]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/workqueue.c
Merge tag 'devicetree-fixes-for-5.15-2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
940d71c6 53#include <linux/kvm_para.h>
e22bee78 54
ea138446 55#include "workqueue_internal.h"
1da177e4 56
c8e55f36 57enum {
24647570
TH
58 /*
59 * worker_pool flags
bc2ae0f5 60 *
24647570 61 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 68 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 69 *
bc3a1afc 70 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 71 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 72 * worker_attach_to_pool() is in progress.
bc2ae0f5 73 */
692b4825 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 76
c8e55f36 77 /* worker flags */
c8e55f36
TH
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 80 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 84
a9ab775b
TH
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 87
e34cdddb 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 89
29c91e99 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 92
e22bee78
TH
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
3233cdbd
TH
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
e22bee78
TH
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
8698a745 104 * all cpus. Give MIN_NICE.
e22bee78 105 */
8698a745
DY
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
108
109 WQ_NAME_LEN = 24,
c8e55f36 110};
1da177e4
LT
111
112/*
4690c4ab
TH
113 * Structure fields follow one of the following exclusion rules.
114 *
e41e704b
TH
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
4690c4ab 117 *
e22bee78
TH
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
d565ed63 121 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 122 *
d565ed63
TH
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 127 *
1258fae7 128 * A: wq_pool_attach_mutex protected.
822d8405 129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
24acfb71 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 133 *
5b95e1af
LJ
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 137 * RCU for reads.
5b95e1af 138 *
3c25a55d
LJ
139 * WQ: wq->mutex protected.
140 *
24acfb71 141 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
142 *
143 * MD: wq_mayday_lock protected.
1da177e4 144 */
1da177e4 145
2eaebdb3 146/* struct worker is defined in workqueue_internal.h */
c34056a3 147
bd7bdd43 148struct worker_pool {
a9b8a985 149 raw_spinlock_t lock; /* the pool lock */
d84ff051 150 int cpu; /* I: the associated cpu */
f3f90ad4 151 int node; /* I: the associated node ID */
9daf9e67 152 int id; /* I: pool ID */
11ebea50 153 unsigned int flags; /* X: flags */
bd7bdd43 154
82607adc
TH
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
bd7bdd43 157 struct list_head worklist; /* L: list of pending works */
ea1abd61 158
5826cc8f
LJ
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
c5aa87bb 166 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
2607d7a6 170 struct worker *manager; /* L: purely informational */
92f9c5c4 171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
24acfb71 188 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
018f3a13
LJ
208
209 /*
210 * nr_active management and WORK_STRUCT_INACTIVE:
211 *
212 * When pwq->nr_active >= max_active, new work item is queued to
213 * pwq->inactive_works instead of pool->worklist and marked with
214 * WORK_STRUCT_INACTIVE.
215 *
216 * All work items marked with WORK_STRUCT_INACTIVE do not participate
217 * in pwq->nr_active and all work items in pwq->inactive_works are
218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
219 * work items are in pwq->inactive_works. Some of them are ready to
220 * run in pool->worklist or worker->scheduled. Those work itmes are
221 * only struct wq_barrier which is used for flush_work() and should
222 * not participate in pwq->nr_active. For non-barrier work item, it
223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
224 */
1e19ffc6 225 int nr_active; /* L: nr of active works */
a0a1a5fd 226 int max_active; /* L: max active works */
f97a4a1a 227 struct list_head inactive_works; /* L: inactive works */
3c25a55d 228 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 229 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
230
231 /*
232 * Release of unbound pwq is punted to system_wq. See put_pwq()
233 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 234 * itself is also RCU protected so that the first pwq can be
b09f4fd3 235 * determined without grabbing wq->mutex.
8864b4e5
TH
236 */
237 struct work_struct unbound_release_work;
238 struct rcu_head rcu;
e904e6c2 239} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 240
73f53c4a
TH
241/*
242 * Structure used to wait for workqueue flush.
243 */
244struct wq_flusher {
3c25a55d
LJ
245 struct list_head list; /* WQ: list of flushers */
246 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
247 struct completion done; /* flush completion */
248};
249
226223ab
TH
250struct wq_device;
251
1da177e4 252/*
c5aa87bb
TH
253 * The externally visible workqueue. It relays the issued work items to
254 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
255 */
256struct workqueue_struct {
3c25a55d 257 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 258 struct list_head list; /* PR: list of all workqueues */
73f53c4a 259
3c25a55d
LJ
260 struct mutex mutex; /* protects this wq */
261 int work_color; /* WQ: current work color */
262 int flush_color; /* WQ: current flush color */
112202d9 263 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
264 struct wq_flusher *first_flusher; /* WQ: first flusher */
265 struct list_head flusher_queue; /* WQ: flush waiters */
266 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 267
2e109a28 268 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 269 struct worker *rescuer; /* MD: rescue worker */
e22bee78 270
87fc741e 271 int nr_drainers; /* WQ: drain in progress */
a357fc03 272 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 273
5b95e1af
LJ
274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 276
226223ab
TH
277#ifdef CONFIG_SYSFS
278 struct wq_device *wq_dev; /* I: for sysfs interface */
279#endif
4e6045f1 280#ifdef CONFIG_LOCKDEP
669de8bd
BVA
281 char *lock_name;
282 struct lock_class_key key;
4690c4ab 283 struct lockdep_map lockdep_map;
4e6045f1 284#endif
ecf6881f 285 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 286
e2dca7ad 287 /*
24acfb71
TG
288 * Destruction of workqueue_struct is RCU protected to allow walking
289 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
290 * This is used to dump all workqueues from sysrq.
291 */
292 struct rcu_head rcu;
293
2728fd2f
TH
294 /* hot fields used during command issue, aligned to cacheline */
295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
298};
299
e904e6c2
TH
300static struct kmem_cache *pwq_cache;
301
bce90380
TH
302static cpumask_var_t *wq_numa_possible_cpumask;
303 /* possible CPUs of each node */
304
d55262c4
TH
305static bool wq_disable_numa;
306module_param_named(disable_numa, wq_disable_numa, bool, 0444);
307
cee22a15 308/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 309static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
310module_param_named(power_efficient, wq_power_efficient, bool, 0444);
311
863b710b 312static bool wq_online; /* can kworkers be created yet? */
3347fa09 313
bce90380
TH
314static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
315
4c16bd32
TH
316/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
317static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
318
68e13a67 319static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 320static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 321static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
322/* wait for manager to go away */
323static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 324
e2dca7ad 325static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 326static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 327
ef557180
MG
328/* PL: allowable cpus for unbound wqs and work items */
329static cpumask_var_t wq_unbound_cpumask;
330
331/* CPU where unbound work was last round robin scheduled from this CPU */
332static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 333
f303fccb
TH
334/*
335 * Local execution of unbound work items is no longer guaranteed. The
336 * following always forces round-robin CPU selection on unbound work items
337 * to uncover usages which depend on it.
338 */
339#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
340static bool wq_debug_force_rr_cpu = true;
341#else
342static bool wq_debug_force_rr_cpu = false;
343#endif
344module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
345
7d19c5ce 346/* the per-cpu worker pools */
25528213 347static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 348
68e13a67 349static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 350
68e13a67 351/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
352static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
353
c5aa87bb 354/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
355static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
356
8a2b7538
TH
357/* I: attributes used when instantiating ordered pools on demand */
358static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
359
d320c038 360struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 361EXPORT_SYMBOL(system_wq);
044c782c 362struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 363EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 364struct workqueue_struct *system_long_wq __read_mostly;
d320c038 365EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 366struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 367EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 368struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 369EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
370struct workqueue_struct *system_power_efficient_wq __read_mostly;
371EXPORT_SYMBOL_GPL(system_power_efficient_wq);
372struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
373EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 374
7d19c5ce 375static int worker_thread(void *__worker);
6ba94429 376static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 377static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 378
97bd2347
TH
379#define CREATE_TRACE_POINTS
380#include <trace/events/workqueue.h>
381
68e13a67 382#define assert_rcu_or_pool_mutex() \
24acfb71 383 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 384 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 385 "RCU or wq_pool_mutex should be held")
5bcab335 386
5b95e1af 387#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
389 !lockdep_is_held(&wq->mutex) && \
390 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 391 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 392
f02ae73a
TH
393#define for_each_cpu_worker_pool(pool, cpu) \
394 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
395 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 396 (pool)++)
4ce62e9e 397
17116969
TH
398/**
399 * for_each_pool - iterate through all worker_pools in the system
400 * @pool: iteration cursor
611c92a0 401 * @pi: integer used for iteration
fa1b54e6 402 *
24acfb71 403 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
404 * locked. If the pool needs to be used beyond the locking in effect, the
405 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
17116969 409 */
611c92a0
TH
410#define for_each_pool(pool, pi) \
411 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 412 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 413 else
17116969 414
822d8405
TH
415/**
416 * for_each_pool_worker - iterate through all workers of a worker_pool
417 * @worker: iteration cursor
822d8405
TH
418 * @pool: worker_pool to iterate workers of
419 *
1258fae7 420 * This must be called with wq_pool_attach_mutex.
822d8405
TH
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
da028469
LJ
425#define for_each_pool_worker(worker, pool) \
426 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 427 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
428 else
429
49e3cf44
TH
430/**
431 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
432 * @pwq: iteration cursor
433 * @wq: the target workqueue
76af4d93 434 *
24acfb71 435 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
436 * If the pwq needs to be used beyond the locking in effect, the caller is
437 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
438 *
439 * The if/else clause exists only for the lockdep assertion and can be
440 * ignored.
49e3cf44
TH
441 */
442#define for_each_pwq(pwq, wq) \
49e9d1a9 443 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 444 lockdep_is_held(&(wq->mutex)))
f3421797 445
dc186ad7
TG
446#ifdef CONFIG_DEBUG_OBJECTS_WORK
447
f9e62f31 448static const struct debug_obj_descr work_debug_descr;
dc186ad7 449
99777288
SG
450static void *work_debug_hint(void *addr)
451{
452 return ((struct work_struct *) addr)->func;
453}
454
b9fdac7f
CD
455static bool work_is_static_object(void *addr)
456{
457 struct work_struct *work = addr;
458
459 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
460}
461
dc186ad7
TG
462/*
463 * fixup_init is called when:
464 * - an active object is initialized
465 */
02a982a6 466static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
467{
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_init(work, &work_debug_descr);
02a982a6 474 return true;
dc186ad7 475 default:
02a982a6 476 return false;
dc186ad7
TG
477 }
478}
479
dc186ad7
TG
480/*
481 * fixup_free is called when:
482 * - an active object is freed
483 */
02a982a6 484static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
485{
486 struct work_struct *work = addr;
487
488 switch (state) {
489 case ODEBUG_STATE_ACTIVE:
490 cancel_work_sync(work);
491 debug_object_free(work, &work_debug_descr);
02a982a6 492 return true;
dc186ad7 493 default:
02a982a6 494 return false;
dc186ad7
TG
495 }
496}
497
f9e62f31 498static const struct debug_obj_descr work_debug_descr = {
dc186ad7 499 .name = "work_struct",
99777288 500 .debug_hint = work_debug_hint,
b9fdac7f 501 .is_static_object = work_is_static_object,
dc186ad7 502 .fixup_init = work_fixup_init,
dc186ad7
TG
503 .fixup_free = work_fixup_free,
504};
505
506static inline void debug_work_activate(struct work_struct *work)
507{
508 debug_object_activate(work, &work_debug_descr);
509}
510
511static inline void debug_work_deactivate(struct work_struct *work)
512{
513 debug_object_deactivate(work, &work_debug_descr);
514}
515
516void __init_work(struct work_struct *work, int onstack)
517{
518 if (onstack)
519 debug_object_init_on_stack(work, &work_debug_descr);
520 else
521 debug_object_init(work, &work_debug_descr);
522}
523EXPORT_SYMBOL_GPL(__init_work);
524
525void destroy_work_on_stack(struct work_struct *work)
526{
527 debug_object_free(work, &work_debug_descr);
528}
529EXPORT_SYMBOL_GPL(destroy_work_on_stack);
530
ea2e64f2
TG
531void destroy_delayed_work_on_stack(struct delayed_work *work)
532{
533 destroy_timer_on_stack(&work->timer);
534 debug_object_free(&work->work, &work_debug_descr);
535}
536EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
537
dc186ad7
TG
538#else
539static inline void debug_work_activate(struct work_struct *work) { }
540static inline void debug_work_deactivate(struct work_struct *work) { }
541#endif
542
4e8b22bd 543/**
67dc8325 544 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
545 * @pool: the pool pointer of interest
546 *
547 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
548 * successfully, -errno on failure.
549 */
9daf9e67
TH
550static int worker_pool_assign_id(struct worker_pool *pool)
551{
552 int ret;
553
68e13a67 554 lockdep_assert_held(&wq_pool_mutex);
5bcab335 555
4e8b22bd
LB
556 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
557 GFP_KERNEL);
229641a6 558 if (ret >= 0) {
e68035fb 559 pool->id = ret;
229641a6
TH
560 return 0;
561 }
fa1b54e6 562 return ret;
7c3eed5c
TH
563}
564
df2d5ae4
TH
565/**
566 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
567 * @wq: the target workqueue
568 * @node: the node ID
569 *
24acfb71 570 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 571 * read locked.
df2d5ae4
TH
572 * If the pwq needs to be used beyond the locking in effect, the caller is
573 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
574 *
575 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
576 */
577static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
578 int node)
579{
5b95e1af 580 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
581
582 /*
583 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
584 * delayed item is pending. The plan is to keep CPU -> NODE
585 * mapping valid and stable across CPU on/offlines. Once that
586 * happens, this workaround can be removed.
587 */
588 if (unlikely(node == NUMA_NO_NODE))
589 return wq->dfl_pwq;
590
df2d5ae4
TH
591 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
592}
593
73f53c4a
TH
594static unsigned int work_color_to_flags(int color)
595{
596 return color << WORK_STRUCT_COLOR_SHIFT;
597}
598
c4560c2c 599static int get_work_color(unsigned long work_data)
73f53c4a 600{
c4560c2c 601 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
602 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
603}
604
605static int work_next_color(int color)
606{
607 return (color + 1) % WORK_NR_COLORS;
608}
1da177e4 609
14441960 610/*
112202d9
TH
611 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
612 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 613 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 614 *
112202d9
TH
615 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
616 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
617 * work->data. These functions should only be called while the work is
618 * owned - ie. while the PENDING bit is set.
7a22ad75 619 *
112202d9 620 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 621 * corresponding to a work. Pool is available once the work has been
112202d9 622 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 623 * available only while the work item is queued.
7a22ad75 624 *
bbb68dfa
TH
625 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
626 * canceled. While being canceled, a work item may have its PENDING set
627 * but stay off timer and worklist for arbitrarily long and nobody should
628 * try to steal the PENDING bit.
14441960 629 */
7a22ad75
TH
630static inline void set_work_data(struct work_struct *work, unsigned long data,
631 unsigned long flags)
365970a1 632{
6183c009 633 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
634 atomic_long_set(&work->data, data | flags | work_static(work));
635}
365970a1 636
112202d9 637static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
638 unsigned long extra_flags)
639{
112202d9
TH
640 set_work_data(work, (unsigned long)pwq,
641 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
642}
643
4468a00f
LJ
644static void set_work_pool_and_keep_pending(struct work_struct *work,
645 int pool_id)
646{
647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
648 WORK_STRUCT_PENDING);
649}
650
7c3eed5c
TH
651static void set_work_pool_and_clear_pending(struct work_struct *work,
652 int pool_id)
7a22ad75 653{
23657bb1
TH
654 /*
655 * The following wmb is paired with the implied mb in
656 * test_and_set_bit(PENDING) and ensures all updates to @work made
657 * here are visible to and precede any updates by the next PENDING
658 * owner.
659 */
660 smp_wmb();
7c3eed5c 661 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
662 /*
663 * The following mb guarantees that previous clear of a PENDING bit
664 * will not be reordered with any speculative LOADS or STORES from
665 * work->current_func, which is executed afterwards. This possible
8bdc6201 666 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
667 * the same @work. E.g. consider this case:
668 *
669 * CPU#0 CPU#1
670 * ---------------------------- --------------------------------
671 *
672 * 1 STORE event_indicated
673 * 2 queue_work_on() {
674 * 3 test_and_set_bit(PENDING)
675 * 4 } set_..._and_clear_pending() {
676 * 5 set_work_data() # clear bit
677 * 6 smp_mb()
678 * 7 work->current_func() {
679 * 8 LOAD event_indicated
680 * }
681 *
682 * Without an explicit full barrier speculative LOAD on line 8 can
683 * be executed before CPU#0 does STORE on line 1. If that happens,
684 * CPU#0 observes the PENDING bit is still set and new execution of
685 * a @work is not queued in a hope, that CPU#1 will eventually
686 * finish the queued @work. Meanwhile CPU#1 does not see
687 * event_indicated is set, because speculative LOAD was executed
688 * before actual STORE.
689 */
690 smp_mb();
7a22ad75 691}
f756d5e2 692
7a22ad75 693static void clear_work_data(struct work_struct *work)
1da177e4 694{
7c3eed5c
TH
695 smp_wmb(); /* see set_work_pool_and_clear_pending() */
696 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
697}
698
112202d9 699static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 700{
e120153d 701 unsigned long data = atomic_long_read(&work->data);
7a22ad75 702
112202d9 703 if (data & WORK_STRUCT_PWQ)
e120153d
TH
704 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
705 else
706 return NULL;
4d707b9f
ON
707}
708
7c3eed5c
TH
709/**
710 * get_work_pool - return the worker_pool a given work was associated with
711 * @work: the work item of interest
712 *
68e13a67 713 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
714 * access under RCU read lock. As such, this function should be
715 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
716 *
717 * All fields of the returned pool are accessible as long as the above
718 * mentioned locking is in effect. If the returned pool needs to be used
719 * beyond the critical section, the caller is responsible for ensuring the
720 * returned pool is and stays online.
d185af30
YB
721 *
722 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
723 */
724static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 725{
e120153d 726 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 727 int pool_id;
7a22ad75 728
68e13a67 729 assert_rcu_or_pool_mutex();
fa1b54e6 730
112202d9
TH
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
7c3eed5c 733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 734
7c3eed5c
TH
735 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
736 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
737 return NULL;
738
fa1b54e6 739 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
740}
741
742/**
743 * get_work_pool_id - return the worker pool ID a given work is associated with
744 * @work: the work item of interest
745 *
d185af30 746 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
747 * %WORK_OFFQ_POOL_NONE if none.
748 */
749static int get_work_pool_id(struct work_struct *work)
750{
54d5b7d0
LJ
751 unsigned long data = atomic_long_read(&work->data);
752
112202d9
TH
753 if (data & WORK_STRUCT_PWQ)
754 return ((struct pool_workqueue *)
54d5b7d0 755 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 756
54d5b7d0 757 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
758}
759
bbb68dfa
TH
760static void mark_work_canceling(struct work_struct *work)
761{
7c3eed5c 762 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 763
7c3eed5c
TH
764 pool_id <<= WORK_OFFQ_POOL_SHIFT;
765 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
766}
767
768static bool work_is_canceling(struct work_struct *work)
769{
770 unsigned long data = atomic_long_read(&work->data);
771
112202d9 772 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
773}
774
e22bee78 775/*
3270476a
TH
776 * Policy functions. These define the policies on how the global worker
777 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 778 * they're being called with pool->lock held.
e22bee78
TH
779 */
780
63d95a91 781static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 782{
e19e397a 783 return !atomic_read(&pool->nr_running);
a848e3b6
ON
784}
785
4594bf15 786/*
e22bee78
TH
787 * Need to wake up a worker? Called from anything but currently
788 * running workers.
974271c4
TH
789 *
790 * Note that, because unbound workers never contribute to nr_running, this
706026c2 791 * function will always return %true for unbound pools as long as the
974271c4 792 * worklist isn't empty.
4594bf15 793 */
63d95a91 794static bool need_more_worker(struct worker_pool *pool)
365970a1 795{
63d95a91 796 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 797}
4594bf15 798
e22bee78 799/* Can I start working? Called from busy but !running workers. */
63d95a91 800static bool may_start_working(struct worker_pool *pool)
e22bee78 801{
63d95a91 802 return pool->nr_idle;
e22bee78
TH
803}
804
805/* Do I need to keep working? Called from currently running workers. */
63d95a91 806static bool keep_working(struct worker_pool *pool)
e22bee78 807{
e19e397a
TH
808 return !list_empty(&pool->worklist) &&
809 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
810}
811
812/* Do we need a new worker? Called from manager. */
63d95a91 813static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 814{
63d95a91 815 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 816}
365970a1 817
e22bee78 818/* Do we have too many workers and should some go away? */
63d95a91 819static bool too_many_workers(struct worker_pool *pool)
e22bee78 820{
692b4825 821 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
822 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
823 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
824
825 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
826}
827
4d707b9f 828/*
e22bee78
TH
829 * Wake up functions.
830 */
831
1037de36
LJ
832/* Return the first idle worker. Safe with preemption disabled */
833static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 834{
63d95a91 835 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
836 return NULL;
837
63d95a91 838 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
839}
840
841/**
842 * wake_up_worker - wake up an idle worker
63d95a91 843 * @pool: worker pool to wake worker from
7e11629d 844 *
63d95a91 845 * Wake up the first idle worker of @pool.
7e11629d
TH
846 *
847 * CONTEXT:
a9b8a985 848 * raw_spin_lock_irq(pool->lock).
7e11629d 849 */
63d95a91 850static void wake_up_worker(struct worker_pool *pool)
7e11629d 851{
1037de36 852 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
853
854 if (likely(worker))
855 wake_up_process(worker->task);
856}
857
d302f017 858/**
6d25be57 859 * wq_worker_running - a worker is running again
e22bee78 860 * @task: task waking up
e22bee78 861 *
6d25be57 862 * This function is called when a worker returns from schedule()
e22bee78 863 */
6d25be57 864void wq_worker_running(struct task_struct *task)
e22bee78
TH
865{
866 struct worker *worker = kthread_data(task);
867
6d25be57
TG
868 if (!worker->sleeping)
869 return;
870 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 871 atomic_inc(&worker->pool->nr_running);
6d25be57 872 worker->sleeping = 0;
e22bee78
TH
873}
874
875/**
876 * wq_worker_sleeping - a worker is going to sleep
877 * @task: task going to sleep
e22bee78 878 *
6d25be57 879 * This function is called from schedule() when a busy worker is
62849a96
SAS
880 * going to sleep. Preemption needs to be disabled to protect ->sleeping
881 * assignment.
e22bee78 882 */
6d25be57 883void wq_worker_sleeping(struct task_struct *task)
e22bee78 884{
6d25be57 885 struct worker *next, *worker = kthread_data(task);
111c225a 886 struct worker_pool *pool;
e22bee78 887
111c225a
TH
888 /*
889 * Rescuers, which may not have all the fields set up like normal
890 * workers, also reach here, let's not access anything before
891 * checking NOT_RUNNING.
892 */
2d64672e 893 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 894 return;
e22bee78 895
111c225a 896 pool = worker->pool;
111c225a 897
62849a96
SAS
898 /* Return if preempted before wq_worker_running() was reached */
899 if (worker->sleeping)
6d25be57
TG
900 return;
901
902 worker->sleeping = 1;
a9b8a985 903 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
904
905 /*
906 * The counterpart of the following dec_and_test, implied mb,
907 * worklist not empty test sequence is in insert_work().
908 * Please read comment there.
909 *
628c78e7
TH
910 * NOT_RUNNING is clear. This means that we're bound to and
911 * running on the local cpu w/ rq lock held and preemption
912 * disabled, which in turn means that none else could be
d565ed63 913 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 914 * lock is safe.
e22bee78 915 */
e19e397a 916 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
917 !list_empty(&pool->worklist)) {
918 next = first_idle_worker(pool);
919 if (next)
920 wake_up_process(next->task);
921 }
a9b8a985 922 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
923}
924
1b69ac6b
JW
925/**
926 * wq_worker_last_func - retrieve worker's last work function
8194fe94 927 * @task: Task to retrieve last work function of.
1b69ac6b
JW
928 *
929 * Determine the last function a worker executed. This is called from
930 * the scheduler to get a worker's last known identity.
931 *
932 * CONTEXT:
a9b8a985 933 * raw_spin_lock_irq(rq->lock)
1b69ac6b 934 *
4b047002
JW
935 * This function is called during schedule() when a kworker is going
936 * to sleep. It's used by psi to identify aggregation workers during
937 * dequeuing, to allow periodic aggregation to shut-off when that
938 * worker is the last task in the system or cgroup to go to sleep.
