]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/workqueue.c
net/mlx5e: Prefetch skb data on RX
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
b5927605 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
133 *
134 * MD: wq_mayday_lock protected.
1da177e4 135 */
1da177e4 136
2eaebdb3 137/* struct worker is defined in workqueue_internal.h */
c34056a3 138
bd7bdd43 139struct worker_pool {
d565ed63 140 spinlock_t lock; /* the pool lock */
d84ff051 141 int cpu; /* I: the associated cpu */
f3f90ad4 142 int node; /* I: the associated node ID */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
2607d7a6 162 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
163 struct mutex attach_mutex; /* attach/detach exclusion */
164 struct list_head workers; /* A: attached workers */
60f5a4bc 165 struct completion *detach_completion; /* all workers detached */
e19e397a 166
7cda9aae 167 struct ida worker_ida; /* worker IDs for task name */
e19e397a 168
7a4e344c 169 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 172
e19e397a
TH
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
8b03ae3c
TH
185} ____cacheline_aligned_in_smp;
186
1da177e4 187/*
112202d9
TH
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
1da177e4 192 */
112202d9 193struct pool_workqueue {
bd7bdd43 194 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 195 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
8864b4e5 198 int refcnt; /* L: reference count */
73f53c4a
TH
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
3c25a55d 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 205 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 211 * determined without grabbing wq->mutex.
8864b4e5
TH
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
e904e6c2 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 216
73f53c4a
TH
217/*
218 * Structure used to wait for workqueue flush.
219 */
220struct wq_flusher {
3c25a55d
LJ
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
223 struct completion done; /* flush completion */
224};
225
226223ab
TH
226struct wq_device;
227
1da177e4 228/*
c5aa87bb
TH
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
231 */
232struct workqueue_struct {
3c25a55d 233 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 234 struct list_head list; /* PR: list of all workqueues */
73f53c4a 235
3c25a55d
LJ
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
112202d9 239 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 243
2e109a28 244 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
245 struct worker *rescuer; /* I: rescue worker */
246
87fc741e 247 int nr_drainers; /* WQ: drain in progress */
a357fc03 248 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 249
6029a918 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 252
226223ab
TH
253#ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255#endif
4e6045f1 256#ifdef CONFIG_LOCKDEP
4690c4ab 257 struct lockdep_map lockdep_map;
4e6045f1 258#endif
ecf6881f 259 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 260
e2dca7ad
TH
261 /*
262 * Destruction of workqueue_struct is sched-RCU protected to allow
263 * walking the workqueues list without grabbing wq_pool_mutex.
264 * This is used to dump all workqueues from sysrq.
265 */
266 struct rcu_head rcu;
267
2728fd2f
TH
268 /* hot fields used during command issue, aligned to cacheline */
269 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
270 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 271 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
272};
273
e904e6c2
TH
274static struct kmem_cache *pwq_cache;
275
bce90380
TH
276static cpumask_var_t *wq_numa_possible_cpumask;
277 /* possible CPUs of each node */
278
d55262c4
TH
279static bool wq_disable_numa;
280module_param_named(disable_numa, wq_disable_numa, bool, 0444);
281
cee22a15
VK
282/* see the comment above the definition of WQ_POWER_EFFICIENT */
283#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
284static bool wq_power_efficient = true;
285#else
286static bool wq_power_efficient;
287#endif
288
289module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
bce90380
TH
291static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
292
4c16bd32
TH
293/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
295
68e13a67 296static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 297static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 298
e2dca7ad 299static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 300static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
301
302/* the per-cpu worker pools */
303static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
304 cpu_worker_pools);
305
68e13a67 306static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 307
68e13a67 308/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
309static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
310
c5aa87bb 311/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
312static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
313
8a2b7538
TH
314/* I: attributes used when instantiating ordered pools on demand */
315static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
316
d320c038 317struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 318EXPORT_SYMBOL(system_wq);
044c782c 319struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 320EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 321struct workqueue_struct *system_long_wq __read_mostly;
d320c038 322EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 323struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 324EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 325struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 326EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
327struct workqueue_struct *system_power_efficient_wq __read_mostly;
328EXPORT_SYMBOL_GPL(system_power_efficient_wq);
329struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
330EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 331
7d19c5ce
TH
332static int worker_thread(void *__worker);
333static void copy_workqueue_attrs(struct workqueue_attrs *to,
334 const struct workqueue_attrs *from);
6ba94429 335static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 336
97bd2347
TH
337#define CREATE_TRACE_POINTS
338#include <trace/events/workqueue.h>
339
68e13a67 340#define assert_rcu_or_pool_mutex() \
5bcab335 341 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
342 lockdep_is_held(&wq_pool_mutex), \
343 "sched RCU or wq_pool_mutex should be held")
5bcab335 344
b09f4fd3 345#define assert_rcu_or_wq_mutex(wq) \
76af4d93 346 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 347 lockdep_is_held(&wq->mutex), \
b09f4fd3 348 "sched RCU or wq->mutex should be held")
76af4d93 349
f02ae73a
TH
350#define for_each_cpu_worker_pool(pool, cpu) \
351 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
352 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 353 (pool)++)
4ce62e9e 354
17116969
TH
355/**
356 * for_each_pool - iterate through all worker_pools in the system
357 * @pool: iteration cursor
611c92a0 358 * @pi: integer used for iteration
fa1b54e6 359 *
68e13a67
LJ
360 * This must be called either with wq_pool_mutex held or sched RCU read
361 * locked. If the pool needs to be used beyond the locking in effect, the
362 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
363 *
364 * The if/else clause exists only for the lockdep assertion and can be
365 * ignored.
17116969 366 */
611c92a0
TH
367#define for_each_pool(pool, pi) \
368 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 369 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 370 else
17116969 371
822d8405
TH
372/**
373 * for_each_pool_worker - iterate through all workers of a worker_pool
374 * @worker: iteration cursor
822d8405
TH
375 * @pool: worker_pool to iterate workers of
376 *
92f9c5c4 377 * This must be called with @pool->attach_mutex.
822d8405
TH
378 *
379 * The if/else clause exists only for the lockdep assertion and can be
380 * ignored.
381 */
da028469
LJ
382#define for_each_pool_worker(worker, pool) \
383 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 384 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
385 else
386
49e3cf44
TH
387/**
388 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
389 * @pwq: iteration cursor
390 * @wq: the target workqueue
76af4d93 391 *
b09f4fd3 392 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
393 * If the pwq needs to be used beyond the locking in effect, the caller is
394 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
395 *
396 * The if/else clause exists only for the lockdep assertion and can be
397 * ignored.
49e3cf44
TH
398 */
399#define for_each_pwq(pwq, wq) \
76af4d93 400 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 401 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 402 else
f3421797 403
dc186ad7
TG
404#ifdef CONFIG_DEBUG_OBJECTS_WORK
405
406static struct debug_obj_descr work_debug_descr;
407
99777288
SG
408static void *work_debug_hint(void *addr)
409{
410 return ((struct work_struct *) addr)->func;
411}
412
dc186ad7
TG
413/*
414 * fixup_init is called when:
415 * - an active object is initialized
416 */
417static int work_fixup_init(void *addr, enum debug_obj_state state)
418{
419 struct work_struct *work = addr;
420
421 switch (state) {
422 case ODEBUG_STATE_ACTIVE:
423 cancel_work_sync(work);
424 debug_object_init(work, &work_debug_descr);
425 return 1;
426 default:
427 return 0;
428 }
429}
430
431/*
432 * fixup_activate is called when:
433 * - an active object is activated
434 * - an unknown object is activated (might be a statically initialized object)
435 */
436static int work_fixup_activate(void *addr, enum debug_obj_state state)
437{
438 struct work_struct *work = addr;
439
440 switch (state) {
441
442 case ODEBUG_STATE_NOTAVAILABLE:
443 /*
444 * This is not really a fixup. The work struct was
445 * statically initialized. We just make sure that it
446 * is tracked in the object tracker.
447 */
22df02bb 448 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
449 debug_object_init(work, &work_debug_descr);
450 debug_object_activate(work, &work_debug_descr);
451 return 0;
452 }
453 WARN_ON_ONCE(1);
454 return 0;
455
456 case ODEBUG_STATE_ACTIVE:
457 WARN_ON(1);
458
459 default:
460 return 0;
461 }
462}
463
464/*
465 * fixup_free is called when:
466 * - an active object is freed
467 */
468static int work_fixup_free(void *addr, enum debug_obj_state state)
469{
470 struct work_struct *work = addr;
471
472 switch (state) {
473 case ODEBUG_STATE_ACTIVE:
474 cancel_work_sync(work);
475 debug_object_free(work, &work_debug_descr);
476 return 1;
477 default:
478 return 0;
479 }
480}
481
482static struct debug_obj_descr work_debug_descr = {
483 .name = "work_struct",
99777288 484 .debug_hint = work_debug_hint,
dc186ad7
TG
485 .fixup_init = work_fixup_init,
486 .fixup_activate = work_fixup_activate,
487 .fixup_free = work_fixup_free,
488};
489
490static inline void debug_work_activate(struct work_struct *work)
491{
492 debug_object_activate(work, &work_debug_descr);
493}
494
495static inline void debug_work_deactivate(struct work_struct *work)
496{
497 debug_object_deactivate(work, &work_debug_descr);
498}
499
500void __init_work(struct work_struct *work, int onstack)
501{
502 if (onstack)
503 debug_object_init_on_stack(work, &work_debug_descr);
504 else
505 debug_object_init(work, &work_debug_descr);
506}
507EXPORT_SYMBOL_GPL(__init_work);
508
509void destroy_work_on_stack(struct work_struct *work)
510{
511 debug_object_free(work, &work_debug_descr);
512}
513EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514
ea2e64f2
TG
515void destroy_delayed_work_on_stack(struct delayed_work *work)
516{
517 destroy_timer_on_stack(&work->timer);
518 debug_object_free(&work->work, &work_debug_descr);
519}
520EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521
dc186ad7
TG
522#else
523static inline void debug_work_activate(struct work_struct *work) { }
524static inline void debug_work_deactivate(struct work_struct *work) { }
525#endif
526
4e8b22bd
LB
527/**
528 * worker_pool_assign_id - allocate ID and assing it to @pool
529 * @pool: the pool pointer of interest
530 *
531 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
532 * successfully, -errno on failure.
533 */
9daf9e67
TH
534static int worker_pool_assign_id(struct worker_pool *pool)
535{
536 int ret;
537
68e13a67 538 lockdep_assert_held(&wq_pool_mutex);
5bcab335 539
4e8b22bd
LB
540 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
541 GFP_KERNEL);
229641a6 542 if (ret >= 0) {
e68035fb 543 pool->id = ret;
229641a6
TH
544 return 0;
545 }
fa1b54e6 546 return ret;
7c3eed5c
TH
547}
548
df2d5ae4
TH
549/**
550 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
551 * @wq: the target workqueue
552 * @node: the node ID
553 *
554 * This must be called either with pwq_lock held or sched RCU read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
557 *
558 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
559 */
560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562{
563 assert_rcu_or_wq_mutex(wq);
564 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
565}
566
73f53c4a
TH
567static unsigned int work_color_to_flags(int color)
568{
569 return color << WORK_STRUCT_COLOR_SHIFT;
570}
571
572static int get_work_color(struct work_struct *work)
573{
574 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
575 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
576}
577
578static int work_next_color(int color)
579{
580 return (color + 1) % WORK_NR_COLORS;
581}
1da177e4 582
14441960 583/*
112202d9
TH
584 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
585 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 586 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 587 *
112202d9
TH
588 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
589 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
590 * work->data. These functions should only be called while the work is
591 * owned - ie. while the PENDING bit is set.
7a22ad75 592 *
112202d9 593 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 594 * corresponding to a work. Pool is available once the work has been
112202d9 595 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 596 * available only while the work item is queued.
7a22ad75 597 *
bbb68dfa
TH
598 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
599 * canceled. While being canceled, a work item may have its PENDING set
600 * but stay off timer and worklist for arbitrarily long and nobody should
601 * try to steal the PENDING bit.
14441960 602 */
7a22ad75
TH
603static inline void set_work_data(struct work_struct *work, unsigned long data,
604 unsigned long flags)
365970a1 605{
6183c009 606 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
607 atomic_long_set(&work->data, data | flags | work_static(work));
608}
365970a1 609
112202d9 610static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
611 unsigned long extra_flags)
612{
112202d9
TH
613 set_work_data(work, (unsigned long)pwq,
614 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
615}
616
4468a00f
LJ
617static void set_work_pool_and_keep_pending(struct work_struct *work,
618 int pool_id)
619{
620 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
621 WORK_STRUCT_PENDING);
622}
623
7c3eed5c
TH
624static void set_work_pool_and_clear_pending(struct work_struct *work,
625 int pool_id)
7a22ad75 626{
23657bb1
TH
627 /*
628 * The following wmb is paired with the implied mb in
629 * test_and_set_bit(PENDING) and ensures all updates to @work made
630 * here are visible to and precede any updates by the next PENDING
631 * owner.
632 */
633 smp_wmb();
7c3eed5c 634 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 635}
f756d5e2 636
7a22ad75 637static void clear_work_data(struct work_struct *work)
1da177e4 638{
7c3eed5c
TH
639 smp_wmb(); /* see set_work_pool_and_clear_pending() */
640 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
641}
642
112202d9 643static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 644{
e120153d 645 unsigned long data = atomic_long_read(&work->data);
7a22ad75 646
112202d9 647 if (data & WORK_STRUCT_PWQ)
e120153d
TH
648 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
649 else
650 return NULL;
4d707b9f
ON
651}
652
7c3eed5c
TH
653/**
654 * get_work_pool - return the worker_pool a given work was associated with
655 * @work: the work item of interest
656 *
68e13a67
LJ
657 * Pools are created and destroyed under wq_pool_mutex, and allows read
658 * access under sched-RCU read lock. As such, this function should be
659 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
660 *
661 * All fields of the returned pool are accessible as long as the above
662 * mentioned locking is in effect. If the returned pool needs to be used
663 * beyond the critical section, the caller is responsible for ensuring the
664 * returned pool is and stays online.
d185af30
YB
665 *
666 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
667 */
668static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 669{
e120153d 670 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 671 int pool_id;
7a22ad75 672
68e13a67 673 assert_rcu_or_pool_mutex();
fa1b54e6 674
112202d9
TH
675 if (data & WORK_STRUCT_PWQ)
676 return ((struct pool_workqueue *)
7c3eed5c 677 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 678
7c3eed5c
TH
679 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
680 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
681 return NULL;
682
fa1b54e6 683 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
684}
685
686/**
687 * get_work_pool_id - return the worker pool ID a given work is associated with
688 * @work: the work item of interest
689 *
d185af30 690 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
691 * %WORK_OFFQ_POOL_NONE if none.
692 */
693static int get_work_pool_id(struct work_struct *work)
694{
54d5b7d0
LJ
695 unsigned long data = atomic_long_read(&work->data);
696
112202d9
TH
697 if (data & WORK_STRUCT_PWQ)
698 return ((struct pool_workqueue *)
54d5b7d0 699 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 700
54d5b7d0 701 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
702}
703
bbb68dfa
TH
704static void mark_work_canceling(struct work_struct *work)
705{
7c3eed5c 706 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 707
7c3eed5c
TH
708 pool_id <<= WORK_OFFQ_POOL_SHIFT;
709 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
710}
711
712static bool work_is_canceling(struct work_struct *work)
713{
714 unsigned long data = atomic_long_read(&work->data);
715
112202d9 716 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
717}
718
e22bee78 719/*
3270476a
TH
720 * Policy functions. These define the policies on how the global worker
721 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 722 * they're being called with pool->lock held.
e22bee78
TH
723 */
724
63d95a91 725static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 726{
e19e397a 727 return !atomic_read(&pool->nr_running);
a848e3b6
ON
728}
729
4594bf15 730/*
e22bee78
TH
731 * Need to wake up a worker? Called from anything but currently
732 * running workers.
974271c4
TH
733 *
734 * Note that, because unbound workers never contribute to nr_running, this
706026c2 735 * function will always return %true for unbound pools as long as the
974271c4 736 * worklist isn't empty.
4594bf15 737 */
63d95a91 738static bool need_more_worker(struct worker_pool *pool)
365970a1 739{
63d95a91 740 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 741}
4594bf15 742
e22bee78 743/* Can I start working? Called from busy but !running workers. */
63d95a91 744static bool may_start_working(struct worker_pool *pool)
e22bee78 745{
63d95a91 746 return pool->nr_idle;
e22bee78
TH
747}
748
749/* Do I need to keep working? Called from currently running workers. */
63d95a91 750static bool keep_working(struct worker_pool *pool)
e22bee78 751{
e19e397a
TH
752 return !list_empty(&pool->worklist) &&
753 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
754}
755
756/* Do we need a new worker? Called from manager. */
63d95a91 757static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 758{
63d95a91 759 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 760}
365970a1 761
e22bee78 762/* Do we have too many workers and should some go away? */
63d95a91 763static bool too_many_workers(struct worker_pool *pool)
e22bee78 764{
34a06bd6 765 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
766 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
767 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
768
769 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
770}
771
4d707b9f 772/*
e22bee78
TH
773 * Wake up functions.
774 */
775
1037de36
LJ
776/* Return the first idle worker. Safe with preemption disabled */
777static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 778{
63d95a91 779 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
780 return NULL;
781
63d95a91 782 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
783}
784
785/**
786 * wake_up_worker - wake up an idle worker
63d95a91 787 * @pool: worker pool to wake worker from
7e11629d 788 *
63d95a91 789 * Wake up the first idle worker of @pool.
7e11629d
TH
790 *
791 * CONTEXT:
d565ed63 792 * spin_lock_irq(pool->lock).
7e11629d 793 */
63d95a91 794static void wake_up_worker(struct worker_pool *pool)
7e11629d 795{
1037de36 796 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
797
798 if (likely(worker))
799 wake_up_process(worker->task);
800}
801
d302f017 802/**
e22bee78
TH
803 * wq_worker_waking_up - a worker is waking up
804 * @task: task waking up
805 * @cpu: CPU @task is waking up to
806 *
807 * This function is called during try_to_wake_up() when a worker is
808 * being awoken.
809 *
810 * CONTEXT:
811 * spin_lock_irq(rq->lock)
812 */
d84ff051 813void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
814{
815 struct worker *worker = kthread_data(task);
816
36576000 817 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 818 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 819 atomic_inc(&worker->pool->nr_running);
36576000 820 }
e22bee78
TH
821}
822
823/**
824 * wq_worker_sleeping - a worker is going to sleep
825 * @task: task going to sleep
826 * @cpu: CPU in question, must be the current CPU number
827 *
828 * This function is called during schedule() when a busy worker is
829 * going to sleep. Worker on the same cpu can be woken up by
830 * returning pointer to its task.
831 *
832 * CONTEXT:
833 * spin_lock_irq(rq->lock)
834 *
d185af30 835 * Return:
e22bee78
TH
836 * Worker task on @cpu to wake up, %NULL if none.
837 */
d84ff051 838struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
839{
840 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 841 struct worker_pool *pool;
e22bee78 842
111c225a
TH
843 /*
844 * Rescuers, which may not have all the fields set up like normal
845 * workers, also reach here, let's not access anything before
846 * checking NOT_RUNNING.
847 */
2d64672e 848 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
849 return NULL;
850
111c225a 851 pool = worker->pool;
111c225a 852
e22bee78 853 /* this can only happen on the local cpu */
92b69f50 854 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 855 return NULL;
e22bee78
TH
856
857 /*
858 * The counterpart of the following dec_and_test, implied mb,
859 * worklist not empty test sequence is in insert_work().
860 * Please read comment there.
