]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/workqueue.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
112202d9
TH
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
1da177e4 161 */
112202d9 162struct pool_workqueue {
bd7bdd43 163 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 164 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
1e19ffc6 169 int nr_active; /* L: nr of active works */
a0a1a5fd 170 int max_active; /* L: max active works */
1e19ffc6 171 struct list_head delayed_works; /* L: delayed works */
0f900049 172};
1da177e4 173
73f53c4a
TH
174/*
175 * Structure used to wait for workqueue flush.
176 */
177struct wq_flusher {
178 struct list_head list; /* F: list of flushers */
179 int flush_color; /* F: flush color waiting for */
180 struct completion done; /* flush completion */
181};
182
f2e005aa
TH
183/*
184 * All cpumasks are assumed to be always set on UP and thus can't be
185 * used to determine whether there's something to be done.
186 */
187#ifdef CONFIG_SMP
188typedef cpumask_var_t mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) \
190 cpumask_test_and_set_cpu((cpu), (mask))
191#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
192#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 193#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
194#define free_mayday_mask(mask) free_cpumask_var((mask))
195#else
196typedef unsigned long mayday_mask_t;
197#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
198#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
199#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
200#define alloc_mayday_mask(maskp, gfp) true
201#define free_mayday_mask(mask) do { } while (0)
202#endif
1da177e4
LT
203
204/*
205 * The externally visible workqueue abstraction is an array of
206 * per-CPU workqueues:
207 */
208struct workqueue_struct {
9c5a2ba7 209 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7 210 union {
112202d9
TH
211 struct pool_workqueue __percpu *pcpu;
212 struct pool_workqueue *single;
bdbc5dd7 213 unsigned long v;
112202d9 214 } pool_wq; /* I: pwq's */
4690c4ab 215 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
216
217 struct mutex flush_mutex; /* protects wq flushing */
218 int work_color; /* F: current work color */
219 int flush_color; /* F: current flush color */
112202d9 220 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
221 struct wq_flusher *first_flusher; /* F: first flusher */
222 struct list_head flusher_queue; /* F: flush waiters */
223 struct list_head flusher_overflow; /* F: flush overflow list */
224
f2e005aa 225 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
226 struct worker *rescuer; /* I: rescue worker */
227
9c5a2ba7 228 int nr_drainers; /* W: drain in progress */
112202d9 229 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 230#ifdef CONFIG_LOCKDEP
4690c4ab 231 struct lockdep_map lockdep_map;
4e6045f1 232#endif
b196be89 233 char name[]; /* I: workqueue name */
1da177e4
LT
234};
235
d320c038 236struct workqueue_struct *system_wq __read_mostly;
d320c038 237EXPORT_SYMBOL_GPL(system_wq);
044c782c 238struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 239EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 240struct workqueue_struct *system_long_wq __read_mostly;
d320c038 241EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 242struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 243EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 244struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 245EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 246
97bd2347
TH
247#define CREATE_TRACE_POINTS
248#include <trace/events/workqueue.h>
249
38db41d9 250#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
251 for ((pool) = &std_worker_pools(cpu)[0]; \
252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 253
b67bfe0d
SL
254#define for_each_busy_worker(worker, i, pool) \
255 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 256
706026c2
TH
257static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 unsigned int sw)
f3421797
TH
259{
260 if (cpu < nr_cpu_ids) {
261 if (sw & 1) {
262 cpu = cpumask_next(cpu, mask);
263 if (cpu < nr_cpu_ids)
264 return cpu;
265 }
266 if (sw & 2)
267 return WORK_CPU_UNBOUND;
268 }
6be19588 269 return WORK_CPU_END;
f3421797
TH
270}
271
112202d9 272static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
706026c2 273 struct workqueue_struct *wq)
f3421797 274{
706026c2 275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
276}
277
09884951
TH
278/*
279 * CPU iterators
280 *
706026c2 281 * An extra cpu number is defined using an invalid cpu number
09884951 282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
283 * specific CPU. The following iterators are similar to for_each_*_cpu()
284 * iterators but also considers the unbound CPU.
09884951 285 *
706026c2
TH
286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
112202d9 288 * for_each_pwq_cpu() : possible CPUs for bound workqueues,
09884951
TH
289 * WORK_CPU_UNBOUND for unbound workqueues
290 */
706026c2
TH
291#define for_each_wq_cpu(cpu) \
292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 293 (cpu) < WORK_CPU_END; \
706026c2 294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 295
706026c2
TH
296#define for_each_online_wq_cpu(cpu) \
297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 298 (cpu) < WORK_CPU_END; \
706026c2 299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 300
112202d9
TH
301#define for_each_pwq_cpu(cpu, wq) \
302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 303 (cpu) < WORK_CPU_END; \
112202d9 304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 305
dc186ad7
TG
306#ifdef CONFIG_DEBUG_OBJECTS_WORK
307
308static struct debug_obj_descr work_debug_descr;
309
99777288
SG
310static void *work_debug_hint(void *addr)
311{
312 return ((struct work_struct *) addr)->func;
313}
314
dc186ad7
TG
315/*
316 * fixup_init is called when:
317 * - an active object is initialized
318 */
319static int work_fixup_init(void *addr, enum debug_obj_state state)
320{
321 struct work_struct *work = addr;
322
323 switch (state) {
324 case ODEBUG_STATE_ACTIVE:
325 cancel_work_sync(work);
326 debug_object_init(work, &work_debug_descr);
327 return 1;
328 default:
329 return 0;
330 }
331}
332
333/*
334 * fixup_activate is called when:
335 * - an active object is activated
336 * - an unknown object is activated (might be a statically initialized object)
337 */
338static int work_fixup_activate(void *addr, enum debug_obj_state state)
339{
340 struct work_struct *work = addr;
341
342 switch (state) {
343
344 case ODEBUG_STATE_NOTAVAILABLE:
345 /*
346 * This is not really a fixup. The work struct was
347 * statically initialized. We just make sure that it
348 * is tracked in the object tracker.
349 */
22df02bb 350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
351 debug_object_init(work, &work_debug_descr);
352 debug_object_activate(work, &work_debug_descr);
353 return 0;
354 }
355 WARN_ON_ONCE(1);
356 return 0;
357
358 case ODEBUG_STATE_ACTIVE:
359 WARN_ON(1);
360
361 default:
362 return 0;
363 }
364}
365
366/*
367 * fixup_free is called when:
368 * - an active object is freed
369 */
370static int work_fixup_free(void *addr, enum debug_obj_state state)
371{
372 struct work_struct *work = addr;
373
374 switch (state) {
375 case ODEBUG_STATE_ACTIVE:
376 cancel_work_sync(work);
377 debug_object_free(work, &work_debug_descr);
378 return 1;
379 default:
380 return 0;
381 }
382}
383
384static struct debug_obj_descr work_debug_descr = {
385 .name = "work_struct",
99777288 386 .debug_hint = work_debug_hint,
dc186ad7
TG
387 .fixup_init = work_fixup_init,
388 .fixup_activate = work_fixup_activate,
389 .fixup_free = work_fixup_free,
390};
391
392static inline void debug_work_activate(struct work_struct *work)
393{
394 debug_object_activate(work, &work_debug_descr);
395}
396
397static inline void debug_work_deactivate(struct work_struct *work)
398{
399 debug_object_deactivate(work, &work_debug_descr);
400}
401
402void __init_work(struct work_struct *work, int onstack)
403{
404 if (onstack)
405 debug_object_init_on_stack(work, &work_debug_descr);
406 else
407 debug_object_init(work, &work_debug_descr);
408}
409EXPORT_SYMBOL_GPL(__init_work);
410
411void destroy_work_on_stack(struct work_struct *work)
412{
413 debug_object_free(work, &work_debug_descr);
414}
415EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416
417#else
418static inline void debug_work_activate(struct work_struct *work) { }
419static inline void debug_work_deactivate(struct work_struct *work) { }
420#endif
421
95402b38
GS
422/* Serializes the accesses to the list of workqueues. */
423static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 424static LIST_HEAD(workqueues);
a0a1a5fd 425static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 426
e22bee78 427/*
e19e397a
TH
428 * The CPU and unbound standard worker pools. The unbound ones have
429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 430 */
e19e397a
TH
431static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 cpu_std_worker_pools);
a60dc39c 433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 434
9daf9e67
TH
435/* idr of all pools */
436static DEFINE_MUTEX(worker_pool_idr_mutex);
437static DEFINE_IDR(worker_pool_idr);
438
c34056a3 439static int worker_thread(void *__worker);
1da177e4 440
a60dc39c 441static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 442{
f3421797 443 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 444 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 445 else
a60dc39c 446 return unbound_std_worker_pools;
8b03ae3c
TH
447}
448
4e8f0a60
TH
449static int std_worker_pool_pri(struct worker_pool *pool)
450{
a60dc39c 451 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
452}
453
9daf9e67
TH
454/* allocate ID and assign it to @pool */
455static int worker_pool_assign_id(struct worker_pool *pool)
456{
457 int ret;
458
459 mutex_lock(&worker_pool_idr_mutex);
e68035fb
TH
460 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
461 if (ret >= 0)
462 pool->id = ret;
9daf9e67
TH
463 mutex_unlock(&worker_pool_idr_mutex);
464
e68035fb 465 return ret < 0 ? ret : 0;
9daf9e67
TH
466}
467
7c3eed5c
TH
468/*
469 * Lookup worker_pool by id. The idr currently is built during boot and
470 * never modified. Don't worry about locking for now.
471 */
472static struct worker_pool *worker_pool_by_id(int pool_id)
473{
474 return idr_find(&worker_pool_idr, pool_id);
475}
476
d565ed63
TH
477static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
478{
a60dc39c 479 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 480
a60dc39c 481 return &pools[highpri];
d565ed63
TH
482}
483
112202d9
TH
484static struct pool_workqueue *get_pwq(unsigned int cpu,
485 struct workqueue_struct *wq)
b1f4ec17 486{
f3421797 487 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 488 if (likely(cpu < nr_cpu_ids))
112202d9 489 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
f3421797 490 } else if (likely(cpu == WORK_CPU_UNBOUND))
112202d9 491 return wq->pool_wq.single;
f3421797 492 return NULL;
b1f4ec17
ON
493}
494
73f53c4a
TH
495static unsigned int work_color_to_flags(int color)
496{
497 return color << WORK_STRUCT_COLOR_SHIFT;
498}
499
500static int get_work_color(struct work_struct *work)
501{
502 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
503 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
504}
505
506static int work_next_color(int color)
507{
508 return (color + 1) % WORK_NR_COLORS;
509}
1da177e4 510
14441960 511/*
112202d9
TH
512 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
513 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 514 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 515 *
112202d9
TH
516 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
517 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
518 * work->data. These functions should only be called while the work is
519 * owned - ie. while the PENDING bit is set.
7a22ad75 520 *
112202d9 521 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 522 * corresponding to a work. Pool is available once the work has been
112202d9 523 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 524 * available only while the work item is queued.
7a22ad75 525 *
bbb68dfa
TH
526 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
527 * canceled. While being canceled, a work item may have its PENDING set
528 * but stay off timer and worklist for arbitrarily long and nobody should
529 * try to steal the PENDING bit.
14441960 530 */
7a22ad75
TH
531static inline void set_work_data(struct work_struct *work, unsigned long data,
532 unsigned long flags)
365970a1 533{
4594bf15 534 BUG_ON(!work_pending(work));
7a22ad75
TH
535 atomic_long_set(&work->data, data | flags | work_static(work));
536}
365970a1 537
112202d9 538static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
539 unsigned long extra_flags)
540{
112202d9
TH
541 set_work_data(work, (unsigned long)pwq,
542 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
543}
544
4468a00f
LJ
545static void set_work_pool_and_keep_pending(struct work_struct *work,
546 int pool_id)
547{
548 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
549 WORK_STRUCT_PENDING);
550}
551
7c3eed5c
TH
552static void set_work_pool_and_clear_pending(struct work_struct *work,
553 int pool_id)
7a22ad75 554{
23657bb1
TH
555 /*
556 * The following wmb is paired with the implied mb in
557 * test_and_set_bit(PENDING) and ensures all updates to @work made
558 * here are visible to and precede any updates by the next PENDING
559 * owner.
560 */
561 smp_wmb();
7c3eed5c 562 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 563}
f756d5e2 564
7a22ad75 565static void clear_work_data(struct work_struct *work)
1da177e4 566{
7c3eed5c
TH
567 smp_wmb(); /* see set_work_pool_and_clear_pending() */
568 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
569}
570
112202d9 571static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 572{
e120153d 573 unsigned long data = atomic_long_read(&work->data);
7a22ad75 574
112202d9 575 if (data & WORK_STRUCT_PWQ)
e120153d
TH
576 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
577 else
578 return NULL;
4d707b9f
ON
579}
580
7c3eed5c
TH
581/**
582 * get_work_pool - return the worker_pool a given work was associated with
583 * @work: the work item of interest
584 *
585 * Return the worker_pool @work was last associated with. %NULL if none.
586 */
587static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 588{
e120153d 589 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
590 struct worker_pool *pool;
591 int pool_id;
7a22ad75 592
112202d9
TH
593 if (data & WORK_STRUCT_PWQ)
594 return ((struct pool_workqueue *)
7c3eed5c 595 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 596
7c3eed5c
TH
597 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
598 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
599 return NULL;
600
7c3eed5c
TH
601 pool = worker_pool_by_id(pool_id);
602 WARN_ON_ONCE(!pool);
603 return pool;
604}
605
606/**
607 * get_work_pool_id - return the worker pool ID a given work is associated with
608 * @work: the work item of interest
609 *
610 * Return the worker_pool ID @work was last associated with.
611 * %WORK_OFFQ_POOL_NONE if none.
612 */
613static int get_work_pool_id(struct work_struct *work)
614{
54d5b7d0
LJ
615 unsigned long data = atomic_long_read(&work->data);
616
112202d9
TH
617 if (data & WORK_STRUCT_PWQ)
618 return ((struct pool_workqueue *)
54d5b7d0 619 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 620
54d5b7d0 621 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
622}
623
bbb68dfa
TH
624static void mark_work_canceling(struct work_struct *work)
625{
7c3eed5c 626 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 627
7c3eed5c
TH
628 pool_id <<= WORK_OFFQ_POOL_SHIFT;
629 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
630}
631
632static bool work_is_canceling(struct work_struct *work)
633{
634 unsigned long data = atomic_long_read(&work->data);
635
112202d9 636 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
637}
638
e22bee78 639/*
3270476a
TH
640 * Policy functions. These define the policies on how the global worker
641 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 642 * they're being called with pool->lock held.
e22bee78
TH
643 */
644
63d95a91 645static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 646{
e19e397a 647 return !atomic_read(&pool->nr_running);
a848e3b6
ON
648}
649
4594bf15 650/*
e22bee78
TH
651 * Need to wake up a worker? Called from anything but currently
652 * running workers.
974271c4
TH
653 *
654 * Note that, because unbound workers never contribute to nr_running, this
706026c2 655 * function will always return %true for unbound pools as long as the
974271c4 656 * worklist isn't empty.