939 *
940 * As this function doesn't involve any workqueue-related locking, it
941 * only returns stable values when called from inside the scheduler's
942 * queuing and dequeuing paths, when @task, which must be a kworker,
943 * is guaranteed to not be processing any works.
944 *
1b69ac6b
JW
945 * Return:
946 * The last work function %current executed as a worker, NULL if it
947 * hasn't executed any work yet.
948 */
949work_func_t wq_worker_last_func(struct task_struct *task)
950{
951 struct worker *worker = kthread_data(task);
952
953 return worker->last_func;
954}
955
e22bee78
TH
956/**
957 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 958 * @worker: self
d302f017 959 * @flags: flags to set
d302f017 960 *
228f1d00 961 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 962 *
cb444766 963 * CONTEXT:
a9b8a985 964 * raw_spin_lock_irq(pool->lock)
d302f017 965 */
228f1d00 966static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 967{
bd7bdd43 968 struct worker_pool *pool = worker->pool;
e22bee78 969
cb444766
TH
970 WARN_ON_ONCE(worker->task != current);
971
228f1d00 972 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
973 if ((flags & WORKER_NOT_RUNNING) &&
974 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 975 atomic_dec(&pool->nr_running);
e22bee78
TH
976 }
977
d302f017
TH
978 worker->flags |= flags;
979}
980
981/**
e22bee78 982 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 983 * @worker: self
d302f017
TH
984 * @flags: flags to clear
985 *
e22bee78 986 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 987 *
cb444766 988 * CONTEXT:
a9b8a985 989 * raw_spin_lock_irq(pool->lock)
d302f017
TH
990 */
991static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
992{
63d95a91 993 struct worker_pool *pool = worker->pool;
e22bee78
TH
994 unsigned int oflags = worker->flags;
995
cb444766
TH
996 WARN_ON_ONCE(worker->task != current);
997
d302f017 998 worker->flags &= ~flags;
e22bee78 999
42c025f3
TH
1000 /*
1001 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1002 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1003 * of multiple flags, not a single flag.
1004 */
e22bee78
TH
1005 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1006 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 1007 atomic_inc(&pool->nr_running);
d302f017
TH
1008}
1009
8cca0eea
TH
1010/**
1011 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1012 * @pool: pool of interest
8cca0eea
TH
1013 * @work: work to find worker for
1014 *
c9e7cf27
TH
1015 * Find a worker which is executing @work on @pool by searching
1016 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1017 * to match, its current execution should match the address of @work and
1018 * its work function. This is to avoid unwanted dependency between
1019 * unrelated work executions through a work item being recycled while still
1020 * being executed.
1021 *
1022 * This is a bit tricky. A work item may be freed once its execution
1023 * starts and nothing prevents the freed area from being recycled for
1024 * another work item. If the same work item address ends up being reused
1025 * before the original execution finishes, workqueue will identify the
1026 * recycled work item as currently executing and make it wait until the
1027 * current execution finishes, introducing an unwanted dependency.
1028 *
c5aa87bb
TH
1029 * This function checks the work item address and work function to avoid
1030 * false positives. Note that this isn't complete as one may construct a
1031 * work function which can introduce dependency onto itself through a
1032 * recycled work item. Well, if somebody wants to shoot oneself in the
1033 * foot that badly, there's only so much we can do, and if such deadlock
1034 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1035 *
1036 * CONTEXT:
a9b8a985 1037 * raw_spin_lock_irq(pool->lock).
8cca0eea 1038 *
d185af30
YB
1039 * Return:
1040 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1041 * otherwise.
4d707b9f 1042 */
c9e7cf27 1043static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1044 struct work_struct *work)
4d707b9f 1045{
42f8570f 1046 struct worker *worker;
42f8570f 1047
b67bfe0d 1048 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1049 (unsigned long)work)
1050 if (worker->current_work == work &&
1051 worker->current_func == work->func)
42f8570f
SL
1052 return worker;
1053
1054 return NULL;
4d707b9f
ON
1055}
1056
bf4ede01
TH
1057/**
1058 * move_linked_works - move linked works to a list
1059 * @work: start of series of works to be scheduled
1060 * @head: target list to append @work to
402dd89d 1061 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1062 *
1063 * Schedule linked works starting from @work to @head. Work series to
1064 * be scheduled starts at @work and includes any consecutive work with
1065 * WORK_STRUCT_LINKED set in its predecessor.
1066 *
1067 * If @nextp is not NULL, it's updated to point to the next work of
1068 * the last scheduled work. This allows move_linked_works() to be
1069 * nested inside outer list_for_each_entry_safe().
1070 *
1071 * CONTEXT:
a9b8a985 1072 * raw_spin_lock_irq(pool->lock).
bf4ede01
TH
1073 */
1074static void move_linked_works(struct work_struct *work, struct list_head *head,
1075 struct work_struct **nextp)
1076{
1077 struct work_struct *n;
1078
1079 /*
1080 * Linked worklist will always end before the end of the list,
1081 * use NULL for list head.
1082 */
1083 list_for_each_entry_safe_from(work, n, NULL, entry) {
1084 list_move_tail(&work->entry, head);
1085 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1086 break;
1087 }
1088
1089 /*
1090 * If we're already inside safe list traversal and have moved
1091 * multiple works to the scheduled queue, the next position
1092 * needs to be updated.
1093 */
1094 if (nextp)
1095 *nextp = n;
1096}
1097
8864b4e5
TH
1098/**
1099 * get_pwq - get an extra reference on the specified pool_workqueue
1100 * @pwq: pool_workqueue to get
1101 *
1102 * Obtain an extra reference on @pwq. The caller should guarantee that
1103 * @pwq has positive refcnt and be holding the matching pool->lock.
1104 */
1105static void get_pwq(struct pool_workqueue *pwq)
1106{
1107 lockdep_assert_held(&pwq->pool->lock);
1108 WARN_ON_ONCE(pwq->refcnt <= 0);
1109 pwq->refcnt++;
1110}
1111
1112/**
1113 * put_pwq - put a pool_workqueue reference
1114 * @pwq: pool_workqueue to put
1115 *
1116 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1117 * destruction. The caller should be holding the matching pool->lock.
1118 */
1119static void put_pwq(struct pool_workqueue *pwq)
1120{
1121 lockdep_assert_held(&pwq->pool->lock);
1122 if (likely(--pwq->refcnt))
1123 return;
1124 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1125 return;
1126 /*
1127 * @pwq can't be released under pool->lock, bounce to
1128 * pwq_unbound_release_workfn(). This never recurses on the same
1129 * pool->lock as this path is taken only for unbound workqueues and
1130 * the release work item is scheduled on a per-cpu workqueue. To
1131 * avoid lockdep warning, unbound pool->locks are given lockdep
1132 * subclass of 1 in get_unbound_pool().
1133 */
1134 schedule_work(&pwq->unbound_release_work);
1135}
1136
dce90d47
TH
1137/**
1138 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1139 * @pwq: pool_workqueue to put (can be %NULL)
1140 *
1141 * put_pwq() with locking. This function also allows %NULL @pwq.
1142 */
1143static void put_pwq_unlocked(struct pool_workqueue *pwq)
1144{
1145 if (pwq) {
1146 /*
24acfb71 1147 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1148 * following lock operations are safe.
1149 */
a9b8a985 1150 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1151 put_pwq(pwq);
a9b8a985 1152 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1153 }
1154}
1155
f97a4a1a 1156static void pwq_activate_inactive_work(struct work_struct *work)
bf4ede01 1157{
112202d9 1158 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1159
1160 trace_workqueue_activate_work(work);
82607adc
TH
1161 if (list_empty(&pwq->pool->worklist))
1162 pwq->pool->watchdog_ts = jiffies;
112202d9 1163 move_linked_works(work, &pwq->pool->worklist, NULL);
f97a4a1a 1164 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
112202d9 1165 pwq->nr_active++;
bf4ede01
TH
1166}
1167
f97a4a1a 1168static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
3aa62497 1169{
f97a4a1a 1170 struct work_struct *work = list_first_entry(&pwq->inactive_works,
3aa62497
LJ
1171 struct work_struct, entry);
1172
f97a4a1a 1173 pwq_activate_inactive_work(work);
3aa62497
LJ
1174}
1175
bf4ede01 1176/**
112202d9
TH
1177 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1178 * @pwq: pwq of interest
c4560c2c 1179 * @work_data: work_data of work which left the queue
bf4ede01
TH
1180 *
1181 * A work either has completed or is removed from pending queue,
112202d9 1182 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1183 *
1184 * CONTEXT:
a9b8a985 1185 * raw_spin_lock_irq(pool->lock).
bf4ede01 1186 */
c4560c2c 1187static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1188{
c4560c2c
LJ
1189 int color = get_work_color(work_data);
1190
018f3a13
LJ
1191 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1192 pwq->nr_active--;
1193 if (!list_empty(&pwq->inactive_works)) {
1194 /* one down, submit an inactive one */
1195 if (pwq->nr_active < pwq->max_active)
1196 pwq_activate_first_inactive(pwq);
1197 }
1198 }
1199
112202d9 1200 pwq->nr_in_flight[color]--;
bf4ede01 1201
bf4ede01 1202 /* is flush in progress and are we at the flushing tip? */
112202d9 1203 if (likely(pwq->flush_color != color))
8864b4e5 1204 goto out_put;
bf4ede01
TH
1205
1206 /* are there still in-flight works? */
112202d9 1207 if (pwq->nr_in_flight[color])
8864b4e5 1208 goto out_put;
bf4ede01 1209
112202d9
TH
1210 /* this pwq is done, clear flush_color */
1211 pwq->flush_color = -1;
bf4ede01
TH
1212
1213 /*
112202d9 1214 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1215 * will handle the rest.
1216 */
112202d9
TH
1217 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1218 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1219out_put:
1220 put_pwq(pwq);
bf4ede01
TH
1221}
1222
36e227d2 1223/**
bbb68dfa 1224 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1225 * @work: work item to steal
1226 * @is_dwork: @work is a delayed_work
bbb68dfa 1227 * @flags: place to store irq state
36e227d2
TH
1228 *
1229 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1230 * stable state - idle, on timer or on worklist.
36e227d2 1231 *
d185af30 1232 * Return:
3eb6b31b
MCC
1233 *
1234 * ======== ================================================================
36e227d2
TH
1235 * 1 if @work was pending and we successfully stole PENDING
1236 * 0 if @work was idle and we claimed PENDING
1237 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1238 * -ENOENT if someone else is canceling @work, this state may persist
1239 * for arbitrarily long
3eb6b31b 1240 * ======== ================================================================
36e227d2 1241 *
d185af30 1242 * Note:
bbb68dfa 1243 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1244 * interrupted while holding PENDING and @work off queue, irq must be
1245 * disabled on entry. This, combined with delayed_work->timer being
1246 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1247 *
1248 * On successful return, >= 0, irq is disabled and the caller is
1249 * responsible for releasing it using local_irq_restore(*@flags).
1250 *
e0aecdd8 1251 * This function is safe to call from any context including IRQ handler.
bf4ede01 1252 */
bbb68dfa
TH
1253static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1254 unsigned long *flags)
bf4ede01 1255{
d565ed63 1256 struct worker_pool *pool;
112202d9 1257 struct pool_workqueue *pwq;
bf4ede01 1258
bbb68dfa
TH
1259 local_irq_save(*flags);
1260
36e227d2
TH
1261 /* try to steal the timer if it exists */
1262 if (is_dwork) {
1263 struct delayed_work *dwork = to_delayed_work(work);
1264
e0aecdd8
TH
1265 /*
1266 * dwork->timer is irqsafe. If del_timer() fails, it's
1267 * guaranteed that the timer is not queued anywhere and not
1268 * running on the local CPU.
1269 */
36e227d2
TH
1270 if (likely(del_timer(&dwork->timer)))
1271 return 1;
1272 }
1273
1274 /* try to claim PENDING the normal way */
bf4ede01
TH
1275 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1276 return 0;
1277
24acfb71 1278 rcu_read_lock();
bf4ede01
TH
1279 /*
1280 * The queueing is in progress, or it is already queued. Try to
1281 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1282 */
d565ed63
TH
1283 pool = get_work_pool(work);
1284 if (!pool)
bbb68dfa 1285 goto fail;
bf4ede01 1286
a9b8a985 1287 raw_spin_lock(&pool->lock);
0b3dae68 1288 /*
112202d9
TH
1289 * work->data is guaranteed to point to pwq only while the work
1290 * item is queued on pwq->wq, and both updating work->data to point
1291 * to pwq on queueing and to pool on dequeueing are done under
1292 * pwq->pool->lock. This in turn guarantees that, if work->data
1293 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1294 * item is currently queued on that pool.
1295 */
112202d9
TH
1296 pwq = get_work_pwq(work);
1297 if (pwq && pwq->pool == pool) {
16062836
TH
1298 debug_work_deactivate(work);
1299
1300 /*
018f3a13
LJ
1301 * A cancelable inactive work item must be in the
1302 * pwq->inactive_works since a queued barrier can't be
1303 * canceled (see the comments in insert_wq_barrier()).
1304 *
f97a4a1a 1305 * An inactive work item cannot be grabbed directly because
d812796e 1306 * it might have linked barrier work items which, if left
f97a4a1a 1307 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
1308 * management later on and cause stall. Make sure the work
1309 * item is activated before grabbing.
1310 */
f97a4a1a
LJ
1311 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1312 pwq_activate_inactive_work(work);
16062836
TH
1313
1314 list_del_init(&work->entry);
c4560c2c 1315 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
16062836 1316
112202d9 1317 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1318 set_work_pool_and_keep_pending(work, pool->id);
1319
a9b8a985 1320 raw_spin_unlock(&pool->lock);
24acfb71 1321 rcu_read_unlock();
16062836 1322 return 1;
bf4ede01 1323 }
a9b8a985 1324 raw_spin_unlock(&pool->lock);
bbb68dfa 1325fail:
24acfb71 1326 rcu_read_unlock();
bbb68dfa
TH
1327 local_irq_restore(*flags);
1328 if (work_is_canceling(work))
1329 return -ENOENT;
1330 cpu_relax();
36e227d2 1331 return -EAGAIN;
bf4ede01
TH
1332}
1333
4690c4ab 1334/**
706026c2 1335 * insert_work - insert a work into a pool
112202d9 1336 * @pwq: pwq @work belongs to
4690c4ab
TH
1337 * @work: work to insert
1338 * @head: insertion point
1339 * @extra_flags: extra WORK_STRUCT_* flags to set
1340 *
112202d9 1341 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1342 * work_struct flags.
4690c4ab
TH
1343 *
1344 * CONTEXT:
a9b8a985 1345 * raw_spin_lock_irq(pool->lock).
4690c4ab 1346 */
112202d9
TH
1347static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1348 struct list_head *head, unsigned int extra_flags)
b89deed3 1349{
112202d9 1350 struct worker_pool *pool = pwq->pool;
e22bee78 1351
e89a85d6
WW
1352 /* record the work call stack in order to print it in KASAN reports */
1353 kasan_record_aux_stack(work);
1354
4690c4ab 1355 /* we own @work, set data and link */
112202d9 1356 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1357 list_add_tail(&work->entry, head);
8864b4e5 1358 get_pwq(pwq);
e22bee78
TH
1359
1360 /*
c5aa87bb
TH
1361 * Ensure either wq_worker_sleeping() sees the above
1362 * list_add_tail() or we see zero nr_running to avoid workers lying
1363 * around lazily while there are works to be processed.
e22bee78
TH
1364 */
1365 smp_mb();
1366
63d95a91
TH
1367 if (__need_more_worker(pool))
1368 wake_up_worker(pool);
b89deed3
ON
1369}
1370
c8efcc25
TH
1371/*
1372 * Test whether @work is being queued from another work executing on the
8d03ecfe 1373 * same workqueue.
c8efcc25
TH
1374 */
1375static bool is_chained_work(struct workqueue_struct *wq)
1376{
8d03ecfe
TH
1377 struct worker *worker;
1378
1379 worker = current_wq_worker();
1380 /*
bf393fd4 1381 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1382 * I'm @worker, it's safe to dereference it without locking.
1383 */
112202d9 1384 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1385}
1386
ef557180
MG
1387/*
1388 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1389 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1390 * avoid perturbing sensitive tasks.
1391 */
1392static int wq_select_unbound_cpu(int cpu)
1393{
f303fccb 1394 static bool printed_dbg_warning;
ef557180
MG
1395 int new_cpu;
1396
f303fccb
TH
1397 if (likely(!wq_debug_force_rr_cpu)) {
1398 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1399 return cpu;
1400 } else if (!printed_dbg_warning) {
1401 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1402 printed_dbg_warning = true;
1403 }
1404
ef557180
MG
1405 if (cpumask_empty(wq_unbound_cpumask))
1406 return cpu;
1407
1408 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1409 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1410 if (unlikely(new_cpu >= nr_cpu_ids)) {
1411 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1412 if (unlikely(new_cpu >= nr_cpu_ids))
1413 return cpu;
1414 }
1415 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1416
1417 return new_cpu;
1418}
1419
d84ff051 1420static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1421 struct work_struct *work)
1422{
112202d9 1423 struct pool_workqueue *pwq;
c9178087 1424 struct worker_pool *last_pool;
1e19ffc6 1425 struct list_head *worklist;
8a2e8e5d 1426 unsigned int work_flags;
b75cac93 1427 unsigned int req_cpu = cpu;
8930caba
TH
1428
1429 /*
1430 * While a work item is PENDING && off queue, a task trying to
1431 * steal the PENDING will busy-loop waiting for it to either get
1432 * queued or lose PENDING. Grabbing PENDING and queueing should
1433 * happen with IRQ disabled.
1434 */
8e8eb730 1435 lockdep_assert_irqs_disabled();
1da177e4 1436
1e19ffc6 1437
9ef28a73 1438 /* if draining, only works from the same workqueue are allowed */
618b01eb 1439 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1440 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1441 return;
24acfb71 1442 rcu_read_lock();
9e8cd2f5 1443retry:
c9178087 1444 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1445 if (wq->flags & WQ_UNBOUND) {
1446 if (req_cpu == WORK_CPU_UNBOUND)
1447 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1448 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1449 } else {
1450 if (req_cpu == WORK_CPU_UNBOUND)
1451 cpu = raw_smp_processor_id();
1452 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1453 }
dbf2576e 1454
c9178087
TH
1455 /*
1456 * If @work was previously on a different pool, it might still be
1457 * running there, in which case the work needs to be queued on that
1458 * pool to guarantee non-reentrancy.
1459 */
1460 last_pool = get_work_pool(work);
1461 if (last_pool && last_pool != pwq->pool) {
1462 struct worker *worker;
18aa9eff 1463
a9b8a985 1464 raw_spin_lock(&last_pool->lock);
18aa9eff 1465
c9178087 1466 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1467
c9178087
TH
1468 if (worker && worker->current_pwq->wq == wq) {
1469 pwq = worker->current_pwq;
8930caba 1470 } else {
c9178087 1471 /* meh... not running there, queue here */
a9b8a985
SAS
1472 raw_spin_unlock(&last_pool->lock);
1473 raw_spin_lock(&pwq->pool->lock);
8930caba 1474 }
f3421797 1475 } else {
a9b8a985 1476 raw_spin_lock(&pwq->pool->lock);
502ca9d8
TH
1477 }
1478
9e8cd2f5
TH
1479 /*
1480 * pwq is determined and locked. For unbound pools, we could have
1481 * raced with pwq release and it could already be dead. If its
1482 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1483 * without another pwq replacing it in the numa_pwq_tbl or while
1484 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1485 * make forward-progress.
1486 */
1487 if (unlikely(!pwq->refcnt)) {
1488 if (wq->flags & WQ_UNBOUND) {
a9b8a985 1489 raw_spin_unlock(&pwq->pool->lock);
9e8cd2f5
TH
1490 cpu_relax();
1491 goto retry;
1492 }
1493 /* oops */
1494 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1495 wq->name, cpu);
1496 }
1497
112202d9
TH
1498 /* pwq determined, queue */
1499 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1500
24acfb71
TG
1501 if (WARN_ON(!list_empty(&work->entry)))
1502 goto out;
1e19ffc6 1503
112202d9
TH
1504 pwq->nr_in_flight[pwq->work_color]++;
1505 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1506
112202d9 1507 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1508 trace_workqueue_activate_work(work);
112202d9
TH
1509 pwq->nr_active++;
1510 worklist = &pwq->pool->worklist;
82607adc
TH
1511 if (list_empty(worklist))
1512 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d 1513 } else {
f97a4a1a
LJ
1514 work_flags |= WORK_STRUCT_INACTIVE;
1515 worklist = &pwq->inactive_works;
8a2e8e5d 1516 }
1e19ffc6 1517
0687c66b 1518 debug_work_activate(work);
112202d9 1519 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1520
24acfb71 1521out:
a9b8a985 1522 raw_spin_unlock(&pwq->pool->lock);
24acfb71 1523 rcu_read_unlock();
1da177e4
LT
1524}
1525
0fcb78c2 1526/**
c1a220e7
ZR
1527 * queue_work_on - queue work on specific cpu
1528 * @cpu: CPU number to execute work on
0fcb78c2
REB
1529 * @wq: workqueue to use
1530 * @work: work to queue
1531 *
c1a220e7
ZR
1532 * We queue the work to a specific CPU, the caller must ensure it
1533 * can't go away.
d185af30
YB
1534 *
1535 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1536 */
d4283e93
TH
1537bool queue_work_on(int cpu, struct workqueue_struct *wq,
1538 struct work_struct *work)
1da177e4 1539{
d4283e93 1540 bool ret = false;
8930caba 1541 unsigned long flags;
ef1ca236 1542
8930caba 1543 local_irq_save(flags);
c1a220e7 1544
22df02bb 1545 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1546 __queue_work(cpu, wq, work);
d4283e93 1547 ret = true;
c1a220e7 1548 }
ef1ca236 1549
8930caba 1550 local_irq_restore(flags);
1da177e4
LT
1551 return ret;
1552}
ad7b1f84 1553EXPORT_SYMBOL(queue_work_on);
1da177e4 1554
8204e0c1
AD
1555/**
1556 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1557 * @node: NUMA node ID that we want to select a CPU from
1558 *
1559 * This function will attempt to find a "random" cpu available on a given
1560 * node. If there are no CPUs available on the given node it will return
1561 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1562 * available CPU if we need to schedule this work.
1563 */
1564static int workqueue_select_cpu_near(int node)
1565{
1566 int cpu;
1567
1568 /* No point in doing this if NUMA isn't enabled for workqueues */
1569 if (!wq_numa_enabled)
1570 return WORK_CPU_UNBOUND;
1571
1572 /* Delay binding to CPU if node is not valid or online */
1573 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1574 return WORK_CPU_UNBOUND;
1575
1576 /* Use local node/cpu if we are already there */
1577 cpu = raw_smp_processor_id();
1578 if (node == cpu_to_node(cpu))
1579 return cpu;
1580
1581 /* Use "random" otherwise know as "first" online CPU of node */
1582 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1583
1584 /* If CPU is valid return that, otherwise just defer */
1585 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1586}
1587
1588/**
1589 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1590 * @node: NUMA node that we are targeting the work for
1591 * @wq: workqueue to use
1592 * @work: work to queue
1593 *
1594 * We queue the work to a "random" CPU within a given NUMA node. The basic
1595 * idea here is to provide a way to somehow associate work with a given
1596 * NUMA node.
1597 *
1598 * This function will only make a best effort attempt at getting this onto
1599 * the right NUMA node. If no node is requested or the requested node is
1600 * offline then we just fall back to standard queue_work behavior.
1601 *
1602 * Currently the "random" CPU ends up being the first available CPU in the
1603 * intersection of cpu_online_mask and the cpumask of the node, unless we
1604 * are running on the node. In that case we just use the current CPU.
1605 *
1606 * Return: %false if @work was already on a queue, %true otherwise.
1607 */
1608bool queue_work_node(int node, struct workqueue_struct *wq,
1609 struct work_struct *work)
1610{
1611 unsigned long flags;
1612 bool ret = false;
1613
1614 /*
1615 * This current implementation is specific to unbound workqueues.
1616 * Specifically we only return the first available CPU for a given
1617 * node instead of cycling through individual CPUs within the node.
1618 *
1619 * If this is used with a per-cpu workqueue then the logic in
1620 * workqueue_select_cpu_near would need to be updated to allow for
1621 * some round robin type logic.
