]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/workqueue.c
rcu: Don't deboost before reporting expedited quiescent state
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
940d71c6 53#include <linux/kvm_para.h>
e22bee78 54
ea138446 55#include "workqueue_internal.h"
1da177e4 56
c8e55f36 57enum {
24647570
TH
58 /*
59 * worker_pool flags
bc2ae0f5 60 *
24647570 61 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 68 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 69 *
bc3a1afc 70 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 71 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 72 * worker_attach_to_pool() is in progress.
bc2ae0f5 73 */
692b4825 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 76
c8e55f36 77 /* worker flags */
c8e55f36
TH
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 80 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 84
a9ab775b
TH
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 87
e34cdddb 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 89
29c91e99 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 92
e22bee78
TH
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
3233cdbd
TH
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
e22bee78
TH
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
8698a745 104 * all cpus. Give MIN_NICE.
e22bee78 105 */
8698a745
DY
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
108
109 WQ_NAME_LEN = 24,
c8e55f36 110};
1da177e4
LT
111
112/*
4690c4ab
TH
113 * Structure fields follow one of the following exclusion rules.
114 *
e41e704b
TH
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
4690c4ab 117 *
e22bee78
TH
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
d565ed63 121 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 122 *
d565ed63
TH
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 127 *
1258fae7 128 * A: wq_pool_attach_mutex protected.
822d8405 129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
24acfb71 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 133 *
5b95e1af
LJ
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 137 * RCU for reads.
5b95e1af 138 *
3c25a55d
LJ
139 * WQ: wq->mutex protected.
140 *
24acfb71 141 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
142 *
143 * MD: wq_mayday_lock protected.
1da177e4 144 */
1da177e4 145
2eaebdb3 146/* struct worker is defined in workqueue_internal.h */
c34056a3 147
bd7bdd43 148struct worker_pool {
a9b8a985 149 raw_spinlock_t lock; /* the pool lock */
d84ff051 150 int cpu; /* I: the associated cpu */
f3f90ad4 151 int node; /* I: the associated node ID */
9daf9e67 152 int id; /* I: pool ID */
11ebea50 153 unsigned int flags; /* X: flags */
bd7bdd43 154
82607adc
TH
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
bd7bdd43 157 struct list_head worklist; /* L: list of pending works */
ea1abd61 158
5826cc8f
LJ
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
c5aa87bb 166 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
2607d7a6 170 struct worker *manager; /* L: purely informational */
92f9c5c4 171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
24acfb71 188 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
018f3a13
LJ
208
209 /*
210 * nr_active management and WORK_STRUCT_INACTIVE:
211 *
212 * When pwq->nr_active >= max_active, new work item is queued to
213 * pwq->inactive_works instead of pool->worklist and marked with
214 * WORK_STRUCT_INACTIVE.
215 *
216 * All work items marked with WORK_STRUCT_INACTIVE do not participate
217 * in pwq->nr_active and all work items in pwq->inactive_works are
218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
219 * work items are in pwq->inactive_works. Some of them are ready to
220 * run in pool->worklist or worker->scheduled. Those work itmes are
221 * only struct wq_barrier which is used for flush_work() and should
222 * not participate in pwq->nr_active. For non-barrier work item, it
223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
224 */
1e19ffc6 225 int nr_active; /* L: nr of active works */
a0a1a5fd 226 int max_active; /* L: max active works */
f97a4a1a 227 struct list_head inactive_works; /* L: inactive works */
3c25a55d 228 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 229 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
230
231 /*
232 * Release of unbound pwq is punted to system_wq. See put_pwq()
233 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 234 * itself is also RCU protected so that the first pwq can be
b09f4fd3 235 * determined without grabbing wq->mutex.
8864b4e5
TH
236 */
237 struct work_struct unbound_release_work;
238 struct rcu_head rcu;
e904e6c2 239} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 240
73f53c4a
TH
241/*
242 * Structure used to wait for workqueue flush.
243 */
244struct wq_flusher {
3c25a55d
LJ
245 struct list_head list; /* WQ: list of flushers */
246 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
247 struct completion done; /* flush completion */
248};
249
226223ab
TH
250struct wq_device;
251
1da177e4 252/*
c5aa87bb
TH
253 * The externally visible workqueue. It relays the issued work items to
254 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
255 */
256struct workqueue_struct {
3c25a55d 257 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 258 struct list_head list; /* PR: list of all workqueues */
73f53c4a 259
3c25a55d
LJ
260 struct mutex mutex; /* protects this wq */
261 int work_color; /* WQ: current work color */
262 int flush_color; /* WQ: current flush color */
112202d9 263 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
264 struct wq_flusher *first_flusher; /* WQ: first flusher */
265 struct list_head flusher_queue; /* WQ: flush waiters */
266 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 267
2e109a28 268 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 269 struct worker *rescuer; /* MD: rescue worker */
e22bee78 270
87fc741e 271 int nr_drainers; /* WQ: drain in progress */
a357fc03 272 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 273
5b95e1af
LJ
274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 276
226223ab
TH
277#ifdef CONFIG_SYSFS
278 struct wq_device *wq_dev; /* I: for sysfs interface */
279#endif
4e6045f1 280#ifdef CONFIG_LOCKDEP
669de8bd
BVA
281 char *lock_name;
282 struct lock_class_key key;
4690c4ab 283 struct lockdep_map lockdep_map;
4e6045f1 284#endif
ecf6881f 285 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 286
e2dca7ad 287 /*
24acfb71
TG
288 * Destruction of workqueue_struct is RCU protected to allow walking
289 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
290 * This is used to dump all workqueues from sysrq.
291 */
292 struct rcu_head rcu;
293
2728fd2f
TH
294 /* hot fields used during command issue, aligned to cacheline */
295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
298};
299
e904e6c2
TH
300static struct kmem_cache *pwq_cache;
301
bce90380
TH
302static cpumask_var_t *wq_numa_possible_cpumask;
303 /* possible CPUs of each node */
304
d55262c4
TH
305static bool wq_disable_numa;
306module_param_named(disable_numa, wq_disable_numa, bool, 0444);
307
cee22a15 308/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 309static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
310module_param_named(power_efficient, wq_power_efficient, bool, 0444);
311
863b710b 312static bool wq_online; /* can kworkers be created yet? */
3347fa09 313
bce90380
TH
314static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
315
4c16bd32
TH
316/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
317static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
318
68e13a67 319static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 320static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 321static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
322/* wait for manager to go away */
323static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 324
e2dca7ad 325static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 326static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 327
ef557180
MG
328/* PL: allowable cpus for unbound wqs and work items */
329static cpumask_var_t wq_unbound_cpumask;
330
331/* CPU where unbound work was last round robin scheduled from this CPU */
332static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 333
f303fccb
TH
334/*
335 * Local execution of unbound work items is no longer guaranteed. The
336 * following always forces round-robin CPU selection on unbound work items
337 * to uncover usages which depend on it.
338 */
339#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
340static bool wq_debug_force_rr_cpu = true;
341#else
342static bool wq_debug_force_rr_cpu = false;
343#endif
344module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
345
7d19c5ce 346/* the per-cpu worker pools */
25528213 347static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 348
68e13a67 349static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 350
68e13a67 351/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
352static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
353
c5aa87bb 354/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
355static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
356
8a2b7538
TH
357/* I: attributes used when instantiating ordered pools on demand */
358static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
359
d320c038 360struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 361EXPORT_SYMBOL(system_wq);
044c782c 362struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 363EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 364struct workqueue_struct *system_long_wq __read_mostly;
d320c038 365EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 366struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 367EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 368struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 369EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
370struct workqueue_struct *system_power_efficient_wq __read_mostly;
371EXPORT_SYMBOL_GPL(system_power_efficient_wq);
372struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
373EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 374
7d19c5ce 375static int worker_thread(void *__worker);
6ba94429 376static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 377static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 378
97bd2347
TH
379#define CREATE_TRACE_POINTS
380#include <trace/events/workqueue.h>
381
68e13a67 382#define assert_rcu_or_pool_mutex() \
24acfb71 383 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 384 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 385 "RCU or wq_pool_mutex should be held")
5bcab335 386
5b95e1af 387#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
389 !lockdep_is_held(&wq->mutex) && \
390 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 391 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 392
f02ae73a
TH
393#define for_each_cpu_worker_pool(pool, cpu) \
394 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
395 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 396 (pool)++)
4ce62e9e 397
17116969
TH
398/**
399 * for_each_pool - iterate through all worker_pools in the system
400 * @pool: iteration cursor
611c92a0 401 * @pi: integer used for iteration
fa1b54e6 402 *
24acfb71 403 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
404 * locked. If the pool needs to be used beyond the locking in effect, the
405 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
17116969 409 */
611c92a0
TH
410#define for_each_pool(pool, pi) \
411 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 412 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 413 else
17116969 414
822d8405
TH
415/**
416 * for_each_pool_worker - iterate through all workers of a worker_pool
417 * @worker: iteration cursor
822d8405
TH
418 * @pool: worker_pool to iterate workers of
419 *
1258fae7 420 * This must be called with wq_pool_attach_mutex.
822d8405
TH
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
da028469
LJ
425#define for_each_pool_worker(worker, pool) \
426 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 427 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
428 else
429
49e3cf44
TH
430/**
431 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
432 * @pwq: iteration cursor
433 * @wq: the target workqueue
76af4d93 434 *
24acfb71 435 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
436 * If the pwq needs to be used beyond the locking in effect, the caller is
437 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
438 *
439 * The if/else clause exists only for the lockdep assertion and can be
440 * ignored.
49e3cf44
TH
441 */
442#define for_each_pwq(pwq, wq) \
49e9d1a9 443 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 444 lockdep_is_held(&(wq->mutex)))
f3421797 445
dc186ad7
TG
446#ifdef CONFIG_DEBUG_OBJECTS_WORK
447
f9e62f31 448static const struct debug_obj_descr work_debug_descr;
dc186ad7 449
99777288
SG
450static void *work_debug_hint(void *addr)
451{
452 return ((struct work_struct *) addr)->func;
453}
454
b9fdac7f
CD
455static bool work_is_static_object(void *addr)
456{
457 struct work_struct *work = addr;
458
459 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
460}
461
dc186ad7
TG
462/*
463 * fixup_init is called when:
464 * - an active object is initialized
465 */
02a982a6 466static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
467{
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_init(work, &work_debug_descr);
02a982a6 474 return true;
dc186ad7 475 default:
02a982a6 476 return false;
dc186ad7
TG
477 }
478}
479
dc186ad7
TG
480/*
481 * fixup_free is called when:
482 * - an active object is freed
483 */
02a982a6 484static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
485{
486 struct work_struct *work = addr;
487
488 switch (state) {
489 case ODEBUG_STATE_ACTIVE:
490 cancel_work_sync(work);
491 debug_object_free(work, &work_debug_descr);
02a982a6 492 return true;
dc186ad7 493 default:
02a982a6 494 return false;
dc186ad7
TG
495 }
496}
497
f9e62f31 498static const struct debug_obj_descr work_debug_descr = {
dc186ad7 499 .name = "work_struct",
99777288 500 .debug_hint = work_debug_hint,
b9fdac7f 501 .is_static_object = work_is_static_object,
dc186ad7 502 .fixup_init = work_fixup_init,
dc186ad7
TG
503 .fixup_free = work_fixup_free,
504};
505
506static inline void debug_work_activate(struct work_struct *work)
507{
508 debug_object_activate(work, &work_debug_descr);
509}
510
511static inline void debug_work_deactivate(struct work_struct *work)
512{
513 debug_object_deactivate(work, &work_debug_descr);
514}
515
516void __init_work(struct work_struct *work, int onstack)
517{
518 if (onstack)
519 debug_object_init_on_stack(work, &work_debug_descr);
520 else
521 debug_object_init(work, &work_debug_descr);
522}
523EXPORT_SYMBOL_GPL(__init_work);
524
525void destroy_work_on_stack(struct work_struct *work)
526{
527 debug_object_free(work, &work_debug_descr);
528}
529EXPORT_SYMBOL_GPL(destroy_work_on_stack);
530
ea2e64f2
TG
531void destroy_delayed_work_on_stack(struct delayed_work *work)
532{
533 destroy_timer_on_stack(&work->timer);
534 debug_object_free(&work->work, &work_debug_descr);
535}
536EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
537
dc186ad7
TG
538#else
539static inline void debug_work_activate(struct work_struct *work) { }
540static inline void debug_work_deactivate(struct work_struct *work) { }
541#endif
542
4e8b22bd 543/**
67dc8325 544 * worker_pool_assign_id - allocate ID and assign it to @pool
4e8b22bd
LB
545 * @pool: the pool pointer of interest
546 *
547 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
548 * successfully, -errno on failure.
549 */
9daf9e67
TH
550static int worker_pool_assign_id(struct worker_pool *pool)
551{
552 int ret;
553
68e13a67 554 lockdep_assert_held(&wq_pool_mutex);
5bcab335 555
4e8b22bd
LB
556 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
557 GFP_KERNEL);
229641a6 558 if (ret >= 0) {
e68035fb 559 pool->id = ret;
229641a6
TH
560 return 0;
561 }
fa1b54e6 562 return ret;
7c3eed5c
TH
563}
564
df2d5ae4
TH
565/**
566 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
567 * @wq: the target workqueue
568 * @node: the node ID
569 *
24acfb71 570 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 571 * read locked.
df2d5ae4
TH
572 * If the pwq needs to be used beyond the locking in effect, the caller is
573 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
574 *
575 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
576 */
577static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
578 int node)
579{
5b95e1af 580 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
581
582 /*
583 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
584 * delayed item is pending. The plan is to keep CPU -> NODE
585 * mapping valid and stable across CPU on/offlines. Once that
586 * happens, this workaround can be removed.
587 */
588 if (unlikely(node == NUMA_NO_NODE))
589 return wq->dfl_pwq;
590
df2d5ae4
TH
591 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
592}
593
73f53c4a
TH
594static unsigned int work_color_to_flags(int color)
595{
596 return color << WORK_STRUCT_COLOR_SHIFT;
597}
598
c4560c2c 599static int get_work_color(unsigned long work_data)
73f53c4a 600{
c4560c2c 601 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
73f53c4a
TH
602 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
603}
604
605static int work_next_color(int color)
606{
607 return (color + 1) % WORK_NR_COLORS;
608}
1da177e4 609
14441960 610/*
112202d9
TH
611 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
612 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 613 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 614 *
112202d9
TH
615 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
616 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
617 * work->data. These functions should only be called while the work is
618 * owned - ie. while the PENDING bit is set.
7a22ad75 619 *
112202d9 620 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 621 * corresponding to a work. Pool is available once the work has been
112202d9 622 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 623 * available only while the work item is queued.
7a22ad75 624 *
bbb68dfa
TH
625 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
626 * canceled. While being canceled, a work item may have its PENDING set
627 * but stay off timer and worklist for arbitrarily long and nobody should
628 * try to steal the PENDING bit.
14441960 629 */
7a22ad75
TH
630static inline void set_work_data(struct work_struct *work, unsigned long data,
631 unsigned long flags)
365970a1 632{
6183c009 633 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
634 atomic_long_set(&work->data, data | flags | work_static(work));
635}
365970a1 636
112202d9 637static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
638 unsigned long extra_flags)
639{
112202d9
TH
640 set_work_data(work, (unsigned long)pwq,
641 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
642}
643
4468a00f
LJ
644static void set_work_pool_and_keep_pending(struct work_struct *work,
645 int pool_id)
646{
647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
648 WORK_STRUCT_PENDING);
649}
650
7c3eed5c
TH
651static void set_work_pool_and_clear_pending(struct work_struct *work,
652 int pool_id)
7a22ad75 653{
23657bb1
TH
654 /*
655 * The following wmb is paired with the implied mb in
656 * test_and_set_bit(PENDING) and ensures all updates to @work made
657 * here are visible to and precede any updates by the next PENDING
658 * owner.
659 */
660 smp_wmb();
7c3eed5c 661 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
662 /*
663 * The following mb guarantees that previous clear of a PENDING bit
664 * will not be reordered with any speculative LOADS or STORES from
665 * work->current_func, which is executed afterwards. This possible
8bdc6201 666 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
667 * the same @work. E.g. consider this case:
668 *
669 * CPU#0 CPU#1
670 * ---------------------------- --------------------------------
671 *
672 * 1 STORE event_indicated
673 * 2 queue_work_on() {
674 * 3 test_and_set_bit(PENDING)
675 * 4 } set_..._and_clear_pending() {
676 * 5 set_work_data() # clear bit
677 * 6 smp_mb()
678 * 7 work->current_func() {
679 * 8 LOAD event_indicated
680 * }
681 *
682 * Without an explicit full barrier speculative LOAD on line 8 can
683 * be executed before CPU#0 does STORE on line 1. If that happens,
684 * CPU#0 observes the PENDING bit is still set and new execution of
685 * a @work is not queued in a hope, that CPU#1 will eventually
686 * finish the queued @work. Meanwhile CPU#1 does not see
687 * event_indicated is set, because speculative LOAD was executed
688 * before actual STORE.
689 */
690 smp_mb();
7a22ad75 691}
f756d5e2 692
7a22ad75 693static void clear_work_data(struct work_struct *work)
1da177e4 694{
7c3eed5c
TH
695 smp_wmb(); /* see set_work_pool_and_clear_pending() */
696 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
697}
698
112202d9 699static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 700{
e120153d 701 unsigned long data = atomic_long_read(&work->data);
7a22ad75 702
112202d9 703 if (data & WORK_STRUCT_PWQ)
e120153d
TH
704 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
705 else
706 return NULL;
4d707b9f
ON
707}
708
7c3eed5c
TH
709/**
710 * get_work_pool - return the worker_pool a given work was associated with
711 * @work: the work item of interest
712 *
68e13a67 713 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
714 * access under RCU read lock. As such, this function should be
715 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
716 *
717 * All fields of the returned pool are accessible as long as the above
718 * mentioned locking is in effect. If the returned pool needs to be used
719 * beyond the critical section, the caller is responsible for ensuring the
720 * returned pool is and stays online.
d185af30
YB
721 *
722 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
723 */
724static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 725{
e120153d 726 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 727 int pool_id;
7a22ad75 728
68e13a67 729 assert_rcu_or_pool_mutex();
fa1b54e6 730
112202d9
TH
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
7c3eed5c 733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 734
7c3eed5c
TH
735 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
736 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
737 return NULL;
738
fa1b54e6 739 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
740}
741
742/**
743 * get_work_pool_id - return the worker pool ID a given work is associated with
744 * @work: the work item of interest
745 *
d185af30 746 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
747 * %WORK_OFFQ_POOL_NONE if none.
748 */
749static int get_work_pool_id(struct work_struct *work)
750{
54d5b7d0
LJ
751 unsigned long data = atomic_long_read(&work->data);
752
112202d9
TH
753 if (data & WORK_STRUCT_PWQ)
754 return ((struct pool_workqueue *)
54d5b7d0 755 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 756
54d5b7d0 757 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
758}
759
bbb68dfa
TH
760static void mark_work_canceling(struct work_struct *work)
761{
7c3eed5c 762 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 763
7c3eed5c
TH
764 pool_id <<= WORK_OFFQ_POOL_SHIFT;
765 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
766}
767
768static bool work_is_canceling(struct work_struct *work)
769{
770 unsigned long data = atomic_long_read(&work->data);
771
112202d9 772 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
773}
774
e22bee78 775/*
3270476a
TH
776 * Policy functions. These define the policies on how the global worker
777 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 778 * they're being called with pool->lock held.
e22bee78
TH
779 */
780
63d95a91 781static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 782{
e19e397a 783 return !atomic_read(&pool->nr_running);
a848e3b6
ON
784}
785
4594bf15 786/*
e22bee78
TH
787 * Need to wake up a worker? Called from anything but currently
788 * running workers.
974271c4
TH
789 *
790 * Note that, because unbound workers never contribute to nr_running, this
706026c2 791 * function will always return %true for unbound pools as long as the
974271c4 792 * worklist isn't empty.
4594bf15 793 */
63d95a91 794static bool need_more_worker(struct worker_pool *pool)
365970a1 795{
63d95a91 796 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 797}
4594bf15 798
e22bee78 799/* Can I start working? Called from busy but !running workers. */
63d95a91 800static bool may_start_working(struct worker_pool *pool)
e22bee78 801{
63d95a91 802 return pool->nr_idle;
e22bee78
TH
803}
804
805/* Do I need to keep working? Called from currently running workers. */
63d95a91 806static bool keep_working(struct worker_pool *pool)
e22bee78 807{
e19e397a
TH
808 return !list_empty(&pool->worklist) &&
809 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
810}
811
812/* Do we need a new worker? Called from manager. */
63d95a91 813static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 814{
63d95a91 815 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 816}
365970a1 817
e22bee78 818/* Do we have too many workers and should some go away? */
63d95a91 819static bool too_many_workers(struct worker_pool *pool)
e22bee78 820{
692b4825 821 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
822 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
823 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
824
825 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
826}
827
4d707b9f 828/*
e22bee78
TH
829 * Wake up functions.
830 */
831
1037de36
LJ
832/* Return the first idle worker. Safe with preemption disabled */
833static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 834{
63d95a91 835 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
836 return NULL;
837
63d95a91 838 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
839}
840
841/**
842 * wake_up_worker - wake up an idle worker
63d95a91 843 * @pool: worker pool to wake worker from
7e11629d 844 *
63d95a91 845 * Wake up the first idle worker of @pool.
7e11629d
TH
846 *
847 * CONTEXT:
a9b8a985 848 * raw_spin_lock_irq(pool->lock).
7e11629d 849 */
63d95a91 850static void wake_up_worker(struct worker_pool *pool)
7e11629d 851{
1037de36 852 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
853
854 if (likely(worker))
855 wake_up_process(worker->task);
856}
857
d302f017 858/**
6d25be57 859 * wq_worker_running - a worker is running again
e22bee78 860 * @task: task waking up
e22bee78 861 *
6d25be57 862 * This function is called when a worker returns from schedule()
e22bee78 863 */
6d25be57 864void wq_worker_running(struct task_struct *task)
e22bee78
TH
865{
866 struct worker *worker = kthread_data(task);
867
6d25be57
TG
868 if (!worker->sleeping)
869 return;
e3bc0080
FW
870
871 /*
872 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
873 * and the nr_running increment below, we may ruin the nr_running reset
874 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
875 * pool. Protect against such race.
876 */
877 preempt_disable();
6d25be57 878 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 879 atomic_inc(&worker->pool->nr_running);
e3bc0080 880 preempt_enable();
6d25be57 881 worker->sleeping = 0;
e22bee78
TH
882}
883
884/**
885 * wq_worker_sleeping - a worker is going to sleep
886 * @task: task going to sleep
e22bee78 887 *
6d25be57 888 * This function is called from schedule() when a busy worker is
62849a96
SAS
889 * going to sleep. Preemption needs to be disabled to protect ->sleeping
890 * assignment.
e22bee78 891 */
6d25be57 892void wq_worker_sleeping(struct task_struct *task)
e22bee78 893{
6d25be57 894 struct worker *next, *worker = kthread_data(task);
111c225a 895 struct worker_pool *pool;
e22bee78 896
111c225a
TH
897 /*
898 * Rescuers, which may not have all the fields set up like normal
899 * workers, also reach here, let's not access anything before
900 * checking NOT_RUNNING.
901 */
2d64672e 902 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 903 return;
e22bee78 904
111c225a 905 pool = worker->pool;
111c225a 906
62849a96
SAS
907 /* Return if preempted before wq_worker_running() was reached */
908 if (worker->sleeping)
6d25be57
TG
909 return;
910
911 worker->sleeping = 1;
a9b8a985 912 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
913
914 /*
915 * The counterpart of the following dec_and_test, implied mb,
916 * worklist not empty test sequence is in insert_work().
917 * Please read comment there.
918 *
628c78e7
TH
919 * NOT_RUNNING is clear. This means that we're bound to and
920 * running on the local cpu w/ rq lock held and preemption
921 * disabled, which in turn means that none else could be
d565ed63 922 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 923 * lock is safe.
e22bee78 924 */
e19e397a 925 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
926 !list_empty(&pool->worklist)) {
927 next = first_idle_worker(pool);
928 if (next)
929 wake_up_process(next->task);
930 }
a9b8a985 931 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
932}
933
1b69ac6b
JW
934/**
935 * wq_worker_last_func - retrieve worker's last work function
8194fe94 936 * @task: Task to retrieve last work function of.
1b69ac6b
JW
937 *
938 * Determine the last function a worker executed. This is called from
939 * the scheduler to get a worker's last known identity.
940 *
941 * CONTEXT:
a9b8a985 942 * raw_spin_lock_irq(rq->lock)
1b69ac6b 943 *
4b047002
JW
944 * This function is called during schedule() when a kworker is going
945 * to sleep. It's used by psi to identify aggregation workers during
946 * dequeuing, to allow periodic aggregation to shut-off when that
947 * worker is the last task in the system or cgroup to go to sleep.
