]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/workqueue.c
Merge tag 'perf-urgent-2020-04-12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 70 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
1258fae7 127 * A: wq_pool_attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
24acfb71 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 136 * RCU for reads.
5b95e1af 137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
24acfb71 140 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
d565ed63 148 spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43 156 struct list_head worklist; /* L: list of pending works */
ea1abd61 157
5826cc8f
LJ
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4 170 struct list_head workers; /* A: attached workers */
60f5a4bc 171 struct completion *detach_completion; /* all workers detached */
e19e397a 172
7cda9aae 173 struct ida worker_ida; /* worker IDs for task name */
e19e397a 174
7a4e344c 175 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 178
e19e397a
TH
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
185
186 /*
24acfb71 187 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
8b03ae3c
TH
191} ____cacheline_aligned_in_smp;
192
1da177e4 193/*
112202d9
TH
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
1da177e4 198 */
112202d9 199struct pool_workqueue {
bd7bdd43 200 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 201 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
8864b4e5 204 int refcnt; /* L: reference count */
73f53c4a
TH
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
1e19ffc6 207 int nr_active; /* L: nr of active works */
a0a1a5fd 208 int max_active; /* L: max active works */
1e19ffc6 209 struct list_head delayed_works; /* L: delayed works */
3c25a55d 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 211 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 216 * itself is also RCU protected so that the first pwq can be
b09f4fd3 217 * determined without grabbing wq->mutex.
8864b4e5
TH
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
e904e6c2 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 222
73f53c4a
TH
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
3c25a55d
LJ
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
229 struct completion done; /* flush completion */
230};
231
226223ab
TH
232struct wq_device;
233
1da177e4 234/*
c5aa87bb
TH
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
237 */
238struct workqueue_struct {
3c25a55d 239 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 240 struct list_head list; /* PR: list of all workqueues */
73f53c4a 241
3c25a55d
LJ
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
112202d9 245 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 249
2e109a28 250 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 251 struct worker *rescuer; /* MD: rescue worker */
e22bee78 252
87fc741e 253 int nr_drainers; /* WQ: drain in progress */
a357fc03 254 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 255
5b95e1af
LJ
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 258
226223ab
TH
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
4e6045f1 262#ifdef CONFIG_LOCKDEP
669de8bd
BVA
263 char *lock_name;
264 struct lock_class_key key;
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad 269 /*
24acfb71
TG
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 305
e2dca7ad 306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 307static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 308
ef557180
MG
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 314
f303fccb
TH
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
7d19c5ce 327/* the per-cpu worker pools */
25528213 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 329
68e13a67 330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 331
68e13a67 332/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
c5aa87bb 335/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
8a2b7538
TH
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
d320c038 341struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 342EXPORT_SYMBOL(system_wq);
044c782c 343struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 344EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 345struct workqueue_struct *system_long_wq __read_mostly;
d320c038 346EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 347struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 348EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 349struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 350EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 355
7d19c5ce 356static int worker_thread(void *__worker);
6ba94429 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 358static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 359
97bd2347
TH
360#define CREATE_TRACE_POINTS
361#include <trace/events/workqueue.h>
362
68e13a67 363#define assert_rcu_or_pool_mutex() \
24acfb71 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 365 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 366 "RCU or wq_pool_mutex should be held")
5bcab335 367
5b95e1af 368#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 372 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 373
f02ae73a
TH
374#define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 377 (pool)++)
4ce62e9e 378
17116969
TH
379/**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
611c92a0 382 * @pi: integer used for iteration
fa1b54e6 383 *
24acfb71 384 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
17116969 390 */
611c92a0
TH
391#define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 394 else
17116969 395
822d8405
TH
396/**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
822d8405
TH
399 * @pool: worker_pool to iterate workers of
400 *
1258fae7 401 * This must be called with wq_pool_attach_mutex.
822d8405
TH
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
da028469
LJ
406#define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
409 else
410
49e3cf44
TH
411/**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
76af4d93 415 *
24acfb71 416 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
49e3cf44
TH
422 */
423#define for_each_pwq(pwq, wq) \
49e9d1a9 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 425 lockdep_is_held(&(wq->mutex)))
f3421797 426
dc186ad7
TG
427#ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429static struct debug_obj_descr work_debug_descr;
430
99777288
SG
431static void *work_debug_hint(void *addr)
432{
433 return ((struct work_struct *) addr)->func;
434}
435
b9fdac7f
CD
436static bool work_is_static_object(void *addr)
437{
438 struct work_struct *work = addr;
439
440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441}
442
dc186ad7
TG
443/*
444 * fixup_init is called when:
445 * - an active object is initialized
446 */
02a982a6 447static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
448{
449 struct work_struct *work = addr;
450
451 switch (state) {
452 case ODEBUG_STATE_ACTIVE:
453 cancel_work_sync(work);
454 debug_object_init(work, &work_debug_descr);
02a982a6 455 return true;
dc186ad7 456 default:
02a982a6 457 return false;
dc186ad7
TG
458 }
459}
460
dc186ad7
TG
461/*
462 * fixup_free is called when:
463 * - an active object is freed
464 */
02a982a6 465static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
466{
467 struct work_struct *work = addr;
468
469 switch (state) {
470 case ODEBUG_STATE_ACTIVE:
471 cancel_work_sync(work);
472 debug_object_free(work, &work_debug_descr);
02a982a6 473 return true;
dc186ad7 474 default:
02a982a6 475 return false;
dc186ad7
TG
476 }
477}
478
479static struct debug_obj_descr work_debug_descr = {
480 .name = "work_struct",
99777288 481 .debug_hint = work_debug_hint,
b9fdac7f 482 .is_static_object = work_is_static_object,
dc186ad7 483 .fixup_init = work_fixup_init,
dc186ad7
TG
484 .fixup_free = work_fixup_free,
485};
486
487static inline void debug_work_activate(struct work_struct *work)
488{
489 debug_object_activate(work, &work_debug_descr);
490}
491
492static inline void debug_work_deactivate(struct work_struct *work)
493{
494 debug_object_deactivate(work, &work_debug_descr);
495}
496
497void __init_work(struct work_struct *work, int onstack)
498{
499 if (onstack)
500 debug_object_init_on_stack(work, &work_debug_descr);
501 else
502 debug_object_init(work, &work_debug_descr);
503}
504EXPORT_SYMBOL_GPL(__init_work);
505
506void destroy_work_on_stack(struct work_struct *work)
507{
508 debug_object_free(work, &work_debug_descr);
509}
510EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511
ea2e64f2
TG
512void destroy_delayed_work_on_stack(struct delayed_work *work)
513{
514 destroy_timer_on_stack(&work->timer);
515 debug_object_free(&work->work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518
dc186ad7
TG
519#else
520static inline void debug_work_activate(struct work_struct *work) { }
521static inline void debug_work_deactivate(struct work_struct *work) { }
522#endif
523
4e8b22bd
LB
524/**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
9daf9e67
TH
531static int worker_pool_assign_id(struct worker_pool *pool)
532{
533 int ret;
534
68e13a67 535 lockdep_assert_held(&wq_pool_mutex);
5bcab335 536
4e8b22bd
LB
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
229641a6 539 if (ret >= 0) {
e68035fb 540 pool->id = ret;
229641a6
TH
541 return 0;
542 }
fa1b54e6 543 return ret;
7c3eed5c
TH
544}
545
df2d5ae4
TH
546/**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
24acfb71 551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 552 * read locked.
df2d5ae4
TH
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
555 *
556 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
557 */
558static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 int node)
560{
5b95e1af 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
562
563 /*
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
568 */
569 if (unlikely(node == NUMA_NO_NODE))
570 return wq->dfl_pwq;
571
df2d5ae4
TH
572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573}
574
73f53c4a
TH
575static unsigned int work_color_to_flags(int color)
576{
577 return color << WORK_STRUCT_COLOR_SHIFT;
578}
579
580static int get_work_color(struct work_struct *work)
581{
582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
584}
585
586static int work_next_color(int color)
587{
588 return (color + 1) % WORK_NR_COLORS;
589}
1da177e4 590
14441960 591/*
112202d9
TH
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 594 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 595 *
112202d9
TH
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
7a22ad75 600 *
112202d9 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 602 * corresponding to a work. Pool is available once the work has been
112202d9 603 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 604 * available only while the work item is queued.
7a22ad75 605 *
bbb68dfa
TH
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
14441960 610 */
7a22ad75
TH
611static inline void set_work_data(struct work_struct *work, unsigned long data,
612 unsigned long flags)
365970a1 613{
6183c009 614 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
615 atomic_long_set(&work->data, data | flags | work_static(work));
616}
365970a1 617
112202d9 618static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
619 unsigned long extra_flags)
620{
112202d9
TH
621 set_work_data(work, (unsigned long)pwq,
622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
623}
624
4468a00f
LJ
625static void set_work_pool_and_keep_pending(struct work_struct *work,
626 int pool_id)
627{
628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 WORK_STRUCT_PENDING);
630}
631
7c3eed5c
TH
632static void set_work_pool_and_clear_pending(struct work_struct *work,
633 int pool_id)
7a22ad75 634{
23657bb1
TH
635 /*
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
639 * owner.
640 */
641 smp_wmb();
7c3eed5c 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
643 /*
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
8bdc6201 647 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
648 * the same @work. E.g. consider this case:
649 *
650 * CPU#0 CPU#1
651 * ---------------------------- --------------------------------
652 *
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
658 * 6 smp_mb()
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
661 * }
662 *
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
670 */
671 smp_mb();
7a22ad75 672}
f756d5e2 673
7a22ad75 674static void clear_work_data(struct work_struct *work)
1da177e4 675{
7c3eed5c
TH
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
678}
679
112202d9 680static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 681{
e120153d 682 unsigned long data = atomic_long_read(&work->data);
7a22ad75 683
112202d9 684 if (data & WORK_STRUCT_PWQ)
e120153d
TH
685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 else
687 return NULL;
4d707b9f
ON
688}
689
7c3eed5c
TH
690/**
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
693 *
68e13a67 694 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
695 * access under RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
697 *
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
d185af30
YB
702 *
703 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
704 */
705static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 706{
e120153d 707 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 708 int pool_id;
7a22ad75 709
68e13a67 710 assert_rcu_or_pool_mutex();
fa1b54e6 711
112202d9
TH
712 if (data & WORK_STRUCT_PWQ)
713 return ((struct pool_workqueue *)
7c3eed5c 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 715
7c3eed5c
TH
716 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
718 return NULL;
719
fa1b54e6 720 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
721}
722
723/**
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
726 *
d185af30 727 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
728 * %WORK_OFFQ_POOL_NONE if none.
729 */
730static int get_work_pool_id(struct work_struct *work)
731{
54d5b7d0
LJ
732 unsigned long data = atomic_long_read(&work->data);
733
112202d9
TH
734 if (data & WORK_STRUCT_PWQ)
735 return ((struct pool_workqueue *)
54d5b7d0 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 737
54d5b7d0 738 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
739}
740
bbb68dfa
TH
741static void mark_work_canceling(struct work_struct *work)
742{
7c3eed5c 743 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 744
7c3eed5c
TH
745 pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
747}
748
749static bool work_is_canceling(struct work_struct *work)
750{
751 unsigned long data = atomic_long_read(&work->data);
752
112202d9 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
754}
755
e22bee78 756/*
3270476a
TH
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 759 * they're being called with pool->lock held.
e22bee78
TH
760 */
761
63d95a91 762static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 763{
e19e397a 764 return !atomic_read(&pool->nr_running);
a848e3b6
ON
765}
766
4594bf15 767/*
e22bee78
TH
768 * Need to wake up a worker? Called from anything but currently
769 * running workers.
974271c4
TH
770 *
771 * Note that, because unbound workers never contribute to nr_running, this
706026c2 772 * function will always return %true for unbound pools as long as the
974271c4 773 * worklist isn't empty.
4594bf15 774 */
63d95a91 775static bool need_more_worker(struct worker_pool *pool)
365970a1 776{
63d95a91 777 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 778}
4594bf15 779
e22bee78 780/* Can I start working? Called from busy but !running workers. */
63d95a91 781static bool may_start_working(struct worker_pool *pool)
e22bee78 782{
63d95a91 783 return pool->nr_idle;
e22bee78
TH
784}
785
786/* Do I need to keep working? Called from currently running workers. */
63d95a91 787static bool keep_working(struct worker_pool *pool)
e22bee78 788{
e19e397a
TH
789 return !list_empty(&pool->worklist) &&
790 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
791}
792
793/* Do we need a new worker? Called from manager. */
63d95a91 794static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 795{
63d95a91 796 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 797}
365970a1 798
e22bee78 799/* Do we have too many workers and should some go away? */
63d95a91 800static bool too_many_workers(struct worker_pool *pool)
e22bee78 801{
692b4825 802 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
805
806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
807}
808
4d707b9f 809/*
e22bee78
TH
810 * Wake up functions.
811 */
812
1037de36
LJ
813/* Return the first idle worker. Safe with preemption disabled */
814static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 815{
63d95a91 816 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
817 return NULL;
818
63d95a91 819 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
820}
821
822/**
823 * wake_up_worker - wake up an idle worker
63d95a91 824 * @pool: worker pool to wake worker from
7e11629d 825 *
63d95a91 826 * Wake up the first idle worker of @pool.
7e11629d
TH
827 *
828 * CONTEXT:
d565ed63 829 * spin_lock_irq(pool->lock).
7e11629d 830 */
63d95a91 831static void wake_up_worker(struct worker_pool *pool)
7e11629d 832{
1037de36 833 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
834
835 if (likely(worker))
836 wake_up_process(worker->task);
837}
838
d302f017 839/**
6d25be57 840 * wq_worker_running - a worker is running again
e22bee78 841 * @task: task waking up
e22bee78 842 *
6d25be57 843 * This function is called when a worker returns from schedule()
e22bee78 844 */
6d25be57 845void wq_worker_running(struct task_struct *task)
e22bee78
TH
846{
847 struct worker *worker = kthread_data(task);
848
6d25be57
TG
849 if (!worker->sleeping)
850 return;
851 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 852 atomic_inc(&worker->pool->nr_running);
6d25be57 853 worker->sleeping = 0;
e22bee78
TH
854}
855
856/**
857 * wq_worker_sleeping - a worker is going to sleep
858 * @task: task going to sleep
e22bee78 859 *
6d25be57
TG
860 * This function is called from schedule() when a busy worker is
861 * going to sleep.
e22bee78 862 */
6d25be57 863void wq_worker_sleeping(struct task_struct *task)
e22bee78 864{
6d25be57 865 struct worker *next, *worker = kthread_data(task);
111c225a 866 struct worker_pool *pool;
e22bee78 867
111c225a
TH
868 /*
869 * Rescuers, which may not have all the fields set up like normal
870 * workers, also reach here, let's not access anything before
871 * checking NOT_RUNNING.
872 */
2d64672e 873 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 874 return;
e22bee78 875
111c225a 876 pool = worker->pool;
111c225a 877
6d25be57
TG
878 if (WARN_ON_ONCE(worker->sleeping))
879 return;
880
881 worker->sleeping = 1;
882 spin_lock_irq(&pool->lock);
e22bee78
TH
883
884 /*
885 * The counterpart of the following dec_and_test, implied mb,
886 * worklist not empty test sequence is in insert_work().
887 * Please read comment there.
888 *
628c78e7
TH
889 * NOT_RUNNING is clear. This means that we're bound to and
890 * running on the local cpu w/ rq lock held and preemption
891 * disabled, which in turn means that none else could be
d565ed63 892 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 893 * lock is safe.
e22bee78 894 */
e19e397a 895 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
896 !list_empty(&pool->worklist)) {
897 next = first_idle_worker(pool);
898 if (next)
899 wake_up_process(next->task);
900 }
901 spin_unlock_irq(&pool->lock);
e22bee78
TH
902}
903
1b69ac6b
JW
904/**
905 * wq_worker_last_func - retrieve worker's last work function
8194fe94 906 * @task: Task to retrieve last work function of.
1b69ac6b
JW
907 *
908 * Determine the last function a worker executed. This is called from
909 * the scheduler to get a worker's last known identity.
910 *
911 * CONTEXT:
912 * spin_lock_irq(rq->lock)
913 *
4b047002
JW
914 * This function is called during schedule() when a kworker is going
915 * to sleep. It's used by psi to identify aggregation workers during
916 * dequeuing, to allow periodic aggregation to shut-off when that
917 * worker is the last task in the system or cgroup to go to sleep.
918 *
919 * As this function doesn't involve any workqueue-related locking, it
920 * only returns stable values when called from inside the scheduler's
921 * queuing and dequeuing paths, when @task, which must be a kworker,
922 * is guaranteed to not be processing any works.
923 *
1b69ac6b
JW
924 * Return:
925 * The last work function %current executed as a worker, NULL if it
926 * hasn't executed any work yet.
927 */
928work_func_t wq_worker_last_func(struct task_struct *task)
929{
930 struct worker *worker = kthread_data(task);
931
932 return worker->last_func;
933}
934
e22bee78
TH
935/**
936 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 937 * @worker: self
d302f017 938 * @flags: flags to set
d302f017 939 *
228f1d00 940 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 941 *
cb444766 942 * CONTEXT:
d565ed63 943 * spin_lock_irq(pool->lock)
d302f017 944 */
228f1d00 945static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 946{
bd7bdd43 947 struct worker_pool *pool = worker->pool;
e22bee78 948
cb444766
TH
949 WARN_ON_ONCE(worker->task != current);
950
228f1d00 951 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
952 if ((flags & WORKER_NOT_RUNNING) &&
953 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 954 atomic_dec(&pool->nr_running);
e22bee78
TH
955 }
956
d302f017
TH
957 worker->flags |= flags;
958}
959
960/**
e22bee78 961 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 962 * @worker: self
d302f017
TH
963 * @flags: flags to clear
964 *
e22bee78 965 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 966 *
cb444766 967 * CONTEXT:
d565ed63 968 * spin_lock_irq(pool->lock)
d302f017
TH
969 */
970static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
971{
63d95a91 972 struct worker_pool *pool = worker->pool;
e22bee78
TH
973 unsigned int oflags = worker->flags;
974
cb444766
TH
975 WARN_ON_ONCE(worker->task != current);
976
d302f017 977 worker->flags &= ~flags;
e22bee78 978
42c025f3
TH
979 /*
980 * If transitioning out of NOT_RUNNING, increment nr_running. Note
981 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
982 * of multiple flags, not a single flag.
983 */
e22bee78
TH
984 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
985 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 986 atomic_inc(&pool->nr_running);
d302f017
TH
987}
988
8cca0eea
TH
989/**
990 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 991 * @pool: pool of interest
8cca0eea
TH
992 * @work: work to find worker for
993 *
c9e7cf27
TH
994 * Find a worker which is executing @work on @pool by searching
995 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
996 * to match, its current execution should match the address of @work and
997 * its work function. This is to avoid unwanted dependency between
998 * unrelated work executions through a work item being recycled while still
999 * being executed.
1000 *
1001 * This is a bit tricky. A work item may be freed once its execution
1002 * starts and nothing prevents the freed area from being recycled for
1003 * another work item. If the same work item address ends up being reused
1004 * before the original execution finishes, workqueue will identify the
1005 * recycled work item as currently executing and make it wait until the
1006 * current execution finishes, introducing an unwanted dependency.
1007 *
c5aa87bb
TH
1008 * This function checks the work item address and work function to avoid
1009 * false positives. Note that this isn't complete as one may construct a
1010 * work function which can introduce dependency onto itself through a
1011 * recycled work item. Well, if somebody wants to shoot oneself in the
1012 * foot that badly, there's only so much we can do, and if such deadlock
1013 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1014 *
1015 * CONTEXT:
d565ed63 1016 * spin_lock_irq(pool->lock).
8cca0eea 1017 *
d185af30
YB
1018 * Return:
1019 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1020 * otherwise.
4d707b9f 1021 */
c9e7cf27 1022static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1023 struct work_struct *work)
4d707b9f 1024{
42f8570f 1025 struct worker *worker;
42f8570f 1026
b67bfe0d 1027 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1028 (unsigned long)work)
1029 if (worker->current_work == work &&
1030 worker->current_func == work->func)
42f8570f
SL
1031 return worker;
1032
1033 return NULL;
4d707b9f
ON
1034}
1035
bf4ede01
TH
1036/**
1037 * move_linked_works - move linked works to a list
1038 * @work: start of series of works to be scheduled
1039 * @head: target list to append @work to
402dd89d 1040 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1041 *
1042 * Schedule linked works starting from @work to @head. Work series to
1043 * be scheduled starts at @work and includes any consecutive work with
1044 * WORK_STRUCT_LINKED set in its predecessor.
1045 *
1046 * If @nextp is not NULL, it's updated to point to the next work of
1047 * the last scheduled work. This allows move_linked_works() to be
1048 * nested inside outer list_for_each_entry_safe().
1049 *
1050 * CONTEXT:
d565ed63 1051 * spin_lock_irq(pool->lock).
bf4ede01
TH
1052 */
1053static void move_linked_works(struct work_struct *work, struct list_head *head,
1054 struct work_struct **nextp)
1055{
1056 struct work_struct *n;
1057
1058 /*
1059 * Linked worklist will always end before the end of the list,
1060 * use NULL for list head.
1061 */
1062 list_for_each_entry_safe_from(work, n, NULL, entry) {
1063 list_move_tail(&work->entry, head);
1064 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1065 break;
1066 }
1067
1068 /*
1069 * If we're already inside safe list traversal and have moved
1070 * multiple works to the scheduled queue, the next position
1071 * needs to be updated.
1072 */
1073 if (nextp)
1074 *nextp = n;
1075}
1076
8864b4e5
TH
1077/**
1078 * get_pwq - get an extra reference on the specified pool_workqueue
1079 * @pwq: pool_workqueue to get
1080 *
1081 * Obtain an extra reference on @pwq. The caller should guarantee that
1082 * @pwq has positive refcnt and be holding the matching pool->lock.
1083 */
1084static void get_pwq(struct pool_workqueue *pwq)
1085{
1086 lockdep_assert_held(&pwq->pool->lock);
1087 WARN_ON_ONCE(pwq->refcnt <= 0);
1088 pwq->refcnt++;
1089}
1090
1091/**
1092 * put_pwq - put a pool_workqueue reference
1093 * @pwq: pool_workqueue to put
1094 *
1095 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1096 * destruction. The caller should be holding the matching pool->lock.
1097 */
1098static void put_pwq(struct pool_workqueue *pwq)
1099{
1100 lockdep_assert_held(&pwq->pool->lock);
1101 if (likely(--pwq->refcnt))
1102 return;
1103 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1104 return;
1105 /*
1106 * @pwq can't be released under pool->lock, bounce to
1107 * pwq_unbound_release_workfn(). This never recurses on the same
1108 * pool->lock as this path is taken only for unbound workqueues and
1109 * the release work item is scheduled on a per-cpu workqueue. To
1110 * avoid lockdep warning, unbound pool->locks are given lockdep
1111 * subclass of 1 in get_unbound_pool().