1622 */
1623 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1624
1625 local_irq_save(flags);
1626
1627 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1628 int cpu = workqueue_select_cpu_near(node);
1629
1630 __queue_work(cpu, wq, work);
1631 ret = true;
1632 }
1633
1634 local_irq_restore(flags);
1635 return ret;
1636}
1637EXPORT_SYMBOL_GPL(queue_work_node);
1638
8c20feb6 1639void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1640{
8c20feb6 1641 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1642
e0aecdd8 1643 /* should have been called from irqsafe timer with irq already off */
60c057bc 1644 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1645}
1438ade5 1646EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1647
7beb2edf
TH
1648static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1649 struct delayed_work *dwork, unsigned long delay)
1da177e4 1650{
7beb2edf
TH
1651 struct timer_list *timer = &dwork->timer;
1652 struct work_struct *work = &dwork->work;
7beb2edf 1653
637fdbae 1654 WARN_ON_ONCE(!wq);
98173112 1655 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
fc4b514f
TH
1656 WARN_ON_ONCE(timer_pending(timer));
1657 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1658
8852aac2
TH
1659 /*
1660 * If @delay is 0, queue @dwork->work immediately. This is for
1661 * both optimization and correctness. The earliest @timer can
1662 * expire is on the closest next tick and delayed_work users depend
1663 * on that there's no such delay when @delay is 0.
1664 */
1665 if (!delay) {
1666 __queue_work(cpu, wq, &dwork->work);
1667 return;
1668 }
1669
60c057bc 1670 dwork->wq = wq;
1265057f 1671 dwork->cpu = cpu;
7beb2edf
TH
1672 timer->expires = jiffies + delay;
1673
041bd12e
TH
1674 if (unlikely(cpu != WORK_CPU_UNBOUND))
1675 add_timer_on(timer, cpu);
1676 else
1677 add_timer(timer);
1da177e4
LT
1678}
1679
0fcb78c2
REB
1680/**
1681 * queue_delayed_work_on - queue work on specific CPU after delay
1682 * @cpu: CPU number to execute work on
1683 * @wq: workqueue to use
af9997e4 1684 * @dwork: work to queue
0fcb78c2
REB
1685 * @delay: number of jiffies to wait before queueing
1686 *
d185af30 1687 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1688 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1689 * execution.
0fcb78c2 1690 */
d4283e93
TH
1691bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1692 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1693{
52bad64d 1694 struct work_struct *work = &dwork->work;
d4283e93 1695 bool ret = false;
8930caba 1696 unsigned long flags;
7a6bc1cd 1697
8930caba
TH
1698 /* read the comment in __queue_work() */
1699 local_irq_save(flags);
7a6bc1cd 1700
22df02bb 1701 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1702 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1703 ret = true;
7a6bc1cd 1704 }
8a3e77cc 1705
8930caba 1706 local_irq_restore(flags);
7a6bc1cd
VP
1707 return ret;
1708}
ad7b1f84 1709EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1710
8376fe22
TH
1711/**
1712 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1713 * @cpu: CPU number to execute work on
1714 * @wq: workqueue to use
1715 * @dwork: work to queue
1716 * @delay: number of jiffies to wait before queueing
1717 *
1718 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1719 * modify @dwork's timer so that it expires after @delay. If @delay is
1720 * zero, @work is guaranteed to be scheduled immediately regardless of its
1721 * current state.
1722 *
d185af30 1723 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1724 * pending and its timer was modified.
1725 *
e0aecdd8 1726 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1727 * See try_to_grab_pending() for details.
1728 */
1729bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1730 struct delayed_work *dwork, unsigned long delay)
1731{
1732 unsigned long flags;
1733 int ret;
c7fc77f7 1734
8376fe22
TH
1735 do {
1736 ret = try_to_grab_pending(&dwork->work, true, &flags);
1737 } while (unlikely(ret == -EAGAIN));
63bc0362 1738
8376fe22
TH
1739 if (likely(ret >= 0)) {
1740 __queue_delayed_work(cpu, wq, dwork, delay);
1741 local_irq_restore(flags);
7a6bc1cd 1742 }
8376fe22
TH
1743
1744 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1745 return ret;
1746}
8376fe22
TH
1747EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1748
05f0fe6b
TH
1749static void rcu_work_rcufn(struct rcu_head *rcu)
1750{
1751 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1752
1753 /* read the comment in __queue_work() */
1754 local_irq_disable();
1755 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1756 local_irq_enable();
1757}
1758
1759/**
1760 * queue_rcu_work - queue work after a RCU grace period
1761 * @wq: workqueue to use
1762 * @rwork: work to queue
1763 *
1764 * Return: %false if @rwork was already pending, %true otherwise. Note
1765 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1766 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1767 * execution may happen before a full RCU grace period has passed.
1768 */
1769bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1770{
1771 struct work_struct *work = &rwork->work;
1772
1773 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1774 rwork->wq = wq;
1775 call_rcu(&rwork->rcu, rcu_work_rcufn);
1776 return true;
1777 }
1778
1779 return false;
1780}
1781EXPORT_SYMBOL(queue_rcu_work);
1782
c8e55f36
TH
1783/**
1784 * worker_enter_idle - enter idle state
1785 * @worker: worker which is entering idle state
1786 *
1787 * @worker is entering idle state. Update stats and idle timer if
1788 * necessary.
1789 *
1790 * LOCKING:
a9b8a985 1791 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1792 */
1793static void worker_enter_idle(struct worker *worker)
1da177e4 1794{
bd7bdd43 1795 struct worker_pool *pool = worker->pool;
c8e55f36 1796
6183c009
TH
1797 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1798 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1799 (worker->hentry.next || worker->hentry.pprev)))
1800 return;
c8e55f36 1801
051e1850 1802 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1803 worker->flags |= WORKER_IDLE;
bd7bdd43 1804 pool->nr_idle++;
e22bee78 1805 worker->last_active = jiffies;
c8e55f36
TH
1806
1807 /* idle_list is LIFO */
bd7bdd43 1808 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1809
628c78e7
TH
1810 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1811 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1812
544ecf31 1813 /*
e8b3f8db 1814 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1815 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1816 * nr_running, the warning may trigger spuriously. Check iff
1817 * unbind is not in progress.
544ecf31 1818 */
24647570 1819 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1820 pool->nr_workers == pool->nr_idle &&
e19e397a 1821 atomic_read(&pool->nr_running));
c8e55f36
TH
1822}
1823
1824/**
1825 * worker_leave_idle - leave idle state
1826 * @worker: worker which is leaving idle state
1827 *
1828 * @worker is leaving idle state. Update stats.
1829 *
1830 * LOCKING:
a9b8a985 1831 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1832 */
1833static void worker_leave_idle(struct worker *worker)
1834{
bd7bdd43 1835 struct worker_pool *pool = worker->pool;
c8e55f36 1836
6183c009
TH
1837 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1838 return;
d302f017 1839 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1840 pool->nr_idle--;
c8e55f36
TH
1841 list_del_init(&worker->entry);
1842}
1843
f7537df5 1844static struct worker *alloc_worker(int node)
c34056a3
TH
1845{
1846 struct worker *worker;
1847
f7537df5 1848 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1849 if (worker) {
1850 INIT_LIST_HEAD(&worker->entry);
affee4b2 1851 INIT_LIST_HEAD(&worker->scheduled);
da028469 1852 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1853 /* on creation a worker is in !idle && prep state */
1854 worker->flags = WORKER_PREP;
c8e55f36 1855 }
c34056a3
TH
1856 return worker;
1857}
1858
4736cbf7
LJ
1859/**
1860 * worker_attach_to_pool() - attach a worker to a pool
1861 * @worker: worker to be attached
1862 * @pool: the target pool
1863 *
1864 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1865 * cpu-binding of @worker are kept coordinated with the pool across
1866 * cpu-[un]hotplugs.
1867 */
1868static void worker_attach_to_pool(struct worker *worker,
1869 struct worker_pool *pool)
1870{
1258fae7 1871 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 1872
4736cbf7 1873 /*
1258fae7
TH
1874 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1875 * stable across this function. See the comments above the flag
1876 * definition for details.
4736cbf7
LJ
1877 */
1878 if (pool->flags & POOL_DISASSOCIATED)
1879 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
1880 else
1881 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 1882
640f17c8
PZ
1883 if (worker->rescue_wq)
1884 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1885
4736cbf7 1886 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1887 worker->pool = pool;
4736cbf7 1888
1258fae7 1889 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1890}
1891
60f5a4bc
LJ
1892/**
1893 * worker_detach_from_pool() - detach a worker from its pool
1894 * @worker: worker which is attached to its pool
60f5a4bc 1895 *
4736cbf7
LJ
1896 * Undo the attaching which had been done in worker_attach_to_pool(). The
1897 * caller worker shouldn't access to the pool after detached except it has
1898 * other reference to the pool.
60f5a4bc 1899 */
a2d812a2 1900static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1901{
a2d812a2 1902 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1903 struct completion *detach_completion = NULL;
1904
1258fae7 1905 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1906
5c25b5ff 1907 kthread_set_per_cpu(worker->task, -1);
da028469 1908 list_del(&worker->node);
a2d812a2
TH
1909 worker->pool = NULL;
1910
da028469 1911 if (list_empty(&pool->workers))
60f5a4bc 1912 detach_completion = pool->detach_completion;
1258fae7 1913 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1914
b62c0751
LJ
1915 /* clear leftover flags without pool->lock after it is detached */
1916 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1917
60f5a4bc
LJ
1918 if (detach_completion)
1919 complete(detach_completion);
1920}
1921
c34056a3
TH
1922/**
1923 * create_worker - create a new workqueue worker
63d95a91 1924 * @pool: pool the new worker will belong to
c34056a3 1925 *
051e1850 1926 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1927 *
1928 * CONTEXT:
1929 * Might sleep. Does GFP_KERNEL allocations.
1930 *
d185af30 1931 * Return:
c34056a3
TH
1932 * Pointer to the newly created worker.
1933 */
bc2ae0f5 1934static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1935{
e441b56f
ZL
1936 struct worker *worker;
1937 int id;
e3c916a4 1938 char id_buf[16];
c34056a3 1939
7cda9aae 1940 /* ID is needed to determine kthread name */
e441b56f 1941 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
822d8405 1942 if (id < 0)
e441b56f 1943 return NULL;
c34056a3 1944
f7537df5 1945 worker = alloc_worker(pool->node);
c34056a3
TH
1946 if (!worker)
1947 goto fail;
1948
c34056a3
TH
1949 worker->id = id;
1950
29c91e99 1951 if (pool->cpu >= 0)
e3c916a4
TH
1952 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1953 pool->attrs->nice < 0 ? "H" : "");
f3421797 1954 else
e3c916a4
TH
1955 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1956
f3f90ad4 1957 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1958 "kworker/%s", id_buf);
c34056a3
TH
1959 if (IS_ERR(worker->task))
1960 goto fail;
1961
91151228 1962 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1963 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1964
da028469 1965 /* successful, attach the worker to the pool */
4736cbf7 1966 worker_attach_to_pool(worker, pool);
822d8405 1967
051e1850 1968 /* start the newly created worker */
a9b8a985 1969 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
1970 worker->pool->nr_workers++;
1971 worker_enter_idle(worker);
1972 wake_up_process(worker->task);
a9b8a985 1973 raw_spin_unlock_irq(&pool->lock);
051e1850 1974
c34056a3 1975 return worker;
822d8405 1976
c34056a3 1977fail:
e441b56f 1978 ida_free(&pool->worker_ida, id);
c34056a3
TH
1979 kfree(worker);
1980 return NULL;
1981}
1982
c34056a3
TH
1983/**
1984 * destroy_worker - destroy a workqueue worker
1985 * @worker: worker to be destroyed
1986 *
73eb7fe7
LJ
1987 * Destroy @worker and adjust @pool stats accordingly. The worker should
1988 * be idle.
c8e55f36
TH
1989 *
1990 * CONTEXT:
a9b8a985 1991 * raw_spin_lock_irq(pool->lock).
c34056a3
TH
1992 */
1993static void destroy_worker(struct worker *worker)
1994{
bd7bdd43 1995 struct worker_pool *pool = worker->pool;
c34056a3 1996
cd549687
TH
1997 lockdep_assert_held(&pool->lock);
1998
c34056a3 1999 /* sanity check frenzy */
6183c009 2000 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2001 WARN_ON(!list_empty(&worker->scheduled)) ||
2002 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2003 return;
c34056a3 2004
73eb7fe7
LJ
2005 pool->nr_workers--;
2006 pool->nr_idle--;
5bdfff96 2007
c8e55f36 2008 list_del_init(&worker->entry);
cb444766 2009 worker->flags |= WORKER_DIE;
60f5a4bc 2010 wake_up_process(worker->task);
c34056a3
TH
2011}
2012
32a6c723 2013static void idle_worker_timeout(struct timer_list *t)
e22bee78 2014{
32a6c723 2015 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 2016
a9b8a985 2017 raw_spin_lock_irq(&pool->lock);
e22bee78 2018
3347fc9f 2019 while (too_many_workers(pool)) {
e22bee78
TH
2020 struct worker *worker;
2021 unsigned long expires;
2022
2023 /* idle_list is kept in LIFO order, check the last one */
63d95a91 2024 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2025 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2026
3347fc9f 2027 if (time_before(jiffies, expires)) {
63d95a91 2028 mod_timer(&pool->idle_timer, expires);
3347fc9f 2029 break;
d5abe669 2030 }
3347fc9f
LJ
2031
2032 destroy_worker(worker);
e22bee78
TH
2033 }
2034
a9b8a985 2035 raw_spin_unlock_irq(&pool->lock);
e22bee78 2036}
d5abe669 2037
493a1724 2038static void send_mayday(struct work_struct *work)
e22bee78 2039{
112202d9
TH
2040 struct pool_workqueue *pwq = get_work_pwq(work);
2041 struct workqueue_struct *wq = pwq->wq;
493a1724 2042
2e109a28 2043 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2044
493008a8 2045 if (!wq->rescuer)
493a1724 2046 return;
e22bee78
TH
2047
2048 /* mayday mayday mayday */
493a1724 2049 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2050 /*
2051 * If @pwq is for an unbound wq, its base ref may be put at
2052 * any time due to an attribute change. Pin @pwq until the
2053 * rescuer is done with it.
2054 */
2055 get_pwq(pwq);
493a1724 2056 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2057 wake_up_process(wq->rescuer->task);
493a1724 2058 }
e22bee78
TH
2059}
2060
32a6c723 2061static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2062{
32a6c723 2063 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2064 struct work_struct *work;
2065
a9b8a985
SAS
2066 raw_spin_lock_irq(&pool->lock);
2067 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2068
63d95a91 2069 if (need_to_create_worker(pool)) {
e22bee78
TH
2070 /*
2071 * We've been trying to create a new worker but
2072 * haven't been successful. We might be hitting an
2073 * allocation deadlock. Send distress signals to
2074 * rescuers.
2075 */
63d95a91 2076 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2077 send_mayday(work);
1da177e4 2078 }
e22bee78 2079
a9b8a985
SAS
2080 raw_spin_unlock(&wq_mayday_lock);
2081 raw_spin_unlock_irq(&pool->lock);
e22bee78 2082
63d95a91 2083 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2084}
2085
e22bee78
TH
2086/**
2087 * maybe_create_worker - create a new worker if necessary
63d95a91 2088 * @pool: pool to create a new worker for
e22bee78 2089 *
63d95a91 2090 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2091 * have at least one idle worker on return from this function. If
2092 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2093 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2094 * possible allocation deadlock.
2095 *
c5aa87bb
TH
2096 * On return, need_to_create_worker() is guaranteed to be %false and
2097 * may_start_working() %true.
e22bee78
TH
2098 *
2099 * LOCKING:
a9b8a985 2100 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2101 * multiple times. Does GFP_KERNEL allocations. Called only from
2102 * manager.
e22bee78 2103 */
29187a9e 2104static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2105__releases(&pool->lock)
2106__acquires(&pool->lock)
1da177e4 2107{
e22bee78 2108restart:
a9b8a985 2109 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2110
e22bee78 2111 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2112 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2113
2114 while (true) {
051e1850 2115 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2116 break;
1da177e4 2117
e212f361 2118 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2119
63d95a91 2120 if (!need_to_create_worker(pool))
e22bee78
TH
2121 break;
2122 }
2123
63d95a91 2124 del_timer_sync(&pool->mayday_timer);
a9b8a985 2125 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2126 /*
2127 * This is necessary even after a new worker was just successfully
2128 * created as @pool->lock was dropped and the new worker might have
2129 * already become busy.
2130 */
63d95a91 2131 if (need_to_create_worker(pool))
e22bee78 2132 goto restart;
e22bee78
TH
2133}
2134
73f53c4a 2135/**
e22bee78
TH
2136 * manage_workers - manage worker pool
2137 * @worker: self
73f53c4a 2138 *
706026c2 2139 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2140 * to. At any given time, there can be only zero or one manager per
706026c2 2141 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2142 *
2143 * The caller can safely start processing works on false return. On
2144 * true return, it's guaranteed that need_to_create_worker() is false
2145 * and may_start_working() is true.
73f53c4a
TH
2146 *
2147 * CONTEXT:
a9b8a985 2148 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2149 * multiple times. Does GFP_KERNEL allocations.
2150 *
d185af30 2151 * Return:
29187a9e
TH
2152 * %false if the pool doesn't need management and the caller can safely
2153 * start processing works, %true if management function was performed and
2154 * the conditions that the caller verified before calling the function may
2155 * no longer be true.
73f53c4a 2156 */
e22bee78 2157static bool manage_workers(struct worker *worker)
73f53c4a 2158{
63d95a91 2159 struct worker_pool *pool = worker->pool;
73f53c4a 2160
692b4825 2161 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2162 return false;
692b4825
TH
2163
2164 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2165 pool->manager = worker;
1e19ffc6 2166
29187a9e 2167 maybe_create_worker(pool);
e22bee78 2168
2607d7a6 2169 pool->manager = NULL;
692b4825 2170 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2171 rcuwait_wake_up(&manager_wait);
29187a9e 2172 return true;
73f53c4a
TH
2173}
2174
a62428c0
TH
2175/**
2176 * process_one_work - process single work
c34056a3 2177 * @worker: self
a62428c0
TH
2178 * @work: work to process
2179 *
2180 * Process @work. This function contains all the logics necessary to
2181 * process a single work including synchronization against and
2182 * interaction with other workers on the same cpu, queueing and
2183 * flushing. As long as context requirement is met, any worker can
2184 * call this function to process a work.
2185 *
2186 * CONTEXT:
a9b8a985 2187 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2188 */
c34056a3 2189static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2190__releases(&pool->lock)
2191__acquires(&pool->lock)
a62428c0 2192{
112202d9 2193 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2194 struct worker_pool *pool = worker->pool;
112202d9 2195 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
c4560c2c 2196 unsigned long work_data;
7e11629d 2197 struct worker *collision;
a62428c0
TH
2198#ifdef CONFIG_LOCKDEP
2199 /*
2200 * It is permissible to free the struct work_struct from
2201 * inside the function that is called from it, this we need to
2202 * take into account for lockdep too. To avoid bogus "held
2203 * lock freed" warnings as well as problems when looking into
2204 * work->lockdep_map, make a copy and use that here.
2205 */
4d82a1de
PZ
2206 struct lockdep_map lockdep_map;
2207
2208 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2209#endif
807407c0 2210 /* ensure we're on the correct CPU */
85327af6 2211 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2212 raw_smp_processor_id() != pool->cpu);
25511a47 2213
7e11629d
TH
2214 /*
2215 * A single work shouldn't be executed concurrently by
2216 * multiple workers on a single cpu. Check whether anyone is
2217 * already processing the work. If so, defer the work to the
2218 * currently executing one.
2219 */
c9e7cf27 2220 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2221 if (unlikely(collision)) {
2222 move_linked_works(work, &collision->scheduled, NULL);
2223 return;
2224 }
2225
8930caba 2226 /* claim and dequeue */
a62428c0 2227 debug_work_deactivate(work);
c9e7cf27 2228 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2229 worker->current_work = work;
a2c1c57b 2230 worker->current_func = work->func;
112202d9 2231 worker->current_pwq = pwq;
c4560c2c 2232 work_data = *work_data_bits(work);
d812796e 2233 worker->current_color = get_work_color(work_data);
7a22ad75 2234
8bf89593
TH
2235 /*
2236 * Record wq name for cmdline and debug reporting, may get
2237 * overridden through set_worker_desc().
2238 */
2239 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2240
a62428c0
TH
2241 list_del_init(&work->entry);
2242
fb0e7beb 2243 /*
228f1d00
LJ
2244 * CPU intensive works don't participate in concurrency management.
2245 * They're the scheduler's responsibility. This takes @worker out
2246 * of concurrency management and the next code block will chain
2247 * execution of the pending work items.
fb0e7beb
TH
2248 */
2249 if (unlikely(cpu_intensive))
228f1d00 2250 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2251
974271c4 2252 /*
a489a03e
LJ
2253 * Wake up another worker if necessary. The condition is always
2254 * false for normal per-cpu workers since nr_running would always
2255 * be >= 1 at this point. This is used to chain execution of the
2256 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2257 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2258 */
a489a03e 2259 if (need_more_worker(pool))
63d95a91 2260 wake_up_worker(pool);
974271c4 2261
8930caba 2262 /*
7c3eed5c 2263 * Record the last pool and clear PENDING which should be the last
d565ed63 2264 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2265 * PENDING and queued state changes happen together while IRQ is
2266 * disabled.
8930caba 2267 */
7c3eed5c 2268 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2269
a9b8a985 2270 raw_spin_unlock_irq(&pool->lock);
a62428c0 2271
a1d14934 2272 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2273 lock_map_acquire(&lockdep_map);
e6f3faa7 2274 /*
f52be570
PZ
2275 * Strictly speaking we should mark the invariant state without holding
2276 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2277 *
2278 * However, that would result in:
2279 *
2280 * A(W1)
2281 * WFC(C)
2282 * A(W1)
2283 * C(C)
2284 *
2285 * Which would create W1->C->W1 dependencies, even though there is no
2286 * actual deadlock possible. There are two solutions, using a
2287 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2288 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2289 * these locks.
2290 *
2291 * AFAICT there is no possible deadlock scenario between the
2292 * flush_work() and complete() primitives (except for single-threaded
2293 * workqueues), so hiding them isn't a problem.
2294 */
f52be570 2295 lockdep_invariant_state(true);
e36c886a 2296 trace_workqueue_execute_start(work);
a2c1c57b 2297 worker->current_func(work);
e36c886a
AV
2298 /*
2299 * While we must be careful to not use "work" after this, the trace
2300 * point will only record its address.
2301 */
1c5da0ec 2302 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2303 lock_map_release(&lockdep_map);
112202d9 2304 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2305
2306 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2307 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2308 " last function: %ps\n",
a2c1c57b
TH
2309 current->comm, preempt_count(), task_pid_nr(current),
2310 worker->current_func);
a62428c0
TH
2311 debug_show_held_locks(current);
2312 dump_stack();
2313 }
2314
b22ce278 2315 /*
025f50f3 2316 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2317 * kernels, where a requeueing work item waiting for something to
2318 * happen could deadlock with stop_machine as such work item could
2319 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2320 * stop_machine. At the same time, report a quiescent RCU state so
2321 * the same condition doesn't freeze RCU.
b22ce278 2322 */
a7e6425e 2323 cond_resched();
b22ce278 2324
a9b8a985 2325 raw_spin_lock_irq(&pool->lock);
a62428c0 2326
fb0e7beb
TH
2327 /* clear cpu intensive status */
2328 if (unlikely(cpu_intensive))
2329 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2330
1b69ac6b
JW
2331 /* tag the worker for identification in schedule() */
2332 worker->last_func = worker->current_func;
2333
a62428c0 2334 /* we're done with it, release */
42f8570f 2335 hash_del(&worker->hentry);
c34056a3 2336 worker->current_work = NULL;
a2c1c57b 2337 worker->current_func = NULL;
112202d9 2338 worker->current_pwq = NULL;
d812796e 2339 worker->current_color = INT_MAX;
c4560c2c 2340 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
2341}
2342
affee4b2
TH
2343/**
2344 * process_scheduled_works - process scheduled works
2345 * @worker: self
2346 *
2347 * Process all scheduled works. Please note that the scheduled list
2348 * may change while processing a work, so this function repeatedly
2349 * fetches a work from the top and executes it.
2350 *
2351 * CONTEXT:
a9b8a985 2352 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2353 * multiple times.