948 *
949 * As this function doesn't involve any workqueue-related locking, it
950 * only returns stable values when called from inside the scheduler's
951 * queuing and dequeuing paths, when @task, which must be a kworker,
952 * is guaranteed to not be processing any works.
953 *
1b69ac6b
JW
954 * Return:
955 * The last work function %current executed as a worker, NULL if it
956 * hasn't executed any work yet.
957 */
958work_func_t wq_worker_last_func(struct task_struct *task)
959{
960 struct worker *worker = kthread_data(task);
961
962 return worker->last_func;
963}
964
e22bee78
TH
965/**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 967 * @worker: self
d302f017 968 * @flags: flags to set
d302f017 969 *
228f1d00 970 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 971 *
cb444766 972 * CONTEXT:
a9b8a985 973 * raw_spin_lock_irq(pool->lock)
d302f017 974 */
228f1d00 975static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 976{
bd7bdd43 977 struct worker_pool *pool = worker->pool;
e22bee78 978
cb444766
TH
979 WARN_ON_ONCE(worker->task != current);
980
228f1d00 981 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
982 if ((flags & WORKER_NOT_RUNNING) &&
983 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 984 atomic_dec(&pool->nr_running);
e22bee78
TH
985 }
986
d302f017
TH
987 worker->flags |= flags;
988}
989
990/**
e22bee78 991 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 992 * @worker: self
d302f017
TH
993 * @flags: flags to clear
994 *
e22bee78 995 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 996 *
cb444766 997 * CONTEXT:
a9b8a985 998 * raw_spin_lock_irq(pool->lock)
d302f017
TH
999 */
1000static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1001{
63d95a91 1002 struct worker_pool *pool = worker->pool;
e22bee78
TH
1003 unsigned int oflags = worker->flags;
1004
cb444766
TH
1005 WARN_ON_ONCE(worker->task != current);
1006
d302f017 1007 worker->flags &= ~flags;
e22bee78 1008
42c025f3
TH
1009 /*
1010 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1011 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1012 * of multiple flags, not a single flag.
1013 */
e22bee78
TH
1014 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1015 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 1016 atomic_inc(&pool->nr_running);
d302f017
TH
1017}
1018
8cca0eea
TH
1019/**
1020 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1021 * @pool: pool of interest
8cca0eea
TH
1022 * @work: work to find worker for
1023 *
c9e7cf27
TH
1024 * Find a worker which is executing @work on @pool by searching
1025 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1026 * to match, its current execution should match the address of @work and
1027 * its work function. This is to avoid unwanted dependency between
1028 * unrelated work executions through a work item being recycled while still
1029 * being executed.
1030 *
1031 * This is a bit tricky. A work item may be freed once its execution
1032 * starts and nothing prevents the freed area from being recycled for
1033 * another work item. If the same work item address ends up being reused
1034 * before the original execution finishes, workqueue will identify the
1035 * recycled work item as currently executing and make it wait until the
1036 * current execution finishes, introducing an unwanted dependency.
1037 *
c5aa87bb
TH
1038 * This function checks the work item address and work function to avoid
1039 * false positives. Note that this isn't complete as one may construct a
1040 * work function which can introduce dependency onto itself through a
1041 * recycled work item. Well, if somebody wants to shoot oneself in the
1042 * foot that badly, there's only so much we can do, and if such deadlock
1043 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1044 *
1045 * CONTEXT:
a9b8a985 1046 * raw_spin_lock_irq(pool->lock).
8cca0eea 1047 *
d185af30
YB
1048 * Return:
1049 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1050 * otherwise.
4d707b9f 1051 */
c9e7cf27 1052static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1053 struct work_struct *work)
4d707b9f 1054{
42f8570f 1055 struct worker *worker;
42f8570f 1056
b67bfe0d 1057 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1058 (unsigned long)work)
1059 if (worker->current_work == work &&
1060 worker->current_func == work->func)
42f8570f
SL
1061 return worker;
1062
1063 return NULL;
4d707b9f
ON
1064}
1065
bf4ede01
TH
1066/**
1067 * move_linked_works - move linked works to a list
1068 * @work: start of series of works to be scheduled
1069 * @head: target list to append @work to
402dd89d 1070 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1071 *
1072 * Schedule linked works starting from @work to @head. Work series to
1073 * be scheduled starts at @work and includes any consecutive work with
1074 * WORK_STRUCT_LINKED set in its predecessor.
1075 *
1076 * If @nextp is not NULL, it's updated to point to the next work of
1077 * the last scheduled work. This allows move_linked_works() to be
1078 * nested inside outer list_for_each_entry_safe().
1079 *
1080 * CONTEXT:
a9b8a985 1081 * raw_spin_lock_irq(pool->lock).
bf4ede01
TH
1082 */
1083static void move_linked_works(struct work_struct *work, struct list_head *head,
1084 struct work_struct **nextp)
1085{
1086 struct work_struct *n;
1087
1088 /*
1089 * Linked worklist will always end before the end of the list,
1090 * use NULL for list head.
1091 */
1092 list_for_each_entry_safe_from(work, n, NULL, entry) {
1093 list_move_tail(&work->entry, head);
1094 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1095 break;
1096 }
1097
1098 /*
1099 * If we're already inside safe list traversal and have moved
1100 * multiple works to the scheduled queue, the next position
1101 * needs to be updated.
1102 */
1103 if (nextp)
1104 *nextp = n;
1105}
1106
8864b4e5
TH
1107/**
1108 * get_pwq - get an extra reference on the specified pool_workqueue
1109 * @pwq: pool_workqueue to get
1110 *
1111 * Obtain an extra reference on @pwq. The caller should guarantee that
1112 * @pwq has positive refcnt and be holding the matching pool->lock.
1113 */
1114static void get_pwq(struct pool_workqueue *pwq)
1115{
1116 lockdep_assert_held(&pwq->pool->lock);
1117 WARN_ON_ONCE(pwq->refcnt <= 0);
1118 pwq->refcnt++;
1119}
1120
1121/**
1122 * put_pwq - put a pool_workqueue reference
1123 * @pwq: pool_workqueue to put
1124 *
1125 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1126 * destruction. The caller should be holding the matching pool->lock.
1127 */
1128static void put_pwq(struct pool_workqueue *pwq)
1129{
1130 lockdep_assert_held(&pwq->pool->lock);
1131 if (likely(--pwq->refcnt))
1132 return;
1133 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1134 return;
1135 /*
1136 * @pwq can't be released under pool->lock, bounce to
1137 * pwq_unbound_release_workfn(). This never recurses on the same
1138 * pool->lock as this path is taken only for unbound workqueues and
1139 * the release work item is scheduled on a per-cpu workqueue. To
1140 * avoid lockdep warning, unbound pool->locks are given lockdep
1141 * subclass of 1 in get_unbound_pool().
1142 */
1143 schedule_work(&pwq->unbound_release_work);
1144}
1145
dce90d47
TH
1146/**
1147 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1148 * @pwq: pool_workqueue to put (can be %NULL)
1149 *
1150 * put_pwq() with locking. This function also allows %NULL @pwq.
1151 */
1152static void put_pwq_unlocked(struct pool_workqueue *pwq)
1153{
1154 if (pwq) {
1155 /*
24acfb71 1156 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1157 * following lock operations are safe.
1158 */
a9b8a985 1159 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1160 put_pwq(pwq);
a9b8a985 1161 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1162 }
1163}
1164
f97a4a1a 1165static void pwq_activate_inactive_work(struct work_struct *work)
bf4ede01 1166{
112202d9 1167 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1168
1169 trace_workqueue_activate_work(work);
82607adc
TH
1170 if (list_empty(&pwq->pool->worklist))
1171 pwq->pool->watchdog_ts = jiffies;
112202d9 1172 move_linked_works(work, &pwq->pool->worklist, NULL);
f97a4a1a 1173 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
112202d9 1174 pwq->nr_active++;
bf4ede01
TH
1175}
1176
f97a4a1a 1177static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
3aa62497 1178{
f97a4a1a 1179 struct work_struct *work = list_first_entry(&pwq->inactive_works,
3aa62497
LJ
1180 struct work_struct, entry);
1181
f97a4a1a 1182 pwq_activate_inactive_work(work);
3aa62497
LJ
1183}
1184
bf4ede01 1185/**
112202d9
TH
1186 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1187 * @pwq: pwq of interest
c4560c2c 1188 * @work_data: work_data of work which left the queue
bf4ede01
TH
1189 *
1190 * A work either has completed or is removed from pending queue,
112202d9 1191 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1192 *
1193 * CONTEXT:
a9b8a985 1194 * raw_spin_lock_irq(pool->lock).
bf4ede01 1195 */
c4560c2c 1196static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
bf4ede01 1197{
c4560c2c
LJ
1198 int color = get_work_color(work_data);
1199
018f3a13
LJ
1200 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1201 pwq->nr_active--;
1202 if (!list_empty(&pwq->inactive_works)) {
1203 /* one down, submit an inactive one */
1204 if (pwq->nr_active < pwq->max_active)
1205 pwq_activate_first_inactive(pwq);
1206 }
1207 }
1208
112202d9 1209 pwq->nr_in_flight[color]--;
bf4ede01 1210
bf4ede01 1211 /* is flush in progress and are we at the flushing tip? */
112202d9 1212 if (likely(pwq->flush_color != color))
8864b4e5 1213 goto out_put;
bf4ede01
TH
1214
1215 /* are there still in-flight works? */
112202d9 1216 if (pwq->nr_in_flight[color])
8864b4e5 1217 goto out_put;
bf4ede01 1218
112202d9
TH
1219 /* this pwq is done, clear flush_color */
1220 pwq->flush_color = -1;
bf4ede01
TH
1221
1222 /*
112202d9 1223 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1224 * will handle the rest.
1225 */
112202d9
TH
1226 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1227 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1228out_put:
1229 put_pwq(pwq);
bf4ede01
TH
1230}
1231
36e227d2 1232/**
bbb68dfa 1233 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1234 * @work: work item to steal
1235 * @is_dwork: @work is a delayed_work
bbb68dfa 1236 * @flags: place to store irq state
36e227d2
TH
1237 *
1238 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1239 * stable state - idle, on timer or on worklist.
36e227d2 1240 *
d185af30 1241 * Return:
3eb6b31b
MCC
1242 *
1243 * ======== ================================================================
36e227d2
TH
1244 * 1 if @work was pending and we successfully stole PENDING
1245 * 0 if @work was idle and we claimed PENDING
1246 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1247 * -ENOENT if someone else is canceling @work, this state may persist
1248 * for arbitrarily long
3eb6b31b 1249 * ======== ================================================================
36e227d2 1250 *
d185af30 1251 * Note:
bbb68dfa 1252 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1253 * interrupted while holding PENDING and @work off queue, irq must be
1254 * disabled on entry. This, combined with delayed_work->timer being
1255 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1256 *
1257 * On successful return, >= 0, irq is disabled and the caller is
1258 * responsible for releasing it using local_irq_restore(*@flags).
1259 *
e0aecdd8 1260 * This function is safe to call from any context including IRQ handler.
bf4ede01 1261 */
bbb68dfa
TH
1262static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1263 unsigned long *flags)
bf4ede01 1264{
d565ed63 1265 struct worker_pool *pool;
112202d9 1266 struct pool_workqueue *pwq;
bf4ede01 1267
bbb68dfa
TH
1268 local_irq_save(*flags);
1269
36e227d2
TH
1270 /* try to steal the timer if it exists */
1271 if (is_dwork) {
1272 struct delayed_work *dwork = to_delayed_work(work);
1273
e0aecdd8
TH
1274 /*
1275 * dwork->timer is irqsafe. If del_timer() fails, it's
1276 * guaranteed that the timer is not queued anywhere and not
1277 * running on the local CPU.
1278 */
36e227d2
TH
1279 if (likely(del_timer(&dwork->timer)))
1280 return 1;
1281 }
1282
1283 /* try to claim PENDING the normal way */
bf4ede01
TH
1284 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1285 return 0;
1286
24acfb71 1287 rcu_read_lock();
bf4ede01
TH
1288 /*
1289 * The queueing is in progress, or it is already queued. Try to
1290 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1291 */
d565ed63
TH
1292 pool = get_work_pool(work);
1293 if (!pool)
bbb68dfa 1294 goto fail;
bf4ede01 1295
a9b8a985 1296 raw_spin_lock(&pool->lock);
0b3dae68 1297 /*
112202d9
TH
1298 * work->data is guaranteed to point to pwq only while the work
1299 * item is queued on pwq->wq, and both updating work->data to point
1300 * to pwq on queueing and to pool on dequeueing are done under
1301 * pwq->pool->lock. This in turn guarantees that, if work->data
1302 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1303 * item is currently queued on that pool.
1304 */
112202d9
TH
1305 pwq = get_work_pwq(work);
1306 if (pwq && pwq->pool == pool) {
16062836
TH
1307 debug_work_deactivate(work);
1308
1309 /*
018f3a13
LJ
1310 * A cancelable inactive work item must be in the
1311 * pwq->inactive_works since a queued barrier can't be
1312 * canceled (see the comments in insert_wq_barrier()).
1313 *
f97a4a1a 1314 * An inactive work item cannot be grabbed directly because
d812796e 1315 * it might have linked barrier work items which, if left
f97a4a1a 1316 * on the inactive_works list, will confuse pwq->nr_active
16062836
TH
1317 * management later on and cause stall. Make sure the work
1318 * item is activated before grabbing.
1319 */
f97a4a1a
LJ
1320 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1321 pwq_activate_inactive_work(work);
16062836
TH
1322
1323 list_del_init(&work->entry);
c4560c2c 1324 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
16062836 1325
112202d9 1326 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1327 set_work_pool_and_keep_pending(work, pool->id);
1328
a9b8a985 1329 raw_spin_unlock(&pool->lock);
24acfb71 1330 rcu_read_unlock();
16062836 1331 return 1;
bf4ede01 1332 }
a9b8a985 1333 raw_spin_unlock(&pool->lock);
bbb68dfa 1334fail:
24acfb71 1335 rcu_read_unlock();
bbb68dfa
TH
1336 local_irq_restore(*flags);
1337 if (work_is_canceling(work))
1338 return -ENOENT;
1339 cpu_relax();
36e227d2 1340 return -EAGAIN;
bf4ede01
TH
1341}
1342
4690c4ab 1343/**
706026c2 1344 * insert_work - insert a work into a pool
112202d9 1345 * @pwq: pwq @work belongs to
4690c4ab
TH
1346 * @work: work to insert
1347 * @head: insertion point
1348 * @extra_flags: extra WORK_STRUCT_* flags to set
1349 *
112202d9 1350 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1351 * work_struct flags.
4690c4ab
TH
1352 *
1353 * CONTEXT:
a9b8a985 1354 * raw_spin_lock_irq(pool->lock).
4690c4ab 1355 */
112202d9
TH
1356static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1357 struct list_head *head, unsigned int extra_flags)
b89deed3 1358{
112202d9 1359 struct worker_pool *pool = pwq->pool;
e22bee78 1360
e89a85d6
WW
1361 /* record the work call stack in order to print it in KASAN reports */
1362 kasan_record_aux_stack(work);
1363
4690c4ab 1364 /* we own @work, set data and link */
112202d9 1365 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1366 list_add_tail(&work->entry, head);
8864b4e5 1367 get_pwq(pwq);
e22bee78
TH
1368
1369 /*
c5aa87bb
TH
1370 * Ensure either wq_worker_sleeping() sees the above
1371 * list_add_tail() or we see zero nr_running to avoid workers lying
1372 * around lazily while there are works to be processed.
e22bee78
TH
1373 */
1374 smp_mb();
1375
63d95a91
TH
1376 if (__need_more_worker(pool))
1377 wake_up_worker(pool);
b89deed3
ON
1378}
1379
c8efcc25
TH
1380/*
1381 * Test whether @work is being queued from another work executing on the
8d03ecfe 1382 * same workqueue.
c8efcc25
TH
1383 */
1384static bool is_chained_work(struct workqueue_struct *wq)
1385{
8d03ecfe
TH
1386 struct worker *worker;
1387
1388 worker = current_wq_worker();
1389 /*
bf393fd4 1390 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1391 * I'm @worker, it's safe to dereference it without locking.
1392 */
112202d9 1393 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1394}
1395
ef557180
MG
1396/*
1397 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1398 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1399 * avoid perturbing sensitive tasks.
1400 */
1401static int wq_select_unbound_cpu(int cpu)
1402{
f303fccb 1403 static bool printed_dbg_warning;
ef557180
MG
1404 int new_cpu;
1405
f303fccb
TH
1406 if (likely(!wq_debug_force_rr_cpu)) {
1407 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1408 return cpu;
1409 } else if (!printed_dbg_warning) {
1410 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1411 printed_dbg_warning = true;
1412 }
1413
ef557180
MG
1414 if (cpumask_empty(wq_unbound_cpumask))
1415 return cpu;
1416
1417 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1418 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1419 if (unlikely(new_cpu >= nr_cpu_ids)) {
1420 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1421 if (unlikely(new_cpu >= nr_cpu_ids))
1422 return cpu;
1423 }
1424 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1425
1426 return new_cpu;
1427}
1428
d84ff051 1429static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1430 struct work_struct *work)
1431{
112202d9 1432 struct pool_workqueue *pwq;
c9178087 1433 struct worker_pool *last_pool;
1e19ffc6 1434 struct list_head *worklist;
8a2e8e5d 1435 unsigned int work_flags;
b75cac93 1436 unsigned int req_cpu = cpu;
8930caba
TH
1437
1438 /*
1439 * While a work item is PENDING && off queue, a task trying to
1440 * steal the PENDING will busy-loop waiting for it to either get
1441 * queued or lose PENDING. Grabbing PENDING and queueing should
1442 * happen with IRQ disabled.
1443 */
8e8eb730 1444 lockdep_assert_irqs_disabled();
1da177e4 1445
1e19ffc6 1446
9ef28a73 1447 /* if draining, only works from the same workqueue are allowed */
618b01eb 1448 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1449 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1450 return;
24acfb71 1451 rcu_read_lock();
9e8cd2f5 1452retry:
c9178087 1453 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1454 if (wq->flags & WQ_UNBOUND) {
1455 if (req_cpu == WORK_CPU_UNBOUND)
1456 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1457 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1458 } else {
1459 if (req_cpu == WORK_CPU_UNBOUND)
1460 cpu = raw_smp_processor_id();
1461 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1462 }
dbf2576e 1463
c9178087
TH
1464 /*
1465 * If @work was previously on a different pool, it might still be
1466 * running there, in which case the work needs to be queued on that
1467 * pool to guarantee non-reentrancy.
1468 */
1469 last_pool = get_work_pool(work);
1470 if (last_pool && last_pool != pwq->pool) {
1471 struct worker *worker;
18aa9eff 1472
a9b8a985 1473 raw_spin_lock(&last_pool->lock);
18aa9eff 1474
c9178087 1475 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1476
c9178087
TH
1477 if (worker && worker->current_pwq->wq == wq) {
1478 pwq = worker->current_pwq;
8930caba 1479 } else {
c9178087 1480 /* meh... not running there, queue here */
a9b8a985
SAS
1481 raw_spin_unlock(&last_pool->lock);
1482 raw_spin_lock(&pwq->pool->lock);
8930caba 1483 }
f3421797 1484 } else {
a9b8a985 1485 raw_spin_lock(&pwq->pool->lock);
502ca9d8
TH
1486 }
1487
9e8cd2f5
TH
1488 /*
1489 * pwq is determined and locked. For unbound pools, we could have
1490 * raced with pwq release and it could already be dead. If its
1491 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1492 * without another pwq replacing it in the numa_pwq_tbl or while
1493 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1494 * make forward-progress.
1495 */
1496 if (unlikely(!pwq->refcnt)) {
1497 if (wq->flags & WQ_UNBOUND) {
a9b8a985 1498 raw_spin_unlock(&pwq->pool->lock);
9e8cd2f5
TH
1499 cpu_relax();
1500 goto retry;
1501 }
1502 /* oops */
1503 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1504 wq->name, cpu);
1505 }
1506
112202d9
TH
1507 /* pwq determined, queue */
1508 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1509
24acfb71
TG
1510 if (WARN_ON(!list_empty(&work->entry)))
1511 goto out;
1e19ffc6 1512
112202d9
TH
1513 pwq->nr_in_flight[pwq->work_color]++;
1514 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1515
112202d9 1516 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1517 trace_workqueue_activate_work(work);
112202d9
TH
1518 pwq->nr_active++;
1519 worklist = &pwq->pool->worklist;
82607adc
TH
1520 if (list_empty(worklist))
1521 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d 1522 } else {
f97a4a1a
LJ
1523 work_flags |= WORK_STRUCT_INACTIVE;
1524 worklist = &pwq->inactive_works;
8a2e8e5d 1525 }
1e19ffc6 1526
0687c66b 1527 debug_work_activate(work);
112202d9 1528 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1529
24acfb71 1530out:
a9b8a985 1531 raw_spin_unlock(&pwq->pool->lock);
24acfb71 1532 rcu_read_unlock();
1da177e4
LT
1533}
1534
0fcb78c2 1535/**
c1a220e7
ZR
1536 * queue_work_on - queue work on specific cpu
1537 * @cpu: CPU number to execute work on
0fcb78c2
REB
1538 * @wq: workqueue to use
1539 * @work: work to queue
1540 *
c1a220e7
ZR
1541 * We queue the work to a specific CPU, the caller must ensure it
1542 * can't go away.
d185af30
YB
1543 *
1544 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1545 */
d4283e93
TH
1546bool queue_work_on(int cpu, struct workqueue_struct *wq,
1547 struct work_struct *work)
1da177e4 1548{
d4283e93 1549 bool ret = false;
8930caba 1550 unsigned long flags;
ef1ca236 1551
8930caba 1552 local_irq_save(flags);
c1a220e7 1553
22df02bb 1554 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1555 __queue_work(cpu, wq, work);
d4283e93 1556 ret = true;
c1a220e7 1557 }
ef1ca236 1558
8930caba 1559 local_irq_restore(flags);
1da177e4
LT
1560 return ret;
1561}
ad7b1f84 1562EXPORT_SYMBOL(queue_work_on);
1da177e4 1563
8204e0c1
AD
1564/**
1565 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1566 * @node: NUMA node ID that we want to select a CPU from
1567 *
1568 * This function will attempt to find a "random" cpu available on a given
1569 * node. If there are no CPUs available on the given node it will return
1570 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1571 * available CPU if we need to schedule this work.
1572 */
1573static int workqueue_select_cpu_near(int node)
1574{
1575 int cpu;
1576
1577 /* No point in doing this if NUMA isn't enabled for workqueues */
1578 if (!wq_numa_enabled)
1579 return WORK_CPU_UNBOUND;
1580
1581 /* Delay binding to CPU if node is not valid or online */
1582 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1583 return WORK_CPU_UNBOUND;
1584
1585 /* Use local node/cpu if we are already there */
1586 cpu = raw_smp_processor_id();
1587 if (node == cpu_to_node(cpu))
1588 return cpu;
1589
1590 /* Use "random" otherwise know as "first" online CPU of node */
1591 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1592
1593 /* If CPU is valid return that, otherwise just defer */
1594 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1595}
1596
1597/**
1598 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1599 * @node: NUMA node that we are targeting the work for
1600 * @wq: workqueue to use
1601 * @work: work to queue
1602 *
1603 * We queue the work to a "random" CPU within a given NUMA node. The basic
1604 * idea here is to provide a way to somehow associate work with a given
1605 * NUMA node.
1606 *
1607 * This function will only make a best effort attempt at getting this onto
1608 * the right NUMA node. If no node is requested or the requested node is
1609 * offline then we just fall back to standard queue_work behavior.
1610 *
1611 * Currently the "random" CPU ends up being the first available CPU in the
1612 * intersection of cpu_online_mask and the cpumask of the node, unless we
1613 * are running on the node. In that case we just use the current CPU.
1614 *
1615 * Return: %false if @work was already on a queue, %true otherwise.
1616 */
1617bool queue_work_node(int node, struct workqueue_struct *wq,
1618 struct work_struct *work)
1619{
1620 unsigned long flags;
1621 bool ret = false;
1622
1623 /*
1624 * This current implementation is specific to unbound workqueues.
1625 * Specifically we only return the first available CPU for a given
1626 * node instead of cycling through individual CPUs within the node.
1627 *
1628 * If this is used with a per-cpu workqueue then the logic in
1629 * workqueue_select_cpu_near would need to be updated to allow for
1630 * some round robin type logic.