4594bf15 657 */
63d95a91 658static bool need_more_worker(struct worker_pool *pool)
365970a1 659{
63d95a91 660 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 661}
4594bf15 662
e22bee78 663/* Can I start working? Called from busy but !running workers. */
63d95a91 664static bool may_start_working(struct worker_pool *pool)
e22bee78 665{
63d95a91 666 return pool->nr_idle;
e22bee78
TH
667}
668
669/* Do I need to keep working? Called from currently running workers. */
63d95a91 670static bool keep_working(struct worker_pool *pool)
e22bee78 671{
e19e397a
TH
672 return !list_empty(&pool->worklist) &&
673 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
674}
675
676/* Do we need a new worker? Called from manager. */
63d95a91 677static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 678{
63d95a91 679 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 680}
365970a1 681
e22bee78 682/* Do I need to be the manager? */
63d95a91 683static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 684{
63d95a91 685 return need_to_create_worker(pool) ||
11ebea50 686 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
687}
688
689/* Do we have too many workers and should some go away? */
63d95a91 690static bool too_many_workers(struct worker_pool *pool)
e22bee78 691{
552a37e9 692 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
693 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
694 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 695
ea1abd61
LJ
696 /*
697 * nr_idle and idle_list may disagree if idle rebinding is in
698 * progress. Never return %true if idle_list is empty.
699 */
700 if (list_empty(&pool->idle_list))
701 return false;
702
e22bee78 703 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
704}
705
4d707b9f 706/*
e22bee78
TH
707 * Wake up functions.
708 */
709
7e11629d 710/* Return the first worker. Safe with preemption disabled */
63d95a91 711static struct worker *first_worker(struct worker_pool *pool)
7e11629d 712{
63d95a91 713 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
714 return NULL;
715
63d95a91 716 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
717}
718
719/**
720 * wake_up_worker - wake up an idle worker
63d95a91 721 * @pool: worker pool to wake worker from
7e11629d 722 *
63d95a91 723 * Wake up the first idle worker of @pool.
7e11629d
TH
724 *
725 * CONTEXT:
d565ed63 726 * spin_lock_irq(pool->lock).
7e11629d 727 */
63d95a91 728static void wake_up_worker(struct worker_pool *pool)
7e11629d 729{
63d95a91 730 struct worker *worker = first_worker(pool);
7e11629d
TH
731
732 if (likely(worker))
733 wake_up_process(worker->task);
734}
735
d302f017 736/**
e22bee78
TH
737 * wq_worker_waking_up - a worker is waking up
738 * @task: task waking up
739 * @cpu: CPU @task is waking up to
740 *
741 * This function is called during try_to_wake_up() when a worker is
742 * being awoken.
743 *
744 * CONTEXT:
745 * spin_lock_irq(rq->lock)
746 */
747void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
748{
749 struct worker *worker = kthread_data(task);
750
36576000 751 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 752 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 753 atomic_inc(&worker->pool->nr_running);
36576000 754 }
e22bee78
TH
755}
756
757/**
758 * wq_worker_sleeping - a worker is going to sleep
759 * @task: task going to sleep
760 * @cpu: CPU in question, must be the current CPU number
761 *
762 * This function is called during schedule() when a busy worker is
763 * going to sleep. Worker on the same cpu can be woken up by
764 * returning pointer to its task.
765 *
766 * CONTEXT:
767 * spin_lock_irq(rq->lock)
768 *
769 * RETURNS:
770 * Worker task on @cpu to wake up, %NULL if none.
771 */
772struct task_struct *wq_worker_sleeping(struct task_struct *task,
773 unsigned int cpu)
774{
775 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 776 struct worker_pool *pool;
e22bee78 777
111c225a
TH
778 /*
779 * Rescuers, which may not have all the fields set up like normal
780 * workers, also reach here, let's not access anything before
781 * checking NOT_RUNNING.
782 */
2d64672e 783 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
784 return NULL;
785
111c225a 786 pool = worker->pool;
111c225a 787
e22bee78
TH
788 /* this can only happen on the local cpu */
789 BUG_ON(cpu != raw_smp_processor_id());
790
791 /*
792 * The counterpart of the following dec_and_test, implied mb,
793 * worklist not empty test sequence is in insert_work().
794 * Please read comment there.
795 *
628c78e7
TH
796 * NOT_RUNNING is clear. This means that we're bound to and
797 * running on the local cpu w/ rq lock held and preemption
798 * disabled, which in turn means that none else could be
d565ed63 799 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 800 * lock is safe.
e22bee78 801 */
e19e397a
TH
802 if (atomic_dec_and_test(&pool->nr_running) &&
803 !list_empty(&pool->worklist))
63d95a91 804 to_wakeup = first_worker(pool);
e22bee78
TH
805 return to_wakeup ? to_wakeup->task : NULL;
806}
807
808/**
809 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 810 * @worker: self
d302f017
TH
811 * @flags: flags to set
812 * @wakeup: wakeup an idle worker if necessary
813 *
e22bee78
TH
814 * Set @flags in @worker->flags and adjust nr_running accordingly. If
815 * nr_running becomes zero and @wakeup is %true, an idle worker is
816 * woken up.
d302f017 817 *
cb444766 818 * CONTEXT:
d565ed63 819 * spin_lock_irq(pool->lock)
d302f017
TH
820 */
821static inline void worker_set_flags(struct worker *worker, unsigned int flags,
822 bool wakeup)
823{
bd7bdd43 824 struct worker_pool *pool = worker->pool;
e22bee78 825
cb444766
TH
826 WARN_ON_ONCE(worker->task != current);
827
e22bee78
TH
828 /*
829 * If transitioning into NOT_RUNNING, adjust nr_running and
830 * wake up an idle worker as necessary if requested by
831 * @wakeup.
832 */
833 if ((flags & WORKER_NOT_RUNNING) &&
834 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 835 if (wakeup) {
e19e397a 836 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 837 !list_empty(&pool->worklist))
63d95a91 838 wake_up_worker(pool);
e22bee78 839 } else
e19e397a 840 atomic_dec(&pool->nr_running);
e22bee78
TH
841 }
842
d302f017
TH
843 worker->flags |= flags;
844}
845
846/**
e22bee78 847 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 848 * @worker: self
d302f017
TH
849 * @flags: flags to clear
850 *
e22bee78 851 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 852 *
cb444766 853 * CONTEXT:
d565ed63 854 * spin_lock_irq(pool->lock)
d302f017
TH
855 */
856static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
857{
63d95a91 858 struct worker_pool *pool = worker->pool;
e22bee78
TH
859 unsigned int oflags = worker->flags;
860
cb444766
TH
861 WARN_ON_ONCE(worker->task != current);
862
d302f017 863 worker->flags &= ~flags;
e22bee78 864
42c025f3
TH
865 /*
866 * If transitioning out of NOT_RUNNING, increment nr_running. Note
867 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
868 * of multiple flags, not a single flag.
869 */
e22bee78
TH
870 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
871 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 872 atomic_inc(&pool->nr_running);
d302f017
TH
873}
874
8cca0eea
TH
875/**
876 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 877 * @pool: pool of interest
8cca0eea
TH
878 * @work: work to find worker for
879 *
c9e7cf27
TH
880 * Find a worker which is executing @work on @pool by searching
881 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
882 * to match, its current execution should match the address of @work and
883 * its work function. This is to avoid unwanted dependency between
884 * unrelated work executions through a work item being recycled while still
885 * being executed.
886 *
887 * This is a bit tricky. A work item may be freed once its execution
888 * starts and nothing prevents the freed area from being recycled for
889 * another work item. If the same work item address ends up being reused
890 * before the original execution finishes, workqueue will identify the
891 * recycled work item as currently executing and make it wait until the
892 * current execution finishes, introducing an unwanted dependency.
893 *
894 * This function checks the work item address, work function and workqueue
895 * to avoid false positives. Note that this isn't complete as one may
896 * construct a work function which can introduce dependency onto itself
897 * through a recycled work item. Well, if somebody wants to shoot oneself
898 * in the foot that badly, there's only so much we can do, and if such
899 * deadlock actually occurs, it should be easy to locate the culprit work
900 * function.
8cca0eea
TH
901 *
902 * CONTEXT:
d565ed63 903 * spin_lock_irq(pool->lock).
8cca0eea
TH
904 *
905 * RETURNS:
906 * Pointer to worker which is executing @work if found, NULL
907 * otherwise.
4d707b9f 908 */
c9e7cf27 909static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 910 struct work_struct *work)
4d707b9f 911{
42f8570f 912 struct worker *worker;
42f8570f 913
b67bfe0d 914 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
915 (unsigned long)work)
916 if (worker->current_work == work &&
917 worker->current_func == work->func)
42f8570f
SL
918 return worker;
919
920 return NULL;
4d707b9f
ON
921}
922
bf4ede01
TH
923/**
924 * move_linked_works - move linked works to a list
925 * @work: start of series of works to be scheduled
926 * @head: target list to append @work to
927 * @nextp: out paramter for nested worklist walking
928 *
929 * Schedule linked works starting from @work to @head. Work series to
930 * be scheduled starts at @work and includes any consecutive work with
931 * WORK_STRUCT_LINKED set in its predecessor.
932 *
933 * If @nextp is not NULL, it's updated to point to the next work of
934 * the last scheduled work. This allows move_linked_works() to be
935 * nested inside outer list_for_each_entry_safe().
936 *
937 * CONTEXT:
d565ed63 938 * spin_lock_irq(pool->lock).
bf4ede01
TH
939 */
940static void move_linked_works(struct work_struct *work, struct list_head *head,
941 struct work_struct **nextp)
942{
943 struct work_struct *n;
944
945 /*
946 * Linked worklist will always end before the end of the list,
947 * use NULL for list head.
948 */
949 list_for_each_entry_safe_from(work, n, NULL, entry) {
950 list_move_tail(&work->entry, head);
951 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
952 break;
953 }
954
955 /*
956 * If we're already inside safe list traversal and have moved
957 * multiple works to the scheduled queue, the next position
958 * needs to be updated.
959 */
960 if (nextp)
961 *nextp = n;
962}
963
112202d9 964static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 965{
112202d9 966 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
967
968 trace_workqueue_activate_work(work);
112202d9 969 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 970 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 971 pwq->nr_active++;
bf4ede01
TH
972}
973
112202d9 974static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 975{
112202d9 976 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
977 struct work_struct, entry);
978
112202d9 979 pwq_activate_delayed_work(work);
3aa62497
LJ
980}
981
bf4ede01 982/**
112202d9
TH
983 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
984 * @pwq: pwq of interest
bf4ede01 985 * @color: color of work which left the queue
bf4ede01
TH
986 *
987 * A work either has completed or is removed from pending queue,
112202d9 988 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
989 *
990 * CONTEXT:
d565ed63 991 * spin_lock_irq(pool->lock).
bf4ede01 992 */
112202d9 993static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
994{
995 /* ignore uncolored works */
996 if (color == WORK_NO_COLOR)
997 return;
998
112202d9 999 pwq->nr_in_flight[color]--;
bf4ede01 1000
112202d9
TH
1001 pwq->nr_active--;
1002 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1003 /* one down, submit a delayed one */
112202d9
TH
1004 if (pwq->nr_active < pwq->max_active)
1005 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1006 }
1007
1008 /* is flush in progress and are we at the flushing tip? */
112202d9 1009 if (likely(pwq->flush_color != color))
bf4ede01
TH
1010 return;
1011
1012 /* are there still in-flight works? */
112202d9 1013 if (pwq->nr_in_flight[color])
bf4ede01
TH
1014 return;
1015
112202d9
TH
1016 /* this pwq is done, clear flush_color */
1017 pwq->flush_color = -1;
bf4ede01
TH
1018
1019 /*
112202d9 1020 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1021 * will handle the rest.
1022 */
112202d9
TH
1023 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1024 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1025}
1026
36e227d2 1027/**
bbb68dfa 1028 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1029 * @work: work item to steal
1030 * @is_dwork: @work is a delayed_work
bbb68dfa 1031 * @flags: place to store irq state
36e227d2
TH
1032 *
1033 * Try to grab PENDING bit of @work. This function can handle @work in any
1034 * stable state - idle, on timer or on worklist. Return values are
1035 *
1036 * 1 if @work was pending and we successfully stole PENDING
1037 * 0 if @work was idle and we claimed PENDING
1038 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1039 * -ENOENT if someone else is canceling @work, this state may persist
1040 * for arbitrarily long
36e227d2 1041 *
bbb68dfa 1042 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1043 * interrupted while holding PENDING and @work off queue, irq must be
1044 * disabled on entry. This, combined with delayed_work->timer being
1045 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1046 *
1047 * On successful return, >= 0, irq is disabled and the caller is
1048 * responsible for releasing it using local_irq_restore(*@flags).
1049 *
e0aecdd8 1050 * This function is safe to call from any context including IRQ handler.
bf4ede01 1051 */
bbb68dfa
TH
1052static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1053 unsigned long *flags)
bf4ede01 1054{
d565ed63 1055 struct worker_pool *pool;
112202d9 1056 struct pool_workqueue *pwq;
bf4ede01 1057
bbb68dfa
TH
1058 local_irq_save(*flags);
1059
36e227d2
TH
1060 /* try to steal the timer if it exists */
1061 if (is_dwork) {
1062 struct delayed_work *dwork = to_delayed_work(work);
1063
e0aecdd8
TH
1064 /*
1065 * dwork->timer is irqsafe. If del_timer() fails, it's
1066 * guaranteed that the timer is not queued anywhere and not
1067 * running on the local CPU.
1068 */
36e227d2
TH
1069 if (likely(del_timer(&dwork->timer)))
1070 return 1;
1071 }
1072
1073 /* try to claim PENDING the normal way */
bf4ede01
TH
1074 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1075 return 0;
1076
1077 /*
1078 * The queueing is in progress, or it is already queued. Try to
1079 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1080 */
d565ed63
TH
1081 pool = get_work_pool(work);
1082 if (!pool)
bbb68dfa 1083 goto fail;
bf4ede01 1084
d565ed63 1085 spin_lock(&pool->lock);
0b3dae68 1086 /*
112202d9
TH
1087 * work->data is guaranteed to point to pwq only while the work
1088 * item is queued on pwq->wq, and both updating work->data to point
1089 * to pwq on queueing and to pool on dequeueing are done under
1090 * pwq->pool->lock. This in turn guarantees that, if work->data
1091 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1092 * item is currently queued on that pool.
1093 */
112202d9
TH
1094 pwq = get_work_pwq(work);
1095 if (pwq && pwq->pool == pool) {
16062836
TH
1096 debug_work_deactivate(work);
1097
1098 /*
1099 * A delayed work item cannot be grabbed directly because
1100 * it might have linked NO_COLOR work items which, if left
112202d9 1101 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1102 * management later on and cause stall. Make sure the work
1103 * item is activated before grabbing.
1104 */
1105 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1106 pwq_activate_delayed_work(work);
16062836
TH
1107
1108 list_del_init(&work->entry);
112202d9 1109 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1110
112202d9 1111 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1112 set_work_pool_and_keep_pending(work, pool->id);
1113
1114 spin_unlock(&pool->lock);
1115 return 1;
bf4ede01 1116 }
d565ed63 1117 spin_unlock(&pool->lock);
bbb68dfa
TH
1118fail:
1119 local_irq_restore(*flags);
1120 if (work_is_canceling(work))
1121 return -ENOENT;
1122 cpu_relax();
36e227d2 1123 return -EAGAIN;
bf4ede01
TH
1124}
1125
4690c4ab 1126/**
706026c2 1127 * insert_work - insert a work into a pool
112202d9 1128 * @pwq: pwq @work belongs to
4690c4ab
TH
1129 * @work: work to insert
1130 * @head: insertion point
1131 * @extra_flags: extra WORK_STRUCT_* flags to set
1132 *
112202d9 1133 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1134 * work_struct flags.