861 *
628c78e7
TH
862 * NOT_RUNNING is clear. This means that we're bound to and
863 * running on the local cpu w/ rq lock held and preemption
864 * disabled, which in turn means that none else could be
d565ed63 865 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 866 * lock is safe.
e22bee78 867 */
e19e397a
TH
868 if (atomic_dec_and_test(&pool->nr_running) &&
869 !list_empty(&pool->worklist))
1037de36 870 to_wakeup = first_idle_worker(pool);
e22bee78
TH
871 return to_wakeup ? to_wakeup->task : NULL;
872}
873
874/**
875 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 876 * @worker: self
d302f017 877 * @flags: flags to set
d302f017 878 *
228f1d00 879 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 880 *
cb444766 881 * CONTEXT:
d565ed63 882 * spin_lock_irq(pool->lock)
d302f017 883 */
228f1d00 884static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 885{
bd7bdd43 886 struct worker_pool *pool = worker->pool;
e22bee78 887
cb444766
TH
888 WARN_ON_ONCE(worker->task != current);
889
228f1d00 890 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
891 if ((flags & WORKER_NOT_RUNNING) &&
892 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 893 atomic_dec(&pool->nr_running);
e22bee78
TH
894 }
895
d302f017
TH
896 worker->flags |= flags;
897}
898
899/**
e22bee78 900 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 901 * @worker: self
d302f017
TH
902 * @flags: flags to clear
903 *
e22bee78 904 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 905 *
cb444766 906 * CONTEXT:
d565ed63 907 * spin_lock_irq(pool->lock)
d302f017
TH
908 */
909static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
910{
63d95a91 911 struct worker_pool *pool = worker->pool;
e22bee78
TH
912 unsigned int oflags = worker->flags;
913
cb444766
TH
914 WARN_ON_ONCE(worker->task != current);
915
d302f017 916 worker->flags &= ~flags;
e22bee78 917
42c025f3
TH
918 /*
919 * If transitioning out of NOT_RUNNING, increment nr_running. Note
920 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
921 * of multiple flags, not a single flag.
922 */
e22bee78
TH
923 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
924 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 925 atomic_inc(&pool->nr_running);
d302f017
TH
926}
927
8cca0eea
TH
928/**
929 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 930 * @pool: pool of interest
8cca0eea
TH
931 * @work: work to find worker for
932 *
c9e7cf27
TH
933 * Find a worker which is executing @work on @pool by searching
934 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
935 * to match, its current execution should match the address of @work and
936 * its work function. This is to avoid unwanted dependency between
937 * unrelated work executions through a work item being recycled while still
938 * being executed.
939 *
940 * This is a bit tricky. A work item may be freed once its execution
941 * starts and nothing prevents the freed area from being recycled for
942 * another work item. If the same work item address ends up being reused
943 * before the original execution finishes, workqueue will identify the
944 * recycled work item as currently executing and make it wait until the
945 * current execution finishes, introducing an unwanted dependency.
946 *
c5aa87bb
TH
947 * This function checks the work item address and work function to avoid
948 * false positives. Note that this isn't complete as one may construct a
949 * work function which can introduce dependency onto itself through a
950 * recycled work item. Well, if somebody wants to shoot oneself in the
951 * foot that badly, there's only so much we can do, and if such deadlock
952 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
953 *
954 * CONTEXT:
d565ed63 955 * spin_lock_irq(pool->lock).
8cca0eea 956 *
d185af30
YB
957 * Return:
958 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 959 * otherwise.
4d707b9f 960 */
c9e7cf27 961static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 962 struct work_struct *work)
4d707b9f 963{
42f8570f 964 struct worker *worker;
42f8570f 965
b67bfe0d 966 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
967 (unsigned long)work)
968 if (worker->current_work == work &&
969 worker->current_func == work->func)
42f8570f
SL
970 return worker;
971
972 return NULL;
4d707b9f
ON
973}
974
bf4ede01
TH
975/**
976 * move_linked_works - move linked works to a list
977 * @work: start of series of works to be scheduled
978 * @head: target list to append @work to
979 * @nextp: out paramter for nested worklist walking
980 *
981 * Schedule linked works starting from @work to @head. Work series to
982 * be scheduled starts at @work and includes any consecutive work with
983 * WORK_STRUCT_LINKED set in its predecessor.
984 *
985 * If @nextp is not NULL, it's updated to point to the next work of
986 * the last scheduled work. This allows move_linked_works() to be
987 * nested inside outer list_for_each_entry_safe().
988 *
989 * CONTEXT:
d565ed63 990 * spin_lock_irq(pool->lock).
bf4ede01
TH
991 */
992static void move_linked_works(struct work_struct *work, struct list_head *head,
993 struct work_struct **nextp)
994{
995 struct work_struct *n;
996
997 /*
998 * Linked worklist will always end before the end of the list,
999 * use NULL for list head.
1000 */
1001 list_for_each_entry_safe_from(work, n, NULL, entry) {
1002 list_move_tail(&work->entry, head);
1003 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1004 break;
1005 }
1006
1007 /*
1008 * If we're already inside safe list traversal and have moved
1009 * multiple works to the scheduled queue, the next position
1010 * needs to be updated.
1011 */
1012 if (nextp)
1013 *nextp = n;
1014}
1015
8864b4e5
TH
1016/**
1017 * get_pwq - get an extra reference on the specified pool_workqueue
1018 * @pwq: pool_workqueue to get
1019 *
1020 * Obtain an extra reference on @pwq. The caller should guarantee that
1021 * @pwq has positive refcnt and be holding the matching pool->lock.
1022 */
1023static void get_pwq(struct pool_workqueue *pwq)
1024{
1025 lockdep_assert_held(&pwq->pool->lock);
1026 WARN_ON_ONCE(pwq->refcnt <= 0);
1027 pwq->refcnt++;
1028}
1029
1030/**
1031 * put_pwq - put a pool_workqueue reference
1032 * @pwq: pool_workqueue to put
1033 *
1034 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1035 * destruction. The caller should be holding the matching pool->lock.
1036 */
1037static void put_pwq(struct pool_workqueue *pwq)
1038{
1039 lockdep_assert_held(&pwq->pool->lock);
1040 if (likely(--pwq->refcnt))
1041 return;
1042 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1043 return;
1044 /*
1045 * @pwq can't be released under pool->lock, bounce to
1046 * pwq_unbound_release_workfn(). This never recurses on the same
1047 * pool->lock as this path is taken only for unbound workqueues and
1048 * the release work item is scheduled on a per-cpu workqueue. To
1049 * avoid lockdep warning, unbound pool->locks are given lockdep
1050 * subclass of 1 in get_unbound_pool().
1051 */
1052 schedule_work(&pwq->unbound_release_work);
1053}
1054
dce90d47
TH
1055/**
1056 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1057 * @pwq: pool_workqueue to put (can be %NULL)
1058 *
1059 * put_pwq() with locking. This function also allows %NULL @pwq.
1060 */
1061static void put_pwq_unlocked(struct pool_workqueue *pwq)
1062{
1063 if (pwq) {
1064 /*
1065 * As both pwqs and pools are sched-RCU protected, the
1066 * following lock operations are safe.
1067 */
1068 spin_lock_irq(&pwq->pool->lock);
1069 put_pwq(pwq);
1070 spin_unlock_irq(&pwq->pool->lock);
1071 }
1072}
1073
112202d9 1074static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1075{
112202d9 1076 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1077
1078 trace_workqueue_activate_work(work);
112202d9 1079 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1080 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1081 pwq->nr_active++;
bf4ede01
TH
1082}
1083
112202d9 1084static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1085{
112202d9 1086 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1087 struct work_struct, entry);
1088
112202d9 1089 pwq_activate_delayed_work(work);
3aa62497
LJ
1090}
1091
bf4ede01 1092/**
112202d9
TH
1093 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1094 * @pwq: pwq of interest
bf4ede01 1095 * @color: color of work which left the queue
bf4ede01
TH
1096 *
1097 * A work either has completed or is removed from pending queue,
112202d9 1098 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1099 *
1100 * CONTEXT:
d565ed63 1101 * spin_lock_irq(pool->lock).
bf4ede01 1102 */
112202d9 1103static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1104{
8864b4e5 1105 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1106 if (color == WORK_NO_COLOR)
8864b4e5 1107 goto out_put;
bf4ede01 1108
112202d9 1109 pwq->nr_in_flight[color]--;
bf4ede01 1110
112202d9
TH
1111 pwq->nr_active--;
1112 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1113 /* one down, submit a delayed one */
112202d9
TH
1114 if (pwq->nr_active < pwq->max_active)
1115 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1116 }
1117
1118 /* is flush in progress and are we at the flushing tip? */
112202d9 1119 if (likely(pwq->flush_color != color))
8864b4e5 1120 goto out_put;
bf4ede01
TH
1121
1122 /* are there still in-flight works? */
112202d9 1123 if (pwq->nr_in_flight[color])
8864b4e5 1124 goto out_put;
bf4ede01 1125
112202d9
TH
1126 /* this pwq is done, clear flush_color */
1127 pwq->flush_color = -1;
bf4ede01
TH
1128
1129 /*
112202d9 1130 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1131 * will handle the rest.
1132 */
112202d9
TH
1133 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1134 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1135out_put:
1136 put_pwq(pwq);
bf4ede01
TH
1137}
1138
36e227d2 1139/**
bbb68dfa 1140 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1141 * @work: work item to steal
1142 * @is_dwork: @work is a delayed_work
bbb68dfa 1143 * @flags: place to store irq state
36e227d2
TH
1144 *
1145 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1146 * stable state - idle, on timer or on worklist.
36e227d2 1147 *
d185af30 1148 * Return:
36e227d2
TH
1149 * 1 if @work was pending and we successfully stole PENDING
1150 * 0 if @work was idle and we claimed PENDING
1151 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1152 * -ENOENT if someone else is canceling @work, this state may persist
1153 * for arbitrarily long
36e227d2 1154 *
d185af30 1155 * Note:
bbb68dfa 1156 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1157 * interrupted while holding PENDING and @work off queue, irq must be
1158 * disabled on entry. This, combined with delayed_work->timer being
1159 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1160 *
1161 * On successful return, >= 0, irq is disabled and the caller is
1162 * responsible for releasing it using local_irq_restore(*@flags).
1163 *
e0aecdd8 1164 * This function is safe to call from any context including IRQ handler.
bf4ede01 1165 */
bbb68dfa
TH
1166static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1167 unsigned long *flags)
bf4ede01 1168{
d565ed63 1169 struct worker_pool *pool;
112202d9 1170 struct pool_workqueue *pwq;
bf4ede01 1171
bbb68dfa
TH
1172 local_irq_save(*flags);
1173
36e227d2
TH
1174 /* try to steal the timer if it exists */
1175 if (is_dwork) {
1176 struct delayed_work *dwork = to_delayed_work(work);
1177
e0aecdd8
TH
1178 /*
1179 * dwork->timer is irqsafe. If del_timer() fails, it's
1180 * guaranteed that the timer is not queued anywhere and not
1181 * running on the local CPU.
1182 */
36e227d2
TH
1183 if (likely(del_timer(&dwork->timer)))
1184 return 1;
1185 }
1186
1187 /* try to claim PENDING the normal way */
bf4ede01
TH
1188 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1189 return 0;
1190
1191 /*
1192 * The queueing is in progress, or it is already queued. Try to
1193 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1194 */
d565ed63
TH
1195 pool = get_work_pool(work);
1196 if (!pool)
bbb68dfa 1197 goto fail;
bf4ede01 1198
d565ed63 1199 spin_lock(&pool->lock);
0b3dae68 1200 /*
112202d9
TH
1201 * work->data is guaranteed to point to pwq only while the work
1202 * item is queued on pwq->wq, and both updating work->data to point
1203 * to pwq on queueing and to pool on dequeueing are done under
1204 * pwq->pool->lock. This in turn guarantees that, if work->data
1205 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1206 * item is currently queued on that pool.
1207 */
112202d9
TH
1208 pwq = get_work_pwq(work);
1209 if (pwq && pwq->pool == pool) {
16062836
TH
1210 debug_work_deactivate(work);
1211
1212 /*
1213 * A delayed work item cannot be grabbed directly because
1214 * it might have linked NO_COLOR work items which, if left
112202d9 1215 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1216 * management later on and cause stall. Make sure the work
1217 * item is activated before grabbing.
1218 */
1219 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1220 pwq_activate_delayed_work(work);
16062836
TH
1221
1222 list_del_init(&work->entry);
9c34a704 1223 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1224
112202d9 1225 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1226 set_work_pool_and_keep_pending(work, pool->id);
1227
1228 spin_unlock(&pool->lock);
1229 return 1;
bf4ede01 1230 }
d565ed63 1231 spin_unlock(&pool->lock);
bbb68dfa
TH
1232fail:
1233 local_irq_restore(*flags);
1234 if (work_is_canceling(work))
1235 return -ENOENT;
1236 cpu_relax();
36e227d2 1237 return -EAGAIN;
bf4ede01
TH
1238}
1239
4690c4ab 1240/**
706026c2 1241 * insert_work - insert a work into a pool
112202d9 1242 * @pwq: pwq @work belongs to
4690c4ab
TH
1243 * @work: work to insert
1244 * @head: insertion point
1245 * @extra_flags: extra WORK_STRUCT_* flags to set
1246 *
112202d9 1247 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1248 * work_struct flags.
4690c4ab
TH
1249 *
1250 * CONTEXT:
d565ed63 1251 * spin_lock_irq(pool->lock).
4690c4ab 1252 */
112202d9
TH
1253static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1254 struct list_head *head, unsigned int extra_flags)
b89deed3 1255{
112202d9 1256 struct worker_pool *pool = pwq->pool;
e22bee78 1257
4690c4ab 1258 /* we own @work, set data and link */
112202d9 1259 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1260 list_add_tail(&work->entry, head);
8864b4e5 1261 get_pwq(pwq);
e22bee78
TH
1262
1263 /*
c5aa87bb
TH
1264 * Ensure either wq_worker_sleeping() sees the above
1265 * list_add_tail() or we see zero nr_running to avoid workers lying
1266 * around lazily while there are works to be processed.
e22bee78
TH
1267 */
1268 smp_mb();
1269
63d95a91
TH
1270 if (__need_more_worker(pool))
1271 wake_up_worker(pool);
b89deed3
ON
1272}
1273
c8efcc25
TH
1274/*
1275 * Test whether @work is being queued from another work executing on the
8d03ecfe 1276 * same workqueue.
c8efcc25
TH
1277 */
1278static bool is_chained_work(struct workqueue_struct *wq)
1279{
8d03ecfe
TH
1280 struct worker *worker;
1281
1282 worker = current_wq_worker();
1283 /*
1284 * Return %true iff I'm a worker execuing a work item on @wq. If
1285 * I'm @worker, it's safe to dereference it without locking.
1286 */
112202d9 1287 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1288}
1289
d84ff051 1290static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1291 struct work_struct *work)
1292{
112202d9 1293 struct pool_workqueue *pwq;
c9178087 1294 struct worker_pool *last_pool;
1e19ffc6 1295 struct list_head *worklist;
8a2e8e5d 1296 unsigned int work_flags;
b75cac93 1297 unsigned int req_cpu = cpu;
8930caba
TH
1298
1299 /*
1300 * While a work item is PENDING && off queue, a task trying to
1301 * steal the PENDING will busy-loop waiting for it to either get
1302 * queued or lose PENDING. Grabbing PENDING and queueing should
1303 * happen with IRQ disabled.
1304 */
1305 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1306
dc186ad7 1307 debug_work_activate(work);
1e19ffc6 1308
9ef28a73 1309 /* if draining, only works from the same workqueue are allowed */
618b01eb 1310 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1311 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1312 return;
9e8cd2f5 1313retry:
df2d5ae4
TH
1314 if (req_cpu == WORK_CPU_UNBOUND)
1315 cpu = raw_smp_processor_id();
1316
c9178087 1317 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1318 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1319 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1320 else
1321 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1322
c9178087
TH
1323 /*
1324 * If @work was previously on a different pool, it might still be
1325 * running there, in which case the work needs to be queued on that
1326 * pool to guarantee non-reentrancy.
1327 */
1328 last_pool = get_work_pool(work);
1329 if (last_pool && last_pool != pwq->pool) {
1330 struct worker *worker;
18aa9eff 1331
c9178087 1332 spin_lock(&last_pool->lock);
18aa9eff 1333
c9178087 1334 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1335
c9178087
TH
1336 if (worker && worker->current_pwq->wq == wq) {
1337 pwq = worker->current_pwq;
8930caba 1338 } else {
c9178087
TH
1339 /* meh... not running there, queue here */
1340 spin_unlock(&last_pool->lock);
112202d9 1341 spin_lock(&pwq->pool->lock);
8930caba 1342 }
f3421797 1343 } else {
112202d9 1344 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1345 }
1346
9e8cd2f5
TH
1347 /*
1348 * pwq is determined and locked. For unbound pools, we could have
1349 * raced with pwq release and it could already be dead. If its
1350 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1351 * without another pwq replacing it in the numa_pwq_tbl or while
1352 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1353 * make forward-progress.
1354 */
1355 if (unlikely(!pwq->refcnt)) {
1356 if (wq->flags & WQ_UNBOUND) {
1357 spin_unlock(&pwq->pool->lock);
1358 cpu_relax();
1359 goto retry;
1360 }
1361 /* oops */
1362 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1363 wq->name, cpu);
1364 }
1365
112202d9
TH
1366 /* pwq determined, queue */
1367 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1368
f5b2552b 1369 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1370 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1371 return;
1372 }
1e19ffc6 1373
112202d9
TH
1374 pwq->nr_in_flight[pwq->work_color]++;
1375 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1376
112202d9 1377 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1378 trace_workqueue_activate_work(work);
112202d9
TH
1379 pwq->nr_active++;
1380 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1381 } else {
1382 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1383 worklist = &pwq->delayed_works;
8a2e8e5d 1384 }
1e19ffc6 1385
112202d9 1386 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1387
112202d9 1388 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1389}
1390
0fcb78c2 1391/**
c1a220e7
ZR
1392 * queue_work_on - queue work on specific cpu
1393 * @cpu: CPU number to execute work on
0fcb78c2
REB
1394 * @wq: workqueue to use
1395 * @work: work to queue
1396 *
c1a220e7
ZR
1397 * We queue the work to a specific CPU, the caller must ensure it
1398 * can't go away.
d185af30
YB
1399 *
1400 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1401 */
d4283e93
TH
1402bool queue_work_on(int cpu, struct workqueue_struct *wq,
1403 struct work_struct *work)
1da177e4 1404{
d4283e93 1405 bool ret = false;
8930caba 1406 unsigned long flags;
ef1ca236 1407
8930caba 1408 local_irq_save(flags);
c1a220e7 1409
22df02bb 1410 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1411 __queue_work(cpu, wq, work);
d4283e93 1412 ret = true;
c1a220e7 1413 }
ef1ca236 1414
8930caba 1415 local_irq_restore(flags);
1da177e4
LT
1416 return ret;
1417}
ad7b1f84 1418EXPORT_SYMBOL(queue_work_on);
1da177e4 1419
d8e794df 1420void delayed_work_timer_fn(unsigned long __data)
1da177e4 1421{
52bad64d 1422 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1423
e0aecdd8 1424 /* should have been called from irqsafe timer with irq already off */
60c057bc 1425 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1426}
1438ade5 1427EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1428
7beb2edf
TH
1429static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1430 struct delayed_work *dwork, unsigned long delay)
1da177e4 1431{
7beb2edf
TH
1432 struct timer_list *timer = &dwork->timer;
1433 struct work_struct *work = &dwork->work;
7beb2edf
TH
1434
1435 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1436 timer->data != (unsigned long)dwork);
fc4b514f
TH
1437 WARN_ON_ONCE(timer_pending(timer));
1438 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1439
8852aac2
TH
1440 /*
1441 * If @delay is 0, queue @dwork->work immediately. This is for
1442 * both optimization and correctness. The earliest @timer can
1443 * expire is on the closest next tick and delayed_work users depend
1444 * on that there's no such delay when @delay is 0.
1445 */
1446 if (!delay) {
1447 __queue_work(cpu, wq, &dwork->work);
1448 return;
1449 }
1450
7beb2edf 1451 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1452
60c057bc 1453 dwork->wq = wq;
1265057f 1454 dwork->cpu = cpu;
7beb2edf
TH
1455 timer->expires = jiffies + delay;
1456
1457 if (unlikely(cpu != WORK_CPU_UNBOUND))
1458 add_timer_on(timer, cpu);
1459 else
1460 add_timer(timer);
1da177e4
LT
1461}
1462
0fcb78c2
REB
1463/**
1464 * queue_delayed_work_on - queue work on specific CPU after delay
1465 * @cpu: CPU number to execute work on
1466 * @wq: workqueue to use
af9997e4 1467 * @dwork: work to queue
0fcb78c2
REB
1468 * @delay: number of jiffies to wait before queueing
1469 *
d185af30 1470 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1471 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1472 * execution.