1112 */
1113 schedule_work(&pwq->unbound_release_work);
1114}
1115
dce90d47
TH
1116/**
1117 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1118 * @pwq: pool_workqueue to put (can be %NULL)
1119 *
1120 * put_pwq() with locking. This function also allows %NULL @pwq.
1121 */
1122static void put_pwq_unlocked(struct pool_workqueue *pwq)
1123{
1124 if (pwq) {
1125 /*
24acfb71 1126 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1127 * following lock operations are safe.
1128 */
1129 spin_lock_irq(&pwq->pool->lock);
1130 put_pwq(pwq);
1131 spin_unlock_irq(&pwq->pool->lock);
1132 }
1133}
1134
112202d9 1135static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1136{
112202d9 1137 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1138
1139 trace_workqueue_activate_work(work);
82607adc
TH
1140 if (list_empty(&pwq->pool->worklist))
1141 pwq->pool->watchdog_ts = jiffies;
112202d9 1142 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1143 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1144 pwq->nr_active++;
bf4ede01
TH
1145}
1146
112202d9 1147static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1148{
112202d9 1149 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1150 struct work_struct, entry);
1151
112202d9 1152 pwq_activate_delayed_work(work);
3aa62497
LJ
1153}
1154
bf4ede01 1155/**
112202d9
TH
1156 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1157 * @pwq: pwq of interest
bf4ede01 1158 * @color: color of work which left the queue
bf4ede01
TH
1159 *
1160 * A work either has completed or is removed from pending queue,
112202d9 1161 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1162 *
1163 * CONTEXT:
d565ed63 1164 * spin_lock_irq(pool->lock).
bf4ede01 1165 */
112202d9 1166static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1167{
8864b4e5 1168 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1169 if (color == WORK_NO_COLOR)
8864b4e5 1170 goto out_put;
bf4ede01 1171
112202d9 1172 pwq->nr_in_flight[color]--;
bf4ede01 1173
112202d9
TH
1174 pwq->nr_active--;
1175 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1176 /* one down, submit a delayed one */
112202d9
TH
1177 if (pwq->nr_active < pwq->max_active)
1178 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1179 }
1180
1181 /* is flush in progress and are we at the flushing tip? */
112202d9 1182 if (likely(pwq->flush_color != color))
8864b4e5 1183 goto out_put;
bf4ede01
TH
1184
1185 /* are there still in-flight works? */
112202d9 1186 if (pwq->nr_in_flight[color])
8864b4e5 1187 goto out_put;
bf4ede01 1188
112202d9
TH
1189 /* this pwq is done, clear flush_color */
1190 pwq->flush_color = -1;
bf4ede01
TH
1191
1192 /*
112202d9 1193 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1194 * will handle the rest.
1195 */
112202d9
TH
1196 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1197 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1198out_put:
1199 put_pwq(pwq);
bf4ede01
TH
1200}
1201
36e227d2 1202/**
bbb68dfa 1203 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1204 * @work: work item to steal
1205 * @is_dwork: @work is a delayed_work
bbb68dfa 1206 * @flags: place to store irq state
36e227d2
TH
1207 *
1208 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1209 * stable state - idle, on timer or on worklist.
36e227d2 1210 *
d185af30 1211 * Return:
36e227d2
TH
1212 * 1 if @work was pending and we successfully stole PENDING
1213 * 0 if @work was idle and we claimed PENDING
1214 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1215 * -ENOENT if someone else is canceling @work, this state may persist
1216 * for arbitrarily long
36e227d2 1217 *
d185af30 1218 * Note:
bbb68dfa 1219 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1220 * interrupted while holding PENDING and @work off queue, irq must be
1221 * disabled on entry. This, combined with delayed_work->timer being
1222 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1223 *
1224 * On successful return, >= 0, irq is disabled and the caller is
1225 * responsible for releasing it using local_irq_restore(*@flags).
1226 *
e0aecdd8 1227 * This function is safe to call from any context including IRQ handler.
bf4ede01 1228 */
bbb68dfa
TH
1229static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1230 unsigned long *flags)
bf4ede01 1231{
d565ed63 1232 struct worker_pool *pool;
112202d9 1233 struct pool_workqueue *pwq;
bf4ede01 1234
bbb68dfa
TH
1235 local_irq_save(*flags);
1236
36e227d2
TH
1237 /* try to steal the timer if it exists */
1238 if (is_dwork) {
1239 struct delayed_work *dwork = to_delayed_work(work);
1240
e0aecdd8
TH
1241 /*
1242 * dwork->timer is irqsafe. If del_timer() fails, it's
1243 * guaranteed that the timer is not queued anywhere and not
1244 * running on the local CPU.
1245 */
36e227d2
TH
1246 if (likely(del_timer(&dwork->timer)))
1247 return 1;
1248 }
1249
1250 /* try to claim PENDING the normal way */
bf4ede01
TH
1251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1252 return 0;
1253
24acfb71 1254 rcu_read_lock();
bf4ede01
TH
1255 /*
1256 * The queueing is in progress, or it is already queued. Try to
1257 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258 */
d565ed63
TH
1259 pool = get_work_pool(work);
1260 if (!pool)
bbb68dfa 1261 goto fail;
bf4ede01 1262
d565ed63 1263 spin_lock(&pool->lock);
0b3dae68 1264 /*
112202d9
TH
1265 * work->data is guaranteed to point to pwq only while the work
1266 * item is queued on pwq->wq, and both updating work->data to point
1267 * to pwq on queueing and to pool on dequeueing are done under
1268 * pwq->pool->lock. This in turn guarantees that, if work->data
1269 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1270 * item is currently queued on that pool.
1271 */
112202d9
TH
1272 pwq = get_work_pwq(work);
1273 if (pwq && pwq->pool == pool) {
16062836
TH
1274 debug_work_deactivate(work);
1275
1276 /*
1277 * A delayed work item cannot be grabbed directly because
1278 * it might have linked NO_COLOR work items which, if left
112202d9 1279 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1280 * management later on and cause stall. Make sure the work
1281 * item is activated before grabbing.
1282 */
1283 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1284 pwq_activate_delayed_work(work);
16062836
TH
1285
1286 list_del_init(&work->entry);
9c34a704 1287 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1288
112202d9 1289 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1290 set_work_pool_and_keep_pending(work, pool->id);
1291
1292 spin_unlock(&pool->lock);
24acfb71 1293 rcu_read_unlock();
16062836 1294 return 1;
bf4ede01 1295 }
d565ed63 1296 spin_unlock(&pool->lock);
bbb68dfa 1297fail:
24acfb71 1298 rcu_read_unlock();
bbb68dfa
TH
1299 local_irq_restore(*flags);
1300 if (work_is_canceling(work))
1301 return -ENOENT;
1302 cpu_relax();
36e227d2 1303 return -EAGAIN;
bf4ede01
TH
1304}
1305
4690c4ab 1306/**
706026c2 1307 * insert_work - insert a work into a pool
112202d9 1308 * @pwq: pwq @work belongs to
4690c4ab
TH
1309 * @work: work to insert
1310 * @head: insertion point
1311 * @extra_flags: extra WORK_STRUCT_* flags to set
1312 *
112202d9 1313 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1314 * work_struct flags.
4690c4ab
TH
1315 *
1316 * CONTEXT:
d565ed63 1317 * spin_lock_irq(pool->lock).
4690c4ab 1318 */
112202d9
TH
1319static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1320 struct list_head *head, unsigned int extra_flags)
b89deed3 1321{
112202d9 1322 struct worker_pool *pool = pwq->pool;
e22bee78 1323
4690c4ab 1324 /* we own @work, set data and link */
112202d9 1325 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1326 list_add_tail(&work->entry, head);
8864b4e5 1327 get_pwq(pwq);
e22bee78
TH
1328
1329 /*
c5aa87bb
TH
1330 * Ensure either wq_worker_sleeping() sees the above
1331 * list_add_tail() or we see zero nr_running to avoid workers lying
1332 * around lazily while there are works to be processed.
e22bee78
TH
1333 */
1334 smp_mb();
1335
63d95a91
TH
1336 if (__need_more_worker(pool))
1337 wake_up_worker(pool);
b89deed3
ON
1338}
1339
c8efcc25
TH
1340/*
1341 * Test whether @work is being queued from another work executing on the
8d03ecfe 1342 * same workqueue.
c8efcc25
TH
1343 */
1344static bool is_chained_work(struct workqueue_struct *wq)
1345{
8d03ecfe
TH
1346 struct worker *worker;
1347
1348 worker = current_wq_worker();
1349 /*
bf393fd4 1350 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1351 * I'm @worker, it's safe to dereference it without locking.
1352 */
112202d9 1353 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1354}
1355
ef557180
MG
1356/*
1357 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1358 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1359 * avoid perturbing sensitive tasks.
1360 */
1361static int wq_select_unbound_cpu(int cpu)
1362{
f303fccb 1363 static bool printed_dbg_warning;
ef557180
MG
1364 int new_cpu;
1365
f303fccb
TH
1366 if (likely(!wq_debug_force_rr_cpu)) {
1367 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1368 return cpu;
1369 } else if (!printed_dbg_warning) {
1370 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1371 printed_dbg_warning = true;
1372 }
1373
ef557180
MG
1374 if (cpumask_empty(wq_unbound_cpumask))
1375 return cpu;
1376
1377 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1378 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1379 if (unlikely(new_cpu >= nr_cpu_ids)) {
1380 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1381 if (unlikely(new_cpu >= nr_cpu_ids))
1382 return cpu;
1383 }
1384 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1385
1386 return new_cpu;
1387}
1388
d84ff051 1389static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1390 struct work_struct *work)
1391{
112202d9 1392 struct pool_workqueue *pwq;
c9178087 1393 struct worker_pool *last_pool;
1e19ffc6 1394 struct list_head *worklist;
8a2e8e5d 1395 unsigned int work_flags;
b75cac93 1396 unsigned int req_cpu = cpu;
8930caba
TH
1397
1398 /*
1399 * While a work item is PENDING && off queue, a task trying to
1400 * steal the PENDING will busy-loop waiting for it to either get
1401 * queued or lose PENDING. Grabbing PENDING and queueing should
1402 * happen with IRQ disabled.
1403 */
8e8eb730 1404 lockdep_assert_irqs_disabled();
1da177e4 1405
dc186ad7 1406 debug_work_activate(work);
1e19ffc6 1407
9ef28a73 1408 /* if draining, only works from the same workqueue are allowed */
618b01eb 1409 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1410 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1411 return;
24acfb71 1412 rcu_read_lock();
9e8cd2f5 1413retry:
c9178087 1414 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1415 if (wq->flags & WQ_UNBOUND) {
1416 if (req_cpu == WORK_CPU_UNBOUND)
1417 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1418 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1419 } else {
1420 if (req_cpu == WORK_CPU_UNBOUND)
1421 cpu = raw_smp_processor_id();
1422 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1423 }
dbf2576e 1424
c9178087
TH
1425 /*
1426 * If @work was previously on a different pool, it might still be
1427 * running there, in which case the work needs to be queued on that
1428 * pool to guarantee non-reentrancy.
1429 */
1430 last_pool = get_work_pool(work);
1431 if (last_pool && last_pool != pwq->pool) {
1432 struct worker *worker;
18aa9eff 1433
c9178087 1434 spin_lock(&last_pool->lock);
18aa9eff 1435
c9178087 1436 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1437
c9178087
TH
1438 if (worker && worker->current_pwq->wq == wq) {
1439 pwq = worker->current_pwq;
8930caba 1440 } else {
c9178087
TH
1441 /* meh... not running there, queue here */
1442 spin_unlock(&last_pool->lock);
112202d9 1443 spin_lock(&pwq->pool->lock);
8930caba 1444 }
f3421797 1445 } else {
112202d9 1446 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1447 }
1448
9e8cd2f5
TH
1449 /*
1450 * pwq is determined and locked. For unbound pools, we could have
1451 * raced with pwq release and it could already be dead. If its
1452 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1453 * without another pwq replacing it in the numa_pwq_tbl or while
1454 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1455 * make forward-progress.
1456 */
1457 if (unlikely(!pwq->refcnt)) {
1458 if (wq->flags & WQ_UNBOUND) {
1459 spin_unlock(&pwq->pool->lock);
1460 cpu_relax();
1461 goto retry;
1462 }
1463 /* oops */
1464 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1465 wq->name, cpu);
1466 }
1467
112202d9
TH
1468 /* pwq determined, queue */
1469 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1470
24acfb71
TG
1471 if (WARN_ON(!list_empty(&work->entry)))
1472 goto out;
1e19ffc6 1473
112202d9
TH
1474 pwq->nr_in_flight[pwq->work_color]++;
1475 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1476
112202d9 1477 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1478 trace_workqueue_activate_work(work);
112202d9
TH
1479 pwq->nr_active++;
1480 worklist = &pwq->pool->worklist;
82607adc
TH
1481 if (list_empty(worklist))
1482 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1483 } else {
1484 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1485 worklist = &pwq->delayed_works;
8a2e8e5d 1486 }
1e19ffc6 1487
112202d9 1488 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1489
24acfb71 1490out:
112202d9 1491 spin_unlock(&pwq->pool->lock);
24acfb71 1492 rcu_read_unlock();
1da177e4
LT
1493}
1494
0fcb78c2 1495/**
c1a220e7
ZR
1496 * queue_work_on - queue work on specific cpu
1497 * @cpu: CPU number to execute work on
0fcb78c2
REB
1498 * @wq: workqueue to use
1499 * @work: work to queue
1500 *
c1a220e7
ZR
1501 * We queue the work to a specific CPU, the caller must ensure it
1502 * can't go away.
d185af30
YB
1503 *
1504 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1505 */
d4283e93
TH
1506bool queue_work_on(int cpu, struct workqueue_struct *wq,
1507 struct work_struct *work)
1da177e4 1508{
d4283e93 1509 bool ret = false;
8930caba 1510 unsigned long flags;
ef1ca236 1511
8930caba 1512 local_irq_save(flags);
c1a220e7 1513
22df02bb 1514 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1515 __queue_work(cpu, wq, work);
d4283e93 1516 ret = true;
c1a220e7 1517 }
ef1ca236 1518
8930caba 1519 local_irq_restore(flags);
1da177e4
LT
1520 return ret;
1521}
ad7b1f84 1522EXPORT_SYMBOL(queue_work_on);
1da177e4 1523
8204e0c1
AD
1524/**
1525 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1526 * @node: NUMA node ID that we want to select a CPU from
1527 *
1528 * This function will attempt to find a "random" cpu available on a given
1529 * node. If there are no CPUs available on the given node it will return
1530 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1531 * available CPU if we need to schedule this work.
1532 */
1533static int workqueue_select_cpu_near(int node)
1534{
1535 int cpu;
1536
1537 /* No point in doing this if NUMA isn't enabled for workqueues */
1538 if (!wq_numa_enabled)
1539 return WORK_CPU_UNBOUND;
1540
1541 /* Delay binding to CPU if node is not valid or online */
1542 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1543 return WORK_CPU_UNBOUND;
1544
1545 /* Use local node/cpu if we are already there */
1546 cpu = raw_smp_processor_id();
1547 if (node == cpu_to_node(cpu))
1548 return cpu;
1549
1550 /* Use "random" otherwise know as "first" online CPU of node */
1551 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1552
1553 /* If CPU is valid return that, otherwise just defer */
1554 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1555}
1556
1557/**
1558 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1559 * @node: NUMA node that we are targeting the work for
1560 * @wq: workqueue to use
1561 * @work: work to queue
1562 *
1563 * We queue the work to a "random" CPU within a given NUMA node. The basic
1564 * idea here is to provide a way to somehow associate work with a given
1565 * NUMA node.
1566 *
1567 * This function will only make a best effort attempt at getting this onto
1568 * the right NUMA node. If no node is requested or the requested node is
1569 * offline then we just fall back to standard queue_work behavior.
1570 *
1571 * Currently the "random" CPU ends up being the first available CPU in the
1572 * intersection of cpu_online_mask and the cpumask of the node, unless we
1573 * are running on the node. In that case we just use the current CPU.
1574 *
1575 * Return: %false if @work was already on a queue, %true otherwise.
1576 */
1577bool queue_work_node(int node, struct workqueue_struct *wq,
1578 struct work_struct *work)
1579{
1580 unsigned long flags;
1581 bool ret = false;
1582
1583 /*
1584 * This current implementation is specific to unbound workqueues.
1585 * Specifically we only return the first available CPU for a given
1586 * node instead of cycling through individual CPUs within the node.
1587 *
1588 * If this is used with a per-cpu workqueue then the logic in
1589 * workqueue_select_cpu_near would need to be updated to allow for
1590 * some round robin type logic.
1591 */
1592 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1593
1594 local_irq_save(flags);
1595
1596 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1597 int cpu = workqueue_select_cpu_near(node);
1598
1599 __queue_work(cpu, wq, work);
1600 ret = true;
1601 }
1602
1603 local_irq_restore(flags);
1604 return ret;
1605}
1606EXPORT_SYMBOL_GPL(queue_work_node);
1607
8c20feb6 1608void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1609{
8c20feb6 1610 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1611
e0aecdd8 1612 /* should have been called from irqsafe timer with irq already off */
60c057bc 1613 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1614}
1438ade5 1615EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1616
7beb2edf
TH
1617static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1618 struct delayed_work *dwork, unsigned long delay)
1da177e4 1619{
7beb2edf
TH
1620 struct timer_list *timer = &dwork->timer;
1621 struct work_struct *work = &dwork->work;
7beb2edf 1622
637fdbae 1623 WARN_ON_ONCE(!wq);
841b86f3 1624 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1625 WARN_ON_ONCE(timer_pending(timer));
1626 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1627
8852aac2
TH
1628 /*
1629 * If @delay is 0, queue @dwork->work immediately. This is for
1630 * both optimization and correctness. The earliest @timer can
1631 * expire is on the closest next tick and delayed_work users depend
1632 * on that there's no such delay when @delay is 0.
1633 */
1634 if (!delay) {
1635 __queue_work(cpu, wq, &dwork->work);
1636 return;
1637 }
1638
60c057bc 1639 dwork->wq = wq;
1265057f 1640 dwork->cpu = cpu;
7beb2edf
TH
1641 timer->expires = jiffies + delay;
1642
041bd12e
TH
1643 if (unlikely(cpu != WORK_CPU_UNBOUND))
1644 add_timer_on(timer, cpu);
1645 else
1646 add_timer(timer);
1da177e4
LT
1647}
1648
0fcb78c2
REB
1649/**
1650 * queue_delayed_work_on - queue work on specific CPU after delay
1651 * @cpu: CPU number to execute work on
1652 * @wq: workqueue to use
af9997e4 1653 * @dwork: work to queue
0fcb78c2
REB
1654 * @delay: number of jiffies to wait before queueing
1655 *
d185af30 1656 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1657 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1658 * execution.
0fcb78c2 1659 */
d4283e93
TH
1660bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1661 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1662{
52bad64d 1663 struct work_struct *work = &dwork->work;
d4283e93 1664 bool ret = false;
8930caba 1665 unsigned long flags;
7a6bc1cd 1666
8930caba
TH
1667 /* read the comment in __queue_work() */
1668 local_irq_save(flags);
7a6bc1cd 1669
22df02bb 1670 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1671 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1672 ret = true;
7a6bc1cd 1673 }
8a3e77cc 1674
8930caba 1675 local_irq_restore(flags);
7a6bc1cd
VP
1676 return ret;
1677}
ad7b1f84 1678EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1679
8376fe22
TH
1680/**
1681 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1682 * @cpu: CPU number to execute work on
1683 * @wq: workqueue to use
1684 * @dwork: work to queue
1685 * @delay: number of jiffies to wait before queueing
1686 *
1687 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1688 * modify @dwork's timer so that it expires after @delay. If @delay is
1689 * zero, @work is guaranteed to be scheduled immediately regardless of its
1690 * current state.
1691 *
d185af30 1692 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1693 * pending and its timer was modified.
1694 *
e0aecdd8 1695 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1696 * See try_to_grab_pending() for details.
1697 */
1698bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1699 struct delayed_work *dwork, unsigned long delay)
1700{
1701 unsigned long flags;
1702 int ret;
c7fc77f7 1703
8376fe22
TH
1704 do {
1705 ret = try_to_grab_pending(&dwork->work, true, &flags);
1706 } while (unlikely(ret == -EAGAIN));
63bc0362 1707
8376fe22
TH
1708 if (likely(ret >= 0)) {
1709 __queue_delayed_work(cpu, wq, dwork, delay);
1710 local_irq_restore(flags);
7a6bc1cd 1711 }
8376fe22
TH
1712
1713 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1714 return ret;
1715}
8376fe22
TH
1716EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1717
05f0fe6b
TH
1718static void rcu_work_rcufn(struct rcu_head *rcu)
1719{
1720 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1721
1722 /* read the comment in __queue_work() */
1723 local_irq_disable();
1724 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1725 local_irq_enable();
1726}
1727
1728/**
1729 * queue_rcu_work - queue work after a RCU grace period
1730 * @wq: workqueue to use
1731 * @rwork: work to queue
1732 *
1733 * Return: %false if @rwork was already pending, %true otherwise. Note
1734 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1735 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1736 * execution may happen before a full RCU grace period has passed.
1737 */
1738bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1739{
1740 struct work_struct *work = &rwork->work;
1741
1742 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1743 rwork->wq = wq;
1744 call_rcu(&rwork->rcu, rcu_work_rcufn);
1745 return true;
1746 }
1747
1748 return false;
1749}
1750EXPORT_SYMBOL(queue_rcu_work);
1751
c8e55f36
TH
1752/**
1753 * worker_enter_idle - enter idle state
1754 * @worker: worker which is entering idle state
1755 *
1756 * @worker is entering idle state. Update stats and idle timer if
1757 * necessary.
1758 *
1759 * LOCKING:
d565ed63 1760 * spin_lock_irq(pool->lock).
c8e55f36
TH
1761 */
1762static void worker_enter_idle(struct worker *worker)
1da177e4 1763{
bd7bdd43 1764 struct worker_pool *pool = worker->pool;
c8e55f36 1765
6183c009
TH
1766 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1767 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1768 (worker->hentry.next || worker->hentry.pprev)))
1769 return;
c8e55f36 1770
051e1850 1771 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1772 worker->flags |= WORKER_IDLE;
bd7bdd43 1773 pool->nr_idle++;
e22bee78 1774 worker->last_active = jiffies;
c8e55f36
TH
1775
1776 /* idle_list is LIFO */
bd7bdd43 1777 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1778
628c78e7
TH
1779 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1780 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1781
544ecf31 1782 /*
e8b3f8db 1783 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1784 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1785 * nr_running, the warning may trigger spuriously. Check iff
1786 * unbind is not in progress.
544ecf31 1787 */
24647570 1788 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1789 pool->nr_workers == pool->nr_idle &&
e19e397a 1790 atomic_read(&pool->nr_running));
c8e55f36
TH
1791}
1792
1793/**
1794 * worker_leave_idle - leave idle state
1795 * @worker: worker which is leaving idle state
1796 *
1797 * @worker is leaving idle state. Update stats.