1631 */
1632 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1633
1634 local_irq_save(flags);
1635
1636 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1637 int cpu = workqueue_select_cpu_near(node);
1638
1639 __queue_work(cpu, wq, work);
1640 ret = true;
1641 }
1642
1643 local_irq_restore(flags);
1644 return ret;
1645}
1646EXPORT_SYMBOL_GPL(queue_work_node);
1647
8c20feb6 1648void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1649{
8c20feb6 1650 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1651
e0aecdd8 1652 /* should have been called from irqsafe timer with irq already off */
60c057bc 1653 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1654}
1438ade5 1655EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1656
7beb2edf
TH
1657static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1658 struct delayed_work *dwork, unsigned long delay)
1da177e4 1659{
7beb2edf
TH
1660 struct timer_list *timer = &dwork->timer;
1661 struct work_struct *work = &dwork->work;
7beb2edf 1662
637fdbae 1663 WARN_ON_ONCE(!wq);
98173112 1664 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
fc4b514f
TH
1665 WARN_ON_ONCE(timer_pending(timer));
1666 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1667
8852aac2
TH
1668 /*
1669 * If @delay is 0, queue @dwork->work immediately. This is for
1670 * both optimization and correctness. The earliest @timer can
1671 * expire is on the closest next tick and delayed_work users depend
1672 * on that there's no such delay when @delay is 0.
1673 */
1674 if (!delay) {
1675 __queue_work(cpu, wq, &dwork->work);
1676 return;
1677 }
1678
60c057bc 1679 dwork->wq = wq;
1265057f 1680 dwork->cpu = cpu;
7beb2edf
TH
1681 timer->expires = jiffies + delay;
1682
041bd12e
TH
1683 if (unlikely(cpu != WORK_CPU_UNBOUND))
1684 add_timer_on(timer, cpu);
1685 else
1686 add_timer(timer);
1da177e4
LT
1687}
1688
0fcb78c2
REB
1689/**
1690 * queue_delayed_work_on - queue work on specific CPU after delay
1691 * @cpu: CPU number to execute work on
1692 * @wq: workqueue to use
af9997e4 1693 * @dwork: work to queue
0fcb78c2
REB
1694 * @delay: number of jiffies to wait before queueing
1695 *
d185af30 1696 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1697 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1698 * execution.
0fcb78c2 1699 */
d4283e93
TH
1700bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1702{
52bad64d 1703 struct work_struct *work = &dwork->work;
d4283e93 1704 bool ret = false;
8930caba 1705 unsigned long flags;
7a6bc1cd 1706
8930caba
TH
1707 /* read the comment in __queue_work() */
1708 local_irq_save(flags);
7a6bc1cd 1709
22df02bb 1710 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1711 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1712 ret = true;
7a6bc1cd 1713 }
8a3e77cc 1714
8930caba 1715 local_irq_restore(flags);
7a6bc1cd
VP
1716 return ret;
1717}
ad7b1f84 1718EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1719
8376fe22
TH
1720/**
1721 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1722 * @cpu: CPU number to execute work on
1723 * @wq: workqueue to use
1724 * @dwork: work to queue
1725 * @delay: number of jiffies to wait before queueing
1726 *
1727 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1728 * modify @dwork's timer so that it expires after @delay. If @delay is
1729 * zero, @work is guaranteed to be scheduled immediately regardless of its
1730 * current state.
1731 *
d185af30 1732 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1733 * pending and its timer was modified.
1734 *
e0aecdd8 1735 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1736 * See try_to_grab_pending() for details.
1737 */
1738bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1739 struct delayed_work *dwork, unsigned long delay)
1740{
1741 unsigned long flags;
1742 int ret;
c7fc77f7 1743
8376fe22
TH
1744 do {
1745 ret = try_to_grab_pending(&dwork->work, true, &flags);
1746 } while (unlikely(ret == -EAGAIN));
63bc0362 1747
8376fe22
TH
1748 if (likely(ret >= 0)) {
1749 __queue_delayed_work(cpu, wq, dwork, delay);
1750 local_irq_restore(flags);
7a6bc1cd 1751 }
8376fe22
TH
1752
1753 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1754 return ret;
1755}
8376fe22
TH
1756EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1757
05f0fe6b
TH
1758static void rcu_work_rcufn(struct rcu_head *rcu)
1759{
1760 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1761
1762 /* read the comment in __queue_work() */
1763 local_irq_disable();
1764 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1765 local_irq_enable();
1766}
1767
1768/**
1769 * queue_rcu_work - queue work after a RCU grace period
1770 * @wq: workqueue to use
1771 * @rwork: work to queue
1772 *
1773 * Return: %false if @rwork was already pending, %true otherwise. Note
1774 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1775 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1776 * execution may happen before a full RCU grace period has passed.
1777 */
1778bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1779{
1780 struct work_struct *work = &rwork->work;
1781
1782 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1783 rwork->wq = wq;
1784 call_rcu(&rwork->rcu, rcu_work_rcufn);
1785 return true;
1786 }
1787
1788 return false;
1789}
1790EXPORT_SYMBOL(queue_rcu_work);
1791
c8e55f36
TH
1792/**
1793 * worker_enter_idle - enter idle state
1794 * @worker: worker which is entering idle state
1795 *
1796 * @worker is entering idle state. Update stats and idle timer if
1797 * necessary.
1798 *
1799 * LOCKING:
a9b8a985 1800 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1801 */
1802static void worker_enter_idle(struct worker *worker)
1da177e4 1803{
bd7bdd43 1804 struct worker_pool *pool = worker->pool;
c8e55f36 1805
6183c009
TH
1806 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1807 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1808 (worker->hentry.next || worker->hentry.pprev)))
1809 return;
c8e55f36 1810
051e1850 1811 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1812 worker->flags |= WORKER_IDLE;
bd7bdd43 1813 pool->nr_idle++;
e22bee78 1814 worker->last_active = jiffies;
c8e55f36
TH
1815
1816 /* idle_list is LIFO */
bd7bdd43 1817 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1818
628c78e7
TH
1819 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1820 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1821
544ecf31 1822 /*
e8b3f8db 1823 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1824 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1825 * nr_running, the warning may trigger spuriously. Check iff
1826 * unbind is not in progress.
544ecf31 1827 */
24647570 1828 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1829 pool->nr_workers == pool->nr_idle &&
e19e397a 1830 atomic_read(&pool->nr_running));
c8e55f36
TH
1831}
1832
1833/**
1834 * worker_leave_idle - leave idle state
1835 * @worker: worker which is leaving idle state
1836 *
1837 * @worker is leaving idle state. Update stats.
1838 *
1839 * LOCKING:
a9b8a985 1840 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1841 */
1842static void worker_leave_idle(struct worker *worker)
1843{
bd7bdd43 1844 struct worker_pool *pool = worker->pool;
c8e55f36 1845
6183c009
TH
1846 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1847 return;
d302f017 1848 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1849 pool->nr_idle--;
c8e55f36
TH
1850 list_del_init(&worker->entry);
1851}
1852
f7537df5 1853static struct worker *alloc_worker(int node)
c34056a3
TH
1854{
1855 struct worker *worker;
1856
f7537df5 1857 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1858 if (worker) {
1859 INIT_LIST_HEAD(&worker->entry);
affee4b2 1860 INIT_LIST_HEAD(&worker->scheduled);
da028469 1861 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1862 /* on creation a worker is in !idle && prep state */
1863 worker->flags = WORKER_PREP;
c8e55f36 1864 }
c34056a3
TH
1865 return worker;
1866}
1867
4736cbf7
LJ
1868/**
1869 * worker_attach_to_pool() - attach a worker to a pool
1870 * @worker: worker to be attached
1871 * @pool: the target pool
1872 *
1873 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1874 * cpu-binding of @worker are kept coordinated with the pool across
1875 * cpu-[un]hotplugs.
1876 */
1877static void worker_attach_to_pool(struct worker *worker,
1878 struct worker_pool *pool)
1879{
1258fae7 1880 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 1881
4736cbf7 1882 /*
1258fae7
TH
1883 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1884 * stable across this function. See the comments above the flag
1885 * definition for details.
4736cbf7
LJ
1886 */
1887 if (pool->flags & POOL_DISASSOCIATED)
1888 worker->flags |= WORKER_UNBOUND;
5c25b5ff
PZ
1889 else
1890 kthread_set_per_cpu(worker->task, pool->cpu);
4736cbf7 1891
640f17c8
PZ
1892 if (worker->rescue_wq)
1893 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1894
4736cbf7 1895 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1896 worker->pool = pool;
4736cbf7 1897
1258fae7 1898 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1899}
1900
60f5a4bc
LJ
1901/**
1902 * worker_detach_from_pool() - detach a worker from its pool
1903 * @worker: worker which is attached to its pool
60f5a4bc 1904 *
4736cbf7
LJ
1905 * Undo the attaching which had been done in worker_attach_to_pool(). The
1906 * caller worker shouldn't access to the pool after detached except it has
1907 * other reference to the pool.
60f5a4bc 1908 */
a2d812a2 1909static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1910{
a2d812a2 1911 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1912 struct completion *detach_completion = NULL;
1913
1258fae7 1914 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1915
5c25b5ff 1916 kthread_set_per_cpu(worker->task, -1);
da028469 1917 list_del(&worker->node);
a2d812a2
TH
1918 worker->pool = NULL;
1919
da028469 1920 if (list_empty(&pool->workers))
60f5a4bc 1921 detach_completion = pool->detach_completion;
1258fae7 1922 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1923
b62c0751
LJ
1924 /* clear leftover flags without pool->lock after it is detached */
1925 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1926
60f5a4bc
LJ
1927 if (detach_completion)
1928 complete(detach_completion);
1929}
1930
c34056a3
TH
1931/**
1932 * create_worker - create a new workqueue worker
63d95a91 1933 * @pool: pool the new worker will belong to
c34056a3 1934 *
051e1850 1935 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1936 *
1937 * CONTEXT:
1938 * Might sleep. Does GFP_KERNEL allocations.
1939 *
d185af30 1940 * Return:
c34056a3
TH
1941 * Pointer to the newly created worker.
1942 */
bc2ae0f5 1943static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1944{
e441b56f
ZL
1945 struct worker *worker;
1946 int id;
e3c916a4 1947 char id_buf[16];
c34056a3 1948
7cda9aae 1949 /* ID is needed to determine kthread name */
e441b56f 1950 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
822d8405 1951 if (id < 0)
e441b56f 1952 return NULL;
c34056a3 1953
f7537df5 1954 worker = alloc_worker(pool->node);
c34056a3
TH
1955 if (!worker)
1956 goto fail;
1957
c34056a3
TH
1958 worker->id = id;
1959
29c91e99 1960 if (pool->cpu >= 0)
e3c916a4
TH
1961 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1962 pool->attrs->nice < 0 ? "H" : "");
f3421797 1963 else
e3c916a4
TH
1964 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1965
f3f90ad4 1966 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1967 "kworker/%s", id_buf);
c34056a3
TH
1968 if (IS_ERR(worker->task))
1969 goto fail;
1970
91151228 1971 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1972 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1973
da028469 1974 /* successful, attach the worker to the pool */
4736cbf7 1975 worker_attach_to_pool(worker, pool);
822d8405 1976
051e1850 1977 /* start the newly created worker */
a9b8a985 1978 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
1979 worker->pool->nr_workers++;
1980 worker_enter_idle(worker);
1981 wake_up_process(worker->task);
a9b8a985 1982 raw_spin_unlock_irq(&pool->lock);
051e1850 1983
c34056a3 1984 return worker;
822d8405 1985
c34056a3 1986fail:
e441b56f 1987 ida_free(&pool->worker_ida, id);
c34056a3
TH
1988 kfree(worker);
1989 return NULL;
1990}
1991
c34056a3
TH
1992/**
1993 * destroy_worker - destroy a workqueue worker
1994 * @worker: worker to be destroyed
1995 *
73eb7fe7
LJ
1996 * Destroy @worker and adjust @pool stats accordingly. The worker should
1997 * be idle.
c8e55f36
TH
1998 *
1999 * CONTEXT:
a9b8a985 2000 * raw_spin_lock_irq(pool->lock).
c34056a3
TH
2001 */
2002static void destroy_worker(struct worker *worker)
2003{
bd7bdd43 2004 struct worker_pool *pool = worker->pool;
c34056a3 2005
cd549687
TH
2006 lockdep_assert_held(&pool->lock);
2007
c34056a3 2008 /* sanity check frenzy */
6183c009 2009 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
2010 WARN_ON(!list_empty(&worker->scheduled)) ||
2011 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 2012 return;
c34056a3 2013
73eb7fe7
LJ
2014 pool->nr_workers--;
2015 pool->nr_idle--;
5bdfff96 2016
c8e55f36 2017 list_del_init(&worker->entry);
cb444766 2018 worker->flags |= WORKER_DIE;
60f5a4bc 2019 wake_up_process(worker->task);
c34056a3
TH
2020}
2021
32a6c723 2022static void idle_worker_timeout(struct timer_list *t)
e22bee78 2023{
32a6c723 2024 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 2025
a9b8a985 2026 raw_spin_lock_irq(&pool->lock);
e22bee78 2027
3347fc9f 2028 while (too_many_workers(pool)) {
e22bee78
TH
2029 struct worker *worker;
2030 unsigned long expires;
2031
2032 /* idle_list is kept in LIFO order, check the last one */
63d95a91 2033 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2034 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2035
3347fc9f 2036 if (time_before(jiffies, expires)) {
63d95a91 2037 mod_timer(&pool->idle_timer, expires);
3347fc9f 2038 break;
d5abe669 2039 }
3347fc9f
LJ
2040
2041 destroy_worker(worker);
e22bee78
TH
2042 }
2043
a9b8a985 2044 raw_spin_unlock_irq(&pool->lock);
e22bee78 2045}
d5abe669 2046
493a1724 2047static void send_mayday(struct work_struct *work)
e22bee78 2048{
112202d9
TH
2049 struct pool_workqueue *pwq = get_work_pwq(work);
2050 struct workqueue_struct *wq = pwq->wq;
493a1724 2051
2e109a28 2052 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2053
493008a8 2054 if (!wq->rescuer)
493a1724 2055 return;
e22bee78
TH
2056
2057 /* mayday mayday mayday */
493a1724 2058 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2059 /*
2060 * If @pwq is for an unbound wq, its base ref may be put at
2061 * any time due to an attribute change. Pin @pwq until the
2062 * rescuer is done with it.
2063 */
2064 get_pwq(pwq);
493a1724 2065 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2066 wake_up_process(wq->rescuer->task);
493a1724 2067 }
e22bee78
TH
2068}
2069
32a6c723 2070static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2071{
32a6c723 2072 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2073 struct work_struct *work;
2074
a9b8a985
SAS
2075 raw_spin_lock_irq(&pool->lock);
2076 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2077
63d95a91 2078 if (need_to_create_worker(pool)) {
e22bee78
TH
2079 /*
2080 * We've been trying to create a new worker but
2081 * haven't been successful. We might be hitting an
2082 * allocation deadlock. Send distress signals to
2083 * rescuers.
2084 */
63d95a91 2085 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2086 send_mayday(work);
1da177e4 2087 }
e22bee78 2088
a9b8a985
SAS
2089 raw_spin_unlock(&wq_mayday_lock);
2090 raw_spin_unlock_irq(&pool->lock);
e22bee78 2091
63d95a91 2092 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2093}
2094
e22bee78
TH
2095/**
2096 * maybe_create_worker - create a new worker if necessary
63d95a91 2097 * @pool: pool to create a new worker for
e22bee78 2098 *
63d95a91 2099 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2100 * have at least one idle worker on return from this function. If
2101 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2102 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2103 * possible allocation deadlock.
2104 *
c5aa87bb
TH
2105 * On return, need_to_create_worker() is guaranteed to be %false and
2106 * may_start_working() %true.
e22bee78
TH
2107 *
2108 * LOCKING:
a9b8a985 2109 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2110 * multiple times. Does GFP_KERNEL allocations. Called only from
2111 * manager.
e22bee78 2112 */
29187a9e 2113static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2114__releases(&pool->lock)
2115__acquires(&pool->lock)
1da177e4 2116{
e22bee78 2117restart:
a9b8a985 2118 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2119
e22bee78 2120 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2121 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2122
2123 while (true) {
051e1850 2124 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2125 break;
1da177e4 2126
e212f361 2127 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2128
63d95a91 2129 if (!need_to_create_worker(pool))
e22bee78
TH
2130 break;
2131 }
2132
63d95a91 2133 del_timer_sync(&pool->mayday_timer);
a9b8a985 2134 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2135 /*
2136 * This is necessary even after a new worker was just successfully
2137 * created as @pool->lock was dropped and the new worker might have
2138 * already become busy.
2139 */
63d95a91 2140 if (need_to_create_worker(pool))
e22bee78 2141 goto restart;
e22bee78
TH
2142}
2143
73f53c4a 2144/**
e22bee78
TH
2145 * manage_workers - manage worker pool
2146 * @worker: self
73f53c4a 2147 *
706026c2 2148 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2149 * to. At any given time, there can be only zero or one manager per
706026c2 2150 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2151 *
2152 * The caller can safely start processing works on false return. On
2153 * true return, it's guaranteed that need_to_create_worker() is false
2154 * and may_start_working() is true.
73f53c4a
TH
2155 *
2156 * CONTEXT:
a9b8a985 2157 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2158 * multiple times. Does GFP_KERNEL allocations.
2159 *
d185af30 2160 * Return:
29187a9e
TH
2161 * %false if the pool doesn't need management and the caller can safely
2162 * start processing works, %true if management function was performed and
2163 * the conditions that the caller verified before calling the function may
2164 * no longer be true.
73f53c4a 2165 */
e22bee78 2166static bool manage_workers(struct worker *worker)
73f53c4a 2167{
63d95a91 2168 struct worker_pool *pool = worker->pool;
73f53c4a 2169
692b4825 2170 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2171 return false;
692b4825
TH
2172
2173 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2174 pool->manager = worker;
1e19ffc6 2175
29187a9e 2176 maybe_create_worker(pool);
e22bee78 2177
2607d7a6 2178 pool->manager = NULL;
692b4825 2179 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2180 rcuwait_wake_up(&manager_wait);
29187a9e 2181 return true;
73f53c4a
TH
2182}
2183
a62428c0
TH
2184/**
2185 * process_one_work - process single work
c34056a3 2186 * @worker: self
a62428c0
TH
2187 * @work: work to process
2188 *
2189 * Process @work. This function contains all the logics necessary to
2190 * process a single work including synchronization against and
2191 * interaction with other workers on the same cpu, queueing and
2192 * flushing. As long as context requirement is met, any worker can
2193 * call this function to process a work.
2194 *
2195 * CONTEXT:
a9b8a985 2196 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2197 */
c34056a3 2198static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2199__releases(&pool->lock)
2200__acquires(&pool->lock)
a62428c0 2201{
112202d9 2202 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2203 struct worker_pool *pool = worker->pool;
112202d9 2204 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
c4560c2c 2205 unsigned long work_data;
7e11629d 2206 struct worker *collision;
a62428c0
TH
2207#ifdef CONFIG_LOCKDEP
2208 /*
2209 * It is permissible to free the struct work_struct from
2210 * inside the function that is called from it, this we need to
2211 * take into account for lockdep too. To avoid bogus "held
2212 * lock freed" warnings as well as problems when looking into
2213 * work->lockdep_map, make a copy and use that here.
2214 */
4d82a1de
PZ
2215 struct lockdep_map lockdep_map;
2216
2217 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2218#endif
807407c0 2219 /* ensure we're on the correct CPU */
85327af6 2220 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2221 raw_smp_processor_id() != pool->cpu);
25511a47 2222
7e11629d
TH
2223 /*
2224 * A single work shouldn't be executed concurrently by
2225 * multiple workers on a single cpu. Check whether anyone is
2226 * already processing the work. If so, defer the work to the
2227 * currently executing one.
2228 */
c9e7cf27 2229 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2230 if (unlikely(collision)) {
2231 move_linked_works(work, &collision->scheduled, NULL);
2232 return;
2233 }
2234
8930caba 2235 /* claim and dequeue */
a62428c0 2236 debug_work_deactivate(work);
c9e7cf27 2237 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2238 worker->current_work = work;
a2c1c57b 2239 worker->current_func = work->func;
112202d9 2240 worker->current_pwq = pwq;
c4560c2c 2241 work_data = *work_data_bits(work);
d812796e 2242 worker->current_color = get_work_color(work_data);
7a22ad75 2243
8bf89593
TH
2244 /*
2245 * Record wq name for cmdline and debug reporting, may get
2246 * overridden through set_worker_desc().
2247 */
2248 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2249
a62428c0
TH
2250 list_del_init(&work->entry);
2251
fb0e7beb 2252 /*
228f1d00
LJ
2253 * CPU intensive works don't participate in concurrency management.
2254 * They're the scheduler's responsibility. This takes @worker out
2255 * of concurrency management and the next code block will chain
2256 * execution of the pending work items.
fb0e7beb
TH
2257 */
2258 if (unlikely(cpu_intensive))
228f1d00 2259 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2260
974271c4 2261 /*
a489a03e
LJ
2262 * Wake up another worker if necessary. The condition is always
2263 * false for normal per-cpu workers since nr_running would always
2264 * be >= 1 at this point. This is used to chain execution of the
2265 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2266 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2267 */
a489a03e 2268 if (need_more_worker(pool))
63d95a91 2269 wake_up_worker(pool);
974271c4 2270
8930caba 2271 /*
7c3eed5c 2272 * Record the last pool and clear PENDING which should be the last
d565ed63 2273 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2274 * PENDING and queued state changes happen together while IRQ is
2275 * disabled.
8930caba 2276 */
7c3eed5c 2277 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2278
a9b8a985 2279 raw_spin_unlock_irq(&pool->lock);
a62428c0 2280
a1d14934 2281 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2282 lock_map_acquire(&lockdep_map);
e6f3faa7 2283 /*
f52be570
PZ
2284 * Strictly speaking we should mark the invariant state without holding
2285 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2286 *
2287 * However, that would result in:
2288 *
2289 * A(W1)
2290 * WFC(C)
2291 * A(W1)
2292 * C(C)
2293 *
2294 * Which would create W1->C->W1 dependencies, even though there is no
2295 * actual deadlock possible. There are two solutions, using a
2296 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2297 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2298 * these locks.
2299 *
2300 * AFAICT there is no possible deadlock scenario between the
2301 * flush_work() and complete() primitives (except for single-threaded
2302 * workqueues), so hiding them isn't a problem.
2303 */
f52be570 2304 lockdep_invariant_state(true);
e36c886a 2305 trace_workqueue_execute_start(work);
a2c1c57b 2306 worker->current_func(work);
e36c886a
AV
2307 /*
2308 * While we must be careful to not use "work" after this, the trace
2309 * point will only record its address.
2310 */
1c5da0ec 2311 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2312 lock_map_release(&lockdep_map);
112202d9 2313 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2314
2315 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2316 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2317 " last function: %ps\n",
a2c1c57b
TH
2318 current->comm, preempt_count(), task_pid_nr(current),
2319 worker->current_func);
a62428c0
TH
2320 debug_show_held_locks(current);
2321 dump_stack();
2322 }
2323
b22ce278 2324 /*
025f50f3 2325 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2326 * kernels, where a requeueing work item waiting for something to
2327 * happen could deadlock with stop_machine as such work item could
2328 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2329 * stop_machine. At the same time, report a quiescent RCU state so
2330 * the same condition doesn't freeze RCU.
b22ce278 2331 */
a7e6425e 2332 cond_resched();
b22ce278 2333
a9b8a985 2334 raw_spin_lock_irq(&pool->lock);
a62428c0 2335
fb0e7beb
TH
2336 /* clear cpu intensive status */
2337 if (unlikely(cpu_intensive))
2338 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2339
1b69ac6b
JW
2340 /* tag the worker for identification in schedule() */
2341 worker->last_func = worker->current_func;
2342
a62428c0 2343 /* we're done with it, release */
42f8570f 2344 hash_del(&worker->hentry);
c34056a3 2345 worker->current_work = NULL;
a2c1c57b 2346 worker->current_func = NULL;
112202d9 2347 worker->current_pwq = NULL;
d812796e 2348 worker->current_color = INT_MAX;
c4560c2c 2349 pwq_dec_nr_in_flight(pwq, work_data);
a62428c0
TH
2350}
2351
affee4b2
TH
2352/**
2353 * process_scheduled_works - process scheduled works
2354 * @worker: self
2355 *
2356 * Process all scheduled works. Please note that the scheduled list
2357 * may change while processing a work, so this function repeatedly
2358 * fetches a work from the top and executes it.
2359 *
2360 * CONTEXT:
a9b8a985 2361 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2362 * multiple times.