2354 */
2355static void process_scheduled_works(struct worker *worker)
1da177e4 2356{
affee4b2
TH
2357 while (!list_empty(&worker->scheduled)) {
2358 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2359 struct work_struct, entry);
c34056a3 2360 process_one_work(worker, work);
1da177e4 2361 }
1da177e4
LT
2362}
2363
197f6acc
TH
2364static void set_pf_worker(bool val)
2365{
2366 mutex_lock(&wq_pool_attach_mutex);
2367 if (val)
2368 current->flags |= PF_WQ_WORKER;
2369 else
2370 current->flags &= ~PF_WQ_WORKER;
2371 mutex_unlock(&wq_pool_attach_mutex);
2372}
2373
4690c4ab
TH
2374/**
2375 * worker_thread - the worker thread function
c34056a3 2376 * @__worker: self
4690c4ab 2377 *
c5aa87bb
TH
2378 * The worker thread function. All workers belong to a worker_pool -
2379 * either a per-cpu one or dynamic unbound one. These workers process all
2380 * work items regardless of their specific target workqueue. The only
2381 * exception is work items which belong to workqueues with a rescuer which
2382 * will be explained in rescuer_thread().
d185af30
YB
2383 *
2384 * Return: 0
4690c4ab 2385 */
c34056a3 2386static int worker_thread(void *__worker)
1da177e4 2387{
c34056a3 2388 struct worker *worker = __worker;
bd7bdd43 2389 struct worker_pool *pool = worker->pool;
1da177e4 2390
e22bee78 2391 /* tell the scheduler that this is a workqueue worker */
197f6acc 2392 set_pf_worker(true);
c8e55f36 2393woke_up:
a9b8a985 2394 raw_spin_lock_irq(&pool->lock);
1da177e4 2395
a9ab775b
TH
2396 /* am I supposed to die? */
2397 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2398 raw_spin_unlock_irq(&pool->lock);
a9ab775b 2399 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2400 set_pf_worker(false);
60f5a4bc
LJ
2401
2402 set_task_comm(worker->task, "kworker/dying");
e441b56f 2403 ida_free(&pool->worker_ida, worker->id);
a2d812a2 2404 worker_detach_from_pool(worker);
60f5a4bc 2405 kfree(worker);
a9ab775b 2406 return 0;
c8e55f36 2407 }
affee4b2 2408
c8e55f36 2409 worker_leave_idle(worker);
db7bccf4 2410recheck:
e22bee78 2411 /* no more worker necessary? */
63d95a91 2412 if (!need_more_worker(pool))
e22bee78
TH
2413 goto sleep;
2414
2415 /* do we need to manage? */
63d95a91 2416 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2417 goto recheck;
2418
c8e55f36
TH
2419 /*
2420 * ->scheduled list can only be filled while a worker is
2421 * preparing to process a work or actually processing it.
2422 * Make sure nobody diddled with it while I was sleeping.
2423 */
6183c009 2424 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2425
e22bee78 2426 /*
a9ab775b
TH
2427 * Finish PREP stage. We're guaranteed to have at least one idle
2428 * worker or that someone else has already assumed the manager
2429 * role. This is where @worker starts participating in concurrency
2430 * management if applicable and concurrency management is restored
2431 * after being rebound. See rebind_workers() for details.
e22bee78 2432 */
a9ab775b 2433 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2434
2435 do {
c8e55f36 2436 struct work_struct *work =
bd7bdd43 2437 list_first_entry(&pool->worklist,
c8e55f36
TH
2438 struct work_struct, entry);
2439
82607adc
TH
2440 pool->watchdog_ts = jiffies;
2441
c8e55f36
TH
2442 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2443 /* optimization path, not strictly necessary */
2444 process_one_work(worker, work);
2445 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2446 process_scheduled_works(worker);
c8e55f36
TH
2447 } else {
2448 move_linked_works(work, &worker->scheduled, NULL);
2449 process_scheduled_works(worker);
affee4b2 2450 }
63d95a91 2451 } while (keep_working(pool));
e22bee78 2452
228f1d00 2453 worker_set_flags(worker, WORKER_PREP);
d313dd85 2454sleep:
c8e55f36 2455 /*
d565ed63
TH
2456 * pool->lock is held and there's no work to process and no need to
2457 * manage, sleep. Workers are woken up only while holding
2458 * pool->lock or from local cpu, so setting the current state
2459 * before releasing pool->lock is enough to prevent losing any
2460 * event.
c8e55f36
TH
2461 */
2462 worker_enter_idle(worker);
c5a94a61 2463 __set_current_state(TASK_IDLE);
a9b8a985 2464 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2465 schedule();
2466 goto woke_up;
1da177e4
LT
2467}
2468
e22bee78
TH
2469/**
2470 * rescuer_thread - the rescuer thread function
111c225a 2471 * @__rescuer: self
e22bee78
TH
2472 *
2473 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2474 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2475 *
706026c2 2476 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2477 * worker which uses GFP_KERNEL allocation which has slight chance of
2478 * developing into deadlock if some works currently on the same queue
2479 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2480 * the problem rescuer solves.
2481 *
706026c2
TH
2482 * When such condition is possible, the pool summons rescuers of all
2483 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2484 * those works so that forward progress can be guaranteed.
2485 *
2486 * This should happen rarely.
d185af30
YB
2487 *
2488 * Return: 0
e22bee78 2489 */
111c225a 2490static int rescuer_thread(void *__rescuer)
e22bee78 2491{
111c225a
TH
2492 struct worker *rescuer = __rescuer;
2493 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2494 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2495 bool should_stop;
e22bee78
TH
2496
2497 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2498
2499 /*
2500 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2501 * doesn't participate in concurrency management.
2502 */
197f6acc 2503 set_pf_worker(true);
e22bee78 2504repeat:
c5a94a61 2505 set_current_state(TASK_IDLE);
e22bee78 2506
4d595b86
LJ
2507 /*
2508 * By the time the rescuer is requested to stop, the workqueue
2509 * shouldn't have any work pending, but @wq->maydays may still have
2510 * pwq(s) queued. This can happen by non-rescuer workers consuming
2511 * all the work items before the rescuer got to them. Go through
2512 * @wq->maydays processing before acting on should_stop so that the
2513 * list is always empty on exit.
2514 */
2515 should_stop = kthread_should_stop();
e22bee78 2516
493a1724 2517 /* see whether any pwq is asking for help */
a9b8a985 2518 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2519
2520 while (!list_empty(&wq->maydays)) {
2521 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2522 struct pool_workqueue, mayday_node);
112202d9 2523 struct worker_pool *pool = pwq->pool;
e22bee78 2524 struct work_struct *work, *n;
82607adc 2525 bool first = true;
e22bee78
TH
2526
2527 __set_current_state(TASK_RUNNING);
493a1724
TH
2528 list_del_init(&pwq->mayday_node);
2529
a9b8a985 2530 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2531
51697d39
LJ
2532 worker_attach_to_pool(rescuer, pool);
2533
a9b8a985 2534 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2535
2536 /*
2537 * Slurp in all works issued via this workqueue and
2538 * process'em.
2539 */
0479c8c5 2540 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2541 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2542 if (get_work_pwq(work) == pwq) {
2543 if (first)
2544 pool->watchdog_ts = jiffies;
e22bee78 2545 move_linked_works(work, scheduled, &n);
82607adc
TH
2546 }
2547 first = false;
2548 }
e22bee78 2549
008847f6
N
2550 if (!list_empty(scheduled)) {
2551 process_scheduled_works(rescuer);
2552
2553 /*
2554 * The above execution of rescued work items could
2555 * have created more to rescue through
f97a4a1a 2556 * pwq_activate_first_inactive() or chained
008847f6
N
2557 * queueing. Let's put @pwq back on mayday list so
2558 * that such back-to-back work items, which may be
2559 * being used to relieve memory pressure, don't
2560 * incur MAYDAY_INTERVAL delay inbetween.
2561 */
4f3f4cf3 2562 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2563 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2564 /*
2565 * Queue iff we aren't racing destruction
2566 * and somebody else hasn't queued it already.
2567 */
2568 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2569 get_pwq(pwq);
2570 list_add_tail(&pwq->mayday_node, &wq->maydays);
2571 }
a9b8a985 2572 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2573 }
2574 }
7576958a 2575
77668c8b
LJ
2576 /*
2577 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2578 * go away while we're still attached to it.
77668c8b
LJ
2579 */
2580 put_pwq(pwq);
2581
7576958a 2582 /*
d8ca83e6 2583 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2584 * regular worker; otherwise, we end up with 0 concurrency
2585 * and stalling the execution.
2586 */
d8ca83e6 2587 if (need_more_worker(pool))
63d95a91 2588 wake_up_worker(pool);
7576958a 2589
a9b8a985 2590 raw_spin_unlock_irq(&pool->lock);
13b1d625 2591
a2d812a2 2592 worker_detach_from_pool(rescuer);
13b1d625 2593
a9b8a985 2594 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2595 }
2596
a9b8a985 2597 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2598
4d595b86
LJ
2599 if (should_stop) {
2600 __set_current_state(TASK_RUNNING);
197f6acc 2601 set_pf_worker(false);
4d595b86
LJ
2602 return 0;
2603 }
2604
111c225a
TH
2605 /* rescuers should never participate in concurrency management */
2606 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2607 schedule();
2608 goto repeat;
1da177e4
LT
2609}
2610
fca839c0
TH
2611/**
2612 * check_flush_dependency - check for flush dependency sanity
2613 * @target_wq: workqueue being flushed
2614 * @target_work: work item being flushed (NULL for workqueue flushes)
2615 *
2616 * %current is trying to flush the whole @target_wq or @target_work on it.
2617 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2618 * reclaiming memory or running on a workqueue which doesn't have
2619 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2620 * a deadlock.
2621 */
2622static void check_flush_dependency(struct workqueue_struct *target_wq,
2623 struct work_struct *target_work)
2624{
2625 work_func_t target_func = target_work ? target_work->func : NULL;
2626 struct worker *worker;
2627
2628 if (target_wq->flags & WQ_MEM_RECLAIM)
2629 return;
2630
2631 worker = current_wq_worker();
2632
2633 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2634 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2635 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2636 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2637 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2638 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2639 worker->current_pwq->wq->name, worker->current_func,
2640 target_wq->name, target_func);
2641}
2642
fc2e4d70
ON
2643struct wq_barrier {
2644 struct work_struct work;
2645 struct completion done;
2607d7a6 2646 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2647};
2648
2649static void wq_barrier_func(struct work_struct *work)
2650{
2651 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2652 complete(&barr->done);
2653}
2654
4690c4ab
TH
2655/**
2656 * insert_wq_barrier - insert a barrier work
112202d9 2657 * @pwq: pwq to insert barrier into
4690c4ab 2658 * @barr: wq_barrier to insert
affee4b2
TH
2659 * @target: target work to attach @barr to
2660 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2661 *
affee4b2
TH
2662 * @barr is linked to @target such that @barr is completed only after
2663 * @target finishes execution. Please note that the ordering
2664 * guarantee is observed only with respect to @target and on the local
2665 * cpu.
2666 *
2667 * Currently, a queued barrier can't be canceled. This is because
2668 * try_to_grab_pending() can't determine whether the work to be
2669 * grabbed is at the head of the queue and thus can't clear LINKED
2670 * flag of the previous work while there must be a valid next work
2671 * after a work with LINKED flag set.
2672 *
2673 * Note that when @worker is non-NULL, @target may be modified
112202d9 2674 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2675 *
2676 * CONTEXT:
a9b8a985 2677 * raw_spin_lock_irq(pool->lock).
4690c4ab 2678 */
112202d9 2679static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2680 struct wq_barrier *barr,
2681 struct work_struct *target, struct worker *worker)
fc2e4d70 2682{
d812796e
LJ
2683 unsigned int work_flags = 0;
2684 unsigned int work_color;
affee4b2 2685 struct list_head *head;
affee4b2 2686
dc186ad7 2687 /*
d565ed63 2688 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2689 * as we know for sure that this will not trigger any of the
2690 * checks and call back into the fixup functions where we
2691 * might deadlock.
2692 */
ca1cab37 2693 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2694 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2695
fd1a5b04
BP
2696 init_completion_map(&barr->done, &target->lockdep_map);
2697
2607d7a6 2698 barr->task = current;
83c22520 2699
018f3a13
LJ
2700 /* The barrier work item does not participate in pwq->nr_active. */
2701 work_flags |= WORK_STRUCT_INACTIVE;
2702
affee4b2
TH
2703 /*
2704 * If @target is currently being executed, schedule the
2705 * barrier to the worker; otherwise, put it after @target.
2706 */
d812796e 2707 if (worker) {
affee4b2 2708 head = worker->scheduled.next;
d812796e
LJ
2709 work_color = worker->current_color;
2710 } else {
affee4b2
TH
2711 unsigned long *bits = work_data_bits(target);
2712
2713 head = target->entry.next;
2714 /* there can already be other linked works, inherit and set */
d21cece0 2715 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 2716 work_color = get_work_color(*bits);
affee4b2
TH
2717 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2718 }
2719
d812796e
LJ
2720 pwq->nr_in_flight[work_color]++;
2721 work_flags |= work_color_to_flags(work_color);
2722
dc186ad7 2723 debug_work_activate(&barr->work);
d21cece0 2724 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
2725}
2726
73f53c4a 2727/**
112202d9 2728 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2729 * @wq: workqueue being flushed
2730 * @flush_color: new flush color, < 0 for no-op
2731 * @work_color: new work color, < 0 for no-op
2732 *
112202d9 2733 * Prepare pwqs for workqueue flushing.
73f53c4a 2734 *
112202d9
TH
2735 * If @flush_color is non-negative, flush_color on all pwqs should be
2736 * -1. If no pwq has in-flight commands at the specified color, all
2737 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2738 * has in flight commands, its pwq->flush_color is set to
2739 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2740 * wakeup logic is armed and %true is returned.
2741 *
2742 * The caller should have initialized @wq->first_flusher prior to
2743 * calling this function with non-negative @flush_color. If
2744 * @flush_color is negative, no flush color update is done and %false
2745 * is returned.
2746 *
112202d9 2747 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2748 * work_color which is previous to @work_color and all will be
2749 * advanced to @work_color.
2750 *
2751 * CONTEXT:
3c25a55d 2752 * mutex_lock(wq->mutex).
73f53c4a 2753 *
d185af30 2754 * Return:
73f53c4a
TH
2755 * %true if @flush_color >= 0 and there's something to flush. %false
2756 * otherwise.
2757 */
112202d9 2758static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2759 int flush_color, int work_color)
1da177e4 2760{
73f53c4a 2761 bool wait = false;
49e3cf44 2762 struct pool_workqueue *pwq;
1da177e4 2763
73f53c4a 2764 if (flush_color >= 0) {
6183c009 2765 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2766 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2767 }
2355b70f 2768
49e3cf44 2769 for_each_pwq(pwq, wq) {
112202d9 2770 struct worker_pool *pool = pwq->pool;
fc2e4d70 2771
a9b8a985 2772 raw_spin_lock_irq(&pool->lock);
83c22520 2773
73f53c4a 2774 if (flush_color >= 0) {
6183c009 2775 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2776
112202d9
TH
2777 if (pwq->nr_in_flight[flush_color]) {
2778 pwq->flush_color = flush_color;
2779 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2780 wait = true;
2781 }
2782 }
1da177e4 2783
73f53c4a 2784 if (work_color >= 0) {
6183c009 2785 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2786 pwq->work_color = work_color;
73f53c4a 2787 }
1da177e4 2788
a9b8a985 2789 raw_spin_unlock_irq(&pool->lock);
1da177e4 2790 }
2355b70f 2791
112202d9 2792 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2793 complete(&wq->first_flusher->done);
14441960 2794
73f53c4a 2795 return wait;
1da177e4
LT
2796}
2797
0fcb78c2 2798/**
1da177e4 2799 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2800 * @wq: workqueue to flush
1da177e4 2801 *
c5aa87bb
TH
2802 * This function sleeps until all work items which were queued on entry
2803 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2804 */
7ad5b3a5 2805void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2806{
73f53c4a
TH
2807 struct wq_flusher this_flusher = {
2808 .list = LIST_HEAD_INIT(this_flusher.list),
2809 .flush_color = -1,
fd1a5b04 2810 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2811 };
2812 int next_color;
1da177e4 2813
3347fa09
TH
2814 if (WARN_ON(!wq_online))
2815 return;
2816
87915adc
JB
2817 lock_map_acquire(&wq->lockdep_map);
2818 lock_map_release(&wq->lockdep_map);
2819
3c25a55d 2820 mutex_lock(&wq->mutex);
73f53c4a
TH
2821
2822 /*
2823 * Start-to-wait phase
2824 */
2825 next_color = work_next_color(wq->work_color);
2826
2827 if (next_color != wq->flush_color) {
2828 /*
2829 * Color space is not full. The current work_color
2830 * becomes our flush_color and work_color is advanced
2831 * by one.
2832 */
6183c009 2833 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2834 this_flusher.flush_color = wq->work_color;
2835 wq->work_color = next_color;
2836
2837 if (!wq->first_flusher) {
2838 /* no flush in progress, become the first flusher */
6183c009 2839 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2840
2841 wq->first_flusher = &this_flusher;
2842
112202d9 2843 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2844 wq->work_color)) {
2845 /* nothing to flush, done */
2846 wq->flush_color = next_color;
2847 wq->first_flusher = NULL;
2848 goto out_unlock;
2849 }
2850 } else {
2851 /* wait in queue */
6183c009 2852 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2853 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2854 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2855 }
2856 } else {
2857 /*
2858 * Oops, color space is full, wait on overflow queue.
2859 * The next flush completion will assign us
2860 * flush_color and transfer to flusher_queue.
2861 */
2862 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2863 }
2864
fca839c0
TH
2865 check_flush_dependency(wq, NULL);
2866
3c25a55d 2867 mutex_unlock(&wq->mutex);
73f53c4a
TH
2868
2869 wait_for_completion(&this_flusher.done);
2870
2871 /*
2872 * Wake-up-and-cascade phase
2873 *
2874 * First flushers are responsible for cascading flushes and
2875 * handling overflow. Non-first flushers can simply return.
2876 */
00d5d15b 2877 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2878 return;
2879
3c25a55d 2880 mutex_lock(&wq->mutex);
73f53c4a 2881
4ce48b37
TH
2882 /* we might have raced, check again with mutex held */
2883 if (wq->first_flusher != &this_flusher)
2884 goto out_unlock;
2885
00d5d15b 2886 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2887
6183c009
TH
2888 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2889 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2890
2891 while (true) {
2892 struct wq_flusher *next, *tmp;
2893
2894 /* complete all the flushers sharing the current flush color */
2895 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2896 if (next->flush_color != wq->flush_color)
2897 break;
2898 list_del_init(&next->list);
2899 complete(&next->done);
2900 }
2901
6183c009
TH
2902 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2903 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2904
2905 /* this flush_color is finished, advance by one */
2906 wq->flush_color = work_next_color(wq->flush_color);
2907
2908 /* one color has been freed, handle overflow queue */
2909 if (!list_empty(&wq->flusher_overflow)) {
2910 /*
2911 * Assign the same color to all overflowed
2912 * flushers, advance work_color and append to
2913 * flusher_queue. This is the start-to-wait
2914 * phase for these overflowed flushers.
2915 */
2916 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2917 tmp->flush_color = wq->work_color;
2918
2919 wq->work_color = work_next_color(wq->work_color);
2920
2921 list_splice_tail_init(&wq->flusher_overflow,
2922 &wq->flusher_queue);
112202d9 2923 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2924 }
2925
2926 if (list_empty(&wq->flusher_queue)) {
6183c009 2927 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2928 break;
2929 }
2930
2931 /*
2932 * Need to flush more colors. Make the next flusher
112202d9 2933 * the new first flusher and arm pwqs.
73f53c4a 2934 */
6183c009
TH
2935 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2936 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2937
2938 list_del_init(&next->list);
2939 wq->first_flusher = next;
2940
112202d9 2941 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2942 break;
2943
2944 /*
2945 * Meh... this color is already done, clear first
2946 * flusher and repeat cascading.
2947 */
2948 wq->first_flusher = NULL;
2949 }
2950
2951out_unlock:
3c25a55d 2952 mutex_unlock(&wq->mutex);
1da177e4 2953}
1dadafa8 2954EXPORT_SYMBOL(flush_workqueue);
1da177e4 2955
9c5a2ba7
TH
2956/**
2957 * drain_workqueue - drain a workqueue
2958 * @wq: workqueue to drain
2959 *
2960 * Wait until the workqueue becomes empty. While draining is in progress,
2961 * only chain queueing is allowed. IOW, only currently pending or running
2962 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2963 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2964 * by the depth of chaining and should be relatively short. Whine if it
2965 * takes too long.
2966 */
2967void drain_workqueue(struct workqueue_struct *wq)
2968{
2969 unsigned int flush_cnt = 0;
49e3cf44 2970 struct pool_workqueue *pwq;
9c5a2ba7
TH
2971
2972 /*
2973 * __queue_work() needs to test whether there are drainers, is much
2974 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2975 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2976 */
87fc741e 2977 mutex_lock(&wq->mutex);
9c5a2ba7 2978 if (!wq->nr_drainers++)
618b01eb 2979 wq->flags |= __WQ_DRAINING;
87fc741e 2980 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2981reflush:
2982 flush_workqueue(wq);
2983
b09f4fd3 2984 mutex_lock(&wq->mutex);
76af4d93 2985
49e3cf44 2986 for_each_pwq(pwq, wq) {
fa2563e4 2987 bool drained;
9c5a2ba7 2988
a9b8a985 2989 raw_spin_lock_irq(&pwq->pool->lock);
f97a4a1a 2990 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
a9b8a985 2991 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2992
2993 if (drained)
9c5a2ba7
TH
2994 continue;
2995
2996 if (++flush_cnt == 10 ||
2997 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
2998 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2999 wq->name, __func__, flush_cnt);
76af4d93 3000
b09f4fd3 3001 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3002 goto reflush;
3003 }
3004
9c5a2ba7 3005 if (!--wq->nr_drainers)
618b01eb 3006 wq->flags &= ~__WQ_DRAINING;
87fc741e 3007 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3008}
3009EXPORT_SYMBOL_GPL(drain_workqueue);
3010
d6e89786
JB
3011static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3012 bool from_cancel)
db700897 3013{
affee4b2 3014 struct worker *worker = NULL;
c9e7cf27 3015 struct worker_pool *pool;
112202d9 3016 struct pool_workqueue *pwq;
db700897
ON
3017
3018 might_sleep();
fa1b54e6 3019
24acfb71 3020 rcu_read_lock();
c9e7cf27 3021 pool = get_work_pool(work);
fa1b54e6 3022 if (!pool) {
24acfb71 3023 rcu_read_unlock();
baf59022 3024 return false;
fa1b54e6 3025 }
db700897 3026
a9b8a985 3027 raw_spin_lock_irq(&pool->lock);
0b3dae68 3028 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3029 pwq = get_work_pwq(work);
3030 if (pwq) {
3031 if (unlikely(pwq->pool != pool))
4690c4ab 3032 goto already_gone;
606a5020 3033 } else {
c9e7cf27 3034 worker = find_worker_executing_work(pool, work);
affee4b2 3035 if (!worker)
4690c4ab 3036 goto already_gone;
112202d9 3037 pwq = worker->current_pwq;
606a5020 3038 }
db700897 3039
fca839c0
TH
3040 check_flush_dependency(pwq->wq, work);
3041
112202d9 3042 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3043 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3044
e159489b 3045 /*
a1d14934
PZ
3046 * Force a lock recursion deadlock when using flush_work() inside a
3047 * single-threaded or rescuer equipped workqueue.
3048 *
3049 * For single threaded workqueues the deadlock happens when the work
3050 * is after the work issuing the flush_work(). For rescuer equipped
3051 * workqueues the deadlock happens when the rescuer stalls, blocking
3052 * forward progress.
e159489b 3053 */
d6e89786
JB
3054 if (!from_cancel &&
3055 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3056 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3057 lock_map_release(&pwq->wq->lockdep_map);
3058 }
24acfb71 3059 rcu_read_unlock();
401a8d04 3060 return true;
4690c4ab 3061already_gone:
a9b8a985 3062 raw_spin_unlock_irq(&pool->lock);
24acfb71 3063 rcu_read_unlock();
401a8d04 3064 return false;
db700897 3065}
baf59022 3066
d6e89786
JB
3067static bool __flush_work(struct work_struct *work, bool from_cancel)
3068{
3069 struct wq_barrier barr;
3070
3071 if (WARN_ON(!wq_online))
3072 return false;
3073
4d43d395
TH
3074 if (WARN_ON(!work->func))
3075 return false;
3076
87915adc
JB
3077 if (!from_cancel) {
3078 lock_map_acquire(&work->lockdep_map);
3079 lock_map_release(&work->lockdep_map);
3080 }
3081
d6e89786
JB
3082 if (start_flush_work(work, &barr, from_cancel)) {
3083 wait_for_completion(&barr.done);
3084 destroy_work_on_stack(&barr.work);
3085 return true;
3086 } else {
3087 return false;
3088 }
3089}
3090
baf59022
TH
3091/**
3092 * flush_work - wait for a work to finish executing the last queueing instance
3093 * @work: the work to flush
3094 *
606a5020
TH
3095 * Wait until @work has finished execution. @work is guaranteed to be idle
3096 * on return if it hasn't been requeued since flush started.
baf59022 3097 *
d185af30 3098 * Return:
baf59022
TH
3099 * %true if flush_work() waited for the work to finish execution,
3100 * %false if it was already idle.
