200 pred->offset = field->offset;
1201 pred->op = op;
1202
1203 if (ftrace_event_is_function(call)) {
f03f5979 1204 /*
80765597
SRV
1205 * Perf does things different with function events.
1206 * It only allows an "ip" field, and expects a string.
1207 * But the string does not need to be surrounded by quotes.
1208 * If it is a string, the assigned function as a nop,
1209 * (perf doesn't use it) and grab everything.
f03f5979 1210 */
80765597
SRV
1211 if (strcmp(field->name, "ip") != 0) {
1212 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1213 goto err_free;
1214 }
1215 pred->fn = filter_pred_none;
1216
1217 /*
1218 * Quotes are not required, but if they exist then we need
1219 * to read them till we hit a matching one.
1220 */
1221 if (str[i] == '\'' || str[i] == '"')
1222 q = str[i];
1223 else
1224 q = 0;
1225
1226 for (i++; str[i]; i++) {
1227 if (q && str[i] == q)
1228 break;
1229 if (!q && (str[i] == ')' || str[i] == '&' ||
1230 str[i] == '|'))
1231 break;
1232 }
1233 /* Skip quotes */
1234 if (q)
1235 s++;
1236 len = i - s;
1237 if (len >= MAX_FILTER_STR_VAL) {
1238 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1239 goto err_free;
1240 }
ec126cac 1241
80765597
SRV
1242 pred->regex.len = len;
1243 strncpy(pred->regex.pattern, str + s, len);
1244 pred->regex.pattern[len] = 0;
1245
1246 /* This is either a string, or an integer */
1247 } else if (str[i] == '\'' || str[i] == '"') {
1248 char q = str[i];
1249
1250 /* Make sure the op is OK for strings */
1251 switch (op) {
1252 case OP_NE:
1253 pred->not = 1;
1254 /* Fall through */
1255 case OP_GLOB:
1256 case OP_EQ:
1257 break;
1258 default:
1259 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1260 goto err_free;
1261 }
ec126cac 1262
80765597
SRV
1263 /* Make sure the field is OK for strings */
1264 if (!is_string_field(field)) {
1265 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1266 goto err_free;
1267 }
43cd4145 1268
80765597
SRV
1269 for (i++; str[i]; i++) {
1270 if (str[i] == q)
1271 break;
1272 }
1273 if (!str[i]) {
1274 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1275 goto err_free;
1276 }
43cd4145 1277
80765597
SRV
1278 /* Skip quotes */
1279 s++;
1280 len = i - s;
1281 if (len >= MAX_FILTER_STR_VAL) {
1282 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1283 goto err_free;
1284 }
c00b060f 1285
80765597
SRV
1286 pred->regex.len = len;
1287 strncpy(pred->regex.pattern, str + s, len);
1288 pred->regex.pattern[len] = 0;
43cd4145 1289
80765597 1290 filter_build_regex(pred);
43cd4145 1291
80765597
SRV
1292 if (field->filter_type == FILTER_COMM) {
1293 pred->fn = filter_pred_comm;
96bc293a 1294
80765597
SRV
1295 } else if (field->filter_type == FILTER_STATIC_STRING) {
1296 pred->fn = filter_pred_string;
1297 pred->regex.field_len = field->size;
96bc293a 1298
80765597
SRV
1299 } else if (field->filter_type == FILTER_DYN_STRING)
1300 pred->fn = filter_pred_strloc;
1301 else
1302 pred->fn = filter_pred_pchar;
1303 /* go past the last quote */
1304 i++;
96bc293a 1305
80765597 1306 } else if (isdigit(str[i])) {
96bc293a 1307
80765597
SRV
1308 /* Make sure the field is not a string */
1309 if (is_string_field(field)) {
1310 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1311 goto err_free;
1312 }
96bc293a 1313
80765597
SRV
1314 if (op == OP_GLOB) {
1315 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1316 goto err_free;
1317 }
43cd4145 1318
80765597
SRV
1319 /* We allow 0xDEADBEEF */
1320 while (isalnum(str[i]))
1321 i++;
43cd4145 1322
80765597
SRV
1323 len = i - s;
1324 /* 0xfeedfacedeadbeef is 18 chars max */
1325 if (len >= sizeof(num_buf)) {
1326 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1327 goto err_free;
1328 }