1798 *
1799 * LOCKING:
d565ed63 1800 * spin_lock_irq(pool->lock).
c8e55f36
TH
1801 */
1802static void worker_leave_idle(struct worker *worker)
1803{
bd7bdd43 1804 struct worker_pool *pool = worker->pool;
c8e55f36 1805
6183c009
TH
1806 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1807 return;
d302f017 1808 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1809 pool->nr_idle--;
c8e55f36
TH
1810 list_del_init(&worker->entry);
1811}
1812
f7537df5 1813static struct worker *alloc_worker(int node)
c34056a3
TH
1814{
1815 struct worker *worker;
1816
f7537df5 1817 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1818 if (worker) {
1819 INIT_LIST_HEAD(&worker->entry);
affee4b2 1820 INIT_LIST_HEAD(&worker->scheduled);
da028469 1821 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1822 /* on creation a worker is in !idle && prep state */
1823 worker->flags = WORKER_PREP;
c8e55f36 1824 }
c34056a3
TH
1825 return worker;
1826}
1827
4736cbf7
LJ
1828/**
1829 * worker_attach_to_pool() - attach a worker to a pool
1830 * @worker: worker to be attached
1831 * @pool: the target pool
1832 *
1833 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1834 * cpu-binding of @worker are kept coordinated with the pool across
1835 * cpu-[un]hotplugs.
1836 */
1837static void worker_attach_to_pool(struct worker *worker,
1838 struct worker_pool *pool)
1839{
1258fae7 1840 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1841
1842 /*
1843 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1844 * online CPUs. It'll be re-applied when any of the CPUs come up.
1845 */
1846 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1847
1848 /*
1258fae7
TH
1849 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1850 * stable across this function. See the comments above the flag
1851 * definition for details.
4736cbf7
LJ
1852 */
1853 if (pool->flags & POOL_DISASSOCIATED)
1854 worker->flags |= WORKER_UNBOUND;
1855
1856 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1857 worker->pool = pool;
4736cbf7 1858
1258fae7 1859 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1860}
1861
60f5a4bc
LJ
1862/**
1863 * worker_detach_from_pool() - detach a worker from its pool
1864 * @worker: worker which is attached to its pool
60f5a4bc 1865 *
4736cbf7
LJ
1866 * Undo the attaching which had been done in worker_attach_to_pool(). The
1867 * caller worker shouldn't access to the pool after detached except it has
1868 * other reference to the pool.
60f5a4bc 1869 */
a2d812a2 1870static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1871{
a2d812a2 1872 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1873 struct completion *detach_completion = NULL;
1874
1258fae7 1875 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1876
da028469 1877 list_del(&worker->node);
a2d812a2
TH
1878 worker->pool = NULL;
1879
da028469 1880 if (list_empty(&pool->workers))
60f5a4bc 1881 detach_completion = pool->detach_completion;
1258fae7 1882 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1883
b62c0751
LJ
1884 /* clear leftover flags without pool->lock after it is detached */
1885 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1886
60f5a4bc
LJ
1887 if (detach_completion)
1888 complete(detach_completion);
1889}
1890
c34056a3
TH
1891/**
1892 * create_worker - create a new workqueue worker
63d95a91 1893 * @pool: pool the new worker will belong to
c34056a3 1894 *
051e1850 1895 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1896 *
1897 * CONTEXT:
1898 * Might sleep. Does GFP_KERNEL allocations.
1899 *
d185af30 1900 * Return:
c34056a3
TH
1901 * Pointer to the newly created worker.
1902 */
bc2ae0f5 1903static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1904{
c34056a3 1905 struct worker *worker = NULL;
f3421797 1906 int id = -1;
e3c916a4 1907 char id_buf[16];
c34056a3 1908
7cda9aae
LJ
1909 /* ID is needed to determine kthread name */
1910 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1911 if (id < 0)
1912 goto fail;
c34056a3 1913
f7537df5 1914 worker = alloc_worker(pool->node);
c34056a3
TH
1915 if (!worker)
1916 goto fail;
1917
c34056a3
TH
1918 worker->id = id;
1919
29c91e99 1920 if (pool->cpu >= 0)
e3c916a4
TH
1921 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1922 pool->attrs->nice < 0 ? "H" : "");
f3421797 1923 else
e3c916a4
TH
1924 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1925
f3f90ad4 1926 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1927 "kworker/%s", id_buf);
c34056a3
TH
1928 if (IS_ERR(worker->task))
1929 goto fail;
1930
91151228 1931 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1932 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1933
da028469 1934 /* successful, attach the worker to the pool */
4736cbf7 1935 worker_attach_to_pool(worker, pool);
822d8405 1936
051e1850
LJ
1937 /* start the newly created worker */
1938 spin_lock_irq(&pool->lock);
1939 worker->pool->nr_workers++;
1940 worker_enter_idle(worker);
1941 wake_up_process(worker->task);
1942 spin_unlock_irq(&pool->lock);
1943
c34056a3 1944 return worker;
822d8405 1945
c34056a3 1946fail:
9625ab17 1947 if (id >= 0)
7cda9aae 1948 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1949 kfree(worker);
1950 return NULL;
1951}
1952
c34056a3
TH
1953/**
1954 * destroy_worker - destroy a workqueue worker
1955 * @worker: worker to be destroyed
1956 *
73eb7fe7
LJ
1957 * Destroy @worker and adjust @pool stats accordingly. The worker should
1958 * be idle.
c8e55f36
TH
1959 *
1960 * CONTEXT:
60f5a4bc 1961 * spin_lock_irq(pool->lock).
c34056a3
TH
1962 */
1963static void destroy_worker(struct worker *worker)
1964{
bd7bdd43 1965 struct worker_pool *pool = worker->pool;
c34056a3 1966
cd549687
TH
1967 lockdep_assert_held(&pool->lock);
1968
c34056a3 1969 /* sanity check frenzy */
6183c009 1970 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1971 WARN_ON(!list_empty(&worker->scheduled)) ||
1972 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1973 return;
c34056a3 1974
73eb7fe7
LJ
1975 pool->nr_workers--;
1976 pool->nr_idle--;
5bdfff96 1977
c8e55f36 1978 list_del_init(&worker->entry);
cb444766 1979 worker->flags |= WORKER_DIE;
60f5a4bc 1980 wake_up_process(worker->task);
c34056a3
TH
1981}
1982
32a6c723 1983static void idle_worker_timeout(struct timer_list *t)
e22bee78 1984{
32a6c723 1985 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1986
d565ed63 1987 spin_lock_irq(&pool->lock);
e22bee78 1988
3347fc9f 1989 while (too_many_workers(pool)) {
e22bee78
TH
1990 struct worker *worker;
1991 unsigned long expires;
1992
1993 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1994 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1995 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1996
3347fc9f 1997 if (time_before(jiffies, expires)) {
63d95a91 1998 mod_timer(&pool->idle_timer, expires);
3347fc9f 1999 break;
d5abe669 2000 }
3347fc9f
LJ
2001
2002 destroy_worker(worker);
e22bee78
TH
2003 }
2004
d565ed63 2005 spin_unlock_irq(&pool->lock);
e22bee78 2006}
d5abe669 2007
493a1724 2008static void send_mayday(struct work_struct *work)
e22bee78 2009{
112202d9
TH
2010 struct pool_workqueue *pwq = get_work_pwq(work);
2011 struct workqueue_struct *wq = pwq->wq;
493a1724 2012
2e109a28 2013 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2014
493008a8 2015 if (!wq->rescuer)
493a1724 2016 return;
e22bee78
TH
2017
2018 /* mayday mayday mayday */
493a1724 2019 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2020 /*
2021 * If @pwq is for an unbound wq, its base ref may be put at
2022 * any time due to an attribute change. Pin @pwq until the
2023 * rescuer is done with it.
2024 */
2025 get_pwq(pwq);
493a1724 2026 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2027 wake_up_process(wq->rescuer->task);
493a1724 2028 }
e22bee78
TH
2029}
2030
32a6c723 2031static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2032{
32a6c723 2033 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2034 struct work_struct *work;
2035
b2d82909
TH
2036 spin_lock_irq(&pool->lock);
2037 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2038
63d95a91 2039 if (need_to_create_worker(pool)) {
e22bee78
TH
2040 /*
2041 * We've been trying to create a new worker but
2042 * haven't been successful. We might be hitting an
2043 * allocation deadlock. Send distress signals to
2044 * rescuers.
2045 */
63d95a91 2046 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2047 send_mayday(work);
1da177e4 2048 }
e22bee78 2049
b2d82909
TH
2050 spin_unlock(&wq_mayday_lock);
2051 spin_unlock_irq(&pool->lock);
e22bee78 2052
63d95a91 2053 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2054}
2055
e22bee78
TH
2056/**
2057 * maybe_create_worker - create a new worker if necessary
63d95a91 2058 * @pool: pool to create a new worker for
e22bee78 2059 *
63d95a91 2060 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2061 * have at least one idle worker on return from this function. If
2062 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2063 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2064 * possible allocation deadlock.
2065 *
c5aa87bb
TH
2066 * On return, need_to_create_worker() is guaranteed to be %false and
2067 * may_start_working() %true.
e22bee78
TH
2068 *
2069 * LOCKING:
d565ed63 2070 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2071 * multiple times. Does GFP_KERNEL allocations. Called only from
2072 * manager.
e22bee78 2073 */
29187a9e 2074static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2075__releases(&pool->lock)
2076__acquires(&pool->lock)
1da177e4 2077{
e22bee78 2078restart:
d565ed63 2079 spin_unlock_irq(&pool->lock);
9f9c2364 2080
e22bee78 2081 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2082 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2083
2084 while (true) {
051e1850 2085 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2086 break;
1da177e4 2087
e212f361 2088 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2089
63d95a91 2090 if (!need_to_create_worker(pool))
e22bee78
TH
2091 break;
2092 }
2093
63d95a91 2094 del_timer_sync(&pool->mayday_timer);
d565ed63 2095 spin_lock_irq(&pool->lock);
051e1850
LJ
2096 /*
2097 * This is necessary even after a new worker was just successfully
2098 * created as @pool->lock was dropped and the new worker might have
2099 * already become busy.
2100 */
63d95a91 2101 if (need_to_create_worker(pool))
e22bee78 2102 goto restart;
e22bee78
TH
2103}
2104
73f53c4a 2105/**
e22bee78
TH
2106 * manage_workers - manage worker pool
2107 * @worker: self
73f53c4a 2108 *
706026c2 2109 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2110 * to. At any given time, there can be only zero or one manager per
706026c2 2111 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2112 *
2113 * The caller can safely start processing works on false return. On
2114 * true return, it's guaranteed that need_to_create_worker() is false
2115 * and may_start_working() is true.
73f53c4a
TH
2116 *
2117 * CONTEXT:
d565ed63 2118 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2119 * multiple times. Does GFP_KERNEL allocations.
2120 *
d185af30 2121 * Return:
29187a9e
TH
2122 * %false if the pool doesn't need management and the caller can safely
2123 * start processing works, %true if management function was performed and
2124 * the conditions that the caller verified before calling the function may
2125 * no longer be true.
73f53c4a 2126 */
e22bee78 2127static bool manage_workers(struct worker *worker)
73f53c4a 2128{
63d95a91 2129 struct worker_pool *pool = worker->pool;
73f53c4a 2130
692b4825 2131 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2132 return false;
692b4825
TH
2133
2134 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2135 pool->manager = worker;
1e19ffc6 2136
29187a9e 2137 maybe_create_worker(pool);
e22bee78 2138
2607d7a6 2139 pool->manager = NULL;
692b4825
TH
2140 pool->flags &= ~POOL_MANAGER_ACTIVE;
2141 wake_up(&wq_manager_wait);
29187a9e 2142 return true;
73f53c4a
TH
2143}
2144
a62428c0
TH
2145/**
2146 * process_one_work - process single work
c34056a3 2147 * @worker: self
a62428c0
TH
2148 * @work: work to process
2149 *
2150 * Process @work. This function contains all the logics necessary to
2151 * process a single work including synchronization against and
2152 * interaction with other workers on the same cpu, queueing and
2153 * flushing. As long as context requirement is met, any worker can
2154 * call this function to process a work.
2155 *
2156 * CONTEXT:
d565ed63 2157 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2158 */
c34056a3 2159static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2160__releases(&pool->lock)
2161__acquires(&pool->lock)
a62428c0 2162{
112202d9 2163 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2164 struct worker_pool *pool = worker->pool;
112202d9 2165 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2166 int work_color;
7e11629d 2167 struct worker *collision;
a62428c0
TH
2168#ifdef CONFIG_LOCKDEP
2169 /*
2170 * It is permissible to free the struct work_struct from
2171 * inside the function that is called from it, this we need to
2172 * take into account for lockdep too. To avoid bogus "held
2173 * lock freed" warnings as well as problems when looking into
2174 * work->lockdep_map, make a copy and use that here.
2175 */
4d82a1de
PZ
2176 struct lockdep_map lockdep_map;
2177
2178 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2179#endif
807407c0 2180 /* ensure we're on the correct CPU */
85327af6 2181 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2182 raw_smp_processor_id() != pool->cpu);
25511a47 2183
7e11629d
TH
2184 /*
2185 * A single work shouldn't be executed concurrently by
2186 * multiple workers on a single cpu. Check whether anyone is
2187 * already processing the work. If so, defer the work to the
2188 * currently executing one.
2189 */
c9e7cf27 2190 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2191 if (unlikely(collision)) {
2192 move_linked_works(work, &collision->scheduled, NULL);
2193 return;
2194 }
2195
8930caba 2196 /* claim and dequeue */
a62428c0 2197 debug_work_deactivate(work);
c9e7cf27 2198 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2199 worker->current_work = work;
a2c1c57b 2200 worker->current_func = work->func;
112202d9 2201 worker->current_pwq = pwq;
73f53c4a 2202 work_color = get_work_color(work);
7a22ad75 2203
8bf89593
TH
2204 /*
2205 * Record wq name for cmdline and debug reporting, may get
2206 * overridden through set_worker_desc().
2207 */
2208 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2209
a62428c0
TH
2210 list_del_init(&work->entry);
2211
fb0e7beb 2212 /*
228f1d00
LJ
2213 * CPU intensive works don't participate in concurrency management.
2214 * They're the scheduler's responsibility. This takes @worker out
2215 * of concurrency management and the next code block will chain
2216 * execution of the pending work items.
fb0e7beb
TH
2217 */
2218 if (unlikely(cpu_intensive))
228f1d00 2219 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2220
974271c4 2221 /*
a489a03e
LJ
2222 * Wake up another worker if necessary. The condition is always
2223 * false for normal per-cpu workers since nr_running would always
2224 * be >= 1 at this point. This is used to chain execution of the
2225 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2226 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2227 */
a489a03e 2228 if (need_more_worker(pool))
63d95a91 2229 wake_up_worker(pool);
974271c4 2230
8930caba 2231 /*
7c3eed5c 2232 * Record the last pool and clear PENDING which should be the last
d565ed63 2233 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2234 * PENDING and queued state changes happen together while IRQ is
2235 * disabled.
8930caba 2236 */
7c3eed5c 2237 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2238
d565ed63 2239 spin_unlock_irq(&pool->lock);
a62428c0 2240
a1d14934 2241 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2242 lock_map_acquire(&lockdep_map);
e6f3faa7 2243 /*
f52be570
PZ
2244 * Strictly speaking we should mark the invariant state without holding
2245 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2246 *
2247 * However, that would result in:
2248 *
2249 * A(W1)
2250 * WFC(C)
2251 * A(W1)
2252 * C(C)
2253 *
2254 * Which would create W1->C->W1 dependencies, even though there is no
2255 * actual deadlock possible. There are two solutions, using a
2256 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2257 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2258 * these locks.
2259 *
2260 * AFAICT there is no possible deadlock scenario between the
2261 * flush_work() and complete() primitives (except for single-threaded
2262 * workqueues), so hiding them isn't a problem.
2263 */
f52be570 2264 lockdep_invariant_state(true);
e36c886a 2265 trace_workqueue_execute_start(work);
a2c1c57b 2266 worker->current_func(work);
e36c886a
AV
2267 /*
2268 * While we must be careful to not use "work" after this, the trace
2269 * point will only record its address.
2270 */
1c5da0ec 2271 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2272 lock_map_release(&lockdep_map);
112202d9 2273 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2274
2275 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2276 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2277 " last function: %ps\n",
a2c1c57b
TH
2278 current->comm, preempt_count(), task_pid_nr(current),
2279 worker->current_func);
a62428c0
TH
2280 debug_show_held_locks(current);
2281 dump_stack();
2282 }
2283
b22ce278 2284 /*
025f50f3 2285 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2286 * kernels, where a requeueing work item waiting for something to
2287 * happen could deadlock with stop_machine as such work item could
2288 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2289 * stop_machine. At the same time, report a quiescent RCU state so
2290 * the same condition doesn't freeze RCU.
b22ce278 2291 */
a7e6425e 2292 cond_resched();
b22ce278 2293
d565ed63 2294 spin_lock_irq(&pool->lock);
a62428c0 2295
fb0e7beb
TH
2296 /* clear cpu intensive status */
2297 if (unlikely(cpu_intensive))
2298 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2299
1b69ac6b
JW
2300 /* tag the worker for identification in schedule() */
2301 worker->last_func = worker->current_func;
2302
a62428c0 2303 /* we're done with it, release */
42f8570f 2304 hash_del(&worker->hentry);
c34056a3 2305 worker->current_work = NULL;
a2c1c57b 2306 worker->current_func = NULL;
112202d9
TH
2307 worker->current_pwq = NULL;
2308 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2309}
2310
affee4b2
TH
2311/**
2312 * process_scheduled_works - process scheduled works
2313 * @worker: self
2314 *
2315 * Process all scheduled works. Please note that the scheduled list
2316 * may change while processing a work, so this function repeatedly
2317 * fetches a work from the top and executes it.
2318 *
2319 * CONTEXT:
d565ed63 2320 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2321 * multiple times.
2322 */
2323static void process_scheduled_works(struct worker *worker)
1da177e4 2324{
affee4b2
TH
2325 while (!list_empty(&worker->scheduled)) {
2326 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2327 struct work_struct, entry);
c34056a3 2328 process_one_work(worker, work);
1da177e4 2329 }
1da177e4
LT
2330}
2331
197f6acc
TH
2332static void set_pf_worker(bool val)
2333{
2334 mutex_lock(&wq_pool_attach_mutex);
2335 if (val)
2336 current->flags |= PF_WQ_WORKER;
2337 else
2338 current->flags &= ~PF_WQ_WORKER;
2339 mutex_unlock(&wq_pool_attach_mutex);
2340}
2341
4690c4ab
TH
2342/**
2343 * worker_thread - the worker thread function
c34056a3 2344 * @__worker: self
4690c4ab 2345 *
c5aa87bb
TH
2346 * The worker thread function. All workers belong to a worker_pool -
2347 * either a per-cpu one or dynamic unbound one. These workers process all
2348 * work items regardless of their specific target workqueue. The only
2349 * exception is work items which belong to workqueues with a rescuer which
2350 * will be explained in rescuer_thread().
d185af30
YB
2351 *
2352 * Return: 0
4690c4ab 2353 */
c34056a3 2354static int worker_thread(void *__worker)
1da177e4 2355{
c34056a3 2356 struct worker *worker = __worker;
bd7bdd43 2357 struct worker_pool *pool = worker->pool;
1da177e4 2358
e22bee78 2359 /* tell the scheduler that this is a workqueue worker */
197f6acc 2360 set_pf_worker(true);
c8e55f36 2361woke_up:
d565ed63 2362 spin_lock_irq(&pool->lock);
1da177e4 2363
a9ab775b
TH
2364 /* am I supposed to die? */
2365 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2366 spin_unlock_irq(&pool->lock);
a9ab775b 2367 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2368 set_pf_worker(false);
60f5a4bc
LJ
2369
2370 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2371 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2372 worker_detach_from_pool(worker);
60f5a4bc 2373 kfree(worker);
a9ab775b 2374 return 0;
c8e55f36 2375 }
affee4b2 2376
c8e55f36 2377 worker_leave_idle(worker);
db7bccf4 2378recheck:
e22bee78 2379 /* no more worker necessary? */
63d95a91 2380 if (!need_more_worker(pool))
e22bee78
TH
2381 goto sleep;
2382
2383 /* do we need to manage? */
63d95a91 2384 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2385 goto recheck;
2386
c8e55f36
TH
2387 /*
2388 * ->scheduled list can only be filled while a worker is
2389 * preparing to process a work or actually processing it.
2390 * Make sure nobody diddled with it while I was sleeping.
2391 */
6183c009 2392 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2393
e22bee78 2394 /*
a9ab775b
TH
2395 * Finish PREP stage. We're guaranteed to have at least one idle
2396 * worker or that someone else has already assumed the manager
2397 * role. This is where @worker starts participating in concurrency
2398 * management if applicable and concurrency management is restored
2399 * after being rebound. See rebind_workers() for details.
e22bee78 2400 */
a9ab775b 2401 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2402
2403 do {
c8e55f36 2404 struct work_struct *work =
bd7bdd43 2405 list_first_entry(&pool->worklist,
c8e55f36
TH
2406 struct work_struct, entry);
2407
82607adc
TH
2408 pool->watchdog_ts = jiffies;
2409
c8e55f36
TH
2410 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2411 /* optimization path, not strictly necessary */
2412 process_one_work(worker, work);
2413 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2414 process_scheduled_works(worker);
c8e55f36
TH
2415 } else {
2416 move_linked_works(work, &worker->scheduled, NULL);
2417 process_scheduled_works(worker);
affee4b2 2418 }
63d95a91 2419 } while (keep_working(pool));
e22bee78 2420
228f1d00 2421 worker_set_flags(worker, WORKER_PREP);
d313dd85 2422sleep:
c8e55f36 2423 /*
d565ed63
TH
2424 * pool->lock is held and there's no work to process and no need to
2425 * manage, sleep. Workers are woken up only while holding
2426 * pool->lock or from local cpu, so setting the current state
2427 * before releasing pool->lock is enough to prevent losing any
2428 * event.
c8e55f36
TH
2429 */
2430 worker_enter_idle(worker);
c5a94a61 2431 __set_current_state(TASK_IDLE);
d565ed63 2432 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2433 schedule();
2434 goto woke_up;
1da177e4
LT
2435}
2436
e22bee78
TH
2437/**
2438 * rescuer_thread - the rescuer thread function
111c225a 2439 * @__rescuer: self
e22bee78
TH
2440 *
2441 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2442 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2443 *
706026c2 2444 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2445 * worker which uses GFP_KERNEL allocation which has slight chance of
2446 * developing into deadlock if some works currently on the same queue
2447 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2448 * the problem rescuer solves.
2449 *
706026c2
TH
2450 * When such condition is possible, the pool summons rescuers of all
2451 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2452 * those works so that forward progress can be guaranteed.