3101 */
3102bool flush_work(struct work_struct *work)
3103{
d6e89786 3104 return __flush_work(work, false);
6e84d644 3105}
606a5020 3106EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3107
8603e1b3 3108struct cwt_wait {
ac6424b9 3109 wait_queue_entry_t wait;
8603e1b3
TH
3110 struct work_struct *work;
3111};
3112
ac6424b9 3113static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3114{
3115 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3116
3117 if (cwait->work != key)
3118 return 0;
3119 return autoremove_wake_function(wait, mode, sync, key);
3120}
3121
36e227d2 3122static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3123{
8603e1b3 3124 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3125 unsigned long flags;
1f1f642e
ON
3126 int ret;
3127
3128 do {
bbb68dfa
TH
3129 ret = try_to_grab_pending(work, is_dwork, &flags);
3130 /*
8603e1b3
TH
3131 * If someone else is already canceling, wait for it to
3132 * finish. flush_work() doesn't work for PREEMPT_NONE
3133 * because we may get scheduled between @work's completion
3134 * and the other canceling task resuming and clearing
3135 * CANCELING - flush_work() will return false immediately
3136 * as @work is no longer busy, try_to_grab_pending() will
3137 * return -ENOENT as @work is still being canceled and the
3138 * other canceling task won't be able to clear CANCELING as
3139 * we're hogging the CPU.
3140 *
3141 * Let's wait for completion using a waitqueue. As this
3142 * may lead to the thundering herd problem, use a custom
3143 * wake function which matches @work along with exclusive
3144 * wait and wakeup.
bbb68dfa 3145 */
8603e1b3
TH
3146 if (unlikely(ret == -ENOENT)) {
3147 struct cwt_wait cwait;
3148
3149 init_wait(&cwait.wait);
3150 cwait.wait.func = cwt_wakefn;
3151 cwait.work = work;
3152
3153 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3154 TASK_UNINTERRUPTIBLE);
3155 if (work_is_canceling(work))
3156 schedule();
3157 finish_wait(&cancel_waitq, &cwait.wait);
3158 }
1f1f642e
ON
3159 } while (unlikely(ret < 0));
3160
bbb68dfa
TH
3161 /* tell other tasks trying to grab @work to back off */
3162 mark_work_canceling(work);
3163 local_irq_restore(flags);
3164
3347fa09
TH
3165 /*
3166 * This allows canceling during early boot. We know that @work
3167 * isn't executing.
3168 */
3169 if (wq_online)
d6e89786 3170 __flush_work(work, true);
3347fa09 3171
7a22ad75 3172 clear_work_data(work);
8603e1b3
TH
3173
3174 /*
3175 * Paired with prepare_to_wait() above so that either
3176 * waitqueue_active() is visible here or !work_is_canceling() is
3177 * visible there.
3178 */
3179 smp_mb();
3180 if (waitqueue_active(&cancel_waitq))
3181 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3182
1f1f642e
ON
3183 return ret;
3184}
3185
6e84d644 3186/**
401a8d04
TH
3187 * cancel_work_sync - cancel a work and wait for it to finish
3188 * @work: the work to cancel
6e84d644 3189 *
401a8d04
TH
3190 * Cancel @work and wait for its execution to finish. This function
3191 * can be used even if the work re-queues itself or migrates to
3192 * another workqueue. On return from this function, @work is
3193 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3194 *
401a8d04
TH
3195 * cancel_work_sync(&delayed_work->work) must not be used for
3196 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3197 *
401a8d04 3198 * The caller must ensure that the workqueue on which @work was last
6e84d644 3199 * queued can't be destroyed before this function returns.
401a8d04 3200 *
d185af30 3201 * Return:
401a8d04 3202 * %true if @work was pending, %false otherwise.
6e84d644 3203 */
401a8d04 3204bool cancel_work_sync(struct work_struct *work)
6e84d644 3205{
36e227d2 3206 return __cancel_work_timer(work, false);
b89deed3 3207}
28e53bdd 3208EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3209
6e84d644 3210/**
401a8d04
TH
3211 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3212 * @dwork: the delayed work to flush
6e84d644 3213 *
401a8d04
TH
3214 * Delayed timer is cancelled and the pending work is queued for
3215 * immediate execution. Like flush_work(), this function only
3216 * considers the last queueing instance of @dwork.
1f1f642e 3217 *
d185af30 3218 * Return:
401a8d04
TH
3219 * %true if flush_work() waited for the work to finish execution,
3220 * %false if it was already idle.
6e84d644 3221 */
401a8d04
TH
3222bool flush_delayed_work(struct delayed_work *dwork)
3223{
8930caba 3224 local_irq_disable();
401a8d04 3225 if (del_timer_sync(&dwork->timer))
60c057bc 3226 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3227 local_irq_enable();
401a8d04
TH
3228 return flush_work(&dwork->work);
3229}
3230EXPORT_SYMBOL(flush_delayed_work);
3231
05f0fe6b
TH
3232/**
3233 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3234 * @rwork: the rcu work to flush
3235 *
3236 * Return:
3237 * %true if flush_rcu_work() waited for the work to finish execution,
3238 * %false if it was already idle.
3239 */
3240bool flush_rcu_work(struct rcu_work *rwork)
3241{
3242 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3243 rcu_barrier();
3244 flush_work(&rwork->work);
3245 return true;
3246 } else {
3247 return flush_work(&rwork->work);
3248 }
3249}
3250EXPORT_SYMBOL(flush_rcu_work);
3251
f72b8792
JA
3252static bool __cancel_work(struct work_struct *work, bool is_dwork)
3253{
3254 unsigned long flags;
3255 int ret;
3256
3257 do {
3258 ret = try_to_grab_pending(work, is_dwork, &flags);
3259 } while (unlikely(ret == -EAGAIN));
3260
3261 if (unlikely(ret < 0))
3262 return false;
3263
3264 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3265 local_irq_restore(flags);
3266 return ret;
3267}
3268
09383498 3269/**
57b30ae7
TH
3270 * cancel_delayed_work - cancel a delayed work
3271 * @dwork: delayed_work to cancel
09383498 3272 *
d185af30
YB
3273 * Kill off a pending delayed_work.
3274 *
3275 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3276 * pending.
3277 *
3278 * Note:
3279 * The work callback function may still be running on return, unless
3280 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3281 * use cancel_delayed_work_sync() to wait on it.
09383498 3282 *
57b30ae7 3283 * This function is safe to call from any context including IRQ handler.
09383498 3284 */
57b30ae7 3285bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3286{
f72b8792 3287 return __cancel_work(&dwork->work, true);
09383498 3288}
57b30ae7 3289EXPORT_SYMBOL(cancel_delayed_work);
09383498 3290
401a8d04
TH
3291/**
3292 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3293 * @dwork: the delayed work cancel
3294 *
3295 * This is cancel_work_sync() for delayed works.
3296 *
d185af30 3297 * Return:
401a8d04
TH
3298 * %true if @dwork was pending, %false otherwise.
3299 */
3300bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3301{
36e227d2 3302 return __cancel_work_timer(&dwork->work, true);
6e84d644 3303}
f5a421a4 3304EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3305
b6136773 3306/**
31ddd871 3307 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3308 * @func: the function to call
b6136773 3309 *
31ddd871
TH
3310 * schedule_on_each_cpu() executes @func on each online CPU using the
3311 * system workqueue and blocks until all CPUs have completed.
b6136773 3312 * schedule_on_each_cpu() is very slow.
31ddd871 3313 *
d185af30 3314 * Return:
31ddd871 3315 * 0 on success, -errno on failure.
b6136773 3316 */
65f27f38 3317int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3318{
3319 int cpu;
38f51568 3320 struct work_struct __percpu *works;
15316ba8 3321
b6136773
AM
3322 works = alloc_percpu(struct work_struct);
3323 if (!works)
15316ba8 3324 return -ENOMEM;
b6136773 3325
ffd8bea8 3326 cpus_read_lock();
93981800 3327
15316ba8 3328 for_each_online_cpu(cpu) {
9bfb1839
IM
3329 struct work_struct *work = per_cpu_ptr(works, cpu);
3330
3331 INIT_WORK(work, func);
b71ab8c2 3332 schedule_work_on(cpu, work);
65a64464 3333 }
93981800
TH
3334
3335 for_each_online_cpu(cpu)
3336 flush_work(per_cpu_ptr(works, cpu));
3337
ffd8bea8 3338 cpus_read_unlock();
b6136773 3339 free_percpu(works);
15316ba8
CL
3340 return 0;
3341}
3342
1fa44eca
JB
3343/**
3344 * execute_in_process_context - reliably execute the routine with user context
3345 * @fn: the function to execute
1fa44eca
JB
3346 * @ew: guaranteed storage for the execute work structure (must
3347 * be available when the work executes)
3348 *
3349 * Executes the function immediately if process context is available,
3350 * otherwise schedules the function for delayed execution.
3351 *
d185af30 3352 * Return: 0 - function was executed
1fa44eca
JB
3353 * 1 - function was scheduled for execution
3354 */
65f27f38 3355int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3356{
3357 if (!in_interrupt()) {
65f27f38 3358 fn(&ew->work);
1fa44eca
JB
3359 return 0;
3360 }
3361
65f27f38 3362 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3363 schedule_work(&ew->work);
3364
3365 return 1;
3366}
3367EXPORT_SYMBOL_GPL(execute_in_process_context);
3368
6ba94429
FW
3369/**
3370 * free_workqueue_attrs - free a workqueue_attrs
3371 * @attrs: workqueue_attrs to free
226223ab 3372 *
6ba94429 3373 * Undo alloc_workqueue_attrs().
226223ab 3374 */
513c98d0 3375void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3376{
6ba94429
FW
3377 if (attrs) {
3378 free_cpumask_var(attrs->cpumask);
3379 kfree(attrs);
3380 }
226223ab
TH
3381}
3382
6ba94429
FW
3383/**
3384 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3385 *
3386 * Allocate a new workqueue_attrs, initialize with default settings and
3387 * return it.
3388 *
3389 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3390 */
513c98d0 3391struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3392{
6ba94429 3393 struct workqueue_attrs *attrs;
226223ab 3394
be69d00d 3395 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3396 if (!attrs)
3397 goto fail;
be69d00d 3398 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3399 goto fail;
3400
3401 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3402 return attrs;
3403fail:
3404 free_workqueue_attrs(attrs);
3405 return NULL;
226223ab
TH
3406}
3407
6ba94429
FW
3408static void copy_workqueue_attrs(struct workqueue_attrs *to,
3409 const struct workqueue_attrs *from)
226223ab 3410{
6ba94429
FW
3411 to->nice = from->nice;
3412 cpumask_copy(to->cpumask, from->cpumask);
3413 /*
3414 * Unlike hash and equality test, this function doesn't ignore
3415 * ->no_numa as it is used for both pool and wq attrs. Instead,
3416 * get_unbound_pool() explicitly clears ->no_numa after copying.
3417 */
3418 to->no_numa = from->no_numa;
226223ab
TH
3419}
3420
6ba94429
FW
3421/* hash value of the content of @attr */
3422static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3423{
6ba94429 3424 u32 hash = 0;
226223ab 3425
6ba94429
FW
3426 hash = jhash_1word(attrs->nice, hash);
3427 hash = jhash(cpumask_bits(attrs->cpumask),
3428 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3429 return hash;
226223ab 3430}
226223ab 3431
6ba94429
FW
3432/* content equality test */
3433static bool wqattrs_equal(const struct workqueue_attrs *a,
3434 const struct workqueue_attrs *b)
226223ab 3435{
6ba94429
FW
3436 if (a->nice != b->nice)
3437 return false;
3438 if (!cpumask_equal(a->cpumask, b->cpumask))
3439 return false;
3440 return true;
226223ab
TH
3441}
3442
6ba94429
FW
3443/**
3444 * init_worker_pool - initialize a newly zalloc'd worker_pool
3445 * @pool: worker_pool to initialize
3446 *
402dd89d 3447 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3448 *
3449 * Return: 0 on success, -errno on failure. Even on failure, all fields
3450 * inside @pool proper are initialized and put_unbound_pool() can be called
3451 * on @pool safely to release it.
3452 */
3453static int init_worker_pool(struct worker_pool *pool)
226223ab 3454{
a9b8a985 3455 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3456 pool->id = -1;
3457 pool->cpu = -1;
3458 pool->node = NUMA_NO_NODE;
3459 pool->flags |= POOL_DISASSOCIATED;
82607adc 3460 pool->watchdog_ts = jiffies;
6ba94429
FW
3461 INIT_LIST_HEAD(&pool->worklist);
3462 INIT_LIST_HEAD(&pool->idle_list);
3463 hash_init(pool->busy_hash);
226223ab 3464
32a6c723 3465 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3466
32a6c723 3467 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3468
6ba94429 3469 INIT_LIST_HEAD(&pool->workers);
226223ab 3470
6ba94429
FW
3471 ida_init(&pool->worker_ida);
3472 INIT_HLIST_NODE(&pool->hash_node);
3473 pool->refcnt = 1;
226223ab 3474
6ba94429 3475 /* shouldn't fail above this point */
be69d00d 3476 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3477 if (!pool->attrs)
3478 return -ENOMEM;
3479 return 0;
226223ab
TH
3480}
3481
669de8bd
BVA
3482#ifdef CONFIG_LOCKDEP
3483static void wq_init_lockdep(struct workqueue_struct *wq)
3484{
3485 char *lock_name;
3486
3487 lockdep_register_key(&wq->key);
3488 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3489 if (!lock_name)
3490 lock_name = wq->name;
69a106c0
QC
3491
3492 wq->lock_name = lock_name;
669de8bd
BVA
3493 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3494}
3495
3496static void wq_unregister_lockdep(struct workqueue_struct *wq)
3497{
3498 lockdep_unregister_key(&wq->key);
3499}
3500
3501static void wq_free_lockdep(struct workqueue_struct *wq)
3502{
3503 if (wq->lock_name != wq->name)
3504 kfree(wq->lock_name);
3505}
3506#else
3507static void wq_init_lockdep(struct workqueue_struct *wq)
3508{
3509}
3510
3511static void wq_unregister_lockdep(struct workqueue_struct *wq)
3512{
3513}
3514
3515static void wq_free_lockdep(struct workqueue_struct *wq)
3516{
3517}
3518#endif
3519
6ba94429 3520static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3521{
6ba94429
FW
3522 struct workqueue_struct *wq =
3523 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3524
669de8bd
BVA
3525 wq_free_lockdep(wq);
3526
6ba94429
FW
3527 if (!(wq->flags & WQ_UNBOUND))
3528 free_percpu(wq->cpu_pwqs);
226223ab 3529 else
6ba94429 3530 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3531
6ba94429 3532 kfree(wq);
226223ab
TH
3533}
3534
6ba94429 3535static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3536{
6ba94429 3537 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3538
6ba94429
FW
3539 ida_destroy(&pool->worker_ida);
3540 free_workqueue_attrs(pool->attrs);
3541 kfree(pool);
226223ab
TH
3542}
3543
d8bb65ab
SAS
3544/* This returns with the lock held on success (pool manager is inactive). */
3545static bool wq_manager_inactive(struct worker_pool *pool)
3546{
a9b8a985 3547 raw_spin_lock_irq(&pool->lock);
d8bb65ab
SAS
3548
3549 if (pool->flags & POOL_MANAGER_ACTIVE) {
a9b8a985 3550 raw_spin_unlock_irq(&pool->lock);
d8bb65ab
SAS
3551 return false;
3552 }
3553 return true;
3554}
3555
6ba94429
FW
3556/**
3557 * put_unbound_pool - put a worker_pool
3558 * @pool: worker_pool to put
3559 *
24acfb71 3560 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3561 * safe manner. get_unbound_pool() calls this function on its failure path
3562 * and this function should be able to release pools which went through,
3563 * successfully or not, init_worker_pool().
3564 *
3565 * Should be called with wq_pool_mutex held.
3566 */
3567static void put_unbound_pool(struct worker_pool *pool)
226223ab 3568{
6ba94429
FW
3569 DECLARE_COMPLETION_ONSTACK(detach_completion);
3570 struct worker *worker;
226223ab 3571
6ba94429 3572 lockdep_assert_held(&wq_pool_mutex);
226223ab 3573
6ba94429
FW
3574 if (--pool->refcnt)
3575 return;
226223ab 3576
6ba94429
FW
3577 /* sanity checks */
3578 if (WARN_ON(!(pool->cpu < 0)) ||
3579 WARN_ON(!list_empty(&pool->worklist)))
3580 return;
226223ab 3581
6ba94429
FW
3582 /* release id and unhash */
3583 if (pool->id >= 0)
3584 idr_remove(&worker_pool_idr, pool->id);
3585 hash_del(&pool->hash_node);
d55262c4 3586
6ba94429 3587 /*
692b4825
TH
3588 * Become the manager and destroy all workers. This prevents
3589 * @pool's workers from blocking on attach_mutex. We're the last
3590 * manager and @pool gets freed with the flag set.
d8bb65ab
SAS
3591 * Because of how wq_manager_inactive() works, we will hold the
3592 * spinlock after a successful wait.
6ba94429 3593 */
d8bb65ab
SAS
3594 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3595 TASK_UNINTERRUPTIBLE);
692b4825
TH
3596 pool->flags |= POOL_MANAGER_ACTIVE;
3597
6ba94429
FW
3598 while ((worker = first_idle_worker(pool)))
3599 destroy_worker(worker);
3600 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3601 raw_spin_unlock_irq(&pool->lock);
d55262c4 3602
1258fae7 3603 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3604 if (!list_empty(&pool->workers))
3605 pool->detach_completion = &detach_completion;
1258fae7 3606 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3607
6ba94429
FW
3608 if (pool->detach_completion)
3609 wait_for_completion(pool->detach_completion);
226223ab 3610
6ba94429
FW
3611 /* shut down the timers */
3612 del_timer_sync(&pool->idle_timer);
3613 del_timer_sync(&pool->mayday_timer);
226223ab 3614
24acfb71 3615 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3616 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3617}
3618
3619/**
6ba94429
FW
3620 * get_unbound_pool - get a worker_pool with the specified attributes
3621 * @attrs: the attributes of the worker_pool to get
226223ab 3622 *
6ba94429
FW
3623 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3624 * reference count and return it. If there already is a matching
3625 * worker_pool, it will be used; otherwise, this function attempts to
3626 * create a new one.
226223ab 3627 *
6ba94429 3628 * Should be called with wq_pool_mutex held.
226223ab 3629 *
6ba94429
FW
3630 * Return: On success, a worker_pool with the same attributes as @attrs.
3631 * On failure, %NULL.
226223ab 3632 */
6ba94429 3633static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3634{
6ba94429
FW
3635 u32 hash = wqattrs_hash(attrs);
3636 struct worker_pool *pool;
3637 int node;
e2273584 3638 int target_node = NUMA_NO_NODE;
226223ab 3639
6ba94429 3640 lockdep_assert_held(&wq_pool_mutex);
226223ab 3641
6ba94429
FW
3642 /* do we already have a matching pool? */
3643 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3644 if (wqattrs_equal(pool->attrs, attrs)) {
3645 pool->refcnt++;
3646 return pool;
3647 }
3648 }
226223ab 3649
e2273584
XP
3650 /* if cpumask is contained inside a NUMA node, we belong to that node */
3651 if (wq_numa_enabled) {
3652 for_each_node(node) {
3653 if (cpumask_subset(attrs->cpumask,
3654 wq_numa_possible_cpumask[node])) {
3655 target_node = node;
3656 break;
3657 }
3658 }
3659 }
3660
6ba94429 3661 /* nope, create a new one */
e2273584 3662 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3663 if (!pool || init_worker_pool(pool) < 0)
3664 goto fail;
3665
3666 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3667 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3668 pool->node = target_node;
226223ab
TH
3669
3670 /*
6ba94429
FW
3671 * no_numa isn't a worker_pool attribute, always clear it. See
3672 * 'struct workqueue_attrs' comments for detail.
226223ab 3673 */
6ba94429 3674 pool->attrs->no_numa = false;
226223ab 3675
6ba94429
FW
3676 if (worker_pool_assign_id(pool) < 0)
3677 goto fail;
226223ab 3678
6ba94429 3679 /* create and start the initial worker */
3347fa09 3680 if (wq_online && !create_worker(pool))
6ba94429 3681 goto fail;
226223ab 3682
6ba94429
FW
3683 /* install */
3684 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3685
6ba94429
FW
3686 return pool;
3687fail:
3688 if (pool)
3689 put_unbound_pool(pool);
3690 return NULL;
226223ab 3691}
226223ab 3692
6ba94429 3693static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3694{
6ba94429
FW
3695 kmem_cache_free(pwq_cache,
3696 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3697}
3698
6ba94429
FW
3699/*
3700 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3701 * and needs to be destroyed.
7a4e344c 3702 */
6ba94429 3703static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3704{
6ba94429
FW
3705 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3706 unbound_release_work);
3707 struct workqueue_struct *wq = pwq->wq;
3708 struct worker_pool *pool = pwq->pool;
b42b0bdd 3709 bool is_last = false;
7a4e344c 3710
b42b0bdd
YY
3711 /*
3712 * when @pwq is not linked, it doesn't hold any reference to the
3713 * @wq, and @wq is invalid to access.
3714 */
3715 if (!list_empty(&pwq->pwqs_node)) {
3716 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3717 return;
7a4e344c 3718
b42b0bdd
YY
3719 mutex_lock(&wq->mutex);
3720 list_del_rcu(&pwq->pwqs_node);
3721 is_last = list_empty(&wq->pwqs);
3722 mutex_unlock(&wq->mutex);
3723 }
6ba94429
FW
3724
3725 mutex_lock(&wq_pool_mutex);
3726 put_unbound_pool(pool);
3727 mutex_unlock(&wq_pool_mutex);
3728
25b00775 3729 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3730
2865a8fb 3731 /*
6ba94429
FW
3732 * If we're the last pwq going away, @wq is already dead and no one
3733 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3734 */
669de8bd
BVA
3735 if (is_last) {
3736 wq_unregister_lockdep(wq);
25b00775 3737 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3738 }
29c91e99
TH
3739}
3740
7a4e344c 3741/**
6ba94429
FW
3742 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3743 * @pwq: target pool_workqueue
d185af30 3744 *
6ba94429 3745 * If @pwq isn't freezing, set @pwq->max_active to the associated
f97a4a1a 3746 * workqueue's saved_max_active and activate inactive work items
6ba94429 3747 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3748 */
6ba94429 3749static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3750{
6ba94429
FW
3751 struct workqueue_struct *wq = pwq->wq;
3752 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3753 unsigned long flags;
4e1a1f9a 3754
6ba94429
FW
3755 /* for @wq->saved_max_active */
3756 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3757
6ba94429
FW
3758 /* fast exit for non-freezable wqs */
3759 if (!freezable && pwq->max_active == wq->saved_max_active)
3760 return;
7a4e344c 3761
3347fa09 3762 /* this function can be called during early boot w/ irq disabled */
a9b8a985 3763 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3764
6ba94429
FW
3765 /*
3766 * During [un]freezing, the caller is responsible for ensuring that
3767 * this function is called at least once after @workqueue_freezing
3768 * is updated and visible.
3769 */
3770 if (!freezable || !workqueue_freezing) {
01341fbd
YY
3771 bool kick = false;
3772
6ba94429 3773 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3774
f97a4a1a 3775 while (!list_empty(&pwq->inactive_works) &&
01341fbd 3776 pwq->nr_active < pwq->max_active) {
f97a4a1a 3777 pwq_activate_first_inactive(pwq);
01341fbd
YY
3778 kick = true;
3779 }
e2dca7ad 3780
6ba94429
FW
3781 /*
3782 * Need to kick a worker after thawed or an unbound wq's
01341fbd
YY
3783 * max_active is bumped. In realtime scenarios, always kicking a
3784 * worker will cause interference on the isolated cpu cores, so
3785 * let's kick iff work items were activated.