43cd4145 1329
80765597
SRV
1330 strncpy(num_buf, str + s, len);
1331 num_buf[len] = 0;
43cd4145 1332
80765597
SRV
1333 /* Make sure it is a value */
1334 if (field->is_signed)
1335 ret = kstrtoll(num_buf, 0, &val);
1336 else
1337 ret = kstrtoull(num_buf, 0, &val);
1338 if (ret) {
1339 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1340 goto err_free;
1341 }
43cd4145 1342
80765597 1343 pred->val = val;
43cd4145 1344
80765597
SRV
1345 if (field->filter_type == FILTER_CPU)
1346 pred->fn = filter_pred_cpu;
1347 else {
1348 pred->fn = select_comparison_fn(pred->op, field->size,
1349 field->is_signed);
1350 if (pred->op == OP_NE)
1351 pred->not = 1;
1352 }
1b797fe5 1353
80765597
SRV
1354 } else {
1355 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1356 goto err_free;
1357 }
1b797fe5 1358
80765597
SRV
1359 *pred_ptr = pred;
1360 return i;
1b797fe5 1361
80765597
SRV
1362err_free:
1363 kfree(pred);
1364 return -EINVAL;
1b797fe5
JO
1365}
1366
80765597
SRV
1367enum {
1368 TOO_MANY_CLOSE = -1,
1369 TOO_MANY_OPEN = -2,
1370 MISSING_QUOTE = -3,
1371};
1372
43cd4145 1373/*
80765597
SRV
1374 * Read the filter string once to calculate the number of predicates
1375 * as well as how deep the parentheses go.
1376 *
1377 * Returns:
1378 * 0 - everything is fine (err is undefined)
1379 * -1 - too many ')'
1380 * -2 - too many '('
1381 * -3 - No matching quote
43cd4145 1382 */
80765597
SRV
1383static int calc_stack(const char *str, int *parens, int *preds, int *err)
1384{
1385 bool is_pred = false;
1386 int nr_preds = 0;
1387 int open = 1; /* Count the expression as "(E)" */
1388 int last_quote = 0;
1389 int max_open = 1;
1390 int quote = 0;
1391 int i;
8b372562 1392
80765597 1393 *err = 0;
c9c53ca0 1394
80765597
SRV
1395 for (i = 0; str[i]; i++) {
1396 if (isspace(str[i]))
1397 continue;
1398 if (quote) {
1399 if (str[i] == quote)
1400 quote = 0;
8b372562
TZ
1401 continue;
1402 }
1403
80765597
SRV
1404 switch (str[i]) {
1405 case '\'':
1406 case '"':
1407 quote = str[i];
1408 last_quote = i;
1409 break;
1410 case '|':
1411 case '&':
1412 if (str[i+1] != str[i])
1413 break;
1414 is_pred = false;
1415 continue;
1416 case '(':
1417 is_pred = false;
1418 open++;
1419 if (open > max_open)
1420 max_open = open;
1421 continue;
1422 case ')':
1423 is_pred = false;
1424 if (open == 1) {
1425 *err = i;
1426 return TOO_MANY_CLOSE;
e12c09cf 1427 }
80765597 1428 open--;
e12c09cf
SRRH
1429 continue;
1430 }
80765597
SRV
1431 if (!is_pred) {
1432 nr_preds++;
1433 is_pred = true;
1f9963cb 1434 }
80765597 1435 }
1f9963cb 1436
80765597
SRV
1437 if (quote) {
1438 *err = last_quote;
1439 return MISSING_QUOTE;
1440 }
61aaef55 1441
80765597
SRV
1442 if (open != 1) {
1443 int level = open;
8b372562 1444
80765597
SRV
1445 /* find the bad open */
1446 for (i--; i; i--) {
1447 if (quote) {
1448 if (str[i] == quote)
1449 quote = 0;
1450 continue;
1451 }
1452 switch (str[i]) {
1453 case '(':
1454 if (level == open) {
1455 *err = i;
1456 return TOO_MANY_OPEN;
1457 }
1458 level--;
1459 break;
1460 case ')':
1461 level++;
1462 break;
1463 case '\'':
1464 case '"':
1465 quote = str[i];
1466 break;
1467 }
1468 }
1469 /* First character is the '(' with missing ')' */
1470 *err = 0;
1471 return TOO_MANY_OPEN;
8b372562 1472 }
7ce7e424 1473
80765597
SRV
1474 /* Set the size of the required stacks */
1475 *parens = max_open;
1476 *preds = nr_preds;
1477 return 0;
1478}
1479
1480static int process_preds(struct trace_event_call *call,
1481 const char *filter_string,
1482 struct event_filter *filter,
1483 struct filter_parse_error *pe)
1484{
1485 struct prog_entry *prog;
1486 int nr_parens;
1487 int nr_preds;
1488 int index;
1489 int ret;
1490