4690c4ab
TH
1135 *
1136 * CONTEXT:
d565ed63 1137 * spin_lock_irq(pool->lock).
4690c4ab 1138 */
112202d9
TH
1139static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1140 struct list_head *head, unsigned int extra_flags)
b89deed3 1141{
112202d9 1142 struct worker_pool *pool = pwq->pool;
e22bee78 1143
4690c4ab 1144 /* we own @work, set data and link */
112202d9 1145 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1146 list_add_tail(&work->entry, head);
e22bee78
TH
1147
1148 /*
1149 * Ensure either worker_sched_deactivated() sees the above
1150 * list_add_tail() or we see zero nr_running to avoid workers
1151 * lying around lazily while there are works to be processed.
1152 */
1153 smp_mb();
1154
63d95a91
TH
1155 if (__need_more_worker(pool))
1156 wake_up_worker(pool);
b89deed3
ON
1157}
1158
c8efcc25
TH
1159/*
1160 * Test whether @work is being queued from another work executing on the
8d03ecfe 1161 * same workqueue.
c8efcc25
TH
1162 */
1163static bool is_chained_work(struct workqueue_struct *wq)
1164{
8d03ecfe
TH
1165 struct worker *worker;
1166
1167 worker = current_wq_worker();
1168 /*
1169 * Return %true iff I'm a worker execuing a work item on @wq. If
1170 * I'm @worker, it's safe to dereference it without locking.
1171 */
112202d9 1172 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1173}
1174
4690c4ab 1175static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1176 struct work_struct *work)
1177{
112202d9 1178 struct pool_workqueue *pwq;
1e19ffc6 1179 struct list_head *worklist;
8a2e8e5d 1180 unsigned int work_flags;
b75cac93 1181 unsigned int req_cpu = cpu;
8930caba
TH
1182
1183 /*
1184 * While a work item is PENDING && off queue, a task trying to
1185 * steal the PENDING will busy-loop waiting for it to either get
1186 * queued or lose PENDING. Grabbing PENDING and queueing should
1187 * happen with IRQ disabled.
1188 */
1189 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1190
dc186ad7 1191 debug_work_activate(work);
1e19ffc6 1192
c8efcc25 1193 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1194 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1195 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1196 return;
1197
112202d9 1198 /* determine the pwq to use */
c7fc77f7 1199 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1200 struct worker_pool *last_pool;
18aa9eff 1201
57469821 1202 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1203 cpu = raw_smp_processor_id();
1204
18aa9eff 1205 /*
dbf2576e
TH
1206 * It's multi cpu. If @work was previously on a different
1207 * cpu, it might still be running there, in which case the
1208 * work needs to be queued on that cpu to guarantee
1209 * non-reentrancy.
18aa9eff 1210 */
112202d9 1211 pwq = get_pwq(cpu, wq);
c9e7cf27 1212 last_pool = get_work_pool(work);
dbf2576e 1213
112202d9 1214 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1215 struct worker *worker;
1216
d565ed63 1217 spin_lock(&last_pool->lock);
18aa9eff 1218
c9e7cf27 1219 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1220
112202d9
TH
1221 if (worker && worker->current_pwq->wq == wq) {
1222 pwq = get_pwq(last_pool->cpu, wq);
8594fade 1223 } else {
18aa9eff 1224 /* meh... not running there, queue here */
d565ed63 1225 spin_unlock(&last_pool->lock);
112202d9 1226 spin_lock(&pwq->pool->lock);
18aa9eff 1227 }
8930caba 1228 } else {
112202d9 1229 spin_lock(&pwq->pool->lock);
8930caba 1230 }
f3421797 1231 } else {
112202d9
TH
1232 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1233 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1234 }
1235
112202d9
TH
1236 /* pwq determined, queue */
1237 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1238
f5b2552b 1239 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1240 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1241 return;
1242 }
1e19ffc6 1243
112202d9
TH
1244 pwq->nr_in_flight[pwq->work_color]++;
1245 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1246
112202d9 1247 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1248 trace_workqueue_activate_work(work);
112202d9
TH
1249 pwq->nr_active++;
1250 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1251 } else {
1252 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1253 worklist = &pwq->delayed_works;
8a2e8e5d 1254 }
1e19ffc6 1255
112202d9 1256 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1257
112202d9 1258 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1259}
1260
0fcb78c2 1261/**
c1a220e7
ZR
1262 * queue_work_on - queue work on specific cpu
1263 * @cpu: CPU number to execute work on
0fcb78c2
REB
1264 * @wq: workqueue to use
1265 * @work: work to queue
1266 *
d4283e93 1267 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1268 *
c1a220e7
ZR
1269 * We queue the work to a specific CPU, the caller must ensure it
1270 * can't go away.
1da177e4 1271 */
d4283e93
TH
1272bool queue_work_on(int cpu, struct workqueue_struct *wq,
1273 struct work_struct *work)
1da177e4 1274{
d4283e93 1275 bool ret = false;
8930caba 1276 unsigned long flags;
ef1ca236 1277
8930caba 1278 local_irq_save(flags);
c1a220e7 1279
22df02bb 1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1281 __queue_work(cpu, wq, work);
d4283e93 1282 ret = true;
c1a220e7 1283 }
ef1ca236 1284
8930caba 1285 local_irq_restore(flags);
1da177e4
LT
1286 return ret;
1287}
c1a220e7 1288EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1289
c1a220e7 1290/**
0a13c00e 1291 * queue_work - queue work on a workqueue
c1a220e7
ZR
1292 * @wq: workqueue to use
1293 * @work: work to queue
1294 *
d4283e93 1295 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1296 *
0a13c00e
TH
1297 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1298 * it can be processed by another CPU.
c1a220e7 1299 */
d4283e93 1300bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1301{
57469821 1302 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1303}
0a13c00e 1304EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1305
d8e794df 1306void delayed_work_timer_fn(unsigned long __data)
1da177e4 1307{
52bad64d 1308 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1309
e0aecdd8 1310 /* should have been called from irqsafe timer with irq already off */
60c057bc 1311 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1312}
1438ade5 1313EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1314
7beb2edf
TH
1315static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1316 struct delayed_work *dwork, unsigned long delay)
1da177e4 1317{
7beb2edf
TH
1318 struct timer_list *timer = &dwork->timer;
1319 struct work_struct *work = &dwork->work;
7beb2edf
TH
1320
1321 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1322 timer->data != (unsigned long)dwork);
fc4b514f
TH
1323 WARN_ON_ONCE(timer_pending(timer));
1324 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1325
8852aac2
TH
1326 /*
1327 * If @delay is 0, queue @dwork->work immediately. This is for
1328 * both optimization and correctness. The earliest @timer can
1329 * expire is on the closest next tick and delayed_work users depend
1330 * on that there's no such delay when @delay is 0.
1331 */
1332 if (!delay) {
1333 __queue_work(cpu, wq, &dwork->work);
1334 return;
1335 }
1336
7beb2edf 1337 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1338
60c057bc 1339 dwork->wq = wq;
1265057f 1340 dwork->cpu = cpu;
7beb2edf
TH
1341 timer->expires = jiffies + delay;
1342
1343 if (unlikely(cpu != WORK_CPU_UNBOUND))
1344 add_timer_on(timer, cpu);
1345 else
1346 add_timer(timer);
1da177e4
LT
1347}
1348
0fcb78c2
REB
1349/**
1350 * queue_delayed_work_on - queue work on specific CPU after delay
1351 * @cpu: CPU number to execute work on
1352 * @wq: workqueue to use
af9997e4 1353 * @dwork: work to queue
0fcb78c2
REB
1354 * @delay: number of jiffies to wait before queueing
1355 *
715f1300
TH
1356 * Returns %false if @work was already on a queue, %true otherwise. If
1357 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1358 * execution.
0fcb78c2 1359 */
d4283e93
TH
1360bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1361 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1362{
52bad64d 1363 struct work_struct *work = &dwork->work;
d4283e93 1364 bool ret = false;
8930caba 1365 unsigned long flags;
7a6bc1cd 1366
8930caba
TH
1367 /* read the comment in __queue_work() */
1368 local_irq_save(flags);
7a6bc1cd 1369
22df02bb 1370 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1371 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1372 ret = true;
7a6bc1cd 1373 }
8a3e77cc 1374
8930caba 1375 local_irq_restore(flags);
7a6bc1cd
VP
1376 return ret;
1377}
ae90dd5d 1378EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1379
0a13c00e
TH
1380/**
1381 * queue_delayed_work - queue work on a workqueue after delay
1382 * @wq: workqueue to use
1383 * @dwork: delayable work to queue
1384 * @delay: number of jiffies to wait before queueing
1385 *
715f1300 1386 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1387 */
d4283e93 1388bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1389 struct delayed_work *dwork, unsigned long delay)
1390{
57469821 1391 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1392}
1393EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1394
8376fe22
TH
1395/**
1396 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1397 * @cpu: CPU number to execute work on
1398 * @wq: workqueue to use
1399 * @dwork: work to queue
1400 * @delay: number of jiffies to wait before queueing
1401 *
1402 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1403 * modify @dwork's timer so that it expires after @delay. If @delay is
1404 * zero, @work is guaranteed to be scheduled immediately regardless of its
1405 * current state.
1406 *
1407 * Returns %false if @dwork was idle and queued, %true if @dwork was
1408 * pending and its timer was modified.
1409 *
e0aecdd8 1410 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1411 * See try_to_grab_pending() for details.
1412 */
1413bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 struct delayed_work *dwork, unsigned long delay)
1415{
1416 unsigned long flags;
1417 int ret;
c7fc77f7 1418
8376fe22
TH
1419 do {
1420 ret = try_to_grab_pending(&dwork->work, true, &flags);
1421 } while (unlikely(ret == -EAGAIN));
63bc0362 1422
8376fe22
TH
1423 if (likely(ret >= 0)) {
1424 __queue_delayed_work(cpu, wq, dwork, delay);
1425 local_irq_restore(flags);
7a6bc1cd 1426 }
8376fe22
TH
1427
1428 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1429 return ret;
1430}
8376fe22
TH
1431EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1432
1433/**
1434 * mod_delayed_work - modify delay of or queue a delayed work
1435 * @wq: workqueue to use
1436 * @dwork: work to queue
1437 * @delay: number of jiffies to wait before queueing
1438 *
1439 * mod_delayed_work_on() on local CPU.
1440 */
1441bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1442 unsigned long delay)
1443{
1444 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1445}
1446EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1447
c8e55f36
TH
1448/**
1449 * worker_enter_idle - enter idle state
1450 * @worker: worker which is entering idle state
1451 *
1452 * @worker is entering idle state. Update stats and idle timer if
1453 * necessary.
1454 *
1455 * LOCKING:
d565ed63 1456 * spin_lock_irq(pool->lock).
c8e55f36
TH
1457 */
1458static void worker_enter_idle(struct worker *worker)
1da177e4 1459{
bd7bdd43 1460 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1461
1462 BUG_ON(worker->flags & WORKER_IDLE);
1463 BUG_ON(!list_empty(&worker->entry) &&
1464 (worker->hentry.next || worker->hentry.pprev));
1465
cb444766
TH
1466 /* can't use worker_set_flags(), also called from start_worker() */
1467 worker->flags |= WORKER_IDLE;
bd7bdd43 1468 pool->nr_idle++;
e22bee78 1469 worker->last_active = jiffies;
c8e55f36
TH
1470
1471 /* idle_list is LIFO */
bd7bdd43 1472 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1473
628c78e7
TH
1474 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1475 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1476
544ecf31 1477 /*
706026c2 1478 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1479 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1480 * nr_running, the warning may trigger spuriously. Check iff
1481 * unbind is not in progress.
544ecf31 1482 */
24647570 1483 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1484 pool->nr_workers == pool->nr_idle &&
e19e397a 1485 atomic_read(&pool->nr_running));
c8e55f36
TH
1486}
1487
1488/**
1489 * worker_leave_idle - leave idle state
1490 * @worker: worker which is leaving idle state
1491 *
1492 * @worker is leaving idle state. Update stats.
1493 *
1494 * LOCKING:
d565ed63 1495 * spin_lock_irq(pool->lock).
c8e55f36
TH
1496 */
1497static void worker_leave_idle(struct worker *worker)
1498{
bd7bdd43 1499 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1500
1501 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1502 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1503 pool->nr_idle--;
c8e55f36
TH
1504 list_del_init(&worker->entry);
1505}
1506
e22bee78 1507/**
706026c2 1508 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1509 * @worker: self
1510 *
1511 * Works which are scheduled while the cpu is online must at least be
1512 * scheduled to a worker which is bound to the cpu so that if they are
1513 * flushed from cpu callbacks while cpu is going down, they are
1514 * guaranteed to execute on the cpu.
1515 *
1516 * This function is to be used by rogue workers and rescuers to bind
1517 * themselves to the target cpu and may race with cpu going down or
1518 * coming online. kthread_bind() can't be used because it may put the
1519 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1520 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1521 * [dis]associated in the meantime.
1522 *
706026c2 1523 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1524 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1525 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1526 * enters idle state or fetches works without dropping lock, it can
1527 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1528 *
1529 * CONTEXT:
d565ed63 1530 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1531 * held.
1532 *
1533 * RETURNS:
706026c2 1534 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1535 * bound), %false if offline.
1536 */
1537static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1538__acquires(&pool->lock)
e22bee78 1539{
24647570 1540 struct worker_pool *pool = worker->pool;
e22bee78
TH
1541 struct task_struct *task = worker->task;
1542
1543 while (true) {
4e6045f1 1544 /*
e22bee78
TH
1545 * The following call may fail, succeed or succeed
1546 * without actually migrating the task to the cpu if
1547 * it races with cpu hotunplug operation. Verify
24647570 1548 * against POOL_DISASSOCIATED.
4e6045f1 1549 */
24647570 1550 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1551 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1552
d565ed63 1553 spin_lock_irq(&pool->lock);
24647570 1554 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1555 return false;
ec22ca5e 1556 if (task_cpu(task) == pool->cpu &&
e22bee78 1557 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1558 get_cpu_mask(pool->cpu)))
e22bee78 1559 return true;
d565ed63 1560 spin_unlock_irq(&pool->lock);
e22bee78 1561
5035b20f
TH
1562 /*
1563 * We've raced with CPU hot[un]plug. Give it a breather
1564 * and retry migration. cond_resched() is required here;
1565 * otherwise, we might deadlock against cpu_stop trying to
1566 * bring down the CPU on non-preemptive kernel.
1567 */
e22bee78 1568 cpu_relax();
5035b20f 1569 cond_resched();
e22bee78
TH
1570 }
1571}
1572
25511a47 1573/*
ea1abd61 1574 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1575 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1576 */
1577static void idle_worker_rebind(struct worker *worker)
1578{
5f7dabfd
LJ
1579 /* CPU may go down again inbetween, clear UNBOUND only on success */
1580 if (worker_maybe_bind_and_lock(worker))
1581 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1582
ea1abd61
LJ
1583 /* rebind complete, become available again */
1584 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1585 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1586}
1587
e22bee78 1588/*
25511a47 1589 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1590 * the associated cpu which is coming back online. This is scheduled by
1591 * cpu up but can race with other cpu hotplug operations and may be
1592 * executed twice without intervening cpu down.
e22bee78 1593 */
25511a47 1594static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1595{
1596 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1597
eab6d828
LJ
1598 if (worker_maybe_bind_and_lock(worker))
1599 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1600
d565ed63 1601 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1602}
1603
25511a47 1604/**
94cf58bb
TH
1605 * rebind_workers - rebind all workers of a pool to the associated CPU
1606 * @pool: pool of interest
25511a47 1607 *
94cf58bb 1608 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1609 * is different for idle and busy ones.