2453 *
2454 * This should happen rarely.
d185af30
YB
2455 *
2456 * Return: 0
e22bee78 2457 */
111c225a 2458static int rescuer_thread(void *__rescuer)
e22bee78 2459{
111c225a
TH
2460 struct worker *rescuer = __rescuer;
2461 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2462 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2463 bool should_stop;
e22bee78
TH
2464
2465 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2466
2467 /*
2468 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2469 * doesn't participate in concurrency management.
2470 */
197f6acc 2471 set_pf_worker(true);
e22bee78 2472repeat:
c5a94a61 2473 set_current_state(TASK_IDLE);
e22bee78 2474
4d595b86
LJ
2475 /*
2476 * By the time the rescuer is requested to stop, the workqueue
2477 * shouldn't have any work pending, but @wq->maydays may still have
2478 * pwq(s) queued. This can happen by non-rescuer workers consuming
2479 * all the work items before the rescuer got to them. Go through
2480 * @wq->maydays processing before acting on should_stop so that the
2481 * list is always empty on exit.
2482 */
2483 should_stop = kthread_should_stop();
e22bee78 2484
493a1724 2485 /* see whether any pwq is asking for help */
2e109a28 2486 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2487
2488 while (!list_empty(&wq->maydays)) {
2489 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2490 struct pool_workqueue, mayday_node);
112202d9 2491 struct worker_pool *pool = pwq->pool;
e22bee78 2492 struct work_struct *work, *n;
82607adc 2493 bool first = true;
e22bee78
TH
2494
2495 __set_current_state(TASK_RUNNING);
493a1724
TH
2496 list_del_init(&pwq->mayday_node);
2497
2e109a28 2498 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2499
51697d39
LJ
2500 worker_attach_to_pool(rescuer, pool);
2501
2502 spin_lock_irq(&pool->lock);
e22bee78
TH
2503
2504 /*
2505 * Slurp in all works issued via this workqueue and
2506 * process'em.
2507 */
0479c8c5 2508 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2509 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2510 if (get_work_pwq(work) == pwq) {
2511 if (first)
2512 pool->watchdog_ts = jiffies;
e22bee78 2513 move_linked_works(work, scheduled, &n);
82607adc
TH
2514 }
2515 first = false;
2516 }
e22bee78 2517
008847f6
N
2518 if (!list_empty(scheduled)) {
2519 process_scheduled_works(rescuer);
2520
2521 /*
2522 * The above execution of rescued work items could
2523 * have created more to rescue through
2524 * pwq_activate_first_delayed() or chained
2525 * queueing. Let's put @pwq back on mayday list so
2526 * that such back-to-back work items, which may be
2527 * being used to relieve memory pressure, don't
2528 * incur MAYDAY_INTERVAL delay inbetween.
2529 */
2530 if (need_to_create_worker(pool)) {
2531 spin_lock(&wq_mayday_lock);
e66b39af
TH
2532 /*
2533 * Queue iff we aren't racing destruction
2534 * and somebody else hasn't queued it already.
2535 */
2536 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2537 get_pwq(pwq);
2538 list_add_tail(&pwq->mayday_node, &wq->maydays);
2539 }
008847f6
N
2540 spin_unlock(&wq_mayday_lock);
2541 }
2542 }
7576958a 2543
77668c8b
LJ
2544 /*
2545 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2546 * go away while we're still attached to it.
77668c8b
LJ
2547 */
2548 put_pwq(pwq);
2549
7576958a 2550 /*
d8ca83e6 2551 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2552 * regular worker; otherwise, we end up with 0 concurrency
2553 * and stalling the execution.
2554 */
d8ca83e6 2555 if (need_more_worker(pool))
63d95a91 2556 wake_up_worker(pool);
7576958a 2557
13b1d625
LJ
2558 spin_unlock_irq(&pool->lock);
2559
a2d812a2 2560 worker_detach_from_pool(rescuer);
13b1d625
LJ
2561
2562 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2563 }
2564
2e109a28 2565 spin_unlock_irq(&wq_mayday_lock);
493a1724 2566
4d595b86
LJ
2567 if (should_stop) {
2568 __set_current_state(TASK_RUNNING);
197f6acc 2569 set_pf_worker(false);
4d595b86
LJ
2570 return 0;
2571 }
2572
111c225a
TH
2573 /* rescuers should never participate in concurrency management */
2574 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2575 schedule();
2576 goto repeat;
1da177e4
LT
2577}
2578
fca839c0
TH
2579/**
2580 * check_flush_dependency - check for flush dependency sanity
2581 * @target_wq: workqueue being flushed
2582 * @target_work: work item being flushed (NULL for workqueue flushes)
2583 *
2584 * %current is trying to flush the whole @target_wq or @target_work on it.
2585 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2586 * reclaiming memory or running on a workqueue which doesn't have
2587 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2588 * a deadlock.
2589 */
2590static void check_flush_dependency(struct workqueue_struct *target_wq,
2591 struct work_struct *target_work)
2592{
2593 work_func_t target_func = target_work ? target_work->func : NULL;
2594 struct worker *worker;
2595
2596 if (target_wq->flags & WQ_MEM_RECLAIM)
2597 return;
2598
2599 worker = current_wq_worker();
2600
2601 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2602 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2603 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2604 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2605 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2606 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2607 worker->current_pwq->wq->name, worker->current_func,
2608 target_wq->name, target_func);
2609}
2610
fc2e4d70
ON
2611struct wq_barrier {
2612 struct work_struct work;
2613 struct completion done;
2607d7a6 2614 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2615};
2616
2617static void wq_barrier_func(struct work_struct *work)
2618{
2619 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2620 complete(&barr->done);
2621}
2622
4690c4ab
TH
2623/**
2624 * insert_wq_barrier - insert a barrier work
112202d9 2625 * @pwq: pwq to insert barrier into
4690c4ab 2626 * @barr: wq_barrier to insert
affee4b2
TH
2627 * @target: target work to attach @barr to
2628 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2629 *
affee4b2
TH
2630 * @barr is linked to @target such that @barr is completed only after
2631 * @target finishes execution. Please note that the ordering
2632 * guarantee is observed only with respect to @target and on the local
2633 * cpu.
2634 *
2635 * Currently, a queued barrier can't be canceled. This is because
2636 * try_to_grab_pending() can't determine whether the work to be
2637 * grabbed is at the head of the queue and thus can't clear LINKED
2638 * flag of the previous work while there must be a valid next work
2639 * after a work with LINKED flag set.
2640 *
2641 * Note that when @worker is non-NULL, @target may be modified
112202d9 2642 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2643 *
2644 * CONTEXT:
d565ed63 2645 * spin_lock_irq(pool->lock).
4690c4ab 2646 */
112202d9 2647static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2648 struct wq_barrier *barr,
2649 struct work_struct *target, struct worker *worker)
fc2e4d70 2650{
affee4b2
TH
2651 struct list_head *head;
2652 unsigned int linked = 0;
2653
dc186ad7 2654 /*
d565ed63 2655 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2656 * as we know for sure that this will not trigger any of the
2657 * checks and call back into the fixup functions where we
2658 * might deadlock.
2659 */
ca1cab37 2660 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2661 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2662
fd1a5b04
BP
2663 init_completion_map(&barr->done, &target->lockdep_map);
2664
2607d7a6 2665 barr->task = current;
83c22520 2666
affee4b2
TH
2667 /*
2668 * If @target is currently being executed, schedule the
2669 * barrier to the worker; otherwise, put it after @target.
2670 */
2671 if (worker)
2672 head = worker->scheduled.next;
2673 else {
2674 unsigned long *bits = work_data_bits(target);
2675
2676 head = target->entry.next;
2677 /* there can already be other linked works, inherit and set */
2678 linked = *bits & WORK_STRUCT_LINKED;
2679 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2680 }
2681
dc186ad7 2682 debug_work_activate(&barr->work);
112202d9 2683 insert_work(pwq, &barr->work, head,
affee4b2 2684 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2685}
2686
73f53c4a 2687/**
112202d9 2688 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2689 * @wq: workqueue being flushed
2690 * @flush_color: new flush color, < 0 for no-op
2691 * @work_color: new work color, < 0 for no-op
2692 *
112202d9 2693 * Prepare pwqs for workqueue flushing.
73f53c4a 2694 *
112202d9
TH
2695 * If @flush_color is non-negative, flush_color on all pwqs should be
2696 * -1. If no pwq has in-flight commands at the specified color, all
2697 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2698 * has in flight commands, its pwq->flush_color is set to
2699 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2700 * wakeup logic is armed and %true is returned.
2701 *
2702 * The caller should have initialized @wq->first_flusher prior to
2703 * calling this function with non-negative @flush_color. If
2704 * @flush_color is negative, no flush color update is done and %false
2705 * is returned.
2706 *
112202d9 2707 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2708 * work_color which is previous to @work_color and all will be
2709 * advanced to @work_color.
2710 *
2711 * CONTEXT:
3c25a55d 2712 * mutex_lock(wq->mutex).
73f53c4a 2713 *
d185af30 2714 * Return:
73f53c4a
TH
2715 * %true if @flush_color >= 0 and there's something to flush. %false
2716 * otherwise.
2717 */
112202d9 2718static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2719 int flush_color, int work_color)
1da177e4 2720{
73f53c4a 2721 bool wait = false;
49e3cf44 2722 struct pool_workqueue *pwq;
1da177e4 2723
73f53c4a 2724 if (flush_color >= 0) {
6183c009 2725 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2726 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2727 }
2355b70f 2728
49e3cf44 2729 for_each_pwq(pwq, wq) {
112202d9 2730 struct worker_pool *pool = pwq->pool;
fc2e4d70 2731
b09f4fd3 2732 spin_lock_irq(&pool->lock);
83c22520 2733
73f53c4a 2734 if (flush_color >= 0) {
6183c009 2735 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2736
112202d9
TH
2737 if (pwq->nr_in_flight[flush_color]) {
2738 pwq->flush_color = flush_color;
2739 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2740 wait = true;
2741 }
2742 }
1da177e4 2743
73f53c4a 2744 if (work_color >= 0) {
6183c009 2745 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2746 pwq->work_color = work_color;
73f53c4a 2747 }
1da177e4 2748
b09f4fd3 2749 spin_unlock_irq(&pool->lock);
1da177e4 2750 }
2355b70f 2751
112202d9 2752 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2753 complete(&wq->first_flusher->done);
14441960 2754
73f53c4a 2755 return wait;
1da177e4
LT
2756}
2757
0fcb78c2 2758/**
1da177e4 2759 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2760 * @wq: workqueue to flush
1da177e4 2761 *
c5aa87bb
TH
2762 * This function sleeps until all work items which were queued on entry
2763 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2764 */
7ad5b3a5 2765void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2766{
73f53c4a
TH
2767 struct wq_flusher this_flusher = {
2768 .list = LIST_HEAD_INIT(this_flusher.list),
2769 .flush_color = -1,
fd1a5b04 2770 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2771 };
2772 int next_color;
1da177e4 2773
3347fa09
TH
2774 if (WARN_ON(!wq_online))
2775 return;
2776
87915adc
JB
2777 lock_map_acquire(&wq->lockdep_map);
2778 lock_map_release(&wq->lockdep_map);
2779
3c25a55d 2780 mutex_lock(&wq->mutex);
73f53c4a
TH
2781
2782 /*
2783 * Start-to-wait phase
2784 */
2785 next_color = work_next_color(wq->work_color);
2786
2787 if (next_color != wq->flush_color) {
2788 /*
2789 * Color space is not full. The current work_color
2790 * becomes our flush_color and work_color is advanced
2791 * by one.
2792 */
6183c009 2793 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2794 this_flusher.flush_color = wq->work_color;
2795 wq->work_color = next_color;
2796
2797 if (!wq->first_flusher) {
2798 /* no flush in progress, become the first flusher */
6183c009 2799 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2800
2801 wq->first_flusher = &this_flusher;
2802
112202d9 2803 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2804 wq->work_color)) {
2805 /* nothing to flush, done */
2806 wq->flush_color = next_color;
2807 wq->first_flusher = NULL;
2808 goto out_unlock;
2809 }
2810 } else {
2811 /* wait in queue */
6183c009 2812 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2813 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2814 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2815 }
2816 } else {
2817 /*
2818 * Oops, color space is full, wait on overflow queue.
2819 * The next flush completion will assign us
2820 * flush_color and transfer to flusher_queue.
2821 */
2822 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2823 }
2824
fca839c0
TH
2825 check_flush_dependency(wq, NULL);
2826
3c25a55d 2827 mutex_unlock(&wq->mutex);
73f53c4a
TH
2828
2829 wait_for_completion(&this_flusher.done);
2830
2831 /*
2832 * Wake-up-and-cascade phase
2833 *
2834 * First flushers are responsible for cascading flushes and
2835 * handling overflow. Non-first flushers can simply return.
2836 */
00d5d15b 2837 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2838 return;
2839
3c25a55d 2840 mutex_lock(&wq->mutex);
73f53c4a 2841
4ce48b37
TH
2842 /* we might have raced, check again with mutex held */
2843 if (wq->first_flusher != &this_flusher)
2844 goto out_unlock;
2845
00d5d15b 2846 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2847
6183c009
TH
2848 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2849 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2850
2851 while (true) {
2852 struct wq_flusher *next, *tmp;
2853
2854 /* complete all the flushers sharing the current flush color */
2855 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2856 if (next->flush_color != wq->flush_color)
2857 break;
2858 list_del_init(&next->list);
2859 complete(&next->done);
2860 }
2861
6183c009
TH
2862 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2863 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2864
2865 /* this flush_color is finished, advance by one */
2866 wq->flush_color = work_next_color(wq->flush_color);
2867
2868 /* one color has been freed, handle overflow queue */
2869 if (!list_empty(&wq->flusher_overflow)) {
2870 /*
2871 * Assign the same color to all overflowed
2872 * flushers, advance work_color and append to
2873 * flusher_queue. This is the start-to-wait
2874 * phase for these overflowed flushers.
2875 */
2876 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2877 tmp->flush_color = wq->work_color;
2878
2879 wq->work_color = work_next_color(wq->work_color);
2880
2881 list_splice_tail_init(&wq->flusher_overflow,
2882 &wq->flusher_queue);
112202d9 2883 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2884 }
2885
2886 if (list_empty(&wq->flusher_queue)) {
6183c009 2887 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2888 break;
2889 }
2890
2891 /*
2892 * Need to flush more colors. Make the next flusher
112202d9 2893 * the new first flusher and arm pwqs.
73f53c4a 2894 */
6183c009
TH
2895 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2896 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2897
2898 list_del_init(&next->list);
2899 wq->first_flusher = next;
2900
112202d9 2901 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2902 break;
2903
2904 /*
2905 * Meh... this color is already done, clear first
2906 * flusher and repeat cascading.
2907 */
2908 wq->first_flusher = NULL;
2909 }
2910
2911out_unlock:
3c25a55d 2912 mutex_unlock(&wq->mutex);
1da177e4 2913}
1dadafa8 2914EXPORT_SYMBOL(flush_workqueue);
1da177e4 2915
9c5a2ba7
TH
2916/**
2917 * drain_workqueue - drain a workqueue
2918 * @wq: workqueue to drain
2919 *
2920 * Wait until the workqueue becomes empty. While draining is in progress,
2921 * only chain queueing is allowed. IOW, only currently pending or running
2922 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2923 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2924 * by the depth of chaining and should be relatively short. Whine if it
2925 * takes too long.
2926 */
2927void drain_workqueue(struct workqueue_struct *wq)
2928{
2929 unsigned int flush_cnt = 0;
49e3cf44 2930 struct pool_workqueue *pwq;
9c5a2ba7
TH
2931
2932 /*
2933 * __queue_work() needs to test whether there are drainers, is much
2934 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2935 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2936 */
87fc741e 2937 mutex_lock(&wq->mutex);
9c5a2ba7 2938 if (!wq->nr_drainers++)
618b01eb 2939 wq->flags |= __WQ_DRAINING;
87fc741e 2940 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2941reflush:
2942 flush_workqueue(wq);
2943
b09f4fd3 2944 mutex_lock(&wq->mutex);
76af4d93 2945
49e3cf44 2946 for_each_pwq(pwq, wq) {
fa2563e4 2947 bool drained;
9c5a2ba7 2948
b09f4fd3 2949 spin_lock_irq(&pwq->pool->lock);
112202d9 2950 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2951 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2952
2953 if (drained)
9c5a2ba7
TH
2954 continue;
2955
2956 if (++flush_cnt == 10 ||
2957 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2958 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2959 wq->name, flush_cnt);
76af4d93 2960
b09f4fd3 2961 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2962 goto reflush;
2963 }
2964
9c5a2ba7 2965 if (!--wq->nr_drainers)
618b01eb 2966 wq->flags &= ~__WQ_DRAINING;
87fc741e 2967 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2968}
2969EXPORT_SYMBOL_GPL(drain_workqueue);
2970
d6e89786
JB
2971static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2972 bool from_cancel)
db700897 2973{
affee4b2 2974 struct worker *worker = NULL;
c9e7cf27 2975 struct worker_pool *pool;
112202d9 2976 struct pool_workqueue *pwq;
db700897
ON
2977
2978 might_sleep();
fa1b54e6 2979
24acfb71 2980 rcu_read_lock();
c9e7cf27 2981 pool = get_work_pool(work);
fa1b54e6 2982 if (!pool) {
24acfb71 2983 rcu_read_unlock();
baf59022 2984 return false;
fa1b54e6 2985 }
db700897 2986
24acfb71 2987 spin_lock_irq(&pool->lock);
0b3dae68 2988 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2989 pwq = get_work_pwq(work);
2990 if (pwq) {
2991 if (unlikely(pwq->pool != pool))
4690c4ab 2992 goto already_gone;
606a5020 2993 } else {
c9e7cf27 2994 worker = find_worker_executing_work(pool, work);
affee4b2 2995 if (!worker)
4690c4ab 2996 goto already_gone;
112202d9 2997 pwq = worker->current_pwq;
606a5020 2998 }
db700897 2999
fca839c0
TH
3000 check_flush_dependency(pwq->wq, work);
3001
112202d9 3002 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3003 spin_unlock_irq(&pool->lock);
7a22ad75 3004
e159489b 3005 /*
a1d14934
PZ
3006 * Force a lock recursion deadlock when using flush_work() inside a
3007 * single-threaded or rescuer equipped workqueue.
3008 *
3009 * For single threaded workqueues the deadlock happens when the work
3010 * is after the work issuing the flush_work(). For rescuer equipped
3011 * workqueues the deadlock happens when the rescuer stalls, blocking
3012 * forward progress.
e159489b 3013 */
d6e89786
JB
3014 if (!from_cancel &&
3015 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3016 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3017 lock_map_release(&pwq->wq->lockdep_map);
3018 }
24acfb71 3019 rcu_read_unlock();
401a8d04 3020 return true;
4690c4ab 3021already_gone:
d565ed63 3022 spin_unlock_irq(&pool->lock);
24acfb71 3023 rcu_read_unlock();
401a8d04 3024 return false;
db700897 3025}
baf59022 3026
d6e89786
JB
3027static bool __flush_work(struct work_struct *work, bool from_cancel)
3028{
3029 struct wq_barrier barr;
3030
3031 if (WARN_ON(!wq_online))
3032 return false;
3033
4d43d395
TH
3034 if (WARN_ON(!work->func))
3035 return false;
3036
87915adc
JB
3037 if (!from_cancel) {
3038 lock_map_acquire(&work->lockdep_map);
3039 lock_map_release(&work->lockdep_map);
3040 }
3041
d6e89786
JB
3042 if (start_flush_work(work, &barr, from_cancel)) {
3043 wait_for_completion(&barr.done);
3044 destroy_work_on_stack(&barr.work);
3045 return true;
3046 } else {
3047 return false;
3048 }
3049}
3050
baf59022
TH
3051/**
3052 * flush_work - wait for a work to finish executing the last queueing instance
3053 * @work: the work to flush
3054 *
606a5020
TH
3055 * Wait until @work has finished execution. @work is guaranteed to be idle
3056 * on return if it hasn't been requeued since flush started.
baf59022 3057 *
d185af30 3058 * Return:
baf59022
TH
3059 * %true if flush_work() waited for the work to finish execution,
3060 * %false if it was already idle.
3061 */
3062bool flush_work(struct work_struct *work)
3063{
d6e89786 3064 return __flush_work(work, false);
6e84d644 3065}
606a5020 3066EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3067
8603e1b3 3068struct cwt_wait {
ac6424b9 3069 wait_queue_entry_t wait;
8603e1b3
TH
3070 struct work_struct *work;
3071};
3072
ac6424b9 3073static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3074{
3075 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3076
3077 if (cwait->work != key)
3078 return 0;
3079 return autoremove_wake_function(wait, mode, sync, key);
3080}
3081
36e227d2 3082static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3083{
8603e1b3 3084 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3085 unsigned long flags;
1f1f642e
ON
3086 int ret;
3087
3088 do {
bbb68dfa
TH
3089 ret = try_to_grab_pending(work, is_dwork, &flags);
3090 /*
8603e1b3
TH
3091 * If someone else is already canceling, wait for it to
3092 * finish. flush_work() doesn't work for PREEMPT_NONE
3093 * because we may get scheduled between @work's completion
3094 * and the other canceling task resuming and clearing
3095 * CANCELING - flush_work() will return false immediately
3096 * as @work is no longer busy, try_to_grab_pending() will
3097 * return -ENOENT as @work is still being canceled and the
3098 * other canceling task won't be able to clear CANCELING as
3099 * we're hogging the CPU.
3100 *
3101 * Let's wait for completion using a waitqueue. As this
3102 * may lead to the thundering herd problem, use a custom
3103 * wake function which matches @work along with exclusive
3104 * wait and wakeup.
bbb68dfa 3105 */
8603e1b3
TH
3106 if (unlikely(ret == -ENOENT)) {
3107 struct cwt_wait cwait;
3108
3109 init_wait(&cwait.wait);
3110 cwait.wait.func = cwt_wakefn;
3111 cwait.work = work;
3112
3113 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3114 TASK_UNINTERRUPTIBLE);
3115 if (work_is_canceling(work))
3116 schedule();
3117 finish_wait(&cancel_waitq, &cwait.wait);
3118 }
1f1f642e
ON
3119 } while (unlikely(ret < 0));
3120
bbb68dfa
TH
3121 /* tell other tasks trying to grab @work to back off */
3122 mark_work_canceling(work);
3123 local_irq_restore(flags);
3124
3347fa09
TH
3125 /*
3126 * This allows canceling during early boot. We know that @work
3127 * isn't executing.
3128 */
3129 if (wq_online)
d6e89786 3130 __flush_work(work, true);
3347fa09 3131
7a22ad75 3132 clear_work_data(work);
8603e1b3
TH
3133
3134 /*
3135 * Paired with prepare_to_wait() above so that either
3136 * waitqueue_active() is visible here or !work_is_canceling() is
3137 * visible there.