0fcb78c2 1473 */
d4283e93
TH
1474bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1475 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1476{
52bad64d 1477 struct work_struct *work = &dwork->work;
d4283e93 1478 bool ret = false;
8930caba 1479 unsigned long flags;
7a6bc1cd 1480
8930caba
TH
1481 /* read the comment in __queue_work() */
1482 local_irq_save(flags);
7a6bc1cd 1483
22df02bb 1484 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1485 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1486 ret = true;
7a6bc1cd 1487 }
8a3e77cc 1488
8930caba 1489 local_irq_restore(flags);
7a6bc1cd
VP
1490 return ret;
1491}
ad7b1f84 1492EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1493
8376fe22
TH
1494/**
1495 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1496 * @cpu: CPU number to execute work on
1497 * @wq: workqueue to use
1498 * @dwork: work to queue
1499 * @delay: number of jiffies to wait before queueing
1500 *
1501 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1502 * modify @dwork's timer so that it expires after @delay. If @delay is
1503 * zero, @work is guaranteed to be scheduled immediately regardless of its
1504 * current state.
1505 *
d185af30 1506 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1507 * pending and its timer was modified.
1508 *
e0aecdd8 1509 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1510 * See try_to_grab_pending() for details.
1511 */
1512bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1513 struct delayed_work *dwork, unsigned long delay)
1514{
1515 unsigned long flags;
1516 int ret;
c7fc77f7 1517
8376fe22
TH
1518 do {
1519 ret = try_to_grab_pending(&dwork->work, true, &flags);
1520 } while (unlikely(ret == -EAGAIN));
63bc0362 1521
8376fe22
TH
1522 if (likely(ret >= 0)) {
1523 __queue_delayed_work(cpu, wq, dwork, delay);
1524 local_irq_restore(flags);
7a6bc1cd 1525 }
8376fe22
TH
1526
1527 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1528 return ret;
1529}
8376fe22
TH
1530EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1531
c8e55f36
TH
1532/**
1533 * worker_enter_idle - enter idle state
1534 * @worker: worker which is entering idle state
1535 *
1536 * @worker is entering idle state. Update stats and idle timer if
1537 * necessary.
1538 *
1539 * LOCKING:
d565ed63 1540 * spin_lock_irq(pool->lock).
c8e55f36
TH
1541 */
1542static void worker_enter_idle(struct worker *worker)
1da177e4 1543{
bd7bdd43 1544 struct worker_pool *pool = worker->pool;
c8e55f36 1545
6183c009
TH
1546 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1547 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1548 (worker->hentry.next || worker->hentry.pprev)))
1549 return;
c8e55f36 1550
051e1850 1551 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1552 worker->flags |= WORKER_IDLE;
bd7bdd43 1553 pool->nr_idle++;
e22bee78 1554 worker->last_active = jiffies;
c8e55f36
TH
1555
1556 /* idle_list is LIFO */
bd7bdd43 1557 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1558
628c78e7
TH
1559 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1560 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1561
544ecf31 1562 /*
706026c2 1563 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1564 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1565 * nr_running, the warning may trigger spuriously. Check iff
1566 * unbind is not in progress.
544ecf31 1567 */
24647570 1568 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1569 pool->nr_workers == pool->nr_idle &&
e19e397a 1570 atomic_read(&pool->nr_running));
c8e55f36
TH
1571}
1572
1573/**
1574 * worker_leave_idle - leave idle state
1575 * @worker: worker which is leaving idle state
1576 *
1577 * @worker is leaving idle state. Update stats.
1578 *
1579 * LOCKING:
d565ed63 1580 * spin_lock_irq(pool->lock).
c8e55f36
TH
1581 */
1582static void worker_leave_idle(struct worker *worker)
1583{
bd7bdd43 1584 struct worker_pool *pool = worker->pool;
c8e55f36 1585
6183c009
TH
1586 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1587 return;
d302f017 1588 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1589 pool->nr_idle--;
c8e55f36
TH
1590 list_del_init(&worker->entry);
1591}
1592
f7537df5 1593static struct worker *alloc_worker(int node)
c34056a3
TH
1594{
1595 struct worker *worker;
1596
f7537df5 1597 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1598 if (worker) {
1599 INIT_LIST_HEAD(&worker->entry);
affee4b2 1600 INIT_LIST_HEAD(&worker->scheduled);
da028469 1601 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1602 /* on creation a worker is in !idle && prep state */
1603 worker->flags = WORKER_PREP;
c8e55f36 1604 }
c34056a3
TH
1605 return worker;
1606}
1607
4736cbf7
LJ
1608/**
1609 * worker_attach_to_pool() - attach a worker to a pool
1610 * @worker: worker to be attached
1611 * @pool: the target pool
1612 *
1613 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1614 * cpu-binding of @worker are kept coordinated with the pool across
1615 * cpu-[un]hotplugs.
1616 */
1617static void worker_attach_to_pool(struct worker *worker,
1618 struct worker_pool *pool)
1619{
1620 mutex_lock(&pool->attach_mutex);
1621
1622 /*
1623 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1624 * online CPUs. It'll be re-applied when any of the CPUs come up.
1625 */
1626 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1627
1628 /*
1629 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1630 * stable across this function. See the comments above the
1631 * flag definition for details.
1632 */
1633 if (pool->flags & POOL_DISASSOCIATED)
1634 worker->flags |= WORKER_UNBOUND;
1635
1636 list_add_tail(&worker->node, &pool->workers);
1637
1638 mutex_unlock(&pool->attach_mutex);
1639}
1640
60f5a4bc
LJ
1641/**
1642 * worker_detach_from_pool() - detach a worker from its pool
1643 * @worker: worker which is attached to its pool
1644 * @pool: the pool @worker is attached to
1645 *
4736cbf7
LJ
1646 * Undo the attaching which had been done in worker_attach_to_pool(). The
1647 * caller worker shouldn't access to the pool after detached except it has
1648 * other reference to the pool.
60f5a4bc
LJ
1649 */
1650static void worker_detach_from_pool(struct worker *worker,
1651 struct worker_pool *pool)
1652{
1653 struct completion *detach_completion = NULL;
1654
92f9c5c4 1655 mutex_lock(&pool->attach_mutex);
da028469
LJ
1656 list_del(&worker->node);
1657 if (list_empty(&pool->workers))
60f5a4bc 1658 detach_completion = pool->detach_completion;
92f9c5c4 1659 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1660
b62c0751
LJ
1661 /* clear leftover flags without pool->lock after it is detached */
1662 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1663
60f5a4bc
LJ
1664 if (detach_completion)
1665 complete(detach_completion);
1666}
1667
c34056a3
TH
1668/**
1669 * create_worker - create a new workqueue worker
63d95a91 1670 * @pool: pool the new worker will belong to
c34056a3 1671 *
051e1850 1672 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1673 *
1674 * CONTEXT:
1675 * Might sleep. Does GFP_KERNEL allocations.
1676 *
d185af30 1677 * Return:
c34056a3
TH
1678 * Pointer to the newly created worker.
1679 */
bc2ae0f5 1680static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1681{
c34056a3 1682 struct worker *worker = NULL;
f3421797 1683 int id = -1;
e3c916a4 1684 char id_buf[16];
c34056a3 1685
7cda9aae
LJ
1686 /* ID is needed to determine kthread name */
1687 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1688 if (id < 0)
1689 goto fail;
c34056a3 1690
f7537df5 1691 worker = alloc_worker(pool->node);
c34056a3
TH
1692 if (!worker)
1693 goto fail;
1694
bd7bdd43 1695 worker->pool = pool;
c34056a3
TH
1696 worker->id = id;
1697
29c91e99 1698 if (pool->cpu >= 0)
e3c916a4
TH
1699 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1700 pool->attrs->nice < 0 ? "H" : "");
f3421797 1701 else
e3c916a4
TH
1702 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1703
f3f90ad4 1704 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1705 "kworker/%s", id_buf);
c34056a3
TH
1706 if (IS_ERR(worker->task))
1707 goto fail;
1708
91151228
ON
1709 set_user_nice(worker->task, pool->attrs->nice);
1710
1711 /* prevent userland from meddling with cpumask of workqueue workers */
1712 worker->task->flags |= PF_NO_SETAFFINITY;
1713
da028469 1714 /* successful, attach the worker to the pool */
4736cbf7 1715 worker_attach_to_pool(worker, pool);
822d8405 1716
051e1850
LJ
1717 /* start the newly created worker */
1718 spin_lock_irq(&pool->lock);
1719 worker->pool->nr_workers++;
1720 worker_enter_idle(worker);
1721 wake_up_process(worker->task);
1722 spin_unlock_irq(&pool->lock);
1723
c34056a3 1724 return worker;
822d8405 1725
c34056a3 1726fail:
9625ab17 1727 if (id >= 0)
7cda9aae 1728 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1729 kfree(worker);
1730 return NULL;
1731}
1732
c34056a3
TH
1733/**
1734 * destroy_worker - destroy a workqueue worker
1735 * @worker: worker to be destroyed
1736 *
73eb7fe7
LJ
1737 * Destroy @worker and adjust @pool stats accordingly. The worker should
1738 * be idle.
c8e55f36
TH
1739 *
1740 * CONTEXT:
60f5a4bc 1741 * spin_lock_irq(pool->lock).
c34056a3
TH
1742 */
1743static void destroy_worker(struct worker *worker)
1744{
bd7bdd43 1745 struct worker_pool *pool = worker->pool;
c34056a3 1746
cd549687
TH
1747 lockdep_assert_held(&pool->lock);
1748
c34056a3 1749 /* sanity check frenzy */
6183c009 1750 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1751 WARN_ON(!list_empty(&worker->scheduled)) ||
1752 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1753 return;
c34056a3 1754
73eb7fe7
LJ
1755 pool->nr_workers--;
1756 pool->nr_idle--;
5bdfff96 1757
c8e55f36 1758 list_del_init(&worker->entry);
cb444766 1759 worker->flags |= WORKER_DIE;
60f5a4bc 1760 wake_up_process(worker->task);
c34056a3
TH
1761}
1762
63d95a91 1763static void idle_worker_timeout(unsigned long __pool)
e22bee78 1764{
63d95a91 1765 struct worker_pool *pool = (void *)__pool;
e22bee78 1766
d565ed63 1767 spin_lock_irq(&pool->lock);
e22bee78 1768
3347fc9f 1769 while (too_many_workers(pool)) {
e22bee78
TH
1770 struct worker *worker;
1771 unsigned long expires;
1772
1773 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1774 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1775 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1776
3347fc9f 1777 if (time_before(jiffies, expires)) {
63d95a91 1778 mod_timer(&pool->idle_timer, expires);
3347fc9f 1779 break;
d5abe669 1780 }
3347fc9f
LJ
1781
1782 destroy_worker(worker);
e22bee78
TH
1783 }
1784
d565ed63 1785 spin_unlock_irq(&pool->lock);
e22bee78 1786}
d5abe669 1787
493a1724 1788static void send_mayday(struct work_struct *work)
e22bee78 1789{
112202d9
TH
1790 struct pool_workqueue *pwq = get_work_pwq(work);
1791 struct workqueue_struct *wq = pwq->wq;
493a1724 1792
2e109a28 1793 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1794
493008a8 1795 if (!wq->rescuer)
493a1724 1796 return;
e22bee78
TH
1797
1798 /* mayday mayday mayday */
493a1724 1799 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1800 /*
1801 * If @pwq is for an unbound wq, its base ref may be put at
1802 * any time due to an attribute change. Pin @pwq until the
1803 * rescuer is done with it.
1804 */
1805 get_pwq(pwq);
493a1724 1806 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1807 wake_up_process(wq->rescuer->task);
493a1724 1808 }
e22bee78
TH
1809}
1810
706026c2 1811static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1812{
63d95a91 1813 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1814 struct work_struct *work;
1815
b2d82909
TH
1816 spin_lock_irq(&pool->lock);
1817 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1818
63d95a91 1819 if (need_to_create_worker(pool)) {
e22bee78
TH
1820 /*
1821 * We've been trying to create a new worker but
1822 * haven't been successful. We might be hitting an
1823 * allocation deadlock. Send distress signals to
1824 * rescuers.
1825 */
63d95a91 1826 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1827 send_mayday(work);
1da177e4 1828 }
e22bee78 1829
b2d82909
TH
1830 spin_unlock(&wq_mayday_lock);
1831 spin_unlock_irq(&pool->lock);
e22bee78 1832
63d95a91 1833 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1834}
1835
e22bee78
TH
1836/**
1837 * maybe_create_worker - create a new worker if necessary
63d95a91 1838 * @pool: pool to create a new worker for
e22bee78 1839 *
63d95a91 1840 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1841 * have at least one idle worker on return from this function. If
1842 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1843 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1844 * possible allocation deadlock.
1845 *
c5aa87bb
TH
1846 * On return, need_to_create_worker() is guaranteed to be %false and
1847 * may_start_working() %true.
e22bee78
TH
1848 *
1849 * LOCKING:
d565ed63 1850 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1851 * multiple times. Does GFP_KERNEL allocations. Called only from
1852 * manager.
e22bee78 1853 */
29187a9e 1854static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1855__releases(&pool->lock)
1856__acquires(&pool->lock)
1da177e4 1857{
e22bee78 1858restart:
d565ed63 1859 spin_unlock_irq(&pool->lock);
9f9c2364 1860
e22bee78 1861 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1862 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1863
1864 while (true) {
051e1850 1865 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1866 break;
1da177e4 1867
e212f361 1868 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1869
63d95a91 1870 if (!need_to_create_worker(pool))
e22bee78
TH
1871 break;
1872 }
1873
63d95a91 1874 del_timer_sync(&pool->mayday_timer);
d565ed63 1875 spin_lock_irq(&pool->lock);
051e1850
LJ
1876 /*
1877 * This is necessary even after a new worker was just successfully
1878 * created as @pool->lock was dropped and the new worker might have
1879 * already become busy.
1880 */
63d95a91 1881 if (need_to_create_worker(pool))
e22bee78 1882 goto restart;
e22bee78
TH
1883}
1884
73f53c4a 1885/**
e22bee78
TH
1886 * manage_workers - manage worker pool
1887 * @worker: self
73f53c4a 1888 *
706026c2 1889 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1890 * to. At any given time, there can be only zero or one manager per
706026c2 1891 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1892 *
1893 * The caller can safely start processing works on false return. On
1894 * true return, it's guaranteed that need_to_create_worker() is false
1895 * and may_start_working() is true.
73f53c4a
TH
1896 *
1897 * CONTEXT:
d565ed63 1898 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1899 * multiple times. Does GFP_KERNEL allocations.
1900 *
d185af30 1901 * Return:
29187a9e
TH
1902 * %false if the pool doesn't need management and the caller can safely
1903 * start processing works, %true if management function was performed and
1904 * the conditions that the caller verified before calling the function may
1905 * no longer be true.
73f53c4a 1906 */
e22bee78 1907static bool manage_workers(struct worker *worker)
73f53c4a 1908{
63d95a91 1909 struct worker_pool *pool = worker->pool;
73f53c4a 1910
bc3a1afc 1911 /*
bc3a1afc
TH
1912 * Anyone who successfully grabs manager_arb wins the arbitration
1913 * and becomes the manager. mutex_trylock() on pool->manager_arb
1914 * failure while holding pool->lock reliably indicates that someone
1915 * else is managing the pool and the worker which failed trylock
1916 * can proceed to executing work items. This means that anyone
1917 * grabbing manager_arb is responsible for actually performing
1918 * manager duties. If manager_arb is grabbed and released without
1919 * actual management, the pool may stall indefinitely.
bc3a1afc 1920 */
34a06bd6 1921 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1922 return false;
2607d7a6 1923 pool->manager = worker;
1e19ffc6 1924
29187a9e 1925 maybe_create_worker(pool);
e22bee78 1926
2607d7a6 1927 pool->manager = NULL;
34a06bd6 1928 mutex_unlock(&pool->manager_arb);
29187a9e 1929 return true;
73f53c4a
TH
1930}
1931
a62428c0
TH
1932/**
1933 * process_one_work - process single work
c34056a3 1934 * @worker: self
a62428c0
TH
1935 * @work: work to process
1936 *
1937 * Process @work. This function contains all the logics necessary to
1938 * process a single work including synchronization against and
1939 * interaction with other workers on the same cpu, queueing and
1940 * flushing. As long as context requirement is met, any worker can
1941 * call this function to process a work.
1942 *
1943 * CONTEXT:
d565ed63 1944 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1945 */
c34056a3 1946static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1947__releases(&pool->lock)
1948__acquires(&pool->lock)
a62428c0 1949{
112202d9 1950 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1951 struct worker_pool *pool = worker->pool;
112202d9 1952 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1953 int work_color;
7e11629d 1954 struct worker *collision;
a62428c0
TH
1955#ifdef CONFIG_LOCKDEP
1956 /*
1957 * It is permissible to free the struct work_struct from
1958 * inside the function that is called from it, this we need to
1959 * take into account for lockdep too. To avoid bogus "held
1960 * lock freed" warnings as well as problems when looking into
1961 * work->lockdep_map, make a copy and use that here.
1962 */
4d82a1de
PZ
1963 struct lockdep_map lockdep_map;
1964
1965 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1966#endif
807407c0 1967 /* ensure we're on the correct CPU */
85327af6 1968 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 1969 raw_smp_processor_id() != pool->cpu);
25511a47 1970
7e11629d
TH
1971 /*
1972 * A single work shouldn't be executed concurrently by
1973 * multiple workers on a single cpu. Check whether anyone is
1974 * already processing the work. If so, defer the work to the
1975 * currently executing one.
1976 */
c9e7cf27 1977 collision = find_worker_executing_work(pool, work);
7e11629d
TH
1978 if (unlikely(collision)) {
1979 move_linked_works(work, &collision->scheduled, NULL);
1980 return;
1981 }
1982
8930caba 1983 /* claim and dequeue */
a62428c0 1984 debug_work_deactivate(work);
c9e7cf27 1985 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 1986 worker->current_work = work;
a2c1c57b 1987 worker->current_func = work->func;
112202d9 1988 worker->current_pwq = pwq;
73f53c4a 1989 work_color = get_work_color(work);
7a22ad75 1990
a62428c0
TH
1991 list_del_init(&work->entry);
1992
fb0e7beb 1993 /*
228f1d00
LJ
1994 * CPU intensive works don't participate in concurrency management.
1995 * They're the scheduler's responsibility. This takes @worker out
1996 * of concurrency management and the next code block will chain
1997 * execution of the pending work items.
fb0e7beb
TH
1998 */
1999 if (unlikely(cpu_intensive))
228f1d00 2000 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2001
974271c4 2002 /*
a489a03e
LJ
2003 * Wake up another worker if necessary. The condition is always
2004 * false for normal per-cpu workers since nr_running would always
2005 * be >= 1 at this point. This is used to chain execution of the
2006 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2007 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2008 */
a489a03e 2009 if (need_more_worker(pool))
63d95a91 2010 wake_up_worker(pool);
974271c4 2011
8930caba 2012 /*
7c3eed5c 2013 * Record the last pool and clear PENDING which should be the last
d565ed63 2014 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2015 * PENDING and queued state changes happen together while IRQ is
2016 * disabled.
8930caba 2017 */
7c3eed5c 2018 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2019
d565ed63 2020 spin_unlock_irq(&pool->lock);
a62428c0 2021
112202d9 2022 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2023 lock_map_acquire(&lockdep_map);
e36c886a 2024 trace_workqueue_execute_start(work);
a2c1c57b 2025 worker->current_func(work);
e36c886a
AV
2026 /*
2027 * While we must be careful to not use "work" after this, the trace
2028 * point will only record its address.
2029 */
2030 trace_workqueue_execute_end(work);
a62428c0 2031 lock_map_release(&lockdep_map);
112202d9 2032 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2033
2034 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2035 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2036 " last function: %pf\n",
a2c1c57b
TH
2037 current->comm, preempt_count(), task_pid_nr(current),
2038 worker->current_func);
a62428c0
TH
2039 debug_show_held_locks(current);
2040 dump_stack();
2041 }
2042
b22ce278
TH
2043 /*
2044 * The following prevents a kworker from hogging CPU on !PREEMPT
2045 * kernels, where a requeueing work item waiting for something to
2046 * happen could deadlock with stop_machine as such work item could
2047 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2048 * stop_machine. At the same time, report a quiescent RCU state so
2049 * the same condition doesn't freeze RCU.
b22ce278 2050 */
3e28e377 2051 cond_resched_rcu_qs();
b22ce278 2052
d565ed63 2053 spin_lock_irq(&pool->lock);
a62428c0 2054
fb0e7beb
TH
2055 /* clear cpu intensive status */
2056 if (unlikely(cpu_intensive))
2057 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2058
a62428c0 2059 /* we're done with it, release */
42f8570f 2060 hash_del(&worker->hentry);
c34056a3 2061 worker->current_work = NULL;
a2c1c57b 2062 worker->current_func = NULL;
112202d9 2063 worker->current_pwq = NULL;
3d1cb205 2064 worker->desc_valid = false;
112202d9 2065 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2066}
2067
affee4b2
TH
2068/**
2069 * process_scheduled_works - process scheduled works
2070 * @worker: self
2071 *
2072 * Process all scheduled works. Please note that the scheduled list
2073 * may change while processing a work, so this function repeatedly
2074 * fetches a work from the top and executes it.