1491 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1492 if (ret < 0) {
1493 switch (ret) {
1494 case MISSING_QUOTE:
1495 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1496 break;
1497 case TOO_MANY_OPEN:
1498 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1499 break;
1500 default:
1501 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
61e9dea2 1502 }
80765597 1503 return ret;
61e9dea2
SR
1504 }
1505
ba16293d
RB
1506 if (!nr_preds)
1507 return -EINVAL;
1508
1509 prog = predicate_parse(filter_string, nr_parens, nr_preds,
80765597 1510 parse_pred, call, pe);
ba16293d
RB
1511 if (IS_ERR(prog))
1512 return PTR_ERR(prog);
1513
80765597
SRV
1514 rcu_assign_pointer(filter->prog, prog);
1515 return 0;
7ce7e424
TZ
1516}
1517
7f1d2f82 1518static inline void event_set_filtered_flag(struct trace_event_file *file)
f306cc82 1519{
0fc1b09f
SRRH
1520 unsigned long old_flags = file->flags;
1521
dcb0b557 1522 file->flags |= EVENT_FILE_FL_FILTERED;
0fc1b09f
SRRH
1523
1524 if (old_flags != file->flags)
1525 trace_buffered_event_enable();
f306cc82
TZ
1526}
1527
7f1d2f82 1528static inline void event_set_filter(struct trace_event_file *file,
f306cc82
TZ
1529 struct event_filter *filter)
1530{
dcb0b557 1531 rcu_assign_pointer(file->filter, filter);
f306cc82
TZ
1532}
1533
7f1d2f82 1534static inline void event_clear_filter(struct trace_event_file *file)
f306cc82 1535{
dcb0b557 1536 RCU_INIT_POINTER(file->filter, NULL);
f306cc82
TZ
1537}
1538
1539static inline void
7f1d2f82 1540event_set_no_set_filter_flag(struct trace_event_file *file)
f306cc82 1541{
dcb0b557 1542 file->flags |= EVENT_FILE_FL_NO_SET_FILTER;
f306cc82
TZ
1543}
1544
1545static inline void
7f1d2f82 1546event_clear_no_set_filter_flag(struct trace_event_file *file)
f306cc82 1547{
dcb0b557 1548 file->flags &= ~EVENT_FILE_FL_NO_SET_FILTER;
f306cc82
TZ
1549}
1550
1551static inline bool
7f1d2f82 1552event_no_set_filter_flag(struct trace_event_file *file)
f306cc82 1553{
5d6ad960 1554 if (file->flags & EVENT_FILE_FL_NO_SET_FILTER)
f306cc82
TZ
1555 return true;
1556
f306cc82
TZ
1557 return false;
1558}
1559
75b8e982
SR
1560struct filter_list {
1561 struct list_head list;
1562 struct event_filter *filter;
1563};
1564
80765597 1565static int process_system_preds(struct trace_subsystem_dir *dir,
f306cc82 1566 struct trace_array *tr,
80765597 1567 struct filter_parse_error *pe,
fce29d15
LZ
1568 char *filter_string)
1569{
7f1d2f82 1570 struct trace_event_file *file;
75b8e982 1571 struct filter_list *filter_item;
404a3add 1572 struct event_filter *filter = NULL;
75b8e982
SR
1573 struct filter_list *tmp;
1574 LIST_HEAD(filter_list);
fce29d15 1575 bool fail = true;
a66abe7f 1576 int err;
fce29d15 1577
f306cc82 1578 list_for_each_entry(file, &tr->events, list) {
0fc3ca9a 1579
bb9ef1cb 1580 if (file->system != dir)
0fc3ca9a
SR
1581 continue;
1582
404a3add
SRV
1583 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1584 if (!filter)
75b8e982 1585 goto fail_mem;
0fc3ca9a 1586
567f6989
SRV
1587 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1588 if (!filter->filter_string)
75b8e982 1589 goto fail_mem;
fce29d15 1590
80765597 1591 err = process_preds(file->event_call, filter_string, filter, pe);
75b8e982 1592 if (err) {
f306cc82 1593 filter_disable(file);
80765597
SRV
1594 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1595 append_filter_err(pe, filter);
75b8e982 1596 } else
f306cc82 1597 event_set_filtered_flag(file);
404a3add
SRV
1598
1599
1600 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1601 if (!filter_item)
1602 goto fail_mem;
1603
1604 list_add_tail(&filter_item->list, &filter_list);
75b8e982
SR
1605 /*
1606 * Regardless of if this returned an error, we still
1607 * replace the filter for the call.