3138 */
3139 smp_mb();
3140 if (waitqueue_active(&cancel_waitq))
3141 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3142
1f1f642e
ON
3143 return ret;
3144}
3145
6e84d644 3146/**
401a8d04
TH
3147 * cancel_work_sync - cancel a work and wait for it to finish
3148 * @work: the work to cancel
6e84d644 3149 *
401a8d04
TH
3150 * Cancel @work and wait for its execution to finish. This function
3151 * can be used even if the work re-queues itself or migrates to
3152 * another workqueue. On return from this function, @work is
3153 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3154 *
401a8d04
TH
3155 * cancel_work_sync(&delayed_work->work) must not be used for
3156 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3157 *
401a8d04 3158 * The caller must ensure that the workqueue on which @work was last
6e84d644 3159 * queued can't be destroyed before this function returns.
401a8d04 3160 *
d185af30 3161 * Return:
401a8d04 3162 * %true if @work was pending, %false otherwise.
6e84d644 3163 */
401a8d04 3164bool cancel_work_sync(struct work_struct *work)
6e84d644 3165{
36e227d2 3166 return __cancel_work_timer(work, false);
b89deed3 3167}
28e53bdd 3168EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3169
6e84d644 3170/**
401a8d04
TH
3171 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3172 * @dwork: the delayed work to flush
6e84d644 3173 *
401a8d04
TH
3174 * Delayed timer is cancelled and the pending work is queued for
3175 * immediate execution. Like flush_work(), this function only
3176 * considers the last queueing instance of @dwork.
1f1f642e 3177 *
d185af30 3178 * Return:
401a8d04
TH
3179 * %true if flush_work() waited for the work to finish execution,
3180 * %false if it was already idle.
6e84d644 3181 */
401a8d04
TH
3182bool flush_delayed_work(struct delayed_work *dwork)
3183{
8930caba 3184 local_irq_disable();
401a8d04 3185 if (del_timer_sync(&dwork->timer))
60c057bc 3186 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3187 local_irq_enable();
401a8d04
TH
3188 return flush_work(&dwork->work);
3189}
3190EXPORT_SYMBOL(flush_delayed_work);
3191
05f0fe6b
TH
3192/**
3193 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3194 * @rwork: the rcu work to flush
3195 *
3196 * Return:
3197 * %true if flush_rcu_work() waited for the work to finish execution,
3198 * %false if it was already idle.
3199 */
3200bool flush_rcu_work(struct rcu_work *rwork)
3201{
3202 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3203 rcu_barrier();
3204 flush_work(&rwork->work);
3205 return true;
3206 } else {
3207 return flush_work(&rwork->work);
3208 }
3209}
3210EXPORT_SYMBOL(flush_rcu_work);
3211
f72b8792
JA
3212static bool __cancel_work(struct work_struct *work, bool is_dwork)
3213{
3214 unsigned long flags;
3215 int ret;
3216
3217 do {
3218 ret = try_to_grab_pending(work, is_dwork, &flags);
3219 } while (unlikely(ret == -EAGAIN));
3220
3221 if (unlikely(ret < 0))
3222 return false;
3223
3224 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3225 local_irq_restore(flags);
3226 return ret;
3227}
3228
09383498 3229/**
57b30ae7
TH
3230 * cancel_delayed_work - cancel a delayed work
3231 * @dwork: delayed_work to cancel
09383498 3232 *
d185af30
YB
3233 * Kill off a pending delayed_work.
3234 *
3235 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3236 * pending.
3237 *
3238 * Note:
3239 * The work callback function may still be running on return, unless
3240 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3241 * use cancel_delayed_work_sync() to wait on it.
09383498 3242 *
57b30ae7 3243 * This function is safe to call from any context including IRQ handler.
09383498 3244 */
57b30ae7 3245bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3246{
f72b8792 3247 return __cancel_work(&dwork->work, true);
09383498 3248}
57b30ae7 3249EXPORT_SYMBOL(cancel_delayed_work);
09383498 3250
401a8d04
TH
3251/**
3252 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3253 * @dwork: the delayed work cancel
3254 *
3255 * This is cancel_work_sync() for delayed works.
3256 *
d185af30 3257 * Return:
401a8d04
TH
3258 * %true if @dwork was pending, %false otherwise.
3259 */
3260bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3261{
36e227d2 3262 return __cancel_work_timer(&dwork->work, true);
6e84d644 3263}
f5a421a4 3264EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3265
b6136773 3266/**
31ddd871 3267 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3268 * @func: the function to call
b6136773 3269 *
31ddd871
TH
3270 * schedule_on_each_cpu() executes @func on each online CPU using the
3271 * system workqueue and blocks until all CPUs have completed.
b6136773 3272 * schedule_on_each_cpu() is very slow.
31ddd871 3273 *
d185af30 3274 * Return:
31ddd871 3275 * 0 on success, -errno on failure.
b6136773 3276 */
65f27f38 3277int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3278{
3279 int cpu;
38f51568 3280 struct work_struct __percpu *works;
15316ba8 3281
b6136773
AM
3282 works = alloc_percpu(struct work_struct);
3283 if (!works)
15316ba8 3284 return -ENOMEM;
b6136773 3285
93981800
TH
3286 get_online_cpus();
3287
15316ba8 3288 for_each_online_cpu(cpu) {
9bfb1839
IM
3289 struct work_struct *work = per_cpu_ptr(works, cpu);
3290
3291 INIT_WORK(work, func);
b71ab8c2 3292 schedule_work_on(cpu, work);
65a64464 3293 }
93981800
TH
3294
3295 for_each_online_cpu(cpu)
3296 flush_work(per_cpu_ptr(works, cpu));
3297
95402b38 3298 put_online_cpus();
b6136773 3299 free_percpu(works);
15316ba8
CL
3300 return 0;
3301}
3302
1fa44eca
JB
3303/**
3304 * execute_in_process_context - reliably execute the routine with user context
3305 * @fn: the function to execute
1fa44eca
JB
3306 * @ew: guaranteed storage for the execute work structure (must
3307 * be available when the work executes)
3308 *
3309 * Executes the function immediately if process context is available,
3310 * otherwise schedules the function for delayed execution.
3311 *
d185af30 3312 * Return: 0 - function was executed
1fa44eca
JB
3313 * 1 - function was scheduled for execution
3314 */
65f27f38 3315int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3316{
3317 if (!in_interrupt()) {
65f27f38 3318 fn(&ew->work);
1fa44eca
JB
3319 return 0;
3320 }
3321
65f27f38 3322 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3323 schedule_work(&ew->work);
3324
3325 return 1;
3326}
3327EXPORT_SYMBOL_GPL(execute_in_process_context);
3328
6ba94429
FW
3329/**
3330 * free_workqueue_attrs - free a workqueue_attrs
3331 * @attrs: workqueue_attrs to free
226223ab 3332 *
6ba94429 3333 * Undo alloc_workqueue_attrs().
226223ab 3334 */
513c98d0 3335void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3336{
6ba94429
FW
3337 if (attrs) {
3338 free_cpumask_var(attrs->cpumask);
3339 kfree(attrs);
3340 }
226223ab
TH
3341}
3342
6ba94429
FW
3343/**
3344 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3345 *
3346 * Allocate a new workqueue_attrs, initialize with default settings and
3347 * return it.
3348 *
3349 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3350 */
513c98d0 3351struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3352{
6ba94429 3353 struct workqueue_attrs *attrs;
226223ab 3354
be69d00d 3355 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3356 if (!attrs)
3357 goto fail;
be69d00d 3358 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3359 goto fail;
3360
3361 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3362 return attrs;
3363fail:
3364 free_workqueue_attrs(attrs);
3365 return NULL;
226223ab
TH
3366}
3367
6ba94429
FW
3368static void copy_workqueue_attrs(struct workqueue_attrs *to,
3369 const struct workqueue_attrs *from)
226223ab 3370{
6ba94429
FW
3371 to->nice = from->nice;
3372 cpumask_copy(to->cpumask, from->cpumask);
3373 /*
3374 * Unlike hash and equality test, this function doesn't ignore
3375 * ->no_numa as it is used for both pool and wq attrs. Instead,
3376 * get_unbound_pool() explicitly clears ->no_numa after copying.
3377 */
3378 to->no_numa = from->no_numa;
226223ab
TH
3379}
3380
6ba94429
FW
3381/* hash value of the content of @attr */
3382static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3383{
6ba94429 3384 u32 hash = 0;
226223ab 3385
6ba94429
FW
3386 hash = jhash_1word(attrs->nice, hash);
3387 hash = jhash(cpumask_bits(attrs->cpumask),
3388 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3389 return hash;
226223ab 3390}
226223ab 3391
6ba94429
FW
3392/* content equality test */
3393static bool wqattrs_equal(const struct workqueue_attrs *a,
3394 const struct workqueue_attrs *b)
226223ab 3395{
6ba94429
FW
3396 if (a->nice != b->nice)
3397 return false;
3398 if (!cpumask_equal(a->cpumask, b->cpumask))
3399 return false;
3400 return true;
226223ab
TH
3401}
3402
6ba94429
FW
3403/**
3404 * init_worker_pool - initialize a newly zalloc'd worker_pool
3405 * @pool: worker_pool to initialize
3406 *
402dd89d 3407 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3408 *
3409 * Return: 0 on success, -errno on failure. Even on failure, all fields
3410 * inside @pool proper are initialized and put_unbound_pool() can be called
3411 * on @pool safely to release it.
3412 */
3413static int init_worker_pool(struct worker_pool *pool)
226223ab 3414{
6ba94429
FW
3415 spin_lock_init(&pool->lock);
3416 pool->id = -1;
3417 pool->cpu = -1;
3418 pool->node = NUMA_NO_NODE;
3419 pool->flags |= POOL_DISASSOCIATED;
82607adc 3420 pool->watchdog_ts = jiffies;
6ba94429
FW
3421 INIT_LIST_HEAD(&pool->worklist);
3422 INIT_LIST_HEAD(&pool->idle_list);
3423 hash_init(pool->busy_hash);
226223ab 3424
32a6c723 3425 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3426
32a6c723 3427 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3428
6ba94429 3429 INIT_LIST_HEAD(&pool->workers);
226223ab 3430
6ba94429
FW
3431 ida_init(&pool->worker_ida);
3432 INIT_HLIST_NODE(&pool->hash_node);
3433 pool->refcnt = 1;
226223ab 3434
6ba94429 3435 /* shouldn't fail above this point */
be69d00d 3436 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3437 if (!pool->attrs)
3438 return -ENOMEM;
3439 return 0;
226223ab
TH
3440}
3441
669de8bd
BVA
3442#ifdef CONFIG_LOCKDEP
3443static void wq_init_lockdep(struct workqueue_struct *wq)
3444{
3445 char *lock_name;
3446
3447 lockdep_register_key(&wq->key);
3448 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3449 if (!lock_name)
3450 lock_name = wq->name;
69a106c0
QC
3451
3452 wq->lock_name = lock_name;
669de8bd
BVA
3453 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3454}
3455
3456static void wq_unregister_lockdep(struct workqueue_struct *wq)
3457{
3458 lockdep_unregister_key(&wq->key);
3459}
3460
3461static void wq_free_lockdep(struct workqueue_struct *wq)
3462{
3463 if (wq->lock_name != wq->name)
3464 kfree(wq->lock_name);
3465}
3466#else
3467static void wq_init_lockdep(struct workqueue_struct *wq)
3468{
3469}
3470
3471static void wq_unregister_lockdep(struct workqueue_struct *wq)
3472{
3473}
3474
3475static void wq_free_lockdep(struct workqueue_struct *wq)
3476{
3477}
3478#endif
3479
6ba94429 3480static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3481{
6ba94429
FW
3482 struct workqueue_struct *wq =
3483 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3484
669de8bd
BVA
3485 wq_free_lockdep(wq);
3486
6ba94429
FW
3487 if (!(wq->flags & WQ_UNBOUND))
3488 free_percpu(wq->cpu_pwqs);
226223ab 3489 else
6ba94429 3490 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3491
6ba94429
FW
3492 kfree(wq->rescuer);
3493 kfree(wq);
226223ab
TH
3494}
3495
6ba94429 3496static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3497{
6ba94429 3498 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3499
6ba94429
FW
3500 ida_destroy(&pool->worker_ida);
3501 free_workqueue_attrs(pool->attrs);
3502 kfree(pool);
226223ab
TH
3503}
3504
6ba94429
FW
3505/**
3506 * put_unbound_pool - put a worker_pool
3507 * @pool: worker_pool to put
3508 *
24acfb71 3509 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3510 * safe manner. get_unbound_pool() calls this function on its failure path
3511 * and this function should be able to release pools which went through,
3512 * successfully or not, init_worker_pool().
3513 *
3514 * Should be called with wq_pool_mutex held.
3515 */
3516static void put_unbound_pool(struct worker_pool *pool)
226223ab 3517{
6ba94429
FW
3518 DECLARE_COMPLETION_ONSTACK(detach_completion);
3519 struct worker *worker;
226223ab 3520
6ba94429 3521 lockdep_assert_held(&wq_pool_mutex);
226223ab 3522
6ba94429
FW
3523 if (--pool->refcnt)
3524 return;
226223ab 3525
6ba94429
FW
3526 /* sanity checks */
3527 if (WARN_ON(!(pool->cpu < 0)) ||
3528 WARN_ON(!list_empty(&pool->worklist)))
3529 return;
226223ab 3530
6ba94429
FW
3531 /* release id and unhash */
3532 if (pool->id >= 0)
3533 idr_remove(&worker_pool_idr, pool->id);
3534 hash_del(&pool->hash_node);
d55262c4 3535
6ba94429 3536 /*
692b4825
TH
3537 * Become the manager and destroy all workers. This prevents
3538 * @pool's workers from blocking on attach_mutex. We're the last
3539 * manager and @pool gets freed with the flag set.
6ba94429 3540 */
6ba94429 3541 spin_lock_irq(&pool->lock);
692b4825
TH
3542 wait_event_lock_irq(wq_manager_wait,
3543 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3544 pool->flags |= POOL_MANAGER_ACTIVE;
3545
6ba94429
FW
3546 while ((worker = first_idle_worker(pool)))
3547 destroy_worker(worker);
3548 WARN_ON(pool->nr_workers || pool->nr_idle);
3549 spin_unlock_irq(&pool->lock);
d55262c4 3550
1258fae7 3551 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3552 if (!list_empty(&pool->workers))
3553 pool->detach_completion = &detach_completion;
1258fae7 3554 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3555
6ba94429
FW
3556 if (pool->detach_completion)
3557 wait_for_completion(pool->detach_completion);
226223ab 3558
6ba94429
FW
3559 /* shut down the timers */
3560 del_timer_sync(&pool->idle_timer);
3561 del_timer_sync(&pool->mayday_timer);
226223ab 3562
24acfb71 3563 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3564 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3565}
3566
3567/**
6ba94429
FW
3568 * get_unbound_pool - get a worker_pool with the specified attributes
3569 * @attrs: the attributes of the worker_pool to get
226223ab 3570 *
6ba94429
FW
3571 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3572 * reference count and return it. If there already is a matching
3573 * worker_pool, it will be used; otherwise, this function attempts to
3574 * create a new one.
226223ab 3575 *
6ba94429 3576 * Should be called with wq_pool_mutex held.
226223ab 3577 *
6ba94429
FW
3578 * Return: On success, a worker_pool with the same attributes as @attrs.
3579 * On failure, %NULL.
226223ab 3580 */
6ba94429 3581static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3582{
6ba94429
FW
3583 u32 hash = wqattrs_hash(attrs);
3584 struct worker_pool *pool;
3585 int node;
e2273584 3586 int target_node = NUMA_NO_NODE;
226223ab 3587
6ba94429 3588 lockdep_assert_held(&wq_pool_mutex);
226223ab 3589
6ba94429
FW
3590 /* do we already have a matching pool? */
3591 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3592 if (wqattrs_equal(pool->attrs, attrs)) {
3593 pool->refcnt++;
3594 return pool;
3595 }
3596 }
226223ab 3597
e2273584
XP
3598 /* if cpumask is contained inside a NUMA node, we belong to that node */
3599 if (wq_numa_enabled) {
3600 for_each_node(node) {
3601 if (cpumask_subset(attrs->cpumask,
3602 wq_numa_possible_cpumask[node])) {
3603 target_node = node;
3604 break;
3605 }
3606 }
3607 }
3608
6ba94429 3609 /* nope, create a new one */
e2273584 3610 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3611 if (!pool || init_worker_pool(pool) < 0)
3612 goto fail;
3613
3614 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3615 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3616 pool->node = target_node;
226223ab
TH
3617
3618 /*
6ba94429
FW
3619 * no_numa isn't a worker_pool attribute, always clear it. See
3620 * 'struct workqueue_attrs' comments for detail.
226223ab 3621 */
6ba94429 3622 pool->attrs->no_numa = false;
226223ab 3623
6ba94429
FW
3624 if (worker_pool_assign_id(pool) < 0)
3625 goto fail;
226223ab 3626
6ba94429 3627 /* create and start the initial worker */
3347fa09 3628 if (wq_online && !create_worker(pool))
6ba94429 3629 goto fail;
226223ab 3630
6ba94429
FW
3631 /* install */
3632 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3633
6ba94429
FW
3634 return pool;
3635fail:
3636 if (pool)
3637 put_unbound_pool(pool);
3638 return NULL;
226223ab 3639}
226223ab 3640
6ba94429 3641static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3642{
6ba94429
FW
3643 kmem_cache_free(pwq_cache,
3644 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3645}
3646
6ba94429
FW
3647/*
3648 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3649 * and needs to be destroyed.
7a4e344c 3650 */
6ba94429 3651static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3652{
6ba94429
FW
3653 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3654 unbound_release_work);
3655 struct workqueue_struct *wq = pwq->wq;
3656 struct worker_pool *pool = pwq->pool;
3657 bool is_last;
7a4e344c 3658
6ba94429
FW
3659 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3660 return;
7a4e344c 3661
6ba94429
FW
3662 mutex_lock(&wq->mutex);
3663 list_del_rcu(&pwq->pwqs_node);
3664 is_last = list_empty(&wq->pwqs);
3665 mutex_unlock(&wq->mutex);
3666
3667 mutex_lock(&wq_pool_mutex);
3668 put_unbound_pool(pool);
3669 mutex_unlock(&wq_pool_mutex);
3670
25b00775 3671 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3672
2865a8fb 3673 /*
6ba94429
FW
3674 * If we're the last pwq going away, @wq is already dead and no one
3675 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3676 */
669de8bd
BVA
3677 if (is_last) {
3678 wq_unregister_lockdep(wq);
25b00775 3679 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3680 }
29c91e99
TH
3681}
3682
7a4e344c 3683/**
6ba94429
FW
3684 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3685 * @pwq: target pool_workqueue
d185af30 3686 *
6ba94429
FW
3687 * If @pwq isn't freezing, set @pwq->max_active to the associated
3688 * workqueue's saved_max_active and activate delayed work items
3689 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3690 */
6ba94429 3691static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3692{
6ba94429
FW
3693 struct workqueue_struct *wq = pwq->wq;
3694 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3695 unsigned long flags;
4e1a1f9a 3696
6ba94429
FW
3697 /* for @wq->saved_max_active */
3698 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3699
6ba94429
FW
3700 /* fast exit for non-freezable wqs */
3701 if (!freezable && pwq->max_active == wq->saved_max_active)
3702 return;
7a4e344c 3703
3347fa09
TH
3704 /* this function can be called during early boot w/ irq disabled */
3705 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3706
6ba94429
FW
3707 /*
3708 * During [un]freezing, the caller is responsible for ensuring that
3709 * this function is called at least once after @workqueue_freezing
3710 * is updated and visible.
3711 */
3712 if (!freezable || !workqueue_freezing) {
3713 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3714
6ba94429
FW
3715 while (!list_empty(&pwq->delayed_works) &&
3716 pwq->nr_active < pwq->max_active)
3717 pwq_activate_first_delayed(pwq);
e2dca7ad 3718
6ba94429
FW
3719 /*
3720 * Need to kick a worker after thawed or an unbound wq's
3721 * max_active is bumped. It's a slow path. Do it always.
3722 */
3723 wake_up_worker(pwq->pool);
3724 } else {
3725 pwq->max_active = 0;
3726 }
e2dca7ad 3727
3347fa09 3728 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3729}
3730
6ba94429
FW
3731/* initialize newly alloced @pwq which is associated with @wq and @pool */
3732static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3733 struct worker_pool *pool)
29c91e99 3734{
6ba94429 3735 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3736
6ba94429
FW
3737 memset(pwq, 0, sizeof(*pwq));
3738
3739 pwq->pool = pool;
3740 pwq->wq = wq;
3741 pwq->flush_color = -1;
3742 pwq->refcnt = 1;
3743 INIT_LIST_HEAD(&pwq->delayed_works);
3744 INIT_LIST_HEAD(&pwq->pwqs_node);
3745 INIT_LIST_HEAD(&pwq->mayday_node);
3746 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3747}
3748
6ba94429
FW
3749/* sync @pwq with the current state of its associated wq and link it */
3750static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3751{
6ba94429 3752 struct workqueue_struct *wq = pwq->wq;
29c91e99 3753
6ba94429 3754 lockdep_assert_held(&wq->mutex);
a892cacc 3755
6ba94429
FW
3756 /* may be called multiple times, ignore if already linked */
3757 if (!list_empty(&pwq->pwqs_node))
29c91e99 3758 return;
29c91e99 3759
6ba94429
FW
3760 /* set the matching work_color */
3761 pwq->work_color = wq->work_color;
29c91e99 3762
6ba94429
FW
3763 /* sync max_active to the current setting */
3764 pwq_adjust_max_active(pwq);
29c91e99 3765
6ba94429
FW
3766 /* link in @pwq */
3767 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3768}
29c91e99 3769
6ba94429
FW
3770/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3771static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3772 const struct workqueue_attrs *attrs)
3773{
3774 struct worker_pool *pool;
3775 struct pool_workqueue *pwq;
60f5a4bc 3776
6ba94429 3777 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3778
6ba94429
FW
3779 pool = get_unbound_pool(attrs);
3780 if (!pool)
3781 return NULL;
60f5a4bc 3782
6ba94429
FW
3783 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3784 if (!pwq) {
3785 put_unbound_pool(pool);
3786 return NULL;
3787 }
29c91e99 3788
6ba94429
FW
3789 init_pwq(pwq, wq, pool);
3790 return pwq;
3791}
29c91e99 3792
29c91e99 3793/**
30186c6f 3794 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3795 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3796 * @node: the target NUMA node
3797 * @cpu_going_down: if >= 0, the CPU to consider as offline
3798 * @cpumask: outarg, the resulting cpumask
29c91e99 3799 *
6ba94429
FW
3800 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3801 * @cpu_going_down is >= 0, that cpu is considered offline during
3802 * calculation. The result is stored in @cpumask.
a892cacc 3803 *
6ba94429
FW
3804 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3805 * enabled and @node has online CPUs requested by @attrs, the returned
3806 * cpumask is the intersection of the possible CPUs of @node and
3807 * @attrs->cpumask.
d185af30 3808 *
6ba94429
FW
3809 * The caller is responsible for ensuring that the cpumask of @node stays
3810 * stable.
3811 *
3812 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3813 * %false if equal.
