]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/workqueue.c
cpuidle: Move trace_cpu_idle() into generic code
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 70 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
1258fae7 127 * A: wq_pool_attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
24acfb71 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 136 * RCU for reads.
5b95e1af 137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
24acfb71 140 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
a9b8a985 148 raw_spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43 156 struct list_head worklist; /* L: list of pending works */
ea1abd61 157
5826cc8f
LJ
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4 170 struct list_head workers; /* A: attached workers */
60f5a4bc 171 struct completion *detach_completion; /* all workers detached */
e19e397a 172
7cda9aae 173 struct ida worker_ida; /* worker IDs for task name */
e19e397a 174
7a4e344c 175 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 178
e19e397a
TH
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
185
186 /*
24acfb71 187 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
8b03ae3c
TH
191} ____cacheline_aligned_in_smp;
192
1da177e4 193/*
112202d9
TH
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
1da177e4 198 */
112202d9 199struct pool_workqueue {
bd7bdd43 200 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 201 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
8864b4e5 204 int refcnt; /* L: reference count */
73f53c4a
TH
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
1e19ffc6 207 int nr_active; /* L: nr of active works */
a0a1a5fd 208 int max_active; /* L: max active works */
1e19ffc6 209 struct list_head delayed_works; /* L: delayed works */
3c25a55d 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 211 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 216 * itself is also RCU protected so that the first pwq can be
b09f4fd3 217 * determined without grabbing wq->mutex.
8864b4e5
TH
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
e904e6c2 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 222
73f53c4a
TH
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
3c25a55d
LJ
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
229 struct completion done; /* flush completion */
230};
231
226223ab
TH
232struct wq_device;
233
1da177e4 234/*
c5aa87bb
TH
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
237 */
238struct workqueue_struct {
3c25a55d 239 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 240 struct list_head list; /* PR: list of all workqueues */
73f53c4a 241
3c25a55d
LJ
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
112202d9 245 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 249
2e109a28 250 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 251 struct worker *rescuer; /* MD: rescue worker */
e22bee78 252
87fc741e 253 int nr_drainers; /* WQ: drain in progress */
a357fc03 254 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 255
5b95e1af
LJ
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 258
226223ab
TH
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
4e6045f1 262#ifdef CONFIG_LOCKDEP
669de8bd
BVA
263 char *lock_name;
264 struct lock_class_key key;
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad 269 /*
24acfb71
TG
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 303static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
304/* wait for manager to go away */
305static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 306
e2dca7ad 307static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 308static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 309
ef557180
MG
310/* PL: allowable cpus for unbound wqs and work items */
311static cpumask_var_t wq_unbound_cpumask;
312
313/* CPU where unbound work was last round robin scheduled from this CPU */
314static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 315
f303fccb
TH
316/*
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
320 */
321#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322static bool wq_debug_force_rr_cpu = true;
323#else
324static bool wq_debug_force_rr_cpu = false;
325#endif
326module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327
7d19c5ce 328/* the per-cpu worker pools */
25528213 329static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 330
68e13a67 331static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 332
68e13a67 333/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
334static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335
c5aa87bb 336/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
337static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338
8a2b7538
TH
339/* I: attributes used when instantiating ordered pools on demand */
340static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341
d320c038 342struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 343EXPORT_SYMBOL(system_wq);
044c782c 344struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 345EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 346struct workqueue_struct *system_long_wq __read_mostly;
d320c038 347EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 348struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 349EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 350struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 351EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
352struct workqueue_struct *system_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 356
7d19c5ce 357static int worker_thread(void *__worker);
6ba94429 358static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 359static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 360
97bd2347
TH
361#define CREATE_TRACE_POINTS
362#include <trace/events/workqueue.h>
363
68e13a67 364#define assert_rcu_or_pool_mutex() \
24acfb71 365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 366 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 367 "RCU or wq_pool_mutex should be held")
5bcab335 368
5b95e1af 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 373 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 374
f02ae73a
TH
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 378 (pool)++)
4ce62e9e 379
17116969
TH
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
611c92a0 383 * @pi: integer used for iteration
fa1b54e6 384 *
24acfb71 385 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
17116969 391 */
611c92a0
TH
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 395 else
17116969 396
822d8405
TH
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
822d8405
TH
400 * @pool: worker_pool to iterate workers of
401 *
1258fae7 402 * This must be called with wq_pool_attach_mutex.
822d8405
TH
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
da028469
LJ
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
410 else
411
49e3cf44
TH
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
76af4d93 416 *
24acfb71 417 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
49e3cf44
TH
423 */
424#define for_each_pwq(pwq, wq) \
49e9d1a9 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 426 lockdep_is_held(&(wq->mutex)))
f3421797 427
dc186ad7
TG
428#ifdef CONFIG_DEBUG_OBJECTS_WORK
429
430static struct debug_obj_descr work_debug_descr;
431
99777288
SG
432static void *work_debug_hint(void *addr)
433{
434 return ((struct work_struct *) addr)->func;
435}
436
b9fdac7f
CD
437static bool work_is_static_object(void *addr)
438{
439 struct work_struct *work = addr;
440
441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442}
443
dc186ad7
TG
444/*
445 * fixup_init is called when:
446 * - an active object is initialized
447 */
02a982a6 448static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
449{
450 struct work_struct *work = addr;
451
452 switch (state) {
453 case ODEBUG_STATE_ACTIVE:
454 cancel_work_sync(work);
455 debug_object_init(work, &work_debug_descr);
02a982a6 456 return true;
dc186ad7 457 default:
02a982a6 458 return false;
dc186ad7
TG
459 }
460}
461
dc186ad7
TG
462/*
463 * fixup_free is called when:
464 * - an active object is freed
465 */
02a982a6 466static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
467{
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_free(work, &work_debug_descr);
02a982a6 474 return true;
dc186ad7 475 default:
02a982a6 476 return false;
dc186ad7
TG
477 }
478}
479
480static struct debug_obj_descr work_debug_descr = {
481 .name = "work_struct",
99777288 482 .debug_hint = work_debug_hint,
b9fdac7f 483 .is_static_object = work_is_static_object,
dc186ad7 484 .fixup_init = work_fixup_init,
dc186ad7
TG
485 .fixup_free = work_fixup_free,
486};
487
488static inline void debug_work_activate(struct work_struct *work)
489{
490 debug_object_activate(work, &work_debug_descr);
491}
492
493static inline void debug_work_deactivate(struct work_struct *work)
494{
495 debug_object_deactivate(work, &work_debug_descr);
496}
497
498void __init_work(struct work_struct *work, int onstack)
499{
500 if (onstack)
501 debug_object_init_on_stack(work, &work_debug_descr);
502 else
503 debug_object_init(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(__init_work);
506
507void destroy_work_on_stack(struct work_struct *work)
508{
509 debug_object_free(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512
ea2e64f2
TG
513void destroy_delayed_work_on_stack(struct delayed_work *work)
514{
515 destroy_timer_on_stack(&work->timer);
516 debug_object_free(&work->work, &work_debug_descr);
517}
518EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519
dc186ad7
TG
520#else
521static inline void debug_work_activate(struct work_struct *work) { }
522static inline void debug_work_deactivate(struct work_struct *work) { }
523#endif
524
4e8b22bd
LB
525/**
526 * worker_pool_assign_id - allocate ID and assing it to @pool
527 * @pool: the pool pointer of interest
528 *
529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530 * successfully, -errno on failure.