1608 */
404a3add
SRV
1609 filter_item->filter = event_filter(file);
1610 event_set_filter(file, filter);
1611 filter = NULL;
75b8e982 1612
fce29d15
LZ
1613 fail = false;
1614 }
1615
0fc3ca9a
SR
1616 if (fail)
1617 goto fail;
1618
75b8e982
SR
1619 /*
1620 * The calls can still be using the old filters.
1621 * Do a synchronize_sched() to ensure all calls are
1622 * done with them before we free them.
1623 */
1624 synchronize_sched();
1625 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1626 __free_filter(filter_item->filter);
1627 list_del(&filter_item->list);
1628 kfree(filter_item);
1629 }
fce29d15 1630 return 0;
0fc3ca9a 1631 fail:
75b8e982
SR
1632 /* No call succeeded */
1633 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1634 list_del(&filter_item->list);
1635 kfree(filter_item);
1636 }
80765597 1637 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
0fc3ca9a 1638 return -EINVAL;
75b8e982 1639 fail_mem:
404a3add 1640 kfree(filter);
75b8e982
SR
1641 /* If any call succeeded, we still need to sync */
1642 if (!fail)
1643 synchronize_sched();
1644 list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1645 __free_filter(filter_item->filter);
1646 list_del(&filter_item->list);
1647 kfree(filter_item);
1648 }
1649 return -ENOMEM;
fce29d15
LZ
1650}
1651
567f6989 1652static int create_filter_start(char *filter_string, bool set_str,
80765597 1653 struct filter_parse_error **pse,
38b78eb8
TH
1654 struct event_filter **filterp)
1655{
1656 struct event_filter *filter;
80765597 1657 struct filter_parse_error *pe = NULL;
38b78eb8
TH
1658 int err = 0;
1659
80765597
SRV
1660 if (WARN_ON_ONCE(*pse || *filterp))
1661 return -EINVAL;
38b78eb8 1662
c7399708 1663 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
567f6989
SRV
1664 if (filter && set_str) {
1665 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1666 if (!filter->filter_string)
1667 err = -ENOMEM;
1668 }
38b78eb8 1669
80765597 1670 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
38b78eb8 1671
80765597
SRV
1672 if (!filter || !pe || err) {
1673 kfree(pe);
38b78eb8
TH
1674 __free_filter(filter);
1675 return -ENOMEM;
1676 }
1677
1678 /* we're committed to creating a new filter */
1679 *filterp = filter;
80765597 1680 *pse = pe;
38b78eb8 1681
80765597 1682 return 0;
38b78eb8
TH
1683}
1684
80765597 1685static void create_filter_finish(struct filter_parse_error *pe)
38b78eb8 1686{
80765597 1687 kfree(pe);
38b78eb8
TH
1688}
1689
1690/**
2425bcb9
SRRH
1691 * create_filter - create a filter for a trace_event_call
1692 * @call: trace_event_call to create a filter for
38b78eb8
TH
1693 * @filter_str: filter string
1694 * @set_str: remember @filter_str and enable detailed error in filter
1695 * @filterp: out param for created filter (always updated on return)
1696 *
1697 * Creates a filter for @call with @filter_str. If @set_str is %true,
1698 * @filter_str is copied and recorded in the new filter.
1699 *
1700 * On success, returns 0 and *@filterp points to the new filter. On
1701 * failure, returns -errno and *@filterp may point to %NULL or to a new
1702 * filter. In the latter case, the returned filter contains error
1703 * information if @set_str is %true and the caller is responsible for
1704 * freeing it.