6ba94429 3786 */
01341fbd
YY
3787 if (kick)
3788 wake_up_worker(pwq->pool);
6ba94429
FW
3789 } else {
3790 pwq->max_active = 0;
3791 }
e2dca7ad 3792
a9b8a985 3793 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3794}
3795
67dc8325 3796/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
3797static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3798 struct worker_pool *pool)
29c91e99 3799{
6ba94429 3800 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3801
6ba94429
FW
3802 memset(pwq, 0, sizeof(*pwq));
3803
3804 pwq->pool = pool;
3805 pwq->wq = wq;
3806 pwq->flush_color = -1;
3807 pwq->refcnt = 1;
f97a4a1a 3808 INIT_LIST_HEAD(&pwq->inactive_works);
6ba94429
FW
3809 INIT_LIST_HEAD(&pwq->pwqs_node);
3810 INIT_LIST_HEAD(&pwq->mayday_node);
3811 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3812}
3813
6ba94429
FW
3814/* sync @pwq with the current state of its associated wq and link it */
3815static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3816{
6ba94429 3817 struct workqueue_struct *wq = pwq->wq;
29c91e99 3818
6ba94429 3819 lockdep_assert_held(&wq->mutex);
a892cacc 3820
6ba94429
FW
3821 /* may be called multiple times, ignore if already linked */
3822 if (!list_empty(&pwq->pwqs_node))
29c91e99 3823 return;
29c91e99 3824
6ba94429
FW
3825 /* set the matching work_color */
3826 pwq->work_color = wq->work_color;
29c91e99 3827
6ba94429
FW
3828 /* sync max_active to the current setting */
3829 pwq_adjust_max_active(pwq);
29c91e99 3830
6ba94429
FW
3831 /* link in @pwq */
3832 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833}
29c91e99 3834
6ba94429
FW
3835/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3836static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837 const struct workqueue_attrs *attrs)
3838{
3839 struct worker_pool *pool;
3840 struct pool_workqueue *pwq;
60f5a4bc 3841
6ba94429 3842 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3843
6ba94429
FW
3844 pool = get_unbound_pool(attrs);
3845 if (!pool)
3846 return NULL;
60f5a4bc 3847
6ba94429
FW
3848 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849 if (!pwq) {
3850 put_unbound_pool(pool);
3851 return NULL;
3852 }
29c91e99 3853
6ba94429
FW
3854 init_pwq(pwq, wq, pool);
3855 return pwq;
3856}
29c91e99 3857
29c91e99 3858/**
30186c6f 3859 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3860 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3861 * @node: the target NUMA node
3862 * @cpu_going_down: if >= 0, the CPU to consider as offline
3863 * @cpumask: outarg, the resulting cpumask
29c91e99 3864 *
6ba94429
FW
3865 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3866 * @cpu_going_down is >= 0, that cpu is considered offline during
3867 * calculation. The result is stored in @cpumask.
a892cacc 3868 *
6ba94429
FW
3869 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3870 * enabled and @node has online CPUs requested by @attrs, the returned
3871 * cpumask is the intersection of the possible CPUs of @node and
3872 * @attrs->cpumask.
d185af30 3873 *
6ba94429
FW
3874 * The caller is responsible for ensuring that the cpumask of @node stays
3875 * stable.
3876 *
3877 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3878 * %false if equal.
29c91e99 3879 */
6ba94429
FW
3880static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3881 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3882{
6ba94429
FW
3883 if (!wq_numa_enabled || attrs->no_numa)
3884 goto use_dfl;
29c91e99 3885
6ba94429
FW
3886 /* does @node have any online CPUs @attrs wants? */
3887 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3888 if (cpu_going_down >= 0)
3889 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3890
6ba94429
FW
3891 if (cpumask_empty(cpumask))
3892 goto use_dfl;
4c16bd32
TH
3893
3894 /* yeap, return possible CPUs in @node that @attrs wants */
3895 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3896
3897 if (cpumask_empty(cpumask)) {
3898 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3899 "possible intersect\n");
3900 return false;
3901 }
3902
4c16bd32
TH
3903 return !cpumask_equal(cpumask, attrs->cpumask);
3904
3905use_dfl:
3906 cpumask_copy(cpumask, attrs->cpumask);
3907 return false;
3908}
3909
1befcf30
TH
3910/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3911static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3912 int node,
3913 struct pool_workqueue *pwq)
3914{
3915 struct pool_workqueue *old_pwq;
3916
5b95e1af 3917 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3918 lockdep_assert_held(&wq->mutex);
3919
3920 /* link_pwq() can handle duplicate calls */
3921 link_pwq(pwq);
3922
3923 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3924 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3925 return old_pwq;
3926}
3927
2d5f0764
LJ
3928/* context to store the prepared attrs & pwqs before applying */
3929struct apply_wqattrs_ctx {
3930 struct workqueue_struct *wq; /* target workqueue */
3931 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3932 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3933 struct pool_workqueue *dfl_pwq;
3934 struct pool_workqueue *pwq_tbl[];
3935};
3936
3937/* free the resources after success or abort */
3938static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3939{
3940 if (ctx) {
3941 int node;
3942
3943 for_each_node(node)
3944 put_pwq_unlocked(ctx->pwq_tbl[node]);
3945 put_pwq_unlocked(ctx->dfl_pwq);
3946
3947 free_workqueue_attrs(ctx->attrs);
3948
3949 kfree(ctx);
3950 }
3951}
3952
3953/* allocate the attrs and pwqs for later installation */
3954static struct apply_wqattrs_ctx *
3955apply_wqattrs_prepare(struct workqueue_struct *wq,
3956 const struct workqueue_attrs *attrs)
9e8cd2f5 3957{
2d5f0764 3958 struct apply_wqattrs_ctx *ctx;
4c16bd32 3959 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3960 int node;
9e8cd2f5 3961
2d5f0764 3962 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3963
acafe7e3 3964 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3965
be69d00d
TG
3966 new_attrs = alloc_workqueue_attrs();
3967 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3968 if (!ctx || !new_attrs || !tmp_attrs)
3969 goto out_free;
13e2e556 3970
042f7df1
LJ
3971 /*
3972 * Calculate the attrs of the default pwq.
3973 * If the user configured cpumask doesn't overlap with the
3974 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3975 */
13e2e556 3976 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3977 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3978 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3979 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3980
4c16bd32
TH
3981 /*
3982 * We may create multiple pwqs with differing cpumasks. Make a
3983 * copy of @new_attrs which will be modified and used to obtain
3984 * pools.
3985 */
3986 copy_workqueue_attrs(tmp_attrs, new_attrs);
3987
4c16bd32
TH
3988 /*
3989 * If something goes wrong during CPU up/down, we'll fall back to
3990 * the default pwq covering whole @attrs->cpumask. Always create
3991 * it even if we don't use it immediately.
3992 */
2d5f0764
LJ
3993 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994 if (!ctx->dfl_pwq)
3995 goto out_free;
4c16bd32
TH
3996
3997 for_each_node(node) {
042f7df1 3998 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3999 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000 if (!ctx->pwq_tbl[node])
4001 goto out_free;
4c16bd32 4002 } else {
2d5f0764
LJ
4003 ctx->dfl_pwq->refcnt++;
4004 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
4005 }
4006 }
4007
042f7df1
LJ
4008 /* save the user configured attrs and sanitize it. */
4009 copy_workqueue_attrs(new_attrs, attrs);
4010 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 4011 ctx->attrs = new_attrs;
042f7df1 4012
2d5f0764
LJ
4013 ctx->wq = wq;
4014 free_workqueue_attrs(tmp_attrs);
4015 return ctx;
4016
4017out_free:
4018 free_workqueue_attrs(tmp_attrs);
4019 free_workqueue_attrs(new_attrs);
4020 apply_wqattrs_cleanup(ctx);
4021 return NULL;
4022}
4023
4024/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4025static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4026{
4027 int node;
9e8cd2f5 4028
4c16bd32 4029 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4030 mutex_lock(&ctx->wq->mutex);
a892cacc 4031
2d5f0764 4032 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
4033
4034 /* save the previous pwq and install the new one */
f147f29e 4035 for_each_node(node)
2d5f0764
LJ
4036 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4037 ctx->pwq_tbl[node]);
4c16bd32
TH
4038
4039 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
4040 link_pwq(ctx->dfl_pwq);
4041 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 4042
2d5f0764
LJ
4043 mutex_unlock(&ctx->wq->mutex);
4044}
9e8cd2f5 4045
a0111cf6
LJ
4046static void apply_wqattrs_lock(void)
4047{
4048 /* CPUs should stay stable across pwq creations and installations */
ffd8bea8 4049 cpus_read_lock();
a0111cf6
LJ
4050 mutex_lock(&wq_pool_mutex);
4051}
4052
4053static void apply_wqattrs_unlock(void)
4054{
4055 mutex_unlock(&wq_pool_mutex);
ffd8bea8 4056 cpus_read_unlock();
a0111cf6
LJ
4057}
4058
4059static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4060 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4061{
4062 struct apply_wqattrs_ctx *ctx;
4c16bd32 4063
2d5f0764
LJ
4064 /* only unbound workqueues can change attributes */
4065 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4066 return -EINVAL;
13e2e556 4067
2d5f0764 4068 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4069 if (!list_empty(&wq->pwqs)) {
4070 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4071 return -EINVAL;
4072
4073 wq->flags &= ~__WQ_ORDERED;
4074 }
2d5f0764 4075
2d5f0764 4076 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4077 if (!ctx)
4078 return -ENOMEM;
2d5f0764
LJ
4079
4080 /* the ctx has been prepared successfully, let's commit it */
6201171e 4081 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4082 apply_wqattrs_cleanup(ctx);
4083
6201171e 4084 return 0;
9e8cd2f5
TH
4085}
4086
a0111cf6
LJ
4087/**
4088 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4089 * @wq: the target workqueue
4090 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4091 *
4092 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4093 * machines, this function maps a separate pwq to each NUMA node with
4094 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4095 * NUMA node it was issued on. Older pwqs are released as in-flight work
4096 * items finish. Note that a work item which repeatedly requeues itself
4097 * back-to-back will stay on its current pwq.
4098 *
4099 * Performs GFP_KERNEL allocations.
4100 *
ffd8bea8 4101 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4102 *
a0111cf6
LJ
4103 * Return: 0 on success and -errno on failure.
4104 */
513c98d0 4105int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4106 const struct workqueue_attrs *attrs)
4107{
4108 int ret;
4109
509b3204
DJ
4110 lockdep_assert_cpus_held();
4111
4112 mutex_lock(&wq_pool_mutex);
a0111cf6 4113 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4114 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4115
4116 return ret;
4117}
4118
4c16bd32
TH
4119/**
4120 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4121 * @wq: the target workqueue
4122 * @cpu: the CPU coming up or going down
4123 * @online: whether @cpu is coming up or going down
4124 *
4125 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4126 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4127 * @wq accordingly.
4128 *
4129 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4130 * falls back to @wq->dfl_pwq which may not be optimal but is always
4131 * correct.
4132 *
4133 * Note that when the last allowed CPU of a NUMA node goes offline for a
4134 * workqueue with a cpumask spanning multiple nodes, the workers which were
4135 * already executing the work items for the workqueue will lose their CPU
4136 * affinity and may execute on any CPU. This is similar to how per-cpu
4137 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4138 * affinity, it's the user's responsibility to flush the work item from
4139 * CPU_DOWN_PREPARE.
4140 */
4141static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4142 bool online)
4143{
4144 int node = cpu_to_node(cpu);
4145 int cpu_off = online ? -1 : cpu;
4146 struct pool_workqueue *old_pwq = NULL, *pwq;
4147 struct workqueue_attrs *target_attrs;
4148 cpumask_t *cpumask;
4149
4150 lockdep_assert_held(&wq_pool_mutex);
4151
f7142ed4
LJ
4152 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4153 wq->unbound_attrs->no_numa)
4c16bd32
TH
4154 return;
4155
4156 /*
4157 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4158 * Let's use a preallocated one. The following buf is protected by
4159 * CPU hotplug exclusion.
4160 */
4161 target_attrs = wq_update_unbound_numa_attrs_buf;
4162 cpumask = target_attrs->cpumask;
4163
4c16bd32
TH
4164 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4165 pwq = unbound_pwq_by_node(wq, node);
4166
4167 /*
4168 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4169 * different from the default pwq's, we need to compare it to @pwq's
4170 * and create a new one if they don't match. If the target cpumask
4171 * equals the default pwq's, the default pwq should be used.
4c16bd32 4172 */
042f7df1 4173 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4174 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4175 return;
4c16bd32 4176 } else {
534a3fbb 4177 goto use_dfl_pwq;
4c16bd32
TH
4178 }
4179
4c16bd32
TH
4180 /* create a new pwq */
4181 pwq = alloc_unbound_pwq(wq, target_attrs);
4182 if (!pwq) {
2d916033
FF
4183 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4184 wq->name);
77f300b1 4185 goto use_dfl_pwq;
4c16bd32
TH
4186 }
4187
f7142ed4 4188 /* Install the new pwq. */
4c16bd32
TH
4189 mutex_lock(&wq->mutex);
4190 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4191 goto out_unlock;
4192
4193use_dfl_pwq:
f7142ed4 4194 mutex_lock(&wq->mutex);
a9b8a985 4195 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4196 get_pwq(wq->dfl_pwq);
a9b8a985 4197 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32
TH
4198 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4199out_unlock:
4200 mutex_unlock(&wq->mutex);
4201 put_pwq_unlocked(old_pwq);
4202}
4203
30cdf249 4204static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4205{
49e3cf44 4206 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4207 int cpu, ret;
30cdf249
TH
4208
4209 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4210 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4211 if (!wq->cpu_pwqs)
30cdf249
TH
4212 return -ENOMEM;
4213
4214 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4215 struct pool_workqueue *pwq =
4216 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4217 struct worker_pool *cpu_pools =
f02ae73a 4218 per_cpu(cpu_worker_pools, cpu);
f3421797 4219
f147f29e
TH
4220 init_pwq(pwq, wq, &cpu_pools[highpri]);
4221
4222 mutex_lock(&wq->mutex);
1befcf30 4223 link_pwq(pwq);
f147f29e 4224 mutex_unlock(&wq->mutex);
30cdf249 4225 }
9e8cd2f5 4226 return 0;
509b3204
DJ
4227 }
4228
ffd8bea8 4229 cpus_read_lock();
509b3204 4230 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4231 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4232 /* there should only be single pwq for ordering guarantee */
4233 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4234 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4235 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4236 } else {
509b3204 4237 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4238 }
ffd8bea8 4239 cpus_read_unlock();
509b3204
DJ
4240
4241 return ret;
0f900049
TH
4242}
4243
f3421797
TH
4244static int wq_clamp_max_active(int max_active, unsigned int flags,
4245 const char *name)
b71ab8c2 4246{
f3421797
TH
4247 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4248
4249 if (max_active < 1 || max_active > lim)
044c782c
VI
4250 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4251 max_active, name, 1, lim);
b71ab8c2 4252
f3421797 4253 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4254}
4255
983c7515
TH
4256/*
4257 * Workqueues which may be used during memory reclaim should have a rescuer
4258 * to guarantee forward progress.
4259 */
4260static int init_rescuer(struct workqueue_struct *wq)
4261{
4262 struct worker *rescuer;
b92b36ea 4263 int ret;
983c7515
TH
4264
4265 if (!(wq->flags & WQ_MEM_RECLAIM))
4266 return 0;
4267
4268 rescuer = alloc_worker(NUMA_NO_NODE);
4269 if (!rescuer)
4270 return -ENOMEM;
4271
4272 rescuer->rescue_wq = wq;
4273 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4274 if (IS_ERR(rescuer->task)) {
b92b36ea 4275 ret = PTR_ERR(rescuer->task);
983c7515 4276 kfree(rescuer);
b92b36ea 4277 return ret;
983c7515
TH
4278 }
4279
4280 wq->rescuer = rescuer;
4281 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4282 wake_up_process(rescuer->task);
4283
4284 return 0;
4285}
4286
a2775bbc 4287__printf(1, 4)
669de8bd
BVA
4288struct workqueue_struct *alloc_workqueue(const char *fmt,
4289 unsigned int flags,
4290 int max_active, ...)
1da177e4 4291{
df2d5ae4 4292 size_t tbl_size = 0;
ecf6881f 4293 va_list args;
1da177e4 4294 struct workqueue_struct *wq;
49e3cf44 4295 struct pool_workqueue *pwq;
b196be89 4296
5c0338c6
TH
4297 /*
4298 * Unbound && max_active == 1 used to imply ordered, which is no
4299 * longer the case on NUMA machines due to per-node pools. While
4300 * alloc_ordered_workqueue() is the right way to create an ordered
4301 * workqueue, keep the previous behavior to avoid subtle breakages
4302 * on NUMA.
4303 */
4304 if ((flags & WQ_UNBOUND) && max_active == 1)
4305 flags |= __WQ_ORDERED;
4306
cee22a15
VK
4307 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4308 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4309 flags |= WQ_UNBOUND;
4310
ecf6881f 4311 /* allocate wq and format name */
df2d5ae4 4312 if (flags & WQ_UNBOUND)
ddcb57e2 4313 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4314
4315 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4316 if (!wq)
d2c1d404 4317 return NULL;
b196be89 4318
6029a918 4319 if (flags & WQ_UNBOUND) {
be69d00d 4320 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4321 if (!wq->unbound_attrs)
4322 goto err_free_wq;
4323 }
4324
669de8bd 4325 va_start(args, max_active);
ecf6881f 4326 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4327 va_end(args);
1da177e4 4328
d320c038 4329 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4330 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4331
b196be89 4332 /* init wq */
97e37d7b 4333 wq->flags = flags;
a0a1a5fd 4334 wq->saved_max_active = max_active;
3c25a55d 4335 mutex_init(&wq->mutex);
112202d9 4336 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4337 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4338 INIT_LIST_HEAD(&wq->flusher_queue);
4339 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4340 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4341
669de8bd 4342 wq_init_lockdep(wq);
cce1a165 4343 INIT_LIST_HEAD(&wq->list);
3af24433 4344
30cdf249 4345 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4346 goto err_unreg_lockdep;
1537663f 4347
40c17f75 4348 if (wq_online && init_rescuer(wq) < 0)
983c7515 4349 goto err_destroy;
3af24433 4350
226223ab
TH
4351 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4352 goto err_destroy;
4353
a0a1a5fd 4354 /*
68e13a67
LJ
4355 * wq_pool_mutex protects global freeze state and workqueues list.
4356 * Grab it, adjust max_active and add the new @wq to workqueues
4357 * list.
a0a1a5fd 4358 */
68e13a67 4359 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4360
a357fc03 4361 mutex_lock(&wq->mutex);
699ce097
TH
4362 for_each_pwq(pwq, wq)
4363 pwq_adjust_max_active(pwq);
a357fc03 4364 mutex_unlock(&wq->mutex);
a0a1a5fd 4365
e2dca7ad 4366 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4367
68e13a67 4368 mutex_unlock(&wq_pool_mutex);
1537663f 4369
3af24433 4370 return wq;
d2c1d404 4371
82efcab3 4372err_unreg_lockdep:
009bb421
BVA
4373 wq_unregister_lockdep(wq);
4374 wq_free_lockdep(wq);
82efcab3 4375err_free_wq:
6029a918 4376 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4377 kfree(wq);
4378 return NULL;
4379err_destroy:
4380 destroy_workqueue(wq);
4690c4ab 4381 return NULL;
3af24433 4382}
669de8bd 4383EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4384
c29eb853
TH
4385static bool pwq_busy(struct pool_workqueue *pwq)
4386{
4387 int i;
4388
4389 for (i = 0; i < WORK_NR_COLORS; i++)
4390 if (pwq->nr_in_flight[i])
4391 return true;
4392
4393 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4394 return true;
f97a4a1a 4395 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
c29eb853
TH
4396 return true;
4397
4398 return false;
4399}
4400
3af24433
ON
4401/**
4402 * destroy_workqueue - safely terminate a workqueue
4403 * @wq: target workqueue
4404 *
4405 * Safely destroy a workqueue. All work currently pending will be done first.
4406 */
4407void destroy_workqueue(struct workqueue_struct *wq)
4408{
49e3cf44 4409 struct pool_workqueue *pwq;
4c16bd32 4410 int node;
3af24433 4411
def98c84
TH
4412 /*
4413 * Remove it from sysfs first so that sanity check failure doesn't
4414 * lead to sysfs name conflicts.
4415 */
4416 workqueue_sysfs_unregister(wq);
4417
9c5a2ba7
TH
4418 /* drain it before proceeding with destruction */
4419 drain_workqueue(wq);
c8efcc25 4420
def98c84
TH
4421 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4422 if (wq->rescuer) {
4423 struct worker *rescuer = wq->rescuer;
4424
4425 /* this prevents new queueing */
a9b8a985 4426 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4427 wq->rescuer = NULL;
a9b8a985 4428 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4429
4430 /* rescuer will empty maydays list before exiting */
4431 kthread_stop(rescuer->task);
8efe1223 4432 kfree(rescuer);
def98c84
TH
4433 }
4434
c29eb853
TH
4435 /*
4436 * Sanity checks - grab all the locks so that we wait for all
4437 * in-flight operations which may do put_pwq().
4438 */
4439 mutex_lock(&wq_pool_mutex);
b09f4fd3 4440 mutex_lock(&wq->mutex);
49e3cf44 4441 for_each_pwq(pwq, wq) {
a9b8a985 4442 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4443 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4444 pr_warn("%s: %s has the following busy pwq\n",
4445 __func__, wq->name);
c29eb853 4446 show_pwq(pwq);
a9b8a985 4447 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4448 mutex_unlock(&wq->mutex);
c29eb853 4449 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4450 show_workqueue_state();
6183c009 4451 return;
76af4d93 4452 }
a9b8a985 4453 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4454 }
b09f4fd3 4455 mutex_unlock(&wq->mutex);
6183c009 4456
a0a1a5fd
TH
4457 /*
4458 * wq list is used to freeze wq, remove from list after
4459 * flushing is complete in case freeze races us.
4460 */
e2dca7ad 4461 list_del_rcu(&wq->list);
68e13a67 4462 mutex_unlock(&wq_pool_mutex);
3af24433 4463
8864b4e5 4464 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4465 wq_unregister_lockdep(wq);
8864b4e5
TH
4466 /*
4467 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4468 * schedule RCU free.
8864b4e5 4469 */
25b00775 4470 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4471 } else {
4472 /*
4473 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4474 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4475 * @wq will be freed when the last pwq is released.
8864b4e5 4476 */
4c16bd32
TH
4477 for_each_node(node) {
4478 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4479 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4480 put_pwq_unlocked(pwq);
4481 }
4482
4483 /*
4484 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4485 * put. Don't access it afterwards.
4486 */
4487 pwq = wq->dfl_pwq;
4488 wq->dfl_pwq = NULL;
dce90d47 4489 put_pwq_unlocked(pwq);
29c91e99 4490 }
3af24433
ON
4491}
4492EXPORT_SYMBOL_GPL(destroy_workqueue);
4493
dcd989cb
TH
4494/**
4495 * workqueue_set_max_active - adjust max_active of a workqueue
4496 * @wq: target workqueue
4497 * @max_active: new max_active value.
4498 *
4499 * Set max_active of @wq to @max_active.
4500 *
4501 * CONTEXT:
4502 * Don't call from IRQ context.
4503 */
4504void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4505{
49e3cf44 4506 struct pool_workqueue *pwq;
dcd989cb 4507
8719dcea 4508 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4509 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4510 return;
4511
f3421797 4512 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4513
a357fc03 4514 mutex_lock(&wq->mutex);
dcd989cb 4515
0a94efb5 4516 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4517 wq->saved_max_active = max_active;
4518
699ce097
TH
4519 for_each_pwq(pwq, wq)
4520 pwq_adjust_max_active(pwq);
93981800 4521
a357fc03 4522 mutex_unlock(&wq->mutex);
15316ba8 4523}
dcd989cb 4524EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4525
27d4ee03
LW
4526/**
4527 * current_work - retrieve %current task's work struct
4528 *
4529 * Determine if %current task is a workqueue worker and what it's working on.
4530 * Useful to find out the context that the %current task is running in.