531 */
9daf9e67
TH
532static int worker_pool_assign_id(struct worker_pool *pool)
533{
534 int ret;
535
68e13a67 536 lockdep_assert_held(&wq_pool_mutex);
5bcab335 537
4e8b22bd
LB
538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 GFP_KERNEL);
229641a6 540 if (ret >= 0) {
e68035fb 541 pool->id = ret;
229641a6
TH
542 return 0;
543 }
fa1b54e6 544 return ret;
7c3eed5c
TH
545}
546
df2d5ae4
TH
547/**
548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549 * @wq: the target workqueue
550 * @node: the node ID
551 *
24acfb71 552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 553 * read locked.
df2d5ae4
TH
554 * If the pwq needs to be used beyond the locking in effect, the caller is
555 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
556 *
557 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
558 */
559static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 int node)
561{
5b95e1af 562 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
563
564 /*
565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 * delayed item is pending. The plan is to keep CPU -> NODE
567 * mapping valid and stable across CPU on/offlines. Once that
568 * happens, this workaround can be removed.
569 */
570 if (unlikely(node == NUMA_NO_NODE))
571 return wq->dfl_pwq;
572
df2d5ae4
TH
573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574}
575
73f53c4a
TH
576static unsigned int work_color_to_flags(int color)
577{
578 return color << WORK_STRUCT_COLOR_SHIFT;
579}
580
581static int get_work_color(struct work_struct *work)
582{
583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
585}
586
587static int work_next_color(int color)
588{
589 return (color + 1) % WORK_NR_COLORS;
590}
1da177e4 591
14441960 592/*
112202d9
TH
593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 595 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 596 *
112202d9
TH
597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
599 * work->data. These functions should only be called while the work is
600 * owned - ie. while the PENDING bit is set.
7a22ad75 601 *
112202d9 602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 603 * corresponding to a work. Pool is available once the work has been
112202d9 604 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 605 * available only while the work item is queued.
7a22ad75 606 *
bbb68dfa
TH
607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608 * canceled. While being canceled, a work item may have its PENDING set
609 * but stay off timer and worklist for arbitrarily long and nobody should
610 * try to steal the PENDING bit.
14441960 611 */
7a22ad75
TH
612static inline void set_work_data(struct work_struct *work, unsigned long data,
613 unsigned long flags)
365970a1 614{
6183c009 615 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
616 atomic_long_set(&work->data, data | flags | work_static(work));
617}
365970a1 618
112202d9 619static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
620 unsigned long extra_flags)
621{
112202d9
TH
622 set_work_data(work, (unsigned long)pwq,
623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
624}
625
4468a00f
LJ
626static void set_work_pool_and_keep_pending(struct work_struct *work,
627 int pool_id)
628{
629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 WORK_STRUCT_PENDING);
631}
632
7c3eed5c
TH
633static void set_work_pool_and_clear_pending(struct work_struct *work,
634 int pool_id)
7a22ad75 635{
23657bb1
TH
636 /*
637 * The following wmb is paired with the implied mb in
638 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 * here are visible to and precede any updates by the next PENDING
640 * owner.
641 */
642 smp_wmb();
7c3eed5c 643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
644 /*
645 * The following mb guarantees that previous clear of a PENDING bit
646 * will not be reordered with any speculative LOADS or STORES from
647 * work->current_func, which is executed afterwards. This possible
8bdc6201 648 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
649 * the same @work. E.g. consider this case:
650 *
651 * CPU#0 CPU#1
652 * ---------------------------- --------------------------------
653 *
654 * 1 STORE event_indicated
655 * 2 queue_work_on() {
656 * 3 test_and_set_bit(PENDING)
657 * 4 } set_..._and_clear_pending() {
658 * 5 set_work_data() # clear bit
659 * 6 smp_mb()
660 * 7 work->current_func() {
661 * 8 LOAD event_indicated
662 * }
663 *
664 * Without an explicit full barrier speculative LOAD on line 8 can
665 * be executed before CPU#0 does STORE on line 1. If that happens,
666 * CPU#0 observes the PENDING bit is still set and new execution of
667 * a @work is not queued in a hope, that CPU#1 will eventually
668 * finish the queued @work. Meanwhile CPU#1 does not see
669 * event_indicated is set, because speculative LOAD was executed
670 * before actual STORE.
671 */
672 smp_mb();
7a22ad75 673}
f756d5e2 674
7a22ad75 675static void clear_work_data(struct work_struct *work)
1da177e4 676{
7c3eed5c
TH
677 smp_wmb(); /* see set_work_pool_and_clear_pending() */
678 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
679}
680
112202d9 681static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 682{
e120153d 683 unsigned long data = atomic_long_read(&work->data);
7a22ad75 684
112202d9 685 if (data & WORK_STRUCT_PWQ)
e120153d
TH
686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 else
688 return NULL;
4d707b9f
ON
689}
690
7c3eed5c
TH
691/**
692 * get_work_pool - return the worker_pool a given work was associated with
693 * @work: the work item of interest
694 *
68e13a67 695 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
696 * access under RCU read lock. As such, this function should be
697 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
698 *
699 * All fields of the returned pool are accessible as long as the above
700 * mentioned locking is in effect. If the returned pool needs to be used
701 * beyond the critical section, the caller is responsible for ensuring the
702 * returned pool is and stays online.
d185af30
YB
703 *
704 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
705 */
706static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 707{
e120153d 708 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 709 int pool_id;
7a22ad75 710
68e13a67 711 assert_rcu_or_pool_mutex();
fa1b54e6 712
112202d9
TH
713 if (data & WORK_STRUCT_PWQ)
714 return ((struct pool_workqueue *)
7c3eed5c 715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 716
7c3eed5c
TH
717 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
719 return NULL;
720
fa1b54e6 721 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
722}
723
724/**
725 * get_work_pool_id - return the worker pool ID a given work is associated with
726 * @work: the work item of interest
727 *
d185af30 728 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
729 * %WORK_OFFQ_POOL_NONE if none.
730 */
731static int get_work_pool_id(struct work_struct *work)
732{
54d5b7d0
LJ
733 unsigned long data = atomic_long_read(&work->data);
734
112202d9
TH
735 if (data & WORK_STRUCT_PWQ)
736 return ((struct pool_workqueue *)
54d5b7d0 737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 738
54d5b7d0 739 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
740}
741
bbb68dfa
TH
742static void mark_work_canceling(struct work_struct *work)
743{
7c3eed5c 744 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 745
7c3eed5c
TH
746 pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
748}
749
750static bool work_is_canceling(struct work_struct *work)
751{
752 unsigned long data = atomic_long_read(&work->data);
753
112202d9 754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
755}
756
e22bee78 757/*
3270476a
TH
758 * Policy functions. These define the policies on how the global worker
759 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 760 * they're being called with pool->lock held.
e22bee78
TH
761 */
762
63d95a91 763static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 764{
e19e397a 765 return !atomic_read(&pool->nr_running);
a848e3b6
ON
766}
767
4594bf15 768/*
e22bee78
TH
769 * Need to wake up a worker? Called from anything but currently
770 * running workers.
974271c4
TH
771 *
772 * Note that, because unbound workers never contribute to nr_running, this
706026c2 773 * function will always return %true for unbound pools as long as the
974271c4 774 * worklist isn't empty.