1705 */
2425bcb9 1706static int create_filter(struct trace_event_call *call,
80765597 1707 char *filter_string, bool set_str,
38b78eb8
TH
1708 struct event_filter **filterp)
1709{
80765597 1710 struct filter_parse_error *pe = NULL;
38b78eb8
TH
1711 int err;
1712
0b3dec05 1713 err = create_filter_start(filter_string, set_str, &pe, filterp);
80765597
SRV
1714 if (err)
1715 return err;
1716
0b3dec05 1717 err = process_preds(call, filter_string, *filterp, pe);
80765597 1718 if (err && set_str)
0b3dec05 1719 append_filter_err(pe, *filterp);
38b78eb8 1720
38b78eb8
TH
1721 return err;
1722}
1723
2425bcb9 1724int create_event_filter(struct trace_event_call *call,
bac5fb97
TZ
1725 char *filter_str, bool set_str,
1726 struct event_filter **filterp)
1727{
1728 return create_filter(call, filter_str, set_str, filterp);
1729}
1730
38b78eb8
TH
1731/**
1732 * create_system_filter - create a filter for an event_subsystem
1733 * @system: event_subsystem to create a filter for
1734 * @filter_str: filter string
1735 * @filterp: out param for created filter (always updated on return)
1736 *
1737 * Identical to create_filter() except that it creates a subsystem filter
1738 * and always remembers @filter_str.
1739 */
7967b3e0 1740static int create_system_filter(struct trace_subsystem_dir *dir,
f306cc82 1741 struct trace_array *tr,
38b78eb8
TH
1742 char *filter_str, struct event_filter **filterp)
1743{
80765597 1744 struct filter_parse_error *pe = NULL;
38b78eb8
TH
1745 int err;
1746
0b3dec05 1747 err = create_filter_start(filter_str, true, &pe, filterp);
38b78eb8 1748 if (!err) {
80765597 1749 err = process_system_preds(dir, tr, pe, filter_str);
38b78eb8
TH
1750 if (!err) {
1751 /* System filters just show a default message */
0b3dec05
SRV
1752 kfree((*filterp)->filter_string);
1753 (*filterp)->filter_string = NULL;
38b78eb8 1754 } else {
0b3dec05 1755 append_filter_err(pe, *filterp);
38b78eb8
TH
1756 }
1757 }
80765597 1758 create_filter_finish(pe);
38b78eb8 1759
38b78eb8
TH
1760 return err;
1761}
1762
e2912b09 1763/* caller must hold event_mutex */
7f1d2f82 1764int apply_event_filter(struct trace_event_file *file, char *filter_string)
8b372562 1765{
2425bcb9 1766 struct trace_event_call *call = file->event_call;
0b3dec05 1767 struct event_filter *filter = NULL;
e2912b09 1768 int err;
8b372562
TZ
1769
1770 if (!strcmp(strstrip(filter_string), "0")) {
f306cc82
TZ
1771 filter_disable(file);
1772 filter = event_filter(file);
1773
75b8e982 1774 if (!filter)
e2912b09 1775 return 0;
f306cc82
TZ
1776
1777 event_clear_filter(file);
1778
f76690af
SR
1779 /* Make sure the filter is not being used */
1780 synchronize_sched();
75b8e982 1781 __free_filter(filter);
f306cc82 1782
e2912b09 1783 return 0;
8b372562
TZ
1784 }
1785
38b78eb8 1786 err = create_filter(call, filter_string, true, &filter);
8b372562 1787
75b8e982
SR
1788 /*
1789 * Always swap the call filter with the new filter
1790 * even if there was an error. If there was an error
1791 * in the filter, we disable the filter and show the error
1792 * string
1793 */
38b78eb8 1794 if (filter) {
f306cc82 1795 struct event_filter *tmp;
38b78eb8 1796
f306cc82 1797 tmp = event_filter(file);
38b78eb8 1798 if (!err)
f306cc82 1799 event_set_filtered_flag(file);
38b78eb8 1800 else
f306cc82 1801 filter_disable(file);
38b78eb8 1802
f306cc82 1803 event_set_filter(file, filter);
38b78eb8
TH
1804
1805 if (tmp) {
1806 /* Make sure the call is done with the filter */
1807 synchronize_sched();
1808 __free_filter(tmp);
1809 }
75b8e982 1810 }
8b372562
TZ
1811
1812 return err;
1813}
1814
7967b3e0 1815int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
8b372562
TZ
1816 char *filter_string)
1817{
ae63b31e 1818 struct event_subsystem *system = dir->subsystem;
f306cc82 1819 struct trace_array *tr = dir->tr;
0b3dec05 1820 struct event_filter *filter = NULL;
75b8e982 1821 int err = 0;
8b372562 1822
00e95830 1823 mutex_lock(&event_mutex);
8b372562 1824
e9dbfae5 1825 /* Make sure the system still has events */
ae63b31e 1826 if (!dir->nr_events) {
e9dbfae5
SR
1827 err = -ENODEV;
1828 goto out_unlock;
1829 }
1830
8b372562 1831 if (!strcmp(strstrip(filter_string), "0")) {
bb9ef1cb 1832 filter_free_subsystem_preds(dir, tr);
8b372562 1833 remove_filter_string(system->filter);
75b8e982
SR
1834 filter = system->filter;
1835 system->filter = NULL;
1836 /* Ensure all filters are no longer used */
1837 synchronize_sched();
bb9ef1cb 1838 filter_free_subsystem_filters(dir, tr);
75b8e982 1839 __free_filter(filter);
a66abe7f 1840 goto out_unlock;
8b372562
TZ
1841 }
1842
bb9ef1cb 1843 err = create_system_filter(dir, tr, filter_string, &filter);
38b78eb8
TH
1844 if (filter) {
1845 /*
1846 * No event actually uses the system filter
1847 * we can free it without synchronize_sched().