1610 *
ea1abd61
LJ
1611 * Idle ones will be removed from the idle_list and woken up. They will
1612 * add themselves back after completing rebind. This ensures that the
1613 * idle_list doesn't contain any unbound workers when re-bound busy workers
1614 * try to perform local wake-ups for concurrency management.
25511a47 1615 *
ea1abd61
LJ
1616 * Busy workers can rebind after they finish their current work items.
1617 * Queueing the rebind work item at the head of the scheduled list is
1618 * enough. Note that nr_running will be properly bumped as busy workers
1619 * rebind.
25511a47 1620 *
ea1abd61
LJ
1621 * On return, all non-manager workers are scheduled for rebind - see
1622 * manage_workers() for the manager special case. Any idle worker
1623 * including the manager will not appear on @idle_list until rebind is
1624 * complete, making local wake-ups safe.
25511a47 1625 */
94cf58bb 1626static void rebind_workers(struct worker_pool *pool)
25511a47 1627{
ea1abd61 1628 struct worker *worker, *n;
25511a47
TH
1629 int i;
1630
94cf58bb
TH
1631 lockdep_assert_held(&pool->assoc_mutex);
1632 lockdep_assert_held(&pool->lock);
25511a47 1633
5f7dabfd 1634 /* dequeue and kick idle ones */
94cf58bb
TH
1635 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1636 /*
1637 * idle workers should be off @pool->idle_list until rebind
1638 * is complete to avoid receiving premature local wake-ups.
1639 */
1640 list_del_init(&worker->entry);
25511a47 1641
94cf58bb
TH
1642 /*
1643 * worker_thread() will see the above dequeuing and call
1644 * idle_worker_rebind().
1645 */
1646 wake_up_process(worker->task);
1647 }
25511a47 1648
94cf58bb 1649 /* rebind busy workers */
b67bfe0d 1650 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1651 struct work_struct *rebind_work = &worker->rebind_work;
1652 struct workqueue_struct *wq;
25511a47 1653
94cf58bb
TH
1654 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1655 work_data_bits(rebind_work)))
1656 continue;
25511a47 1657
94cf58bb 1658 debug_work_activate(rebind_work);
90beca5d 1659
94cf58bb
TH
1660 /*
1661 * wq doesn't really matter but let's keep @worker->pool
112202d9 1662 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1663 */
1664 if (std_worker_pool_pri(worker->pool))
1665 wq = system_highpri_wq;
1666 else
1667 wq = system_wq;
1668
112202d9 1669 insert_work(get_pwq(pool->cpu, wq), rebind_work,
94cf58bb
TH
1670 worker->scheduled.next,
1671 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1672 }
25511a47
TH
1673}
1674
c34056a3
TH
1675static struct worker *alloc_worker(void)
1676{
1677 struct worker *worker;
1678
1679 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1680 if (worker) {
1681 INIT_LIST_HEAD(&worker->entry);
affee4b2 1682 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1683 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1684 /* on creation a worker is in !idle && prep state */
1685 worker->flags = WORKER_PREP;
c8e55f36 1686 }
c34056a3
TH
1687 return worker;
1688}
1689
1690/**
1691 * create_worker - create a new workqueue worker
63d95a91 1692 * @pool: pool the new worker will belong to
c34056a3 1693 *
63d95a91 1694 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1695 * can be started by calling start_worker() or destroyed using
1696 * destroy_worker().
1697 *
1698 * CONTEXT:
1699 * Might sleep. Does GFP_KERNEL allocations.
1700 *
1701 * RETURNS:
1702 * Pointer to the newly created worker.
1703 */
bc2ae0f5 1704static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1705{
e34cdddb 1706 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1707 struct worker *worker = NULL;
f3421797 1708 int id = -1;
c34056a3 1709
d565ed63 1710 spin_lock_irq(&pool->lock);
bd7bdd43 1711 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1712 spin_unlock_irq(&pool->lock);
bd7bdd43 1713 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1714 goto fail;
d565ed63 1715 spin_lock_irq(&pool->lock);
c34056a3 1716 }
d565ed63 1717 spin_unlock_irq(&pool->lock);
c34056a3
TH
1718
1719 worker = alloc_worker();
1720 if (!worker)
1721 goto fail;
1722
bd7bdd43 1723 worker->pool = pool;
c34056a3
TH
1724 worker->id = id;
1725
ec22ca5e 1726 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1727 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1728 worker, cpu_to_node(pool->cpu),
1729 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1730 else
1731 worker->task = kthread_create(worker_thread, worker,
3270476a 1732 "kworker/u:%d%s", id, pri);
c34056a3
TH
1733 if (IS_ERR(worker->task))
1734 goto fail;
1735
e34cdddb 1736 if (std_worker_pool_pri(pool))
3270476a
TH
1737 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1738
db7bccf4 1739 /*
bc2ae0f5 1740 * Determine CPU binding of the new worker depending on
24647570 1741 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1742 * flag remains stable across this function. See the comments
1743 * above the flag definition for details.
1744 *
1745 * As an unbound worker may later become a regular one if CPU comes
1746 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1747 */
24647570 1748 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1749 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1750 } else {
db7bccf4 1751 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1752 worker->flags |= WORKER_UNBOUND;
f3421797 1753 }
c34056a3
TH
1754
1755 return worker;
1756fail:
1757 if (id >= 0) {
d565ed63 1758 spin_lock_irq(&pool->lock);
bd7bdd43 1759 ida_remove(&pool->worker_ida, id);
d565ed63 1760 spin_unlock_irq(&pool->lock);
c34056a3
TH
1761 }
1762 kfree(worker);
1763 return NULL;
1764}
1765
1766/**
1767 * start_worker - start a newly created worker
1768 * @worker: worker to start
1769 *
706026c2 1770 * Make the pool aware of @worker and start it.
c34056a3
TH
1771 *
1772 * CONTEXT:
d565ed63 1773 * spin_lock_irq(pool->lock).
c34056a3
TH
1774 */
1775static void start_worker(struct worker *worker)
1776{
cb444766 1777 worker->flags |= WORKER_STARTED;
bd7bdd43 1778 worker->pool->nr_workers++;
c8e55f36 1779 worker_enter_idle(worker);
c34056a3
TH
1780 wake_up_process(worker->task);
1781}
1782
1783/**
1784 * destroy_worker - destroy a workqueue worker
1785 * @worker: worker to be destroyed
1786 *
706026c2 1787 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1788 *
1789 * CONTEXT:
d565ed63 1790 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1791 */
1792static void destroy_worker(struct worker *worker)
1793{
bd7bdd43 1794 struct worker_pool *pool = worker->pool;
c34056a3
TH
1795 int id = worker->id;
1796
1797 /* sanity check frenzy */
1798 BUG_ON(worker->current_work);
affee4b2 1799 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1800
c8e55f36 1801 if (worker->flags & WORKER_STARTED)
bd7bdd43 1802 pool->nr_workers--;
c8e55f36 1803 if (worker->flags & WORKER_IDLE)
bd7bdd43 1804 pool->nr_idle--;
c8e55f36
TH
1805
1806 list_del_init(&worker->entry);
cb444766 1807 worker->flags |= WORKER_DIE;
c8e55f36 1808
d565ed63 1809 spin_unlock_irq(&pool->lock);
c8e55f36 1810
c34056a3
TH
1811 kthread_stop(worker->task);
1812 kfree(worker);
1813
d565ed63 1814 spin_lock_irq(&pool->lock);
bd7bdd43 1815 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1816}
1817
63d95a91 1818static void idle_worker_timeout(unsigned long __pool)
e22bee78 1819{
63d95a91 1820 struct worker_pool *pool = (void *)__pool;
e22bee78 1821
d565ed63 1822 spin_lock_irq(&pool->lock);
e22bee78 1823
63d95a91 1824 if (too_many_workers(pool)) {
e22bee78
TH
1825 struct worker *worker;
1826 unsigned long expires;
1827
1828 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1829 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1830 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1831
1832 if (time_before(jiffies, expires))
63d95a91 1833 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1834 else {
1835 /* it's been idle for too long, wake up manager */
11ebea50 1836 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1837 wake_up_worker(pool);
d5abe669 1838 }
e22bee78
TH
1839 }
1840
d565ed63 1841 spin_unlock_irq(&pool->lock);
e22bee78 1842}
d5abe669 1843
e22bee78
TH
1844static bool send_mayday(struct work_struct *work)
1845{
112202d9
TH
1846 struct pool_workqueue *pwq = get_work_pwq(work);
1847 struct workqueue_struct *wq = pwq->wq;
f3421797 1848 unsigned int cpu;
e22bee78
TH
1849
1850 if (!(wq->flags & WQ_RESCUER))
1851 return false;
1852
1853 /* mayday mayday mayday */
112202d9 1854 cpu = pwq->pool->cpu;
f3421797
TH
1855 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1856 if (cpu == WORK_CPU_UNBOUND)
1857 cpu = 0;
f2e005aa 1858 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1859 wake_up_process(wq->rescuer->task);
1860 return true;
1861}
1862
706026c2 1863static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1864{
63d95a91 1865 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1866 struct work_struct *work;
1867
d565ed63 1868 spin_lock_irq(&pool->lock);
e22bee78 1869
63d95a91 1870 if (need_to_create_worker(pool)) {
e22bee78
TH
1871 /*
1872 * We've been trying to create a new worker but
1873 * haven't been successful. We might be hitting an
1874 * allocation deadlock. Send distress signals to
1875 * rescuers.
1876 */
63d95a91 1877 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1878 send_mayday(work);
1da177e4 1879 }
e22bee78 1880
d565ed63 1881 spin_unlock_irq(&pool->lock);
e22bee78 1882
63d95a91 1883 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1884}
1885
e22bee78
TH
1886/**
1887 * maybe_create_worker - create a new worker if necessary
63d95a91 1888 * @pool: pool to create a new worker for
e22bee78 1889 *
63d95a91 1890 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1891 * have at least one idle worker on return from this function. If
1892 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1893 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1894 * possible allocation deadlock.
1895 *
1896 * On return, need_to_create_worker() is guaranteed to be false and
1897 * may_start_working() true.
1898 *
1899 * LOCKING:
d565ed63 1900 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1901 * multiple times. Does GFP_KERNEL allocations. Called only from
1902 * manager.
1903 *
1904 * RETURNS:
d565ed63 1905 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1906 * otherwise.
1907 */
63d95a91 1908static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1909__releases(&pool->lock)
1910__acquires(&pool->lock)
1da177e4 1911{
63d95a91 1912 if (!need_to_create_worker(pool))
e22bee78
TH
1913 return false;
1914restart:
d565ed63 1915 spin_unlock_irq(&pool->lock);
9f9c2364 1916
e22bee78 1917 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1918 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1919
1920 while (true) {
1921 struct worker *worker;
1922
bc2ae0f5 1923 worker = create_worker(pool);
e22bee78 1924 if (worker) {
63d95a91 1925 del_timer_sync(&pool->mayday_timer);
d565ed63 1926 spin_lock_irq(&pool->lock);
e22bee78 1927 start_worker(worker);
63d95a91 1928 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1929 return true;
1930 }
1931
63d95a91 1932 if (!need_to_create_worker(pool))
e22bee78 1933 break;
1da177e4 1934
e22bee78
TH
1935 __set_current_state(TASK_INTERRUPTIBLE);
1936 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1937
63d95a91 1938 if (!need_to_create_worker(pool))
e22bee78
TH
1939 break;
1940 }
1941
63d95a91 1942 del_timer_sync(&pool->mayday_timer);
d565ed63 1943 spin_lock_irq(&pool->lock);
63d95a91 1944 if (need_to_create_worker(pool))
e22bee78
TH
1945 goto restart;
1946 return true;
1947}
1948
1949/**
1950 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1951 * @pool: pool to destroy workers for
e22bee78 1952 *
63d95a91 1953 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1954 * IDLE_WORKER_TIMEOUT.
1955 *
1956 * LOCKING:
d565ed63 1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1958 * multiple times. Called only from manager.
1959 *
1960 * RETURNS:
d565ed63 1961 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1962 * otherwise.
1963 */
63d95a91 1964static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1965{
1966 bool ret = false;
1da177e4 1967
63d95a91 1968 while (too_many_workers(pool)) {
e22bee78
TH
1969 struct worker *worker;
1970 unsigned long expires;
3af24433 1971
63d95a91 1972 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1973 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1974
e22bee78 1975 if (time_before(jiffies, expires)) {
63d95a91 1976 mod_timer(&pool->idle_timer, expires);
3af24433 1977 break;
e22bee78 1978 }
1da177e4 1979
e22bee78
TH
1980 destroy_worker(worker);
1981 ret = true;
1da177e4 1982 }
1e19ffc6 1983
e22bee78 1984 return ret;
1e19ffc6
TH
1985}
1986
73f53c4a 1987/**
e22bee78
TH
1988 * manage_workers - manage worker pool
1989 * @worker: self
73f53c4a 1990 *
706026c2 1991 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1992 * to. At any given time, there can be only zero or one manager per
706026c2 1993 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1994 *
1995 * The caller can safely start processing works on false return. On
1996 * true return, it's guaranteed that need_to_create_worker() is false
1997 * and may_start_working() is true.
73f53c4a
TH
1998 *
1999 * CONTEXT:
d565ed63 2000 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2001 * multiple times. Does GFP_KERNEL allocations.
2002 *
2003 * RETURNS:
d565ed63
TH
2004 * spin_lock_irq(pool->lock) which may be released and regrabbed
2005 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2006 */
e22bee78 2007static bool manage_workers(struct worker *worker)
73f53c4a 2008{
63d95a91 2009 struct worker_pool *pool = worker->pool;
e22bee78 2010 bool ret = false;
73f53c4a 2011
ee378aa4 2012 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2013 return ret;
1e19ffc6 2014
552a37e9 2015 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2016
ee378aa4
LJ
2017 /*
2018 * To simplify both worker management and CPU hotplug, hold off
2019 * management while hotplug is in progress. CPU hotplug path can't
2020 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2021 * lead to idle worker depletion (all become busy thinking someone
2022 * else is managing) which in turn can result in deadlock under
b2eb83d1 2023 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2024 * manager against CPU hotplug.
2025 *
b2eb83d1 2026 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2027 * progress. trylock first without dropping @pool->lock.
ee378aa4 2028 */
b2eb83d1 2029 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2030 spin_unlock_irq(&pool->lock);
b2eb83d1 2031 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2032 /*
2033 * CPU hotplug could have happened while we were waiting
b2eb83d1 2034 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2035 * because manager isn't either on idle or busy list, and
706026c2 2036 * @pool's state and ours could have deviated.
ee378aa4 2037 *
b2eb83d1 2038 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2039 * simply try to bind. It will succeed or fail depending
706026c2 2040 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2041 * %WORKER_UNBOUND accordingly.