2363 */
2364static void process_scheduled_works(struct worker *worker)
1da177e4 2365{
affee4b2
TH
2366 while (!list_empty(&worker->scheduled)) {
2367 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2368 struct work_struct, entry);
c34056a3 2369 process_one_work(worker, work);
1da177e4 2370 }
1da177e4
LT
2371}
2372
197f6acc
TH
2373static void set_pf_worker(bool val)
2374{
2375 mutex_lock(&wq_pool_attach_mutex);
2376 if (val)
2377 current->flags |= PF_WQ_WORKER;
2378 else
2379 current->flags &= ~PF_WQ_WORKER;
2380 mutex_unlock(&wq_pool_attach_mutex);
2381}
2382
4690c4ab
TH
2383/**
2384 * worker_thread - the worker thread function
c34056a3 2385 * @__worker: self
4690c4ab 2386 *
c5aa87bb
TH
2387 * The worker thread function. All workers belong to a worker_pool -
2388 * either a per-cpu one or dynamic unbound one. These workers process all
2389 * work items regardless of their specific target workqueue. The only
2390 * exception is work items which belong to workqueues with a rescuer which
2391 * will be explained in rescuer_thread().
d185af30
YB
2392 *
2393 * Return: 0
4690c4ab 2394 */
c34056a3 2395static int worker_thread(void *__worker)
1da177e4 2396{
c34056a3 2397 struct worker *worker = __worker;
bd7bdd43 2398 struct worker_pool *pool = worker->pool;
1da177e4 2399
e22bee78 2400 /* tell the scheduler that this is a workqueue worker */
197f6acc 2401 set_pf_worker(true);
c8e55f36 2402woke_up:
a9b8a985 2403 raw_spin_lock_irq(&pool->lock);
1da177e4 2404
a9ab775b
TH
2405 /* am I supposed to die? */
2406 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2407 raw_spin_unlock_irq(&pool->lock);
a9ab775b 2408 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2409 set_pf_worker(false);
60f5a4bc
LJ
2410
2411 set_task_comm(worker->task, "kworker/dying");
e441b56f 2412 ida_free(&pool->worker_ida, worker->id);
a2d812a2 2413 worker_detach_from_pool(worker);
60f5a4bc 2414 kfree(worker);
a9ab775b 2415 return 0;
c8e55f36 2416 }
affee4b2 2417
c8e55f36 2418 worker_leave_idle(worker);
db7bccf4 2419recheck:
e22bee78 2420 /* no more worker necessary? */
63d95a91 2421 if (!need_more_worker(pool))
e22bee78
TH
2422 goto sleep;
2423
2424 /* do we need to manage? */
63d95a91 2425 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2426 goto recheck;
2427
c8e55f36
TH
2428 /*
2429 * ->scheduled list can only be filled while a worker is
2430 * preparing to process a work or actually processing it.
2431 * Make sure nobody diddled with it while I was sleeping.
2432 */
6183c009 2433 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2434
e22bee78 2435 /*
a9ab775b
TH
2436 * Finish PREP stage. We're guaranteed to have at least one idle
2437 * worker or that someone else has already assumed the manager
2438 * role. This is where @worker starts participating in concurrency
2439 * management if applicable and concurrency management is restored
2440 * after being rebound. See rebind_workers() for details.
e22bee78 2441 */
a9ab775b 2442 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2443
2444 do {
c8e55f36 2445 struct work_struct *work =
bd7bdd43 2446 list_first_entry(&pool->worklist,
c8e55f36
TH
2447 struct work_struct, entry);
2448
82607adc
TH
2449 pool->watchdog_ts = jiffies;
2450
c8e55f36
TH
2451 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2452 /* optimization path, not strictly necessary */
2453 process_one_work(worker, work);
2454 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2455 process_scheduled_works(worker);
c8e55f36
TH
2456 } else {
2457 move_linked_works(work, &worker->scheduled, NULL);
2458 process_scheduled_works(worker);
affee4b2 2459 }
63d95a91 2460 } while (keep_working(pool));
e22bee78 2461
228f1d00 2462 worker_set_flags(worker, WORKER_PREP);
d313dd85 2463sleep:
c8e55f36 2464 /*
d565ed63
TH
2465 * pool->lock is held and there's no work to process and no need to
2466 * manage, sleep. Workers are woken up only while holding
2467 * pool->lock or from local cpu, so setting the current state
2468 * before releasing pool->lock is enough to prevent losing any
2469 * event.
c8e55f36
TH
2470 */
2471 worker_enter_idle(worker);
c5a94a61 2472 __set_current_state(TASK_IDLE);
a9b8a985 2473 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2474 schedule();
2475 goto woke_up;
1da177e4
LT
2476}
2477
e22bee78
TH
2478/**
2479 * rescuer_thread - the rescuer thread function
111c225a 2480 * @__rescuer: self
e22bee78
TH
2481 *
2482 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2483 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2484 *
706026c2 2485 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2486 * worker which uses GFP_KERNEL allocation which has slight chance of
2487 * developing into deadlock if some works currently on the same queue
2488 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2489 * the problem rescuer solves.
2490 *
706026c2
TH
2491 * When such condition is possible, the pool summons rescuers of all
2492 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2493 * those works so that forward progress can be guaranteed.
2494 *
2495 * This should happen rarely.
d185af30
YB
2496 *
2497 * Return: 0
e22bee78 2498 */
111c225a 2499static int rescuer_thread(void *__rescuer)
e22bee78 2500{
111c225a
TH
2501 struct worker *rescuer = __rescuer;
2502 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2503 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2504 bool should_stop;
e22bee78
TH
2505
2506 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2507
2508 /*
2509 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2510 * doesn't participate in concurrency management.
2511 */
197f6acc 2512 set_pf_worker(true);
e22bee78 2513repeat:
c5a94a61 2514 set_current_state(TASK_IDLE);
e22bee78 2515
4d595b86
LJ
2516 /*
2517 * By the time the rescuer is requested to stop, the workqueue
2518 * shouldn't have any work pending, but @wq->maydays may still have
2519 * pwq(s) queued. This can happen by non-rescuer workers consuming
2520 * all the work items before the rescuer got to them. Go through
2521 * @wq->maydays processing before acting on should_stop so that the
2522 * list is always empty on exit.
2523 */
2524 should_stop = kthread_should_stop();
e22bee78 2525
493a1724 2526 /* see whether any pwq is asking for help */
a9b8a985 2527 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2528
2529 while (!list_empty(&wq->maydays)) {
2530 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2531 struct pool_workqueue, mayday_node);
112202d9 2532 struct worker_pool *pool = pwq->pool;
e22bee78 2533 struct work_struct *work, *n;
82607adc 2534 bool first = true;
e22bee78
TH
2535
2536 __set_current_state(TASK_RUNNING);
493a1724
TH
2537 list_del_init(&pwq->mayday_node);
2538
a9b8a985 2539 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2540
51697d39
LJ
2541 worker_attach_to_pool(rescuer, pool);
2542
a9b8a985 2543 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2544
2545 /*
2546 * Slurp in all works issued via this workqueue and
2547 * process'em.
2548 */
0479c8c5 2549 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2550 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2551 if (get_work_pwq(work) == pwq) {
2552 if (first)
2553 pool->watchdog_ts = jiffies;
e22bee78 2554 move_linked_works(work, scheduled, &n);
82607adc
TH
2555 }
2556 first = false;
2557 }
e22bee78 2558
008847f6
N
2559 if (!list_empty(scheduled)) {
2560 process_scheduled_works(rescuer);
2561
2562 /*
2563 * The above execution of rescued work items could
2564 * have created more to rescue through
f97a4a1a 2565 * pwq_activate_first_inactive() or chained
008847f6
N
2566 * queueing. Let's put @pwq back on mayday list so
2567 * that such back-to-back work items, which may be
2568 * being used to relieve memory pressure, don't
2569 * incur MAYDAY_INTERVAL delay inbetween.
2570 */
4f3f4cf3 2571 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2572 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2573 /*
2574 * Queue iff we aren't racing destruction
2575 * and somebody else hasn't queued it already.
2576 */
2577 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2578 get_pwq(pwq);
2579 list_add_tail(&pwq->mayday_node, &wq->maydays);
2580 }
a9b8a985 2581 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2582 }
2583 }
7576958a 2584
77668c8b
LJ
2585 /*
2586 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2587 * go away while we're still attached to it.
77668c8b
LJ
2588 */
2589 put_pwq(pwq);
2590
7576958a 2591 /*
d8ca83e6 2592 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2593 * regular worker; otherwise, we end up with 0 concurrency
2594 * and stalling the execution.
2595 */
d8ca83e6 2596 if (need_more_worker(pool))
63d95a91 2597 wake_up_worker(pool);
7576958a 2598
a9b8a985 2599 raw_spin_unlock_irq(&pool->lock);
13b1d625 2600
a2d812a2 2601 worker_detach_from_pool(rescuer);
13b1d625 2602
a9b8a985 2603 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2604 }
2605
a9b8a985 2606 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2607
4d595b86
LJ
2608 if (should_stop) {
2609 __set_current_state(TASK_RUNNING);
197f6acc 2610 set_pf_worker(false);
4d595b86
LJ
2611 return 0;
2612 }
2613
111c225a
TH
2614 /* rescuers should never participate in concurrency management */
2615 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2616 schedule();
2617 goto repeat;
1da177e4
LT
2618}
2619
fca839c0
TH
2620/**
2621 * check_flush_dependency - check for flush dependency sanity
2622 * @target_wq: workqueue being flushed
2623 * @target_work: work item being flushed (NULL for workqueue flushes)
2624 *
2625 * %current is trying to flush the whole @target_wq or @target_work on it.
2626 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2627 * reclaiming memory or running on a workqueue which doesn't have
2628 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2629 * a deadlock.
2630 */
2631static void check_flush_dependency(struct workqueue_struct *target_wq,
2632 struct work_struct *target_work)
2633{
2634 work_func_t target_func = target_work ? target_work->func : NULL;
2635 struct worker *worker;
2636
2637 if (target_wq->flags & WQ_MEM_RECLAIM)
2638 return;
2639
2640 worker = current_wq_worker();
2641
2642 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2643 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2644 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2645 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2646 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2647 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2648 worker->current_pwq->wq->name, worker->current_func,
2649 target_wq->name, target_func);
2650}
2651
fc2e4d70
ON
2652struct wq_barrier {
2653 struct work_struct work;
2654 struct completion done;
2607d7a6 2655 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2656};
2657
2658static void wq_barrier_func(struct work_struct *work)
2659{
2660 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2661 complete(&barr->done);
2662}
2663
4690c4ab
TH
2664/**
2665 * insert_wq_barrier - insert a barrier work
112202d9 2666 * @pwq: pwq to insert barrier into
4690c4ab 2667 * @barr: wq_barrier to insert
affee4b2
TH
2668 * @target: target work to attach @barr to
2669 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2670 *
affee4b2
TH
2671 * @barr is linked to @target such that @barr is completed only after
2672 * @target finishes execution. Please note that the ordering
2673 * guarantee is observed only with respect to @target and on the local
2674 * cpu.
2675 *
2676 * Currently, a queued barrier can't be canceled. This is because
2677 * try_to_grab_pending() can't determine whether the work to be
2678 * grabbed is at the head of the queue and thus can't clear LINKED
2679 * flag of the previous work while there must be a valid next work
2680 * after a work with LINKED flag set.
2681 *
2682 * Note that when @worker is non-NULL, @target may be modified
112202d9 2683 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2684 *
2685 * CONTEXT:
a9b8a985 2686 * raw_spin_lock_irq(pool->lock).
4690c4ab 2687 */
112202d9 2688static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2689 struct wq_barrier *barr,
2690 struct work_struct *target, struct worker *worker)
fc2e4d70 2691{
d812796e
LJ
2692 unsigned int work_flags = 0;
2693 unsigned int work_color;
affee4b2 2694 struct list_head *head;
affee4b2 2695
dc186ad7 2696 /*
d565ed63 2697 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2698 * as we know for sure that this will not trigger any of the
2699 * checks and call back into the fixup functions where we
2700 * might deadlock.
2701 */
ca1cab37 2702 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2703 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2704
fd1a5b04
BP
2705 init_completion_map(&barr->done, &target->lockdep_map);
2706
2607d7a6 2707 barr->task = current;
83c22520 2708
018f3a13
LJ
2709 /* The barrier work item does not participate in pwq->nr_active. */
2710 work_flags |= WORK_STRUCT_INACTIVE;
2711
affee4b2
TH
2712 /*
2713 * If @target is currently being executed, schedule the
2714 * barrier to the worker; otherwise, put it after @target.
2715 */
d812796e 2716 if (worker) {
affee4b2 2717 head = worker->scheduled.next;
d812796e
LJ
2718 work_color = worker->current_color;
2719 } else {
affee4b2
TH
2720 unsigned long *bits = work_data_bits(target);
2721
2722 head = target->entry.next;
2723 /* there can already be other linked works, inherit and set */
d21cece0 2724 work_flags |= *bits & WORK_STRUCT_LINKED;
d812796e 2725 work_color = get_work_color(*bits);
affee4b2
TH
2726 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2727 }
2728
d812796e
LJ
2729 pwq->nr_in_flight[work_color]++;
2730 work_flags |= work_color_to_flags(work_color);
2731
dc186ad7 2732 debug_work_activate(&barr->work);
d21cece0 2733 insert_work(pwq, &barr->work, head, work_flags);
fc2e4d70
ON
2734}
2735
73f53c4a 2736/**
112202d9 2737 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2738 * @wq: workqueue being flushed
2739 * @flush_color: new flush color, < 0 for no-op
2740 * @work_color: new work color, < 0 for no-op
2741 *
112202d9 2742 * Prepare pwqs for workqueue flushing.
73f53c4a 2743 *
112202d9
TH
2744 * If @flush_color is non-negative, flush_color on all pwqs should be
2745 * -1. If no pwq has in-flight commands at the specified color, all
2746 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2747 * has in flight commands, its pwq->flush_color is set to
2748 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2749 * wakeup logic is armed and %true is returned.
2750 *
2751 * The caller should have initialized @wq->first_flusher prior to
2752 * calling this function with non-negative @flush_color. If
2753 * @flush_color is negative, no flush color update is done and %false
2754 * is returned.
2755 *
112202d9 2756 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2757 * work_color which is previous to @work_color and all will be
2758 * advanced to @work_color.
2759 *
2760 * CONTEXT:
3c25a55d 2761 * mutex_lock(wq->mutex).
73f53c4a 2762 *
d185af30 2763 * Return:
73f53c4a
TH
2764 * %true if @flush_color >= 0 and there's something to flush. %false
2765 * otherwise.
2766 */
112202d9 2767static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2768 int flush_color, int work_color)
1da177e4 2769{
73f53c4a 2770 bool wait = false;
49e3cf44 2771 struct pool_workqueue *pwq;
1da177e4 2772
73f53c4a 2773 if (flush_color >= 0) {
6183c009 2774 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2775 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2776 }
2355b70f 2777
49e3cf44 2778 for_each_pwq(pwq, wq) {
112202d9 2779 struct worker_pool *pool = pwq->pool;
fc2e4d70 2780
a9b8a985 2781 raw_spin_lock_irq(&pool->lock);
83c22520 2782
73f53c4a 2783 if (flush_color >= 0) {
6183c009 2784 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2785
112202d9
TH
2786 if (pwq->nr_in_flight[flush_color]) {
2787 pwq->flush_color = flush_color;
2788 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2789 wait = true;
2790 }
2791 }
1da177e4 2792
73f53c4a 2793 if (work_color >= 0) {
6183c009 2794 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2795 pwq->work_color = work_color;
73f53c4a 2796 }
1da177e4 2797
a9b8a985 2798 raw_spin_unlock_irq(&pool->lock);
1da177e4 2799 }
2355b70f 2800
112202d9 2801 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2802 complete(&wq->first_flusher->done);
14441960 2803
73f53c4a 2804 return wait;
1da177e4
LT
2805}
2806
0fcb78c2 2807/**
1da177e4 2808 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2809 * @wq: workqueue to flush
1da177e4 2810 *
c5aa87bb
TH
2811 * This function sleeps until all work items which were queued on entry
2812 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2813 */
7ad5b3a5 2814void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2815{
73f53c4a
TH
2816 struct wq_flusher this_flusher = {
2817 .list = LIST_HEAD_INIT(this_flusher.list),
2818 .flush_color = -1,
fd1a5b04 2819 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2820 };
2821 int next_color;
1da177e4 2822
3347fa09
TH
2823 if (WARN_ON(!wq_online))
2824 return;
2825
87915adc
JB
2826 lock_map_acquire(&wq->lockdep_map);
2827 lock_map_release(&wq->lockdep_map);
2828
3c25a55d 2829 mutex_lock(&wq->mutex);
73f53c4a
TH
2830
2831 /*
2832 * Start-to-wait phase
2833 */
2834 next_color = work_next_color(wq->work_color);
2835
2836 if (next_color != wq->flush_color) {
2837 /*
2838 * Color space is not full. The current work_color
2839 * becomes our flush_color and work_color is advanced
2840 * by one.
2841 */
6183c009 2842 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2843 this_flusher.flush_color = wq->work_color;
2844 wq->work_color = next_color;
2845
2846 if (!wq->first_flusher) {
2847 /* no flush in progress, become the first flusher */
6183c009 2848 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2849
2850 wq->first_flusher = &this_flusher;
2851
112202d9 2852 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2853 wq->work_color)) {
2854 /* nothing to flush, done */
2855 wq->flush_color = next_color;
2856 wq->first_flusher = NULL;
2857 goto out_unlock;
2858 }
2859 } else {
2860 /* wait in queue */
6183c009 2861 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2862 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2863 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2864 }
2865 } else {
2866 /*
2867 * Oops, color space is full, wait on overflow queue.
2868 * The next flush completion will assign us
2869 * flush_color and transfer to flusher_queue.
2870 */
2871 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2872 }
2873
fca839c0
TH
2874 check_flush_dependency(wq, NULL);
2875
3c25a55d 2876 mutex_unlock(&wq->mutex);
73f53c4a
TH
2877
2878 wait_for_completion(&this_flusher.done);
2879
2880 /*
2881 * Wake-up-and-cascade phase
2882 *
2883 * First flushers are responsible for cascading flushes and
2884 * handling overflow. Non-first flushers can simply return.
2885 */
00d5d15b 2886 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2887 return;
2888
3c25a55d 2889 mutex_lock(&wq->mutex);
73f53c4a 2890
4ce48b37
TH
2891 /* we might have raced, check again with mutex held */
2892 if (wq->first_flusher != &this_flusher)
2893 goto out_unlock;
2894
00d5d15b 2895 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2896
6183c009
TH
2897 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2898 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2899
2900 while (true) {
2901 struct wq_flusher *next, *tmp;
2902
2903 /* complete all the flushers sharing the current flush color */
2904 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2905 if (next->flush_color != wq->flush_color)
2906 break;
2907 list_del_init(&next->list);
2908 complete(&next->done);
2909 }
2910
6183c009
TH
2911 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2912 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2913
2914 /* this flush_color is finished, advance by one */
2915 wq->flush_color = work_next_color(wq->flush_color);
2916
2917 /* one color has been freed, handle overflow queue */
2918 if (!list_empty(&wq->flusher_overflow)) {
2919 /*
2920 * Assign the same color to all overflowed
2921 * flushers, advance work_color and append to
2922 * flusher_queue. This is the start-to-wait
2923 * phase for these overflowed flushers.
2924 */
2925 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2926 tmp->flush_color = wq->work_color;
2927
2928 wq->work_color = work_next_color(wq->work_color);
2929
2930 list_splice_tail_init(&wq->flusher_overflow,
2931 &wq->flusher_queue);
112202d9 2932 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2933 }
2934
2935 if (list_empty(&wq->flusher_queue)) {
6183c009 2936 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2937 break;
2938 }
2939
2940 /*
2941 * Need to flush more colors. Make the next flusher
112202d9 2942 * the new first flusher and arm pwqs.
73f53c4a 2943 */
6183c009
TH
2944 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2945 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2946
2947 list_del_init(&next->list);
2948 wq->first_flusher = next;
2949
112202d9 2950 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2951 break;
2952
2953 /*
2954 * Meh... this color is already done, clear first
2955 * flusher and repeat cascading.
2956 */
2957 wq->first_flusher = NULL;
2958 }
2959
2960out_unlock:
3c25a55d 2961 mutex_unlock(&wq->mutex);
1da177e4 2962}
1dadafa8 2963EXPORT_SYMBOL(flush_workqueue);
1da177e4 2964
9c5a2ba7
TH
2965/**
2966 * drain_workqueue - drain a workqueue
2967 * @wq: workqueue to drain
2968 *
2969 * Wait until the workqueue becomes empty. While draining is in progress,
2970 * only chain queueing is allowed. IOW, only currently pending or running
2971 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2972 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2973 * by the depth of chaining and should be relatively short. Whine if it
2974 * takes too long.
2975 */
2976void drain_workqueue(struct workqueue_struct *wq)
2977{
2978 unsigned int flush_cnt = 0;
49e3cf44 2979 struct pool_workqueue *pwq;
9c5a2ba7
TH
2980
2981 /*
2982 * __queue_work() needs to test whether there are drainers, is much
2983 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2984 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2985 */
87fc741e 2986 mutex_lock(&wq->mutex);
9c5a2ba7 2987 if (!wq->nr_drainers++)
618b01eb 2988 wq->flags |= __WQ_DRAINING;
87fc741e 2989 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2990reflush:
2991 flush_workqueue(wq);
2992
b09f4fd3 2993 mutex_lock(&wq->mutex);
76af4d93 2994
49e3cf44 2995 for_each_pwq(pwq, wq) {
fa2563e4 2996 bool drained;
9c5a2ba7 2997
a9b8a985 2998 raw_spin_lock_irq(&pwq->pool->lock);
f97a4a1a 2999 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
a9b8a985 3000 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
3001
3002 if (drained)
9c5a2ba7
TH
3003 continue;
3004
3005 if (++flush_cnt == 10 ||
3006 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
e9ad2eb3
SZ
3007 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3008 wq->name, __func__, flush_cnt);
76af4d93 3009
b09f4fd3 3010 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3011 goto reflush;
3012 }
3013
9c5a2ba7 3014 if (!--wq->nr_drainers)
618b01eb 3015 wq->flags &= ~__WQ_DRAINING;
87fc741e 3016 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
3017}
3018EXPORT_SYMBOL_GPL(drain_workqueue);
3019
d6e89786
JB
3020static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3021 bool from_cancel)
db700897 3022{
affee4b2 3023 struct worker *worker = NULL;
c9e7cf27 3024 struct worker_pool *pool;
112202d9 3025 struct pool_workqueue *pwq;
db700897
ON
3026
3027 might_sleep();
fa1b54e6 3028
24acfb71 3029 rcu_read_lock();
c9e7cf27 3030 pool = get_work_pool(work);
fa1b54e6 3031 if (!pool) {
24acfb71 3032 rcu_read_unlock();
baf59022 3033 return false;
fa1b54e6 3034 }
db700897 3035
a9b8a985 3036 raw_spin_lock_irq(&pool->lock);
0b3dae68 3037 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3038 pwq = get_work_pwq(work);
3039 if (pwq) {
3040 if (unlikely(pwq->pool != pool))
4690c4ab 3041 goto already_gone;
606a5020 3042 } else {
c9e7cf27 3043 worker = find_worker_executing_work(pool, work);
affee4b2 3044 if (!worker)
4690c4ab 3045 goto already_gone;
112202d9 3046 pwq = worker->current_pwq;
606a5020 3047 }
db700897 3048
fca839c0
TH
3049 check_flush_dependency(pwq->wq, work);
3050
112202d9 3051 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3052 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3053
e159489b 3054 /*
a1d14934
PZ
3055 * Force a lock recursion deadlock when using flush_work() inside a
3056 * single-threaded or rescuer equipped workqueue.
3057 *
3058 * For single threaded workqueues the deadlock happens when the work
3059 * is after the work issuing the flush_work(). For rescuer equipped
3060 * workqueues the deadlock happens when the rescuer stalls, blocking
3061 * forward progress.
e159489b 3062 */
d6e89786
JB
3063 if (!from_cancel &&
3064 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3065 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3066 lock_map_release(&pwq->wq->lockdep_map);
3067 }
24acfb71 3068 rcu_read_unlock();
401a8d04 3069 return true;
4690c4ab 3070already_gone:
a9b8a985 3071 raw_spin_unlock_irq(&pool->lock);
24acfb71 3072 rcu_read_unlock();
401a8d04 3073 return false;
db700897 3074}
baf59022 3075
d6e89786
JB
3076static bool __flush_work(struct work_struct *work, bool from_cancel)
3077{
3078 struct wq_barrier barr;
3079
3080 if (WARN_ON(!wq_online))
3081 return false;
3082
4d43d395
TH
3083 if (WARN_ON(!work->func))
3084 return false;
3085
87915adc
JB
3086 if (!from_cancel) {
3087 lock_map_acquire(&work->lockdep_map);
3088 lock_map_release(&work->lockdep_map);
3089 }
3090
d6e89786
JB
3091 if (start_flush_work(work, &barr, from_cancel)) {
3092 wait_for_completion(&barr.done);
3093 destroy_work_on_stack(&barr.work);
3094 return true;
3095 } else {
3096 return false;
3097 }
3098}
3099
baf59022
TH
3100/**
3101 * flush_work - wait for a work to finish executing the last queueing instance
3102 * @work: the work to flush
3103 *
606a5020
TH
3104 * Wait until @work has finished execution. @work is guaranteed to be idle
3105 * on return if it hasn't been requeued since flush started.
baf59022 3106 *
d185af30 3107 * Return:
baf59022
TH
3108 * %true if flush_work() waited for the work to finish execution,
3109 * %false if it was already idle.