1848 */
1849 __free_filter(system->filter);
1850 system->filter = filter;
1851 }
8cd995b6 1852out_unlock:
00e95830 1853 mutex_unlock(&event_mutex);
8b372562
TZ
1854
1855 return err;
1856}
7ce7e424 1857
07b139c8 1858#ifdef CONFIG_PERF_EVENTS
6fb2915d
LZ
1859
1860void ftrace_profile_free_filter(struct perf_event *event)
1861{
1862 struct event_filter *filter = event->filter;
1863
1864 event->filter = NULL;
c9c53ca0 1865 __free_filter(filter);
6fb2915d
LZ
1866}
1867
5500fa51
JO
1868struct function_filter_data {
1869 struct ftrace_ops *ops;
1870 int first_filter;
1871 int first_notrace;
1872};
1873
1874#ifdef CONFIG_FUNCTION_TRACER
1875static char **
1876ftrace_function_filter_re(char *buf, int len, int *count)
1877{
1bb56471 1878 char *str, **re;
5500fa51
JO
1879
1880 str = kstrndup(buf, len, GFP_KERNEL);
1881 if (!str)
1882 return NULL;
1883
1884 /*
1885 * The argv_split function takes white space
1886 * as a separator, so convert ',' into spaces.
1887 */
1bb56471 1888 strreplace(str, ',', ' ');
5500fa51
JO
1889
1890 re = argv_split(GFP_KERNEL, str, count);
1891 kfree(str);
1892 return re;
1893}
1894
1895static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1896 int reset, char *re, int len)
1897{
1898 int ret;
1899
1900 if (filter)
1901 ret = ftrace_set_filter(ops, re, len, reset);
1902 else
1903 ret = ftrace_set_notrace(ops, re, len, reset);
1904
1905 return ret;
1906}
1907
1908static int __ftrace_function_set_filter(int filter, char *buf, int len,
1909 struct function_filter_data *data)
1910{
92d8d4a8 1911 int i, re_cnt, ret = -EINVAL;
5500fa51
JO
1912 int *reset;
1913 char **re;
1914
1915 reset = filter ? &data->first_filter : &data->first_notrace;
1916
1917 /*
1918 * The 'ip' field could have multiple filters set, separated
1919 * either by space or comma. We first cut the filter and apply
1920 * all pieces separatelly.
1921 */
1922 re = ftrace_function_filter_re(buf, len, &re_cnt);
1923 if (!re)
1924 return -EINVAL;
1925
1926 for (i = 0; i < re_cnt; i++) {
1927 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
1928 re[i], strlen(re[i]));
1929 if (ret)
1930 break;
1931
1932 if (*reset)
1933 *reset = 0;
1934 }
1935
1936 argv_free(re);
1937 return ret;
1938}
1939
80765597 1940static int ftrace_function_check_pred(struct filter_pred *pred)
5500fa51
JO
1941{
1942 struct ftrace_event_field *field = pred->field;
1943
80765597
SRV
1944 /*
1945 * Check the predicate for function trace, verify:
1946 * - only '==' and '!=' is used
1947 * - the 'ip' field is used
1948 */
1949 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
1950 return -EINVAL;
5500fa51 1951
80765597
SRV
1952 if (strcmp(field->name, "ip"))
1953 return -EINVAL;
5500fa51
JO
1954
1955 return 0;
1956}
1957
80765597
SRV
1958static int ftrace_function_set_filter_pred(struct filter_pred *pred,
1959 struct function_filter_data *data)
5500fa51 1960{
80765597
SRV
1961 int ret;
1962
5500fa51 1963 /* Checking the node is valid for function trace. */
80765597
SRV
1964 ret = ftrace_function_check_pred(pred);
1965 if (ret)
1966 return ret;
1967
1968 return __ftrace_function_set_filter(pred->op == OP_EQ,
1969 pred->regex.pattern,
1970 pred->regex.len,
1971 data);
1972}
1973
1974static bool is_or(struct prog_entry *prog, int i)
1975{
1976 int target;
5500fa51 1977
80765597
SRV
1978 /*
1979 * Only "||" is allowed for function events, thus,
1980 * all true branches should jump to true, and any
1981 * false branch should jump to false.