4594bf15 775 */
63d95a91 776static bool need_more_worker(struct worker_pool *pool)
365970a1 777{
63d95a91 778 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 779}
4594bf15 780
e22bee78 781/* Can I start working? Called from busy but !running workers. */
63d95a91 782static bool may_start_working(struct worker_pool *pool)
e22bee78 783{
63d95a91 784 return pool->nr_idle;
e22bee78
TH
785}
786
787/* Do I need to keep working? Called from currently running workers. */
63d95a91 788static bool keep_working(struct worker_pool *pool)
e22bee78 789{
e19e397a
TH
790 return !list_empty(&pool->worklist) &&
791 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
792}
793
794/* Do we need a new worker? Called from manager. */
63d95a91 795static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 796{
63d95a91 797 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 798}
365970a1 799
e22bee78 800/* Do we have too many workers and should some go away? */
63d95a91 801static bool too_many_workers(struct worker_pool *pool)
e22bee78 802{
692b4825 803 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
806
807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
808}
809
4d707b9f 810/*
e22bee78
TH
811 * Wake up functions.
812 */
813
1037de36
LJ
814/* Return the first idle worker. Safe with preemption disabled */
815static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 816{
63d95a91 817 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
818 return NULL;
819
63d95a91 820 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
821}
822
823/**
824 * wake_up_worker - wake up an idle worker
63d95a91 825 * @pool: worker pool to wake worker from
7e11629d 826 *
63d95a91 827 * Wake up the first idle worker of @pool.
7e11629d
TH
828 *
829 * CONTEXT:
a9b8a985 830 * raw_spin_lock_irq(pool->lock).
7e11629d 831 */
63d95a91 832static void wake_up_worker(struct worker_pool *pool)
7e11629d 833{
1037de36 834 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
835
836 if (likely(worker))
837 wake_up_process(worker->task);
838}
839
d302f017 840/**
6d25be57 841 * wq_worker_running - a worker is running again
e22bee78 842 * @task: task waking up
e22bee78 843 *
6d25be57 844 * This function is called when a worker returns from schedule()
e22bee78 845 */
6d25be57 846void wq_worker_running(struct task_struct *task)
e22bee78
TH
847{
848 struct worker *worker = kthread_data(task);
849
6d25be57
TG
850 if (!worker->sleeping)
851 return;
852 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 853 atomic_inc(&worker->pool->nr_running);
6d25be57 854 worker->sleeping = 0;
e22bee78
TH
855}
856
857/**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
e22bee78 860 *
6d25be57 861 * This function is called from schedule() when a busy worker is
62849a96
SAS
862 * going to sleep. Preemption needs to be disabled to protect ->sleeping
863 * assignment.
e22bee78 864 */
6d25be57 865void wq_worker_sleeping(struct task_struct *task)
e22bee78 866{
6d25be57 867 struct worker *next, *worker = kthread_data(task);
111c225a 868 struct worker_pool *pool;
e22bee78 869
111c225a
TH
870 /*
871 * Rescuers, which may not have all the fields set up like normal
872 * workers, also reach here, let's not access anything before
873 * checking NOT_RUNNING.
874 */
2d64672e 875 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 876 return;
e22bee78 877
111c225a 878 pool = worker->pool;
111c225a 879
62849a96
SAS
880 /* Return if preempted before wq_worker_running() was reached */
881 if (worker->sleeping)
6d25be57
TG
882 return;
883
884 worker->sleeping = 1;
a9b8a985 885 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
886
887 /*
888 * The counterpart of the following dec_and_test, implied mb,
889 * worklist not empty test sequence is in insert_work().
890 * Please read comment there.
891 *
628c78e7
TH
892 * NOT_RUNNING is clear. This means that we're bound to and
893 * running on the local cpu w/ rq lock held and preemption
894 * disabled, which in turn means that none else could be
d565ed63 895 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 896 * lock is safe.
e22bee78 897 */
e19e397a 898 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
899 !list_empty(&pool->worklist)) {
900 next = first_idle_worker(pool);
901 if (next)
902 wake_up_process(next->task);
903 }
a9b8a985 904 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
905}
906
1b69ac6b
JW
907/**
908 * wq_worker_last_func - retrieve worker's last work function
8194fe94 909 * @task: Task to retrieve last work function of.
1b69ac6b
JW
910 *
911 * Determine the last function a worker executed. This is called from
912 * the scheduler to get a worker's last known identity.
913 *
914 * CONTEXT:
a9b8a985 915 * raw_spin_lock_irq(rq->lock)
1b69ac6b 916 *
4b047002
JW
917 * This function is called during schedule() when a kworker is going
918 * to sleep. It's used by psi to identify aggregation workers during
919 * dequeuing, to allow periodic aggregation to shut-off when that
920 * worker is the last task in the system or cgroup to go to sleep.
921 *
922 * As this function doesn't involve any workqueue-related locking, it
923 * only returns stable values when called from inside the scheduler's
924 * queuing and dequeuing paths, when @task, which must be a kworker,
925 * is guaranteed to not be processing any works.
926 *
1b69ac6b
JW
927 * Return:
928 * The last work function %current executed as a worker, NULL if it
929 * hasn't executed any work yet.
930 */
931work_func_t wq_worker_last_func(struct task_struct *task)
932{
933 struct worker *worker = kthread_data(task);
934
935 return worker->last_func;
936}
937
e22bee78
TH
938/**
939 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 940 * @worker: self
d302f017 941 * @flags: flags to set
d302f017 942 *
228f1d00 943 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 944 *
cb444766 945 * CONTEXT:
a9b8a985 946 * raw_spin_lock_irq(pool->lock)
d302f017 947 */
228f1d00 948static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 949{
bd7bdd43 950 struct worker_pool *pool = worker->pool;
e22bee78 951
cb444766
TH
952 WARN_ON_ONCE(worker->task != current);
953
228f1d00 954 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
955 if ((flags & WORKER_NOT_RUNNING) &&
956 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 957 atomic_dec(&pool->nr_running);
e22bee78
TH
958 }
959
d302f017
TH
960 worker->flags |= flags;
961}
962
963/**
e22bee78 964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 965 * @worker: self
d302f017
TH
966 * @flags: flags to clear
967 *
e22bee78 968 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 969 *
cb444766 970 * CONTEXT:
a9b8a985 971 * raw_spin_lock_irq(pool->lock)
d302f017
TH
972 */
973static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974{
63d95a91 975 struct worker_pool *pool = worker->pool;
e22bee78
TH
976 unsigned int oflags = worker->flags;
977
cb444766
TH
978 WARN_ON_ONCE(worker->task != current);
979
d302f017 980 worker->flags &= ~flags;
e22bee78 981
42c025f3
TH
982 /*
983 * If transitioning out of NOT_RUNNING, increment nr_running. Note
984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
985 * of multiple flags, not a single flag.
986 */
e22bee78
TH
987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 989 atomic_inc(&pool->nr_running);
d302f017
TH
990}
991
8cca0eea
TH
992/**
993 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 994 * @pool: pool of interest
8cca0eea
TH
995 * @work: work to find worker for
996 *
c9e7cf27
TH
997 * Find a worker which is executing @work on @pool by searching
998 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
999 * to match, its current execution should match the address of @work and
1000 * its work function. This is to avoid unwanted dependency between
1001 * unrelated work executions through a work item being recycled while still
1002 * being executed.
1003 *
1004 * This is a bit tricky. A work item may be freed once its execution
1005 * starts and nothing prevents the freed area from being recycled for
1006 * another work item. If the same work item address ends up being reused
1007 * before the original execution finishes, workqueue will identify the
1008 * recycled work item as currently executing and make it wait until the
1009 * current execution finishes, introducing an unwanted dependency.