3110 */
3111bool flush_work(struct work_struct *work)
3112{
d6e89786 3113 return __flush_work(work, false);
6e84d644 3114}
606a5020 3115EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3116
8603e1b3 3117struct cwt_wait {
ac6424b9 3118 wait_queue_entry_t wait;
8603e1b3
TH
3119 struct work_struct *work;
3120};
3121
ac6424b9 3122static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3123{
3124 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3125
3126 if (cwait->work != key)
3127 return 0;
3128 return autoremove_wake_function(wait, mode, sync, key);
3129}
3130
36e227d2 3131static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3132{
8603e1b3 3133 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3134 unsigned long flags;
1f1f642e
ON
3135 int ret;
3136
3137 do {
bbb68dfa
TH
3138 ret = try_to_grab_pending(work, is_dwork, &flags);
3139 /*
8603e1b3
TH
3140 * If someone else is already canceling, wait for it to
3141 * finish. flush_work() doesn't work for PREEMPT_NONE
3142 * because we may get scheduled between @work's completion
3143 * and the other canceling task resuming and clearing
3144 * CANCELING - flush_work() will return false immediately
3145 * as @work is no longer busy, try_to_grab_pending() will
3146 * return -ENOENT as @work is still being canceled and the
3147 * other canceling task won't be able to clear CANCELING as
3148 * we're hogging the CPU.
3149 *
3150 * Let's wait for completion using a waitqueue. As this
3151 * may lead to the thundering herd problem, use a custom
3152 * wake function which matches @work along with exclusive
3153 * wait and wakeup.
bbb68dfa 3154 */
8603e1b3
TH
3155 if (unlikely(ret == -ENOENT)) {
3156 struct cwt_wait cwait;
3157
3158 init_wait(&cwait.wait);
3159 cwait.wait.func = cwt_wakefn;
3160 cwait.work = work;
3161
3162 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3163 TASK_UNINTERRUPTIBLE);
3164 if (work_is_canceling(work))
3165 schedule();
3166 finish_wait(&cancel_waitq, &cwait.wait);
3167 }
1f1f642e
ON
3168 } while (unlikely(ret < 0));
3169
bbb68dfa
TH
3170 /* tell other tasks trying to grab @work to back off */
3171 mark_work_canceling(work);
3172 local_irq_restore(flags);
3173
3347fa09
TH
3174 /*
3175 * This allows canceling during early boot. We know that @work
3176 * isn't executing.
3177 */
3178 if (wq_online)
d6e89786 3179 __flush_work(work, true);
3347fa09 3180
7a22ad75 3181 clear_work_data(work);
8603e1b3
TH
3182
3183 /*
3184 * Paired with prepare_to_wait() above so that either
3185 * waitqueue_active() is visible here or !work_is_canceling() is
3186 * visible there.
3187 */
3188 smp_mb();
3189 if (waitqueue_active(&cancel_waitq))
3190 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3191
1f1f642e
ON
3192 return ret;
3193}
3194
6e84d644 3195/**
401a8d04
TH
3196 * cancel_work_sync - cancel a work and wait for it to finish
3197 * @work: the work to cancel
6e84d644 3198 *
401a8d04
TH
3199 * Cancel @work and wait for its execution to finish. This function
3200 * can be used even if the work re-queues itself or migrates to
3201 * another workqueue. On return from this function, @work is
3202 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3203 *
401a8d04
TH
3204 * cancel_work_sync(&delayed_work->work) must not be used for
3205 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3206 *
401a8d04 3207 * The caller must ensure that the workqueue on which @work was last
6e84d644 3208 * queued can't be destroyed before this function returns.
401a8d04 3209 *
d185af30 3210 * Return:
401a8d04 3211 * %true if @work was pending, %false otherwise.
6e84d644 3212 */
401a8d04 3213bool cancel_work_sync(struct work_struct *work)
6e84d644 3214{
36e227d2 3215 return __cancel_work_timer(work, false);
b89deed3 3216}
28e53bdd 3217EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3218
6e84d644 3219/**
401a8d04
TH
3220 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3221 * @dwork: the delayed work to flush
6e84d644 3222 *
401a8d04
TH
3223 * Delayed timer is cancelled and the pending work is queued for
3224 * immediate execution. Like flush_work(), this function only
3225 * considers the last queueing instance of @dwork.
1f1f642e 3226 *
d185af30 3227 * Return:
401a8d04
TH
3228 * %true if flush_work() waited for the work to finish execution,
3229 * %false if it was already idle.
6e84d644 3230 */
401a8d04
TH
3231bool flush_delayed_work(struct delayed_work *dwork)
3232{
8930caba 3233 local_irq_disable();
401a8d04 3234 if (del_timer_sync(&dwork->timer))
60c057bc 3235 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3236 local_irq_enable();
401a8d04
TH
3237 return flush_work(&dwork->work);
3238}
3239EXPORT_SYMBOL(flush_delayed_work);
3240
05f0fe6b
TH
3241/**
3242 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3243 * @rwork: the rcu work to flush
3244 *
3245 * Return:
3246 * %true if flush_rcu_work() waited for the work to finish execution,
3247 * %false if it was already idle.
3248 */
3249bool flush_rcu_work(struct rcu_work *rwork)
3250{
3251 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3252 rcu_barrier();
3253 flush_work(&rwork->work);
3254 return true;
3255 } else {
3256 return flush_work(&rwork->work);
3257 }
3258}
3259EXPORT_SYMBOL(flush_rcu_work);
3260
f72b8792
JA
3261static bool __cancel_work(struct work_struct *work, bool is_dwork)
3262{
3263 unsigned long flags;
3264 int ret;
3265
3266 do {
3267 ret = try_to_grab_pending(work, is_dwork, &flags);
3268 } while (unlikely(ret == -EAGAIN));
3269
3270 if (unlikely(ret < 0))
3271 return false;
3272
3273 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3274 local_irq_restore(flags);
3275 return ret;
3276}
3277
09383498 3278/**
57b30ae7
TH
3279 * cancel_delayed_work - cancel a delayed work
3280 * @dwork: delayed_work to cancel
09383498 3281 *
d185af30
YB
3282 * Kill off a pending delayed_work.
3283 *
3284 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3285 * pending.
3286 *
3287 * Note:
3288 * The work callback function may still be running on return, unless
3289 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3290 * use cancel_delayed_work_sync() to wait on it.
09383498 3291 *
57b30ae7 3292 * This function is safe to call from any context including IRQ handler.
09383498 3293 */
57b30ae7 3294bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3295{
f72b8792 3296 return __cancel_work(&dwork->work, true);
09383498 3297}
57b30ae7 3298EXPORT_SYMBOL(cancel_delayed_work);
09383498 3299
401a8d04
TH
3300/**
3301 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3302 * @dwork: the delayed work cancel
3303 *
3304 * This is cancel_work_sync() for delayed works.
3305 *
d185af30 3306 * Return:
401a8d04
TH
3307 * %true if @dwork was pending, %false otherwise.
3308 */
3309bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3310{
36e227d2 3311 return __cancel_work_timer(&dwork->work, true);
6e84d644 3312}
f5a421a4 3313EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3314
b6136773 3315/**
31ddd871 3316 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3317 * @func: the function to call
b6136773 3318 *
31ddd871
TH
3319 * schedule_on_each_cpu() executes @func on each online CPU using the
3320 * system workqueue and blocks until all CPUs have completed.
b6136773 3321 * schedule_on_each_cpu() is very slow.
31ddd871 3322 *
d185af30 3323 * Return:
31ddd871 3324 * 0 on success, -errno on failure.
b6136773 3325 */
65f27f38 3326int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3327{
3328 int cpu;
38f51568 3329 struct work_struct __percpu *works;
15316ba8 3330
b6136773
AM
3331 works = alloc_percpu(struct work_struct);
3332 if (!works)
15316ba8 3333 return -ENOMEM;
b6136773 3334
ffd8bea8 3335 cpus_read_lock();
93981800 3336
15316ba8 3337 for_each_online_cpu(cpu) {
9bfb1839
IM
3338 struct work_struct *work = per_cpu_ptr(works, cpu);
3339
3340 INIT_WORK(work, func);
b71ab8c2 3341 schedule_work_on(cpu, work);
65a64464 3342 }
93981800
TH
3343
3344 for_each_online_cpu(cpu)
3345 flush_work(per_cpu_ptr(works, cpu));
3346
ffd8bea8 3347 cpus_read_unlock();
b6136773 3348 free_percpu(works);
15316ba8
CL
3349 return 0;
3350}
3351
1fa44eca
JB
3352/**
3353 * execute_in_process_context - reliably execute the routine with user context
3354 * @fn: the function to execute
1fa44eca
JB
3355 * @ew: guaranteed storage for the execute work structure (must
3356 * be available when the work executes)
3357 *
3358 * Executes the function immediately if process context is available,
3359 * otherwise schedules the function for delayed execution.
3360 *
d185af30 3361 * Return: 0 - function was executed
1fa44eca
JB
3362 * 1 - function was scheduled for execution
3363 */
65f27f38 3364int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3365{
3366 if (!in_interrupt()) {
65f27f38 3367 fn(&ew->work);
1fa44eca
JB
3368 return 0;
3369 }
3370
65f27f38 3371 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3372 schedule_work(&ew->work);
3373
3374 return 1;
3375}
3376EXPORT_SYMBOL_GPL(execute_in_process_context);
3377
6ba94429
FW
3378/**
3379 * free_workqueue_attrs - free a workqueue_attrs
3380 * @attrs: workqueue_attrs to free
226223ab 3381 *
6ba94429 3382 * Undo alloc_workqueue_attrs().
226223ab 3383 */
513c98d0 3384void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3385{
6ba94429
FW
3386 if (attrs) {
3387 free_cpumask_var(attrs->cpumask);
3388 kfree(attrs);
3389 }
226223ab
TH
3390}
3391
6ba94429
FW
3392/**
3393 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3394 *
3395 * Allocate a new workqueue_attrs, initialize with default settings and
3396 * return it.
3397 *
3398 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3399 */
513c98d0 3400struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3401{
6ba94429 3402 struct workqueue_attrs *attrs;
226223ab 3403
be69d00d 3404 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3405 if (!attrs)
3406 goto fail;
be69d00d 3407 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3408 goto fail;
3409
3410 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3411 return attrs;
3412fail:
3413 free_workqueue_attrs(attrs);
3414 return NULL;
226223ab
TH
3415}
3416
6ba94429
FW
3417static void copy_workqueue_attrs(struct workqueue_attrs *to,
3418 const struct workqueue_attrs *from)
226223ab 3419{
6ba94429
FW
3420 to->nice = from->nice;
3421 cpumask_copy(to->cpumask, from->cpumask);
3422 /*
3423 * Unlike hash and equality test, this function doesn't ignore
3424 * ->no_numa as it is used for both pool and wq attrs. Instead,
3425 * get_unbound_pool() explicitly clears ->no_numa after copying.
3426 */
3427 to->no_numa = from->no_numa;
226223ab
TH
3428}
3429
6ba94429
FW
3430/* hash value of the content of @attr */
3431static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3432{
6ba94429 3433 u32 hash = 0;
226223ab 3434
6ba94429
FW
3435 hash = jhash_1word(attrs->nice, hash);
3436 hash = jhash(cpumask_bits(attrs->cpumask),
3437 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3438 return hash;
226223ab 3439}
226223ab 3440
6ba94429
FW
3441/* content equality test */
3442static bool wqattrs_equal(const struct workqueue_attrs *a,
3443 const struct workqueue_attrs *b)
226223ab 3444{
6ba94429
FW
3445 if (a->nice != b->nice)
3446 return false;
3447 if (!cpumask_equal(a->cpumask, b->cpumask))
3448 return false;
3449 return true;
226223ab
TH
3450}
3451
6ba94429
FW
3452/**
3453 * init_worker_pool - initialize a newly zalloc'd worker_pool
3454 * @pool: worker_pool to initialize
3455 *
402dd89d 3456 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3457 *
3458 * Return: 0 on success, -errno on failure. Even on failure, all fields
3459 * inside @pool proper are initialized and put_unbound_pool() can be called
3460 * on @pool safely to release it.
3461 */
3462static int init_worker_pool(struct worker_pool *pool)
226223ab 3463{
a9b8a985 3464 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3465 pool->id = -1;
3466 pool->cpu = -1;
3467 pool->node = NUMA_NO_NODE;
3468 pool->flags |= POOL_DISASSOCIATED;
82607adc 3469 pool->watchdog_ts = jiffies;
6ba94429
FW
3470 INIT_LIST_HEAD(&pool->worklist);
3471 INIT_LIST_HEAD(&pool->idle_list);
3472 hash_init(pool->busy_hash);
226223ab 3473
32a6c723 3474 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3475
32a6c723 3476 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3477
6ba94429 3478 INIT_LIST_HEAD(&pool->workers);
226223ab 3479
6ba94429
FW
3480 ida_init(&pool->worker_ida);
3481 INIT_HLIST_NODE(&pool->hash_node);
3482 pool->refcnt = 1;
226223ab 3483
6ba94429 3484 /* shouldn't fail above this point */
be69d00d 3485 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3486 if (!pool->attrs)
3487 return -ENOMEM;
3488 return 0;
226223ab
TH
3489}
3490
669de8bd
BVA
3491#ifdef CONFIG_LOCKDEP
3492static void wq_init_lockdep(struct workqueue_struct *wq)
3493{
3494 char *lock_name;
3495
3496 lockdep_register_key(&wq->key);
3497 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3498 if (!lock_name)
3499 lock_name = wq->name;
69a106c0
QC
3500
3501 wq->lock_name = lock_name;
669de8bd
BVA
3502 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3503}
3504
3505static void wq_unregister_lockdep(struct workqueue_struct *wq)
3506{
3507 lockdep_unregister_key(&wq->key);
3508}
3509
3510static void wq_free_lockdep(struct workqueue_struct *wq)
3511{
3512 if (wq->lock_name != wq->name)
3513 kfree(wq->lock_name);
3514}
3515#else
3516static void wq_init_lockdep(struct workqueue_struct *wq)
3517{
3518}
3519
3520static void wq_unregister_lockdep(struct workqueue_struct *wq)
3521{
3522}
3523
3524static void wq_free_lockdep(struct workqueue_struct *wq)
3525{
3526}
3527#endif
3528
6ba94429 3529static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3530{
6ba94429
FW
3531 struct workqueue_struct *wq =
3532 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3533
669de8bd
BVA
3534 wq_free_lockdep(wq);
3535
6ba94429
FW
3536 if (!(wq->flags & WQ_UNBOUND))
3537 free_percpu(wq->cpu_pwqs);
226223ab 3538 else
6ba94429 3539 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3540
6ba94429 3541 kfree(wq);
226223ab
TH
3542}
3543
6ba94429 3544static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3545{
6ba94429 3546 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3547
6ba94429
FW
3548 ida_destroy(&pool->worker_ida);
3549 free_workqueue_attrs(pool->attrs);
3550 kfree(pool);
226223ab
TH
3551}
3552
d8bb65ab
SAS
3553/* This returns with the lock held on success (pool manager is inactive). */
3554static bool wq_manager_inactive(struct worker_pool *pool)
3555{
a9b8a985 3556 raw_spin_lock_irq(&pool->lock);
d8bb65ab
SAS
3557
3558 if (pool->flags & POOL_MANAGER_ACTIVE) {
a9b8a985 3559 raw_spin_unlock_irq(&pool->lock);
d8bb65ab
SAS
3560 return false;
3561 }
3562 return true;
3563}
3564
6ba94429
FW
3565/**
3566 * put_unbound_pool - put a worker_pool
3567 * @pool: worker_pool to put
3568 *
24acfb71 3569 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3570 * safe manner. get_unbound_pool() calls this function on its failure path
3571 * and this function should be able to release pools which went through,
3572 * successfully or not, init_worker_pool().
3573 *
3574 * Should be called with wq_pool_mutex held.
3575 */
3576static void put_unbound_pool(struct worker_pool *pool)
226223ab 3577{
6ba94429
FW
3578 DECLARE_COMPLETION_ONSTACK(detach_completion);
3579 struct worker *worker;
226223ab 3580
6ba94429 3581 lockdep_assert_held(&wq_pool_mutex);
226223ab 3582
6ba94429
FW
3583 if (--pool->refcnt)
3584 return;
226223ab 3585
6ba94429
FW
3586 /* sanity checks */
3587 if (WARN_ON(!(pool->cpu < 0)) ||
3588 WARN_ON(!list_empty(&pool->worklist)))
3589 return;
226223ab 3590
6ba94429
FW
3591 /* release id and unhash */
3592 if (pool->id >= 0)
3593 idr_remove(&worker_pool_idr, pool->id);
3594 hash_del(&pool->hash_node);
d55262c4 3595
6ba94429 3596 /*
692b4825
TH
3597 * Become the manager and destroy all workers. This prevents
3598 * @pool's workers from blocking on attach_mutex. We're the last
3599 * manager and @pool gets freed with the flag set.
d8bb65ab
SAS
3600 * Because of how wq_manager_inactive() works, we will hold the
3601 * spinlock after a successful wait.
6ba94429 3602 */
d8bb65ab
SAS
3603 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3604 TASK_UNINTERRUPTIBLE);
692b4825
TH
3605 pool->flags |= POOL_MANAGER_ACTIVE;
3606
6ba94429
FW
3607 while ((worker = first_idle_worker(pool)))
3608 destroy_worker(worker);
3609 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3610 raw_spin_unlock_irq(&pool->lock);
d55262c4 3611
1258fae7 3612 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3613 if (!list_empty(&pool->workers))
3614 pool->detach_completion = &detach_completion;
1258fae7 3615 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3616
6ba94429
FW
3617 if (pool->detach_completion)
3618 wait_for_completion(pool->detach_completion);
226223ab 3619
6ba94429
FW
3620 /* shut down the timers */
3621 del_timer_sync(&pool->idle_timer);
3622 del_timer_sync(&pool->mayday_timer);
226223ab 3623
24acfb71 3624 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3625 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3626}
3627
3628/**
6ba94429
FW
3629 * get_unbound_pool - get a worker_pool with the specified attributes
3630 * @attrs: the attributes of the worker_pool to get
226223ab 3631 *
6ba94429
FW
3632 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3633 * reference count and return it. If there already is a matching
3634 * worker_pool, it will be used; otherwise, this function attempts to
3635 * create a new one.
226223ab 3636 *
6ba94429 3637 * Should be called with wq_pool_mutex held.
226223ab 3638 *
6ba94429
FW
3639 * Return: On success, a worker_pool with the same attributes as @attrs.
3640 * On failure, %NULL.
226223ab 3641 */
6ba94429 3642static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3643{
6ba94429
FW
3644 u32 hash = wqattrs_hash(attrs);
3645 struct worker_pool *pool;
3646 int node;
e2273584 3647 int target_node = NUMA_NO_NODE;
226223ab 3648
6ba94429 3649 lockdep_assert_held(&wq_pool_mutex);
226223ab 3650
6ba94429
FW
3651 /* do we already have a matching pool? */
3652 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3653 if (wqattrs_equal(pool->attrs, attrs)) {
3654 pool->refcnt++;
3655 return pool;
3656 }
3657 }
226223ab 3658
e2273584
XP
3659 /* if cpumask is contained inside a NUMA node, we belong to that node */
3660 if (wq_numa_enabled) {
3661 for_each_node(node) {
3662 if (cpumask_subset(attrs->cpumask,
3663 wq_numa_possible_cpumask[node])) {
3664 target_node = node;
3665 break;
3666 }
3667 }
3668 }
3669
6ba94429 3670 /* nope, create a new one */
e2273584 3671 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3672 if (!pool || init_worker_pool(pool) < 0)
3673 goto fail;
3674
3675 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3676 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3677 pool->node = target_node;
226223ab
TH
3678
3679 /*
6ba94429
FW
3680 * no_numa isn't a worker_pool attribute, always clear it. See
3681 * 'struct workqueue_attrs' comments for detail.
226223ab 3682 */
6ba94429 3683 pool->attrs->no_numa = false;
226223ab 3684
6ba94429
FW
3685 if (worker_pool_assign_id(pool) < 0)
3686 goto fail;
226223ab 3687
6ba94429 3688 /* create and start the initial worker */
3347fa09 3689 if (wq_online && !create_worker(pool))
6ba94429 3690 goto fail;
226223ab 3691
6ba94429
FW
3692 /* install */
3693 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3694
6ba94429
FW
3695 return pool;
3696fail:
3697 if (pool)
3698 put_unbound_pool(pool);
3699 return NULL;
226223ab 3700}
226223ab 3701
6ba94429 3702static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3703{
6ba94429
FW
3704 kmem_cache_free(pwq_cache,
3705 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3706}
3707
6ba94429
FW
3708/*
3709 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3710 * and needs to be destroyed.
7a4e344c 3711 */
6ba94429 3712static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3713{
6ba94429
FW
3714 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3715 unbound_release_work);
3716 struct workqueue_struct *wq = pwq->wq;
3717 struct worker_pool *pool = pwq->pool;
b42b0bdd 3718 bool is_last = false;
7a4e344c 3719
b42b0bdd
YY
3720 /*
3721 * when @pwq is not linked, it doesn't hold any reference to the
3722 * @wq, and @wq is invalid to access.
3723 */
3724 if (!list_empty(&pwq->pwqs_node)) {
3725 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3726 return;
7a4e344c 3727
b42b0bdd
YY
3728 mutex_lock(&wq->mutex);
3729 list_del_rcu(&pwq->pwqs_node);
3730 is_last = list_empty(&wq->pwqs);
3731 mutex_unlock(&wq->mutex);
3732 }
6ba94429
FW
3733
3734 mutex_lock(&wq_pool_mutex);
3735 put_unbound_pool(pool);
3736 mutex_unlock(&wq_pool_mutex);
3737
25b00775 3738 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3739
2865a8fb 3740 /*
6ba94429
FW
3741 * If we're the last pwq going away, @wq is already dead and no one
3742 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3743 */
669de8bd
BVA
3744 if (is_last) {
3745 wq_unregister_lockdep(wq);
25b00775 3746 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3747 }
29c91e99
TH
3748}
3749
7a4e344c 3750/**
6ba94429
FW
3751 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3752 * @pwq: target pool_workqueue
d185af30 3753 *
6ba94429 3754 * If @pwq isn't freezing, set @pwq->max_active to the associated
f97a4a1a 3755 * workqueue's saved_max_active and activate inactive work items
6ba94429 3756 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3757 */
6ba94429 3758static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3759{
6ba94429
FW
3760 struct workqueue_struct *wq = pwq->wq;
3761 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3762 unsigned long flags;
4e1a1f9a 3763
6ba94429
FW
3764 /* for @wq->saved_max_active */
3765 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3766
6ba94429
FW
3767 /* fast exit for non-freezable wqs */
3768 if (!freezable && pwq->max_active == wq->saved_max_active)
3769 return;
7a4e344c 3770
3347fa09 3771 /* this function can be called during early boot w/ irq disabled */
a9b8a985 3772 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3773
6ba94429
FW
3774 /*
3775 * During [un]freezing, the caller is responsible for ensuring that
3776 * this function is called at least once after @workqueue_freezing
3777 * is updated and visible.
3778 */
3779 if (!freezable || !workqueue_freezing) {
01341fbd
YY
3780 bool kick = false;
3781
6ba94429 3782 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3783
f97a4a1a 3784 while (!list_empty(&pwq->inactive_works) &&
01341fbd 3785 pwq->nr_active < pwq->max_active) {
f97a4a1a 3786 pwq_activate_first_inactive(pwq);
01341fbd
YY
3787 kick = true;
3788 }
e2dca7ad 3789
6ba94429
FW
3790 /*
3791 * Need to kick a worker after thawed or an unbound wq's
01341fbd
YY
3792 * max_active is bumped. In realtime scenarios, always kicking a
3793 * worker will cause interference on the isolated cpu cores, so
3794 * let's kick iff work items were activated.