2042 */
2043 if (worker_maybe_bind_and_lock(worker))
2044 worker->flags &= ~WORKER_UNBOUND;
2045 else
2046 worker->flags |= WORKER_UNBOUND;
73f53c4a 2047
ee378aa4
LJ
2048 ret = true;
2049 }
73f53c4a 2050
11ebea50 2051 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2052
2053 /*
e22bee78
TH
2054 * Destroy and then create so that may_start_working() is true
2055 * on return.
73f53c4a 2056 */
63d95a91
TH
2057 ret |= maybe_destroy_workers(pool);
2058 ret |= maybe_create_worker(pool);
e22bee78 2059
552a37e9 2060 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2061 mutex_unlock(&pool->assoc_mutex);
e22bee78 2062 return ret;
73f53c4a
TH
2063}
2064
a62428c0
TH
2065/**
2066 * process_one_work - process single work
c34056a3 2067 * @worker: self
a62428c0
TH
2068 * @work: work to process
2069 *
2070 * Process @work. This function contains all the logics necessary to
2071 * process a single work including synchronization against and
2072 * interaction with other workers on the same cpu, queueing and
2073 * flushing. As long as context requirement is met, any worker can
2074 * call this function to process a work.
2075 *
2076 * CONTEXT:
d565ed63 2077 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2078 */
c34056a3 2079static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2080__releases(&pool->lock)
2081__acquires(&pool->lock)
a62428c0 2082{
112202d9 2083 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2084 struct worker_pool *pool = worker->pool;
112202d9 2085 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2086 int work_color;
7e11629d 2087 struct worker *collision;
a62428c0
TH
2088#ifdef CONFIG_LOCKDEP
2089 /*
2090 * It is permissible to free the struct work_struct from
2091 * inside the function that is called from it, this we need to
2092 * take into account for lockdep too. To avoid bogus "held
2093 * lock freed" warnings as well as problems when looking into
2094 * work->lockdep_map, make a copy and use that here.
2095 */
4d82a1de
PZ
2096 struct lockdep_map lockdep_map;
2097
2098 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2099#endif
6fec10a1
TH
2100 /*
2101 * Ensure we're on the correct CPU. DISASSOCIATED test is
2102 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2103 * unbound or a disassociated pool.
6fec10a1 2104 */
5f7dabfd 2105 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2106 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2107 raw_smp_processor_id() != pool->cpu);
25511a47 2108
7e11629d
TH
2109 /*
2110 * A single work shouldn't be executed concurrently by
2111 * multiple workers on a single cpu. Check whether anyone is
2112 * already processing the work. If so, defer the work to the
2113 * currently executing one.
2114 */
c9e7cf27 2115 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2116 if (unlikely(collision)) {
2117 move_linked_works(work, &collision->scheduled, NULL);
2118 return;
2119 }
2120
8930caba 2121 /* claim and dequeue */
a62428c0 2122 debug_work_deactivate(work);
c9e7cf27 2123 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2124 worker->current_work = work;
a2c1c57b 2125 worker->current_func = work->func;
112202d9 2126 worker->current_pwq = pwq;
73f53c4a 2127 work_color = get_work_color(work);
7a22ad75 2128
a62428c0
TH
2129 list_del_init(&work->entry);
2130
fb0e7beb
TH
2131 /*
2132 * CPU intensive works don't participate in concurrency
2133 * management. They're the scheduler's responsibility.
2134 */
2135 if (unlikely(cpu_intensive))
2136 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2137
974271c4 2138 /*
d565ed63 2139 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2140 * executed ASAP. Wake up another worker if necessary.
2141 */
63d95a91
TH
2142 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2143 wake_up_worker(pool);
974271c4 2144
8930caba 2145 /*
7c3eed5c 2146 * Record the last pool and clear PENDING which should be the last
d565ed63 2147 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2148 * PENDING and queued state changes happen together while IRQ is
2149 * disabled.
8930caba 2150 */
7c3eed5c 2151 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2152
d565ed63 2153 spin_unlock_irq(&pool->lock);
a62428c0 2154
112202d9 2155 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2156 lock_map_acquire(&lockdep_map);
e36c886a 2157 trace_workqueue_execute_start(work);
a2c1c57b 2158 worker->current_func(work);
e36c886a
AV
2159 /*
2160 * While we must be careful to not use "work" after this, the trace
2161 * point will only record its address.
2162 */
2163 trace_workqueue_execute_end(work);
a62428c0 2164 lock_map_release(&lockdep_map);
112202d9 2165 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2166
2167 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2168 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2169 " last function: %pf\n",
a2c1c57b
TH
2170 current->comm, preempt_count(), task_pid_nr(current),
2171 worker->current_func);
a62428c0
TH
2172 debug_show_held_locks(current);
2173 dump_stack();
2174 }
2175
d565ed63 2176 spin_lock_irq(&pool->lock);
a62428c0 2177
fb0e7beb
TH
2178 /* clear cpu intensive status */
2179 if (unlikely(cpu_intensive))
2180 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2181
a62428c0 2182 /* we're done with it, release */
42f8570f 2183 hash_del(&worker->hentry);
c34056a3 2184 worker->current_work = NULL;
a2c1c57b 2185 worker->current_func = NULL;
112202d9
TH
2186 worker->current_pwq = NULL;
2187 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2188}
2189
affee4b2
TH
2190/**
2191 * process_scheduled_works - process scheduled works
2192 * @worker: self
2193 *
2194 * Process all scheduled works. Please note that the scheduled list
2195 * may change while processing a work, so this function repeatedly
2196 * fetches a work from the top and executes it.
2197 *
2198 * CONTEXT:
d565ed63 2199 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2200 * multiple times.
2201 */
2202static void process_scheduled_works(struct worker *worker)
1da177e4 2203{
affee4b2
TH
2204 while (!list_empty(&worker->scheduled)) {
2205 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2206 struct work_struct, entry);
c34056a3 2207 process_one_work(worker, work);
1da177e4 2208 }
1da177e4
LT
2209}
2210
4690c4ab
TH
2211/**
2212 * worker_thread - the worker thread function
c34056a3 2213 * @__worker: self
4690c4ab 2214 *
706026c2
TH
2215 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2216 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2217 * their specific target workqueue. The only exception is works which
2218 * belong to workqueues with a rescuer which will be explained in
2219 * rescuer_thread().
4690c4ab 2220 */
c34056a3 2221static int worker_thread(void *__worker)
1da177e4 2222{
c34056a3 2223 struct worker *worker = __worker;
bd7bdd43 2224 struct worker_pool *pool = worker->pool;
1da177e4 2225
e22bee78
TH
2226 /* tell the scheduler that this is a workqueue worker */
2227 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2228woke_up:
d565ed63 2229 spin_lock_irq(&pool->lock);
1da177e4 2230
5f7dabfd
LJ
2231 /* we are off idle list if destruction or rebind is requested */
2232 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2233 spin_unlock_irq(&pool->lock);
25511a47 2234
5f7dabfd 2235 /* if DIE is set, destruction is requested */
25511a47
TH
2236 if (worker->flags & WORKER_DIE) {
2237 worker->task->flags &= ~PF_WQ_WORKER;
2238 return 0;
2239 }
2240
5f7dabfd 2241 /* otherwise, rebind */
25511a47
TH
2242 idle_worker_rebind(worker);
2243 goto woke_up;
c8e55f36 2244 }
affee4b2 2245
c8e55f36 2246 worker_leave_idle(worker);
db7bccf4 2247recheck:
e22bee78 2248 /* no more worker necessary? */
63d95a91 2249 if (!need_more_worker(pool))
e22bee78
TH
2250 goto sleep;
2251
2252 /* do we need to manage? */
63d95a91 2253 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2254 goto recheck;
2255
c8e55f36
TH
2256 /*
2257 * ->scheduled list can only be filled while a worker is
2258 * preparing to process a work or actually processing it.
2259 * Make sure nobody diddled with it while I was sleeping.
2260 */
2261 BUG_ON(!list_empty(&worker->scheduled));
2262
e22bee78
TH
2263 /*
2264 * When control reaches this point, we're guaranteed to have
2265 * at least one idle worker or that someone else has already
2266 * assumed the manager role.
2267 */
2268 worker_clr_flags(worker, WORKER_PREP);
2269
2270 do {
c8e55f36 2271 struct work_struct *work =
bd7bdd43 2272 list_first_entry(&pool->worklist,
c8e55f36
TH
2273 struct work_struct, entry);
2274
2275 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2276 /* optimization path, not strictly necessary */
2277 process_one_work(worker, work);
2278 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2279 process_scheduled_works(worker);
c8e55f36
TH
2280 } else {
2281 move_linked_works(work, &worker->scheduled, NULL);
2282 process_scheduled_works(worker);
affee4b2 2283 }
63d95a91 2284 } while (keep_working(pool));
e22bee78
TH
2285
2286 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2287sleep:
63d95a91 2288 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2289 goto recheck;
d313dd85 2290
c8e55f36 2291 /*
d565ed63
TH
2292 * pool->lock is held and there's no work to process and no need to
2293 * manage, sleep. Workers are woken up only while holding
2294 * pool->lock or from local cpu, so setting the current state
2295 * before releasing pool->lock is enough to prevent losing any
2296 * event.
c8e55f36
TH
2297 */
2298 worker_enter_idle(worker);
2299 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2300 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2301 schedule();
2302 goto woke_up;
1da177e4
LT
2303}
2304
e22bee78
TH
2305/**
2306 * rescuer_thread - the rescuer thread function
111c225a 2307 * @__rescuer: self
e22bee78
TH
2308 *
2309 * Workqueue rescuer thread function. There's one rescuer for each
2310 * workqueue which has WQ_RESCUER set.
2311 *
706026c2 2312 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2313 * worker which uses GFP_KERNEL allocation which has slight chance of
2314 * developing into deadlock if some works currently on the same queue
2315 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2316 * the problem rescuer solves.
2317 *
706026c2
TH
2318 * When such condition is possible, the pool summons rescuers of all
2319 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2320 * those works so that forward progress can be guaranteed.
2321 *
2322 * This should happen rarely.
2323 */
111c225a 2324static int rescuer_thread(void *__rescuer)
e22bee78 2325{
111c225a
TH
2326 struct worker *rescuer = __rescuer;
2327 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2328 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2329 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2330 unsigned int cpu;
2331
2332 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2333
2334 /*
2335 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2336 * doesn't participate in concurrency management.
2337 */
2338 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2339repeat:
2340 set_current_state(TASK_INTERRUPTIBLE);
2341
412d32e6
MG
2342 if (kthread_should_stop()) {
2343 __set_current_state(TASK_RUNNING);
111c225a 2344 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2345 return 0;
412d32e6 2346 }
e22bee78 2347
f3421797
TH
2348 /*
2349 * See whether any cpu is asking for help. Unbounded
2350 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2351 */
f2e005aa 2352 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797 2353 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
112202d9
TH
2354 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2355 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2356 struct work_struct *work, *n;
2357
2358 __set_current_state(TASK_RUNNING);
f2e005aa 2359 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2360
2361 /* migrate to the target cpu if possible */
bd7bdd43 2362 rescuer->pool = pool;
e22bee78
TH
2363 worker_maybe_bind_and_lock(rescuer);
2364
2365 /*
2366 * Slurp in all works issued via this workqueue and
2367 * process'em.
2368 */
2369 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2370 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2371 if (get_work_pwq(work) == pwq)
e22bee78
TH
2372 move_linked_works(work, scheduled, &n);
2373
2374 process_scheduled_works(rescuer);
7576958a
TH
2375
2376 /*
d565ed63 2377 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2378 * regular worker; otherwise, we end up with 0 concurrency
2379 * and stalling the execution.
2380 */
63d95a91
TH
2381 if (keep_working(pool))
2382 wake_up_worker(pool);
7576958a 2383
d565ed63 2384 spin_unlock_irq(&pool->lock);
e22bee78
TH
2385 }
2386
111c225a
TH
2387 /* rescuers should never participate in concurrency management */
2388 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2389 schedule();
2390 goto repeat;
1da177e4
LT
2391}
2392
fc2e4d70
ON
2393struct wq_barrier {
2394 struct work_struct work;
2395 struct completion done;
2396};
2397
2398static void wq_barrier_func(struct work_struct *work)
2399{
2400 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2401 complete(&barr->done);
2402}
2403
4690c4ab
TH
2404/**
2405 * insert_wq_barrier - insert a barrier work
112202d9 2406 * @pwq: pwq to insert barrier into
4690c4ab 2407 * @barr: wq_barrier to insert
affee4b2
TH
2408 * @target: target work to attach @barr to
2409 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2410 *
affee4b2
TH
2411 * @barr is linked to @target such that @barr is completed only after
2412 * @target finishes execution. Please note that the ordering
2413 * guarantee is observed only with respect to @target and on the local
2414 * cpu.
2415 *
2416 * Currently, a queued barrier can't be canceled. This is because
2417 * try_to_grab_pending() can't determine whether the work to be
2418 * grabbed is at the head of the queue and thus can't clear LINKED
2419 * flag of the previous work while there must be a valid next work
2420 * after a work with LINKED flag set.
2421 *
2422 * Note that when @worker is non-NULL, @target may be modified
112202d9 2423 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2424 *
2425 * CONTEXT:
d565ed63 2426 * spin_lock_irq(pool->lock).
4690c4ab 2427 */
112202d9 2428static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2429 struct wq_barrier *barr,
2430 struct work_struct *target, struct worker *worker)
fc2e4d70 2431{
affee4b2
TH
2432 struct list_head *head;
2433 unsigned int linked = 0;
2434
dc186ad7 2435 /*
d565ed63 2436 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2437 * as we know for sure that this will not trigger any of the
2438 * checks and call back into the fixup functions where we
2439 * might deadlock.
2440 */
ca1cab37 2441 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2442 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2443 init_completion(&barr->done);
83c22520 2444
affee4b2
TH
2445 /*
2446 * If @target is currently being executed, schedule the
2447 * barrier to the worker; otherwise, put it after @target.
2448 */
2449 if (worker)
2450 head = worker->scheduled.next;
2451 else {
2452 unsigned long *bits = work_data_bits(target);
2453
2454 head = target->entry.next;
2455 /* there can already be other linked works, inherit and set */
2456 linked = *bits & WORK_STRUCT_LINKED;
2457 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2458 }
2459
dc186ad7 2460 debug_work_activate(&barr->work);
112202d9 2461 insert_work(pwq, &barr->work, head,
affee4b2 2462 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2463}
2464
73f53c4a 2465/**
112202d9 2466 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2467 * @wq: workqueue being flushed
2468 * @flush_color: new flush color, < 0 for no-op
2469 * @work_color: new work color, < 0 for no-op
2470 *
112202d9 2471 * Prepare pwqs for workqueue flushing.
73f53c4a 2472 *
112202d9
TH
2473 * If @flush_color is non-negative, flush_color on all pwqs should be
2474 * -1. If no pwq has in-flight commands at the specified color, all
2475 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2476 * has in flight commands, its pwq->flush_color is set to
2477 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2478 * wakeup logic is armed and %true is returned.
2479 *
2480 * The caller should have initialized @wq->first_flusher prior to
2481 * calling this function with non-negative @flush_color. If
2482 * @flush_color is negative, no flush color update is done and %false
2483 * is returned.
2484 *
112202d9 2485 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2486 * work_color which is previous to @work_color and all will be
2487 * advanced to @work_color.