1010 *
c5aa87bb
TH
1011 * This function checks the work item address and work function to avoid
1012 * false positives. Note that this isn't complete as one may construct a
1013 * work function which can introduce dependency onto itself through a
1014 * recycled work item. Well, if somebody wants to shoot oneself in the
1015 * foot that badly, there's only so much we can do, and if such deadlock
1016 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1017 *
1018 * CONTEXT:
a9b8a985 1019 * raw_spin_lock_irq(pool->lock).
8cca0eea 1020 *
d185af30
YB
1021 * Return:
1022 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1023 * otherwise.
4d707b9f 1024 */
c9e7cf27 1025static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1026 struct work_struct *work)
4d707b9f 1027{
42f8570f 1028 struct worker *worker;
42f8570f 1029
b67bfe0d 1030 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1031 (unsigned long)work)
1032 if (worker->current_work == work &&
1033 worker->current_func == work->func)
42f8570f
SL
1034 return worker;
1035
1036 return NULL;
4d707b9f
ON
1037}
1038
bf4ede01
TH
1039/**
1040 * move_linked_works - move linked works to a list
1041 * @work: start of series of works to be scheduled
1042 * @head: target list to append @work to
402dd89d 1043 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1044 *
1045 * Schedule linked works starting from @work to @head. Work series to
1046 * be scheduled starts at @work and includes any consecutive work with
1047 * WORK_STRUCT_LINKED set in its predecessor.
1048 *
1049 * If @nextp is not NULL, it's updated to point to the next work of
1050 * the last scheduled work. This allows move_linked_works() to be
1051 * nested inside outer list_for_each_entry_safe().
1052 *
1053 * CONTEXT:
a9b8a985 1054 * raw_spin_lock_irq(pool->lock).
bf4ede01
TH
1055 */
1056static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 struct work_struct **nextp)
1058{
1059 struct work_struct *n;
1060
1061 /*
1062 * Linked worklist will always end before the end of the list,
1063 * use NULL for list head.
1064 */
1065 list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 list_move_tail(&work->entry, head);
1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 break;
1069 }
1070
1071 /*
1072 * If we're already inside safe list traversal and have moved
1073 * multiple works to the scheduled queue, the next position
1074 * needs to be updated.
1075 */
1076 if (nextp)
1077 *nextp = n;
1078}
1079
8864b4e5
TH
1080/**
1081 * get_pwq - get an extra reference on the specified pool_workqueue
1082 * @pwq: pool_workqueue to get
1083 *
1084 * Obtain an extra reference on @pwq. The caller should guarantee that
1085 * @pwq has positive refcnt and be holding the matching pool->lock.
1086 */
1087static void get_pwq(struct pool_workqueue *pwq)
1088{
1089 lockdep_assert_held(&pwq->pool->lock);
1090 WARN_ON_ONCE(pwq->refcnt <= 0);
1091 pwq->refcnt++;
1092}
1093
1094/**
1095 * put_pwq - put a pool_workqueue reference
1096 * @pwq: pool_workqueue to put
1097 *
1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1099 * destruction. The caller should be holding the matching pool->lock.
1100 */
1101static void put_pwq(struct pool_workqueue *pwq)
1102{
1103 lockdep_assert_held(&pwq->pool->lock);
1104 if (likely(--pwq->refcnt))
1105 return;
1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 return;
1108 /*
1109 * @pwq can't be released under pool->lock, bounce to
1110 * pwq_unbound_release_workfn(). This never recurses on the same
1111 * pool->lock as this path is taken only for unbound workqueues and
1112 * the release work item is scheduled on a per-cpu workqueue. To
1113 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 * subclass of 1 in get_unbound_pool().
1115 */
1116 schedule_work(&pwq->unbound_release_work);
1117}
1118
dce90d47
TH
1119/**
1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121 * @pwq: pool_workqueue to put (can be %NULL)
1122 *
1123 * put_pwq() with locking. This function also allows %NULL @pwq.
1124 */
1125static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126{
1127 if (pwq) {
1128 /*
24acfb71 1129 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1130 * following lock operations are safe.
1131 */
a9b8a985 1132 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1133 put_pwq(pwq);
a9b8a985 1134 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1135 }
1136}
1137
112202d9 1138static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1139{
112202d9 1140 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1141
1142 trace_workqueue_activate_work(work);
82607adc
TH
1143 if (list_empty(&pwq->pool->worklist))
1144 pwq->pool->watchdog_ts = jiffies;
112202d9 1145 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1147 pwq->nr_active++;
bf4ede01
TH
1148}
1149
112202d9 1150static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1151{
112202d9 1152 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1153 struct work_struct, entry);
1154
112202d9 1155 pwq_activate_delayed_work(work);
3aa62497
LJ
1156}
1157
bf4ede01 1158/**
112202d9
TH
1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160 * @pwq: pwq of interest
bf4ede01 1161 * @color: color of work which left the queue
bf4ede01
TH
1162 *
1163 * A work either has completed or is removed from pending queue,
112202d9 1164 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1165 *
1166 * CONTEXT:
a9b8a985 1167 * raw_spin_lock_irq(pool->lock).
bf4ede01 1168 */
112202d9 1169static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1170{
8864b4e5 1171 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1172 if (color == WORK_NO_COLOR)
8864b4e5 1173 goto out_put;
bf4ede01 1174
112202d9 1175 pwq->nr_in_flight[color]--;
bf4ede01 1176
112202d9
TH
1177 pwq->nr_active--;
1178 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1179 /* one down, submit a delayed one */
112202d9
TH
1180 if (pwq->nr_active < pwq->max_active)
1181 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1182 }
1183
1184 /* is flush in progress and are we at the flushing tip? */
112202d9 1185 if (likely(pwq->flush_color != color))
8864b4e5 1186 goto out_put;
bf4ede01
TH
1187
1188 /* are there still in-flight works? */
112202d9 1189 if (pwq->nr_in_flight[color])
8864b4e5 1190 goto out_put;
bf4ede01 1191
112202d9
TH
1192 /* this pwq is done, clear flush_color */
1193 pwq->flush_color = -1;
bf4ede01
TH
1194
1195 /*
112202d9 1196 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1197 * will handle the rest.
1198 */
112202d9
TH
1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1201out_put:
1202 put_pwq(pwq);
bf4ede01
TH
1203}
1204
36e227d2 1205/**
bbb68dfa 1206 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1207 * @work: work item to steal
1208 * @is_dwork: @work is a delayed_work
bbb68dfa 1209 * @flags: place to store irq state
36e227d2
TH
1210 *
1211 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1212 * stable state - idle, on timer or on worklist.
36e227d2 1213 *
d185af30 1214 * Return:
36e227d2
TH
1215 * 1 if @work was pending and we successfully stole PENDING
1216 * 0 if @work was idle and we claimed PENDING
1217 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1218 * -ENOENT if someone else is canceling @work, this state may persist
1219 * for arbitrarily long
36e227d2 1220 *
d185af30 1221 * Note:
bbb68dfa 1222 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1223 * interrupted while holding PENDING and @work off queue, irq must be
1224 * disabled on entry. This, combined with delayed_work->timer being
1225 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1226 *
1227 * On successful return, >= 0, irq is disabled and the caller is
1228 * responsible for releasing it using local_irq_restore(*@flags).
1229 *
e0aecdd8 1230 * This function is safe to call from any context including IRQ handler.
bf4ede01 1231 */
bbb68dfa
TH
1232static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1233 unsigned long *flags)
bf4ede01 1234{
d565ed63 1235 struct worker_pool *pool;
112202d9 1236 struct pool_workqueue *pwq;
bf4ede01 1237
bbb68dfa
TH
1238 local_irq_save(*flags);
1239
36e227d2
TH
1240 /* try to steal the timer if it exists */
1241 if (is_dwork) {
1242 struct delayed_work *dwork = to_delayed_work(work);
1243
e0aecdd8
TH
1244 /*
1245 * dwork->timer is irqsafe. If del_timer() fails, it's
1246 * guaranteed that the timer is not queued anywhere and not
1247 * running on the local CPU.