6ba94429 3795 */
01341fbd
YY
3796 if (kick)
3797 wake_up_worker(pwq->pool);
6ba94429
FW
3798 } else {
3799 pwq->max_active = 0;
3800 }
e2dca7ad 3801
a9b8a985 3802 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3803}
3804
67dc8325 3805/* initialize newly allocated @pwq which is associated with @wq and @pool */
6ba94429
FW
3806static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3807 struct worker_pool *pool)
29c91e99 3808{
6ba94429 3809 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3810
6ba94429
FW
3811 memset(pwq, 0, sizeof(*pwq));
3812
3813 pwq->pool = pool;
3814 pwq->wq = wq;
3815 pwq->flush_color = -1;
3816 pwq->refcnt = 1;
f97a4a1a 3817 INIT_LIST_HEAD(&pwq->inactive_works);
6ba94429
FW
3818 INIT_LIST_HEAD(&pwq->pwqs_node);
3819 INIT_LIST_HEAD(&pwq->mayday_node);
3820 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3821}
3822
6ba94429
FW
3823/* sync @pwq with the current state of its associated wq and link it */
3824static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3825{
6ba94429 3826 struct workqueue_struct *wq = pwq->wq;
29c91e99 3827
6ba94429 3828 lockdep_assert_held(&wq->mutex);
a892cacc 3829
6ba94429
FW
3830 /* may be called multiple times, ignore if already linked */
3831 if (!list_empty(&pwq->pwqs_node))
29c91e99 3832 return;
29c91e99 3833
6ba94429
FW
3834 /* set the matching work_color */
3835 pwq->work_color = wq->work_color;
29c91e99 3836
6ba94429
FW
3837 /* sync max_active to the current setting */
3838 pwq_adjust_max_active(pwq);
29c91e99 3839
6ba94429
FW
3840 /* link in @pwq */
3841 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3842}
29c91e99 3843
6ba94429
FW
3844/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3845static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3846 const struct workqueue_attrs *attrs)
3847{
3848 struct worker_pool *pool;
3849 struct pool_workqueue *pwq;
60f5a4bc 3850
6ba94429 3851 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3852
6ba94429
FW
3853 pool = get_unbound_pool(attrs);
3854 if (!pool)
3855 return NULL;
60f5a4bc 3856
6ba94429
FW
3857 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3858 if (!pwq) {
3859 put_unbound_pool(pool);
3860 return NULL;
3861 }
29c91e99 3862
6ba94429
FW
3863 init_pwq(pwq, wq, pool);
3864 return pwq;
3865}
29c91e99 3866
29c91e99 3867/**
30186c6f 3868 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3869 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3870 * @node: the target NUMA node
3871 * @cpu_going_down: if >= 0, the CPU to consider as offline
3872 * @cpumask: outarg, the resulting cpumask
29c91e99 3873 *
6ba94429
FW
3874 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3875 * @cpu_going_down is >= 0, that cpu is considered offline during
3876 * calculation. The result is stored in @cpumask.
a892cacc 3877 *
6ba94429
FW
3878 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3879 * enabled and @node has online CPUs requested by @attrs, the returned
3880 * cpumask is the intersection of the possible CPUs of @node and
3881 * @attrs->cpumask.
d185af30 3882 *
6ba94429
FW
3883 * The caller is responsible for ensuring that the cpumask of @node stays
3884 * stable.
3885 *
3886 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3887 * %false if equal.
29c91e99 3888 */
6ba94429
FW
3889static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3890 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3891{
6ba94429
FW
3892 if (!wq_numa_enabled || attrs->no_numa)
3893 goto use_dfl;
29c91e99 3894
6ba94429
FW
3895 /* does @node have any online CPUs @attrs wants? */
3896 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3897 if (cpu_going_down >= 0)
3898 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3899
6ba94429
FW
3900 if (cpumask_empty(cpumask))
3901 goto use_dfl;
4c16bd32
TH
3902
3903 /* yeap, return possible CPUs in @node that @attrs wants */
3904 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3905
3906 if (cpumask_empty(cpumask)) {
3907 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3908 "possible intersect\n");
3909 return false;
3910 }
3911
4c16bd32
TH
3912 return !cpumask_equal(cpumask, attrs->cpumask);
3913
3914use_dfl:
3915 cpumask_copy(cpumask, attrs->cpumask);
3916 return false;
3917}
3918
1befcf30
TH
3919/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3920static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3921 int node,
3922 struct pool_workqueue *pwq)
3923{
3924 struct pool_workqueue *old_pwq;
3925
5b95e1af 3926 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3927 lockdep_assert_held(&wq->mutex);
3928
3929 /* link_pwq() can handle duplicate calls */
3930 link_pwq(pwq);
3931
3932 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3933 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3934 return old_pwq;
3935}
3936
2d5f0764
LJ
3937/* context to store the prepared attrs & pwqs before applying */
3938struct apply_wqattrs_ctx {
3939 struct workqueue_struct *wq; /* target workqueue */
3940 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3941 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3942 struct pool_workqueue *dfl_pwq;
3943 struct pool_workqueue *pwq_tbl[];
3944};
3945
3946/* free the resources after success or abort */
3947static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3948{
3949 if (ctx) {
3950 int node;
3951
3952 for_each_node(node)
3953 put_pwq_unlocked(ctx->pwq_tbl[node]);
3954 put_pwq_unlocked(ctx->dfl_pwq);
3955
3956 free_workqueue_attrs(ctx->attrs);
3957
3958 kfree(ctx);
3959 }
3960}
3961
3962/* allocate the attrs and pwqs for later installation */
3963static struct apply_wqattrs_ctx *
3964apply_wqattrs_prepare(struct workqueue_struct *wq,
3965 const struct workqueue_attrs *attrs)
9e8cd2f5 3966{
2d5f0764 3967 struct apply_wqattrs_ctx *ctx;
4c16bd32 3968 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3969 int node;
9e8cd2f5 3970
2d5f0764 3971 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3972
acafe7e3 3973 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3974
be69d00d
TG
3975 new_attrs = alloc_workqueue_attrs();
3976 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3977 if (!ctx || !new_attrs || !tmp_attrs)
3978 goto out_free;
13e2e556 3979
042f7df1
LJ
3980 /*
3981 * Calculate the attrs of the default pwq.
3982 * If the user configured cpumask doesn't overlap with the
3983 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3984 */
13e2e556 3985 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3986 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3987 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3988 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3989
4c16bd32
TH
3990 /*
3991 * We may create multiple pwqs with differing cpumasks. Make a
3992 * copy of @new_attrs which will be modified and used to obtain
3993 * pools.
3994 */
3995 copy_workqueue_attrs(tmp_attrs, new_attrs);
3996
4c16bd32
TH
3997 /*
3998 * If something goes wrong during CPU up/down, we'll fall back to
3999 * the default pwq covering whole @attrs->cpumask. Always create
4000 * it even if we don't use it immediately.
4001 */
2d5f0764
LJ
4002 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4003 if (!ctx->dfl_pwq)
4004 goto out_free;
4c16bd32
TH
4005
4006 for_each_node(node) {
042f7df1 4007 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
4008 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4009 if (!ctx->pwq_tbl[node])
4010 goto out_free;
4c16bd32 4011 } else {
2d5f0764
LJ
4012 ctx->dfl_pwq->refcnt++;
4013 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
4014 }
4015 }
4016
042f7df1
LJ
4017 /* save the user configured attrs and sanitize it. */
4018 copy_workqueue_attrs(new_attrs, attrs);
4019 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 4020 ctx->attrs = new_attrs;
042f7df1 4021
2d5f0764
LJ
4022 ctx->wq = wq;
4023 free_workqueue_attrs(tmp_attrs);
4024 return ctx;
4025
4026out_free:
4027 free_workqueue_attrs(tmp_attrs);
4028 free_workqueue_attrs(new_attrs);
4029 apply_wqattrs_cleanup(ctx);
4030 return NULL;
4031}
4032
4033/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4034static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4035{
4036 int node;
9e8cd2f5 4037
4c16bd32 4038 /* all pwqs have been created successfully, let's install'em */
2d5f0764 4039 mutex_lock(&ctx->wq->mutex);
a892cacc 4040
2d5f0764 4041 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
4042
4043 /* save the previous pwq and install the new one */
f147f29e 4044 for_each_node(node)
2d5f0764
LJ
4045 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4046 ctx->pwq_tbl[node]);
4c16bd32
TH
4047
4048 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
4049 link_pwq(ctx->dfl_pwq);
4050 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 4051
2d5f0764
LJ
4052 mutex_unlock(&ctx->wq->mutex);
4053}
9e8cd2f5 4054
a0111cf6
LJ
4055static void apply_wqattrs_lock(void)
4056{
4057 /* CPUs should stay stable across pwq creations and installations */
ffd8bea8 4058 cpus_read_lock();
a0111cf6
LJ
4059 mutex_lock(&wq_pool_mutex);
4060}
4061
4062static void apply_wqattrs_unlock(void)
4063{
4064 mutex_unlock(&wq_pool_mutex);
ffd8bea8 4065 cpus_read_unlock();
a0111cf6
LJ
4066}
4067
4068static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4069 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4070{
4071 struct apply_wqattrs_ctx *ctx;
4c16bd32 4072
2d5f0764
LJ
4073 /* only unbound workqueues can change attributes */
4074 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4075 return -EINVAL;
13e2e556 4076
2d5f0764 4077 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4078 if (!list_empty(&wq->pwqs)) {
4079 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4080 return -EINVAL;
4081
4082 wq->flags &= ~__WQ_ORDERED;
4083 }
2d5f0764 4084
2d5f0764 4085 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4086 if (!ctx)
4087 return -ENOMEM;
2d5f0764
LJ
4088
4089 /* the ctx has been prepared successfully, let's commit it */
6201171e 4090 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4091 apply_wqattrs_cleanup(ctx);
4092
6201171e 4093 return 0;
9e8cd2f5
TH
4094}
4095
a0111cf6
LJ
4096/**
4097 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4098 * @wq: the target workqueue
4099 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4100 *
4101 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4102 * machines, this function maps a separate pwq to each NUMA node with
4103 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4104 * NUMA node it was issued on. Older pwqs are released as in-flight work
4105 * items finish. Note that a work item which repeatedly requeues itself
4106 * back-to-back will stay on its current pwq.
4107 *
4108 * Performs GFP_KERNEL allocations.
4109 *
ffd8bea8 4110 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
509b3204 4111 *
a0111cf6
LJ
4112 * Return: 0 on success and -errno on failure.
4113 */
513c98d0 4114int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4115 const struct workqueue_attrs *attrs)
4116{
4117 int ret;
4118
509b3204
DJ
4119 lockdep_assert_cpus_held();
4120
4121 mutex_lock(&wq_pool_mutex);
a0111cf6 4122 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4123 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4124
4125 return ret;
4126}
4127
4c16bd32
TH
4128/**
4129 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4130 * @wq: the target workqueue
4131 * @cpu: the CPU coming up or going down
4132 * @online: whether @cpu is coming up or going down
4133 *
4134 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4135 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4136 * @wq accordingly.
4137 *
4138 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4139 * falls back to @wq->dfl_pwq which may not be optimal but is always
4140 * correct.
4141 *
4142 * Note that when the last allowed CPU of a NUMA node goes offline for a
4143 * workqueue with a cpumask spanning multiple nodes, the workers which were
4144 * already executing the work items for the workqueue will lose their CPU
4145 * affinity and may execute on any CPU. This is similar to how per-cpu
4146 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4147 * affinity, it's the user's responsibility to flush the work item from
4148 * CPU_DOWN_PREPARE.
4149 */
4150static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4151 bool online)
4152{
4153 int node = cpu_to_node(cpu);
4154 int cpu_off = online ? -1 : cpu;
4155 struct pool_workqueue *old_pwq = NULL, *pwq;
4156 struct workqueue_attrs *target_attrs;
4157 cpumask_t *cpumask;
4158
4159 lockdep_assert_held(&wq_pool_mutex);
4160
f7142ed4
LJ
4161 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4162 wq->unbound_attrs->no_numa)
4c16bd32
TH
4163 return;
4164
4165 /*
4166 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4167 * Let's use a preallocated one. The following buf is protected by
4168 * CPU hotplug exclusion.
4169 */
4170 target_attrs = wq_update_unbound_numa_attrs_buf;
4171 cpumask = target_attrs->cpumask;
4172
4c16bd32
TH
4173 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4174 pwq = unbound_pwq_by_node(wq, node);
4175
4176 /*
4177 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4178 * different from the default pwq's, we need to compare it to @pwq's
4179 * and create a new one if they don't match. If the target cpumask
4180 * equals the default pwq's, the default pwq should be used.
4c16bd32 4181 */
042f7df1 4182 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4183 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4184 return;
4c16bd32 4185 } else {
534a3fbb 4186 goto use_dfl_pwq;
4c16bd32
TH
4187 }
4188
4c16bd32
TH
4189 /* create a new pwq */
4190 pwq = alloc_unbound_pwq(wq, target_attrs);
4191 if (!pwq) {
2d916033
FF
4192 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4193 wq->name);
77f300b1 4194 goto use_dfl_pwq;
4c16bd32
TH
4195 }
4196
f7142ed4 4197 /* Install the new pwq. */
4c16bd32
TH
4198 mutex_lock(&wq->mutex);
4199 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4200 goto out_unlock;
4201
4202use_dfl_pwq:
f7142ed4 4203 mutex_lock(&wq->mutex);
a9b8a985 4204 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4205 get_pwq(wq->dfl_pwq);
a9b8a985 4206 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32
TH
4207 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4208out_unlock:
4209 mutex_unlock(&wq->mutex);
4210 put_pwq_unlocked(old_pwq);
4211}
4212
30cdf249 4213static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4214{
49e3cf44 4215 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4216 int cpu, ret;
30cdf249
TH
4217
4218 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4219 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4220 if (!wq->cpu_pwqs)
30cdf249
TH
4221 return -ENOMEM;
4222
4223 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4224 struct pool_workqueue *pwq =
4225 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4226 struct worker_pool *cpu_pools =
f02ae73a 4227 per_cpu(cpu_worker_pools, cpu);
f3421797 4228
f147f29e
TH
4229 init_pwq(pwq, wq, &cpu_pools[highpri]);
4230
4231 mutex_lock(&wq->mutex);
1befcf30 4232 link_pwq(pwq);
f147f29e 4233 mutex_unlock(&wq->mutex);
30cdf249 4234 }
9e8cd2f5 4235 return 0;
509b3204
DJ
4236 }
4237
ffd8bea8 4238 cpus_read_lock();
509b3204 4239 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4240 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4241 /* there should only be single pwq for ordering guarantee */
4242 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4243 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4244 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4245 } else {
509b3204 4246 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4247 }
ffd8bea8 4248 cpus_read_unlock();
509b3204
DJ
4249
4250 return ret;
0f900049
TH
4251}
4252
f3421797
TH
4253static int wq_clamp_max_active(int max_active, unsigned int flags,
4254 const char *name)
b71ab8c2 4255{
f3421797
TH
4256 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4257
4258 if (max_active < 1 || max_active > lim)
044c782c
VI
4259 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4260 max_active, name, 1, lim);
b71ab8c2 4261
f3421797 4262 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4263}
4264
983c7515
TH
4265/*
4266 * Workqueues which may be used during memory reclaim should have a rescuer
4267 * to guarantee forward progress.
4268 */
4269static int init_rescuer(struct workqueue_struct *wq)
4270{
4271 struct worker *rescuer;
b92b36ea 4272 int ret;
983c7515
TH
4273
4274 if (!(wq->flags & WQ_MEM_RECLAIM))
4275 return 0;
4276
4277 rescuer = alloc_worker(NUMA_NO_NODE);
4278 if (!rescuer)
4279 return -ENOMEM;
4280
4281 rescuer->rescue_wq = wq;
4282 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4283 if (IS_ERR(rescuer->task)) {
b92b36ea 4284 ret = PTR_ERR(rescuer->task);
983c7515 4285 kfree(rescuer);
b92b36ea 4286 return ret;
983c7515
TH
4287 }
4288
4289 wq->rescuer = rescuer;
4290 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4291 wake_up_process(rescuer->task);
4292
4293 return 0;
4294}
4295
a2775bbc 4296__printf(1, 4)
669de8bd
BVA
4297struct workqueue_struct *alloc_workqueue(const char *fmt,
4298 unsigned int flags,
4299 int max_active, ...)
1da177e4 4300{
df2d5ae4 4301 size_t tbl_size = 0;
ecf6881f 4302 va_list args;
1da177e4 4303 struct workqueue_struct *wq;
49e3cf44 4304 struct pool_workqueue *pwq;
b196be89 4305
5c0338c6
TH
4306 /*
4307 * Unbound && max_active == 1 used to imply ordered, which is no
4308 * longer the case on NUMA machines due to per-node pools. While
4309 * alloc_ordered_workqueue() is the right way to create an ordered
4310 * workqueue, keep the previous behavior to avoid subtle breakages
4311 * on NUMA.
4312 */
4313 if ((flags & WQ_UNBOUND) && max_active == 1)
4314 flags |= __WQ_ORDERED;
4315
cee22a15
VK
4316 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4317 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4318 flags |= WQ_UNBOUND;
4319
ecf6881f 4320 /* allocate wq and format name */
df2d5ae4 4321 if (flags & WQ_UNBOUND)
ddcb57e2 4322 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4323
4324 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4325 if (!wq)
d2c1d404 4326 return NULL;
b196be89 4327
6029a918 4328 if (flags & WQ_UNBOUND) {
be69d00d 4329 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4330 if (!wq->unbound_attrs)
4331 goto err_free_wq;
4332 }
4333
669de8bd 4334 va_start(args, max_active);
ecf6881f 4335 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4336 va_end(args);
1da177e4 4337
d320c038 4338 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4339 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4340
b196be89 4341 /* init wq */
97e37d7b 4342 wq->flags = flags;
a0a1a5fd 4343 wq->saved_max_active = max_active;
3c25a55d 4344 mutex_init(&wq->mutex);
112202d9 4345 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4346 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4347 INIT_LIST_HEAD(&wq->flusher_queue);
4348 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4349 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4350
669de8bd 4351 wq_init_lockdep(wq);
cce1a165 4352 INIT_LIST_HEAD(&wq->list);
3af24433 4353
30cdf249 4354 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4355 goto err_unreg_lockdep;
1537663f 4356
40c17f75 4357 if (wq_online && init_rescuer(wq) < 0)
983c7515 4358 goto err_destroy;
3af24433 4359
226223ab
TH
4360 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4361 goto err_destroy;
4362
a0a1a5fd 4363 /*
68e13a67
LJ
4364 * wq_pool_mutex protects global freeze state and workqueues list.
4365 * Grab it, adjust max_active and add the new @wq to workqueues
4366 * list.
a0a1a5fd 4367 */
68e13a67 4368 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4369
a357fc03 4370 mutex_lock(&wq->mutex);
699ce097
TH
4371 for_each_pwq(pwq, wq)
4372 pwq_adjust_max_active(pwq);
a357fc03 4373 mutex_unlock(&wq->mutex);
a0a1a5fd 4374
e2dca7ad 4375 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4376
68e13a67 4377 mutex_unlock(&wq_pool_mutex);
1537663f 4378
3af24433 4379 return wq;
d2c1d404 4380
82efcab3 4381err_unreg_lockdep:
009bb421
BVA
4382 wq_unregister_lockdep(wq);
4383 wq_free_lockdep(wq);
82efcab3 4384err_free_wq:
6029a918 4385 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4386 kfree(wq);
4387 return NULL;
4388err_destroy:
4389 destroy_workqueue(wq);
4690c4ab 4390 return NULL;
3af24433 4391}
669de8bd 4392EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4393
c29eb853
TH
4394static bool pwq_busy(struct pool_workqueue *pwq)
4395{
4396 int i;
4397
4398 for (i = 0; i < WORK_NR_COLORS; i++)
4399 if (pwq->nr_in_flight[i])
4400 return true;
4401
4402 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4403 return true;
f97a4a1a 4404 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
c29eb853
TH
4405 return true;
4406
4407 return false;
4408}
4409
3af24433
ON
4410/**
4411 * destroy_workqueue - safely terminate a workqueue
4412 * @wq: target workqueue
4413 *
4414 * Safely destroy a workqueue. All work currently pending will be done first.
4415 */
4416void destroy_workqueue(struct workqueue_struct *wq)
4417{
49e3cf44 4418 struct pool_workqueue *pwq;
4c16bd32 4419 int node;
3af24433 4420
def98c84
TH
4421 /*
4422 * Remove it from sysfs first so that sanity check failure doesn't
4423 * lead to sysfs name conflicts.
4424 */
4425 workqueue_sysfs_unregister(wq);
4426
9c5a2ba7
TH
4427 /* drain it before proceeding with destruction */
4428 drain_workqueue(wq);
c8efcc25 4429
def98c84
TH
4430 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4431 if (wq->rescuer) {
4432 struct worker *rescuer = wq->rescuer;
4433
4434 /* this prevents new queueing */
a9b8a985 4435 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4436 wq->rescuer = NULL;
a9b8a985 4437 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4438
4439 /* rescuer will empty maydays list before exiting */
4440 kthread_stop(rescuer->task);
8efe1223 4441 kfree(rescuer);
def98c84
TH
4442 }
4443
c29eb853
TH
4444 /*
4445 * Sanity checks - grab all the locks so that we wait for all
4446 * in-flight operations which may do put_pwq().
4447 */
4448 mutex_lock(&wq_pool_mutex);
b09f4fd3 4449 mutex_lock(&wq->mutex);
49e3cf44 4450 for_each_pwq(pwq, wq) {
a9b8a985 4451 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4452 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4453 pr_warn("%s: %s has the following busy pwq\n",
4454 __func__, wq->name);
c29eb853 4455 show_pwq(pwq);
a9b8a985 4456 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4457 mutex_unlock(&wq->mutex);
c29eb853 4458 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4459 show_workqueue_state();
6183c009 4460 return;
76af4d93 4461 }
a9b8a985 4462 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4463 }
b09f4fd3 4464 mutex_unlock(&wq->mutex);
6183c009 4465
a0a1a5fd
TH
4466 /*
4467 * wq list is used to freeze wq, remove from list after
4468 * flushing is complete in case freeze races us.
4469 */
e2dca7ad 4470 list_del_rcu(&wq->list);
68e13a67 4471 mutex_unlock(&wq_pool_mutex);
3af24433 4472
8864b4e5 4473 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4474 wq_unregister_lockdep(wq);
8864b4e5
TH
4475 /*
4476 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4477 * schedule RCU free.
8864b4e5 4478 */
25b00775 4479 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4480 } else {
4481 /*
4482 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4483 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4484 * @wq will be freed when the last pwq is released.
8864b4e5 4485 */
4c16bd32
TH
4486 for_each_node(node) {
4487 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4488 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4489 put_pwq_unlocked(pwq);
4490 }
4491
4492 /*
4493 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4494 * put. Don't access it afterwards.
4495 */
4496 pwq = wq->dfl_pwq;
4497 wq->dfl_pwq = NULL;
dce90d47 4498 put_pwq_unlocked(pwq);
29c91e99 4499 }
3af24433
ON
4500}
4501EXPORT_SYMBOL_GPL(destroy_workqueue);
4502
dcd989cb
TH
4503/**
4504 * workqueue_set_max_active - adjust max_active of a workqueue
4505 * @wq: target workqueue
4506 * @max_active: new max_active value.
4507 *
4508 * Set max_active of @wq to @max_active.
4509 *
4510 * CONTEXT:
4511 * Don't call from IRQ context.
4512 */
4513void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4514{
49e3cf44 4515 struct pool_workqueue *pwq;
dcd989cb 4516
8719dcea 4517 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4518 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4519 return;
4520
f3421797 4521 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4522
a357fc03 4523 mutex_lock(&wq->mutex);
dcd989cb 4524
0a94efb5 4525 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4526 wq->saved_max_active = max_active;
4527
699ce097
TH
4528 for_each_pwq(pwq, wq)
4529 pwq_adjust_max_active(pwq);
93981800 4530
a357fc03 4531 mutex_unlock(&wq->mutex);
15316ba8 4532}
dcd989cb 4533EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4534
27d4ee03
LW
4535/**
4536 * current_work - retrieve %current task's work struct
4537 *
4538 * Determine if %current task is a workqueue worker and what it's working on.
4539 * Useful to find out the context that the %current task is running in.
4540 *
4541 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4542 */
4543struct work_struct *current_work(void)
4544{
4545 struct worker *worker = current_wq_worker();
4546
4547 return worker ? worker->current_work : NULL;
4548}
4549EXPORT_SYMBOL(current_work);
4550
e6267616
TH
4551/**
4552 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4553 *
4554 * Determine whether %current is a workqueue rescuer. Can be used from
4555 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4556 *
4557 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4558 */
4559bool current_is_workqueue_rescuer(void)
4560{
4561 struct worker *worker = current_wq_worker();
4562
6a092dfd 4563 return worker && worker->rescue_wq;
e6267616
TH
4564}
4565
eef6a7d5 4566/**
dcd989cb
TH
4567 * workqueue_congested - test whether a workqueue is congested
4568 * @cpu: CPU in question
4569 * @wq: target workqueue
eef6a7d5 4570 *
dcd989cb
TH
4571 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4572 * no synchronization around this function and the test result is
4573 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4574 *
d3251859
TH
4575 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4576 * Note that both per-cpu and unbound workqueues may be associated with
4577 * multiple pool_workqueues which have separate congested states. A
4578 * workqueue being congested on one CPU doesn't mean the workqueue is also
4579 * contested on other CPUs / NUMA nodes.