2488 *
2489 * CONTEXT:
2490 * mutex_lock(wq->flush_mutex).
2491 *
2492 * RETURNS:
2493 * %true if @flush_color >= 0 and there's something to flush. %false
2494 * otherwise.
2495 */
112202d9 2496static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2497 int flush_color, int work_color)
1da177e4 2498{
73f53c4a
TH
2499 bool wait = false;
2500 unsigned int cpu;
1da177e4 2501
73f53c4a 2502 if (flush_color >= 0) {
112202d9
TH
2503 BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
2504 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2505 }
2355b70f 2506
112202d9
TH
2507 for_each_pwq_cpu(cpu, wq) {
2508 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2509 struct worker_pool *pool = pwq->pool;
fc2e4d70 2510
d565ed63 2511 spin_lock_irq(&pool->lock);
83c22520 2512
73f53c4a 2513 if (flush_color >= 0) {
112202d9 2514 BUG_ON(pwq->flush_color != -1);
fc2e4d70 2515
112202d9
TH
2516 if (pwq->nr_in_flight[flush_color]) {
2517 pwq->flush_color = flush_color;
2518 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2519 wait = true;
2520 }
2521 }
1da177e4 2522
73f53c4a 2523 if (work_color >= 0) {
112202d9
TH
2524 BUG_ON(work_color != work_next_color(pwq->work_color));
2525 pwq->work_color = work_color;
73f53c4a 2526 }
1da177e4 2527
d565ed63 2528 spin_unlock_irq(&pool->lock);
1da177e4 2529 }
2355b70f 2530
112202d9 2531 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2532 complete(&wq->first_flusher->done);
14441960 2533
73f53c4a 2534 return wait;
1da177e4
LT
2535}
2536
0fcb78c2 2537/**
1da177e4 2538 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2539 * @wq: workqueue to flush
1da177e4
LT
2540 *
2541 * Forces execution of the workqueue and blocks until its completion.
2542 * This is typically used in driver shutdown handlers.
2543 *
fc2e4d70
ON
2544 * We sleep until all works which were queued on entry have been handled,
2545 * but we are not livelocked by new incoming ones.
1da177e4 2546 */
7ad5b3a5 2547void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2548{
73f53c4a
TH
2549 struct wq_flusher this_flusher = {
2550 .list = LIST_HEAD_INIT(this_flusher.list),
2551 .flush_color = -1,
2552 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2553 };
2554 int next_color;
1da177e4 2555
3295f0ef
IM
2556 lock_map_acquire(&wq->lockdep_map);
2557 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2558
2559 mutex_lock(&wq->flush_mutex);
2560
2561 /*
2562 * Start-to-wait phase
2563 */
2564 next_color = work_next_color(wq->work_color);
2565
2566 if (next_color != wq->flush_color) {
2567 /*
2568 * Color space is not full. The current work_color
2569 * becomes our flush_color and work_color is advanced
2570 * by one.
2571 */
2572 BUG_ON(!list_empty(&wq->flusher_overflow));
2573 this_flusher.flush_color = wq->work_color;
2574 wq->work_color = next_color;
2575
2576 if (!wq->first_flusher) {
2577 /* no flush in progress, become the first flusher */
2578 BUG_ON(wq->flush_color != this_flusher.flush_color);
2579
2580 wq->first_flusher = &this_flusher;
2581
112202d9 2582 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2583 wq->work_color)) {
2584 /* nothing to flush, done */
2585 wq->flush_color = next_color;
2586 wq->first_flusher = NULL;
2587 goto out_unlock;
2588 }
2589 } else {
2590 /* wait in queue */
2591 BUG_ON(wq->flush_color == this_flusher.flush_color);
2592 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2593 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2594 }
2595 } else {
2596 /*
2597 * Oops, color space is full, wait on overflow queue.
2598 * The next flush completion will assign us
2599 * flush_color and transfer to flusher_queue.
2600 */
2601 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2602 }
2603
2604 mutex_unlock(&wq->flush_mutex);
2605
2606 wait_for_completion(&this_flusher.done);
2607
2608 /*
2609 * Wake-up-and-cascade phase
2610 *
2611 * First flushers are responsible for cascading flushes and
2612 * handling overflow. Non-first flushers can simply return.
2613 */
2614 if (wq->first_flusher != &this_flusher)
2615 return;
2616
2617 mutex_lock(&wq->flush_mutex);
2618
4ce48b37
TH
2619 /* we might have raced, check again with mutex held */
2620 if (wq->first_flusher != &this_flusher)
2621 goto out_unlock;
2622
73f53c4a
TH
2623 wq->first_flusher = NULL;
2624
2625 BUG_ON(!list_empty(&this_flusher.list));
2626 BUG_ON(wq->flush_color != this_flusher.flush_color);
2627
2628 while (true) {
2629 struct wq_flusher *next, *tmp;
2630
2631 /* complete all the flushers sharing the current flush color */
2632 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2633 if (next->flush_color != wq->flush_color)
2634 break;
2635 list_del_init(&next->list);
2636 complete(&next->done);
2637 }
2638
2639 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2640 wq->flush_color != work_next_color(wq->work_color));
2641
2642 /* this flush_color is finished, advance by one */
2643 wq->flush_color = work_next_color(wq->flush_color);
2644
2645 /* one color has been freed, handle overflow queue */
2646 if (!list_empty(&wq->flusher_overflow)) {
2647 /*
2648 * Assign the same color to all overflowed
2649 * flushers, advance work_color and append to
2650 * flusher_queue. This is the start-to-wait
2651 * phase for these overflowed flushers.
2652 */
2653 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2654 tmp->flush_color = wq->work_color;
2655
2656 wq->work_color = work_next_color(wq->work_color);
2657
2658 list_splice_tail_init(&wq->flusher_overflow,
2659 &wq->flusher_queue);
112202d9 2660 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2661 }
2662
2663 if (list_empty(&wq->flusher_queue)) {
2664 BUG_ON(wq->flush_color != wq->work_color);
2665 break;
2666 }
2667
2668 /*
2669 * Need to flush more colors. Make the next flusher
112202d9 2670 * the new first flusher and arm pwqs.
73f53c4a
TH
2671 */
2672 BUG_ON(wq->flush_color == wq->work_color);
2673 BUG_ON(wq->flush_color != next->flush_color);
2674
2675 list_del_init(&next->list);
2676 wq->first_flusher = next;
2677
112202d9 2678 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2679 break;
2680
2681 /*
2682 * Meh... this color is already done, clear first
2683 * flusher and repeat cascading.
2684 */
2685 wq->first_flusher = NULL;
2686 }
2687
2688out_unlock:
2689 mutex_unlock(&wq->flush_mutex);
1da177e4 2690}
ae90dd5d 2691EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2692
9c5a2ba7
TH
2693/**
2694 * drain_workqueue - drain a workqueue
2695 * @wq: workqueue to drain
2696 *
2697 * Wait until the workqueue becomes empty. While draining is in progress,
2698 * only chain queueing is allowed. IOW, only currently pending or running
2699 * work items on @wq can queue further work items on it. @wq is flushed
2700 * repeatedly until it becomes empty. The number of flushing is detemined
2701 * by the depth of chaining and should be relatively short. Whine if it
2702 * takes too long.
2703 */
2704void drain_workqueue(struct workqueue_struct *wq)
2705{
2706 unsigned int flush_cnt = 0;
2707 unsigned int cpu;
2708
2709 /*
2710 * __queue_work() needs to test whether there are drainers, is much
2711 * hotter than drain_workqueue() and already looks at @wq->flags.
2712 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2713 */
2714 spin_lock(&workqueue_lock);
2715 if (!wq->nr_drainers++)
2716 wq->flags |= WQ_DRAINING;
2717 spin_unlock(&workqueue_lock);
2718reflush:
2719 flush_workqueue(wq);
2720
112202d9
TH
2721 for_each_pwq_cpu(cpu, wq) {
2722 struct pool_workqueue *pwq = get_pwq(cpu, wq);
fa2563e4 2723 bool drained;
9c5a2ba7 2724
112202d9
TH
2725 spin_lock_irq(&pwq->pool->lock);
2726 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2727 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2728
2729 if (drained)
9c5a2ba7
TH
2730 continue;
2731
2732 if (++flush_cnt == 10 ||
2733 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2734 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2735 wq->name, flush_cnt);
9c5a2ba7
TH
2736 goto reflush;
2737 }
2738
2739 spin_lock(&workqueue_lock);
2740 if (!--wq->nr_drainers)
2741 wq->flags &= ~WQ_DRAINING;
2742 spin_unlock(&workqueue_lock);
2743}
2744EXPORT_SYMBOL_GPL(drain_workqueue);
2745
606a5020 2746static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2747{
affee4b2 2748 struct worker *worker = NULL;
c9e7cf27 2749 struct worker_pool *pool;
112202d9 2750 struct pool_workqueue *pwq;
db700897
ON
2751
2752 might_sleep();
c9e7cf27
TH
2753 pool = get_work_pool(work);
2754 if (!pool)
baf59022 2755 return false;
db700897 2756
d565ed63 2757 spin_lock_irq(&pool->lock);
0b3dae68 2758 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2759 pwq = get_work_pwq(work);
2760 if (pwq) {
2761 if (unlikely(pwq->pool != pool))
4690c4ab 2762 goto already_gone;
606a5020 2763 } else {
c9e7cf27 2764 worker = find_worker_executing_work(pool, work);
affee4b2 2765 if (!worker)
4690c4ab 2766 goto already_gone;
112202d9 2767 pwq = worker->current_pwq;
606a5020 2768 }
db700897 2769
112202d9 2770 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2771 spin_unlock_irq(&pool->lock);
7a22ad75 2772
e159489b
TH
2773 /*
2774 * If @max_active is 1 or rescuer is in use, flushing another work
2775 * item on the same workqueue may lead to deadlock. Make sure the
2776 * flusher is not running on the same workqueue by verifying write
2777 * access.
2778 */
112202d9
TH
2779 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2780 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2781 else
112202d9
TH
2782 lock_map_acquire_read(&pwq->wq->lockdep_map);
2783 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2784
401a8d04 2785 return true;
4690c4ab 2786already_gone:
d565ed63 2787 spin_unlock_irq(&pool->lock);
401a8d04 2788 return false;
db700897 2789}
baf59022
TH
2790
2791/**
2792 * flush_work - wait for a work to finish executing the last queueing instance
2793 * @work: the work to flush
2794 *
606a5020
TH
2795 * Wait until @work has finished execution. @work is guaranteed to be idle
2796 * on return if it hasn't been requeued since flush started.
baf59022
TH
2797 *
2798 * RETURNS:
2799 * %true if flush_work() waited for the work to finish execution,
2800 * %false if it was already idle.
2801 */
2802bool flush_work(struct work_struct *work)
2803{
2804 struct wq_barrier barr;
2805
0976dfc1
SB
2806 lock_map_acquire(&work->lockdep_map);
2807 lock_map_release(&work->lockdep_map);
2808
606a5020 2809 if (start_flush_work(work, &barr)) {
401a8d04
TH
2810 wait_for_completion(&barr.done);
2811 destroy_work_on_stack(&barr.work);
2812 return true;
606a5020 2813 } else {
401a8d04 2814 return false;
6e84d644 2815 }
6e84d644 2816}
606a5020 2817EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2818
36e227d2 2819static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2820{
bbb68dfa 2821 unsigned long flags;
1f1f642e
ON
2822 int ret;
2823
2824 do {
bbb68dfa
TH
2825 ret = try_to_grab_pending(work, is_dwork, &flags);
2826 /*
2827 * If someone else is canceling, wait for the same event it
2828 * would be waiting for before retrying.
2829 */
2830 if (unlikely(ret == -ENOENT))
606a5020 2831 flush_work(work);
1f1f642e
ON
2832 } while (unlikely(ret < 0));
2833
bbb68dfa
TH
2834 /* tell other tasks trying to grab @work to back off */
2835 mark_work_canceling(work);
2836 local_irq_restore(flags);
2837
606a5020 2838 flush_work(work);
7a22ad75 2839 clear_work_data(work);
1f1f642e
ON
2840 return ret;
2841}
2842
6e84d644 2843/**
401a8d04
TH
2844 * cancel_work_sync - cancel a work and wait for it to finish
2845 * @work: the work to cancel
6e84d644 2846 *
401a8d04
TH
2847 * Cancel @work and wait for its execution to finish. This function
2848 * can be used even if the work re-queues itself or migrates to
2849 * another workqueue. On return from this function, @work is
2850 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2851 *
401a8d04
TH
2852 * cancel_work_sync(&delayed_work->work) must not be used for
2853 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2854 *
401a8d04 2855 * The caller must ensure that the workqueue on which @work was last
6e84d644 2856 * queued can't be destroyed before this function returns.
401a8d04
TH
2857 *
2858 * RETURNS:
2859 * %true if @work was pending, %false otherwise.
6e84d644 2860 */
401a8d04 2861bool cancel_work_sync(struct work_struct *work)
6e84d644 2862{
36e227d2 2863 return __cancel_work_timer(work, false);
b89deed3 2864}
28e53bdd 2865EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2866
6e84d644 2867/**
401a8d04
TH
2868 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2869 * @dwork: the delayed work to flush
6e84d644 2870 *
401a8d04
TH
2871 * Delayed timer is cancelled and the pending work is queued for
2872 * immediate execution. Like flush_work(), this function only
2873 * considers the last queueing instance of @dwork.
1f1f642e 2874 *
401a8d04
TH
2875 * RETURNS:
2876 * %true if flush_work() waited for the work to finish execution,
2877 * %false if it was already idle.
6e84d644 2878 */
401a8d04
TH
2879bool flush_delayed_work(struct delayed_work *dwork)
2880{
8930caba 2881 local_irq_disable();
401a8d04 2882 if (del_timer_sync(&dwork->timer))
60c057bc 2883 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2884 local_irq_enable();
401a8d04
TH
2885 return flush_work(&dwork->work);
2886}
2887EXPORT_SYMBOL(flush_delayed_work);
2888
09383498 2889/**
57b30ae7
TH
2890 * cancel_delayed_work - cancel a delayed work
2891 * @dwork: delayed_work to cancel
09383498 2892 *
57b30ae7
TH
2893 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2894 * and canceled; %false if wasn't pending. Note that the work callback
2895 * function may still be running on return, unless it returns %true and the
2896 * work doesn't re-arm itself. Explicitly flush or use
2897 * cancel_delayed_work_sync() to wait on it.
09383498 2898 *
57b30ae7 2899 * This function is safe to call from any context including IRQ handler.
09383498 2900 */
57b30ae7 2901bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2902{
57b30ae7
TH
2903 unsigned long flags;
2904 int ret;
2905
2906 do {
2907 ret = try_to_grab_pending(&dwork->work, true, &flags);
2908 } while (unlikely(ret == -EAGAIN));
2909
2910 if (unlikely(ret < 0))
2911 return false;
2912
7c3eed5c
TH
2913 set_work_pool_and_clear_pending(&dwork->work,
2914 get_work_pool_id(&dwork->work));
57b30ae7 2915 local_irq_restore(flags);
c0158ca6 2916 return ret;
09383498 2917}
57b30ae7 2918EXPORT_SYMBOL(cancel_delayed_work);
09383498 2919
401a8d04
TH
2920/**
2921 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2922 * @dwork: the delayed work cancel
2923 *
2924 * This is cancel_work_sync() for delayed works.