1248 */
36e227d2
TH
1249 if (likely(del_timer(&dwork->timer)))
1250 return 1;
1251 }
1252
1253 /* try to claim PENDING the normal way */
bf4ede01
TH
1254 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1255 return 0;
1256
24acfb71 1257 rcu_read_lock();
bf4ede01
TH
1258 /*
1259 * The queueing is in progress, or it is already queued. Try to
1260 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1261 */
d565ed63
TH
1262 pool = get_work_pool(work);
1263 if (!pool)
bbb68dfa 1264 goto fail;
bf4ede01 1265
a9b8a985 1266 raw_spin_lock(&pool->lock);
0b3dae68 1267 /*
112202d9
TH
1268 * work->data is guaranteed to point to pwq only while the work
1269 * item is queued on pwq->wq, and both updating work->data to point
1270 * to pwq on queueing and to pool on dequeueing are done under
1271 * pwq->pool->lock. This in turn guarantees that, if work->data
1272 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1273 * item is currently queued on that pool.
1274 */
112202d9
TH
1275 pwq = get_work_pwq(work);
1276 if (pwq && pwq->pool == pool) {
16062836
TH
1277 debug_work_deactivate(work);
1278
1279 /*
1280 * A delayed work item cannot be grabbed directly because
1281 * it might have linked NO_COLOR work items which, if left
112202d9 1282 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1283 * management later on and cause stall. Make sure the work
1284 * item is activated before grabbing.
1285 */
1286 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1287 pwq_activate_delayed_work(work);
16062836
TH
1288
1289 list_del_init(&work->entry);
9c34a704 1290 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1291
112202d9 1292 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1293 set_work_pool_and_keep_pending(work, pool->id);
1294
a9b8a985 1295 raw_spin_unlock(&pool->lock);
24acfb71 1296 rcu_read_unlock();
16062836 1297 return 1;
bf4ede01 1298 }
a9b8a985 1299 raw_spin_unlock(&pool->lock);
bbb68dfa 1300fail:
24acfb71 1301 rcu_read_unlock();
bbb68dfa
TH
1302 local_irq_restore(*flags);
1303 if (work_is_canceling(work))
1304 return -ENOENT;
1305 cpu_relax();
36e227d2 1306 return -EAGAIN;
bf4ede01
TH
1307}
1308
4690c4ab 1309/**
706026c2 1310 * insert_work - insert a work into a pool
112202d9 1311 * @pwq: pwq @work belongs to
4690c4ab
TH
1312 * @work: work to insert
1313 * @head: insertion point
1314 * @extra_flags: extra WORK_STRUCT_* flags to set
1315 *
112202d9 1316 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1317 * work_struct flags.
4690c4ab
TH
1318 *
1319 * CONTEXT:
a9b8a985 1320 * raw_spin_lock_irq(pool->lock).
4690c4ab 1321 */
112202d9
TH
1322static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1323 struct list_head *head, unsigned int extra_flags)
b89deed3 1324{
112202d9 1325 struct worker_pool *pool = pwq->pool;
e22bee78 1326
4690c4ab 1327 /* we own @work, set data and link */
112202d9 1328 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1329 list_add_tail(&work->entry, head);
8864b4e5 1330 get_pwq(pwq);
e22bee78
TH
1331
1332 /*
c5aa87bb
TH
1333 * Ensure either wq_worker_sleeping() sees the above
1334 * list_add_tail() or we see zero nr_running to avoid workers lying
1335 * around lazily while there are works to be processed.
e22bee78
TH
1336 */
1337 smp_mb();
1338
63d95a91
TH
1339 if (__need_more_worker(pool))
1340 wake_up_worker(pool);
b89deed3
ON
1341}
1342
c8efcc25
TH
1343/*
1344 * Test whether @work is being queued from another work executing on the
8d03ecfe 1345 * same workqueue.
c8efcc25
TH
1346 */
1347static bool is_chained_work(struct workqueue_struct *wq)
1348{
8d03ecfe
TH
1349 struct worker *worker;
1350
1351 worker = current_wq_worker();
1352 /*
bf393fd4 1353 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1354 * I'm @worker, it's safe to dereference it without locking.
1355 */
112202d9 1356 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1357}
1358
ef557180
MG
1359/*
1360 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1361 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1362 * avoid perturbing sensitive tasks.
1363 */
1364static int wq_select_unbound_cpu(int cpu)
1365{
f303fccb 1366 static bool printed_dbg_warning;
ef557180
MG
1367 int new_cpu;
1368
f303fccb
TH
1369 if (likely(!wq_debug_force_rr_cpu)) {
1370 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1371 return cpu;
1372 } else if (!printed_dbg_warning) {
1373 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1374 printed_dbg_warning = true;
1375 }
1376
ef557180
MG
1377 if (cpumask_empty(wq_unbound_cpumask))
1378 return cpu;
1379
1380 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1381 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1382 if (unlikely(new_cpu >= nr_cpu_ids)) {
1383 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1384 if (unlikely(new_cpu >= nr_cpu_ids))
1385 return cpu;
1386 }
1387 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1388
1389 return new_cpu;
1390}
1391
d84ff051 1392static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1393 struct work_struct *work)
1394{
112202d9 1395 struct pool_workqueue *pwq;
c9178087 1396 struct worker_pool *last_pool;
1e19ffc6 1397 struct list_head *worklist;
8a2e8e5d 1398 unsigned int work_flags;
b75cac93 1399 unsigned int req_cpu = cpu;
8930caba
TH
1400
1401 /*
1402 * While a work item is PENDING && off queue, a task trying to
1403 * steal the PENDING will busy-loop waiting for it to either get
1404 * queued or lose PENDING. Grabbing PENDING and queueing should
1405 * happen with IRQ disabled.
1406 */
8e8eb730 1407 lockdep_assert_irqs_disabled();
1da177e4 1408
dc186ad7 1409 debug_work_activate(work);
1e19ffc6 1410
9ef28a73 1411 /* if draining, only works from the same workqueue are allowed */
618b01eb 1412 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1413 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1414 return;
24acfb71 1415 rcu_read_lock();
9e8cd2f5 1416retry:
c9178087 1417 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1418 if (wq->flags & WQ_UNBOUND) {
1419 if (req_cpu == WORK_CPU_UNBOUND)
1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1421 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1422 } else {
1423 if (req_cpu == WORK_CPU_UNBOUND)
1424 cpu = raw_smp_processor_id();
1425 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1426 }
dbf2576e 1427
c9178087
TH
1428 /*
1429 * If @work was previously on a different pool, it might still be
1430 * running there, in which case the work needs to be queued on that
1431 * pool to guarantee non-reentrancy.
1432 */
1433 last_pool = get_work_pool(work);
1434 if (last_pool && last_pool != pwq->pool) {
1435 struct worker *worker;
18aa9eff 1436
a9b8a985 1437 raw_spin_lock(&last_pool->lock);
18aa9eff 1438
c9178087 1439 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1440
c9178087
TH
1441 if (worker && worker->current_pwq->wq == wq) {
1442 pwq = worker->current_pwq;
8930caba 1443 } else {
c9178087 1444 /* meh... not running there, queue here */
a9b8a985
SAS
1445 raw_spin_unlock(&last_pool->lock);
1446 raw_spin_lock(&pwq->pool->lock);
8930caba 1447 }
f3421797 1448 } else {
a9b8a985 1449 raw_spin_lock(&pwq->pool->lock);
502ca9d8
TH
1450 }
1451
9e8cd2f5
TH
1452 /*
1453 * pwq is determined and locked. For unbound pools, we could have
1454 * raced with pwq release and it could already be dead. If its
1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1456 * without another pwq replacing it in the numa_pwq_tbl or while
1457 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1458 * make forward-progress.