1982 */
1983 target = prog[i].target + 1;
1984 /* True and false have NULL preds (all prog entries should jump to one */
1985 if (prog[target].pred)
1986 return false;
1987
1988 /* prog[target].target is 1 for TRUE, 0 for FALSE */
1989 return prog[i].when_to_branch == prog[target].target;
5500fa51
JO
1990}
1991
1992static int ftrace_function_set_filter(struct perf_event *event,
1993 struct event_filter *filter)
1994{
1f3b0faa
SRV
1995 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
1996 lockdep_is_held(&event_mutex));
5500fa51
JO
1997 struct function_filter_data data = {
1998 .first_filter = 1,
1999 .first_notrace = 1,
2000 .ops = &event->ftrace_ops,
2001 };
80765597
SRV
2002 int i;
2003
2004 for (i = 0; prog[i].pred; i++) {
2005 struct filter_pred *pred = prog[i].pred;
2006
2007 if (!is_or(prog, i))
2008 return -EINVAL;
5500fa51 2009
80765597
SRV
2010 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2011 return -EINVAL;
2012 }
2013 return 0;
5500fa51
JO
2014}
2015#else
2016static int ftrace_function_set_filter(struct perf_event *event,
2017 struct event_filter *filter)
2018{
2019 return -ENODEV;
2020}
2021#endif /* CONFIG_FUNCTION_TRACER */
2022
6fb2915d
LZ
2023int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2024 char *filter_str)
2025{
2026 int err;
0b3dec05 2027 struct event_filter *filter = NULL;
2425bcb9 2028 struct trace_event_call *call;
6fb2915d
LZ
2029
2030 mutex_lock(&event_mutex);
2031
3f78f935 2032 call = event->tp_event;
a66abe7f
IM
2033
2034 err = -EINVAL;
3f78f935 2035 if (!call)
a66abe7f 2036 goto out_unlock;
6fb2915d 2037
a66abe7f 2038 err = -EEXIST;
6fb2915d 2039 if (event->filter)
a66abe7f 2040 goto out_unlock;
6fb2915d 2041
38b78eb8 2042 err = create_filter(call, filter_str, false, &filter);
5500fa51
JO
2043 if (err)
2044 goto free_filter;
2045
2046 if (ftrace_event_is_function(call))
2047 err = ftrace_function_set_filter(event, filter);
38b78eb8 2048 else
5500fa51
JO
2049 event->filter = filter;
2050
2051free_filter:
2052 if (err || ftrace_event_is_function(call))
c9c53ca0 2053 __free_filter(filter);
6fb2915d 2054
a66abe7f 2055out_unlock:
6fb2915d
LZ
2056 mutex_unlock(&event_mutex);
2057
2058 return err;
2059}
2060
07b139c8 2061#endif /* CONFIG_PERF_EVENTS */
6fb2915d 2062
1d0e78e3
JO
2063#ifdef CONFIG_FTRACE_STARTUP_TEST
2064
2065#include <linux/types.h>
2066#include <linux/tracepoint.h>
2067
2068#define CREATE_TRACE_POINTS
2069#include "trace_events_filter_test.h"
2070
1d0e78e3
JO
2071#define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2072{ \
2073 .filter = FILTER, \
2074 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2075 .e = ve, .f = vf, .g = vg, .h = vh }, \
2076 .match = m, \
2077 .not_visited = nvisit, \
2078}
2079#define YES 1
2080#define NO 0
2081
2082static struct test_filter_data_t {
2083 char *filter;
a7237765 2084 struct trace_event_raw_ftrace_test_filter rec;
1d0e78e3
JO
2085 int match;
2086 char *not_visited;
2087} test_filter_data[] = {
2088#define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2089 "e == 1 && f == 1 && g == 1 && h == 1"
2090 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2091 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2092 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2093#undef FILTER
2094#define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2095 "e == 1 || f == 1 || g == 1 || h == 1"
2096 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2097 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2098 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2099#undef FILTER
2100#define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2101 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2102 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2103 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2104 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2105 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2106#undef FILTER
2107#define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2108 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2109 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2110 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2111 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2112#undef FILTER