2075 *
2076 * CONTEXT:
d565ed63 2077 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2078 * multiple times.
2079 */
2080static void process_scheduled_works(struct worker *worker)
1da177e4 2081{
affee4b2
TH
2082 while (!list_empty(&worker->scheduled)) {
2083 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2084 struct work_struct, entry);
c34056a3 2085 process_one_work(worker, work);
1da177e4 2086 }
1da177e4
LT
2087}
2088
4690c4ab
TH
2089/**
2090 * worker_thread - the worker thread function
c34056a3 2091 * @__worker: self
4690c4ab 2092 *
c5aa87bb
TH
2093 * The worker thread function. All workers belong to a worker_pool -
2094 * either a per-cpu one or dynamic unbound one. These workers process all
2095 * work items regardless of their specific target workqueue. The only
2096 * exception is work items which belong to workqueues with a rescuer which
2097 * will be explained in rescuer_thread().
d185af30
YB
2098 *
2099 * Return: 0
4690c4ab 2100 */
c34056a3 2101static int worker_thread(void *__worker)
1da177e4 2102{
c34056a3 2103 struct worker *worker = __worker;
bd7bdd43 2104 struct worker_pool *pool = worker->pool;
1da177e4 2105
e22bee78
TH
2106 /* tell the scheduler that this is a workqueue worker */
2107 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2108woke_up:
d565ed63 2109 spin_lock_irq(&pool->lock);
1da177e4 2110
a9ab775b
TH
2111 /* am I supposed to die? */
2112 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2113 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2114 WARN_ON_ONCE(!list_empty(&worker->entry));
2115 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2116
2117 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2118 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2119 worker_detach_from_pool(worker, pool);
2120 kfree(worker);
a9ab775b 2121 return 0;
c8e55f36 2122 }
affee4b2 2123
c8e55f36 2124 worker_leave_idle(worker);
db7bccf4 2125recheck:
e22bee78 2126 /* no more worker necessary? */
63d95a91 2127 if (!need_more_worker(pool))
e22bee78
TH
2128 goto sleep;
2129
2130 /* do we need to manage? */
63d95a91 2131 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2132 goto recheck;
2133
c8e55f36
TH
2134 /*
2135 * ->scheduled list can only be filled while a worker is
2136 * preparing to process a work or actually processing it.
2137 * Make sure nobody diddled with it while I was sleeping.
2138 */
6183c009 2139 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2140
e22bee78 2141 /*
a9ab775b
TH
2142 * Finish PREP stage. We're guaranteed to have at least one idle
2143 * worker or that someone else has already assumed the manager
2144 * role. This is where @worker starts participating in concurrency
2145 * management if applicable and concurrency management is restored
2146 * after being rebound. See rebind_workers() for details.
e22bee78 2147 */
a9ab775b 2148 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2149
2150 do {
c8e55f36 2151 struct work_struct *work =
bd7bdd43 2152 list_first_entry(&pool->worklist,
c8e55f36
TH
2153 struct work_struct, entry);
2154
2155 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2156 /* optimization path, not strictly necessary */
2157 process_one_work(worker, work);
2158 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2159 process_scheduled_works(worker);
c8e55f36
TH
2160 } else {
2161 move_linked_works(work, &worker->scheduled, NULL);
2162 process_scheduled_works(worker);
affee4b2 2163 }
63d95a91 2164 } while (keep_working(pool));
e22bee78 2165
228f1d00 2166 worker_set_flags(worker, WORKER_PREP);
d313dd85 2167sleep:
c8e55f36 2168 /*
d565ed63
TH
2169 * pool->lock is held and there's no work to process and no need to
2170 * manage, sleep. Workers are woken up only while holding
2171 * pool->lock or from local cpu, so setting the current state
2172 * before releasing pool->lock is enough to prevent losing any
2173 * event.
c8e55f36
TH
2174 */
2175 worker_enter_idle(worker);
2176 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2177 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2178 schedule();
2179 goto woke_up;
1da177e4
LT
2180}
2181
e22bee78
TH
2182/**
2183 * rescuer_thread - the rescuer thread function
111c225a 2184 * @__rescuer: self
e22bee78
TH
2185 *
2186 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2187 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2188 *
706026c2 2189 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2190 * worker which uses GFP_KERNEL allocation which has slight chance of
2191 * developing into deadlock if some works currently on the same queue
2192 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2193 * the problem rescuer solves.
2194 *
706026c2
TH
2195 * When such condition is possible, the pool summons rescuers of all
2196 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2197 * those works so that forward progress can be guaranteed.
2198 *
2199 * This should happen rarely.
d185af30
YB
2200 *
2201 * Return: 0
e22bee78 2202 */
111c225a 2203static int rescuer_thread(void *__rescuer)
e22bee78 2204{
111c225a
TH
2205 struct worker *rescuer = __rescuer;
2206 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2207 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2208 bool should_stop;
e22bee78
TH
2209
2210 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2211
2212 /*
2213 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2214 * doesn't participate in concurrency management.
2215 */
2216 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2217repeat:
2218 set_current_state(TASK_INTERRUPTIBLE);
2219
4d595b86
LJ
2220 /*
2221 * By the time the rescuer is requested to stop, the workqueue
2222 * shouldn't have any work pending, but @wq->maydays may still have
2223 * pwq(s) queued. This can happen by non-rescuer workers consuming
2224 * all the work items before the rescuer got to them. Go through
2225 * @wq->maydays processing before acting on should_stop so that the
2226 * list is always empty on exit.
2227 */
2228 should_stop = kthread_should_stop();
e22bee78 2229
493a1724 2230 /* see whether any pwq is asking for help */
2e109a28 2231 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2232
2233 while (!list_empty(&wq->maydays)) {
2234 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2235 struct pool_workqueue, mayday_node);
112202d9 2236 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2237 struct work_struct *work, *n;
2238
2239 __set_current_state(TASK_RUNNING);
493a1724
TH
2240 list_del_init(&pwq->mayday_node);
2241
2e109a28 2242 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2243
51697d39
LJ
2244 worker_attach_to_pool(rescuer, pool);
2245
2246 spin_lock_irq(&pool->lock);
b3104104 2247 rescuer->pool = pool;
e22bee78
TH
2248
2249 /*
2250 * Slurp in all works issued via this workqueue and
2251 * process'em.
2252 */
0479c8c5 2253 WARN_ON_ONCE(!list_empty(scheduled));
bd7bdd43 2254 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2255 if (get_work_pwq(work) == pwq)
e22bee78
TH
2256 move_linked_works(work, scheduled, &n);
2257
008847f6
N
2258 if (!list_empty(scheduled)) {
2259 process_scheduled_works(rescuer);
2260
2261 /*
2262 * The above execution of rescued work items could
2263 * have created more to rescue through
2264 * pwq_activate_first_delayed() or chained
2265 * queueing. Let's put @pwq back on mayday list so
2266 * that such back-to-back work items, which may be
2267 * being used to relieve memory pressure, don't
2268 * incur MAYDAY_INTERVAL delay inbetween.
2269 */
2270 if (need_to_create_worker(pool)) {
2271 spin_lock(&wq_mayday_lock);
2272 get_pwq(pwq);
2273 list_move_tail(&pwq->mayday_node, &wq->maydays);
2274 spin_unlock(&wq_mayday_lock);
2275 }
2276 }
7576958a 2277
77668c8b
LJ
2278 /*
2279 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2280 * go away while we're still attached to it.
77668c8b
LJ
2281 */
2282 put_pwq(pwq);
2283
7576958a 2284 /*
d8ca83e6 2285 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2286 * regular worker; otherwise, we end up with 0 concurrency
2287 * and stalling the execution.
2288 */
d8ca83e6 2289 if (need_more_worker(pool))
63d95a91 2290 wake_up_worker(pool);
7576958a 2291
b3104104 2292 rescuer->pool = NULL;
13b1d625
LJ
2293 spin_unlock_irq(&pool->lock);
2294
2295 worker_detach_from_pool(rescuer, pool);
2296
2297 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2298 }
2299
2e109a28 2300 spin_unlock_irq(&wq_mayday_lock);
493a1724 2301
4d595b86
LJ
2302 if (should_stop) {
2303 __set_current_state(TASK_RUNNING);
2304 rescuer->task->flags &= ~PF_WQ_WORKER;
2305 return 0;
2306 }
2307
111c225a
TH
2308 /* rescuers should never participate in concurrency management */
2309 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2310 schedule();
2311 goto repeat;
1da177e4
LT
2312}
2313
fc2e4d70
ON
2314struct wq_barrier {
2315 struct work_struct work;
2316 struct completion done;
2607d7a6 2317 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2318};
2319
2320static void wq_barrier_func(struct work_struct *work)
2321{
2322 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2323 complete(&barr->done);
2324}
2325
4690c4ab
TH
2326/**
2327 * insert_wq_barrier - insert a barrier work
112202d9 2328 * @pwq: pwq to insert barrier into
4690c4ab 2329 * @barr: wq_barrier to insert
affee4b2
TH
2330 * @target: target work to attach @barr to
2331 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2332 *
affee4b2
TH
2333 * @barr is linked to @target such that @barr is completed only after
2334 * @target finishes execution. Please note that the ordering
2335 * guarantee is observed only with respect to @target and on the local
2336 * cpu.
2337 *
2338 * Currently, a queued barrier can't be canceled. This is because
2339 * try_to_grab_pending() can't determine whether the work to be
2340 * grabbed is at the head of the queue and thus can't clear LINKED
2341 * flag of the previous work while there must be a valid next work
2342 * after a work with LINKED flag set.
2343 *
2344 * Note that when @worker is non-NULL, @target may be modified
112202d9 2345 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2346 *
2347 * CONTEXT:
d565ed63 2348 * spin_lock_irq(pool->lock).
4690c4ab 2349 */
112202d9 2350static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2351 struct wq_barrier *barr,
2352 struct work_struct *target, struct worker *worker)
fc2e4d70 2353{
affee4b2
TH
2354 struct list_head *head;
2355 unsigned int linked = 0;
2356
dc186ad7 2357 /*
d565ed63 2358 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2359 * as we know for sure that this will not trigger any of the
2360 * checks and call back into the fixup functions where we
2361 * might deadlock.
2362 */
ca1cab37 2363 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2364 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2365 init_completion(&barr->done);
2607d7a6 2366 barr->task = current;
83c22520 2367
affee4b2
TH
2368 /*
2369 * If @target is currently being executed, schedule the
2370 * barrier to the worker; otherwise, put it after @target.
2371 */
2372 if (worker)
2373 head = worker->scheduled.next;
2374 else {
2375 unsigned long *bits = work_data_bits(target);
2376
2377 head = target->entry.next;
2378 /* there can already be other linked works, inherit and set */
2379 linked = *bits & WORK_STRUCT_LINKED;
2380 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2381 }
2382
dc186ad7 2383 debug_work_activate(&barr->work);
112202d9 2384 insert_work(pwq, &barr->work, head,
affee4b2 2385 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2386}
2387
73f53c4a 2388/**
112202d9 2389 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2390 * @wq: workqueue being flushed
2391 * @flush_color: new flush color, < 0 for no-op
2392 * @work_color: new work color, < 0 for no-op
2393 *
112202d9 2394 * Prepare pwqs for workqueue flushing.
73f53c4a 2395 *
112202d9
TH
2396 * If @flush_color is non-negative, flush_color on all pwqs should be
2397 * -1. If no pwq has in-flight commands at the specified color, all
2398 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2399 * has in flight commands, its pwq->flush_color is set to
2400 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2401 * wakeup logic is armed and %true is returned.
2402 *
2403 * The caller should have initialized @wq->first_flusher prior to
2404 * calling this function with non-negative @flush_color. If
2405 * @flush_color is negative, no flush color update is done and %false
2406 * is returned.
2407 *
112202d9 2408 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2409 * work_color which is previous to @work_color and all will be
2410 * advanced to @work_color.
2411 *
2412 * CONTEXT:
3c25a55d 2413 * mutex_lock(wq->mutex).
73f53c4a 2414 *
d185af30 2415 * Return:
73f53c4a
TH
2416 * %true if @flush_color >= 0 and there's something to flush. %false
2417 * otherwise.
2418 */
112202d9 2419static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2420 int flush_color, int work_color)
1da177e4 2421{
73f53c4a 2422 bool wait = false;
49e3cf44 2423 struct pool_workqueue *pwq;
1da177e4 2424
73f53c4a 2425 if (flush_color >= 0) {
6183c009 2426 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2427 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2428 }
2355b70f 2429
49e3cf44 2430 for_each_pwq(pwq, wq) {
112202d9 2431 struct worker_pool *pool = pwq->pool;
fc2e4d70 2432
b09f4fd3 2433 spin_lock_irq(&pool->lock);
83c22520 2434
73f53c4a 2435 if (flush_color >= 0) {
6183c009 2436 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2437
112202d9
TH
2438 if (pwq->nr_in_flight[flush_color]) {
2439 pwq->flush_color = flush_color;
2440 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2441 wait = true;
2442 }
2443 }
1da177e4 2444
73f53c4a 2445 if (work_color >= 0) {
6183c009 2446 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2447 pwq->work_color = work_color;
73f53c4a 2448 }
1da177e4 2449
b09f4fd3 2450 spin_unlock_irq(&pool->lock);
1da177e4 2451 }
2355b70f 2452
112202d9 2453 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2454 complete(&wq->first_flusher->done);
14441960 2455
73f53c4a 2456 return wait;
1da177e4
LT
2457}
2458
0fcb78c2 2459/**
1da177e4 2460 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2461 * @wq: workqueue to flush
1da177e4 2462 *
c5aa87bb
TH
2463 * This function sleeps until all work items which were queued on entry
2464 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2465 */
7ad5b3a5 2466void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2467{
73f53c4a
TH
2468 struct wq_flusher this_flusher = {
2469 .list = LIST_HEAD_INIT(this_flusher.list),
2470 .flush_color = -1,
2471 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2472 };
2473 int next_color;
1da177e4 2474
3295f0ef
IM
2475 lock_map_acquire(&wq->lockdep_map);
2476 lock_map_release(&wq->lockdep_map);
73f53c4a 2477
3c25a55d 2478 mutex_lock(&wq->mutex);
73f53c4a
TH
2479
2480 /*
2481 * Start-to-wait phase
2482 */
2483 next_color = work_next_color(wq->work_color);
2484
2485 if (next_color != wq->flush_color) {
2486 /*
2487 * Color space is not full. The current work_color
2488 * becomes our flush_color and work_color is advanced
2489 * by one.
2490 */
6183c009 2491 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2492 this_flusher.flush_color = wq->work_color;
2493 wq->work_color = next_color;
2494
2495 if (!wq->first_flusher) {
2496 /* no flush in progress, become the first flusher */
6183c009 2497 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2498
2499 wq->first_flusher = &this_flusher;
2500
112202d9 2501 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2502 wq->work_color)) {
2503 /* nothing to flush, done */
2504 wq->flush_color = next_color;
2505 wq->first_flusher = NULL;
2506 goto out_unlock;
2507 }
2508 } else {
2509 /* wait in queue */
6183c009 2510 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2511 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2512 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2513 }
2514 } else {
2515 /*
2516 * Oops, color space is full, wait on overflow queue.
2517 * The next flush completion will assign us
2518 * flush_color and transfer to flusher_queue.
2519 */
2520 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2521 }
2522
3c25a55d 2523 mutex_unlock(&wq->mutex);
73f53c4a
TH
2524
2525 wait_for_completion(&this_flusher.done);
2526
2527 /*
2528 * Wake-up-and-cascade phase
2529 *
2530 * First flushers are responsible for cascading flushes and
2531 * handling overflow. Non-first flushers can simply return.
2532 */
2533 if (wq->first_flusher != &this_flusher)
2534 return;
2535
3c25a55d 2536 mutex_lock(&wq->mutex);
73f53c4a 2537
4ce48b37
TH
2538 /* we might have raced, check again with mutex held */
2539 if (wq->first_flusher != &this_flusher)
2540 goto out_unlock;
2541
73f53c4a
TH
2542 wq->first_flusher = NULL;
2543
6183c009
TH
2544 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2545 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2546
2547 while (true) {
2548 struct wq_flusher *next, *tmp;
2549
2550 /* complete all the flushers sharing the current flush color */
2551 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2552 if (next->flush_color != wq->flush_color)
2553 break;
2554 list_del_init(&next->list);
2555 complete(&next->done);
2556 }
2557
6183c009
TH
2558 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2559 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2560
2561 /* this flush_color is finished, advance by one */
2562 wq->flush_color = work_next_color(wq->flush_color);
2563
2564 /* one color has been freed, handle overflow queue */
2565 if (!list_empty(&wq->flusher_overflow)) {
2566 /*
2567 * Assign the same color to all overflowed
2568 * flushers, advance work_color and append to
2569 * flusher_queue. This is the start-to-wait
2570 * phase for these overflowed flushers.
2571 */
2572 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2573 tmp->flush_color = wq->work_color;
2574
2575 wq->work_color = work_next_color(wq->work_color);
2576
2577 list_splice_tail_init(&wq->flusher_overflow,
2578 &wq->flusher_queue);
112202d9 2579 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2580 }
2581
2582 if (list_empty(&wq->flusher_queue)) {
6183c009 2583 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2584 break;
2585 }
2586
2587 /*
2588 * Need to flush more colors. Make the next flusher
112202d9 2589 * the new first flusher and arm pwqs.
73f53c4a 2590 */
6183c009
TH
2591 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2592 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2593
2594 list_del_init(&next->list);
2595 wq->first_flusher = next;
2596
112202d9 2597 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2598 break;
2599
2600 /*
2601 * Meh... this color is already done, clear first
2602 * flusher and repeat cascading.
2603 */
2604 wq->first_flusher = NULL;
2605 }
2606
2607out_unlock:
3c25a55d 2608 mutex_unlock(&wq->mutex);
1da177e4 2609}
ae90dd5d 2610EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2611
9c5a2ba7
TH
2612/**
2613 * drain_workqueue - drain a workqueue
2614 * @wq: workqueue to drain
2615 *
2616 * Wait until the workqueue becomes empty. While draining is in progress,
2617 * only chain queueing is allowed. IOW, only currently pending or running
2618 * work items on @wq can queue further work items on it. @wq is flushed
2619 * repeatedly until it becomes empty. The number of flushing is detemined
2620 * by the depth of chaining and should be relatively short. Whine if it
2621 * takes too long.
2622 */
2623void drain_workqueue(struct workqueue_struct *wq)
2624{
2625 unsigned int flush_cnt = 0;
49e3cf44 2626 struct pool_workqueue *pwq;
9c5a2ba7
TH
2627
2628 /*
2629 * __queue_work() needs to test whether there are drainers, is much
2630 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2631 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2632 */
87fc741e 2633 mutex_lock(&wq->mutex);
9c5a2ba7 2634 if (!wq->nr_drainers++)
618b01eb 2635 wq->flags |= __WQ_DRAINING;
87fc741e 2636 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2637reflush:
2638 flush_workqueue(wq);
2639
b09f4fd3 2640 mutex_lock(&wq->mutex);
76af4d93 2641
49e3cf44 2642 for_each_pwq(pwq, wq) {
fa2563e4 2643 bool drained;
9c5a2ba7 2644
b09f4fd3 2645 spin_lock_irq(&pwq->pool->lock);
112202d9 2646 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2647 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2648
2649 if (drained)
9c5a2ba7
TH
2650 continue;
2651
2652 if (++flush_cnt == 10 ||
2653 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2654 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2655 wq->name, flush_cnt);
76af4d93 2656
b09f4fd3 2657 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2658 goto reflush;
2659 }
2660
9c5a2ba7 2661 if (!--wq->nr_drainers)
618b01eb 2662 wq->flags &= ~__WQ_DRAINING;
87fc741e 2663 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2664}
2665EXPORT_SYMBOL_GPL(drain_workqueue);
2666
606a5020 2667static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2668{
affee4b2 2669 struct worker *worker = NULL;
c9e7cf27 2670 struct worker_pool *pool;
112202d9 2671 struct pool_workqueue *pwq;
db700897
ON
2672
2673 might_sleep();
fa1b54e6
TH
2674
2675 local_irq_disable();
c9e7cf27 2676 pool = get_work_pool(work);
fa1b54e6
TH
2677 if (!pool) {
2678 local_irq_enable();
baf59022 2679 return false;
fa1b54e6 2680 }
db700897 2681
fa1b54e6 2682 spin_lock(&pool->lock);
0b3dae68 2683 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2684 pwq = get_work_pwq(work);
2685 if (pwq) {
2686 if (unlikely(pwq->pool != pool))
4690c4ab 2687 goto already_gone;
606a5020 2688 } else {
c9e7cf27 2689 worker = find_worker_executing_work(pool, work);
affee4b2 2690 if (!worker)
4690c4ab 2691 goto already_gone;
112202d9 2692 pwq = worker->current_pwq;
606a5020 2693 }
db700897 2694
112202d9 2695 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2696 spin_unlock_irq(&pool->lock);
7a22ad75 2697
e159489b
TH
2698 /*
2699 * If @max_active is 1 or rescuer is in use, flushing another work
2700 * item on the same workqueue may lead to deadlock. Make sure the
2701 * flusher is not running on the same workqueue by verifying write
2702 * access.