29c91e99 3814 */
6ba94429
FW
3815static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3816 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3817{
6ba94429
FW
3818 if (!wq_numa_enabled || attrs->no_numa)
3819 goto use_dfl;
29c91e99 3820
6ba94429
FW
3821 /* does @node have any online CPUs @attrs wants? */
3822 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3823 if (cpu_going_down >= 0)
3824 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3825
6ba94429
FW
3826 if (cpumask_empty(cpumask))
3827 goto use_dfl;
4c16bd32
TH
3828
3829 /* yeap, return possible CPUs in @node that @attrs wants */
3830 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3831
3832 if (cpumask_empty(cpumask)) {
3833 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3834 "possible intersect\n");
3835 return false;
3836 }
3837
4c16bd32
TH
3838 return !cpumask_equal(cpumask, attrs->cpumask);
3839
3840use_dfl:
3841 cpumask_copy(cpumask, attrs->cpumask);
3842 return false;
3843}
3844
1befcf30
TH
3845/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3846static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3847 int node,
3848 struct pool_workqueue *pwq)
3849{
3850 struct pool_workqueue *old_pwq;
3851
5b95e1af 3852 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3853 lockdep_assert_held(&wq->mutex);
3854
3855 /* link_pwq() can handle duplicate calls */
3856 link_pwq(pwq);
3857
3858 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3859 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3860 return old_pwq;
3861}
3862
2d5f0764
LJ
3863/* context to store the prepared attrs & pwqs before applying */
3864struct apply_wqattrs_ctx {
3865 struct workqueue_struct *wq; /* target workqueue */
3866 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3867 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3868 struct pool_workqueue *dfl_pwq;
3869 struct pool_workqueue *pwq_tbl[];
3870};
3871
3872/* free the resources after success or abort */
3873static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3874{
3875 if (ctx) {
3876 int node;
3877
3878 for_each_node(node)
3879 put_pwq_unlocked(ctx->pwq_tbl[node]);
3880 put_pwq_unlocked(ctx->dfl_pwq);
3881
3882 free_workqueue_attrs(ctx->attrs);
3883
3884 kfree(ctx);
3885 }
3886}
3887
3888/* allocate the attrs and pwqs for later installation */
3889static struct apply_wqattrs_ctx *
3890apply_wqattrs_prepare(struct workqueue_struct *wq,
3891 const struct workqueue_attrs *attrs)
9e8cd2f5 3892{
2d5f0764 3893 struct apply_wqattrs_ctx *ctx;
4c16bd32 3894 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3895 int node;
9e8cd2f5 3896
2d5f0764 3897 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3898
acafe7e3 3899 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3900
be69d00d
TG
3901 new_attrs = alloc_workqueue_attrs();
3902 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3903 if (!ctx || !new_attrs || !tmp_attrs)
3904 goto out_free;
13e2e556 3905
042f7df1
LJ
3906 /*
3907 * Calculate the attrs of the default pwq.
3908 * If the user configured cpumask doesn't overlap with the
3909 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3910 */
13e2e556 3911 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3912 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3913 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3914 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3915
4c16bd32
TH
3916 /*
3917 * We may create multiple pwqs with differing cpumasks. Make a
3918 * copy of @new_attrs which will be modified and used to obtain
3919 * pools.
3920 */
3921 copy_workqueue_attrs(tmp_attrs, new_attrs);
3922
4c16bd32
TH
3923 /*
3924 * If something goes wrong during CPU up/down, we'll fall back to
3925 * the default pwq covering whole @attrs->cpumask. Always create
3926 * it even if we don't use it immediately.
3927 */
2d5f0764
LJ
3928 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3929 if (!ctx->dfl_pwq)
3930 goto out_free;
4c16bd32
TH
3931
3932 for_each_node(node) {
042f7df1 3933 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3934 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3935 if (!ctx->pwq_tbl[node])
3936 goto out_free;
4c16bd32 3937 } else {
2d5f0764
LJ
3938 ctx->dfl_pwq->refcnt++;
3939 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3940 }
3941 }
3942
042f7df1
LJ
3943 /* save the user configured attrs and sanitize it. */
3944 copy_workqueue_attrs(new_attrs, attrs);
3945 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3946 ctx->attrs = new_attrs;
042f7df1 3947
2d5f0764
LJ
3948 ctx->wq = wq;
3949 free_workqueue_attrs(tmp_attrs);
3950 return ctx;
3951
3952out_free:
3953 free_workqueue_attrs(tmp_attrs);
3954 free_workqueue_attrs(new_attrs);
3955 apply_wqattrs_cleanup(ctx);
3956 return NULL;
3957}
3958
3959/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3960static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3961{
3962 int node;
9e8cd2f5 3963
4c16bd32 3964 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3965 mutex_lock(&ctx->wq->mutex);
a892cacc 3966
2d5f0764 3967 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3968
3969 /* save the previous pwq and install the new one */
f147f29e 3970 for_each_node(node)
2d5f0764
LJ
3971 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3972 ctx->pwq_tbl[node]);
4c16bd32
TH
3973
3974 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3975 link_pwq(ctx->dfl_pwq);
3976 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3977
2d5f0764
LJ
3978 mutex_unlock(&ctx->wq->mutex);
3979}
9e8cd2f5 3980
a0111cf6
LJ
3981static void apply_wqattrs_lock(void)
3982{
3983 /* CPUs should stay stable across pwq creations and installations */
3984 get_online_cpus();
3985 mutex_lock(&wq_pool_mutex);
3986}
3987
3988static void apply_wqattrs_unlock(void)
3989{
3990 mutex_unlock(&wq_pool_mutex);
3991 put_online_cpus();
3992}
3993
3994static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3995 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3996{
3997 struct apply_wqattrs_ctx *ctx;
4c16bd32 3998
2d5f0764
LJ
3999 /* only unbound workqueues can change attributes */
4000 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4001 return -EINVAL;
13e2e556 4002
2d5f0764 4003 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4004 if (!list_empty(&wq->pwqs)) {
4005 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4006 return -EINVAL;
4007
4008 wq->flags &= ~__WQ_ORDERED;
4009 }
2d5f0764 4010
2d5f0764 4011 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4012 if (!ctx)
4013 return -ENOMEM;
2d5f0764
LJ
4014
4015 /* the ctx has been prepared successfully, let's commit it */
6201171e 4016 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4017 apply_wqattrs_cleanup(ctx);
4018
6201171e 4019 return 0;
9e8cd2f5
TH
4020}
4021
a0111cf6
LJ
4022/**
4023 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4024 * @wq: the target workqueue
4025 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4026 *
4027 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4028 * machines, this function maps a separate pwq to each NUMA node with
4029 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4030 * NUMA node it was issued on. Older pwqs are released as in-flight work
4031 * items finish. Note that a work item which repeatedly requeues itself
4032 * back-to-back will stay on its current pwq.
4033 *
4034 * Performs GFP_KERNEL allocations.
4035 *
509b3204
DJ
4036 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4037 *
a0111cf6
LJ
4038 * Return: 0 on success and -errno on failure.
4039 */
513c98d0 4040int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4041 const struct workqueue_attrs *attrs)
4042{
4043 int ret;
4044
509b3204
DJ
4045 lockdep_assert_cpus_held();
4046
4047 mutex_lock(&wq_pool_mutex);
a0111cf6 4048 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4049 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4050
4051 return ret;
4052}
4053
4c16bd32
TH
4054/**
4055 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4056 * @wq: the target workqueue
4057 * @cpu: the CPU coming up or going down
4058 * @online: whether @cpu is coming up or going down
4059 *
4060 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4061 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4062 * @wq accordingly.
4063 *
4064 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4065 * falls back to @wq->dfl_pwq which may not be optimal but is always
4066 * correct.
4067 *
4068 * Note that when the last allowed CPU of a NUMA node goes offline for a
4069 * workqueue with a cpumask spanning multiple nodes, the workers which were
4070 * already executing the work items for the workqueue will lose their CPU
4071 * affinity and may execute on any CPU. This is similar to how per-cpu
4072 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4073 * affinity, it's the user's responsibility to flush the work item from
4074 * CPU_DOWN_PREPARE.
4075 */
4076static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4077 bool online)
4078{
4079 int node = cpu_to_node(cpu);
4080 int cpu_off = online ? -1 : cpu;
4081 struct pool_workqueue *old_pwq = NULL, *pwq;
4082 struct workqueue_attrs *target_attrs;
4083 cpumask_t *cpumask;
4084
4085 lockdep_assert_held(&wq_pool_mutex);
4086
f7142ed4
LJ
4087 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4088 wq->unbound_attrs->no_numa)
4c16bd32
TH
4089 return;
4090
4091 /*
4092 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4093 * Let's use a preallocated one. The following buf is protected by
4094 * CPU hotplug exclusion.
4095 */
4096 target_attrs = wq_update_unbound_numa_attrs_buf;
4097 cpumask = target_attrs->cpumask;
4098
4c16bd32
TH
4099 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4100 pwq = unbound_pwq_by_node(wq, node);
4101
4102 /*
4103 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4104 * different from the default pwq's, we need to compare it to @pwq's
4105 * and create a new one if they don't match. If the target cpumask
4106 * equals the default pwq's, the default pwq should be used.
4c16bd32 4107 */
042f7df1 4108 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4109 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4110 return;
4c16bd32 4111 } else {
534a3fbb 4112 goto use_dfl_pwq;
4c16bd32
TH
4113 }
4114
4c16bd32
TH
4115 /* create a new pwq */
4116 pwq = alloc_unbound_pwq(wq, target_attrs);
4117 if (!pwq) {
2d916033
FF
4118 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4119 wq->name);
77f300b1 4120 goto use_dfl_pwq;
4c16bd32
TH
4121 }
4122
f7142ed4 4123 /* Install the new pwq. */
4c16bd32
TH
4124 mutex_lock(&wq->mutex);
4125 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4126 goto out_unlock;
4127
4128use_dfl_pwq:
f7142ed4 4129 mutex_lock(&wq->mutex);
4c16bd32
TH
4130 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4131 get_pwq(wq->dfl_pwq);
4132 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4133 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4134out_unlock:
4135 mutex_unlock(&wq->mutex);
4136 put_pwq_unlocked(old_pwq);
4137}
4138
30cdf249 4139static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4140{
49e3cf44 4141 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4142 int cpu, ret;
30cdf249
TH
4143
4144 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4145 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4146 if (!wq->cpu_pwqs)
30cdf249
TH
4147 return -ENOMEM;
4148
4149 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4150 struct pool_workqueue *pwq =
4151 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4152 struct worker_pool *cpu_pools =
f02ae73a 4153 per_cpu(cpu_worker_pools, cpu);
f3421797 4154
f147f29e
TH
4155 init_pwq(pwq, wq, &cpu_pools[highpri]);
4156
4157 mutex_lock(&wq->mutex);
1befcf30 4158 link_pwq(pwq);
f147f29e 4159 mutex_unlock(&wq->mutex);
30cdf249 4160 }
9e8cd2f5 4161 return 0;
509b3204
DJ
4162 }
4163
4164 get_online_cpus();
4165 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4166 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4167 /* there should only be single pwq for ordering guarantee */
4168 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4169 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4170 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4171 } else {
509b3204 4172 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4173 }
509b3204
DJ
4174 put_online_cpus();
4175
4176 return ret;
0f900049
TH
4177}
4178
f3421797
TH
4179static int wq_clamp_max_active(int max_active, unsigned int flags,
4180 const char *name)
b71ab8c2 4181{
f3421797
TH
4182 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4183
4184 if (max_active < 1 || max_active > lim)
044c782c
VI
4185 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4186 max_active, name, 1, lim);
b71ab8c2 4187
f3421797 4188 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4189}
4190
983c7515
TH
4191/*
4192 * Workqueues which may be used during memory reclaim should have a rescuer
4193 * to guarantee forward progress.
4194 */
4195static int init_rescuer(struct workqueue_struct *wq)
4196{
4197 struct worker *rescuer;
4198 int ret;
4199
4200 if (!(wq->flags & WQ_MEM_RECLAIM))
4201 return 0;
4202
4203 rescuer = alloc_worker(NUMA_NO_NODE);
4204 if (!rescuer)
4205 return -ENOMEM;
4206
4207 rescuer->rescue_wq = wq;
4208 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4209 ret = PTR_ERR_OR_ZERO(rescuer->task);
4210 if (ret) {
4211 kfree(rescuer);
4212 return ret;
4213 }
4214
4215 wq->rescuer = rescuer;
4216 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4217 wake_up_process(rescuer->task);
4218
4219 return 0;
4220}
4221
a2775bbc 4222__printf(1, 4)
669de8bd
BVA
4223struct workqueue_struct *alloc_workqueue(const char *fmt,
4224 unsigned int flags,
4225 int max_active, ...)
1da177e4 4226{
df2d5ae4 4227 size_t tbl_size = 0;
ecf6881f 4228 va_list args;
1da177e4 4229 struct workqueue_struct *wq;
49e3cf44 4230 struct pool_workqueue *pwq;
b196be89 4231
5c0338c6
TH
4232 /*
4233 * Unbound && max_active == 1 used to imply ordered, which is no
4234 * longer the case on NUMA machines due to per-node pools. While
4235 * alloc_ordered_workqueue() is the right way to create an ordered
4236 * workqueue, keep the previous behavior to avoid subtle breakages
4237 * on NUMA.
4238 */
4239 if ((flags & WQ_UNBOUND) && max_active == 1)
4240 flags |= __WQ_ORDERED;
4241
cee22a15
VK
4242 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4243 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4244 flags |= WQ_UNBOUND;
4245
ecf6881f 4246 /* allocate wq and format name */
df2d5ae4 4247 if (flags & WQ_UNBOUND)
ddcb57e2 4248 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4249
4250 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4251 if (!wq)
d2c1d404 4252 return NULL;
b196be89 4253
6029a918 4254 if (flags & WQ_UNBOUND) {
be69d00d 4255 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4256 if (!wq->unbound_attrs)
4257 goto err_free_wq;
4258 }
4259
669de8bd 4260 va_start(args, max_active);
ecf6881f 4261 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4262 va_end(args);
1da177e4 4263
d320c038 4264 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4265 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4266
b196be89 4267 /* init wq */
97e37d7b 4268 wq->flags = flags;
a0a1a5fd 4269 wq->saved_max_active = max_active;
3c25a55d 4270 mutex_init(&wq->mutex);
112202d9 4271 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4272 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4273 INIT_LIST_HEAD(&wq->flusher_queue);
4274 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4275 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4276
669de8bd 4277 wq_init_lockdep(wq);
cce1a165 4278 INIT_LIST_HEAD(&wq->list);
3af24433 4279
30cdf249 4280 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4281 goto err_unreg_lockdep;
1537663f 4282
40c17f75 4283 if (wq_online && init_rescuer(wq) < 0)
983c7515 4284 goto err_destroy;
3af24433 4285
226223ab
TH
4286 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4287 goto err_destroy;
4288
a0a1a5fd 4289 /*
68e13a67
LJ
4290 * wq_pool_mutex protects global freeze state and workqueues list.
4291 * Grab it, adjust max_active and add the new @wq to workqueues
4292 * list.
a0a1a5fd 4293 */
68e13a67 4294 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4295
a357fc03 4296 mutex_lock(&wq->mutex);
699ce097
TH
4297 for_each_pwq(pwq, wq)
4298 pwq_adjust_max_active(pwq);
a357fc03 4299 mutex_unlock(&wq->mutex);
a0a1a5fd 4300
e2dca7ad 4301 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4302
68e13a67 4303 mutex_unlock(&wq_pool_mutex);
1537663f 4304
3af24433 4305 return wq;
d2c1d404 4306
82efcab3 4307err_unreg_lockdep:
009bb421
BVA
4308 wq_unregister_lockdep(wq);
4309 wq_free_lockdep(wq);
82efcab3 4310err_free_wq:
6029a918 4311 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4312 kfree(wq);
4313 return NULL;
4314err_destroy:
4315 destroy_workqueue(wq);
4690c4ab 4316 return NULL;
3af24433 4317}
669de8bd 4318EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4319
c29eb853
TH
4320static bool pwq_busy(struct pool_workqueue *pwq)
4321{
4322 int i;
4323
4324 for (i = 0; i < WORK_NR_COLORS; i++)
4325 if (pwq->nr_in_flight[i])
4326 return true;
4327
4328 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4329 return true;
4330 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4331 return true;
4332
4333 return false;
4334}
4335
3af24433
ON
4336/**
4337 * destroy_workqueue - safely terminate a workqueue
4338 * @wq: target workqueue
4339 *
4340 * Safely destroy a workqueue. All work currently pending will be done first.
4341 */
4342void destroy_workqueue(struct workqueue_struct *wq)
4343{
49e3cf44 4344 struct pool_workqueue *pwq;
4c16bd32 4345 int node;
3af24433 4346
def98c84
TH
4347 /*
4348 * Remove it from sysfs first so that sanity check failure doesn't
4349 * lead to sysfs name conflicts.
4350 */
4351 workqueue_sysfs_unregister(wq);
4352
9c5a2ba7
TH
4353 /* drain it before proceeding with destruction */
4354 drain_workqueue(wq);
c8efcc25 4355
def98c84
TH
4356 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4357 if (wq->rescuer) {
4358 struct worker *rescuer = wq->rescuer;
4359
4360 /* this prevents new queueing */
4361 spin_lock_irq(&wq_mayday_lock);
4362 wq->rescuer = NULL;
4363 spin_unlock_irq(&wq_mayday_lock);
4364
4365 /* rescuer will empty maydays list before exiting */
4366 kthread_stop(rescuer->task);
8efe1223 4367 kfree(rescuer);
def98c84
TH
4368 }
4369
c29eb853
TH
4370 /*
4371 * Sanity checks - grab all the locks so that we wait for all
4372 * in-flight operations which may do put_pwq().
4373 */
4374 mutex_lock(&wq_pool_mutex);
b09f4fd3 4375 mutex_lock(&wq->mutex);
49e3cf44 4376 for_each_pwq(pwq, wq) {
c29eb853
TH
4377 spin_lock_irq(&pwq->pool->lock);
4378 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4379 pr_warn("%s: %s has the following busy pwq\n",
4380 __func__, wq->name);
c29eb853
TH
4381 show_pwq(pwq);
4382 spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4383 mutex_unlock(&wq->mutex);
c29eb853 4384 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4385 show_workqueue_state();
6183c009 4386 return;
76af4d93 4387 }
c29eb853 4388 spin_unlock_irq(&pwq->pool->lock);
6183c009 4389 }
b09f4fd3 4390 mutex_unlock(&wq->mutex);
c29eb853 4391 mutex_unlock(&wq_pool_mutex);
6183c009 4392
a0a1a5fd
TH
4393 /*
4394 * wq list is used to freeze wq, remove from list after
4395 * flushing is complete in case freeze races us.
4396 */
68e13a67 4397 mutex_lock(&wq_pool_mutex);
e2dca7ad 4398 list_del_rcu(&wq->list);
68e13a67 4399 mutex_unlock(&wq_pool_mutex);
3af24433 4400
8864b4e5 4401 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4402 wq_unregister_lockdep(wq);
8864b4e5
TH
4403 /*
4404 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4405 * schedule RCU free.
8864b4e5 4406 */
25b00775 4407 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4408 } else {
4409 /*
4410 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4411 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4412 * @wq will be freed when the last pwq is released.
8864b4e5 4413 */
4c16bd32
TH
4414 for_each_node(node) {
4415 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4416 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4417 put_pwq_unlocked(pwq);
4418 }
4419
4420 /*
4421 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4422 * put. Don't access it afterwards.
4423 */
4424 pwq = wq->dfl_pwq;
4425 wq->dfl_pwq = NULL;
dce90d47 4426 put_pwq_unlocked(pwq);
29c91e99 4427 }
3af24433
ON
4428}
4429EXPORT_SYMBOL_GPL(destroy_workqueue);
4430
dcd989cb
TH
4431/**
4432 * workqueue_set_max_active - adjust max_active of a workqueue
4433 * @wq: target workqueue
4434 * @max_active: new max_active value.
4435 *
4436 * Set max_active of @wq to @max_active.
4437 *
4438 * CONTEXT:
4439 * Don't call from IRQ context.
4440 */
4441void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4442{
49e3cf44 4443 struct pool_workqueue *pwq;
dcd989cb 4444
8719dcea 4445 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4446 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4447 return;
4448
f3421797 4449 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4450
a357fc03 4451 mutex_lock(&wq->mutex);
dcd989cb 4452
0a94efb5 4453 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4454 wq->saved_max_active = max_active;
4455
699ce097
TH
4456 for_each_pwq(pwq, wq)
4457 pwq_adjust_max_active(pwq);
93981800 4458
a357fc03 4459 mutex_unlock(&wq->mutex);
15316ba8 4460}
dcd989cb 4461EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4462
27d4ee03
LW
4463/**
4464 * current_work - retrieve %current task's work struct
4465 *
4466 * Determine if %current task is a workqueue worker and what it's working on.
4467 * Useful to find out the context that the %current task is running in.
4468 *
4469 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4470 */
4471struct work_struct *current_work(void)
4472{
4473 struct worker *worker = current_wq_worker();
4474
4475 return worker ? worker->current_work : NULL;
4476}
4477EXPORT_SYMBOL(current_work);
4478
e6267616
TH
4479/**
4480 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4481 *
4482 * Determine whether %current is a workqueue rescuer. Can be used from
4483 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4484 *
4485 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4486 */
4487bool current_is_workqueue_rescuer(void)
4488{
4489 struct worker *worker = current_wq_worker();
4490
6a092dfd 4491 return worker && worker->rescue_wq;
e6267616
TH
4492}
4493
eef6a7d5 4494/**
dcd989cb
TH
4495 * workqueue_congested - test whether a workqueue is congested
4496 * @cpu: CPU in question
4497 * @wq: target workqueue
eef6a7d5 4498 *
dcd989cb
TH
4499 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4500 * no synchronization around this function and the test result is
4501 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4502 *
d3251859
TH
4503 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4504 * Note that both per-cpu and unbound workqueues may be associated with
4505 * multiple pool_workqueues which have separate congested states. A
4506 * workqueue being congested on one CPU doesn't mean the workqueue is also
4507 * contested on other CPUs / NUMA nodes.
4508 *
d185af30 4509 * Return:
dcd989cb 4510 * %true if congested, %false otherwise.
eef6a7d5 4511 */
d84ff051 4512bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4513{
7fb98ea7 4514 struct pool_workqueue *pwq;
76af4d93
TH
4515 bool ret;
4516
24acfb71
TG
4517 rcu_read_lock();
4518 preempt_disable();
7fb98ea7 4519
d3251859
TH
4520 if (cpu == WORK_CPU_UNBOUND)
4521 cpu = smp_processor_id();
4522
7fb98ea7
TH
4523 if (!(wq->flags & WQ_UNBOUND))
4524 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4525 else
df2d5ae4 4526 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4527
76af4d93 4528 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4529 preempt_enable();
4530 rcu_read_unlock();
76af4d93
TH
4531
4532 return ret;
1da177e4 4533}
dcd989cb 4534EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4535
dcd989cb
TH
4536/**
4537 * work_busy - test whether a work is currently pending or running
4538 * @work: the work to be tested
4539 *
4540 * Test whether @work is currently pending or running. There is no
4541 * synchronization around this function and the test result is
4542 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4543 *
d185af30 4544 * Return:
dcd989cb
TH
4545 * OR'd bitmask of WORK_BUSY_* bits.