1459 */
1460 if (unlikely(!pwq->refcnt)) {
1461 if (wq->flags & WQ_UNBOUND) {
a9b8a985 1462 raw_spin_unlock(&pwq->pool->lock);
9e8cd2f5
TH
1463 cpu_relax();
1464 goto retry;
1465 }
1466 /* oops */
1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 wq->name, cpu);
1469 }
1470
112202d9
TH
1471 /* pwq determined, queue */
1472 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1473
24acfb71
TG
1474 if (WARN_ON(!list_empty(&work->entry)))
1475 goto out;
1e19ffc6 1476
112202d9
TH
1477 pwq->nr_in_flight[pwq->work_color]++;
1478 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1479
112202d9 1480 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1481 trace_workqueue_activate_work(work);
112202d9
TH
1482 pwq->nr_active++;
1483 worklist = &pwq->pool->worklist;
82607adc
TH
1484 if (list_empty(worklist))
1485 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1486 } else {
1487 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1488 worklist = &pwq->delayed_works;
8a2e8e5d 1489 }
1e19ffc6 1490
112202d9 1491 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1492
24acfb71 1493out:
a9b8a985 1494 raw_spin_unlock(&pwq->pool->lock);
24acfb71 1495 rcu_read_unlock();
1da177e4
LT
1496}
1497
0fcb78c2 1498/**
c1a220e7
ZR
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
0fcb78c2
REB
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
c1a220e7
ZR
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
d185af30
YB
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1508 */
d4283e93
TH
1509bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 struct work_struct *work)
1da177e4 1511{
d4283e93 1512 bool ret = false;
8930caba 1513 unsigned long flags;
ef1ca236 1514
8930caba 1515 local_irq_save(flags);
c1a220e7 1516
22df02bb 1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1518 __queue_work(cpu, wq, work);
d4283e93 1519 ret = true;
c1a220e7 1520 }
ef1ca236 1521
8930caba 1522 local_irq_restore(flags);
1da177e4
LT
1523 return ret;
1524}
ad7b1f84 1525EXPORT_SYMBOL(queue_work_on);
1da177e4 1526
8204e0c1
AD
1527/**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536static int workqueue_select_cpu_near(int node)
1537{
1538 int cpu;
1539
1540 /* No point in doing this if NUMA isn't enabled for workqueues */
1541 if (!wq_numa_enabled)
1542 return WORK_CPU_UNBOUND;
1543
1544 /* Delay binding to CPU if node is not valid or online */
1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 return WORK_CPU_UNBOUND;
1547
1548 /* Use local node/cpu if we are already there */
1549 cpu = raw_smp_processor_id();
1550 if (node == cpu_to_node(cpu))
1551 return cpu;
1552
1553 /* Use "random" otherwise know as "first" online CPU of node */
1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556 /* If CPU is valid return that, otherwise just defer */
1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558}
1559
1560/**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580bool queue_work_node(int node, struct workqueue_struct *wq,
1581 struct work_struct *work)
1582{
1583 unsigned long flags;
1584 bool ret = false;
1585
1586 /*
1587 * This current implementation is specific to unbound workqueues.
1588 * Specifically we only return the first available CPU for a given
1589 * node instead of cycling through individual CPUs within the node.
1590 *
1591 * If this is used with a per-cpu workqueue then the logic in
1592 * workqueue_select_cpu_near would need to be updated to allow for
1593 * some round robin type logic.
1594 */
1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597 local_irq_save(flags);
1598
1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 int cpu = workqueue_select_cpu_near(node);
1601
1602 __queue_work(cpu, wq, work);
1603 ret = true;
1604 }
1605
1606 local_irq_restore(flags);
1607 return ret;
1608}
1609EXPORT_SYMBOL_GPL(queue_work_node);
1610
8c20feb6 1611void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1612{
8c20feb6 1613 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1614
e0aecdd8 1615 /* should have been called from irqsafe timer with irq already off */
60c057bc 1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1617}
1438ade5 1618EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1619
7beb2edf
TH
1620static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 struct delayed_work *dwork, unsigned long delay)
1da177e4 1622{
7beb2edf
TH
1623 struct timer_list *timer = &dwork->timer;
1624 struct work_struct *work = &dwork->work;
7beb2edf 1625
637fdbae 1626 WARN_ON_ONCE(!wq);
841b86f3 1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1628 WARN_ON_ONCE(timer_pending(timer));
1629 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1630
8852aac2
TH
1631 /*
1632 * If @delay is 0, queue @dwork->work immediately. This is for
1633 * both optimization and correctness. The earliest @timer can
1634 * expire is on the closest next tick and delayed_work users depend
1635 * on that there's no such delay when @delay is 0.
1636 */
1637 if (!delay) {
1638 __queue_work(cpu, wq, &dwork->work);
1639 return;
1640 }
1641
60c057bc 1642 dwork->wq = wq;
1265057f 1643 dwork->cpu = cpu;
7beb2edf
TH
1644 timer->expires = jiffies + delay;
1645
041bd12e
TH
1646 if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 add_timer_on(timer, cpu);
1648 else
1649 add_timer(timer);
1da177e4
LT
1650}
1651
0fcb78c2
REB
1652/**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
af9997e4 1656 * @dwork: work to queue
0fcb78c2
REB
1657 * @delay: number of jiffies to wait before queueing
1658 *
d185af30 1659 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
0fcb78c2 1662 */
d4283e93
TH
1663bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1665{
52bad64d 1666 struct work_struct *work = &dwork->work;
d4283e93 1667 bool ret = false;
8930caba 1668 unsigned long flags;
7a6bc1cd 1669
8930caba
TH
1670 /* read the comment in __queue_work() */
1671 local_irq_save(flags);
7a6bc1cd 1672
22df02bb 1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1674 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1675 ret = true;
7a6bc1cd 1676 }
8a3e77cc 1677
8930caba 1678 local_irq_restore(flags);
7a6bc1cd
VP
1679 return ret;
1680}
ad7b1f84 1681EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1682
8376fe22
TH
1683/**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay. If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
d185af30 1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1696 * pending and its timer was modified.
1697 *
e0aecdd8 1698 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1699 * See try_to_grab_pending() for details.