4580 *
d185af30 4581 * Return:
dcd989cb 4582 * %true if congested, %false otherwise.
eef6a7d5 4583 */
d84ff051 4584bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4585{
7fb98ea7 4586 struct pool_workqueue *pwq;
76af4d93
TH
4587 bool ret;
4588
24acfb71
TG
4589 rcu_read_lock();
4590 preempt_disable();
7fb98ea7 4591
d3251859
TH
4592 if (cpu == WORK_CPU_UNBOUND)
4593 cpu = smp_processor_id();
4594
7fb98ea7
TH
4595 if (!(wq->flags & WQ_UNBOUND))
4596 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4597 else
df2d5ae4 4598 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4599
f97a4a1a 4600 ret = !list_empty(&pwq->inactive_works);
24acfb71
TG
4601 preempt_enable();
4602 rcu_read_unlock();
76af4d93
TH
4603
4604 return ret;
1da177e4 4605}
dcd989cb 4606EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4607
dcd989cb
TH
4608/**
4609 * work_busy - test whether a work is currently pending or running
4610 * @work: the work to be tested
4611 *
4612 * Test whether @work is currently pending or running. There is no
4613 * synchronization around this function and the test result is
4614 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4615 *
d185af30 4616 * Return:
dcd989cb
TH
4617 * OR'd bitmask of WORK_BUSY_* bits.
4618 */
4619unsigned int work_busy(struct work_struct *work)
1da177e4 4620{
fa1b54e6 4621 struct worker_pool *pool;
dcd989cb
TH
4622 unsigned long flags;
4623 unsigned int ret = 0;
1da177e4 4624
dcd989cb
TH
4625 if (work_pending(work))
4626 ret |= WORK_BUSY_PENDING;
1da177e4 4627
24acfb71 4628 rcu_read_lock();
fa1b54e6 4629 pool = get_work_pool(work);
038366c5 4630 if (pool) {
a9b8a985 4631 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4632 if (find_worker_executing_work(pool, work))
4633 ret |= WORK_BUSY_RUNNING;
a9b8a985 4634 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4635 }
24acfb71 4636 rcu_read_unlock();
1da177e4 4637
dcd989cb 4638 return ret;
1da177e4 4639}
dcd989cb 4640EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4641
3d1cb205
TH
4642/**
4643 * set_worker_desc - set description for the current work item
4644 * @fmt: printf-style format string
4645 * @...: arguments for the format string
4646 *
4647 * This function can be called by a running work function to describe what
4648 * the work item is about. If the worker task gets dumped, this
4649 * information will be printed out together to help debugging. The
4650 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4651 */
4652void set_worker_desc(const char *fmt, ...)
4653{
4654 struct worker *worker = current_wq_worker();
4655 va_list args;
4656
4657 if (worker) {
4658 va_start(args, fmt);
4659 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4660 va_end(args);
3d1cb205
TH
4661 }
4662}
5c750d58 4663EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4664
4665/**
4666 * print_worker_info - print out worker information and description
4667 * @log_lvl: the log level to use when printing
4668 * @task: target task
4669 *
4670 * If @task is a worker and currently executing a work item, print out the
4671 * name of the workqueue being serviced and worker description set with
4672 * set_worker_desc() by the currently executing work item.
4673 *
4674 * This function can be safely called on any task as long as the
4675 * task_struct itself is accessible. While safe, this function isn't
4676 * synchronized and may print out mixups or garbages of limited length.
4677 */
4678void print_worker_info(const char *log_lvl, struct task_struct *task)
4679{
4680 work_func_t *fn = NULL;
4681 char name[WQ_NAME_LEN] = { };
4682 char desc[WORKER_DESC_LEN] = { };
4683 struct pool_workqueue *pwq = NULL;
4684 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4685 struct worker *worker;
4686
4687 if (!(task->flags & PF_WQ_WORKER))
4688 return;
4689
4690 /*
4691 * This function is called without any synchronization and @task
4692 * could be in any state. Be careful with dereferences.
4693 */
e700591a 4694 worker = kthread_probe_data(task);
3d1cb205
TH
4695
4696 /*
8bf89593
TH
4697 * Carefully copy the associated workqueue's workfn, name and desc.
4698 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4699 */
fe557319
CH
4700 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4701 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4702 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4703 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4704 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4705
4706 if (fn || name[0] || desc[0]) {
d75f773c 4707 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4708 if (strcmp(name, desc))
3d1cb205
TH
4709 pr_cont(" (%s)", desc);
4710 pr_cont("\n");
4711 }
4712}
4713
3494fc30
TH
4714static void pr_cont_pool_info(struct worker_pool *pool)
4715{
4716 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4717 if (pool->node != NUMA_NO_NODE)
4718 pr_cont(" node=%d", pool->node);
4719 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4720}
4721
4722static void pr_cont_work(bool comma, struct work_struct *work)
4723{
4724 if (work->func == wq_barrier_func) {
4725 struct wq_barrier *barr;
4726
4727 barr = container_of(work, struct wq_barrier, work);
4728
4729 pr_cont("%s BAR(%d)", comma ? "," : "",
4730 task_pid_nr(barr->task));
4731 } else {
d75f773c 4732 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4733 }
4734}
4735
4736static void show_pwq(struct pool_workqueue *pwq)
4737{
4738 struct worker_pool *pool = pwq->pool;
4739 struct work_struct *work;
4740 struct worker *worker;
4741 bool has_in_flight = false, has_pending = false;
4742 int bkt;
4743
4744 pr_info(" pwq %d:", pool->id);
4745 pr_cont_pool_info(pool);
4746
e66b39af
TH
4747 pr_cont(" active=%d/%d refcnt=%d%s\n",
4748 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4749 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4750
4751 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4752 if (worker->current_pwq == pwq) {
4753 has_in_flight = true;
4754 break;
4755 }
4756 }
4757 if (has_in_flight) {
4758 bool comma = false;
4759
4760 pr_info(" in-flight:");
4761 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4762 if (worker->current_pwq != pwq)
4763 continue;
4764
d75f773c 4765 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4766 task_pid_nr(worker->task),
30ae2fc0 4767 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4768 worker->current_func);
4769 list_for_each_entry(work, &worker->scheduled, entry)
4770 pr_cont_work(false, work);
4771 comma = true;
4772 }
4773 pr_cont("\n");
4774 }
4775
4776 list_for_each_entry(work, &pool->worklist, entry) {
4777 if (get_work_pwq(work) == pwq) {
4778 has_pending = true;
4779 break;
4780 }
4781 }
4782 if (has_pending) {
4783 bool comma = false;
4784
4785 pr_info(" pending:");
4786 list_for_each_entry(work, &pool->worklist, entry) {
4787 if (get_work_pwq(work) != pwq)
4788 continue;
4789
4790 pr_cont_work(comma, work);
4791 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4792 }
4793 pr_cont("\n");
4794 }
4795
f97a4a1a 4796 if (!list_empty(&pwq->inactive_works)) {
3494fc30
TH
4797 bool comma = false;
4798
f97a4a1a
LJ
4799 pr_info(" inactive:");
4800 list_for_each_entry(work, &pwq->inactive_works, entry) {
3494fc30
TH
4801 pr_cont_work(comma, work);
4802 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4803 }
4804 pr_cont("\n");
4805 }
4806}
4807
4808/**
4809 * show_workqueue_state - dump workqueue state
4810 *
7b776af6
RL
4811 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4812 * all busy workqueues and pools.
3494fc30
TH
4813 */
4814void show_workqueue_state(void)
4815{
4816 struct workqueue_struct *wq;
4817 struct worker_pool *pool;
4818 unsigned long flags;
4819 int pi;
4820
24acfb71 4821 rcu_read_lock();
3494fc30
TH
4822
4823 pr_info("Showing busy workqueues and worker pools:\n");
4824
4825 list_for_each_entry_rcu(wq, &workqueues, list) {
4826 struct pool_workqueue *pwq;
4827 bool idle = true;
4828
4829 for_each_pwq(pwq, wq) {
f97a4a1a 4830 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
3494fc30
TH
4831 idle = false;
4832 break;
4833 }
4834 }
4835 if (idle)
4836 continue;
4837
4838 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4839
4840 for_each_pwq(pwq, wq) {
a9b8a985 4841 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
57116ce1
JH
4842 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4843 /*
4844 * Defer printing to avoid deadlocks in console
4845 * drivers that queue work while holding locks
4846 * also taken in their write paths.
4847 */
4848 printk_deferred_enter();
3494fc30 4849 show_pwq(pwq);
57116ce1
JH
4850 printk_deferred_exit();
4851 }
a9b8a985 4852 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4853 /*
4854 * We could be printing a lot from atomic context, e.g.
4855 * sysrq-t -> show_workqueue_state(). Avoid triggering
4856 * hard lockup.
4857 */
4858 touch_nmi_watchdog();
3494fc30
TH
4859 }
4860 }
4861
4862 for_each_pool(pool, pi) {
4863 struct worker *worker;
4864 bool first = true;
4865
a9b8a985 4866 raw_spin_lock_irqsave(&pool->lock, flags);
3494fc30
TH
4867 if (pool->nr_workers == pool->nr_idle)
4868 goto next_pool;
57116ce1
JH
4869 /*
4870 * Defer printing to avoid deadlocks in console drivers that
4871 * queue work while holding locks also taken in their write
4872 * paths.
4873 */
4874 printk_deferred_enter();
3494fc30
TH
4875 pr_info("pool %d:", pool->id);
4876 pr_cont_pool_info(pool);
82607adc
TH
4877 pr_cont(" hung=%us workers=%d",
4878 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4879 pool->nr_workers);
3494fc30
TH
4880 if (pool->manager)
4881 pr_cont(" manager: %d",
4882 task_pid_nr(pool->manager->task));
4883 list_for_each_entry(worker, &pool->idle_list, entry) {
4884 pr_cont(" %s%d", first ? "idle: " : "",
4885 task_pid_nr(worker->task));
4886 first = false;
4887 }
4888 pr_cont("\n");
57116ce1 4889 printk_deferred_exit();
3494fc30 4890 next_pool:
a9b8a985 4891 raw_spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4892 /*
4893 * We could be printing a lot from atomic context, e.g.
4894 * sysrq-t -> show_workqueue_state(). Avoid triggering
4895 * hard lockup.
4896 */
4897 touch_nmi_watchdog();
3494fc30
TH
4898 }
4899
24acfb71 4900 rcu_read_unlock();
3494fc30
TH
4901}
4902
6b59808b
TH
4903/* used to show worker information through /proc/PID/{comm,stat,status} */
4904void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4905{
6b59808b
TH
4906 int off;
4907
4908 /* always show the actual comm */
4909 off = strscpy(buf, task->comm, size);
4910 if (off < 0)
4911 return;
4912
197f6acc 4913 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4914 mutex_lock(&wq_pool_attach_mutex);
4915
197f6acc
TH
4916 if (task->flags & PF_WQ_WORKER) {
4917 struct worker *worker = kthread_data(task);
4918 struct worker_pool *pool = worker->pool;
6b59808b 4919
197f6acc 4920 if (pool) {
a9b8a985 4921 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
4922 /*
4923 * ->desc tracks information (wq name or
4924 * set_worker_desc()) for the latest execution. If
4925 * current, prepend '+', otherwise '-'.
4926 */
4927 if (worker->desc[0] != '\0') {
4928 if (worker->current_work)
4929 scnprintf(buf + off, size - off, "+%s",
4930 worker->desc);
4931 else
4932 scnprintf(buf + off, size - off, "-%s",
4933 worker->desc);
4934 }
a9b8a985 4935 raw_spin_unlock_irq(&pool->lock);
6b59808b 4936 }
6b59808b
TH
4937 }
4938
4939 mutex_unlock(&wq_pool_attach_mutex);
4940}
4941
66448bc2
MM
4942#ifdef CONFIG_SMP
4943
db7bccf4
TH
4944/*
4945 * CPU hotplug.
4946 *
e22bee78 4947 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4948 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4949 * pool which make migrating pending and scheduled works very
e22bee78 4950 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4951 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4952 * blocked draining impractical.
4953 *
24647570 4954 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4955 * running as an unbound one and allowing it to be reattached later if the
4956 * cpu comes back online.
db7bccf4 4957 */
1da177e4 4958
e8b3f8db 4959static void unbind_workers(int cpu)
3af24433 4960{
4ce62e9e 4961 struct worker_pool *pool;
db7bccf4 4962 struct worker *worker;
3af24433 4963
f02ae73a 4964 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4965 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 4966 raw_spin_lock_irq(&pool->lock);
3af24433 4967
94cf58bb 4968 /*
92f9c5c4 4969 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4970 * unbound and set DISASSOCIATED. Before this, all workers
4971 * except for the ones which are still executing works from
4972 * before the last CPU down must be on the cpu. After
4973 * this, they may become diasporas.
4974 */
da028469 4975 for_each_pool_worker(worker, pool)
c9e7cf27 4976 worker->flags |= WORKER_UNBOUND;
06ba38a9 4977
24647570 4978 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4979
a9b8a985 4980 raw_spin_unlock_irq(&pool->lock);
06249738 4981
5c25b5ff
PZ
4982 for_each_pool_worker(worker, pool) {
4983 kthread_set_per_cpu(worker->task, -1);
547a77d0 4984 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5c25b5ff 4985 }
06249738 4986
1258fae7 4987 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4988
eb283428
LJ
4989 /*
4990 * Call schedule() so that we cross rq->lock and thus can
4991 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4992 * This is necessary as scheduler callbacks may be invoked
4993 * from other cpus.
4994 */
4995 schedule();
06ba38a9 4996
eb283428
LJ
4997 /*
4998 * Sched callbacks are disabled now. Zap nr_running.
4999 * After this, nr_running stays zero and need_more_worker()
5000 * and keep_working() are always true as long as the
5001 * worklist is not empty. This pool now behaves as an
5002 * unbound (in terms of concurrency management) pool which
5003 * are served by workers tied to the pool.
5004 */
e19e397a 5005 atomic_set(&pool->nr_running, 0);
eb283428
LJ
5006
5007 /*
5008 * With concurrency management just turned off, a busy
5009 * worker blocking could lead to lengthy stalls. Kick off
5010 * unbound chain execution of currently pending work items.
5011 */
a9b8a985 5012 raw_spin_lock_irq(&pool->lock);
eb283428 5013 wake_up_worker(pool);
a9b8a985 5014 raw_spin_unlock_irq(&pool->lock);
eb283428 5015 }
3af24433 5016}
3af24433 5017
bd7c089e
TH
5018/**
5019 * rebind_workers - rebind all workers of a pool to the associated CPU
5020 * @pool: pool of interest
5021 *
a9ab775b 5022 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
5023 */
5024static void rebind_workers(struct worker_pool *pool)
5025{
a9ab775b 5026 struct worker *worker;
bd7c089e 5027
1258fae7 5028 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 5029
a9ab775b
TH
5030 /*
5031 * Restore CPU affinity of all workers. As all idle workers should
5032 * be on the run-queue of the associated CPU before any local
402dd89d 5033 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
5034 * of all workers first and then clear UNBOUND. As we're called
5035 * from CPU_ONLINE, the following shouldn't fail.
5036 */
5c25b5ff
PZ
5037 for_each_pool_worker(worker, pool) {
5038 kthread_set_per_cpu(worker->task, pool->cpu);
a9ab775b
TH
5039 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5040 pool->attrs->cpumask) < 0);
5c25b5ff 5041 }
bd7c089e 5042
a9b8a985 5043 raw_spin_lock_irq(&pool->lock);
f7c17d26 5044
3de5e884 5045 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 5046
da028469 5047 for_each_pool_worker(worker, pool) {
a9ab775b 5048 unsigned int worker_flags = worker->flags;
bd7c089e
TH
5049
5050 /*
a9ab775b
TH
5051 * A bound idle worker should actually be on the runqueue
5052 * of the associated CPU for local wake-ups targeting it to
5053 * work. Kick all idle workers so that they migrate to the
5054 * associated CPU. Doing this in the same loop as
5055 * replacing UNBOUND with REBOUND is safe as no worker will
5056 * be bound before @pool->lock is released.
bd7c089e 5057 */
a9ab775b
TH
5058 if (worker_flags & WORKER_IDLE)
5059 wake_up_process(worker->task);
bd7c089e 5060
a9ab775b
TH
5061 /*
5062 * We want to clear UNBOUND but can't directly call
5063 * worker_clr_flags() or adjust nr_running. Atomically
5064 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5065 * @worker will clear REBOUND using worker_clr_flags() when
5066 * it initiates the next execution cycle thus restoring
5067 * concurrency management. Note that when or whether
5068 * @worker clears REBOUND doesn't affect correctness.
5069 *
c95491ed 5070 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5071 * tested without holding any lock in
6d25be57 5072 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5073 * fail incorrectly leading to premature concurrency
5074 * management operations.
5075 */
5076 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5077 worker_flags |= WORKER_REBOUND;
5078 worker_flags &= ~WORKER_UNBOUND;
c95491ed 5079 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 5080 }
a9ab775b 5081
a9b8a985 5082 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5083}
5084
7dbc725e
TH
5085/**
5086 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5087 * @pool: unbound pool of interest
5088 * @cpu: the CPU which is coming up
5089 *
5090 * An unbound pool may end up with a cpumask which doesn't have any online
5091 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5092 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5093 * online CPU before, cpus_allowed of all its workers should be restored.
5094 */
5095static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5096{
5097 static cpumask_t cpumask;
5098 struct worker *worker;
7dbc725e 5099
1258fae7 5100 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5101
5102 /* is @cpu allowed for @pool? */
5103 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5104 return;
5105
7dbc725e 5106 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5107
5108 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5109 for_each_pool_worker(worker, pool)
d945b5e9 5110 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5111}
5112
7ee681b2
TG
5113int workqueue_prepare_cpu(unsigned int cpu)
5114{
5115 struct worker_pool *pool;
5116
5117 for_each_cpu_worker_pool(pool, cpu) {
5118 if (pool->nr_workers)
5119 continue;
5120 if (!create_worker(pool))
5121 return -ENOMEM;
5122 }
5123 return 0;
5124}
5125
5126int workqueue_online_cpu(unsigned int cpu)
3af24433 5127{
4ce62e9e 5128 struct worker_pool *pool;
4c16bd32 5129 struct workqueue_struct *wq;
7dbc725e 5130 int pi;
3ce63377 5131
7ee681b2 5132 mutex_lock(&wq_pool_mutex);
7dbc725e 5133
7ee681b2 5134 for_each_pool(pool, pi) {
1258fae7 5135 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5136
7ee681b2
TG
5137 if (pool->cpu == cpu)
5138 rebind_workers(pool);
5139 else if (pool->cpu < 0)
5140 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5141
1258fae7 5142 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5143 }
6ba94429 5144
7ee681b2
TG
5145 /* update NUMA affinity of unbound workqueues */
5146 list_for_each_entry(wq, &workqueues, list)
5147 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5148
7ee681b2
TG
5149 mutex_unlock(&wq_pool_mutex);
5150 return 0;
6ba94429
FW
5151}
5152
7ee681b2 5153int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5154{
6ba94429
FW
5155 struct workqueue_struct *wq;
5156
7ee681b2 5157 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5158 if (WARN_ON(cpu != smp_processor_id()))
5159 return -1;
5160
5161 unbind_workers(cpu);
7ee681b2
TG
5162
5163 /* update NUMA affinity of unbound workqueues */
5164 mutex_lock(&wq_pool_mutex);
5165 list_for_each_entry(wq, &workqueues, list)
5166 wq_update_unbound_numa(wq, cpu, false);
5167 mutex_unlock(&wq_pool_mutex);
5168
7ee681b2 5169 return 0;
6ba94429
FW
5170}
5171
6ba94429
FW
5172struct work_for_cpu {
5173 struct work_struct work;
5174 long (*fn)(void *);
5175 void *arg;
5176 long ret;
5177};
5178
5179static void work_for_cpu_fn(struct work_struct *work)
5180{
5181 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5182
5183 wfc->ret = wfc->fn(wfc->arg);
5184}
5185
5186/**
22aceb31 5187 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5188 * @cpu: the cpu to run on
5189 * @fn: the function to run
5190 * @arg: the function arg
5191 *
5192 * It is up to the caller to ensure that the cpu doesn't go offline.
5193 * The caller must not hold any locks which would prevent @fn from completing.
5194 *
5195 * Return: The value @fn returns.
5196 */
5197long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5198{
5199 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5200
5201 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5202 schedule_work_on(cpu, &wfc.work);
5203 flush_work(&wfc.work);
5204 destroy_work_on_stack(&wfc.work);
5205 return wfc.ret;
5206}
5207EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5208
5209/**
5210 * work_on_cpu_safe - run a function in thread context on a particular cpu
5211 * @cpu: the cpu to run on
5212 * @fn: the function to run
5213 * @arg: the function argument
5214 *
5215 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5216 * any locks which would prevent @fn from completing.
5217 *
5218 * Return: The value @fn returns.
5219 */
5220long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5221{
5222 long ret = -ENODEV;
5223
ffd8bea8 5224 cpus_read_lock();
0e8d6a93
TG
5225 if (cpu_online(cpu))
5226 ret = work_on_cpu(cpu, fn, arg);
ffd8bea8 5227 cpus_read_unlock();
0e8d6a93
TG
5228 return ret;
5229}
5230EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5231#endif /* CONFIG_SMP */
5232
5233#ifdef CONFIG_FREEZER
5234
5235/**
5236 * freeze_workqueues_begin - begin freezing workqueues
5237 *
5238 * Start freezing workqueues. After this function returns, all freezable
f97a4a1a 5239 * workqueues will queue new works to their inactive_works list instead of
6ba94429
FW
5240 * pool->worklist.
5241 *
5242 * CONTEXT:
5243 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5244 */
5245void freeze_workqueues_begin(void)
5246{
5247 struct workqueue_struct *wq;
5248 struct pool_workqueue *pwq;
5249
5250 mutex_lock(&wq_pool_mutex);
5251
5252 WARN_ON_ONCE(workqueue_freezing);
5253 workqueue_freezing = true;
5254
5255 list_for_each_entry(wq, &workqueues, list) {
5256 mutex_lock(&wq->mutex);
5257 for_each_pwq(pwq, wq)
5258 pwq_adjust_max_active(pwq);
5259 mutex_unlock(&wq->mutex);
5260 }
5261
5262 mutex_unlock(&wq_pool_mutex);
5263}
5264
5265/**
5266 * freeze_workqueues_busy - are freezable workqueues still busy?
5267 *
5268 * Check whether freezing is complete. This function must be called
5269 * between freeze_workqueues_begin() and thaw_workqueues().
5270 *
5271 * CONTEXT:
5272 * Grabs and releases wq_pool_mutex.
5273 *
5274 * Return:
5275 * %true if some freezable workqueues are still busy. %false if freezing
5276 * is complete.
5277 */
5278bool freeze_workqueues_busy(void)
5279{
5280 bool busy = false;
5281 struct workqueue_struct *wq;
5282 struct pool_workqueue *pwq;
5283
5284 mutex_lock(&wq_pool_mutex);
5285
5286 WARN_ON_ONCE(!workqueue_freezing);
5287
5288 list_for_each_entry(wq, &workqueues, list) {
5289 if (!(wq->flags & WQ_FREEZABLE))
5290 continue;
5291 /*
5292 * nr_active is monotonically decreasing. It's safe
5293 * to peek without lock.
5294 */
24acfb71 5295 rcu_read_lock();
6ba94429
FW
5296 for_each_pwq(pwq, wq) {
5297 WARN_ON_ONCE(pwq->nr_active < 0);
5298 if (pwq->nr_active) {
5299 busy = true;
24acfb71 5300 rcu_read_unlock();
6ba94429
FW
5301 goto out_unlock;
5302 }
5303 }
24acfb71 5304 rcu_read_unlock();
6ba94429
FW
5305 }
5306out_unlock:
5307 mutex_unlock(&wq_pool_mutex);
5308 return busy;
5309}
5310
5311/**
5312 * thaw_workqueues - thaw workqueues
5313 *
5314 * Thaw workqueues. Normal queueing is restored and all collected
5315 * frozen works are transferred to their respective pool worklists.