4546 */
4547unsigned int work_busy(struct work_struct *work)
1da177e4 4548{
fa1b54e6 4549 struct worker_pool *pool;
dcd989cb
TH
4550 unsigned long flags;
4551 unsigned int ret = 0;
1da177e4 4552
dcd989cb
TH
4553 if (work_pending(work))
4554 ret |= WORK_BUSY_PENDING;
1da177e4 4555
24acfb71 4556 rcu_read_lock();
fa1b54e6 4557 pool = get_work_pool(work);
038366c5 4558 if (pool) {
24acfb71 4559 spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4560 if (find_worker_executing_work(pool, work))
4561 ret |= WORK_BUSY_RUNNING;
24acfb71 4562 spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4563 }
24acfb71 4564 rcu_read_unlock();
1da177e4 4565
dcd989cb 4566 return ret;
1da177e4 4567}
dcd989cb 4568EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4569
3d1cb205
TH
4570/**
4571 * set_worker_desc - set description for the current work item
4572 * @fmt: printf-style format string
4573 * @...: arguments for the format string
4574 *
4575 * This function can be called by a running work function to describe what
4576 * the work item is about. If the worker task gets dumped, this
4577 * information will be printed out together to help debugging. The
4578 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4579 */
4580void set_worker_desc(const char *fmt, ...)
4581{
4582 struct worker *worker = current_wq_worker();
4583 va_list args;
4584
4585 if (worker) {
4586 va_start(args, fmt);
4587 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4588 va_end(args);
3d1cb205
TH
4589 }
4590}
5c750d58 4591EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4592
4593/**
4594 * print_worker_info - print out worker information and description
4595 * @log_lvl: the log level to use when printing
4596 * @task: target task
4597 *
4598 * If @task is a worker and currently executing a work item, print out the
4599 * name of the workqueue being serviced and worker description set with
4600 * set_worker_desc() by the currently executing work item.
4601 *
4602 * This function can be safely called on any task as long as the
4603 * task_struct itself is accessible. While safe, this function isn't
4604 * synchronized and may print out mixups or garbages of limited length.
4605 */
4606void print_worker_info(const char *log_lvl, struct task_struct *task)
4607{
4608 work_func_t *fn = NULL;
4609 char name[WQ_NAME_LEN] = { };
4610 char desc[WORKER_DESC_LEN] = { };
4611 struct pool_workqueue *pwq = NULL;
4612 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4613 struct worker *worker;
4614
4615 if (!(task->flags & PF_WQ_WORKER))
4616 return;
4617
4618 /*
4619 * This function is called without any synchronization and @task
4620 * could be in any state. Be careful with dereferences.
4621 */
e700591a 4622 worker = kthread_probe_data(task);
3d1cb205
TH
4623
4624 /*
8bf89593
TH
4625 * Carefully copy the associated workqueue's workfn, name and desc.
4626 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4627 */
4628 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4629 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4630 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4631 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4632 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4633
4634 if (fn || name[0] || desc[0]) {
d75f773c 4635 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4636 if (strcmp(name, desc))
3d1cb205
TH
4637 pr_cont(" (%s)", desc);
4638 pr_cont("\n");
4639 }
4640}
4641
3494fc30
TH
4642static void pr_cont_pool_info(struct worker_pool *pool)
4643{
4644 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4645 if (pool->node != NUMA_NO_NODE)
4646 pr_cont(" node=%d", pool->node);
4647 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4648}
4649
4650static void pr_cont_work(bool comma, struct work_struct *work)
4651{
4652 if (work->func == wq_barrier_func) {
4653 struct wq_barrier *barr;
4654
4655 barr = container_of(work, struct wq_barrier, work);
4656
4657 pr_cont("%s BAR(%d)", comma ? "," : "",
4658 task_pid_nr(barr->task));
4659 } else {
d75f773c 4660 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4661 }
4662}
4663
4664static void show_pwq(struct pool_workqueue *pwq)
4665{
4666 struct worker_pool *pool = pwq->pool;
4667 struct work_struct *work;
4668 struct worker *worker;
4669 bool has_in_flight = false, has_pending = false;
4670 int bkt;
4671
4672 pr_info(" pwq %d:", pool->id);
4673 pr_cont_pool_info(pool);
4674
e66b39af
TH
4675 pr_cont(" active=%d/%d refcnt=%d%s\n",
4676 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4677 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4678
4679 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4680 if (worker->current_pwq == pwq) {
4681 has_in_flight = true;
4682 break;
4683 }
4684 }
4685 if (has_in_flight) {
4686 bool comma = false;
4687
4688 pr_info(" in-flight:");
4689 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4690 if (worker->current_pwq != pwq)
4691 continue;
4692
d75f773c 4693 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4694 task_pid_nr(worker->task),
30ae2fc0 4695 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4696 worker->current_func);
4697 list_for_each_entry(work, &worker->scheduled, entry)
4698 pr_cont_work(false, work);
4699 comma = true;
4700 }
4701 pr_cont("\n");
4702 }
4703
4704 list_for_each_entry(work, &pool->worklist, entry) {
4705 if (get_work_pwq(work) == pwq) {
4706 has_pending = true;
4707 break;
4708 }
4709 }
4710 if (has_pending) {
4711 bool comma = false;
4712
4713 pr_info(" pending:");
4714 list_for_each_entry(work, &pool->worklist, entry) {
4715 if (get_work_pwq(work) != pwq)
4716 continue;
4717
4718 pr_cont_work(comma, work);
4719 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4720 }
4721 pr_cont("\n");
4722 }
4723
4724 if (!list_empty(&pwq->delayed_works)) {
4725 bool comma = false;
4726
4727 pr_info(" delayed:");
4728 list_for_each_entry(work, &pwq->delayed_works, entry) {
4729 pr_cont_work(comma, work);
4730 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4731 }
4732 pr_cont("\n");
4733 }
4734}
4735
4736/**
4737 * show_workqueue_state - dump workqueue state
4738 *
7b776af6
RL
4739 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4740 * all busy workqueues and pools.
3494fc30
TH
4741 */
4742void show_workqueue_state(void)
4743{
4744 struct workqueue_struct *wq;
4745 struct worker_pool *pool;
4746 unsigned long flags;
4747 int pi;
4748
24acfb71 4749 rcu_read_lock();
3494fc30
TH
4750
4751 pr_info("Showing busy workqueues and worker pools:\n");
4752
4753 list_for_each_entry_rcu(wq, &workqueues, list) {
4754 struct pool_workqueue *pwq;
4755 bool idle = true;
4756
4757 for_each_pwq(pwq, wq) {
4758 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4759 idle = false;
4760 break;
4761 }
4762 }
4763 if (idle)
4764 continue;
4765
4766 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4767
4768 for_each_pwq(pwq, wq) {
4769 spin_lock_irqsave(&pwq->pool->lock, flags);
4770 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4771 show_pwq(pwq);
4772 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4773 /*
4774 * We could be printing a lot from atomic context, e.g.
4775 * sysrq-t -> show_workqueue_state(). Avoid triggering
4776 * hard lockup.
4777 */
4778 touch_nmi_watchdog();
3494fc30
TH
4779 }
4780 }
4781
4782 for_each_pool(pool, pi) {
4783 struct worker *worker;
4784 bool first = true;
4785
4786 spin_lock_irqsave(&pool->lock, flags);
4787 if (pool->nr_workers == pool->nr_idle)
4788 goto next_pool;
4789
4790 pr_info("pool %d:", pool->id);
4791 pr_cont_pool_info(pool);
82607adc
TH
4792 pr_cont(" hung=%us workers=%d",
4793 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4794 pool->nr_workers);
3494fc30
TH
4795 if (pool->manager)
4796 pr_cont(" manager: %d",
4797 task_pid_nr(pool->manager->task));
4798 list_for_each_entry(worker, &pool->idle_list, entry) {
4799 pr_cont(" %s%d", first ? "idle: " : "",
4800 task_pid_nr(worker->task));
4801 first = false;
4802 }
4803 pr_cont("\n");
4804 next_pool:
4805 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4806 /*
4807 * We could be printing a lot from atomic context, e.g.
4808 * sysrq-t -> show_workqueue_state(). Avoid triggering
4809 * hard lockup.
4810 */
4811 touch_nmi_watchdog();
3494fc30
TH
4812 }
4813
24acfb71 4814 rcu_read_unlock();
3494fc30
TH
4815}
4816
6b59808b
TH
4817/* used to show worker information through /proc/PID/{comm,stat,status} */
4818void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4819{
6b59808b
TH
4820 int off;
4821
4822 /* always show the actual comm */
4823 off = strscpy(buf, task->comm, size);
4824 if (off < 0)
4825 return;
4826
197f6acc 4827 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4828 mutex_lock(&wq_pool_attach_mutex);
4829
197f6acc
TH
4830 if (task->flags & PF_WQ_WORKER) {
4831 struct worker *worker = kthread_data(task);
4832 struct worker_pool *pool = worker->pool;
6b59808b 4833
197f6acc
TH
4834 if (pool) {
4835 spin_lock_irq(&pool->lock);
4836 /*
4837 * ->desc tracks information (wq name or
4838 * set_worker_desc()) for the latest execution. If
4839 * current, prepend '+', otherwise '-'.
4840 */
4841 if (worker->desc[0] != '\0') {
4842 if (worker->current_work)
4843 scnprintf(buf + off, size - off, "+%s",
4844 worker->desc);
4845 else
4846 scnprintf(buf + off, size - off, "-%s",
4847 worker->desc);
4848 }
4849 spin_unlock_irq(&pool->lock);
6b59808b 4850 }
6b59808b
TH
4851 }
4852
4853 mutex_unlock(&wq_pool_attach_mutex);
4854}
4855
66448bc2
MM
4856#ifdef CONFIG_SMP
4857
db7bccf4
TH
4858/*
4859 * CPU hotplug.
4860 *
e22bee78 4861 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4862 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4863 * pool which make migrating pending and scheduled works very
e22bee78 4864 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4865 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4866 * blocked draining impractical.
4867 *
24647570 4868 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4869 * running as an unbound one and allowing it to be reattached later if the
4870 * cpu comes back online.
db7bccf4 4871 */
1da177e4 4872
e8b3f8db 4873static void unbind_workers(int cpu)
3af24433 4874{
4ce62e9e 4875 struct worker_pool *pool;
db7bccf4 4876 struct worker *worker;
3af24433 4877
f02ae73a 4878 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4879 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4880 spin_lock_irq(&pool->lock);
3af24433 4881
94cf58bb 4882 /*
92f9c5c4 4883 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4884 * unbound and set DISASSOCIATED. Before this, all workers
4885 * except for the ones which are still executing works from
4886 * before the last CPU down must be on the cpu. After
4887 * this, they may become diasporas.
4888 */
da028469 4889 for_each_pool_worker(worker, pool)
c9e7cf27 4890 worker->flags |= WORKER_UNBOUND;
06ba38a9 4891
24647570 4892 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4893
94cf58bb 4894 spin_unlock_irq(&pool->lock);
1258fae7 4895 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4896
eb283428
LJ
4897 /*
4898 * Call schedule() so that we cross rq->lock and thus can
4899 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4900 * This is necessary as scheduler callbacks may be invoked
4901 * from other cpus.
4902 */
4903 schedule();
06ba38a9 4904
eb283428
LJ
4905 /*
4906 * Sched callbacks are disabled now. Zap nr_running.
4907 * After this, nr_running stays zero and need_more_worker()
4908 * and keep_working() are always true as long as the
4909 * worklist is not empty. This pool now behaves as an
4910 * unbound (in terms of concurrency management) pool which
4911 * are served by workers tied to the pool.
4912 */
e19e397a 4913 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4914
4915 /*
4916 * With concurrency management just turned off, a busy
4917 * worker blocking could lead to lengthy stalls. Kick off
4918 * unbound chain execution of currently pending work items.
4919 */
4920 spin_lock_irq(&pool->lock);
4921 wake_up_worker(pool);
4922 spin_unlock_irq(&pool->lock);
4923 }
3af24433 4924}
3af24433 4925
bd7c089e
TH
4926/**
4927 * rebind_workers - rebind all workers of a pool to the associated CPU
4928 * @pool: pool of interest
4929 *
a9ab775b 4930 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4931 */
4932static void rebind_workers(struct worker_pool *pool)
4933{
a9ab775b 4934 struct worker *worker;
bd7c089e 4935
1258fae7 4936 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4937
a9ab775b
TH
4938 /*
4939 * Restore CPU affinity of all workers. As all idle workers should
4940 * be on the run-queue of the associated CPU before any local
402dd89d 4941 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4942 * of all workers first and then clear UNBOUND. As we're called
4943 * from CPU_ONLINE, the following shouldn't fail.
4944 */
da028469 4945 for_each_pool_worker(worker, pool)
a9ab775b
TH
4946 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4947 pool->attrs->cpumask) < 0);
bd7c089e 4948
a9ab775b 4949 spin_lock_irq(&pool->lock);
f7c17d26 4950
3de5e884 4951 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4952
da028469 4953 for_each_pool_worker(worker, pool) {
a9ab775b 4954 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4955
4956 /*
a9ab775b
TH
4957 * A bound idle worker should actually be on the runqueue
4958 * of the associated CPU for local wake-ups targeting it to
4959 * work. Kick all idle workers so that they migrate to the
4960 * associated CPU. Doing this in the same loop as
4961 * replacing UNBOUND with REBOUND is safe as no worker will
4962 * be bound before @pool->lock is released.
bd7c089e 4963 */
a9ab775b
TH
4964 if (worker_flags & WORKER_IDLE)
4965 wake_up_process(worker->task);
bd7c089e 4966
a9ab775b
TH
4967 /*
4968 * We want to clear UNBOUND but can't directly call
4969 * worker_clr_flags() or adjust nr_running. Atomically
4970 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4971 * @worker will clear REBOUND using worker_clr_flags() when
4972 * it initiates the next execution cycle thus restoring
4973 * concurrency management. Note that when or whether
4974 * @worker clears REBOUND doesn't affect correctness.
4975 *
c95491ed 4976 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 4977 * tested without holding any lock in
6d25be57 4978 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
4979 * fail incorrectly leading to premature concurrency
4980 * management operations.
4981 */
4982 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4983 worker_flags |= WORKER_REBOUND;
4984 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4985 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4986 }
a9ab775b
TH
4987
4988 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4989}
4990
7dbc725e
TH
4991/**
4992 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4993 * @pool: unbound pool of interest
4994 * @cpu: the CPU which is coming up
4995 *
4996 * An unbound pool may end up with a cpumask which doesn't have any online
4997 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4998 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4999 * online CPU before, cpus_allowed of all its workers should be restored.
5000 */
5001static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5002{
5003 static cpumask_t cpumask;
5004 struct worker *worker;
7dbc725e 5005
1258fae7 5006 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5007
5008 /* is @cpu allowed for @pool? */
5009 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5010 return;
5011
7dbc725e 5012 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5013
5014 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5015 for_each_pool_worker(worker, pool)
d945b5e9 5016 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5017}
5018
7ee681b2
TG
5019int workqueue_prepare_cpu(unsigned int cpu)
5020{
5021 struct worker_pool *pool;
5022
5023 for_each_cpu_worker_pool(pool, cpu) {
5024 if (pool->nr_workers)
5025 continue;
5026 if (!create_worker(pool))
5027 return -ENOMEM;
5028 }
5029 return 0;
5030}
5031
5032int workqueue_online_cpu(unsigned int cpu)
3af24433 5033{
4ce62e9e 5034 struct worker_pool *pool;
4c16bd32 5035 struct workqueue_struct *wq;
7dbc725e 5036 int pi;
3ce63377 5037
7ee681b2 5038 mutex_lock(&wq_pool_mutex);
7dbc725e 5039
7ee681b2 5040 for_each_pool(pool, pi) {
1258fae7 5041 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5042
7ee681b2
TG
5043 if (pool->cpu == cpu)
5044 rebind_workers(pool);
5045 else if (pool->cpu < 0)
5046 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5047
1258fae7 5048 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5049 }
6ba94429 5050
7ee681b2
TG
5051 /* update NUMA affinity of unbound workqueues */
5052 list_for_each_entry(wq, &workqueues, list)
5053 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5054
7ee681b2
TG
5055 mutex_unlock(&wq_pool_mutex);
5056 return 0;
6ba94429
FW
5057}
5058
7ee681b2 5059int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5060{
6ba94429
FW
5061 struct workqueue_struct *wq;
5062
7ee681b2 5063 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5064 if (WARN_ON(cpu != smp_processor_id()))
5065 return -1;
5066
5067 unbind_workers(cpu);
7ee681b2
TG
5068
5069 /* update NUMA affinity of unbound workqueues */
5070 mutex_lock(&wq_pool_mutex);
5071 list_for_each_entry(wq, &workqueues, list)
5072 wq_update_unbound_numa(wq, cpu, false);
5073 mutex_unlock(&wq_pool_mutex);
5074
7ee681b2 5075 return 0;
6ba94429
FW
5076}
5077
6ba94429
FW
5078struct work_for_cpu {
5079 struct work_struct work;
5080 long (*fn)(void *);
5081 void *arg;
5082 long ret;
5083};
5084
5085static void work_for_cpu_fn(struct work_struct *work)
5086{
5087 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5088
5089 wfc->ret = wfc->fn(wfc->arg);
5090}
5091
5092/**
22aceb31 5093 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5094 * @cpu: the cpu to run on
5095 * @fn: the function to run
5096 * @arg: the function arg
5097 *
5098 * It is up to the caller to ensure that the cpu doesn't go offline.
5099 * The caller must not hold any locks which would prevent @fn from completing.
5100 *
5101 * Return: The value @fn returns.
5102 */
5103long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5104{
5105 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5106
5107 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5108 schedule_work_on(cpu, &wfc.work);
5109 flush_work(&wfc.work);
5110 destroy_work_on_stack(&wfc.work);
5111 return wfc.ret;
5112}
5113EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5114
5115/**
5116 * work_on_cpu_safe - run a function in thread context on a particular cpu
5117 * @cpu: the cpu to run on
5118 * @fn: the function to run
5119 * @arg: the function argument
5120 *
5121 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5122 * any locks which would prevent @fn from completing.
5123 *
5124 * Return: The value @fn returns.
5125 */
5126long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5127{
5128 long ret = -ENODEV;
5129
5130 get_online_cpus();
5131 if (cpu_online(cpu))
5132 ret = work_on_cpu(cpu, fn, arg);
5133 put_online_cpus();
5134 return ret;
5135}
5136EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5137#endif /* CONFIG_SMP */
5138
5139#ifdef CONFIG_FREEZER
5140
5141/**
5142 * freeze_workqueues_begin - begin freezing workqueues
5143 *
5144 * Start freezing workqueues. After this function returns, all freezable
5145 * workqueues will queue new works to their delayed_works list instead of
5146 * pool->worklist.
5147 *
5148 * CONTEXT:
5149 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5150 */
5151void freeze_workqueues_begin(void)
5152{
5153 struct workqueue_struct *wq;
5154 struct pool_workqueue *pwq;
5155
5156 mutex_lock(&wq_pool_mutex);
5157
5158 WARN_ON_ONCE(workqueue_freezing);
5159 workqueue_freezing = true;
5160
5161 list_for_each_entry(wq, &workqueues, list) {
5162 mutex_lock(&wq->mutex);
5163 for_each_pwq(pwq, wq)
5164 pwq_adjust_max_active(pwq);
5165 mutex_unlock(&wq->mutex);
5166 }
5167
5168 mutex_unlock(&wq_pool_mutex);
5169}
5170
5171/**
5172 * freeze_workqueues_busy - are freezable workqueues still busy?
5173 *
5174 * Check whether freezing is complete. This function must be called
5175 * between freeze_workqueues_begin() and thaw_workqueues().
5176 *
5177 * CONTEXT:
5178 * Grabs and releases wq_pool_mutex.
5179 *
5180 * Return:
5181 * %true if some freezable workqueues are still busy. %false if freezing
5182 * is complete.
5183 */
5184bool freeze_workqueues_busy(void)
5185{
5186 bool busy = false;
5187 struct workqueue_struct *wq;
5188 struct pool_workqueue *pwq;
5189
5190 mutex_lock(&wq_pool_mutex);
5191
5192 WARN_ON_ONCE(!workqueue_freezing);
5193
5194 list_for_each_entry(wq, &workqueues, list) {
5195 if (!(wq->flags & WQ_FREEZABLE))
5196 continue;
5197 /*
5198 * nr_active is monotonically decreasing. It's safe
5199 * to peek without lock.
5200 */
24acfb71 5201 rcu_read_lock();
6ba94429
FW
5202 for_each_pwq(pwq, wq) {
5203 WARN_ON_ONCE(pwq->nr_active < 0);
5204 if (pwq->nr_active) {
5205 busy = true;
24acfb71 5206 rcu_read_unlock();
6ba94429
FW
5207 goto out_unlock;
5208 }
5209 }
24acfb71 5210 rcu_read_unlock();
6ba94429
FW
5211 }
5212out_unlock:
5213 mutex_unlock(&wq_pool_mutex);
5214 return busy;
5215}
5216
5217/**
5218 * thaw_workqueues - thaw workqueues
5219 *
5220 * Thaw workqueues. Normal queueing is restored and all collected
5221 * frozen works are transferred to their respective pool worklists.
5222 *
5223 * CONTEXT:
5224 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5225 */
5226void thaw_workqueues(void)
5227{
5228 struct workqueue_struct *wq;
5229 struct pool_workqueue *pwq;
5230
5231 mutex_lock(&wq_pool_mutex);
5232
5233 if (!workqueue_freezing)
5234 goto out_unlock;
5235
5236 workqueue_freezing = false;
5237
5238 /* restore max_active and repopulate worklist */
5239 list_for_each_entry(wq, &workqueues, list) {
5240 mutex_lock(&wq->mutex);
5241 for_each_pwq(pwq, wq)
5242 pwq_adjust_max_active(pwq);
5243 mutex_unlock(&wq->mutex);
5244 }
5245
5246out_unlock:
5247 mutex_unlock(&wq_pool_mutex);
5248}
5249#endif /* CONFIG_FREEZER */
5250
042f7df1
LJ
5251static int workqueue_apply_unbound_cpumask(void)
5252{
5253 LIST_HEAD(ctxs);
5254 int ret = 0;
5255 struct workqueue_struct *wq;
5256 struct apply_wqattrs_ctx *ctx, *n;
5257
5258 lockdep_assert_held(&wq_pool_mutex);
5259
5260 list_for_each_entry(wq, &workqueues, list) {
5261 if (!(wq->flags & WQ_UNBOUND))
5262 continue;
5263 /* creating multiple pwqs breaks ordering guarantee */
5264 if (wq->flags & __WQ_ORDERED)
5265 continue;
5266
5267 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5268 if (!ctx) {
5269 ret = -ENOMEM;
5270 break;
5271 }
5272
5273 list_add_tail(&ctx->list, &ctxs);
5274 }
5275
5276 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5277 if (!ret)
5278 apply_wqattrs_commit(ctx);
5279 apply_wqattrs_cleanup(ctx);
5280 }
5281
5282 return ret;
5283}
5284
5285/**
5286 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5287 * @cpumask: the cpumask to set
5288 *
5289 * The low-level workqueues cpumask is a global cpumask that limits
5290 * the affinity of all unbound workqueues. This function check the @cpumask
5291 * and apply it to all unbound workqueues and updates all pwqs of them.