4531 *
4532 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4533 */
4534struct work_struct *current_work(void)
4535{
4536 struct worker *worker = current_wq_worker();
4537
4538 return worker ? worker->current_work : NULL;
4539}
4540EXPORT_SYMBOL(current_work);
4541
e6267616
TH
4542/**
4543 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4544 *
4545 * Determine whether %current is a workqueue rescuer. Can be used from
4546 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4547 *
4548 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4549 */
4550bool current_is_workqueue_rescuer(void)
4551{
4552 struct worker *worker = current_wq_worker();
4553
6a092dfd 4554 return worker && worker->rescue_wq;
e6267616
TH
4555}
4556
eef6a7d5 4557/**
dcd989cb
TH
4558 * workqueue_congested - test whether a workqueue is congested
4559 * @cpu: CPU in question
4560 * @wq: target workqueue
eef6a7d5 4561 *
dcd989cb
TH
4562 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4563 * no synchronization around this function and the test result is
4564 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4565 *
d3251859
TH
4566 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4567 * Note that both per-cpu and unbound workqueues may be associated with
4568 * multiple pool_workqueues which have separate congested states. A
4569 * workqueue being congested on one CPU doesn't mean the workqueue is also
4570 * contested on other CPUs / NUMA nodes.
4571 *
d185af30 4572 * Return:
dcd989cb 4573 * %true if congested, %false otherwise.
eef6a7d5 4574 */
d84ff051 4575bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4576{
7fb98ea7 4577 struct pool_workqueue *pwq;
76af4d93
TH
4578 bool ret;
4579
24acfb71
TG
4580 rcu_read_lock();
4581 preempt_disable();
7fb98ea7 4582
d3251859
TH
4583 if (cpu == WORK_CPU_UNBOUND)
4584 cpu = smp_processor_id();
4585
7fb98ea7
TH
4586 if (!(wq->flags & WQ_UNBOUND))
4587 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4588 else
df2d5ae4 4589 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4590
f97a4a1a 4591 ret = !list_empty(&pwq->inactive_works);
24acfb71
TG
4592 preempt_enable();
4593 rcu_read_unlock();
76af4d93
TH
4594
4595 return ret;
1da177e4 4596}
dcd989cb 4597EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4598
dcd989cb
TH
4599/**
4600 * work_busy - test whether a work is currently pending or running
4601 * @work: the work to be tested
4602 *
4603 * Test whether @work is currently pending or running. There is no
4604 * synchronization around this function and the test result is
4605 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4606 *
d185af30 4607 * Return:
dcd989cb
TH
4608 * OR'd bitmask of WORK_BUSY_* bits.
4609 */
4610unsigned int work_busy(struct work_struct *work)
1da177e4 4611{
fa1b54e6 4612 struct worker_pool *pool;
dcd989cb
TH
4613 unsigned long flags;
4614 unsigned int ret = 0;
1da177e4 4615
dcd989cb
TH
4616 if (work_pending(work))
4617 ret |= WORK_BUSY_PENDING;
1da177e4 4618
24acfb71 4619 rcu_read_lock();
fa1b54e6 4620 pool = get_work_pool(work);
038366c5 4621 if (pool) {
a9b8a985 4622 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4623 if (find_worker_executing_work(pool, work))
4624 ret |= WORK_BUSY_RUNNING;
a9b8a985 4625 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4626 }
24acfb71 4627 rcu_read_unlock();
1da177e4 4628
dcd989cb 4629 return ret;
1da177e4 4630}
dcd989cb 4631EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4632
3d1cb205
TH
4633/**
4634 * set_worker_desc - set description for the current work item
4635 * @fmt: printf-style format string
4636 * @...: arguments for the format string
4637 *
4638 * This function can be called by a running work function to describe what
4639 * the work item is about. If the worker task gets dumped, this
4640 * information will be printed out together to help debugging. The
4641 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4642 */
4643void set_worker_desc(const char *fmt, ...)
4644{
4645 struct worker *worker = current_wq_worker();
4646 va_list args;
4647
4648 if (worker) {
4649 va_start(args, fmt);
4650 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4651 va_end(args);
3d1cb205
TH
4652 }
4653}
5c750d58 4654EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4655
4656/**
4657 * print_worker_info - print out worker information and description
4658 * @log_lvl: the log level to use when printing
4659 * @task: target task
4660 *
4661 * If @task is a worker and currently executing a work item, print out the
4662 * name of the workqueue being serviced and worker description set with
4663 * set_worker_desc() by the currently executing work item.
4664 *
4665 * This function can be safely called on any task as long as the
4666 * task_struct itself is accessible. While safe, this function isn't
4667 * synchronized and may print out mixups or garbages of limited length.
4668 */
4669void print_worker_info(const char *log_lvl, struct task_struct *task)
4670{
4671 work_func_t *fn = NULL;
4672 char name[WQ_NAME_LEN] = { };
4673 char desc[WORKER_DESC_LEN] = { };
4674 struct pool_workqueue *pwq = NULL;
4675 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4676 struct worker *worker;
4677
4678 if (!(task->flags & PF_WQ_WORKER))
4679 return;
4680
4681 /*
4682 * This function is called without any synchronization and @task
4683 * could be in any state. Be careful with dereferences.
4684 */
e700591a 4685 worker = kthread_probe_data(task);
3d1cb205
TH
4686
4687 /*
8bf89593
TH
4688 * Carefully copy the associated workqueue's workfn, name and desc.
4689 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4690 */
fe557319
CH
4691 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4692 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4693 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4694 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4695 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4696
4697 if (fn || name[0] || desc[0]) {
d75f773c 4698 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4699 if (strcmp(name, desc))
3d1cb205
TH
4700 pr_cont(" (%s)", desc);
4701 pr_cont("\n");
4702 }
4703}
4704
3494fc30
TH
4705static void pr_cont_pool_info(struct worker_pool *pool)
4706{
4707 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4708 if (pool->node != NUMA_NO_NODE)
4709 pr_cont(" node=%d", pool->node);
4710 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4711}
4712
4713static void pr_cont_work(bool comma, struct work_struct *work)
4714{
4715 if (work->func == wq_barrier_func) {
4716 struct wq_barrier *barr;
4717
4718 barr = container_of(work, struct wq_barrier, work);
4719
4720 pr_cont("%s BAR(%d)", comma ? "," : "",
4721 task_pid_nr(barr->task));
4722 } else {
d75f773c 4723 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4724 }
4725}
4726
4727static void show_pwq(struct pool_workqueue *pwq)
4728{
4729 struct worker_pool *pool = pwq->pool;
4730 struct work_struct *work;
4731 struct worker *worker;
4732 bool has_in_flight = false, has_pending = false;
4733 int bkt;
4734
4735 pr_info(" pwq %d:", pool->id);
4736 pr_cont_pool_info(pool);
4737
e66b39af
TH
4738 pr_cont(" active=%d/%d refcnt=%d%s\n",
4739 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4740 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4741
4742 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4743 if (worker->current_pwq == pwq) {
4744 has_in_flight = true;
4745 break;
4746 }
4747 }
4748 if (has_in_flight) {
4749 bool comma = false;
4750
4751 pr_info(" in-flight:");
4752 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4753 if (worker->current_pwq != pwq)
4754 continue;
4755
d75f773c 4756 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4757 task_pid_nr(worker->task),
30ae2fc0 4758 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4759 worker->current_func);
4760 list_for_each_entry(work, &worker->scheduled, entry)
4761 pr_cont_work(false, work);
4762 comma = true;
4763 }
4764 pr_cont("\n");
4765 }
4766
4767 list_for_each_entry(work, &pool->worklist, entry) {
4768 if (get_work_pwq(work) == pwq) {
4769 has_pending = true;
4770 break;
4771 }
4772 }
4773 if (has_pending) {
4774 bool comma = false;
4775
4776 pr_info(" pending:");
4777 list_for_each_entry(work, &pool->worklist, entry) {
4778 if (get_work_pwq(work) != pwq)
4779 continue;
4780
4781 pr_cont_work(comma, work);
4782 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4783 }
4784 pr_cont("\n");
4785 }
4786
f97a4a1a 4787 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
4788 bool comma = false;
4789
f97a4a1a
LJ
4790 pr_info(" inactive:");
4791 list_for_each_entry(work, &pwq->inactive_works, entry) {
3494fc30
TH
4792 pr_cont_work(comma, work);
4793 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4794 }
4795 pr_cont("\n");
4796 }
4797}
4798
4799/**
4800 * show_workqueue_state - dump workqueue state
4801 *
7b776af6
RL
4802 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4803 * all busy workqueues and pools.
3494fc30
TH
4804 */
4805void show_workqueue_state(void)
4806{
4807 struct workqueue_struct *wq;
4808 struct worker_pool *pool;
4809 unsigned long flags;
4810 int pi;
4811
24acfb71 4812 rcu_read_lock();
3494fc30
TH
4813
4814 pr_info("Showing busy workqueues and worker pools:\n");
4815
4816 list_for_each_entry_rcu(wq, &workqueues, list) {
4817 struct pool_workqueue *pwq;
4818 bool idle = true;
4819
4820 for_each_pwq(pwq, wq) {
f97a4a1a 4821 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
3494fc30
TH
4822 idle = false;
4823 break;
4824 }
4825 }
4826 if (idle)
4827 continue;
4828
4829 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4830
4831 for_each_pwq(pwq, wq) {
a9b8a985 4832 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
f97a4a1a 4833 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
3494fc30 4834 show_pwq(pwq);
a9b8a985 4835 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4836 /*
4837 * We could be printing a lot from atomic context, e.g.
4838 * sysrq-t -> show_workqueue_state(). Avoid triggering
4839 * hard lockup.
4840 */
4841 touch_nmi_watchdog();
3494fc30
TH
4842 }
4843 }
4844
4845 for_each_pool(pool, pi) {
4846 struct worker *worker;
4847 bool first = true;
4848
a9b8a985 4849 raw_spin_lock_irqsave(&pool->lock, flags);
3494fc30
TH
4850 if (pool->nr_workers == pool->nr_idle)
4851 goto next_pool;
4852
4853 pr_info("pool %d:", pool->id);
4854 pr_cont_pool_info(pool);
82607adc
TH
4855 pr_cont(" hung=%us workers=%d",
4856 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4857 pool->nr_workers);
3494fc30
TH
4858 if (pool->manager)
4859 pr_cont(" manager: %d",
4860 task_pid_nr(pool->manager->task));
4861 list_for_each_entry(worker, &pool->idle_list, entry) {
4862 pr_cont(" %s%d", first ? "idle: " : "",
4863 task_pid_nr(worker->task));
4864 first = false;
4865 }
4866 pr_cont("\n");
4867 next_pool:
a9b8a985 4868 raw_spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4869 /*
4870 * We could be printing a lot from atomic context, e.g.
4871 * sysrq-t -> show_workqueue_state(). Avoid triggering
4872 * hard lockup.
4873 */
4874 touch_nmi_watchdog();
3494fc30
TH
4875 }
4876
24acfb71 4877 rcu_read_unlock();
3494fc30
TH
4878}
4879
6b59808b
TH
4880/* used to show worker information through /proc/PID/{comm,stat,status} */
4881void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4882{
6b59808b
TH
4883 int off;
4884
4885 /* always show the actual comm */
4886 off = strscpy(buf, task->comm, size);
4887 if (off < 0)
4888 return;
4889
197f6acc 4890 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4891 mutex_lock(&wq_pool_attach_mutex);
4892
197f6acc
TH
4893 if (task->flags & PF_WQ_WORKER) {
4894 struct worker *worker = kthread_data(task);
4895 struct worker_pool *pool = worker->pool;
6b59808b 4896
197f6acc 4897 if (pool) {
a9b8a985 4898 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
4899 /*
4900 * ->desc tracks information (wq name or
4901 * set_worker_desc()) for the latest execution. If
4902 * current, prepend '+', otherwise '-'.
4903 */
4904 if (worker->desc[0] != '\0') {
4905 if (worker->current_work)
4906 scnprintf(buf + off, size - off, "+%s",
4907 worker->desc);
4908 else
4909 scnprintf(buf + off, size - off, "-%s",
4910 worker->desc);
4911 }
a9b8a985 4912 raw_spin_unlock_irq(&pool->lock);
6b59808b 4913 }
6b59808b
TH
4914 }
4915
4916 mutex_unlock(&wq_pool_attach_mutex);
4917}
4918
66448bc2
MM
4919#ifdef CONFIG_SMP
4920
db7bccf4
TH
4921/*
4922 * CPU hotplug.
4923 *
e22bee78 4924 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4925 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4926 * pool which make migrating pending and scheduled works very
e22bee78 4927 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4928 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4929 * blocked draining impractical.
4930 *
24647570 4931 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4932 * running as an unbound one and allowing it to be reattached later if the
4933 * cpu comes back online.
db7bccf4 4934 */
1da177e4 4935
e8b3f8db 4936static void unbind_workers(int cpu)
3af24433 4937{
4ce62e9e 4938 struct worker_pool *pool;
db7bccf4 4939 struct worker *worker;
3af24433 4940
f02ae73a 4941 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4942 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 4943 raw_spin_lock_irq(&pool->lock);
3af24433 4944
94cf58bb 4945 /*
92f9c5c4 4946 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4947 * unbound and set DISASSOCIATED. Before this, all workers
4948 * except for the ones which are still executing works from
4949 * before the last CPU down must be on the cpu. After
4950 * this, they may become diasporas.
4951 */
da028469 4952 for_each_pool_worker(worker, pool)
c9e7cf27 4953 worker->flags |= WORKER_UNBOUND;
06ba38a9 4954
24647570 4955 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4956
a9b8a985 4957 raw_spin_unlock_irq(&pool->lock);
06249738 4958
5c25b5ff
PZ
4959 for_each_pool_worker(worker, pool) {
4960 kthread_set_per_cpu(worker->task, -1);
547a77d0 4961 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5c25b5ff 4962 }
06249738 4963
1258fae7 4964 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4965
eb283428
LJ
4966 /*
4967 * Call schedule() so that we cross rq->lock and thus can
4968 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4969 * This is necessary as scheduler callbacks may be invoked
4970 * from other cpus.
4971 */
4972 schedule();
06ba38a9 4973
eb283428
LJ
4974 /*
4975 * Sched callbacks are disabled now. Zap nr_running.
4976 * After this, nr_running stays zero and need_more_worker()
4977 * and keep_working() are always true as long as the
4978 * worklist is not empty. This pool now behaves as an
4979 * unbound (in terms of concurrency management) pool which
4980 * are served by workers tied to the pool.
4981 */
e19e397a 4982 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4983
4984 /*
4985 * With concurrency management just turned off, a busy
4986 * worker blocking could lead to lengthy stalls. Kick off
4987 * unbound chain execution of currently pending work items.
4988 */
a9b8a985 4989 raw_spin_lock_irq(&pool->lock);
eb283428 4990 wake_up_worker(pool);
a9b8a985 4991 raw_spin_unlock_irq(&pool->lock);
eb283428 4992 }
3af24433 4993}
3af24433 4994
bd7c089e
TH
4995/**
4996 * rebind_workers - rebind all workers of a pool to the associated CPU
4997 * @pool: pool of interest
4998 *
a9ab775b 4999 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5000 */
5001static void rebind_workers(struct worker_pool *pool)
5002{
a9ab775b 5003 struct worker *worker;
bd7c089e 5004
1258fae7 5005 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5006
a9ab775b
TH
5007 /*
5008 * Restore CPU affinity of all workers. As all idle workers should
5009 * be on the run-queue of the associated CPU before any local
402dd89d 5010 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5011 * of all workers first and then clear UNBOUND. As we're called
5012 * from CPU_ONLINE, the following shouldn't fail.
5013 */
5c25b5ff
PZ
5014 for_each_pool_worker(worker, pool) {
5015 kthread_set_per_cpu(worker->task, pool->cpu);
a9ab775b
TH
5016 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5017 pool->attrs->cpumask) < 0);
5c25b5ff 5018 }
bd7c089e 5019
a9b8a985 5020 raw_spin_lock_irq(&pool->lock);
f7c17d26 5021
3de5e884 5022 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5023
da028469 5024 for_each_pool_worker(worker, pool) {
a9ab775b 5025 unsigned int worker_flags = worker->flags;
bd7c089e
TH
5026
5027 /*
a9ab775b
TH
5028 * A bound idle worker should actually be on the runqueue
5029 * of the associated CPU for local wake-ups targeting it to
5030 * work. Kick all idle workers so that they migrate to the
5031 * associated CPU. Doing this in the same loop as
5032 * replacing UNBOUND with REBOUND is safe as no worker will
5033 * be bound before @pool->lock is released.
bd7c089e 5034 */
a9ab775b
TH
5035 if (worker_flags & WORKER_IDLE)
5036 wake_up_process(worker->task);
bd7c089e 5037
a9ab775b
TH
5038 /*
5039 * We want to clear UNBOUND but can't directly call
5040 * worker_clr_flags() or adjust nr_running. Atomically
5041 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5042 * @worker will clear REBOUND using worker_clr_flags() when
5043 * it initiates the next execution cycle thus restoring
5044 * concurrency management. Note that when or whether
5045 * @worker clears REBOUND doesn't affect correctness.
5046 *
c95491ed 5047 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5048 * tested without holding any lock in
6d25be57 5049 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5050 * fail incorrectly leading to premature concurrency
5051 * management operations.
5052 */
5053 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5054 worker_flags |= WORKER_REBOUND;
5055 worker_flags &= ~WORKER_UNBOUND;
c95491ed 5056 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 5057 }
a9ab775b 5058
a9b8a985 5059 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5060}
5061
7dbc725e
TH
5062/**
5063 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5064 * @pool: unbound pool of interest
5065 * @cpu: the CPU which is coming up
5066 *
5067 * An unbound pool may end up with a cpumask which doesn't have any online
5068 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5069 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5070 * online CPU before, cpus_allowed of all its workers should be restored.
5071 */
5072static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5073{
5074 static cpumask_t cpumask;
5075 struct worker *worker;
7dbc725e 5076
1258fae7 5077 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5078
5079 /* is @cpu allowed for @pool? */
5080 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5081 return;
5082
7dbc725e 5083 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5084
5085 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5086 for_each_pool_worker(worker, pool)
d945b5e9 5087 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5088}
5089
7ee681b2
TG
5090int workqueue_prepare_cpu(unsigned int cpu)
5091{
5092 struct worker_pool *pool;
5093
5094 for_each_cpu_worker_pool(pool, cpu) {
5095 if (pool->nr_workers)
5096 continue;
5097 if (!create_worker(pool))
5098 return -ENOMEM;
5099 }
5100 return 0;
5101}
5102
5103int workqueue_online_cpu(unsigned int cpu)
3af24433 5104{
4ce62e9e 5105 struct worker_pool *pool;
4c16bd32 5106 struct workqueue_struct *wq;
7dbc725e 5107 int pi;
3ce63377 5108
7ee681b2 5109 mutex_lock(&wq_pool_mutex);
7dbc725e 5110
7ee681b2 5111 for_each_pool(pool, pi) {
1258fae7 5112 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5113
7ee681b2
TG
5114 if (pool->cpu == cpu)
5115 rebind_workers(pool);
5116 else if (pool->cpu < 0)
5117 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5118
1258fae7 5119 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5120 }
6ba94429 5121
7ee681b2
TG
5122 /* update NUMA affinity of unbound workqueues */
5123 list_for_each_entry(wq, &workqueues, list)
5124 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5125
7ee681b2
TG
5126 mutex_unlock(&wq_pool_mutex);
5127 return 0;
6ba94429
FW
5128}
5129
7ee681b2 5130int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5131{
6ba94429
FW
5132 struct workqueue_struct *wq;
5133
7ee681b2 5134 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5135 if (WARN_ON(cpu != smp_processor_id()))
5136 return -1;
5137
5138 unbind_workers(cpu);
7ee681b2
TG
5139
5140 /* update NUMA affinity of unbound workqueues */
5141 mutex_lock(&wq_pool_mutex);
5142 list_for_each_entry(wq, &workqueues, list)
5143 wq_update_unbound_numa(wq, cpu, false);
5144 mutex_unlock(&wq_pool_mutex);
5145
7ee681b2 5146 return 0;
6ba94429
FW
5147}
5148
6ba94429
FW
5149struct work_for_cpu {
5150 struct work_struct work;
5151 long (*fn)(void *);
5152 void *arg;
5153 long ret;
5154};
5155
5156static void work_for_cpu_fn(struct work_struct *work)
5157{
5158 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5159
5160 wfc->ret = wfc->fn(wfc->arg);
5161}
5162
5163/**
22aceb31 5164 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5165 * @cpu: the cpu to run on
5166 * @fn: the function to run
5167 * @arg: the function arg
5168 *
5169 * It is up to the caller to ensure that the cpu doesn't go offline.
5170 * The caller must not hold any locks which would prevent @fn from completing.
5171 *
5172 * Return: The value @fn returns.
5173 */
5174long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5175{
5176 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5177
5178 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5179 schedule_work_on(cpu, &wfc.work);
5180 flush_work(&wfc.work);
5181 destroy_work_on_stack(&wfc.work);
5182 return wfc.ret;
5183}
5184EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5185
5186/**
5187 * work_on_cpu_safe - run a function in thread context on a particular cpu
5188 * @cpu: the cpu to run on
5189 * @fn: the function to run
5190 * @arg: the function argument
5191 *
5192 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5193 * any locks which would prevent @fn from completing.
5194 *
5195 * Return: The value @fn returns.
5196 */
5197long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5198{
5199 long ret = -ENODEV;
5200
ffd8bea8 5201 cpus_read_lock();
0e8d6a93
TG
5202 if (cpu_online(cpu))
5203 ret = work_on_cpu(cpu, fn, arg);
ffd8bea8 5204 cpus_read_unlock();
0e8d6a93
TG
5205 return ret;
5206}
5207EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5208#endif /* CONFIG_SMP */
5209
5210#ifdef CONFIG_FREEZER
5211
5212/**
5213 * freeze_workqueues_begin - begin freezing workqueues
5214 *
5215 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 5216 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
5217 * pool->worklist.
5218 *
5219 * CONTEXT:
5220 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5221 */
5222void freeze_workqueues_begin(void)
5223{
5224 struct workqueue_struct *wq;
5225 struct pool_workqueue *pwq;
5226
5227 mutex_lock(&wq_pool_mutex);
5228
5229 WARN_ON_ONCE(workqueue_freezing);
5230 workqueue_freezing = true;
5231
5232 list_for_each_entry(wq, &workqueues, list) {
5233 mutex_lock(&wq->mutex);
5234 for_each_pwq(pwq, wq)
5235 pwq_adjust_max_active(pwq);
5236 mutex_unlock(&wq->mutex);
5237 }
5238
5239 mutex_unlock(&wq_pool_mutex);
5240}
5241
5242/**
5243 * freeze_workqueues_busy - are freezable workqueues still busy?
5244 *
5245 * Check whether freezing is complete. This function must be called
5246 * between freeze_workqueues_begin() and thaw_workqueues().
5247 *
5248 * CONTEXT:
5249 * Grabs and releases wq_pool_mutex.
5250 *
5251 * Return:
5252 * %true if some freezable workqueues are still busy. %false if freezing
5253 * is complete.
5254 */
5255bool freeze_workqueues_busy(void)
5256{
5257 bool busy = false;
5258 struct workqueue_struct *wq;
5259 struct pool_workqueue *pwq;
5260
5261 mutex_lock(&wq_pool_mutex);
5262
5263 WARN_ON_ONCE(!workqueue_freezing);
5264
5265 list_for_each_entry(wq, &workqueues, list) {
5266 if (!(wq->flags & WQ_FREEZABLE))
5267 continue;
5268 /*
5269 * nr_active is monotonically decreasing. It's safe
5270 * to peek without lock.
5271 */
24acfb71 5272 rcu_read_lock();
6ba94429
FW
5273 for_each_pwq(pwq, wq) {
5274 WARN_ON_ONCE(pwq->nr_active < 0);
5275 if (pwq->nr_active) {
5276 busy = true;
24acfb71 5277 rcu_read_unlock();
6ba94429
FW
5278 goto out_unlock;
5279 }
5280 }
24acfb71 5281 rcu_read_unlock();
6ba94429
FW
5282 }
5283out_unlock:
5284 mutex_unlock(&wq_pool_mutex);
5285 return busy;
5286}
5287
5288/**
5289 * thaw_workqueues - thaw workqueues
5290 *
5291 * Thaw workqueues. Normal queueing is restored and all collected
5292 * frozen works are transferred to their respective pool worklists.