1700 */
1701bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 struct delayed_work *dwork, unsigned long delay)
1703{
1704 unsigned long flags;
1705 int ret;
c7fc77f7 1706
8376fe22
TH
1707 do {
1708 ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 } while (unlikely(ret == -EAGAIN));
63bc0362 1710
8376fe22
TH
1711 if (likely(ret >= 0)) {
1712 __queue_delayed_work(cpu, wq, dwork, delay);
1713 local_irq_restore(flags);
7a6bc1cd 1714 }
8376fe22
TH
1715
1716 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1717 return ret;
1718}
8376fe22
TH
1719EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
05f0fe6b
TH
1721static void rcu_work_rcufn(struct rcu_head *rcu)
1722{
1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725 /* read the comment in __queue_work() */
1726 local_irq_disable();
1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 local_irq_enable();
1729}
1730
1731/**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise. Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1738 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742{
1743 struct work_struct *work = &rwork->work;
1744
1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 rwork->wq = wq;
1747 call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 return true;
1749 }
1750
1751 return false;
1752}
1753EXPORT_SYMBOL(queue_rcu_work);
1754
c8e55f36
TH
1755/**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state. Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
a9b8a985 1763 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1764 */
1765static void worker_enter_idle(struct worker *worker)
1da177e4 1766{
bd7bdd43 1767 struct worker_pool *pool = worker->pool;
c8e55f36 1768
6183c009
TH
1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 (worker->hentry.next || worker->hentry.pprev)))
1772 return;
c8e55f36 1773
051e1850 1774 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1775 worker->flags |= WORKER_IDLE;
bd7bdd43 1776 pool->nr_idle++;
e22bee78 1777 worker->last_active = jiffies;
c8e55f36
TH
1778
1779 /* idle_list is LIFO */
bd7bdd43 1780 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1781
628c78e7
TH
1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1784
544ecf31 1785 /*
e8b3f8db 1786 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1787 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1788 * nr_running, the warning may trigger spuriously. Check iff
1789 * unbind is not in progress.
544ecf31 1790 */
24647570 1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1792 pool->nr_workers == pool->nr_idle &&
e19e397a 1793 atomic_read(&pool->nr_running));
c8e55f36
TH
1794}
1795
1796/**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state. Update stats.
1801 *
1802 * LOCKING:
a9b8a985 1803 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1804 */
1805static void worker_leave_idle(struct worker *worker)
1806{
bd7bdd43 1807 struct worker_pool *pool = worker->pool;
c8e55f36 1808
6183c009
TH
1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 return;
d302f017 1811 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1812 pool->nr_idle--;
c8e55f36
TH
1813 list_del_init(&worker->entry);
1814}
1815
f7537df5 1816static struct worker *alloc_worker(int node)
c34056a3
TH
1817{
1818 struct worker *worker;
1819
f7537df5 1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1821 if (worker) {
1822 INIT_LIST_HEAD(&worker->entry);
affee4b2 1823 INIT_LIST_HEAD(&worker->scheduled);
da028469 1824 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1825 /* on creation a worker is in !idle && prep state */
1826 worker->flags = WORKER_PREP;
c8e55f36 1827 }
c34056a3
TH
1828 return worker;
1829}
1830
4736cbf7
LJ
1831/**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840static void worker_attach_to_pool(struct worker *worker,
1841 struct worker_pool *pool)
1842{
1258fae7 1843 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1844
1845 /*
1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 * online CPUs. It'll be re-applied when any of the CPUs come up.
1848 */
1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851 /*
1258fae7
TH
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
4736cbf7
LJ
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858
1859 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1860 worker->pool = pool;
4736cbf7 1861
1258fae7 1862 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1863}
1864
60f5a4bc
LJ
1865/**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
60f5a4bc 1868 *
4736cbf7
LJ
1869 * Undo the attaching which had been done in worker_attach_to_pool(). The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
60f5a4bc 1872 */
a2d812a2 1873static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1874{
a2d812a2 1875 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1876 struct completion *detach_completion = NULL;
1877
1258fae7 1878 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1879
da028469 1880 list_del(&worker->node);
a2d812a2
TH
1881 worker->pool = NULL;
1882
da028469 1883 if (list_empty(&pool->workers))
60f5a4bc 1884 detach_completion = pool->detach_completion;
1258fae7 1885 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1886
b62c0751
LJ
1887 /* clear leftover flags without pool->lock after it is detached */
1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
60f5a4bc
LJ
1890 if (detach_completion)
1891 complete(detach_completion);
1892}
1893
c34056a3
TH
1894/**
1895 * create_worker - create a new workqueue worker
63d95a91 1896 * @pool: pool the new worker will belong to
c34056a3 1897 *
051e1850 1898 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1899 *
1900 * CONTEXT:
1901 * Might sleep. Does GFP_KERNEL allocations.
1902 *
d185af30 1903 * Return:
c34056a3
TH
1904 * Pointer to the newly created worker.
1905 */
bc2ae0f5 1906static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1907{
c34056a3 1908 struct worker *worker = NULL;
f3421797 1909 int id = -1;
e3c916a4 1910 char id_buf[16];
c34056a3 1911
7cda9aae
LJ
1912 /* ID is needed to determine kthread name */
1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1914 if (id < 0)
1915 goto fail;
c34056a3 1916
f7537df5 1917 worker = alloc_worker(pool->node);
c34056a3
TH
1918 if (!worker)
1919 goto fail;
1920
c34056a3
TH
1921 worker->id = id;
1922
29c91e99 1923 if (pool->cpu >= 0)
e3c916a4
TH
1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 pool->attrs->nice < 0 ? "H" : "");
f3421797 1926 else
e3c916a4
TH
1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
f3f90ad4 1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1930 "kworker/%s", id_buf);
c34056a3
TH
1931 if (IS_ERR(worker->task))
1932 goto fail;
1933
91151228 1934 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1935 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1936
da028469 1937 /* successful, attach the worker to the pool */
4736cbf7 1938 worker_attach_to_pool(worker, pool);
822d8405 1939
051e1850 1940 /* start the newly created worker */
a9b8a985 1941 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
1942 worker->pool->nr_workers++;
1943 worker_enter_idle(worker);
1944 wake_up_process(worker->task);
a9b8a985 1945 raw_spin_unlock_irq(&pool->lock);
051e1850 1946
c34056a3 1947 return worker;
822d8405 1948
c34056a3 1949fail:
9625ab17 1950 if (id >= 0)
7cda9aae 1951 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1952 kfree(worker);
1953 return NULL;
1954}
1955
c34056a3
TH
1956/**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1959 *
73eb7fe7
LJ
1960 * Destroy @worker and adjust @pool stats accordingly. The worker should
1961 * be idle.
c8e55f36
TH
1962 *
1963 * CONTEXT:
a9b8a985 1964 * raw_spin_lock_irq(pool->lock).
c34056a3
TH
1965 */
1966static void destroy_worker(struct worker *worker)
1967{
bd7bdd43 1968 struct worker_pool *pool = worker->pool;
c34056a3 1969
cd549687
TH
1970 lockdep_assert_held(&pool->lock);
1971
c34056a3 1972 /* sanity check frenzy */
6183c009 1973 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1974 WARN_ON(!list_empty(&worker->scheduled)) ||
1975 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1976 return;
c34056a3 1977
73eb7fe7
LJ
1978 pool->nr_workers--;
1979 pool->nr_idle--;
5bdfff96 1980
c8e55f36 1981 list_del_init(&worker->entry);
cb444766 1982 worker->flags |= WORKER_DIE;
60f5a4bc 1983 wake_up_process(worker->task);
c34056a3
TH
1984}
1985
32a6c723 1986static void idle_worker_timeout(struct timer_list *t)
e22bee78 1987{
32a6c723 1988 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1989
a9b8a985 1990 raw_spin_lock_irq(&pool->lock);
e22bee78 1991
3347fc9f 1992 while (too_many_workers(pool)) {
e22bee78
TH
1993 struct worker *worker;
1994 unsigned long expires;
1995
1996 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
3347fc9f 2000 if (time_before(jiffies, expires)) {
63d95a91 2001 mod_timer(&pool->idle_timer, expires);
3347fc9f 2002 break;
d5abe669 2003 }
3347fc9f
LJ
2004
2005 destroy_worker(worker);
e22bee78
TH
2006 }
2007
a9b8a985 2008 raw_spin_unlock_irq(&pool->lock);
e22bee78 2009}
d5abe669 2010
493a1724 2011static void send_mayday(struct work_struct *work)
e22bee78 2012{
112202d9
TH
2013 struct pool_workqueue *pwq = get_work_pwq(work);
2014 struct workqueue_struct *wq = pwq->wq;
493a1724 2015
2e109a28 2016 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2017
493008a8 2018 if (!wq->rescuer)
493a1724 2019 return;
e22bee78
TH
2020
2021 /* mayday mayday mayday */
493a1724 2022 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2023 /*
2024 * If @pwq is for an unbound wq, its base ref may be put at
2025 * any time due to an attribute change. Pin @pwq until the
2026 * rescuer is done with it.