2925 *
2926 * RETURNS:
2927 * %true if @dwork was pending, %false otherwise.
2928 */
2929bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2930{
36e227d2 2931 return __cancel_work_timer(&dwork->work, true);
6e84d644 2932}
f5a421a4 2933EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2934
0fcb78c2 2935/**
c1a220e7
ZR
2936 * schedule_work_on - put work task on a specific cpu
2937 * @cpu: cpu to put the work task on
2938 * @work: job to be done
2939 *
2940 * This puts a job on a specific cpu
2941 */
d4283e93 2942bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2943{
d320c038 2944 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2945}
2946EXPORT_SYMBOL(schedule_work_on);
2947
0fcb78c2 2948/**
0fcb78c2
REB
2949 * schedule_work - put work task in global workqueue
2950 * @work: job to be done
0fcb78c2 2951 *
d4283e93
TH
2952 * Returns %false if @work was already on the kernel-global workqueue and
2953 * %true otherwise.
5b0f437d
BVA
2954 *
2955 * This puts a job in the kernel-global workqueue if it was not already
2956 * queued and leaves it in the same position on the kernel-global
2957 * workqueue otherwise.
0fcb78c2 2958 */
d4283e93 2959bool schedule_work(struct work_struct *work)
1da177e4 2960{
d320c038 2961 return queue_work(system_wq, work);
1da177e4 2962}
ae90dd5d 2963EXPORT_SYMBOL(schedule_work);
1da177e4 2964
0fcb78c2
REB
2965/**
2966 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2967 * @cpu: cpu to use
52bad64d 2968 * @dwork: job to be done
0fcb78c2
REB
2969 * @delay: number of jiffies to wait
2970 *
2971 * After waiting for a given time this puts a job in the kernel-global
2972 * workqueue on the specified CPU.
2973 */
d4283e93
TH
2974bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2975 unsigned long delay)
1da177e4 2976{
d320c038 2977 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2978}
ae90dd5d 2979EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2980
0fcb78c2
REB
2981/**
2982 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2983 * @dwork: job to be done
2984 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2985 *
2986 * After waiting for a given time this puts a job in the kernel-global
2987 * workqueue.
2988 */
d4283e93 2989bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2990{
d320c038 2991 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2992}
ae90dd5d 2993EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2994
b6136773 2995/**
31ddd871 2996 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2997 * @func: the function to call
b6136773 2998 *
31ddd871
TH
2999 * schedule_on_each_cpu() executes @func on each online CPU using the
3000 * system workqueue and blocks until all CPUs have completed.
b6136773 3001 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3002 *
3003 * RETURNS:
3004 * 0 on success, -errno on failure.
b6136773 3005 */
65f27f38 3006int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3007{
3008 int cpu;
38f51568 3009 struct work_struct __percpu *works;
15316ba8 3010
b6136773
AM
3011 works = alloc_percpu(struct work_struct);
3012 if (!works)
15316ba8 3013 return -ENOMEM;
b6136773 3014
93981800
TH
3015 get_online_cpus();
3016
15316ba8 3017 for_each_online_cpu(cpu) {
9bfb1839
IM
3018 struct work_struct *work = per_cpu_ptr(works, cpu);
3019
3020 INIT_WORK(work, func);
b71ab8c2 3021 schedule_work_on(cpu, work);
65a64464 3022 }
93981800
TH
3023
3024 for_each_online_cpu(cpu)
3025 flush_work(per_cpu_ptr(works, cpu));
3026
95402b38 3027 put_online_cpus();
b6136773 3028 free_percpu(works);
15316ba8
CL
3029 return 0;
3030}
3031
eef6a7d5
AS
3032/**
3033 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3034 *
3035 * Forces execution of the kernel-global workqueue and blocks until its
3036 * completion.
3037 *
3038 * Think twice before calling this function! It's very easy to get into
3039 * trouble if you don't take great care. Either of the following situations
3040 * will lead to deadlock:
3041 *
3042 * One of the work items currently on the workqueue needs to acquire
3043 * a lock held by your code or its caller.
3044 *
3045 * Your code is running in the context of a work routine.
3046 *
3047 * They will be detected by lockdep when they occur, but the first might not
3048 * occur very often. It depends on what work items are on the workqueue and
3049 * what locks they need, which you have no control over.
3050 *
3051 * In most situations flushing the entire workqueue is overkill; you merely
3052 * need to know that a particular work item isn't queued and isn't running.
3053 * In such cases you should use cancel_delayed_work_sync() or
3054 * cancel_work_sync() instead.
3055 */
1da177e4
LT
3056void flush_scheduled_work(void)
3057{
d320c038 3058 flush_workqueue(system_wq);
1da177e4 3059}
ae90dd5d 3060EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3061
1fa44eca
JB
3062/**
3063 * execute_in_process_context - reliably execute the routine with user context
3064 * @fn: the function to execute
1fa44eca
JB
3065 * @ew: guaranteed storage for the execute work structure (must
3066 * be available when the work executes)
3067 *
3068 * Executes the function immediately if process context is available,
3069 * otherwise schedules the function for delayed execution.
3070 *
3071 * Returns: 0 - function was executed
3072 * 1 - function was scheduled for execution
3073 */
65f27f38 3074int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3075{
3076 if (!in_interrupt()) {
65f27f38 3077 fn(&ew->work);
1fa44eca
JB
3078 return 0;
3079 }
3080
65f27f38 3081 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3082 schedule_work(&ew->work);
3083
3084 return 1;
3085}
3086EXPORT_SYMBOL_GPL(execute_in_process_context);
3087
1da177e4
LT
3088int keventd_up(void)
3089{
d320c038 3090 return system_wq != NULL;
1da177e4
LT
3091}
3092
112202d9 3093static int alloc_pwqs(struct workqueue_struct *wq)
0f900049 3094{
65a64464 3095 /*
112202d9 3096 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
0f900049
TH
3097 * Make sure that the alignment isn't lower than that of
3098 * unsigned long long.
65a64464 3099 */
112202d9 3100 const size_t size = sizeof(struct pool_workqueue);
0f900049
TH
3101 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3102 __alignof__(unsigned long long));
65a64464 3103
e06ffa1e 3104 if (!(wq->flags & WQ_UNBOUND))
112202d9 3105 wq->pool_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3106 else {
f3421797
TH
3107 void *ptr;
3108
3109 /*
112202d9 3110 * Allocate enough room to align pwq and put an extra
f3421797
TH
3111 * pointer at the end pointing back to the originally
3112 * allocated pointer which will be used for free.
3113 */
3114 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3115 if (ptr) {
112202d9
TH
3116 wq->pool_wq.single = PTR_ALIGN(ptr, align);
3117 *(void **)(wq->pool_wq.single + 1) = ptr;
f3421797 3118 }
bdbc5dd7 3119 }
f3421797 3120
0415b00d 3121 /* just in case, make sure it's actually aligned */
112202d9
TH
3122 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3123 return wq->pool_wq.v ? 0 : -ENOMEM;
0f900049
TH
3124}
3125
112202d9 3126static void free_pwqs(struct workqueue_struct *wq)
0f900049 3127{
e06ffa1e 3128 if (!(wq->flags & WQ_UNBOUND))
112202d9
TH
3129 free_percpu(wq->pool_wq.pcpu);
3130 else if (wq->pool_wq.single) {
3131 /* the pointer to free is stored right after the pwq */
3132 kfree(*(void **)(wq->pool_wq.single + 1));
f3421797 3133 }
0f900049
TH
3134}
3135
f3421797
TH
3136static int wq_clamp_max_active(int max_active, unsigned int flags,
3137 const char *name)
b71ab8c2 3138{
f3421797
TH
3139 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3140
3141 if (max_active < 1 || max_active > lim)
044c782c
VI
3142 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3143 max_active, name, 1, lim);
b71ab8c2 3144
f3421797 3145 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3146}
3147
b196be89 3148struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3149 unsigned int flags,
3150 int max_active,
3151 struct lock_class_key *key,
b196be89 3152 const char *lock_name, ...)
1da177e4 3153{
b196be89 3154 va_list args, args1;
1da177e4 3155 struct workqueue_struct *wq;
c34056a3 3156 unsigned int cpu;
b196be89
TH
3157 size_t namelen;
3158
3159 /* determine namelen, allocate wq and format name */
3160 va_start(args, lock_name);
3161 va_copy(args1, args);
3162 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3163
3164 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3165 if (!wq)
3166 goto err;
3167
3168 vsnprintf(wq->name, namelen, fmt, args1);
3169 va_end(args);
3170 va_end(args1);
1da177e4 3171
6370a6ad
TH
3172 /*
3173 * Workqueues which may be used during memory reclaim should
3174 * have a rescuer to guarantee forward progress.
3175 */
3176 if (flags & WQ_MEM_RECLAIM)
3177 flags |= WQ_RESCUER;
3178
d320c038 3179 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3180 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3181
b196be89 3182 /* init wq */
97e37d7b 3183 wq->flags = flags;
a0a1a5fd 3184 wq->saved_max_active = max_active;
73f53c4a 3185 mutex_init(&wq->flush_mutex);
112202d9 3186 atomic_set(&wq->nr_pwqs_to_flush, 0);
73f53c4a
TH
3187 INIT_LIST_HEAD(&wq->flusher_queue);
3188 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3189
eb13ba87 3190 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3191 INIT_LIST_HEAD(&wq->list);
3af24433 3192
112202d9 3193 if (alloc_pwqs(wq) < 0)
bdbc5dd7
TH
3194 goto err;
3195
112202d9
TH
3196 for_each_pwq_cpu(cpu, wq) {
3197 struct pool_workqueue *pwq = get_pwq(cpu, wq);
1537663f 3198
112202d9
TH
3199 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3200 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3201 pwq->wq = wq;
3202 pwq->flush_color = -1;
3203 pwq->max_active = max_active;
3204 INIT_LIST_HEAD(&pwq->delayed_works);
e22bee78 3205 }
1537663f 3206
e22bee78
TH
3207 if (flags & WQ_RESCUER) {
3208 struct worker *rescuer;
3209
f2e005aa 3210 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3211 goto err;
3212
3213 wq->rescuer = rescuer = alloc_worker();
3214 if (!rescuer)
3215 goto err;
3216
111c225a
TH
3217 rescuer->rescue_wq = wq;
3218 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3219 wq->name);
e22bee78
TH
3220 if (IS_ERR(rescuer->task))
3221 goto err;
3222
e22bee78
TH
3223 rescuer->task->flags |= PF_THREAD_BOUND;
3224 wake_up_process(rescuer->task);
3af24433
ON
3225 }
3226
a0a1a5fd
TH
3227 /*
3228 * workqueue_lock protects global freeze state and workqueues
3229 * list. Grab it, set max_active accordingly and add the new
3230 * workqueue to workqueues list.
3231 */
1537663f 3232 spin_lock(&workqueue_lock);
a0a1a5fd 3233
58a69cb4 3234 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
112202d9
TH
3235 for_each_pwq_cpu(cpu, wq)
3236 get_pwq(cpu, wq)->max_active = 0;
a0a1a5fd 3237
1537663f 3238 list_add(&wq->list, &workqueues);
a0a1a5fd 3239
1537663f
TH
3240 spin_unlock(&workqueue_lock);
3241
3af24433 3242 return wq;
4690c4ab
TH
3243err:
3244 if (wq) {
112202d9 3245 free_pwqs(wq);
f2e005aa 3246 free_mayday_mask(wq->mayday_mask);
e22bee78 3247 kfree(wq->rescuer);
4690c4ab
TH
3248 kfree(wq);
3249 }
3250 return NULL;
3af24433 3251}
d320c038 3252EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3253
3af24433
ON
3254/**
3255 * destroy_workqueue - safely terminate a workqueue
3256 * @wq: target workqueue
3257 *
3258 * Safely destroy a workqueue. All work currently pending will be done first.
3259 */
3260void destroy_workqueue(struct workqueue_struct *wq)
3261{
c8e55f36 3262 unsigned int cpu;
3af24433 3263
9c5a2ba7
TH
3264 /* drain it before proceeding with destruction */
3265 drain_workqueue(wq);
c8efcc25 3266
a0a1a5fd
TH
3267 /*
3268 * wq list is used to freeze wq, remove from list after
3269 * flushing is complete in case freeze races us.
3270 */
95402b38 3271 spin_lock(&workqueue_lock);
b1f4ec17 3272 list_del(&wq->list);
95402b38 3273 spin_unlock(&workqueue_lock);
3af24433 3274
e22bee78 3275 /* sanity check */
112202d9
TH
3276 for_each_pwq_cpu(cpu, wq) {
3277 struct pool_workqueue *pwq = get_pwq(cpu, wq);
73f53c4a
TH
3278 int i;
3279
73f53c4a 3280 for (i = 0; i < WORK_NR_COLORS; i++)
112202d9
TH
3281 BUG_ON(pwq->nr_in_flight[i]);
3282 BUG_ON(pwq->nr_active);
3283 BUG_ON(!list_empty(&pwq->delayed_works));
73f53c4a 3284 }
9b41ea72 3285
e22bee78
TH
3286 if (wq->flags & WQ_RESCUER) {
3287 kthread_stop(wq->rescuer->task);
f2e005aa 3288 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3289 kfree(wq->rescuer);
e22bee78
TH
3290 }
3291
112202d9 3292 free_pwqs(wq);
3af24433
ON
3293 kfree(wq);
3294}
3295EXPORT_SYMBOL_GPL(destroy_workqueue);
3296
9f4bd4cd 3297/**
112202d9
TH
3298 * pwq_set_max_active - adjust max_active of a pwq
3299 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3300 * @max_active: new max_active value.
3301 *
112202d9 3302 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3303 * increased.
3304 *
3305 * CONTEXT:
d565ed63 3306 * spin_lock_irq(pool->lock).
9f4bd4cd 3307 */
112202d9 3308static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3309{
112202d9 3310 pwq->max_active = max_active;
9f4bd4cd 3311
112202d9
TH
3312 while (!list_empty(&pwq->delayed_works) &&
3313 pwq->nr_active < pwq->max_active)
3314 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3315}
3316
dcd989cb
TH
3317/**
3318 * workqueue_set_max_active - adjust max_active of a workqueue
3319 * @wq: target workqueue
3320 * @max_active: new max_active value.
3321 *
3322 * Set max_active of @wq to @max_active.
3323 *
3324 * CONTEXT:
3325 * Don't call from IRQ context.