2703 */
493008a8 2704 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2705 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2706 else
112202d9
TH
2707 lock_map_acquire_read(&pwq->wq->lockdep_map);
2708 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2709
401a8d04 2710 return true;
4690c4ab 2711already_gone:
d565ed63 2712 spin_unlock_irq(&pool->lock);
401a8d04 2713 return false;
db700897 2714}
baf59022
TH
2715
2716/**
2717 * flush_work - wait for a work to finish executing the last queueing instance
2718 * @work: the work to flush
2719 *
606a5020
TH
2720 * Wait until @work has finished execution. @work is guaranteed to be idle
2721 * on return if it hasn't been requeued since flush started.
baf59022 2722 *
d185af30 2723 * Return:
baf59022
TH
2724 * %true if flush_work() waited for the work to finish execution,
2725 * %false if it was already idle.
2726 */
2727bool flush_work(struct work_struct *work)
2728{
12997d1a
BH
2729 struct wq_barrier barr;
2730
0976dfc1
SB
2731 lock_map_acquire(&work->lockdep_map);
2732 lock_map_release(&work->lockdep_map);
2733
12997d1a
BH
2734 if (start_flush_work(work, &barr)) {
2735 wait_for_completion(&barr.done);
2736 destroy_work_on_stack(&barr.work);
2737 return true;
2738 } else {
2739 return false;
2740 }
6e84d644 2741}
606a5020 2742EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2743
8603e1b3
TH
2744struct cwt_wait {
2745 wait_queue_t wait;
2746 struct work_struct *work;
2747};
2748
2749static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2750{
2751 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2752
2753 if (cwait->work != key)
2754 return 0;
2755 return autoremove_wake_function(wait, mode, sync, key);
2756}
2757
36e227d2 2758static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2759{
8603e1b3 2760 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2761 unsigned long flags;
1f1f642e
ON
2762 int ret;
2763
2764 do {
bbb68dfa
TH
2765 ret = try_to_grab_pending(work, is_dwork, &flags);
2766 /*
8603e1b3
TH
2767 * If someone else is already canceling, wait for it to
2768 * finish. flush_work() doesn't work for PREEMPT_NONE
2769 * because we may get scheduled between @work's completion
2770 * and the other canceling task resuming and clearing
2771 * CANCELING - flush_work() will return false immediately
2772 * as @work is no longer busy, try_to_grab_pending() will
2773 * return -ENOENT as @work is still being canceled and the
2774 * other canceling task won't be able to clear CANCELING as
2775 * we're hogging the CPU.
2776 *
2777 * Let's wait for completion using a waitqueue. As this
2778 * may lead to the thundering herd problem, use a custom
2779 * wake function which matches @work along with exclusive
2780 * wait and wakeup.
bbb68dfa 2781 */
8603e1b3
TH
2782 if (unlikely(ret == -ENOENT)) {
2783 struct cwt_wait cwait;
2784
2785 init_wait(&cwait.wait);
2786 cwait.wait.func = cwt_wakefn;
2787 cwait.work = work;
2788
2789 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2790 TASK_UNINTERRUPTIBLE);
2791 if (work_is_canceling(work))
2792 schedule();
2793 finish_wait(&cancel_waitq, &cwait.wait);
2794 }
1f1f642e
ON
2795 } while (unlikely(ret < 0));
2796
bbb68dfa
TH
2797 /* tell other tasks trying to grab @work to back off */
2798 mark_work_canceling(work);
2799 local_irq_restore(flags);
2800
606a5020 2801 flush_work(work);
7a22ad75 2802 clear_work_data(work);
8603e1b3
TH
2803
2804 /*
2805 * Paired with prepare_to_wait() above so that either
2806 * waitqueue_active() is visible here or !work_is_canceling() is
2807 * visible there.
2808 */
2809 smp_mb();
2810 if (waitqueue_active(&cancel_waitq))
2811 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2812
1f1f642e
ON
2813 return ret;
2814}
2815
6e84d644 2816/**
401a8d04
TH
2817 * cancel_work_sync - cancel a work and wait for it to finish
2818 * @work: the work to cancel
6e84d644 2819 *
401a8d04
TH
2820 * Cancel @work and wait for its execution to finish. This function
2821 * can be used even if the work re-queues itself or migrates to
2822 * another workqueue. On return from this function, @work is
2823 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2824 *
401a8d04
TH
2825 * cancel_work_sync(&delayed_work->work) must not be used for
2826 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2827 *
401a8d04 2828 * The caller must ensure that the workqueue on which @work was last
6e84d644 2829 * queued can't be destroyed before this function returns.
401a8d04 2830 *
d185af30 2831 * Return:
401a8d04 2832 * %true if @work was pending, %false otherwise.
6e84d644 2833 */
401a8d04 2834bool cancel_work_sync(struct work_struct *work)
6e84d644 2835{
36e227d2 2836 return __cancel_work_timer(work, false);
b89deed3 2837}
28e53bdd 2838EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2839
6e84d644 2840/**
401a8d04
TH
2841 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2842 * @dwork: the delayed work to flush
6e84d644 2843 *
401a8d04
TH
2844 * Delayed timer is cancelled and the pending work is queued for
2845 * immediate execution. Like flush_work(), this function only
2846 * considers the last queueing instance of @dwork.
1f1f642e 2847 *
d185af30 2848 * Return:
401a8d04
TH
2849 * %true if flush_work() waited for the work to finish execution,
2850 * %false if it was already idle.
6e84d644 2851 */
401a8d04
TH
2852bool flush_delayed_work(struct delayed_work *dwork)
2853{
8930caba 2854 local_irq_disable();
401a8d04 2855 if (del_timer_sync(&dwork->timer))
60c057bc 2856 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2857 local_irq_enable();
401a8d04
TH
2858 return flush_work(&dwork->work);
2859}
2860EXPORT_SYMBOL(flush_delayed_work);
2861
09383498 2862/**
57b30ae7
TH
2863 * cancel_delayed_work - cancel a delayed work
2864 * @dwork: delayed_work to cancel
09383498 2865 *
d185af30
YB
2866 * Kill off a pending delayed_work.
2867 *
2868 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2869 * pending.
2870 *
2871 * Note:
2872 * The work callback function may still be running on return, unless
2873 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2874 * use cancel_delayed_work_sync() to wait on it.
09383498 2875 *
57b30ae7 2876 * This function is safe to call from any context including IRQ handler.
09383498 2877 */
57b30ae7 2878bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2879{
57b30ae7
TH
2880 unsigned long flags;
2881 int ret;
2882
2883 do {
2884 ret = try_to_grab_pending(&dwork->work, true, &flags);
2885 } while (unlikely(ret == -EAGAIN));
2886
2887 if (unlikely(ret < 0))
2888 return false;
2889
7c3eed5c
TH
2890 set_work_pool_and_clear_pending(&dwork->work,
2891 get_work_pool_id(&dwork->work));
57b30ae7 2892 local_irq_restore(flags);
c0158ca6 2893 return ret;
09383498 2894}
57b30ae7 2895EXPORT_SYMBOL(cancel_delayed_work);
09383498 2896
401a8d04
TH
2897/**
2898 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2899 * @dwork: the delayed work cancel
2900 *
2901 * This is cancel_work_sync() for delayed works.
2902 *
d185af30 2903 * Return:
401a8d04
TH
2904 * %true if @dwork was pending, %false otherwise.
2905 */
2906bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2907{
36e227d2 2908 return __cancel_work_timer(&dwork->work, true);
6e84d644 2909}
f5a421a4 2910EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2911
b6136773 2912/**
31ddd871 2913 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2914 * @func: the function to call
b6136773 2915 *
31ddd871
TH
2916 * schedule_on_each_cpu() executes @func on each online CPU using the
2917 * system workqueue and blocks until all CPUs have completed.
b6136773 2918 * schedule_on_each_cpu() is very slow.
31ddd871 2919 *
d185af30 2920 * Return:
31ddd871 2921 * 0 on success, -errno on failure.
b6136773 2922 */
65f27f38 2923int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2924{
2925 int cpu;
38f51568 2926 struct work_struct __percpu *works;
15316ba8 2927
b6136773
AM
2928 works = alloc_percpu(struct work_struct);
2929 if (!works)
15316ba8 2930 return -ENOMEM;
b6136773 2931
93981800
TH
2932 get_online_cpus();
2933
15316ba8 2934 for_each_online_cpu(cpu) {
9bfb1839
IM
2935 struct work_struct *work = per_cpu_ptr(works, cpu);
2936
2937 INIT_WORK(work, func);
b71ab8c2 2938 schedule_work_on(cpu, work);
65a64464 2939 }
93981800
TH
2940
2941 for_each_online_cpu(cpu)
2942 flush_work(per_cpu_ptr(works, cpu));
2943
95402b38 2944 put_online_cpus();
b6136773 2945 free_percpu(works);
15316ba8
CL
2946 return 0;
2947}
2948
eef6a7d5
AS
2949/**
2950 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2951 *
2952 * Forces execution of the kernel-global workqueue and blocks until its
2953 * completion.
2954 *
2955 * Think twice before calling this function! It's very easy to get into
2956 * trouble if you don't take great care. Either of the following situations
2957 * will lead to deadlock:
2958 *
2959 * One of the work items currently on the workqueue needs to acquire
2960 * a lock held by your code or its caller.
2961 *
2962 * Your code is running in the context of a work routine.
2963 *
2964 * They will be detected by lockdep when they occur, but the first might not
2965 * occur very often. It depends on what work items are on the workqueue and
2966 * what locks they need, which you have no control over.
2967 *
2968 * In most situations flushing the entire workqueue is overkill; you merely
2969 * need to know that a particular work item isn't queued and isn't running.
2970 * In such cases you should use cancel_delayed_work_sync() or
2971 * cancel_work_sync() instead.
2972 */
1da177e4
LT
2973void flush_scheduled_work(void)
2974{
d320c038 2975 flush_workqueue(system_wq);
1da177e4 2976}
ae90dd5d 2977EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2978
1fa44eca
JB
2979/**
2980 * execute_in_process_context - reliably execute the routine with user context
2981 * @fn: the function to execute
1fa44eca
JB
2982 * @ew: guaranteed storage for the execute work structure (must
2983 * be available when the work executes)
2984 *
2985 * Executes the function immediately if process context is available,
2986 * otherwise schedules the function for delayed execution.
2987 *
d185af30 2988 * Return: 0 - function was executed
1fa44eca
JB
2989 * 1 - function was scheduled for execution
2990 */
65f27f38 2991int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2992{
2993 if (!in_interrupt()) {
65f27f38 2994 fn(&ew->work);
1fa44eca
JB
2995 return 0;
2996 }
2997
65f27f38 2998 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2999 schedule_work(&ew->work);
3000
3001 return 1;
3002}
3003EXPORT_SYMBOL_GPL(execute_in_process_context);
3004
6ba94429
FW
3005/**
3006 * free_workqueue_attrs - free a workqueue_attrs
3007 * @attrs: workqueue_attrs to free
226223ab 3008 *
6ba94429 3009 * Undo alloc_workqueue_attrs().
226223ab 3010 */
6ba94429 3011void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3012{
6ba94429
FW
3013 if (attrs) {
3014 free_cpumask_var(attrs->cpumask);
3015 kfree(attrs);
3016 }
226223ab
TH
3017}
3018
6ba94429
FW
3019/**
3020 * alloc_workqueue_attrs - allocate a workqueue_attrs
3021 * @gfp_mask: allocation mask to use
3022 *
3023 * Allocate a new workqueue_attrs, initialize with default settings and
3024 * return it.
3025 *
3026 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3027 */
3028struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3029{
6ba94429 3030 struct workqueue_attrs *attrs;
226223ab 3031
6ba94429
FW
3032 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3033 if (!attrs)
3034 goto fail;
3035 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3036 goto fail;
3037
3038 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3039 return attrs;
3040fail:
3041 free_workqueue_attrs(attrs);
3042 return NULL;
226223ab
TH
3043}
3044
6ba94429
FW
3045static void copy_workqueue_attrs(struct workqueue_attrs *to,
3046 const struct workqueue_attrs *from)
226223ab 3047{
6ba94429
FW
3048 to->nice = from->nice;
3049 cpumask_copy(to->cpumask, from->cpumask);
3050 /*
3051 * Unlike hash and equality test, this function doesn't ignore
3052 * ->no_numa as it is used for both pool and wq attrs. Instead,
3053 * get_unbound_pool() explicitly clears ->no_numa after copying.
3054 */
3055 to->no_numa = from->no_numa;
226223ab
TH
3056}
3057
6ba94429
FW
3058/* hash value of the content of @attr */
3059static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3060{
6ba94429 3061 u32 hash = 0;
226223ab 3062
6ba94429
FW
3063 hash = jhash_1word(attrs->nice, hash);
3064 hash = jhash(cpumask_bits(attrs->cpumask),
3065 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3066 return hash;
226223ab 3067}
226223ab 3068
6ba94429
FW
3069/* content equality test */
3070static bool wqattrs_equal(const struct workqueue_attrs *a,
3071 const struct workqueue_attrs *b)
226223ab 3072{
6ba94429
FW
3073 if (a->nice != b->nice)
3074 return false;
3075 if (!cpumask_equal(a->cpumask, b->cpumask))
3076 return false;
3077 return true;
226223ab
TH
3078}
3079
6ba94429
FW
3080/**
3081 * init_worker_pool - initialize a newly zalloc'd worker_pool
3082 * @pool: worker_pool to initialize
3083 *
3084 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3085 *
3086 * Return: 0 on success, -errno on failure. Even on failure, all fields
3087 * inside @pool proper are initialized and put_unbound_pool() can be called
3088 * on @pool safely to release it.
3089 */
3090static int init_worker_pool(struct worker_pool *pool)
226223ab 3091{
6ba94429
FW
3092 spin_lock_init(&pool->lock);
3093 pool->id = -1;
3094 pool->cpu = -1;
3095 pool->node = NUMA_NO_NODE;
3096 pool->flags |= POOL_DISASSOCIATED;
3097 INIT_LIST_HEAD(&pool->worklist);
3098 INIT_LIST_HEAD(&pool->idle_list);
3099 hash_init(pool->busy_hash);
226223ab 3100
6ba94429
FW
3101 init_timer_deferrable(&pool->idle_timer);
3102 pool->idle_timer.function = idle_worker_timeout;
3103 pool->idle_timer.data = (unsigned long)pool;
226223ab 3104
6ba94429
FW
3105 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3106 (unsigned long)pool);
226223ab 3107
6ba94429
FW
3108 mutex_init(&pool->manager_arb);
3109 mutex_init(&pool->attach_mutex);
3110 INIT_LIST_HEAD(&pool->workers);
226223ab 3111
6ba94429
FW
3112 ida_init(&pool->worker_ida);
3113 INIT_HLIST_NODE(&pool->hash_node);
3114 pool->refcnt = 1;
226223ab 3115
6ba94429
FW
3116 /* shouldn't fail above this point */
3117 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3118 if (!pool->attrs)
3119 return -ENOMEM;
3120 return 0;
226223ab
TH
3121}
3122
6ba94429 3123static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3124{
6ba94429
FW
3125 struct workqueue_struct *wq =
3126 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3127
6ba94429
FW
3128 if (!(wq->flags & WQ_UNBOUND))
3129 free_percpu(wq->cpu_pwqs);
226223ab 3130 else
6ba94429 3131 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3132
6ba94429
FW
3133 kfree(wq->rescuer);
3134 kfree(wq);
226223ab
TH
3135}
3136
6ba94429 3137static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3138{
6ba94429 3139 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3140
6ba94429
FW
3141 ida_destroy(&pool->worker_ida);
3142 free_workqueue_attrs(pool->attrs);
3143 kfree(pool);
226223ab
TH
3144}
3145
6ba94429
FW
3146/**
3147 * put_unbound_pool - put a worker_pool
3148 * @pool: worker_pool to put
3149 *
3150 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3151 * safe manner. get_unbound_pool() calls this function on its failure path
3152 * and this function should be able to release pools which went through,
3153 * successfully or not, init_worker_pool().
3154 *
3155 * Should be called with wq_pool_mutex held.
3156 */
3157static void put_unbound_pool(struct worker_pool *pool)
226223ab 3158{
6ba94429
FW
3159 DECLARE_COMPLETION_ONSTACK(detach_completion);
3160 struct worker *worker;
226223ab 3161
6ba94429 3162 lockdep_assert_held(&wq_pool_mutex);
226223ab 3163
6ba94429
FW
3164 if (--pool->refcnt)
3165 return;
226223ab 3166
6ba94429
FW
3167 /* sanity checks */
3168 if (WARN_ON(!(pool->cpu < 0)) ||
3169 WARN_ON(!list_empty(&pool->worklist)))
3170 return;
226223ab 3171
6ba94429
FW
3172 /* release id and unhash */
3173 if (pool->id >= 0)
3174 idr_remove(&worker_pool_idr, pool->id);
3175 hash_del(&pool->hash_node);
d55262c4 3176
6ba94429
FW
3177 /*
3178 * Become the manager and destroy all workers. Grabbing
3179 * manager_arb prevents @pool's workers from blocking on
3180 * attach_mutex.
3181 */
3182 mutex_lock(&pool->manager_arb);
d55262c4 3183
6ba94429
FW
3184 spin_lock_irq(&pool->lock);
3185 while ((worker = first_idle_worker(pool)))
3186 destroy_worker(worker);
3187 WARN_ON(pool->nr_workers || pool->nr_idle);
3188 spin_unlock_irq(&pool->lock);
d55262c4 3189
6ba94429
FW
3190 mutex_lock(&pool->attach_mutex);
3191 if (!list_empty(&pool->workers))
3192 pool->detach_completion = &detach_completion;
3193 mutex_unlock(&pool->attach_mutex);
226223ab 3194
6ba94429
FW
3195 if (pool->detach_completion)
3196 wait_for_completion(pool->detach_completion);
226223ab 3197
6ba94429 3198 mutex_unlock(&pool->manager_arb);
226223ab 3199
6ba94429
FW
3200 /* shut down the timers */
3201 del_timer_sync(&pool->idle_timer);
3202 del_timer_sync(&pool->mayday_timer);
226223ab 3203
6ba94429
FW
3204 /* sched-RCU protected to allow dereferences from get_work_pool() */
3205 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3206}
3207
3208/**
6ba94429
FW
3209 * get_unbound_pool - get a worker_pool with the specified attributes
3210 * @attrs: the attributes of the worker_pool to get
226223ab 3211 *
6ba94429
FW
3212 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3213 * reference count and return it. If there already is a matching
3214 * worker_pool, it will be used; otherwise, this function attempts to
3215 * create a new one.
226223ab 3216 *
6ba94429 3217 * Should be called with wq_pool_mutex held.
226223ab 3218 *
6ba94429
FW
3219 * Return: On success, a worker_pool with the same attributes as @attrs.
3220 * On failure, %NULL.
226223ab 3221 */
6ba94429 3222static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3223{
6ba94429
FW
3224 u32 hash = wqattrs_hash(attrs);
3225 struct worker_pool *pool;
3226 int node;
226223ab 3227
6ba94429 3228 lockdep_assert_held(&wq_pool_mutex);
226223ab 3229
6ba94429
FW
3230 /* do we already have a matching pool? */
3231 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3232 if (wqattrs_equal(pool->attrs, attrs)) {
3233 pool->refcnt++;
3234 return pool;
3235 }
3236 }
226223ab 3237
6ba94429
FW
3238 /* nope, create a new one */
3239 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3240 if (!pool || init_worker_pool(pool) < 0)
3241 goto fail;
3242
3243 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3244 copy_workqueue_attrs(pool->attrs, attrs);
226223ab
TH
3245
3246 /*
6ba94429
FW
3247 * no_numa isn't a worker_pool attribute, always clear it. See
3248 * 'struct workqueue_attrs' comments for detail.