5316 *
5317 * CONTEXT:
5318 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5319 */
5320void thaw_workqueues(void)
5321{
5322 struct workqueue_struct *wq;
5323 struct pool_workqueue *pwq;
5324
5325 mutex_lock(&wq_pool_mutex);
5326
5327 if (!workqueue_freezing)
5328 goto out_unlock;
5329
5330 workqueue_freezing = false;
5331
5332 /* restore max_active and repopulate worklist */
5333 list_for_each_entry(wq, &workqueues, list) {
5334 mutex_lock(&wq->mutex);
5335 for_each_pwq(pwq, wq)
5336 pwq_adjust_max_active(pwq);
5337 mutex_unlock(&wq->mutex);
5338 }
5339
5340out_unlock:
5341 mutex_unlock(&wq_pool_mutex);
5342}
5343#endif /* CONFIG_FREEZER */
5344
042f7df1
LJ
5345static int workqueue_apply_unbound_cpumask(void)
5346{
5347 LIST_HEAD(ctxs);
5348 int ret = 0;
5349 struct workqueue_struct *wq;
5350 struct apply_wqattrs_ctx *ctx, *n;
5351
5352 lockdep_assert_held(&wq_pool_mutex);
5353
5354 list_for_each_entry(wq, &workqueues, list) {
5355 if (!(wq->flags & WQ_UNBOUND))
5356 continue;
5357 /* creating multiple pwqs breaks ordering guarantee */
5358 if (wq->flags & __WQ_ORDERED)
5359 continue;
5360
5361 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5362 if (!ctx) {
5363 ret = -ENOMEM;
5364 break;
5365 }
5366
5367 list_add_tail(&ctx->list, &ctxs);
5368 }
5369
5370 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5371 if (!ret)
5372 apply_wqattrs_commit(ctx);
5373 apply_wqattrs_cleanup(ctx);
5374 }
5375
5376 return ret;
5377}
5378
5379/**
5380 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5381 * @cpumask: the cpumask to set
5382 *
5383 * The low-level workqueues cpumask is a global cpumask that limits
5384 * the affinity of all unbound workqueues. This function check the @cpumask
5385 * and apply it to all unbound workqueues and updates all pwqs of them.
5386 *
67dc8325 5387 * Return: 0 - Success
042f7df1
LJ
5388 * -EINVAL - Invalid @cpumask
5389 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5390 */
5391int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5392{
5393 int ret = -EINVAL;
5394 cpumask_var_t saved_cpumask;
5395
c98a9805
TS
5396 /*
5397 * Not excluding isolated cpus on purpose.
5398 * If the user wishes to include them, we allow that.
5399 */
042f7df1
LJ
5400 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5401 if (!cpumask_empty(cpumask)) {
a0111cf6 5402 apply_wqattrs_lock();
fbcbd0a5
MD
5403 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5404 ret = 0;
5405 goto out_unlock;
5406 }
5407
5408 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5409 ret = -ENOMEM;
5410 goto out_unlock;
5411 }
042f7df1
LJ
5412
5413 /* save the old wq_unbound_cpumask. */
5414 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5415
5416 /* update wq_unbound_cpumask at first and apply it to wqs. */
5417 cpumask_copy(wq_unbound_cpumask, cpumask);
5418 ret = workqueue_apply_unbound_cpumask();
5419
5420 /* restore the wq_unbound_cpumask when failed. */
5421 if (ret < 0)
5422 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5423
fbcbd0a5
MD
5424 free_cpumask_var(saved_cpumask);
5425out_unlock:
a0111cf6 5426 apply_wqattrs_unlock();
042f7df1 5427 }
042f7df1 5428
042f7df1
LJ
5429 return ret;
5430}
5431
6ba94429
FW
5432#ifdef CONFIG_SYSFS
5433/*
5434 * Workqueues with WQ_SYSFS flag set is visible to userland via
5435 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5436 * following attributes.
5437 *
5438 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5439 * max_active RW int : maximum number of in-flight work items
5440 *
5441 * Unbound workqueues have the following extra attributes.
5442 *
9a19b463 5443 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5444 * nice RW int : nice value of the workers
5445 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5446 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5447 */
5448struct wq_device {
5449 struct workqueue_struct *wq;
5450 struct device dev;
5451};
5452
5453static struct workqueue_struct *dev_to_wq(struct device *dev)
5454{
5455 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5456
5457 return wq_dev->wq;
5458}
5459
5460static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5461 char *buf)
5462{
5463 struct workqueue_struct *wq = dev_to_wq(dev);
5464
5465 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5466}
5467static DEVICE_ATTR_RO(per_cpu);
5468
5469static ssize_t max_active_show(struct device *dev,
5470 struct device_attribute *attr, char *buf)
5471{
5472 struct workqueue_struct *wq = dev_to_wq(dev);
5473
5474 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5475}
5476
5477static ssize_t max_active_store(struct device *dev,
5478 struct device_attribute *attr, const char *buf,
5479 size_t count)
5480{
5481 struct workqueue_struct *wq = dev_to_wq(dev);
5482 int val;
5483
5484 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5485 return -EINVAL;
5486
5487 workqueue_set_max_active(wq, val);
5488 return count;
5489}
5490static DEVICE_ATTR_RW(max_active);
5491
5492static struct attribute *wq_sysfs_attrs[] = {
5493 &dev_attr_per_cpu.attr,
5494 &dev_attr_max_active.attr,
5495 NULL,
5496};
5497ATTRIBUTE_GROUPS(wq_sysfs);
5498
5499static ssize_t wq_pool_ids_show(struct device *dev,
5500 struct device_attribute *attr, char *buf)
5501{
5502 struct workqueue_struct *wq = dev_to_wq(dev);
5503 const char *delim = "";
5504 int node, written = 0;
5505
ffd8bea8 5506 cpus_read_lock();
24acfb71 5507 rcu_read_lock();
6ba94429
FW
5508 for_each_node(node) {
5509 written += scnprintf(buf + written, PAGE_SIZE - written,
5510 "%s%d:%d", delim, node,
5511 unbound_pwq_by_node(wq, node)->pool->id);
5512 delim = " ";
5513 }
5514 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71 5515 rcu_read_unlock();
ffd8bea8 5516 cpus_read_unlock();
6ba94429
FW
5517
5518 return written;
5519}
5520
5521static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5522 char *buf)
5523{
5524 struct workqueue_struct *wq = dev_to_wq(dev);
5525 int written;
5526
5527 mutex_lock(&wq->mutex);
5528 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5529 mutex_unlock(&wq->mutex);
5530
5531 return written;
5532}
5533
5534/* prepare workqueue_attrs for sysfs store operations */
5535static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5536{
5537 struct workqueue_attrs *attrs;
5538
899a94fe
LJ
5539 lockdep_assert_held(&wq_pool_mutex);
5540
be69d00d 5541 attrs = alloc_workqueue_attrs();
6ba94429
FW
5542 if (!attrs)
5543 return NULL;
5544
6ba94429 5545 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5546 return attrs;
5547}
5548
5549static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5550 const char *buf, size_t count)
5551{
5552 struct workqueue_struct *wq = dev_to_wq(dev);
5553 struct workqueue_attrs *attrs;
d4d3e257
LJ
5554 int ret = -ENOMEM;
5555
5556 apply_wqattrs_lock();
6ba94429
FW
5557
5558 attrs = wq_sysfs_prep_attrs(wq);
5559 if (!attrs)
d4d3e257 5560 goto out_unlock;
6ba94429
FW
5561
5562 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5563 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5564 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5565 else
5566 ret = -EINVAL;
5567
d4d3e257
LJ
5568out_unlock:
5569 apply_wqattrs_unlock();
6ba94429
FW
5570 free_workqueue_attrs(attrs);
5571 return ret ?: count;
5572}
5573
5574static ssize_t wq_cpumask_show(struct device *dev,
5575 struct device_attribute *attr, char *buf)
5576{
5577 struct workqueue_struct *wq = dev_to_wq(dev);
5578 int written;
5579
5580 mutex_lock(&wq->mutex);
5581 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5582 cpumask_pr_args(wq->unbound_attrs->cpumask));
5583 mutex_unlock(&wq->mutex);
5584 return written;
5585}
5586
5587static ssize_t wq_cpumask_store(struct device *dev,
5588 struct device_attribute *attr,
5589 const char *buf, size_t count)
5590{
5591 struct workqueue_struct *wq = dev_to_wq(dev);
5592 struct workqueue_attrs *attrs;
d4d3e257
LJ
5593 int ret = -ENOMEM;
5594
5595 apply_wqattrs_lock();
6ba94429
FW
5596
5597 attrs = wq_sysfs_prep_attrs(wq);
5598 if (!attrs)
d4d3e257 5599 goto out_unlock;
6ba94429
FW
5600
5601 ret = cpumask_parse(buf, attrs->cpumask);
5602 if (!ret)
d4d3e257 5603 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5604
d4d3e257
LJ
5605out_unlock:
5606 apply_wqattrs_unlock();
6ba94429
FW
5607 free_workqueue_attrs(attrs);
5608 return ret ?: count;
5609}
5610
5611static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5612 char *buf)
5613{
5614 struct workqueue_struct *wq = dev_to_wq(dev);
5615 int written;
7dbc725e 5616
6ba94429
FW
5617 mutex_lock(&wq->mutex);
5618 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5619 !wq->unbound_attrs->no_numa);
5620 mutex_unlock(&wq->mutex);
4c16bd32 5621
6ba94429 5622 return written;
65758202
TH
5623}
5624
6ba94429
FW
5625static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5626 const char *buf, size_t count)
65758202 5627{
6ba94429
FW
5628 struct workqueue_struct *wq = dev_to_wq(dev);
5629 struct workqueue_attrs *attrs;
d4d3e257
LJ
5630 int v, ret = -ENOMEM;
5631
5632 apply_wqattrs_lock();
4c16bd32 5633
6ba94429
FW
5634 attrs = wq_sysfs_prep_attrs(wq);
5635 if (!attrs)
d4d3e257 5636 goto out_unlock;
4c16bd32 5637
6ba94429
FW
5638 ret = -EINVAL;
5639 if (sscanf(buf, "%d", &v) == 1) {
5640 attrs->no_numa = !v;
d4d3e257 5641 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5642 }
6ba94429 5643
d4d3e257
LJ
5644out_unlock:
5645 apply_wqattrs_unlock();
6ba94429
FW
5646 free_workqueue_attrs(attrs);
5647 return ret ?: count;
65758202
TH
5648}
5649
6ba94429
FW
5650static struct device_attribute wq_sysfs_unbound_attrs[] = {
5651 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5652 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5653 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5654 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5655 __ATTR_NULL,
5656};
8ccad40d 5657
6ba94429
FW
5658static struct bus_type wq_subsys = {
5659 .name = "workqueue",
5660 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5661};
5662
b05a7928
FW
5663static ssize_t wq_unbound_cpumask_show(struct device *dev,
5664 struct device_attribute *attr, char *buf)
5665{
5666 int written;
5667
042f7df1 5668 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5669 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5670 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5671 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5672
5673 return written;
5674}
5675
042f7df1
LJ
5676static ssize_t wq_unbound_cpumask_store(struct device *dev,
5677 struct device_attribute *attr, const char *buf, size_t count)
5678{
5679 cpumask_var_t cpumask;
5680 int ret;
5681
5682 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5683 return -ENOMEM;
5684
5685 ret = cpumask_parse(buf, cpumask);
5686 if (!ret)
5687 ret = workqueue_set_unbound_cpumask(cpumask);
5688
5689 free_cpumask_var(cpumask);
5690 return ret ? ret : count;
5691}
5692
b05a7928 5693static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5694 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5695 wq_unbound_cpumask_store);
b05a7928 5696
6ba94429 5697static int __init wq_sysfs_init(void)
2d3854a3 5698{
b05a7928
FW
5699 int err;
5700
5701 err = subsys_virtual_register(&wq_subsys, NULL);
5702 if (err)
5703 return err;
5704
5705 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5706}
6ba94429 5707core_initcall(wq_sysfs_init);
2d3854a3 5708
6ba94429 5709static void wq_device_release(struct device *dev)
2d3854a3 5710{
6ba94429 5711 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5712
6ba94429 5713 kfree(wq_dev);
2d3854a3 5714}
a0a1a5fd
TH
5715
5716/**
6ba94429
FW
5717 * workqueue_sysfs_register - make a workqueue visible in sysfs
5718 * @wq: the workqueue to register
a0a1a5fd 5719 *
6ba94429
FW
5720 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5721 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5722 * which is the preferred method.
a0a1a5fd 5723 *
6ba94429
FW
5724 * Workqueue user should use this function directly iff it wants to apply
5725 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5726 * apply_workqueue_attrs() may race against userland updating the
5727 * attributes.
5728 *
5729 * Return: 0 on success, -errno on failure.
a0a1a5fd 5730 */
6ba94429 5731int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5732{
6ba94429
FW
5733 struct wq_device *wq_dev;
5734 int ret;
a0a1a5fd 5735
6ba94429 5736 /*
402dd89d 5737 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5738 * attributes breaks ordering guarantee. Disallow exposing ordered
5739 * workqueues.
5740 */
0a94efb5 5741 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5742 return -EINVAL;
a0a1a5fd 5743
6ba94429
FW
5744 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5745 if (!wq_dev)
5746 return -ENOMEM;
5bcab335 5747
6ba94429
FW
5748 wq_dev->wq = wq;
5749 wq_dev->dev.bus = &wq_subsys;
6ba94429 5750 wq_dev->dev.release = wq_device_release;
23217b44 5751 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5752
6ba94429
FW
5753 /*
5754 * unbound_attrs are created separately. Suppress uevent until
5755 * everything is ready.
5756 */
5757 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5758
6ba94429
FW
5759 ret = device_register(&wq_dev->dev);
5760 if (ret) {
537f4146 5761 put_device(&wq_dev->dev);
6ba94429
FW
5762 wq->wq_dev = NULL;
5763 return ret;
5764 }
a0a1a5fd 5765
6ba94429
FW
5766 if (wq->flags & WQ_UNBOUND) {
5767 struct device_attribute *attr;
a0a1a5fd 5768
6ba94429
FW
5769 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5770 ret = device_create_file(&wq_dev->dev, attr);
5771 if (ret) {
5772 device_unregister(&wq_dev->dev);
5773 wq->wq_dev = NULL;
5774 return ret;
a0a1a5fd
TH
5775 }
5776 }
5777 }
6ba94429
FW
5778
5779 dev_set_uevent_suppress(&wq_dev->dev, false);
5780 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5781 return 0;
a0a1a5fd
TH
5782}
5783
5784/**
6ba94429
FW
5785 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5786 * @wq: the workqueue to unregister
a0a1a5fd 5787 *
6ba94429 5788 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5789 */
6ba94429 5790static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5791{
6ba94429 5792 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5793
6ba94429
FW
5794 if (!wq->wq_dev)
5795 return;
a0a1a5fd 5796
6ba94429
FW
5797 wq->wq_dev = NULL;
5798 device_unregister(&wq_dev->dev);
a0a1a5fd 5799}
6ba94429
FW
5800#else /* CONFIG_SYSFS */
5801static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5802#endif /* CONFIG_SYSFS */
a0a1a5fd 5803
82607adc
TH
5804/*
5805 * Workqueue watchdog.
5806 *
5807 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5808 * flush dependency, a concurrency managed work item which stays RUNNING
5809 * indefinitely. Workqueue stalls can be very difficult to debug as the
5810 * usual warning mechanisms don't trigger and internal workqueue state is
5811 * largely opaque.
5812 *
5813 * Workqueue watchdog monitors all worker pools periodically and dumps
5814 * state if some pools failed to make forward progress for a while where
5815 * forward progress is defined as the first item on ->worklist changing.
5816 *
5817 * This mechanism is controlled through the kernel parameter
5818 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5819 * corresponding sysfs parameter file.
5820 */
5821#ifdef CONFIG_WQ_WATCHDOG
5822
82607adc 5823static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5824static struct timer_list wq_watchdog_timer;
82607adc
TH
5825
5826static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5827static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5828
5829static void wq_watchdog_reset_touched(void)
5830{
5831 int cpu;
5832
5833 wq_watchdog_touched = jiffies;
5834 for_each_possible_cpu(cpu)
5835 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5836}
5837
5cd79d6a 5838static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5839{
5840 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5841 bool lockup_detected = false;
940d71c6 5842 unsigned long now = jiffies;
82607adc
TH
5843 struct worker_pool *pool;
5844 int pi;
5845
5846 if (!thresh)
5847 return;
5848
5849 rcu_read_lock();
5850
5851 for_each_pool(pool, pi) {
5852 unsigned long pool_ts, touched, ts;
5853
5854 if (list_empty(&pool->worklist))
5855 continue;
5856
940d71c6
SS
5857 /*
5858 * If a virtual machine is stopped by the host it can look to
5859 * the watchdog like a stall.
5860 */
5861 kvm_check_and_clear_guest_paused();
5862
82607adc 5863 /* get the latest of pool and touched timestamps */
89e28ce6
WQ
5864 if (pool->cpu >= 0)
5865 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5866 else
5867 touched = READ_ONCE(wq_watchdog_touched);
82607adc 5868 pool_ts = READ_ONCE(pool->watchdog_ts);
82607adc
TH
5869
5870 if (time_after(pool_ts, touched))
5871 ts = pool_ts;
5872 else
5873 ts = touched;
5874
82607adc 5875 /* did we stall? */
940d71c6 5876 if (time_after(now, ts + thresh)) {
82607adc
TH
5877 lockup_detected = true;
5878 pr_emerg("BUG: workqueue lockup - pool");
5879 pr_cont_pool_info(pool);
5880 pr_cont(" stuck for %us!\n",
940d71c6 5881 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc
TH
5882 }
5883 }
5884
5885 rcu_read_unlock();
5886
5887 if (lockup_detected)
5888 show_workqueue_state();
5889
5890 wq_watchdog_reset_touched();
5891 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5892}
5893
cb9d7fd5 5894notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5895{
5896 if (cpu >= 0)
5897 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
89e28ce6
WQ
5898
5899 wq_watchdog_touched = jiffies;
82607adc
TH
5900}
5901
5902static void wq_watchdog_set_thresh(unsigned long thresh)
5903{
5904 wq_watchdog_thresh = 0;
5905 del_timer_sync(&wq_watchdog_timer);
5906
5907 if (thresh) {
5908 wq_watchdog_thresh = thresh;
5909 wq_watchdog_reset_touched();
5910 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5911 }
5912}
5913
5914static int wq_watchdog_param_set_thresh(const char *val,
5915 const struct kernel_param *kp)
5916{
5917 unsigned long thresh;
5918 int ret;
5919
5920 ret = kstrtoul(val, 0, &thresh);
5921 if (ret)
5922 return ret;
5923
5924 if (system_wq)
5925 wq_watchdog_set_thresh(thresh);
5926 else
5927 wq_watchdog_thresh = thresh;
5928
5929 return 0;
5930}
5931
5932static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5933 .set = wq_watchdog_param_set_thresh,
5934 .get = param_get_ulong,
5935};
5936
5937module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5938 0644);
5939
5940static void wq_watchdog_init(void)
5941{
5cd79d6a 5942 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5943 wq_watchdog_set_thresh(wq_watchdog_thresh);
5944}
5945
5946#else /* CONFIG_WQ_WATCHDOG */
5947
5948static inline void wq_watchdog_init(void) { }
5949
5950#endif /* CONFIG_WQ_WATCHDOG */
5951
bce90380
TH
5952static void __init wq_numa_init(void)
5953{
5954 cpumask_var_t *tbl;
5955 int node, cpu;
5956
bce90380
TH
5957 if (num_possible_nodes() <= 1)
5958 return;
5959
d55262c4
TH
5960 if (wq_disable_numa) {
5961 pr_info("workqueue: NUMA affinity support disabled\n");
5962 return;
5963 }
5964
f728c4a9
ZL
5965 for_each_possible_cpu(cpu) {
5966 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5967 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5968 return;
5969 }
5970 }
5971
be69d00d 5972 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5973 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5974
bce90380
TH
5975 /*
5976 * We want masks of possible CPUs of each node which isn't readily
5977 * available. Build one from cpu_to_node() which should have been
5978 * fully initialized by now.
5979 */
6396bb22 5980 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5981 BUG_ON(!tbl);
5982
5983 for_each_node(node)
5a6024f1 5984 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5985 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5986
5987 for_each_possible_cpu(cpu) {
5988 node = cpu_to_node(cpu);
bce90380
TH
5989 cpumask_set_cpu(cpu, tbl[node]);
5990 }
5991
5992 wq_numa_possible_cpumask = tbl;
5993 wq_numa_enabled = true;
5994}
5995
3347fa09
TH
5996/**
5997 * workqueue_init_early - early init for workqueue subsystem
5998 *
5999 * This is the first half of two-staged workqueue subsystem initialization
6000 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6001 * idr are up. It sets up all the data structures and system workqueues
6002 * and allows early boot code to create workqueues and queue/cancel work
6003 * items. Actual work item execution starts only after kthreads can be
6004 * created and scheduled right before early initcalls.
6005 */
2333e829 6006void __init workqueue_init_early(void)
1da177e4 6007{
7a4e344c 6008 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 6009 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 6010 int i, cpu;
c34056a3 6011
10cdb157 6012 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 6013
b05a7928 6014 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 6015 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 6016
e904e6c2
TH
6017 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6018
706026c2 6019 /* initialize CPU pools */
29c91e99 6020 for_each_possible_cpu(cpu) {
4ce62e9e 6021 struct worker_pool *pool;
8b03ae3c 6022
7a4e344c 6023 i = 0;
f02ae73a 6024 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 6025 BUG_ON(init_worker_pool(pool));
ec22ca5e 6026 pool->cpu = cpu;
29c91e99 6027 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 6028 pool->attrs->nice = std_nice[i++];
f3f90ad4 6029 pool->node = cpu_to_node(cpu);
7a4e344c 6030
9daf9e67 6031 /* alloc pool ID */
68e13a67 6032 mutex_lock(&wq_pool_mutex);
9daf9e67 6033 BUG_ON(worker_pool_assign_id(pool));
68e13a67 6034 mutex_unlock(&wq_pool_mutex);
4ce62e9e 6035 }
8b03ae3c
TH
6036 }
6037
8a2b7538 6038 /* create default unbound and ordered wq attrs */
29c91e99
TH
6039 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6040 struct workqueue_attrs *attrs;
6041
be69d00d 6042 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 6043 attrs->nice = std_nice[i];
29c91e99 6044 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
6045
6046 /*
6047 * An ordered wq should have only one pwq as ordering is
6048 * guaranteed by max_active which is enforced by pwqs.
6049 * Turn off NUMA so that dfl_pwq is used for all nodes.
6050 */
be69d00d 6051 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
6052 attrs->nice = std_nice[i];
6053 attrs->no_numa = true;
6054 ordered_wq_attrs[i] = attrs;
29c91e99
TH
6055 }
6056
d320c038 6057 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 6058 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 6059 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
6060 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6061 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
6062 system_freezable_wq = alloc_workqueue("events_freezable",
6063 WQ_FREEZABLE, 0);
0668106c
VK
6064 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6065 WQ_POWER_EFFICIENT, 0);
6066 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6067 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6068 0);
1aabe902 6069 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
6070 !system_unbound_wq || !system_freezable_wq ||
6071 !system_power_efficient_wq ||
6072 !system_freezable_power_efficient_wq);
3347fa09
TH
6073}
6074
6075/**
6076 * workqueue_init - bring workqueue subsystem fully online
6077 *
6078 * This is the latter half of two-staged workqueue subsystem initialization
6079 * and invoked as soon as kthreads can be created and scheduled.
6080 * Workqueues have been created and work items queued on them, but there
6081 * are no kworkers executing the work items yet. Populate the worker pools
6082 * with the initial workers and enable future kworker creations.
6083 */
2333e829 6084void __init workqueue_init(void)
3347fa09 6085{
2186d9f9 6086 struct workqueue_struct *wq;
3347fa09
TH
6087 struct worker_pool *pool;
6088 int cpu, bkt;
6089
2186d9f9
TH
6090 /*
6091 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6092 * CPU to node mapping may not be available that early on some
6093 * archs such as power and arm64. As per-cpu pools created
6094 * previously could be missing node hint and unbound pools NUMA
6095 * affinity, fix them up.
40c17f75
TH
6096 *
6097 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6098 */
6099 wq_numa_init();
6100
6101 mutex_lock(&wq_pool_mutex);
6102
6103 for_each_possible_cpu(cpu) {
6104 for_each_cpu_worker_pool(pool, cpu) {
6105 pool->node = cpu_to_node(cpu);
6106 }
6107 }
6108
40c17f75 6109 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6110 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6111 WARN(init_rescuer(wq),
6112 "workqueue: failed to create early rescuer for %s",
6113 wq->name);
6114 }
2186d9f9
TH
6115
6116 mutex_unlock(&wq_pool_mutex);
6117
3347fa09
TH
6118 /* create the initial workers */
6119 for_each_online_cpu(cpu) {
6120 for_each_cpu_worker_pool(pool, cpu) {
6121 pool->flags &= ~POOL_DISASSOCIATED;
6122 BUG_ON(!create_worker(pool));
6123 }
6124 }
6125
6126 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6127 BUG_ON(!create_worker(pool));
6128
6129 wq_online = true;
82607adc 6130 wq_watchdog_init();
1da177e4 6131}