5293 *
5294 * CONTEXT:
5295 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5296 */
5297void thaw_workqueues(void)
5298{
5299 struct workqueue_struct *wq;
5300 struct pool_workqueue *pwq;
5301
5302 mutex_lock(&wq_pool_mutex);
5303
5304 if (!workqueue_freezing)
5305 goto out_unlock;
5306
5307 workqueue_freezing = false;
5308
5309 /* restore max_active and repopulate worklist */
5310 list_for_each_entry(wq, &workqueues, list) {
5311 mutex_lock(&wq->mutex);
5312 for_each_pwq(pwq, wq)
5313 pwq_adjust_max_active(pwq);
5314 mutex_unlock(&wq->mutex);
5315 }
5316
5317out_unlock:
5318 mutex_unlock(&wq_pool_mutex);
5319}
5320#endif /* CONFIG_FREEZER */
5321
042f7df1
LJ
5322static int workqueue_apply_unbound_cpumask(void)
5323{
5324 LIST_HEAD(ctxs);
5325 int ret = 0;
5326 struct workqueue_struct *wq;
5327 struct apply_wqattrs_ctx *ctx, *n;
5328
5329 lockdep_assert_held(&wq_pool_mutex);
5330
5331 list_for_each_entry(wq, &workqueues, list) {
5332 if (!(wq->flags & WQ_UNBOUND))
5333 continue;
5334 /* creating multiple pwqs breaks ordering guarantee */
5335 if (wq->flags & __WQ_ORDERED)
5336 continue;
5337
5338 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5339 if (!ctx) {
5340 ret = -ENOMEM;
5341 break;
5342 }
5343
5344 list_add_tail(&ctx->list, &ctxs);
5345 }
5346
5347 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5348 if (!ret)
5349 apply_wqattrs_commit(ctx);
5350 apply_wqattrs_cleanup(ctx);
5351 }
5352
5353 return ret;
5354}
5355
5356/**
5357 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5358 * @cpumask: the cpumask to set
5359 *
5360 * The low-level workqueues cpumask is a global cpumask that limits
5361 * the affinity of all unbound workqueues. This function check the @cpumask
5362 * and apply it to all unbound workqueues and updates all pwqs of them.
5363 *
67dc8325 5364 * Return: 0 - Success
042f7df1
LJ
5365 * -EINVAL - Invalid @cpumask
5366 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5367 */
5368int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5369{
5370 int ret = -EINVAL;
5371 cpumask_var_t saved_cpumask;
5372
5373 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5374 return -ENOMEM;
5375
c98a9805
TS
5376 /*
5377 * Not excluding isolated cpus on purpose.
5378 * If the user wishes to include them, we allow that.
5379 */
042f7df1
LJ
5380 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5381 if (!cpumask_empty(cpumask)) {
a0111cf6 5382 apply_wqattrs_lock();
042f7df1
LJ
5383
5384 /* save the old wq_unbound_cpumask. */
5385 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5386
5387 /* update wq_unbound_cpumask at first and apply it to wqs. */
5388 cpumask_copy(wq_unbound_cpumask, cpumask);
5389 ret = workqueue_apply_unbound_cpumask();
5390
5391 /* restore the wq_unbound_cpumask when failed. */
5392 if (ret < 0)
5393 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5394
a0111cf6 5395 apply_wqattrs_unlock();
042f7df1 5396 }
042f7df1
LJ
5397
5398 free_cpumask_var(saved_cpumask);
5399 return ret;
5400}
5401
6ba94429
FW
5402#ifdef CONFIG_SYSFS
5403/*
5404 * Workqueues with WQ_SYSFS flag set is visible to userland via
5405 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5406 * following attributes.
5407 *
5408 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5409 * max_active RW int : maximum number of in-flight work items
5410 *
5411 * Unbound workqueues have the following extra attributes.
5412 *
9a19b463 5413 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5414 * nice RW int : nice value of the workers
5415 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5416 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5417 */
5418struct wq_device {
5419 struct workqueue_struct *wq;
5420 struct device dev;
5421};
5422
5423static struct workqueue_struct *dev_to_wq(struct device *dev)
5424{
5425 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5426
5427 return wq_dev->wq;
5428}
5429
5430static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5431 char *buf)
5432{
5433 struct workqueue_struct *wq = dev_to_wq(dev);
5434
5435 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5436}
5437static DEVICE_ATTR_RO(per_cpu);
5438
5439static ssize_t max_active_show(struct device *dev,
5440 struct device_attribute *attr, char *buf)
5441{
5442 struct workqueue_struct *wq = dev_to_wq(dev);
5443
5444 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5445}
5446
5447static ssize_t max_active_store(struct device *dev,
5448 struct device_attribute *attr, const char *buf,
5449 size_t count)
5450{
5451 struct workqueue_struct *wq = dev_to_wq(dev);
5452 int val;
5453
5454 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5455 return -EINVAL;
5456
5457 workqueue_set_max_active(wq, val);
5458 return count;
5459}
5460static DEVICE_ATTR_RW(max_active);
5461
5462static struct attribute *wq_sysfs_attrs[] = {
5463 &dev_attr_per_cpu.attr,
5464 &dev_attr_max_active.attr,
5465 NULL,
5466};
5467ATTRIBUTE_GROUPS(wq_sysfs);
5468
5469static ssize_t wq_pool_ids_show(struct device *dev,
5470 struct device_attribute *attr, char *buf)
5471{
5472 struct workqueue_struct *wq = dev_to_wq(dev);
5473 const char *delim = "";
5474 int node, written = 0;
5475
ffd8bea8 5476 cpus_read_lock();
24acfb71 5477 rcu_read_lock();
6ba94429
FW
5478 for_each_node(node) {
5479 written += scnprintf(buf + written, PAGE_SIZE - written,
5480 "%s%d:%d", delim, node,
5481 unbound_pwq_by_node(wq, node)->pool->id);
5482 delim = " ";
5483 }
5484 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71 5485 rcu_read_unlock();
ffd8bea8 5486 cpus_read_unlock();
6ba94429
FW
5487
5488 return written;
5489}
5490
5491static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5492 char *buf)
5493{
5494 struct workqueue_struct *wq = dev_to_wq(dev);
5495 int written;
5496
5497 mutex_lock(&wq->mutex);
5498 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5499 mutex_unlock(&wq->mutex);
5500
5501 return written;
5502}
5503
5504/* prepare workqueue_attrs for sysfs store operations */
5505static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5506{
5507 struct workqueue_attrs *attrs;
5508
899a94fe
LJ
5509 lockdep_assert_held(&wq_pool_mutex);
5510
be69d00d 5511 attrs = alloc_workqueue_attrs();
6ba94429
FW
5512 if (!attrs)
5513 return NULL;
5514
6ba94429 5515 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5516 return attrs;
5517}
5518
5519static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5520 const char *buf, size_t count)
5521{
5522 struct workqueue_struct *wq = dev_to_wq(dev);
5523 struct workqueue_attrs *attrs;
d4d3e257
LJ
5524 int ret = -ENOMEM;
5525
5526 apply_wqattrs_lock();
6ba94429
FW
5527
5528 attrs = wq_sysfs_prep_attrs(wq);
5529 if (!attrs)
d4d3e257 5530 goto out_unlock;
6ba94429
FW
5531
5532 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5533 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5534 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5535 else
5536 ret = -EINVAL;
5537
d4d3e257
LJ
5538out_unlock:
5539 apply_wqattrs_unlock();
6ba94429
FW
5540 free_workqueue_attrs(attrs);
5541 return ret ?: count;
5542}
5543
5544static ssize_t wq_cpumask_show(struct device *dev,
5545 struct device_attribute *attr, char *buf)
5546{
5547 struct workqueue_struct *wq = dev_to_wq(dev);
5548 int written;
5549
5550 mutex_lock(&wq->mutex);
5551 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5552 cpumask_pr_args(wq->unbound_attrs->cpumask));
5553 mutex_unlock(&wq->mutex);
5554 return written;
5555}
5556
5557static ssize_t wq_cpumask_store(struct device *dev,
5558 struct device_attribute *attr,
5559 const char *buf, size_t count)
5560{
5561 struct workqueue_struct *wq = dev_to_wq(dev);
5562 struct workqueue_attrs *attrs;
d4d3e257
LJ
5563 int ret = -ENOMEM;
5564
5565 apply_wqattrs_lock();
6ba94429
FW
5566
5567 attrs = wq_sysfs_prep_attrs(wq);
5568 if (!attrs)
d4d3e257 5569 goto out_unlock;
6ba94429
FW
5570
5571 ret = cpumask_parse(buf, attrs->cpumask);
5572 if (!ret)
d4d3e257 5573 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5574
d4d3e257
LJ
5575out_unlock:
5576 apply_wqattrs_unlock();
6ba94429
FW
5577 free_workqueue_attrs(attrs);
5578 return ret ?: count;
5579}
5580
5581static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5582 char *buf)
5583{
5584 struct workqueue_struct *wq = dev_to_wq(dev);
5585 int written;
7dbc725e 5586
6ba94429
FW
5587 mutex_lock(&wq->mutex);
5588 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5589 !wq->unbound_attrs->no_numa);
5590 mutex_unlock(&wq->mutex);
4c16bd32 5591
6ba94429 5592 return written;
65758202
TH
5593}
5594
6ba94429
FW
5595static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5596 const char *buf, size_t count)
65758202 5597{
6ba94429
FW
5598 struct workqueue_struct *wq = dev_to_wq(dev);
5599 struct workqueue_attrs *attrs;
d4d3e257
LJ
5600 int v, ret = -ENOMEM;
5601
5602 apply_wqattrs_lock();
4c16bd32 5603
6ba94429
FW
5604 attrs = wq_sysfs_prep_attrs(wq);
5605 if (!attrs)
d4d3e257 5606 goto out_unlock;
4c16bd32 5607
6ba94429
FW
5608 ret = -EINVAL;
5609 if (sscanf(buf, "%d", &v) == 1) {
5610 attrs->no_numa = !v;
d4d3e257 5611 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5612 }
6ba94429 5613
d4d3e257
LJ
5614out_unlock:
5615 apply_wqattrs_unlock();
6ba94429
FW
5616 free_workqueue_attrs(attrs);
5617 return ret ?: count;
65758202
TH
5618}
5619
6ba94429
FW
5620static struct device_attribute wq_sysfs_unbound_attrs[] = {
5621 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5622 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5623 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5624 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5625 __ATTR_NULL,
5626};
8ccad40d 5627
6ba94429
FW
5628static struct bus_type wq_subsys = {
5629 .name = "workqueue",
5630 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5631};
5632
b05a7928
FW
5633static ssize_t wq_unbound_cpumask_show(struct device *dev,
5634 struct device_attribute *attr, char *buf)
5635{
5636 int written;
5637
042f7df1 5638 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5639 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5640 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5641 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5642
5643 return written;
5644}
5645
042f7df1
LJ
5646static ssize_t wq_unbound_cpumask_store(struct device *dev,
5647 struct device_attribute *attr, const char *buf, size_t count)
5648{
5649 cpumask_var_t cpumask;
5650 int ret;
5651
5652 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5653 return -ENOMEM;
5654
5655 ret = cpumask_parse(buf, cpumask);
5656 if (!ret)
5657 ret = workqueue_set_unbound_cpumask(cpumask);
5658
5659 free_cpumask_var(cpumask);
5660 return ret ? ret : count;
5661}
5662
b05a7928 5663static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5664 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5665 wq_unbound_cpumask_store);
b05a7928 5666
6ba94429 5667static int __init wq_sysfs_init(void)
2d3854a3 5668{
b05a7928
FW
5669 int err;
5670
5671 err = subsys_virtual_register(&wq_subsys, NULL);
5672 if (err)
5673 return err;
5674
5675 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5676}
6ba94429 5677core_initcall(wq_sysfs_init);
2d3854a3 5678
6ba94429 5679static void wq_device_release(struct device *dev)
2d3854a3 5680{
6ba94429 5681 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5682
6ba94429 5683 kfree(wq_dev);
2d3854a3 5684}
a0a1a5fd
TH
5685
5686/**
6ba94429
FW
5687 * workqueue_sysfs_register - make a workqueue visible in sysfs
5688 * @wq: the workqueue to register
a0a1a5fd 5689 *
6ba94429
FW
5690 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5691 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5692 * which is the preferred method.
a0a1a5fd 5693 *
6ba94429
FW
5694 * Workqueue user should use this function directly iff it wants to apply
5695 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5696 * apply_workqueue_attrs() may race against userland updating the
5697 * attributes.
5698 *
5699 * Return: 0 on success, -errno on failure.
a0a1a5fd 5700 */
6ba94429 5701int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5702{
6ba94429
FW
5703 struct wq_device *wq_dev;
5704 int ret;
a0a1a5fd 5705
6ba94429 5706 /*
402dd89d 5707 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5708 * attributes breaks ordering guarantee. Disallow exposing ordered
5709 * workqueues.
5710 */
0a94efb5 5711 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5712 return -EINVAL;
a0a1a5fd 5713
6ba94429
FW
5714 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5715 if (!wq_dev)
5716 return -ENOMEM;
5bcab335 5717
6ba94429
FW
5718 wq_dev->wq = wq;
5719 wq_dev->dev.bus = &wq_subsys;
6ba94429 5720 wq_dev->dev.release = wq_device_release;
23217b44 5721 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5722
6ba94429
FW
5723 /*
5724 * unbound_attrs are created separately. Suppress uevent until
5725 * everything is ready.
5726 */
5727 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5728
6ba94429
FW
5729 ret = device_register(&wq_dev->dev);
5730 if (ret) {
537f4146 5731 put_device(&wq_dev->dev);
6ba94429
FW
5732 wq->wq_dev = NULL;
5733 return ret;
5734 }
a0a1a5fd 5735
6ba94429
FW
5736 if (wq->flags & WQ_UNBOUND) {
5737 struct device_attribute *attr;
a0a1a5fd 5738
6ba94429
FW
5739 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5740 ret = device_create_file(&wq_dev->dev, attr);
5741 if (ret) {
5742 device_unregister(&wq_dev->dev);
5743 wq->wq_dev = NULL;
5744 return ret;
a0a1a5fd
TH
5745 }
5746 }
5747 }
6ba94429
FW
5748
5749 dev_set_uevent_suppress(&wq_dev->dev, false);
5750 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5751 return 0;
a0a1a5fd
TH
5752}
5753
5754/**
6ba94429
FW
5755 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5756 * @wq: the workqueue to unregister
a0a1a5fd 5757 *
6ba94429 5758 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5759 */
6ba94429 5760static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5761{
6ba94429 5762 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5763
6ba94429
FW
5764 if (!wq->wq_dev)
5765 return;
a0a1a5fd 5766
6ba94429
FW
5767 wq->wq_dev = NULL;
5768 device_unregister(&wq_dev->dev);
a0a1a5fd 5769}
6ba94429
FW
5770#else /* CONFIG_SYSFS */
5771static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5772#endif /* CONFIG_SYSFS */
a0a1a5fd 5773
82607adc
TH
5774/*
5775 * Workqueue watchdog.
5776 *
5777 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5778 * flush dependency, a concurrency managed work item which stays RUNNING
5779 * indefinitely. Workqueue stalls can be very difficult to debug as the
5780 * usual warning mechanisms don't trigger and internal workqueue state is
5781 * largely opaque.
5782 *
5783 * Workqueue watchdog monitors all worker pools periodically and dumps
5784 * state if some pools failed to make forward progress for a while where
5785 * forward progress is defined as the first item on ->worklist changing.
5786 *
5787 * This mechanism is controlled through the kernel parameter
5788 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5789 * corresponding sysfs parameter file.
5790 */
5791#ifdef CONFIG_WQ_WATCHDOG
5792
82607adc 5793static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5794static struct timer_list wq_watchdog_timer;
82607adc
TH
5795
5796static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5797static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5798
5799static void wq_watchdog_reset_touched(void)
5800{
5801 int cpu;
5802
5803 wq_watchdog_touched = jiffies;
5804 for_each_possible_cpu(cpu)
5805 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5806}
5807
5cd79d6a 5808static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5809{
5810 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5811 bool lockup_detected = false;
940d71c6 5812 unsigned long now = jiffies;
82607adc
TH
5813 struct worker_pool *pool;
5814 int pi;
5815
5816 if (!thresh)
5817 return;
5818
5819 rcu_read_lock();
5820
5821 for_each_pool(pool, pi) {
5822 unsigned long pool_ts, touched, ts;
5823
5824 if (list_empty(&pool->worklist))
5825 continue;
5826
940d71c6
SS
5827 /*
5828 * If a virtual machine is stopped by the host it can look to
5829 * the watchdog like a stall.
5830 */
5831 kvm_check_and_clear_guest_paused();
5832
82607adc 5833 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
5834 if (pool->cpu >= 0)
5835 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5836 else
5837 touched = READ_ONCE(wq_watchdog_touched);
82607adc 5838 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
5839
5840 if (time_after(pool_ts, touched))
5841 ts = pool_ts;
5842 else
5843 ts = touched;
5844
82607adc 5845 /* did we stall? */
940d71c6 5846 if (time_after(now, ts + thresh)) {
82607adc
TH
5847 lockup_detected = true;
5848 pr_emerg("BUG: workqueue lockup - pool");
5849 pr_cont_pool_info(pool);
5850 pr_cont(" stuck for %us!\n",
940d71c6 5851 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc
TH
5852 }
5853 }
5854
5855 rcu_read_unlock();
5856
5857 if (lockup_detected)
5858 show_workqueue_state();
5859
5860 wq_watchdog_reset_touched();
5861 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5862}
5863
cb9d7fd5 5864notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5865{
5866 if (cpu >= 0)
5867 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
5868
5869 wq_watchdog_touched = jiffies;
82607adc
TH
5870}
5871
5872static void wq_watchdog_set_thresh(unsigned long thresh)
5873{
5874 wq_watchdog_thresh = 0;
5875 del_timer_sync(&wq_watchdog_timer);
5876
5877 if (thresh) {
5878 wq_watchdog_thresh = thresh;
5879 wq_watchdog_reset_touched();
5880 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5881 }
5882}
5883
5884static int wq_watchdog_param_set_thresh(const char *val,
5885 const struct kernel_param *kp)
5886{
5887 unsigned long thresh;
5888 int ret;
5889
5890 ret = kstrtoul(val, 0, &thresh);
5891 if (ret)
5892 return ret;
5893
5894 if (system_wq)
5895 wq_watchdog_set_thresh(thresh);
5896 else
5897 wq_watchdog_thresh = thresh;
5898
5899 return 0;
5900}
5901
5902static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5903 .set = wq_watchdog_param_set_thresh,
5904 .get = param_get_ulong,
5905};
5906
5907module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5908 0644);
5909
5910static void wq_watchdog_init(void)
5911{
5cd79d6a 5912 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5913 wq_watchdog_set_thresh(wq_watchdog_thresh);
5914}
5915
5916#else /* CONFIG_WQ_WATCHDOG */
5917
5918static inline void wq_watchdog_init(void) { }
5919
5920#endif /* CONFIG_WQ_WATCHDOG */
5921
bce90380
TH
5922static void __init wq_numa_init(void)
5923{
5924 cpumask_var_t *tbl;
5925 int node, cpu;
5926
bce90380
TH
5927 if (num_possible_nodes() <= 1)
5928 return;
5929
d55262c4
TH
5930 if (wq_disable_numa) {
5931 pr_info("workqueue: NUMA affinity support disabled\n");
5932 return;
5933 }
5934
f728c4a9
ZL
5935 for_each_possible_cpu(cpu) {
5936 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5937 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5938 return;
5939 }
5940 }
5941
be69d00d 5942 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5943 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5944
bce90380
TH
5945 /*
5946 * We want masks of possible CPUs of each node which isn't readily
5947 * available. Build one from cpu_to_node() which should have been
5948 * fully initialized by now.
5949 */
6396bb22 5950 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5951 BUG_ON(!tbl);
5952
5953 for_each_node(node)
5a6024f1 5954 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5955 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5956
5957 for_each_possible_cpu(cpu) {
5958 node = cpu_to_node(cpu);
bce90380
TH
5959 cpumask_set_cpu(cpu, tbl[node]);
5960 }
5961
5962 wq_numa_possible_cpumask = tbl;
5963 wq_numa_enabled = true;
5964}
5965
3347fa09
TH
5966/**
5967 * workqueue_init_early - early init for workqueue subsystem
5968 *
5969 * This is the first half of two-staged workqueue subsystem initialization
5970 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5971 * idr are up. It sets up all the data structures and system workqueues
5972 * and allows early boot code to create workqueues and queue/cancel work
5973 * items. Actual work item execution starts only after kthreads can be
5974 * created and scheduled right before early initcalls.
5975 */
2333e829 5976void __init workqueue_init_early(void)
1da177e4 5977{
7a4e344c 5978 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5979 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5980 int i, cpu;
c34056a3 5981
10cdb157 5982 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 5983
b05a7928 5984 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5985 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5986
e904e6c2
TH
5987 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5988
706026c2 5989 /* initialize CPU pools */
29c91e99 5990 for_each_possible_cpu(cpu) {
4ce62e9e 5991 struct worker_pool *pool;
8b03ae3c 5992
7a4e344c 5993 i = 0;
f02ae73a 5994 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5995 BUG_ON(init_worker_pool(pool));
ec22ca5e 5996 pool->cpu = cpu;
29c91e99 5997 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5998 pool->attrs->nice = std_nice[i++];
f3f90ad4 5999 pool->node = cpu_to_node(cpu);
7a4e344c 6000
9daf9e67 6001 /* alloc pool ID */
68e13a67 6002 mutex_lock(&wq_pool_mutex);
9daf9e67 6003 BUG_ON(worker_pool_assign_id(pool));
68e13a67 6004 mutex_unlock(&wq_pool_mutex);
4ce62e9e 6005 }
8b03ae3c
TH
6006 }
6007
8a2b7538 6008 /* create default unbound and ordered wq attrs */
29c91e99
TH
6009 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6010 struct workqueue_attrs *attrs;
6011
be69d00d 6012 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 6013 attrs->nice = std_nice[i];
29c91e99 6014 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
6015
6016 /*
6017 * An ordered wq should have only one pwq as ordering is
6018 * guaranteed by max_active which is enforced by pwqs.
6019 * Turn off NUMA so that dfl_pwq is used for all nodes.
6020 */
be69d00d 6021 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
6022 attrs->nice = std_nice[i];
6023 attrs->no_numa = true;
6024 ordered_wq_attrs[i] = attrs;
29c91e99
TH
6025 }
6026
d320c038 6027 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 6028 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 6029 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
6030 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6031 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
6032 system_freezable_wq = alloc_workqueue("events_freezable",
6033 WQ_FREEZABLE, 0);
0668106c
VK
6034 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6035 WQ_POWER_EFFICIENT, 0);
6036 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6037 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6038 0);
1aabe902 6039 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
6040 !system_unbound_wq || !system_freezable_wq ||
6041 !system_power_efficient_wq ||
6042 !system_freezable_power_efficient_wq);
3347fa09
TH
6043}
6044
6045/**
6046 * workqueue_init - bring workqueue subsystem fully online
6047 *
6048 * This is the latter half of two-staged workqueue subsystem initialization
6049 * and invoked as soon as kthreads can be created and scheduled.
6050 * Workqueues have been created and work items queued on them, but there
6051 * are no kworkers executing the work items yet. Populate the worker pools
6052 * with the initial workers and enable future kworker creations.
6053 */
2333e829 6054void __init workqueue_init(void)
3347fa09 6055{
2186d9f9 6056 struct workqueue_struct *wq;
3347fa09
TH
6057 struct worker_pool *pool;
6058 int cpu, bkt;
6059
2186d9f9
TH
6060 /*
6061 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6062 * CPU to node mapping may not be available that early on some
6063 * archs such as power and arm64. As per-cpu pools created
6064 * previously could be missing node hint and unbound pools NUMA
6065 * affinity, fix them up.
40c17f75
TH
6066 *
6067 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6068 */
6069 wq_numa_init();
6070
6071 mutex_lock(&wq_pool_mutex);
6072
6073 for_each_possible_cpu(cpu) {
6074 for_each_cpu_worker_pool(pool, cpu) {
6075 pool->node = cpu_to_node(cpu);
6076 }
6077 }
6078
40c17f75 6079 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6080 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6081 WARN(init_rescuer(wq),
6082 "workqueue: failed to create early rescuer for %s",
6083 wq->name);
6084 }
2186d9f9
TH
6085
6086 mutex_unlock(&wq_pool_mutex);
6087
3347fa09
TH
6088 /* create the initial workers */
6089 for_each_online_cpu(cpu) {
6090 for_each_cpu_worker_pool(pool, cpu) {
6091 pool->flags &= ~POOL_DISASSOCIATED;
6092 BUG_ON(!create_worker(pool));
6093 }
6094 }
6095
6096 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6097 BUG_ON(!create_worker(pool));
6098
6099 wq_online = true;
82607adc 6100 wq_watchdog_init();
1da177e4 6101}