226223ab 3249 */
6ba94429 3250 pool->attrs->no_numa = false;
226223ab 3251
6ba94429
FW
3252 /* if cpumask is contained inside a NUMA node, we belong to that node */
3253 if (wq_numa_enabled) {
3254 for_each_node(node) {
3255 if (cpumask_subset(pool->attrs->cpumask,
3256 wq_numa_possible_cpumask[node])) {
3257 pool->node = node;
3258 break;
226223ab
TH
3259 }
3260 }
3261 }
3262
6ba94429
FW
3263 if (worker_pool_assign_id(pool) < 0)
3264 goto fail;
226223ab 3265
6ba94429
FW
3266 /* create and start the initial worker */
3267 if (!create_worker(pool))
3268 goto fail;
226223ab 3269
6ba94429
FW
3270 /* install */
3271 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3272
6ba94429
FW
3273 return pool;
3274fail:
3275 if (pool)
3276 put_unbound_pool(pool);
3277 return NULL;
226223ab 3278}
226223ab 3279
6ba94429 3280static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3281{
6ba94429
FW
3282 kmem_cache_free(pwq_cache,
3283 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3284}
3285
6ba94429
FW
3286/*
3287 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3288 * and needs to be destroyed.
7a4e344c 3289 */
6ba94429 3290static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3291{
6ba94429
FW
3292 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3293 unbound_release_work);
3294 struct workqueue_struct *wq = pwq->wq;
3295 struct worker_pool *pool = pwq->pool;
3296 bool is_last;
7a4e344c 3297
6ba94429
FW
3298 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3299 return;
7a4e344c 3300
6ba94429
FW
3301 mutex_lock(&wq->mutex);
3302 list_del_rcu(&pwq->pwqs_node);
3303 is_last = list_empty(&wq->pwqs);
3304 mutex_unlock(&wq->mutex);
3305
3306 mutex_lock(&wq_pool_mutex);
3307 put_unbound_pool(pool);
3308 mutex_unlock(&wq_pool_mutex);
3309
3310 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3311
2865a8fb 3312 /*
6ba94429
FW
3313 * If we're the last pwq going away, @wq is already dead and no one
3314 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3315 */
6ba94429
FW
3316 if (is_last)
3317 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3318}
3319
7a4e344c 3320/**
6ba94429
FW
3321 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3322 * @pwq: target pool_workqueue
d185af30 3323 *
6ba94429
FW
3324 * If @pwq isn't freezing, set @pwq->max_active to the associated
3325 * workqueue's saved_max_active and activate delayed work items
3326 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3327 */
6ba94429 3328static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3329{
6ba94429
FW
3330 struct workqueue_struct *wq = pwq->wq;
3331 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3332
6ba94429
FW
3333 /* for @wq->saved_max_active */
3334 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3335
6ba94429
FW
3336 /* fast exit for non-freezable wqs */
3337 if (!freezable && pwq->max_active == wq->saved_max_active)
3338 return;
7a4e344c 3339
6ba94429 3340 spin_lock_irq(&pwq->pool->lock);
29c91e99 3341
6ba94429
FW
3342 /*
3343 * During [un]freezing, the caller is responsible for ensuring that
3344 * this function is called at least once after @workqueue_freezing
3345 * is updated and visible.
3346 */
3347 if (!freezable || !workqueue_freezing) {
3348 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3349
6ba94429
FW
3350 while (!list_empty(&pwq->delayed_works) &&
3351 pwq->nr_active < pwq->max_active)
3352 pwq_activate_first_delayed(pwq);
e2dca7ad 3353
6ba94429
FW
3354 /*
3355 * Need to kick a worker after thawed or an unbound wq's
3356 * max_active is bumped. It's a slow path. Do it always.
3357 */
3358 wake_up_worker(pwq->pool);
3359 } else {
3360 pwq->max_active = 0;
3361 }
e2dca7ad 3362
6ba94429 3363 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3364}
3365
6ba94429
FW
3366/* initialize newly alloced @pwq which is associated with @wq and @pool */
3367static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3368 struct worker_pool *pool)
29c91e99 3369{
6ba94429 3370 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3371
6ba94429
FW
3372 memset(pwq, 0, sizeof(*pwq));
3373
3374 pwq->pool = pool;
3375 pwq->wq = wq;
3376 pwq->flush_color = -1;
3377 pwq->refcnt = 1;
3378 INIT_LIST_HEAD(&pwq->delayed_works);
3379 INIT_LIST_HEAD(&pwq->pwqs_node);
3380 INIT_LIST_HEAD(&pwq->mayday_node);
3381 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3382}
3383
6ba94429
FW
3384/* sync @pwq with the current state of its associated wq and link it */
3385static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3386{
6ba94429 3387 struct workqueue_struct *wq = pwq->wq;
29c91e99 3388
6ba94429 3389 lockdep_assert_held(&wq->mutex);
a892cacc 3390
6ba94429
FW
3391 /* may be called multiple times, ignore if already linked */
3392 if (!list_empty(&pwq->pwqs_node))
29c91e99 3393 return;
29c91e99 3394
6ba94429
FW
3395 /* set the matching work_color */
3396 pwq->work_color = wq->work_color;
29c91e99 3397
6ba94429
FW
3398 /* sync max_active to the current setting */
3399 pwq_adjust_max_active(pwq);
29c91e99 3400
6ba94429
FW
3401 /* link in @pwq */
3402 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3403}
29c91e99 3404
6ba94429
FW
3405/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3406static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3407 const struct workqueue_attrs *attrs)
3408{
3409 struct worker_pool *pool;
3410 struct pool_workqueue *pwq;
60f5a4bc 3411
6ba94429 3412 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3413
6ba94429
FW
3414 pool = get_unbound_pool(attrs);
3415 if (!pool)
3416 return NULL;
60f5a4bc 3417
6ba94429
FW
3418 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3419 if (!pwq) {
3420 put_unbound_pool(pool);
3421 return NULL;
3422 }
29c91e99 3423
6ba94429
FW
3424 init_pwq(pwq, wq, pool);
3425 return pwq;
3426}
29c91e99 3427
6ba94429
FW
3428/* undo alloc_unbound_pwq(), used only in the error path */
3429static void free_unbound_pwq(struct pool_workqueue *pwq)
3430{
3431 lockdep_assert_held(&wq_pool_mutex);
3432
3433 if (pwq) {
3434 put_unbound_pool(pwq->pool);
3435 kmem_cache_free(pwq_cache, pwq);
3436 }
29c91e99
TH
3437}
3438
3439/**
6ba94429
FW
3440 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3441 * @attrs: the wq_attrs of interest
3442 * @node: the target NUMA node
3443 * @cpu_going_down: if >= 0, the CPU to consider as offline
3444 * @cpumask: outarg, the resulting cpumask
29c91e99 3445 *
6ba94429
FW
3446 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3447 * @cpu_going_down is >= 0, that cpu is considered offline during
3448 * calculation. The result is stored in @cpumask.
a892cacc 3449 *
6ba94429
FW
3450 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3451 * enabled and @node has online CPUs requested by @attrs, the returned
3452 * cpumask is the intersection of the possible CPUs of @node and
3453 * @attrs->cpumask.
d185af30 3454 *
6ba94429
FW
3455 * The caller is responsible for ensuring that the cpumask of @node stays
3456 * stable.
3457 *
3458 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3459 * %false if equal.
29c91e99 3460 */
6ba94429
FW
3461static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3462 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3463{
6ba94429
FW
3464 if (!wq_numa_enabled || attrs->no_numa)
3465 goto use_dfl;
29c91e99 3466
6ba94429
FW
3467 /* does @node have any online CPUs @attrs wants? */
3468 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3469 if (cpu_going_down >= 0)
3470 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3471
6ba94429
FW
3472 if (cpumask_empty(cpumask))
3473 goto use_dfl;
4c16bd32
TH
3474
3475 /* yeap, return possible CPUs in @node that @attrs wants */
3476 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3477 return !cpumask_equal(cpumask, attrs->cpumask);
3478
3479use_dfl:
3480 cpumask_copy(cpumask, attrs->cpumask);
3481 return false;
3482}
3483
1befcf30
TH
3484/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3485static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3486 int node,
3487 struct pool_workqueue *pwq)
3488{
3489 struct pool_workqueue *old_pwq;
3490
3491 lockdep_assert_held(&wq->mutex);
3492
3493 /* link_pwq() can handle duplicate calls */
3494 link_pwq(pwq);
3495
3496 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3497 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3498 return old_pwq;
3499}
3500
9e8cd2f5
TH
3501/**
3502 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3503 * @wq: the target workqueue
3504 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3505 *
4c16bd32
TH
3506 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3507 * machines, this function maps a separate pwq to each NUMA node with
3508 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3509 * NUMA node it was issued on. Older pwqs are released as in-flight work
3510 * items finish. Note that a work item which repeatedly requeues itself
3511 * back-to-back will stay on its current pwq.
9e8cd2f5 3512 *
d185af30
YB
3513 * Performs GFP_KERNEL allocations.
3514 *
3515 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3516 */
3517int apply_workqueue_attrs(struct workqueue_struct *wq,
3518 const struct workqueue_attrs *attrs)
3519{
4c16bd32
TH
3520 struct workqueue_attrs *new_attrs, *tmp_attrs;
3521 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3522 int node, ret;
9e8cd2f5 3523
8719dcea 3524 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3525 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3526 return -EINVAL;
3527
8719dcea
TH
3528 /* creating multiple pwqs breaks ordering guarantee */
3529 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3530 return -EINVAL;
3531
ddcb57e2 3532 pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3533 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3534 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3535 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3536 goto enomem;
3537
4c16bd32 3538 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3539 copy_workqueue_attrs(new_attrs, attrs);
3540 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3541
4c16bd32
TH
3542 /*
3543 * We may create multiple pwqs with differing cpumasks. Make a
3544 * copy of @new_attrs which will be modified and used to obtain
3545 * pools.
3546 */
3547 copy_workqueue_attrs(tmp_attrs, new_attrs);
3548
3549 /*
3550 * CPUs should stay stable across pwq creations and installations.
3551 * Pin CPUs, determine the target cpumask for each node and create
3552 * pwqs accordingly.
3553 */
3554 get_online_cpus();
3555
a892cacc 3556 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3557
3558 /*
3559 * If something goes wrong during CPU up/down, we'll fall back to
3560 * the default pwq covering whole @attrs->cpumask. Always create
3561 * it even if we don't use it immediately.
3562 */
3563 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3564 if (!dfl_pwq)
3565 goto enomem_pwq;
3566
3567 for_each_node(node) {
3568 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3569 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3570 if (!pwq_tbl[node])
3571 goto enomem_pwq;
3572 } else {
3573 dfl_pwq->refcnt++;
3574 pwq_tbl[node] = dfl_pwq;
3575 }
3576 }
3577
f147f29e 3578 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3579
4c16bd32 3580 /* all pwqs have been created successfully, let's install'em */
f147f29e 3581 mutex_lock(&wq->mutex);
a892cacc 3582
f147f29e 3583 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3584
3585 /* save the previous pwq and install the new one */
f147f29e 3586 for_each_node(node)
4c16bd32
TH
3587 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3588
3589 /* @dfl_pwq might not have been used, ensure it's linked */
3590 link_pwq(dfl_pwq);
3591 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3592
3593 mutex_unlock(&wq->mutex);
9e8cd2f5 3594
4c16bd32
TH
3595 /* put the old pwqs */
3596 for_each_node(node)
3597 put_pwq_unlocked(pwq_tbl[node]);
3598 put_pwq_unlocked(dfl_pwq);
3599
3600 put_online_cpus();
4862125b
TH
3601 ret = 0;
3602 /* fall through */
3603out_free:
4c16bd32 3604 free_workqueue_attrs(tmp_attrs);
4862125b 3605 free_workqueue_attrs(new_attrs);
4c16bd32 3606 kfree(pwq_tbl);
4862125b 3607 return ret;
13e2e556 3608
4c16bd32
TH
3609enomem_pwq:
3610 free_unbound_pwq(dfl_pwq);
3611 for_each_node(node)
3612 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3613 free_unbound_pwq(pwq_tbl[node]);
3614 mutex_unlock(&wq_pool_mutex);
3615 put_online_cpus();
13e2e556 3616enomem:
4862125b
TH
3617 ret = -ENOMEM;
3618 goto out_free;
9e8cd2f5
TH
3619}
3620
4c16bd32
TH
3621/**
3622 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3623 * @wq: the target workqueue
3624 * @cpu: the CPU coming up or going down
3625 * @online: whether @cpu is coming up or going down
3626 *
3627 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3628 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3629 * @wq accordingly.
3630 *
3631 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3632 * falls back to @wq->dfl_pwq which may not be optimal but is always
3633 * correct.
3634 *
3635 * Note that when the last allowed CPU of a NUMA node goes offline for a
3636 * workqueue with a cpumask spanning multiple nodes, the workers which were
3637 * already executing the work items for the workqueue will lose their CPU
3638 * affinity and may execute on any CPU. This is similar to how per-cpu
3639 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3640 * affinity, it's the user's responsibility to flush the work item from
3641 * CPU_DOWN_PREPARE.
3642 */
3643static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3644 bool online)
3645{
3646 int node = cpu_to_node(cpu);
3647 int cpu_off = online ? -1 : cpu;
3648 struct pool_workqueue *old_pwq = NULL, *pwq;
3649 struct workqueue_attrs *target_attrs;
3650 cpumask_t *cpumask;
3651
3652 lockdep_assert_held(&wq_pool_mutex);
3653
3654 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3655 return;
3656
3657 /*
3658 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3659 * Let's use a preallocated one. The following buf is protected by
3660 * CPU hotplug exclusion.
3661 */
3662 target_attrs = wq_update_unbound_numa_attrs_buf;
3663 cpumask = target_attrs->cpumask;
3664
3665 mutex_lock(&wq->mutex);
d55262c4
TH
3666 if (wq->unbound_attrs->no_numa)
3667 goto out_unlock;
4c16bd32
TH
3668
3669 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3670 pwq = unbound_pwq_by_node(wq, node);
3671
3672 /*
3673 * Let's determine what needs to be done. If the target cpumask is
3674 * different from wq's, we need to compare it to @pwq's and create
3675 * a new one if they don't match. If the target cpumask equals
534a3fbb 3676 * wq's, the default pwq should be used.
4c16bd32
TH
3677 */
3678 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3679 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3680 goto out_unlock;
3681 } else {
534a3fbb 3682 goto use_dfl_pwq;
4c16bd32
TH
3683 }
3684
3685 mutex_unlock(&wq->mutex);
3686
3687 /* create a new pwq */
3688 pwq = alloc_unbound_pwq(wq, target_attrs);
3689 if (!pwq) {
2d916033
FF
3690 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3691 wq->name);
77f300b1
DY
3692 mutex_lock(&wq->mutex);
3693 goto use_dfl_pwq;
4c16bd32
TH
3694 }
3695
3696 /*
3697 * Install the new pwq. As this function is called only from CPU
3698 * hotplug callbacks and applying a new attrs is wrapped with
3699 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3700 * inbetween.
3701 */
3702 mutex_lock(&wq->mutex);
3703 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3704 goto out_unlock;
3705
3706use_dfl_pwq:
3707 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3708 get_pwq(wq->dfl_pwq);
3709 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3710 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3711out_unlock:
3712 mutex_unlock(&wq->mutex);
3713 put_pwq_unlocked(old_pwq);
3714}
3715
30cdf249 3716static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3717{
49e3cf44 3718 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3719 int cpu, ret;
30cdf249
TH
3720
3721 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3722 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3723 if (!wq->cpu_pwqs)
30cdf249
TH
3724 return -ENOMEM;
3725
3726 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3727 struct pool_workqueue *pwq =
3728 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3729 struct worker_pool *cpu_pools =
f02ae73a 3730 per_cpu(cpu_worker_pools, cpu);
f3421797 3731
f147f29e
TH
3732 init_pwq(pwq, wq, &cpu_pools[highpri]);
3733
3734 mutex_lock(&wq->mutex);
1befcf30 3735 link_pwq(pwq);
f147f29e 3736 mutex_unlock(&wq->mutex);
30cdf249 3737 }
9e8cd2f5 3738 return 0;
8a2b7538
TH
3739 } else if (wq->flags & __WQ_ORDERED) {
3740 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3741 /* there should only be single pwq for ordering guarantee */
3742 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3743 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3744 "ordering guarantee broken for workqueue %s\n", wq->name);
3745 return ret;
30cdf249 3746 } else {
9e8cd2f5 3747 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3748 }
0f900049
TH
3749}
3750
f3421797
TH
3751static int wq_clamp_max_active(int max_active, unsigned int flags,
3752 const char *name)
b71ab8c2 3753{
f3421797
TH
3754 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3755
3756 if (max_active < 1 || max_active > lim)
044c782c
VI
3757 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3758 max_active, name, 1, lim);
b71ab8c2 3759
f3421797 3760 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3761}
3762
b196be89 3763struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3764 unsigned int flags,
3765 int max_active,
3766 struct lock_class_key *key,
b196be89 3767 const char *lock_name, ...)
1da177e4 3768{
df2d5ae4 3769 size_t tbl_size = 0;
ecf6881f 3770 va_list args;
1da177e4 3771 struct workqueue_struct *wq;
49e3cf44 3772 struct pool_workqueue *pwq;
b196be89 3773
cee22a15
VK
3774 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3775 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3776 flags |= WQ_UNBOUND;
3777
ecf6881f 3778 /* allocate wq and format name */
df2d5ae4 3779 if (flags & WQ_UNBOUND)
ddcb57e2 3780 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3781
3782 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3783 if (!wq)
d2c1d404 3784 return NULL;
b196be89 3785
6029a918
TH
3786 if (flags & WQ_UNBOUND) {
3787 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3788 if (!wq->unbound_attrs)
3789 goto err_free_wq;
3790 }
3791
ecf6881f
TH
3792 va_start(args, lock_name);
3793 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3794 va_end(args);
1da177e4 3795
d320c038 3796 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3797 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3798
b196be89 3799 /* init wq */
97e37d7b 3800 wq->flags = flags;
a0a1a5fd 3801 wq->saved_max_active = max_active;
3c25a55d 3802 mutex_init(&wq->mutex);
112202d9 3803 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3804 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3805 INIT_LIST_HEAD(&wq->flusher_queue);
3806 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3807 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3808
eb13ba87 3809 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3810 INIT_LIST_HEAD(&wq->list);
3af24433 3811
30cdf249 3812 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3813 goto err_free_wq;
1537663f 3814
493008a8
TH
3815 /*
3816 * Workqueues which may be used during memory reclaim should
3817 * have a rescuer to guarantee forward progress.
3818 */
3819 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3820 struct worker *rescuer;
3821
f7537df5 3822 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3823 if (!rescuer)
d2c1d404 3824 goto err_destroy;
e22bee78 3825
111c225a
TH
3826 rescuer->rescue_wq = wq;
3827 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3828 wq->name);
d2c1d404
TH
3829 if (IS_ERR(rescuer->task)) {
3830 kfree(rescuer);
3831 goto err_destroy;
3832 }
e22bee78 3833
d2c1d404 3834 wq->rescuer = rescuer;
14a40ffc 3835 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3836 wake_up_process(rescuer->task);
3af24433
ON
3837 }
3838
226223ab
TH
3839 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3840 goto err_destroy;
3841
a0a1a5fd 3842 /*
68e13a67
LJ
3843 * wq_pool_mutex protects global freeze state and workqueues list.
3844 * Grab it, adjust max_active and add the new @wq to workqueues
3845 * list.
a0a1a5fd 3846 */
68e13a67 3847 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3848
a357fc03 3849 mutex_lock(&wq->mutex);
699ce097
TH
3850 for_each_pwq(pwq, wq)
3851 pwq_adjust_max_active(pwq);
a357fc03 3852 mutex_unlock(&wq->mutex);
a0a1a5fd 3853
e2dca7ad 3854 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3855
68e13a67 3856 mutex_unlock(&wq_pool_mutex);
1537663f 3857
3af24433 3858 return wq;
d2c1d404
TH
3859
3860err_free_wq:
6029a918 3861 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3862 kfree(wq);
3863 return NULL;
3864err_destroy:
3865 destroy_workqueue(wq);
4690c4ab 3866 return NULL;
3af24433 3867}
d320c038 3868EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3869
3af24433
ON
3870/**
3871 * destroy_workqueue - safely terminate a workqueue
3872 * @wq: target workqueue
3873 *
3874 * Safely destroy a workqueue. All work currently pending will be done first.