2113#define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2114 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2115 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2116 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2117 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2118#undef FILTER
2119#define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2120 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2121 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2122 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2123 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2124#undef FILTER
2125#define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2126 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2127 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2128 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2129 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2130#undef FILTER
2131#define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2132 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2133 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2134 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2135 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2136};
2137
2138#undef DATA_REC
2139#undef FILTER
2140#undef YES
2141#undef NO
2142
0a4d0564 2143#define DATA_CNT ARRAY_SIZE(test_filter_data)
1d0e78e3
JO
2144
2145static int test_pred_visited;
2146
2147static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2148{
2149 struct ftrace_event_field *field = pred->field;
2150
2151 test_pred_visited = 1;
2152 printk(KERN_INFO "\npred visited %s\n", field->name);
2153 return 1;
2154}
2155
80765597 2156static void update_pred_fn(struct event_filter *filter, char *fields)
1d0e78e3 2157{
8ec8405f
SRV
2158 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2159 lockdep_is_held(&event_mutex));
80765597 2160 int i;
1d0e78e3 2161
80765597
SRV
2162 for (i = 0; prog[i].pred; i++) {
2163 struct filter_pred *pred = prog[i].pred;
1d0e78e3
JO
2164 struct ftrace_event_field *field = pred->field;
2165
80765597
SRV
2166 WARN_ON_ONCE(!pred->fn);
2167
1d0e78e3 2168 if (!field) {
80765597
SRV
2169 WARN_ONCE(1, "all leafs should have field defined %d", i);
2170 continue;
1d0e78e3 2171 }
80765597 2172
1d0e78e3 2173 if (!strchr(fields, *field->name))
80765597 2174 continue;
1d0e78e3 2175
1d0e78e3
JO
2176 pred->fn = test_pred_visited_fn;
2177 }
1d0e78e3
JO
2178}
2179
2180static __init int ftrace_test_event_filter(void)
2181{
2182 int i;
2183
2184 printk(KERN_INFO "Testing ftrace filter: ");
2185
2186 for (i = 0; i < DATA_CNT; i++) {
2187 struct event_filter *filter = NULL;
2188 struct test_filter_data_t *d = &test_filter_data[i];
2189 int err;
2190
38b78eb8
TH
2191 err = create_filter(&event_ftrace_test_filter, d->filter,
2192 false, &filter);
1d0e78e3
JO
2193 if (err) {
2194 printk(KERN_INFO
2195 "Failed to get filter for '%s', err %d\n",
2196 d->filter, err);
38b78eb8 2197 __free_filter(filter);
1d0e78e3
JO
2198 break;
2199 }
2200
8ec8405f
SRV
2201 /* Needed to dereference filter->prog */
2202 mutex_lock(&event_mutex);
86b6ef21
SR
2203 /*
2204 * The preemption disabling is not really needed for self
2205 * tests, but the rcu dereference will complain without it.
2206 */
2207 preempt_disable();
1d0e78e3 2208 if (*d->not_visited)
80765597 2209 update_pred_fn(filter, d->not_visited);
1d0e78e3
JO
2210
2211 test_pred_visited = 0;
2212 err = filter_match_preds(filter, &d->rec);
86b6ef21 2213 preempt_enable();
1d0e78e3 2214
8ec8405f
SRV
2215 mutex_unlock(&event_mutex);
2216
1d0e78e3
JO
2217 __free_filter(filter);
2218
2219 if (test_pred_visited) {
2220 printk(KERN_INFO
2221 "Failed, unwanted pred visited for filter %s\n",
2222 d->filter);
2223 break;
2224 }
2225
2226 if (err != d->match) {
2227 printk(KERN_INFO
2228 "Failed to match filter '%s', expected %d\n",
2229 d->filter, d->match);
2230 break;
2231 }
2232 }
2233
2234 if (i == DATA_CNT)
2235 printk(KERN_CONT "OK\n");
2236
2237 return 0;
2238}
2239
2240late_initcall(ftrace_test_event_filter);
2241
2242#endif /* CONFIG_FTRACE_STARTUP_TEST */