3326 */
3327void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3328{
3329 unsigned int cpu;
3330
f3421797 3331 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3332
3333 spin_lock(&workqueue_lock);
3334
3335 wq->saved_max_active = max_active;
3336
112202d9
TH
3337 for_each_pwq_cpu(cpu, wq) {
3338 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3339 struct worker_pool *pool = pwq->pool;
dcd989cb 3340
d565ed63 3341 spin_lock_irq(&pool->lock);
dcd989cb 3342
58a69cb4 3343 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3344 !(pool->flags & POOL_FREEZING))
112202d9 3345 pwq_set_max_active(pwq, max_active);
9bfb1839 3346
d565ed63 3347 spin_unlock_irq(&pool->lock);
65a64464 3348 }
93981800 3349
dcd989cb 3350 spin_unlock(&workqueue_lock);
15316ba8 3351}
dcd989cb 3352EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3353
eef6a7d5 3354/**
dcd989cb
TH
3355 * workqueue_congested - test whether a workqueue is congested
3356 * @cpu: CPU in question
3357 * @wq: target workqueue
eef6a7d5 3358 *
dcd989cb
TH
3359 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3360 * no synchronization around this function and the test result is
3361 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3362 *
dcd989cb
TH
3363 * RETURNS:
3364 * %true if congested, %false otherwise.
eef6a7d5 3365 */
dcd989cb 3366bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3367{
112202d9 3368 struct pool_workqueue *pwq = get_pwq(cpu, wq);
dcd989cb 3369
112202d9 3370 return !list_empty(&pwq->delayed_works);
1da177e4 3371}
dcd989cb 3372EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3373
dcd989cb
TH
3374/**
3375 * work_busy - test whether a work is currently pending or running
3376 * @work: the work to be tested
3377 *
3378 * Test whether @work is currently pending or running. There is no
3379 * synchronization around this function and the test result is
3380 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3381 *
3382 * RETURNS:
3383 * OR'd bitmask of WORK_BUSY_* bits.
3384 */
3385unsigned int work_busy(struct work_struct *work)
1da177e4 3386{
c9e7cf27 3387 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3388 unsigned long flags;
3389 unsigned int ret = 0;
1da177e4 3390
dcd989cb
TH
3391 if (work_pending(work))
3392 ret |= WORK_BUSY_PENDING;
1da177e4 3393
038366c5
LJ
3394 if (pool) {
3395 spin_lock_irqsave(&pool->lock, flags);
3396 if (find_worker_executing_work(pool, work))
3397 ret |= WORK_BUSY_RUNNING;
3398 spin_unlock_irqrestore(&pool->lock, flags);
3399 }
1da177e4 3400
dcd989cb 3401 return ret;
1da177e4 3402}
dcd989cb 3403EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3404
db7bccf4
TH
3405/*
3406 * CPU hotplug.
3407 *
e22bee78 3408 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3409 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3410 * pool which make migrating pending and scheduled works very
e22bee78 3411 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3412 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3413 * blocked draining impractical.
3414 *
24647570 3415 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3416 * running as an unbound one and allowing it to be reattached later if the
3417 * cpu comes back online.
db7bccf4 3418 */
1da177e4 3419
706026c2 3420static void wq_unbind_fn(struct work_struct *work)
3af24433 3421{
38db41d9 3422 int cpu = smp_processor_id();
4ce62e9e 3423 struct worker_pool *pool;
db7bccf4 3424 struct worker *worker;
db7bccf4 3425 int i;
3af24433 3426
38db41d9
TH
3427 for_each_std_worker_pool(pool, cpu) {
3428 BUG_ON(cpu != smp_processor_id());
db7bccf4 3429
94cf58bb
TH
3430 mutex_lock(&pool->assoc_mutex);
3431 spin_lock_irq(&pool->lock);
3af24433 3432
94cf58bb
TH
3433 /*
3434 * We've claimed all manager positions. Make all workers
3435 * unbound and set DISASSOCIATED. Before this, all workers
3436 * except for the ones which are still executing works from
3437 * before the last CPU down must be on the cpu. After
3438 * this, they may become diasporas.
3439 */
4ce62e9e 3440 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3441 worker->flags |= WORKER_UNBOUND;
3af24433 3442
b67bfe0d 3443 for_each_busy_worker(worker, i, pool)
c9e7cf27 3444 worker->flags |= WORKER_UNBOUND;
06ba38a9 3445
24647570 3446 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3447
94cf58bb
TH
3448 spin_unlock_irq(&pool->lock);
3449 mutex_unlock(&pool->assoc_mutex);
628c78e7 3450
eb283428
LJ
3451 /*
3452 * Call schedule() so that we cross rq->lock and thus can
3453 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
3454 * This is necessary as scheduler callbacks may be invoked
3455 * from other cpus.
3456 */
3457 schedule();
06ba38a9 3458
eb283428
LJ
3459 /*
3460 * Sched callbacks are disabled now. Zap nr_running.
3461 * After this, nr_running stays zero and need_more_worker()
3462 * and keep_working() are always true as long as the
3463 * worklist is not empty. This pool now behaves as an
3464 * unbound (in terms of concurrency management) pool which
3465 * are served by workers tied to the pool.
3466 */
e19e397a 3467 atomic_set(&pool->nr_running, 0);
eb283428
LJ
3468
3469 /*
3470 * With concurrency management just turned off, a busy
3471 * worker blocking could lead to lengthy stalls. Kick off
3472 * unbound chain execution of currently pending work items.
3473 */
3474 spin_lock_irq(&pool->lock);
3475 wake_up_worker(pool);
3476 spin_unlock_irq(&pool->lock);
3477 }
3af24433 3478}
3af24433 3479
8db25e78
TH
3480/*
3481 * Workqueues should be brought up before normal priority CPU notifiers.
3482 * This will be registered high priority CPU notifier.
3483 */
9fdf9b73 3484static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3485 unsigned long action,
3486 void *hcpu)
3af24433
ON
3487{
3488 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3489 struct worker_pool *pool;
3ce63377 3490
8db25e78 3491 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3492 case CPU_UP_PREPARE:
38db41d9 3493 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3494 struct worker *worker;
3495
3496 if (pool->nr_workers)
3497 continue;
3498
3499 worker = create_worker(pool);
3500 if (!worker)
3501 return NOTIFY_BAD;
3502
d565ed63 3503 spin_lock_irq(&pool->lock);
3ce63377 3504 start_worker(worker);
d565ed63 3505 spin_unlock_irq(&pool->lock);
3af24433 3506 }
8db25e78 3507 break;
3af24433 3508
db7bccf4
TH
3509 case CPU_DOWN_FAILED:
3510 case CPU_ONLINE:
38db41d9 3511 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3512 mutex_lock(&pool->assoc_mutex);
3513 spin_lock_irq(&pool->lock);
3514
24647570 3515 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3516 rebind_workers(pool);
3517
3518 spin_unlock_irq(&pool->lock);
3519 mutex_unlock(&pool->assoc_mutex);
3520 }
db7bccf4 3521 break;
00dfcaf7 3522 }
65758202
TH
3523 return NOTIFY_OK;
3524}
3525
3526/*
3527 * Workqueues should be brought down after normal priority CPU notifiers.
3528 * This will be registered as low priority CPU notifier.
3529 */
9fdf9b73 3530static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3531 unsigned long action,
3532 void *hcpu)
3533{
8db25e78
TH
3534 unsigned int cpu = (unsigned long)hcpu;
3535 struct work_struct unbind_work;
3536
65758202
TH
3537 switch (action & ~CPU_TASKS_FROZEN) {
3538 case CPU_DOWN_PREPARE:
8db25e78 3539 /* unbinding should happen on the local CPU */
706026c2 3540 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3541 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3542 flush_work(&unbind_work);
3543 break;
65758202
TH
3544 }
3545 return NOTIFY_OK;
3546}
3547
2d3854a3 3548#ifdef CONFIG_SMP
8ccad40d 3549
2d3854a3 3550struct work_for_cpu {
ed48ece2 3551 struct work_struct work;
2d3854a3
RR
3552 long (*fn)(void *);
3553 void *arg;
3554 long ret;
3555};
3556
ed48ece2 3557static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3558{
ed48ece2
TH
3559 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3560
2d3854a3
RR
3561 wfc->ret = wfc->fn(wfc->arg);
3562}
3563
3564/**
3565 * work_on_cpu - run a function in user context on a particular cpu
3566 * @cpu: the cpu to run on
3567 * @fn: the function to run
3568 * @arg: the function arg
3569 *
31ad9081
RR
3570 * This will return the value @fn returns.
3571 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3572 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3573 */
3574long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3575{
ed48ece2 3576 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3577
ed48ece2
TH
3578 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3579 schedule_work_on(cpu, &wfc.work);
3580 flush_work(&wfc.work);
2d3854a3
RR
3581 return wfc.ret;
3582}
3583EXPORT_SYMBOL_GPL(work_on_cpu);
3584#endif /* CONFIG_SMP */
3585
a0a1a5fd
TH
3586#ifdef CONFIG_FREEZER
3587
3588/**
3589 * freeze_workqueues_begin - begin freezing workqueues
3590 *
58a69cb4
TH
3591 * Start freezing workqueues. After this function returns, all freezable
3592 * workqueues will queue new works to their frozen_works list instead of
706026c2 3593 * pool->worklist.
a0a1a5fd
TH
3594 *
3595 * CONTEXT:
d565ed63 3596 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3597 */
3598void freeze_workqueues_begin(void)
3599{
a0a1a5fd
TH
3600 unsigned int cpu;
3601
3602 spin_lock(&workqueue_lock);
3603
3604 BUG_ON(workqueue_freezing);
3605 workqueue_freezing = true;
3606
706026c2 3607 for_each_wq_cpu(cpu) {
35b6bb63 3608 struct worker_pool *pool;
bdbc5dd7 3609 struct workqueue_struct *wq;
8b03ae3c 3610
38db41d9 3611 for_each_std_worker_pool(pool, cpu) {
a1056305 3612 spin_lock_irq(&pool->lock);
d565ed63 3613
35b6bb63
TH
3614 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3615 pool->flags |= POOL_FREEZING;
db7bccf4 3616
a1056305 3617 list_for_each_entry(wq, &workqueues, list) {
112202d9 3618 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3619
112202d9 3620 if (pwq && pwq->pool == pool &&
a1056305 3621 (wq->flags & WQ_FREEZABLE))
112202d9 3622 pwq->max_active = 0;
a1056305 3623 }
8b03ae3c 3624
a1056305
TH
3625 spin_unlock_irq(&pool->lock);
3626 }
a0a1a5fd
TH
3627 }
3628
3629 spin_unlock(&workqueue_lock);
3630}
3631
3632/**
58a69cb4 3633 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3634 *
3635 * Check whether freezing is complete. This function must be called
3636 * between freeze_workqueues_begin() and thaw_workqueues().
3637 *
3638 * CONTEXT:
3639 * Grabs and releases workqueue_lock.
3640 *
3641 * RETURNS:
58a69cb4
TH
3642 * %true if some freezable workqueues are still busy. %false if freezing
3643 * is complete.
a0a1a5fd
TH
3644 */
3645bool freeze_workqueues_busy(void)
3646{
a0a1a5fd
TH
3647 unsigned int cpu;
3648 bool busy = false;
3649
3650 spin_lock(&workqueue_lock);
3651
3652 BUG_ON(!workqueue_freezing);
3653
706026c2 3654 for_each_wq_cpu(cpu) {
bdbc5dd7 3655 struct workqueue_struct *wq;
a0a1a5fd
TH
3656 /*
3657 * nr_active is monotonically decreasing. It's safe
3658 * to peek without lock.
3659 */
3660 list_for_each_entry(wq, &workqueues, list) {
112202d9 3661 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3662
112202d9 3663 if (!pwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3664 continue;
3665
112202d9
TH
3666 BUG_ON(pwq->nr_active < 0);
3667 if (pwq->nr_active) {
a0a1a5fd
TH
3668 busy = true;
3669 goto out_unlock;
3670 }
3671 }
3672 }
3673out_unlock:
3674 spin_unlock(&workqueue_lock);
3675 return busy;
3676}
3677
3678/**
3679 * thaw_workqueues - thaw workqueues
3680 *
3681 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3682 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3683 *
3684 * CONTEXT:
d565ed63 3685 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3686 */
3687void thaw_workqueues(void)
3688{
a0a1a5fd
TH
3689 unsigned int cpu;
3690
3691 spin_lock(&workqueue_lock);
3692
3693 if (!workqueue_freezing)
3694 goto out_unlock;
3695
706026c2 3696 for_each_wq_cpu(cpu) {
4ce62e9e 3697 struct worker_pool *pool;
bdbc5dd7 3698 struct workqueue_struct *wq;
8b03ae3c 3699
38db41d9 3700 for_each_std_worker_pool(pool, cpu) {
a1056305 3701 spin_lock_irq(&pool->lock);
d565ed63 3702
35b6bb63
TH
3703 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3704 pool->flags &= ~POOL_FREEZING;
db7bccf4 3705
a1056305 3706 list_for_each_entry(wq, &workqueues, list) {
112202d9 3707 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3708
112202d9 3709 if (!pwq || pwq->pool != pool ||
a1056305
TH
3710 !(wq->flags & WQ_FREEZABLE))
3711 continue;
a0a1a5fd 3712
a1056305 3713 /* restore max_active and repopulate worklist */
112202d9 3714 pwq_set_max_active(pwq, wq->saved_max_active);
a1056305 3715 }
8b03ae3c 3716
4ce62e9e 3717 wake_up_worker(pool);
a1056305
TH
3718
3719 spin_unlock_irq(&pool->lock);
d565ed63 3720 }
a0a1a5fd
TH
3721 }
3722
3723 workqueue_freezing = false;
3724out_unlock:
3725 spin_unlock(&workqueue_lock);
3726}
3727#endif /* CONFIG_FREEZER */
3728
6ee0578b 3729static int __init init_workqueues(void)
1da177e4 3730{
c34056a3
TH
3731 unsigned int cpu;
3732
7c3eed5c
TH
3733 /* make sure we have enough bits for OFFQ pool ID */
3734 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3735 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3736
65758202 3737 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3738 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3739
706026c2
TH
3740 /* initialize CPU pools */
3741 for_each_wq_cpu(cpu) {
4ce62e9e 3742 struct worker_pool *pool;
8b03ae3c 3743
38db41d9 3744 for_each_std_worker_pool(pool, cpu) {
d565ed63 3745 spin_lock_init(&pool->lock);
ec22ca5e 3746 pool->cpu = cpu;
24647570 3747 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3748 INIT_LIST_HEAD(&pool->worklist);
3749 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3750 hash_init(pool->busy_hash);
e7577c50 3751
4ce62e9e
TH
3752 init_timer_deferrable(&pool->idle_timer);
3753 pool->idle_timer.function = idle_worker_timeout;
3754 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3755
706026c2 3756 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3757 (unsigned long)pool);
3758
b2eb83d1 3759 mutex_init(&pool->assoc_mutex);
4ce62e9e 3760 ida_init(&pool->worker_ida);
9daf9e67
TH
3761
3762 /* alloc pool ID */
3763 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3764 }
8b03ae3c
TH
3765 }
3766
e22bee78 3767 /* create the initial worker */
706026c2 3768 for_each_online_wq_cpu(cpu) {
4ce62e9e 3769 struct worker_pool *pool;
e22bee78 3770
38db41d9 3771 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3772 struct worker *worker;
3773
24647570
TH
3774 if (cpu != WORK_CPU_UNBOUND)
3775 pool->flags &= ~POOL_DISASSOCIATED;
3776
bc2ae0f5 3777 worker = create_worker(pool);
4ce62e9e 3778 BUG_ON(!worker);
d565ed63 3779 spin_lock_irq(&pool->lock);
4ce62e9e 3780 start_worker(worker);
d565ed63 3781 spin_unlock_irq(&pool->lock);
4ce62e9e 3782 }
e22bee78
TH
3783 }
3784
d320c038 3785 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3786 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3787 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3788 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3789 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3790 system_freezable_wq = alloc_workqueue("events_freezable",
3791 WQ_FREEZABLE, 0);
1aabe902 3792 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3793 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3794 return 0;
1da177e4 3795}
6ee0578b 3796early_initcall(init_workqueues);