3875 */
3876void destroy_workqueue(struct workqueue_struct *wq)
3877{
49e3cf44 3878 struct pool_workqueue *pwq;
4c16bd32 3879 int node;
3af24433 3880
9c5a2ba7
TH
3881 /* drain it before proceeding with destruction */
3882 drain_workqueue(wq);
c8efcc25 3883
6183c009 3884 /* sanity checks */
b09f4fd3 3885 mutex_lock(&wq->mutex);
49e3cf44 3886 for_each_pwq(pwq, wq) {
6183c009
TH
3887 int i;
3888
76af4d93
TH
3889 for (i = 0; i < WORK_NR_COLORS; i++) {
3890 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3891 mutex_unlock(&wq->mutex);
6183c009 3892 return;
76af4d93
TH
3893 }
3894 }
3895
5c529597 3896 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 3897 WARN_ON(pwq->nr_active) ||
76af4d93 3898 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3899 mutex_unlock(&wq->mutex);
6183c009 3900 return;
76af4d93 3901 }
6183c009 3902 }
b09f4fd3 3903 mutex_unlock(&wq->mutex);
6183c009 3904
a0a1a5fd
TH
3905 /*
3906 * wq list is used to freeze wq, remove from list after
3907 * flushing is complete in case freeze races us.
3908 */
68e13a67 3909 mutex_lock(&wq_pool_mutex);
e2dca7ad 3910 list_del_rcu(&wq->list);
68e13a67 3911 mutex_unlock(&wq_pool_mutex);
3af24433 3912
226223ab
TH
3913 workqueue_sysfs_unregister(wq);
3914
e2dca7ad 3915 if (wq->rescuer)
e22bee78 3916 kthread_stop(wq->rescuer->task);
e22bee78 3917
8864b4e5
TH
3918 if (!(wq->flags & WQ_UNBOUND)) {
3919 /*
3920 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 3921 * schedule RCU free.
8864b4e5 3922 */
e2dca7ad 3923 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
3924 } else {
3925 /*
3926 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
3927 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3928 * @wq will be freed when the last pwq is released.
8864b4e5 3929 */
4c16bd32
TH
3930 for_each_node(node) {
3931 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3932 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3933 put_pwq_unlocked(pwq);
3934 }
3935
3936 /*
3937 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
3938 * put. Don't access it afterwards.
3939 */
3940 pwq = wq->dfl_pwq;
3941 wq->dfl_pwq = NULL;
dce90d47 3942 put_pwq_unlocked(pwq);
29c91e99 3943 }
3af24433
ON
3944}
3945EXPORT_SYMBOL_GPL(destroy_workqueue);
3946
dcd989cb
TH
3947/**
3948 * workqueue_set_max_active - adjust max_active of a workqueue
3949 * @wq: target workqueue
3950 * @max_active: new max_active value.
3951 *
3952 * Set max_active of @wq to @max_active.
3953 *
3954 * CONTEXT:
3955 * Don't call from IRQ context.
3956 */
3957void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3958{
49e3cf44 3959 struct pool_workqueue *pwq;
dcd989cb 3960
8719dcea
TH
3961 /* disallow meddling with max_active for ordered workqueues */
3962 if (WARN_ON(wq->flags & __WQ_ORDERED))
3963 return;
3964
f3421797 3965 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3966
a357fc03 3967 mutex_lock(&wq->mutex);
dcd989cb
TH
3968
3969 wq->saved_max_active = max_active;
3970
699ce097
TH
3971 for_each_pwq(pwq, wq)
3972 pwq_adjust_max_active(pwq);
93981800 3973
a357fc03 3974 mutex_unlock(&wq->mutex);
15316ba8 3975}
dcd989cb 3976EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3977
e6267616
TH
3978/**
3979 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3980 *
3981 * Determine whether %current is a workqueue rescuer. Can be used from
3982 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
3983 *
3984 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
3985 */
3986bool current_is_workqueue_rescuer(void)
3987{
3988 struct worker *worker = current_wq_worker();
3989
6a092dfd 3990 return worker && worker->rescue_wq;
e6267616
TH
3991}
3992
eef6a7d5 3993/**
dcd989cb
TH
3994 * workqueue_congested - test whether a workqueue is congested
3995 * @cpu: CPU in question
3996 * @wq: target workqueue
eef6a7d5 3997 *
dcd989cb
TH
3998 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3999 * no synchronization around this function and the test result is
4000 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4001 *
d3251859
TH
4002 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4003 * Note that both per-cpu and unbound workqueues may be associated with
4004 * multiple pool_workqueues which have separate congested states. A
4005 * workqueue being congested on one CPU doesn't mean the workqueue is also
4006 * contested on other CPUs / NUMA nodes.
4007 *
d185af30 4008 * Return:
dcd989cb 4009 * %true if congested, %false otherwise.
eef6a7d5 4010 */
d84ff051 4011bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4012{
7fb98ea7 4013 struct pool_workqueue *pwq;
76af4d93
TH
4014 bool ret;
4015
88109453 4016 rcu_read_lock_sched();
7fb98ea7 4017
d3251859
TH
4018 if (cpu == WORK_CPU_UNBOUND)
4019 cpu = smp_processor_id();
4020
7fb98ea7
TH
4021 if (!(wq->flags & WQ_UNBOUND))
4022 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4023 else
df2d5ae4 4024 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4025
76af4d93 4026 ret = !list_empty(&pwq->delayed_works);
88109453 4027 rcu_read_unlock_sched();
76af4d93
TH
4028
4029 return ret;
1da177e4 4030}
dcd989cb 4031EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4032
dcd989cb
TH
4033/**
4034 * work_busy - test whether a work is currently pending or running
4035 * @work: the work to be tested
4036 *
4037 * Test whether @work is currently pending or running. There is no
4038 * synchronization around this function and the test result is
4039 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4040 *
d185af30 4041 * Return:
dcd989cb
TH
4042 * OR'd bitmask of WORK_BUSY_* bits.
4043 */
4044unsigned int work_busy(struct work_struct *work)
1da177e4 4045{
fa1b54e6 4046 struct worker_pool *pool;
dcd989cb
TH
4047 unsigned long flags;
4048 unsigned int ret = 0;
1da177e4 4049
dcd989cb
TH
4050 if (work_pending(work))
4051 ret |= WORK_BUSY_PENDING;
1da177e4 4052
fa1b54e6
TH
4053 local_irq_save(flags);
4054 pool = get_work_pool(work);
038366c5 4055 if (pool) {
fa1b54e6 4056 spin_lock(&pool->lock);
038366c5
LJ
4057 if (find_worker_executing_work(pool, work))
4058 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4059 spin_unlock(&pool->lock);
038366c5 4060 }
fa1b54e6 4061 local_irq_restore(flags);
1da177e4 4062
dcd989cb 4063 return ret;
1da177e4 4064}
dcd989cb 4065EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4066
3d1cb205
TH
4067/**
4068 * set_worker_desc - set description for the current work item
4069 * @fmt: printf-style format string
4070 * @...: arguments for the format string
4071 *
4072 * This function can be called by a running work function to describe what
4073 * the work item is about. If the worker task gets dumped, this
4074 * information will be printed out together to help debugging. The
4075 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4076 */
4077void set_worker_desc(const char *fmt, ...)
4078{
4079 struct worker *worker = current_wq_worker();
4080 va_list args;
4081
4082 if (worker) {
4083 va_start(args, fmt);
4084 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4085 va_end(args);
4086 worker->desc_valid = true;
4087 }
4088}
4089
4090/**
4091 * print_worker_info - print out worker information and description
4092 * @log_lvl: the log level to use when printing
4093 * @task: target task
4094 *
4095 * If @task is a worker and currently executing a work item, print out the
4096 * name of the workqueue being serviced and worker description set with
4097 * set_worker_desc() by the currently executing work item.
4098 *
4099 * This function can be safely called on any task as long as the
4100 * task_struct itself is accessible. While safe, this function isn't
4101 * synchronized and may print out mixups or garbages of limited length.
4102 */
4103void print_worker_info(const char *log_lvl, struct task_struct *task)
4104{
4105 work_func_t *fn = NULL;
4106 char name[WQ_NAME_LEN] = { };
4107 char desc[WORKER_DESC_LEN] = { };
4108 struct pool_workqueue *pwq = NULL;
4109 struct workqueue_struct *wq = NULL;
4110 bool desc_valid = false;
4111 struct worker *worker;
4112
4113 if (!(task->flags & PF_WQ_WORKER))
4114 return;
4115
4116 /*
4117 * This function is called without any synchronization and @task
4118 * could be in any state. Be careful with dereferences.
4119 */
4120 worker = probe_kthread_data(task);
4121
4122 /*
4123 * Carefully copy the associated workqueue's workfn and name. Keep
4124 * the original last '\0' in case the original contains garbage.
4125 */
4126 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4127 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4128 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4129 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4130
4131 /* copy worker description */
4132 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4133 if (desc_valid)
4134 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4135
4136 if (fn || name[0] || desc[0]) {
4137 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4138 if (desc[0])
4139 pr_cont(" (%s)", desc);
4140 pr_cont("\n");
4141 }
4142}
4143
3494fc30
TH
4144static void pr_cont_pool_info(struct worker_pool *pool)
4145{
4146 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4147 if (pool->node != NUMA_NO_NODE)
4148 pr_cont(" node=%d", pool->node);
4149 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4150}
4151
4152static void pr_cont_work(bool comma, struct work_struct *work)
4153{
4154 if (work->func == wq_barrier_func) {
4155 struct wq_barrier *barr;
4156
4157 barr = container_of(work, struct wq_barrier, work);
4158
4159 pr_cont("%s BAR(%d)", comma ? "," : "",
4160 task_pid_nr(barr->task));
4161 } else {
4162 pr_cont("%s %pf", comma ? "," : "", work->func);
4163 }
4164}
4165
4166static void show_pwq(struct pool_workqueue *pwq)
4167{
4168 struct worker_pool *pool = pwq->pool;
4169 struct work_struct *work;
4170 struct worker *worker;
4171 bool has_in_flight = false, has_pending = false;
4172 int bkt;
4173
4174 pr_info(" pwq %d:", pool->id);
4175 pr_cont_pool_info(pool);
4176
4177 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4178 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4179
4180 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4181 if (worker->current_pwq == pwq) {
4182 has_in_flight = true;
4183 break;
4184 }
4185 }
4186 if (has_in_flight) {
4187 bool comma = false;
4188
4189 pr_info(" in-flight:");
4190 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4191 if (worker->current_pwq != pwq)
4192 continue;
4193
4194 pr_cont("%s %d%s:%pf", comma ? "," : "",
4195 task_pid_nr(worker->task),
4196 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4197 worker->current_func);
4198 list_for_each_entry(work, &worker->scheduled, entry)
4199 pr_cont_work(false, work);
4200 comma = true;
4201 }
4202 pr_cont("\n");
4203 }
4204
4205 list_for_each_entry(work, &pool->worklist, entry) {
4206 if (get_work_pwq(work) == pwq) {
4207 has_pending = true;
4208 break;
4209 }
4210 }
4211 if (has_pending) {
4212 bool comma = false;
4213
4214 pr_info(" pending:");
4215 list_for_each_entry(work, &pool->worklist, entry) {
4216 if (get_work_pwq(work) != pwq)
4217 continue;
4218
4219 pr_cont_work(comma, work);
4220 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4221 }
4222 pr_cont("\n");
4223 }
4224
4225 if (!list_empty(&pwq->delayed_works)) {
4226 bool comma = false;
4227
4228 pr_info(" delayed:");
4229 list_for_each_entry(work, &pwq->delayed_works, entry) {
4230 pr_cont_work(comma, work);
4231 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4232 }
4233 pr_cont("\n");
4234 }
4235}
4236
4237/**
4238 * show_workqueue_state - dump workqueue state
4239 *
4240 * Called from a sysrq handler and prints out all busy workqueues and
4241 * pools.
4242 */
4243void show_workqueue_state(void)
4244{
4245 struct workqueue_struct *wq;
4246 struct worker_pool *pool;
4247 unsigned long flags;
4248 int pi;
4249
4250 rcu_read_lock_sched();
4251
4252 pr_info("Showing busy workqueues and worker pools:\n");
4253
4254 list_for_each_entry_rcu(wq, &workqueues, list) {
4255 struct pool_workqueue *pwq;
4256 bool idle = true;
4257
4258 for_each_pwq(pwq, wq) {
4259 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4260 idle = false;
4261 break;
4262 }
4263 }
4264 if (idle)
4265 continue;
4266
4267 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4268
4269 for_each_pwq(pwq, wq) {
4270 spin_lock_irqsave(&pwq->pool->lock, flags);
4271 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4272 show_pwq(pwq);
4273 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4274 }
4275 }
4276
4277 for_each_pool(pool, pi) {
4278 struct worker *worker;
4279 bool first = true;
4280
4281 spin_lock_irqsave(&pool->lock, flags);
4282 if (pool->nr_workers == pool->nr_idle)
4283 goto next_pool;
4284
4285 pr_info("pool %d:", pool->id);
4286 pr_cont_pool_info(pool);
4287 pr_cont(" workers=%d", pool->nr_workers);
4288 if (pool->manager)
4289 pr_cont(" manager: %d",
4290 task_pid_nr(pool->manager->task));
4291 list_for_each_entry(worker, &pool->idle_list, entry) {
4292 pr_cont(" %s%d", first ? "idle: " : "",
4293 task_pid_nr(worker->task));
4294 first = false;
4295 }
4296 pr_cont("\n");
4297 next_pool:
4298 spin_unlock_irqrestore(&pool->lock, flags);
4299 }
4300
4301 rcu_read_unlock_sched();
4302}
4303
db7bccf4
TH
4304/*
4305 * CPU hotplug.
4306 *
e22bee78 4307 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4308 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4309 * pool which make migrating pending and scheduled works very
e22bee78 4310 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4311 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4312 * blocked draining impractical.
4313 *
24647570 4314 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4315 * running as an unbound one and allowing it to be reattached later if the
4316 * cpu comes back online.
db7bccf4 4317 */
1da177e4 4318
706026c2 4319static void wq_unbind_fn(struct work_struct *work)
3af24433 4320{
38db41d9 4321 int cpu = smp_processor_id();
4ce62e9e 4322 struct worker_pool *pool;
db7bccf4 4323 struct worker *worker;
3af24433 4324
f02ae73a 4325 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4326 mutex_lock(&pool->attach_mutex);
94cf58bb 4327 spin_lock_irq(&pool->lock);
3af24433 4328
94cf58bb 4329 /*
92f9c5c4 4330 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4331 * unbound and set DISASSOCIATED. Before this, all workers
4332 * except for the ones which are still executing works from
4333 * before the last CPU down must be on the cpu. After
4334 * this, they may become diasporas.
4335 */
da028469 4336 for_each_pool_worker(worker, pool)
c9e7cf27 4337 worker->flags |= WORKER_UNBOUND;
06ba38a9 4338
24647570 4339 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4340
94cf58bb 4341 spin_unlock_irq(&pool->lock);
92f9c5c4 4342 mutex_unlock(&pool->attach_mutex);
628c78e7 4343
eb283428
LJ
4344 /*
4345 * Call schedule() so that we cross rq->lock and thus can
4346 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4347 * This is necessary as scheduler callbacks may be invoked
4348 * from other cpus.
4349 */
4350 schedule();
06ba38a9 4351
eb283428
LJ
4352 /*
4353 * Sched callbacks are disabled now. Zap nr_running.
4354 * After this, nr_running stays zero and need_more_worker()
4355 * and keep_working() are always true as long as the
4356 * worklist is not empty. This pool now behaves as an
4357 * unbound (in terms of concurrency management) pool which
4358 * are served by workers tied to the pool.
4359 */
e19e397a 4360 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4361
4362 /*
4363 * With concurrency management just turned off, a busy
4364 * worker blocking could lead to lengthy stalls. Kick off
4365 * unbound chain execution of currently pending work items.
4366 */
4367 spin_lock_irq(&pool->lock);
4368 wake_up_worker(pool);
4369 spin_unlock_irq(&pool->lock);
4370 }
3af24433 4371}
3af24433 4372
bd7c089e
TH
4373/**
4374 * rebind_workers - rebind all workers of a pool to the associated CPU
4375 * @pool: pool of interest
4376 *
a9ab775b 4377 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4378 */
4379static void rebind_workers(struct worker_pool *pool)
4380{
a9ab775b 4381 struct worker *worker;
bd7c089e 4382
92f9c5c4 4383 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4384
a9ab775b
TH
4385 /*
4386 * Restore CPU affinity of all workers. As all idle workers should
4387 * be on the run-queue of the associated CPU before any local
4388 * wake-ups for concurrency management happen, restore CPU affinty
4389 * of all workers first and then clear UNBOUND. As we're called
4390 * from CPU_ONLINE, the following shouldn't fail.
4391 */
da028469 4392 for_each_pool_worker(worker, pool)
a9ab775b
TH
4393 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4394 pool->attrs->cpumask) < 0);
bd7c089e 4395
a9ab775b 4396 spin_lock_irq(&pool->lock);
3de5e884 4397 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4398
da028469 4399 for_each_pool_worker(worker, pool) {
a9ab775b 4400 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4401
4402 /*
a9ab775b
TH
4403 * A bound idle worker should actually be on the runqueue
4404 * of the associated CPU for local wake-ups targeting it to
4405 * work. Kick all idle workers so that they migrate to the
4406 * associated CPU. Doing this in the same loop as
4407 * replacing UNBOUND with REBOUND is safe as no worker will
4408 * be bound before @pool->lock is released.
bd7c089e 4409 */
a9ab775b
TH
4410 if (worker_flags & WORKER_IDLE)
4411 wake_up_process(worker->task);
bd7c089e 4412
a9ab775b
TH
4413 /*
4414 * We want to clear UNBOUND but can't directly call
4415 * worker_clr_flags() or adjust nr_running. Atomically
4416 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4417 * @worker will clear REBOUND using worker_clr_flags() when
4418 * it initiates the next execution cycle thus restoring
4419 * concurrency management. Note that when or whether
4420 * @worker clears REBOUND doesn't affect correctness.
4421 *
4422 * ACCESS_ONCE() is necessary because @worker->flags may be
4423 * tested without holding any lock in
4424 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4425 * fail incorrectly leading to premature concurrency
4426 * management operations.
4427 */
4428 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4429 worker_flags |= WORKER_REBOUND;
4430 worker_flags &= ~WORKER_UNBOUND;
4431 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4432 }
a9ab775b
TH
4433
4434 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4435}
4436
7dbc725e
TH
4437/**
4438 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4439 * @pool: unbound pool of interest
4440 * @cpu: the CPU which is coming up
4441 *
4442 * An unbound pool may end up with a cpumask which doesn't have any online
4443 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4444 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4445 * online CPU before, cpus_allowed of all its workers should be restored.
4446 */
4447static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4448{
4449 static cpumask_t cpumask;
4450 struct worker *worker;
7dbc725e 4451
92f9c5c4 4452 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4453
4454 /* is @cpu allowed for @pool? */
4455 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4456 return;
4457
4458 /* is @cpu the only online CPU? */
4459 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4460 if (cpumask_weight(&cpumask) != 1)
4461 return;
4462
4463 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4464 for_each_pool_worker(worker, pool)
7dbc725e
TH
4465 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4466 pool->attrs->cpumask) < 0);
4467}
4468
8db25e78
TH
4469/*
4470 * Workqueues should be brought up before normal priority CPU notifiers.
4471 * This will be registered high priority CPU notifier.