5292 *
5293 * Retun: 0 - Success
5294 * -EINVAL - Invalid @cpumask
5295 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5296 */
5297int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5298{
5299 int ret = -EINVAL;
5300 cpumask_var_t saved_cpumask;
5301
5302 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5303 return -ENOMEM;
5304
c98a9805
TS
5305 /*
5306 * Not excluding isolated cpus on purpose.
5307 * If the user wishes to include them, we allow that.
5308 */
042f7df1
LJ
5309 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5310 if (!cpumask_empty(cpumask)) {
a0111cf6 5311 apply_wqattrs_lock();
042f7df1
LJ
5312
5313 /* save the old wq_unbound_cpumask. */
5314 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5315
5316 /* update wq_unbound_cpumask at first and apply it to wqs. */
5317 cpumask_copy(wq_unbound_cpumask, cpumask);
5318 ret = workqueue_apply_unbound_cpumask();
5319
5320 /* restore the wq_unbound_cpumask when failed. */
5321 if (ret < 0)
5322 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5323
a0111cf6 5324 apply_wqattrs_unlock();
042f7df1 5325 }
042f7df1
LJ
5326
5327 free_cpumask_var(saved_cpumask);
5328 return ret;
5329}
5330
6ba94429
FW
5331#ifdef CONFIG_SYSFS
5332/*
5333 * Workqueues with WQ_SYSFS flag set is visible to userland via
5334 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5335 * following attributes.
5336 *
5337 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5338 * max_active RW int : maximum number of in-flight work items
5339 *
5340 * Unbound workqueues have the following extra attributes.
5341 *
9a19b463 5342 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5343 * nice RW int : nice value of the workers
5344 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5345 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5346 */
5347struct wq_device {
5348 struct workqueue_struct *wq;
5349 struct device dev;
5350};
5351
5352static struct workqueue_struct *dev_to_wq(struct device *dev)
5353{
5354 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5355
5356 return wq_dev->wq;
5357}
5358
5359static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5360 char *buf)
5361{
5362 struct workqueue_struct *wq = dev_to_wq(dev);
5363
5364 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5365}
5366static DEVICE_ATTR_RO(per_cpu);
5367
5368static ssize_t max_active_show(struct device *dev,
5369 struct device_attribute *attr, char *buf)
5370{
5371 struct workqueue_struct *wq = dev_to_wq(dev);
5372
5373 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5374}
5375
5376static ssize_t max_active_store(struct device *dev,
5377 struct device_attribute *attr, const char *buf,
5378 size_t count)
5379{
5380 struct workqueue_struct *wq = dev_to_wq(dev);
5381 int val;
5382
5383 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5384 return -EINVAL;
5385
5386 workqueue_set_max_active(wq, val);
5387 return count;
5388}
5389static DEVICE_ATTR_RW(max_active);
5390
5391static struct attribute *wq_sysfs_attrs[] = {
5392 &dev_attr_per_cpu.attr,
5393 &dev_attr_max_active.attr,
5394 NULL,
5395};
5396ATTRIBUTE_GROUPS(wq_sysfs);
5397
5398static ssize_t wq_pool_ids_show(struct device *dev,
5399 struct device_attribute *attr, char *buf)
5400{
5401 struct workqueue_struct *wq = dev_to_wq(dev);
5402 const char *delim = "";
5403 int node, written = 0;
5404
24acfb71
TG
5405 get_online_cpus();
5406 rcu_read_lock();
6ba94429
FW
5407 for_each_node(node) {
5408 written += scnprintf(buf + written, PAGE_SIZE - written,
5409 "%s%d:%d", delim, node,
5410 unbound_pwq_by_node(wq, node)->pool->id);
5411 delim = " ";
5412 }
5413 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5414 rcu_read_unlock();
5415 put_online_cpus();
6ba94429
FW
5416
5417 return written;
5418}
5419
5420static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5421 char *buf)
5422{
5423 struct workqueue_struct *wq = dev_to_wq(dev);
5424 int written;
5425
5426 mutex_lock(&wq->mutex);
5427 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5428 mutex_unlock(&wq->mutex);
5429
5430 return written;
5431}
5432
5433/* prepare workqueue_attrs for sysfs store operations */
5434static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5435{
5436 struct workqueue_attrs *attrs;
5437
899a94fe
LJ
5438 lockdep_assert_held(&wq_pool_mutex);
5439
be69d00d 5440 attrs = alloc_workqueue_attrs();
6ba94429
FW
5441 if (!attrs)
5442 return NULL;
5443
6ba94429 5444 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5445 return attrs;
5446}
5447
5448static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5449 const char *buf, size_t count)
5450{
5451 struct workqueue_struct *wq = dev_to_wq(dev);
5452 struct workqueue_attrs *attrs;
d4d3e257
LJ
5453 int ret = -ENOMEM;
5454
5455 apply_wqattrs_lock();
6ba94429
FW
5456
5457 attrs = wq_sysfs_prep_attrs(wq);
5458 if (!attrs)
d4d3e257 5459 goto out_unlock;
6ba94429
FW
5460
5461 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5462 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5463 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5464 else
5465 ret = -EINVAL;
5466
d4d3e257
LJ
5467out_unlock:
5468 apply_wqattrs_unlock();
6ba94429
FW
5469 free_workqueue_attrs(attrs);
5470 return ret ?: count;
5471}
5472
5473static ssize_t wq_cpumask_show(struct device *dev,
5474 struct device_attribute *attr, char *buf)
5475{
5476 struct workqueue_struct *wq = dev_to_wq(dev);
5477 int written;
5478
5479 mutex_lock(&wq->mutex);
5480 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5481 cpumask_pr_args(wq->unbound_attrs->cpumask));
5482 mutex_unlock(&wq->mutex);
5483 return written;
5484}
5485
5486static ssize_t wq_cpumask_store(struct device *dev,
5487 struct device_attribute *attr,
5488 const char *buf, size_t count)
5489{
5490 struct workqueue_struct *wq = dev_to_wq(dev);
5491 struct workqueue_attrs *attrs;
d4d3e257
LJ
5492 int ret = -ENOMEM;
5493
5494 apply_wqattrs_lock();
6ba94429
FW
5495
5496 attrs = wq_sysfs_prep_attrs(wq);
5497 if (!attrs)
d4d3e257 5498 goto out_unlock;
6ba94429
FW
5499
5500 ret = cpumask_parse(buf, attrs->cpumask);
5501 if (!ret)
d4d3e257 5502 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5503
d4d3e257
LJ
5504out_unlock:
5505 apply_wqattrs_unlock();
6ba94429
FW
5506 free_workqueue_attrs(attrs);
5507 return ret ?: count;
5508}
5509
5510static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5511 char *buf)
5512{
5513 struct workqueue_struct *wq = dev_to_wq(dev);
5514 int written;
7dbc725e 5515
6ba94429
FW
5516 mutex_lock(&wq->mutex);
5517 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5518 !wq->unbound_attrs->no_numa);
5519 mutex_unlock(&wq->mutex);
4c16bd32 5520
6ba94429 5521 return written;
65758202
TH
5522}
5523
6ba94429
FW
5524static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5525 const char *buf, size_t count)
65758202 5526{
6ba94429
FW
5527 struct workqueue_struct *wq = dev_to_wq(dev);
5528 struct workqueue_attrs *attrs;
d4d3e257
LJ
5529 int v, ret = -ENOMEM;
5530
5531 apply_wqattrs_lock();
4c16bd32 5532
6ba94429
FW
5533 attrs = wq_sysfs_prep_attrs(wq);
5534 if (!attrs)
d4d3e257 5535 goto out_unlock;
4c16bd32 5536
6ba94429
FW
5537 ret = -EINVAL;
5538 if (sscanf(buf, "%d", &v) == 1) {
5539 attrs->no_numa = !v;
d4d3e257 5540 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5541 }
6ba94429 5542
d4d3e257
LJ
5543out_unlock:
5544 apply_wqattrs_unlock();
6ba94429
FW
5545 free_workqueue_attrs(attrs);
5546 return ret ?: count;
65758202
TH
5547}
5548
6ba94429
FW
5549static struct device_attribute wq_sysfs_unbound_attrs[] = {
5550 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5551 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5552 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5553 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5554 __ATTR_NULL,
5555};
8ccad40d 5556
6ba94429
FW
5557static struct bus_type wq_subsys = {
5558 .name = "workqueue",
5559 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5560};
5561
b05a7928
FW
5562static ssize_t wq_unbound_cpumask_show(struct device *dev,
5563 struct device_attribute *attr, char *buf)
5564{
5565 int written;
5566
042f7df1 5567 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5568 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5569 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5570 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5571
5572 return written;
5573}
5574
042f7df1
LJ
5575static ssize_t wq_unbound_cpumask_store(struct device *dev,
5576 struct device_attribute *attr, const char *buf, size_t count)
5577{
5578 cpumask_var_t cpumask;
5579 int ret;
5580
5581 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5582 return -ENOMEM;
5583
5584 ret = cpumask_parse(buf, cpumask);
5585 if (!ret)
5586 ret = workqueue_set_unbound_cpumask(cpumask);
5587
5588 free_cpumask_var(cpumask);
5589 return ret ? ret : count;
5590}
5591
b05a7928 5592static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5593 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5594 wq_unbound_cpumask_store);
b05a7928 5595
6ba94429 5596static int __init wq_sysfs_init(void)
2d3854a3 5597{
b05a7928
FW
5598 int err;
5599
5600 err = subsys_virtual_register(&wq_subsys, NULL);
5601 if (err)
5602 return err;
5603
5604 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5605}
6ba94429 5606core_initcall(wq_sysfs_init);
2d3854a3 5607
6ba94429 5608static void wq_device_release(struct device *dev)
2d3854a3 5609{
6ba94429 5610 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5611
6ba94429 5612 kfree(wq_dev);
2d3854a3 5613}
a0a1a5fd
TH
5614
5615/**
6ba94429
FW
5616 * workqueue_sysfs_register - make a workqueue visible in sysfs
5617 * @wq: the workqueue to register
a0a1a5fd 5618 *
6ba94429
FW
5619 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5620 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5621 * which is the preferred method.
a0a1a5fd 5622 *
6ba94429
FW
5623 * Workqueue user should use this function directly iff it wants to apply
5624 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5625 * apply_workqueue_attrs() may race against userland updating the
5626 * attributes.
5627 *
5628 * Return: 0 on success, -errno on failure.
a0a1a5fd 5629 */
6ba94429 5630int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5631{
6ba94429
FW
5632 struct wq_device *wq_dev;
5633 int ret;
a0a1a5fd 5634
6ba94429 5635 /*
402dd89d 5636 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5637 * attributes breaks ordering guarantee. Disallow exposing ordered
5638 * workqueues.
5639 */
0a94efb5 5640 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5641 return -EINVAL;
a0a1a5fd 5642
6ba94429
FW
5643 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5644 if (!wq_dev)
5645 return -ENOMEM;
5bcab335 5646
6ba94429
FW
5647 wq_dev->wq = wq;
5648 wq_dev->dev.bus = &wq_subsys;
6ba94429 5649 wq_dev->dev.release = wq_device_release;
23217b44 5650 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5651
6ba94429
FW
5652 /*
5653 * unbound_attrs are created separately. Suppress uevent until
5654 * everything is ready.
5655 */
5656 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5657
6ba94429
FW
5658 ret = device_register(&wq_dev->dev);
5659 if (ret) {
537f4146 5660 put_device(&wq_dev->dev);
6ba94429
FW
5661 wq->wq_dev = NULL;
5662 return ret;
5663 }
a0a1a5fd 5664
6ba94429
FW
5665 if (wq->flags & WQ_UNBOUND) {
5666 struct device_attribute *attr;
a0a1a5fd 5667
6ba94429
FW
5668 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5669 ret = device_create_file(&wq_dev->dev, attr);
5670 if (ret) {
5671 device_unregister(&wq_dev->dev);
5672 wq->wq_dev = NULL;
5673 return ret;
a0a1a5fd
TH
5674 }
5675 }
5676 }
6ba94429
FW
5677
5678 dev_set_uevent_suppress(&wq_dev->dev, false);
5679 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5680 return 0;
a0a1a5fd
TH
5681}
5682
5683/**
6ba94429
FW
5684 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5685 * @wq: the workqueue to unregister
a0a1a5fd 5686 *
6ba94429 5687 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5688 */
6ba94429 5689static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5690{
6ba94429 5691 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5692
6ba94429
FW
5693 if (!wq->wq_dev)
5694 return;
a0a1a5fd 5695
6ba94429
FW
5696 wq->wq_dev = NULL;
5697 device_unregister(&wq_dev->dev);
a0a1a5fd 5698}
6ba94429
FW
5699#else /* CONFIG_SYSFS */
5700static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5701#endif /* CONFIG_SYSFS */
a0a1a5fd 5702
82607adc
TH
5703/*
5704 * Workqueue watchdog.
5705 *
5706 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5707 * flush dependency, a concurrency managed work item which stays RUNNING
5708 * indefinitely. Workqueue stalls can be very difficult to debug as the
5709 * usual warning mechanisms don't trigger and internal workqueue state is
5710 * largely opaque.
5711 *
5712 * Workqueue watchdog monitors all worker pools periodically and dumps
5713 * state if some pools failed to make forward progress for a while where
5714 * forward progress is defined as the first item on ->worklist changing.
5715 *
5716 * This mechanism is controlled through the kernel parameter
5717 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5718 * corresponding sysfs parameter file.
5719 */
5720#ifdef CONFIG_WQ_WATCHDOG
5721
82607adc 5722static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5723static struct timer_list wq_watchdog_timer;
82607adc
TH
5724
5725static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5726static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5727
5728static void wq_watchdog_reset_touched(void)
5729{
5730 int cpu;
5731
5732 wq_watchdog_touched = jiffies;
5733 for_each_possible_cpu(cpu)
5734 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5735}
5736
5cd79d6a 5737static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5738{
5739 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5740 bool lockup_detected = false;
5741 struct worker_pool *pool;
5742 int pi;
5743
5744 if (!thresh)
5745 return;
5746
5747 rcu_read_lock();
5748
5749 for_each_pool(pool, pi) {
5750 unsigned long pool_ts, touched, ts;
5751
5752 if (list_empty(&pool->worklist))
5753 continue;
5754
5755 /* get the latest of pool and touched timestamps */
5756 pool_ts = READ_ONCE(pool->watchdog_ts);
5757 touched = READ_ONCE(wq_watchdog_touched);
5758
5759 if (time_after(pool_ts, touched))
5760 ts = pool_ts;
5761 else
5762 ts = touched;
5763
5764 if (pool->cpu >= 0) {
5765 unsigned long cpu_touched =
5766 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5767 pool->cpu));
5768 if (time_after(cpu_touched, ts))
5769 ts = cpu_touched;
5770 }
5771
5772 /* did we stall? */
5773 if (time_after(jiffies, ts + thresh)) {
5774 lockup_detected = true;
5775 pr_emerg("BUG: workqueue lockup - pool");
5776 pr_cont_pool_info(pool);
5777 pr_cont(" stuck for %us!\n",
5778 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5779 }
5780 }
5781
5782 rcu_read_unlock();
5783
5784 if (lockup_detected)
5785 show_workqueue_state();
5786
5787 wq_watchdog_reset_touched();
5788 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5789}
5790
cb9d7fd5 5791notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5792{
5793 if (cpu >= 0)
5794 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5795 else
5796 wq_watchdog_touched = jiffies;
5797}
5798
5799static void wq_watchdog_set_thresh(unsigned long thresh)
5800{
5801 wq_watchdog_thresh = 0;
5802 del_timer_sync(&wq_watchdog_timer);
5803
5804 if (thresh) {
5805 wq_watchdog_thresh = thresh;
5806 wq_watchdog_reset_touched();
5807 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5808 }
5809}
5810
5811static int wq_watchdog_param_set_thresh(const char *val,
5812 const struct kernel_param *kp)
5813{
5814 unsigned long thresh;
5815 int ret;
5816
5817 ret = kstrtoul(val, 0, &thresh);
5818 if (ret)
5819 return ret;
5820
5821 if (system_wq)
5822 wq_watchdog_set_thresh(thresh);
5823 else
5824 wq_watchdog_thresh = thresh;
5825
5826 return 0;
5827}
5828
5829static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5830 .set = wq_watchdog_param_set_thresh,
5831 .get = param_get_ulong,
5832};
5833
5834module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5835 0644);
5836
5837static void wq_watchdog_init(void)
5838{
5cd79d6a 5839 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5840 wq_watchdog_set_thresh(wq_watchdog_thresh);
5841}
5842
5843#else /* CONFIG_WQ_WATCHDOG */
5844
5845static inline void wq_watchdog_init(void) { }
5846
5847#endif /* CONFIG_WQ_WATCHDOG */
5848
bce90380
TH
5849static void __init wq_numa_init(void)
5850{
5851 cpumask_var_t *tbl;
5852 int node, cpu;
5853
bce90380
TH
5854 if (num_possible_nodes() <= 1)
5855 return;
5856
d55262c4
TH
5857 if (wq_disable_numa) {
5858 pr_info("workqueue: NUMA affinity support disabled\n");
5859 return;
5860 }
5861
be69d00d 5862 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5863 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5864
bce90380
TH
5865 /*
5866 * We want masks of possible CPUs of each node which isn't readily
5867 * available. Build one from cpu_to_node() which should have been
5868 * fully initialized by now.
5869 */
6396bb22 5870 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5871 BUG_ON(!tbl);
5872
5873 for_each_node(node)
5a6024f1 5874 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5875 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5876
5877 for_each_possible_cpu(cpu) {
5878 node = cpu_to_node(cpu);
5879 if (WARN_ON(node == NUMA_NO_NODE)) {
5880 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5881 /* happens iff arch is bonkers, let's just proceed */
5882 return;
5883 }
5884 cpumask_set_cpu(cpu, tbl[node]);
5885 }
5886
5887 wq_numa_possible_cpumask = tbl;
5888 wq_numa_enabled = true;
5889}
5890
3347fa09
TH
5891/**
5892 * workqueue_init_early - early init for workqueue subsystem
5893 *
5894 * This is the first half of two-staged workqueue subsystem initialization
5895 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5896 * idr are up. It sets up all the data structures and system workqueues
5897 * and allows early boot code to create workqueues and queue/cancel work
5898 * items. Actual work item execution starts only after kthreads can be
5899 * created and scheduled right before early initcalls.
5900 */
2333e829 5901void __init workqueue_init_early(void)
1da177e4 5902{
7a4e344c 5903 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5904 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5905 int i, cpu;
c34056a3 5906
e904e6c2
TH
5907 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5908
b05a7928 5909 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5910 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5911
e904e6c2
TH
5912 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5913
706026c2 5914 /* initialize CPU pools */
29c91e99 5915 for_each_possible_cpu(cpu) {
4ce62e9e 5916 struct worker_pool *pool;
8b03ae3c 5917
7a4e344c 5918 i = 0;
f02ae73a 5919 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5920 BUG_ON(init_worker_pool(pool));
ec22ca5e 5921 pool->cpu = cpu;
29c91e99 5922 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5923 pool->attrs->nice = std_nice[i++];
f3f90ad4 5924 pool->node = cpu_to_node(cpu);
7a4e344c 5925
9daf9e67 5926 /* alloc pool ID */
68e13a67 5927 mutex_lock(&wq_pool_mutex);
9daf9e67 5928 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5929 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5930 }
8b03ae3c
TH
5931 }
5932
8a2b7538 5933 /* create default unbound and ordered wq attrs */
29c91e99
TH
5934 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5935 struct workqueue_attrs *attrs;
5936
be69d00d 5937 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 5938 attrs->nice = std_nice[i];
29c91e99 5939 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5940
5941 /*
5942 * An ordered wq should have only one pwq as ordering is
5943 * guaranteed by max_active which is enforced by pwqs.
5944 * Turn off NUMA so that dfl_pwq is used for all nodes.
5945 */
be69d00d 5946 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
5947 attrs->nice = std_nice[i];
5948 attrs->no_numa = true;
5949 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5950 }
5951
d320c038 5952 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5953 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5954 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5955 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5956 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5957 system_freezable_wq = alloc_workqueue("events_freezable",
5958 WQ_FREEZABLE, 0);
0668106c
VK
5959 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5960 WQ_POWER_EFFICIENT, 0);
5961 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5962 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5963 0);
1aabe902 5964 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5965 !system_unbound_wq || !system_freezable_wq ||
5966 !system_power_efficient_wq ||
5967 !system_freezable_power_efficient_wq);
3347fa09
TH
5968}
5969
5970/**
5971 * workqueue_init - bring workqueue subsystem fully online
5972 *
5973 * This is the latter half of two-staged workqueue subsystem initialization
5974 * and invoked as soon as kthreads can be created and scheduled.
5975 * Workqueues have been created and work items queued on them, but there
5976 * are no kworkers executing the work items yet. Populate the worker pools
5977 * with the initial workers and enable future kworker creations.
5978 */
2333e829 5979void __init workqueue_init(void)
3347fa09 5980{
2186d9f9 5981 struct workqueue_struct *wq;
3347fa09
TH
5982 struct worker_pool *pool;
5983 int cpu, bkt;
5984
2186d9f9
TH
5985 /*
5986 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5987 * CPU to node mapping may not be available that early on some
5988 * archs such as power and arm64. As per-cpu pools created
5989 * previously could be missing node hint and unbound pools NUMA
5990 * affinity, fix them up.
40c17f75
TH
5991 *
5992 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5993 */
5994 wq_numa_init();
5995
5996 mutex_lock(&wq_pool_mutex);
5997
5998 for_each_possible_cpu(cpu) {
5999 for_each_cpu_worker_pool(pool, cpu) {
6000 pool->node = cpu_to_node(cpu);
6001 }
6002 }
6003
40c17f75 6004 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6005 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6006 WARN(init_rescuer(wq),
6007 "workqueue: failed to create early rescuer for %s",
6008 wq->name);
6009 }
2186d9f9
TH
6010
6011 mutex_unlock(&wq_pool_mutex);
6012
3347fa09
TH
6013 /* create the initial workers */
6014 for_each_online_cpu(cpu) {
6015 for_each_cpu_worker_pool(pool, cpu) {
6016 pool->flags &= ~POOL_DISASSOCIATED;
6017 BUG_ON(!create_worker(pool));
6018 }
6019 }
6020
6021 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6022 BUG_ON(!create_worker(pool));
6023
6024 wq_online = true;
82607adc 6025 wq_watchdog_init();
1da177e4 6026}