4472 */
0db0628d 4473static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4474 unsigned long action,
4475 void *hcpu)
3af24433 4476{
d84ff051 4477 int cpu = (unsigned long)hcpu;
4ce62e9e 4478 struct worker_pool *pool;
4c16bd32 4479 struct workqueue_struct *wq;
7dbc725e 4480 int pi;
3ce63377 4481
8db25e78 4482 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4483 case CPU_UP_PREPARE:
f02ae73a 4484 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4485 if (pool->nr_workers)
4486 continue;
051e1850 4487 if (!create_worker(pool))
3ce63377 4488 return NOTIFY_BAD;
3af24433 4489 }
8db25e78 4490 break;
3af24433 4491
db7bccf4
TH
4492 case CPU_DOWN_FAILED:
4493 case CPU_ONLINE:
68e13a67 4494 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4495
4496 for_each_pool(pool, pi) {
92f9c5c4 4497 mutex_lock(&pool->attach_mutex);
94cf58bb 4498
f05b558d 4499 if (pool->cpu == cpu)
7dbc725e 4500 rebind_workers(pool);
f05b558d 4501 else if (pool->cpu < 0)
7dbc725e 4502 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4503
6ba94429
FW
4504 mutex_unlock(&pool->attach_mutex);
4505 }
4506
4507 /* update NUMA affinity of unbound workqueues */
4508 list_for_each_entry(wq, &workqueues, list)
4509 wq_update_unbound_numa(wq, cpu, true);
4510
4511 mutex_unlock(&wq_pool_mutex);
4512 break;
4513 }
4514 return NOTIFY_OK;
4515}
4516
4517/*
4518 * Workqueues should be brought down after normal priority CPU notifiers.
4519 * This will be registered as low priority CPU notifier.
4520 */
4521static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4522 unsigned long action,
4523 void *hcpu)
4524{
4525 int cpu = (unsigned long)hcpu;
4526 struct work_struct unbind_work;
4527 struct workqueue_struct *wq;
4528
4529 switch (action & ~CPU_TASKS_FROZEN) {
4530 case CPU_DOWN_PREPARE:
4531 /* unbinding per-cpu workers should happen on the local CPU */
4532 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4533 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4534
4535 /* update NUMA affinity of unbound workqueues */
4536 mutex_lock(&wq_pool_mutex);
4537 list_for_each_entry(wq, &workqueues, list)
4538 wq_update_unbound_numa(wq, cpu, false);
4539 mutex_unlock(&wq_pool_mutex);
4540
4541 /* wait for per-cpu unbinding to finish */
4542 flush_work(&unbind_work);
4543 destroy_work_on_stack(&unbind_work);
4544 break;
4545 }
4546 return NOTIFY_OK;
4547}
4548
4549#ifdef CONFIG_SMP
4550
4551struct work_for_cpu {
4552 struct work_struct work;
4553 long (*fn)(void *);
4554 void *arg;
4555 long ret;
4556};
4557
4558static void work_for_cpu_fn(struct work_struct *work)
4559{
4560 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4561
4562 wfc->ret = wfc->fn(wfc->arg);
4563}
4564
4565/**
4566 * work_on_cpu - run a function in user context on a particular cpu
4567 * @cpu: the cpu to run on
4568 * @fn: the function to run
4569 * @arg: the function arg
4570 *
4571 * It is up to the caller to ensure that the cpu doesn't go offline.
4572 * The caller must not hold any locks which would prevent @fn from completing.
4573 *
4574 * Return: The value @fn returns.
4575 */
4576long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4577{
4578 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4579
4580 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4581 schedule_work_on(cpu, &wfc.work);
4582 flush_work(&wfc.work);
4583 destroy_work_on_stack(&wfc.work);
4584 return wfc.ret;
4585}
4586EXPORT_SYMBOL_GPL(work_on_cpu);
4587#endif /* CONFIG_SMP */
4588
4589#ifdef CONFIG_FREEZER
4590
4591/**
4592 * freeze_workqueues_begin - begin freezing workqueues
4593 *
4594 * Start freezing workqueues. After this function returns, all freezable
4595 * workqueues will queue new works to their delayed_works list instead of
4596 * pool->worklist.
4597 *
4598 * CONTEXT:
4599 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4600 */
4601void freeze_workqueues_begin(void)
4602{
4603 struct workqueue_struct *wq;
4604 struct pool_workqueue *pwq;
4605
4606 mutex_lock(&wq_pool_mutex);
4607
4608 WARN_ON_ONCE(workqueue_freezing);
4609 workqueue_freezing = true;
4610
4611 list_for_each_entry(wq, &workqueues, list) {
4612 mutex_lock(&wq->mutex);
4613 for_each_pwq(pwq, wq)
4614 pwq_adjust_max_active(pwq);
4615 mutex_unlock(&wq->mutex);
4616 }
4617
4618 mutex_unlock(&wq_pool_mutex);
4619}
4620
4621/**
4622 * freeze_workqueues_busy - are freezable workqueues still busy?
4623 *
4624 * Check whether freezing is complete. This function must be called
4625 * between freeze_workqueues_begin() and thaw_workqueues().
4626 *
4627 * CONTEXT:
4628 * Grabs and releases wq_pool_mutex.
4629 *
4630 * Return:
4631 * %true if some freezable workqueues are still busy. %false if freezing
4632 * is complete.
4633 */
4634bool freeze_workqueues_busy(void)
4635{
4636 bool busy = false;
4637 struct workqueue_struct *wq;
4638 struct pool_workqueue *pwq;
4639
4640 mutex_lock(&wq_pool_mutex);
4641
4642 WARN_ON_ONCE(!workqueue_freezing);
4643
4644 list_for_each_entry(wq, &workqueues, list) {
4645 if (!(wq->flags & WQ_FREEZABLE))
4646 continue;
4647 /*
4648 * nr_active is monotonically decreasing. It's safe
4649 * to peek without lock.
4650 */
4651 rcu_read_lock_sched();
4652 for_each_pwq(pwq, wq) {
4653 WARN_ON_ONCE(pwq->nr_active < 0);
4654 if (pwq->nr_active) {
4655 busy = true;
4656 rcu_read_unlock_sched();
4657 goto out_unlock;
4658 }
4659 }
4660 rcu_read_unlock_sched();
4661 }
4662out_unlock:
4663 mutex_unlock(&wq_pool_mutex);
4664 return busy;
4665}
4666
4667/**
4668 * thaw_workqueues - thaw workqueues
4669 *
4670 * Thaw workqueues. Normal queueing is restored and all collected
4671 * frozen works are transferred to their respective pool worklists.
4672 *
4673 * CONTEXT:
4674 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4675 */
4676void thaw_workqueues(void)
4677{
4678 struct workqueue_struct *wq;
4679 struct pool_workqueue *pwq;
4680
4681 mutex_lock(&wq_pool_mutex);
4682
4683 if (!workqueue_freezing)
4684 goto out_unlock;
4685
4686 workqueue_freezing = false;
4687
4688 /* restore max_active and repopulate worklist */
4689 list_for_each_entry(wq, &workqueues, list) {
4690 mutex_lock(&wq->mutex);
4691 for_each_pwq(pwq, wq)
4692 pwq_adjust_max_active(pwq);
4693 mutex_unlock(&wq->mutex);
4694 }
4695
4696out_unlock:
4697 mutex_unlock(&wq_pool_mutex);
4698}
4699#endif /* CONFIG_FREEZER */
4700
4701#ifdef CONFIG_SYSFS
4702/*
4703 * Workqueues with WQ_SYSFS flag set is visible to userland via
4704 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4705 * following attributes.
4706 *
4707 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4708 * max_active RW int : maximum number of in-flight work items
4709 *
4710 * Unbound workqueues have the following extra attributes.
4711 *
4712 * id RO int : the associated pool ID
4713 * nice RW int : nice value of the workers
4714 * cpumask RW mask : bitmask of allowed CPUs for the workers
4715 */
4716struct wq_device {
4717 struct workqueue_struct *wq;
4718 struct device dev;
4719};
4720
4721static struct workqueue_struct *dev_to_wq(struct device *dev)
4722{
4723 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4724
4725 return wq_dev->wq;
4726}
4727
4728static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4729 char *buf)
4730{
4731 struct workqueue_struct *wq = dev_to_wq(dev);
4732
4733 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4734}
4735static DEVICE_ATTR_RO(per_cpu);
4736
4737static ssize_t max_active_show(struct device *dev,
4738 struct device_attribute *attr, char *buf)
4739{
4740 struct workqueue_struct *wq = dev_to_wq(dev);
4741
4742 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4743}
4744
4745static ssize_t max_active_store(struct device *dev,
4746 struct device_attribute *attr, const char *buf,
4747 size_t count)
4748{
4749 struct workqueue_struct *wq = dev_to_wq(dev);
4750 int val;
4751
4752 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4753 return -EINVAL;
4754
4755 workqueue_set_max_active(wq, val);
4756 return count;
4757}
4758static DEVICE_ATTR_RW(max_active);
4759
4760static struct attribute *wq_sysfs_attrs[] = {
4761 &dev_attr_per_cpu.attr,
4762 &dev_attr_max_active.attr,
4763 NULL,
4764};
4765ATTRIBUTE_GROUPS(wq_sysfs);
4766
4767static ssize_t wq_pool_ids_show(struct device *dev,
4768 struct device_attribute *attr, char *buf)
4769{
4770 struct workqueue_struct *wq = dev_to_wq(dev);
4771 const char *delim = "";
4772 int node, written = 0;
4773
4774 rcu_read_lock_sched();
4775 for_each_node(node) {
4776 written += scnprintf(buf + written, PAGE_SIZE - written,
4777 "%s%d:%d", delim, node,
4778 unbound_pwq_by_node(wq, node)->pool->id);
4779 delim = " ";
4780 }
4781 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4782 rcu_read_unlock_sched();
4783
4784 return written;
4785}
4786
4787static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4788 char *buf)
4789{
4790 struct workqueue_struct *wq = dev_to_wq(dev);
4791 int written;
4792
4793 mutex_lock(&wq->mutex);
4794 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4795 mutex_unlock(&wq->mutex);
4796
4797 return written;
4798}
4799
4800/* prepare workqueue_attrs for sysfs store operations */
4801static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4802{
4803 struct workqueue_attrs *attrs;
4804
4805 attrs = alloc_workqueue_attrs(GFP_KERNEL);
4806 if (!attrs)
4807 return NULL;
4808
4809 mutex_lock(&wq->mutex);
4810 copy_workqueue_attrs(attrs, wq->unbound_attrs);
4811 mutex_unlock(&wq->mutex);
4812 return attrs;
4813}
4814
4815static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4816 const char *buf, size_t count)
4817{
4818 struct workqueue_struct *wq = dev_to_wq(dev);
4819 struct workqueue_attrs *attrs;
4820 int ret;
4821
4822 attrs = wq_sysfs_prep_attrs(wq);
4823 if (!attrs)
4824 return -ENOMEM;
4825
4826 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4827 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4828 ret = apply_workqueue_attrs(wq, attrs);
4829 else
4830 ret = -EINVAL;
4831
4832 free_workqueue_attrs(attrs);
4833 return ret ?: count;
4834}
4835
4836static ssize_t wq_cpumask_show(struct device *dev,
4837 struct device_attribute *attr, char *buf)
4838{
4839 struct workqueue_struct *wq = dev_to_wq(dev);
4840 int written;
4841
4842 mutex_lock(&wq->mutex);
4843 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4844 cpumask_pr_args(wq->unbound_attrs->cpumask));
4845 mutex_unlock(&wq->mutex);
4846 return written;
4847}
4848
4849static ssize_t wq_cpumask_store(struct device *dev,
4850 struct device_attribute *attr,
4851 const char *buf, size_t count)
4852{
4853 struct workqueue_struct *wq = dev_to_wq(dev);
4854 struct workqueue_attrs *attrs;
4855 int ret;
4856
4857 attrs = wq_sysfs_prep_attrs(wq);
4858 if (!attrs)
4859 return -ENOMEM;
4860
4861 ret = cpumask_parse(buf, attrs->cpumask);
4862 if (!ret)
4863 ret = apply_workqueue_attrs(wq, attrs);
4864
4865 free_workqueue_attrs(attrs);
4866 return ret ?: count;
4867}
4868
4869static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
4870 char *buf)
4871{
4872 struct workqueue_struct *wq = dev_to_wq(dev);
4873 int written;
7dbc725e 4874
6ba94429
FW
4875 mutex_lock(&wq->mutex);
4876 written = scnprintf(buf, PAGE_SIZE, "%d\n",
4877 !wq->unbound_attrs->no_numa);
4878 mutex_unlock(&wq->mutex);
4c16bd32 4879
6ba94429 4880 return written;
65758202
TH
4881}
4882
6ba94429
FW
4883static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
4884 const char *buf, size_t count)
65758202 4885{
6ba94429
FW
4886 struct workqueue_struct *wq = dev_to_wq(dev);
4887 struct workqueue_attrs *attrs;
4888 int v, ret;
4c16bd32 4889
6ba94429
FW
4890 attrs = wq_sysfs_prep_attrs(wq);
4891 if (!attrs)
4892 return -ENOMEM;
4c16bd32 4893
6ba94429
FW
4894 ret = -EINVAL;
4895 if (sscanf(buf, "%d", &v) == 1) {
4896 attrs->no_numa = !v;
4897 ret = apply_workqueue_attrs(wq, attrs);
65758202 4898 }
6ba94429
FW
4899
4900 free_workqueue_attrs(attrs);
4901 return ret ?: count;
65758202
TH
4902}
4903
6ba94429
FW
4904static struct device_attribute wq_sysfs_unbound_attrs[] = {
4905 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
4906 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
4907 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
4908 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
4909 __ATTR_NULL,
4910};
8ccad40d 4911
6ba94429
FW
4912static struct bus_type wq_subsys = {
4913 .name = "workqueue",
4914 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
4915};
4916
6ba94429 4917static int __init wq_sysfs_init(void)
2d3854a3 4918{
6ba94429 4919 return subsys_virtual_register(&wq_subsys, NULL);
2d3854a3 4920}
6ba94429 4921core_initcall(wq_sysfs_init);
2d3854a3 4922
6ba94429 4923static void wq_device_release(struct device *dev)
2d3854a3 4924{
6ba94429 4925 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 4926
6ba94429 4927 kfree(wq_dev);
2d3854a3 4928}
a0a1a5fd
TH
4929
4930/**
6ba94429
FW
4931 * workqueue_sysfs_register - make a workqueue visible in sysfs
4932 * @wq: the workqueue to register
a0a1a5fd 4933 *
6ba94429
FW
4934 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
4935 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
4936 * which is the preferred method.
a0a1a5fd 4937 *
6ba94429
FW
4938 * Workqueue user should use this function directly iff it wants to apply
4939 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
4940 * apply_workqueue_attrs() may race against userland updating the
4941 * attributes.
4942 *
4943 * Return: 0 on success, -errno on failure.
a0a1a5fd 4944 */
6ba94429 4945int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 4946{
6ba94429
FW
4947 struct wq_device *wq_dev;
4948 int ret;
a0a1a5fd 4949
6ba94429
FW
4950 /*
4951 * Adjusting max_active or creating new pwqs by applyting
4952 * attributes breaks ordering guarantee. Disallow exposing ordered
4953 * workqueues.
4954 */
4955 if (WARN_ON(wq->flags & __WQ_ORDERED))
4956 return -EINVAL;
a0a1a5fd 4957
6ba94429
FW
4958 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
4959 if (!wq_dev)
4960 return -ENOMEM;
5bcab335 4961
6ba94429
FW
4962 wq_dev->wq = wq;
4963 wq_dev->dev.bus = &wq_subsys;
4964 wq_dev->dev.init_name = wq->name;
4965 wq_dev->dev.release = wq_device_release;
a0a1a5fd 4966
6ba94429
FW
4967 /*
4968 * unbound_attrs are created separately. Suppress uevent until
4969 * everything is ready.
4970 */
4971 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 4972
6ba94429
FW
4973 ret = device_register(&wq_dev->dev);
4974 if (ret) {
4975 kfree(wq_dev);
4976 wq->wq_dev = NULL;
4977 return ret;
4978 }
a0a1a5fd 4979
6ba94429
FW
4980 if (wq->flags & WQ_UNBOUND) {
4981 struct device_attribute *attr;
a0a1a5fd 4982
6ba94429
FW
4983 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
4984 ret = device_create_file(&wq_dev->dev, attr);
4985 if (ret) {
4986 device_unregister(&wq_dev->dev);
4987 wq->wq_dev = NULL;
4988 return ret;
a0a1a5fd
TH
4989 }
4990 }
4991 }
6ba94429
FW
4992
4993 dev_set_uevent_suppress(&wq_dev->dev, false);
4994 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
4995 return 0;
a0a1a5fd
TH
4996}
4997
4998/**
6ba94429
FW
4999 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5000 * @wq: the workqueue to unregister
a0a1a5fd 5001 *
6ba94429 5002 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5003 */
6ba94429 5004static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5005{
6ba94429 5006 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5007
6ba94429
FW
5008 if (!wq->wq_dev)
5009 return;
a0a1a5fd 5010
6ba94429
FW
5011 wq->wq_dev = NULL;
5012 device_unregister(&wq_dev->dev);
a0a1a5fd 5013}
6ba94429
FW
5014#else /* CONFIG_SYSFS */
5015static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5016#endif /* CONFIG_SYSFS */
a0a1a5fd 5017
bce90380
TH
5018static void __init wq_numa_init(void)
5019{
5020 cpumask_var_t *tbl;
5021 int node, cpu;
5022
bce90380
TH
5023 if (num_possible_nodes() <= 1)
5024 return;
5025
d55262c4
TH
5026 if (wq_disable_numa) {
5027 pr_info("workqueue: NUMA affinity support disabled\n");
5028 return;
5029 }
5030
4c16bd32
TH
5031 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5032 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5033
bce90380
TH
5034 /*
5035 * We want masks of possible CPUs of each node which isn't readily
5036 * available. Build one from cpu_to_node() which should have been
5037 * fully initialized by now.
5038 */
ddcb57e2 5039 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5040 BUG_ON(!tbl);
5041
5042 for_each_node(node)
5a6024f1 5043 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5044 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5045
5046 for_each_possible_cpu(cpu) {
5047 node = cpu_to_node(cpu);
5048 if (WARN_ON(node == NUMA_NO_NODE)) {
5049 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5050 /* happens iff arch is bonkers, let's just proceed */
5051 return;
5052 }
5053 cpumask_set_cpu(cpu, tbl[node]);
5054 }
5055
5056 wq_numa_possible_cpumask = tbl;
5057 wq_numa_enabled = true;
5058}
5059
6ee0578b 5060static int __init init_workqueues(void)
1da177e4 5061{
7a4e344c
TH
5062 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5063 int i, cpu;
c34056a3 5064
e904e6c2
TH
5065 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5066
5067 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5068
65758202 5069 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5070 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5071
bce90380
TH
5072 wq_numa_init();
5073
706026c2 5074 /* initialize CPU pools */
29c91e99 5075 for_each_possible_cpu(cpu) {
4ce62e9e 5076 struct worker_pool *pool;
8b03ae3c 5077
7a4e344c 5078 i = 0;
f02ae73a 5079 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5080 BUG_ON(init_worker_pool(pool));
ec22ca5e 5081 pool->cpu = cpu;
29c91e99 5082 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5083 pool->attrs->nice = std_nice[i++];
f3f90ad4 5084 pool->node = cpu_to_node(cpu);
7a4e344c 5085
9daf9e67 5086 /* alloc pool ID */
68e13a67 5087 mutex_lock(&wq_pool_mutex);
9daf9e67 5088 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5089 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5090 }
8b03ae3c
TH
5091 }
5092
e22bee78 5093 /* create the initial worker */
29c91e99 5094 for_each_online_cpu(cpu) {
4ce62e9e 5095 struct worker_pool *pool;
e22bee78 5096
f02ae73a 5097 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5098 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5099 BUG_ON(!create_worker(pool));
4ce62e9e 5100 }
e22bee78
TH
5101 }
5102
8a2b7538 5103 /* create default unbound and ordered wq attrs */
29c91e99
TH
5104 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5105 struct workqueue_attrs *attrs;
5106
5107 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5108 attrs->nice = std_nice[i];
29c91e99 5109 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5110
5111 /*
5112 * An ordered wq should have only one pwq as ordering is
5113 * guaranteed by max_active which is enforced by pwqs.
5114 * Turn off NUMA so that dfl_pwq is used for all nodes.
5115 */
5116 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5117 attrs->nice = std_nice[i];
5118 attrs->no_numa = true;
5119 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5120 }
5121
d320c038 5122 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5123 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5124 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5125 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5126 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5127 system_freezable_wq = alloc_workqueue("events_freezable",
5128 WQ_FREEZABLE, 0);
0668106c
VK
5129 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5130 WQ_POWER_EFFICIENT, 0);
5131 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5132 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5133 0);
1aabe902 5134 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5135 !system_unbound_wq || !system_freezable_wq ||
5136 !system_power_efficient_wq ||
5137 !system_freezable_power_efficient_wq);
6ee0578b 5138 return 0;
1da177e4 5139}
6ee0578b 5140early_initcall(init_workqueues);