2027 */
2028 get_pwq(pwq);
493a1724 2029 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2030 wake_up_process(wq->rescuer->task);
493a1724 2031 }
e22bee78
TH
2032}
2033
32a6c723 2034static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2035{
32a6c723 2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2037 struct work_struct *work;
2038
a9b8a985
SAS
2039 raw_spin_lock_irq(&pool->lock);
2040 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2041
63d95a91 2042 if (need_to_create_worker(pool)) {
e22bee78
TH
2043 /*
2044 * We've been trying to create a new worker but
2045 * haven't been successful. We might be hitting an
2046 * allocation deadlock. Send distress signals to
2047 * rescuers.
2048 */
63d95a91 2049 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2050 send_mayday(work);
1da177e4 2051 }
e22bee78 2052
a9b8a985
SAS
2053 raw_spin_unlock(&wq_mayday_lock);
2054 raw_spin_unlock_irq(&pool->lock);
e22bee78 2055
63d95a91 2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2057}
2058
e22bee78
TH
2059/**
2060 * maybe_create_worker - create a new worker if necessary
63d95a91 2061 * @pool: pool to create a new worker for
e22bee78 2062 *
63d95a91 2063 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2064 * have at least one idle worker on return from this function. If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2066 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2067 * possible allocation deadlock.
2068 *
c5aa87bb
TH
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
e22bee78
TH
2071 *
2072 * LOCKING:
a9b8a985 2073 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2074 * multiple times. Does GFP_KERNEL allocations. Called only from
2075 * manager.
e22bee78 2076 */
29187a9e 2077static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2078__releases(&pool->lock)
2079__acquires(&pool->lock)
1da177e4 2080{
e22bee78 2081restart:
a9b8a985 2082 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2083
e22bee78 2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2086
2087 while (true) {
051e1850 2088 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2089 break;
1da177e4 2090
e212f361 2091 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2092
63d95a91 2093 if (!need_to_create_worker(pool))
e22bee78
TH
2094 break;
2095 }
2096
63d95a91 2097 del_timer_sync(&pool->mayday_timer);
a9b8a985 2098 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2099 /*
2100 * This is necessary even after a new worker was just successfully
2101 * created as @pool->lock was dropped and the new worker might have
2102 * already become busy.
2103 */
63d95a91 2104 if (need_to_create_worker(pool))
e22bee78 2105 goto restart;
e22bee78
TH
2106}
2107
73f53c4a 2108/**
e22bee78
TH
2109 * manage_workers - manage worker pool
2110 * @worker: self
73f53c4a 2111 *
706026c2 2112 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2113 * to. At any given time, there can be only zero or one manager per
706026c2 2114 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2115 *
2116 * The caller can safely start processing works on false return. On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
73f53c4a
TH
2119 *
2120 * CONTEXT:
a9b8a985 2121 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2122 * multiple times. Does GFP_KERNEL allocations.
2123 *
d185af30 2124 * Return:
29187a9e
TH
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
73f53c4a 2129 */
e22bee78 2130static bool manage_workers(struct worker *worker)
73f53c4a 2131{
63d95a91 2132 struct worker_pool *pool = worker->pool;
73f53c4a 2133
692b4825 2134 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2135 return false;
692b4825
TH
2136
2137 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2138 pool->manager = worker;
1e19ffc6 2139
29187a9e 2140 maybe_create_worker(pool);
e22bee78 2141
2607d7a6 2142 pool->manager = NULL;
692b4825 2143 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2144 rcuwait_wake_up(&manager_wait);
29187a9e 2145 return true;
73f53c4a
TH
2146}
2147
a62428c0
TH
2148/**
2149 * process_one_work - process single work
c34056a3 2150 * @worker: self
a62428c0
TH
2151 * @work: work to process
2152 *
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
a9b8a985 2160 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2161 */
c34056a3 2162static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2163__releases(&pool->lock)
2164__acquires(&pool->lock)
a62428c0 2165{
112202d9 2166 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2167 struct worker_pool *pool = worker->pool;
112202d9 2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2169 int work_color;
7e11629d 2170 struct worker *collision;
a62428c0
TH
2171#ifdef CONFIG_LOCKDEP
2172 /*
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2178 */
4d82a1de
PZ
2179 struct lockdep_map lockdep_map;
2180
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2182#endif
807407c0 2183 /* ensure we're on the correct CPU */
85327af6 2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2185 raw_smp_processor_id() != pool->cpu);
25511a47 2186
7e11629d
TH
2187 /*
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2192 */
c9e7cf27 2193 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2197 }
2198
8930caba 2199 /* claim and dequeue */
a62428c0 2200 debug_work_deactivate(work);
c9e7cf27 2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2202 worker->current_work = work;
a2c1c57b 2203 worker->current_func = work->func;
112202d9 2204 worker->current_pwq = pwq;
73f53c4a 2205 work_color = get_work_color(work);
7a22ad75 2206
8bf89593
TH
2207 /*
2208 * Record wq name for cmdline and debug reporting, may get
2209 * overridden through set_worker_desc().
2210 */
2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
a62428c0
TH
2213 list_del_init(&work->entry);
2214
fb0e7beb 2215 /*
228f1d00
LJ
2216 * CPU intensive works don't participate in concurrency management.
2217 * They're the scheduler's responsibility. This takes @worker out
2218 * of concurrency management and the next code block will chain
2219 * execution of the pending work items.
fb0e7beb
TH
2220 */
2221 if (unlikely(cpu_intensive))
228f1d00 2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2223
974271c4 2224 /*
a489a03e
LJ
2225 * Wake up another worker if necessary. The condition is always
2226 * false for normal per-cpu workers since nr_running would always
2227 * be >= 1 at this point. This is used to chain execution of the
2228 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2229 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2230 */
a489a03e 2231 if (need_more_worker(pool))
63d95a91 2232 wake_up_worker(pool);
974271c4 2233
8930caba 2234 /*
7c3eed5c 2235 * Record the last pool and clear PENDING which should be the last
d565ed63 2236 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
8930caba 2239 */
7c3eed5c 2240 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2241
a9b8a985 2242 raw_spin_unlock_irq(&pool->lock);
a62428c0 2243
a1d14934 2244 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2245 lock_map_acquire(&lockdep_map);
e6f3faa7 2246 /*
f52be570
PZ
2247 * Strictly speaking we should mark the invariant state without holding
2248 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2249 *
2250 * However, that would result in:
2251 *
2252 * A(W1)
2253 * WFC(C)
2254 * A(W1)
2255 * C(C)
2256 *
2257 * Which would create W1->C->W1 dependencies, even though there is no
2258 * actual deadlock possible. There are two solutions, using a
2259 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2260 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2261 * these locks.
2262 *
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for single-threaded
2265 * workqueues), so hiding them isn't a problem.
2266 */
f52be570 2267 lockdep_invariant_state(true);
e36c886a 2268 trace_workqueue_execute_start(work);
a2c1c57b 2269 worker->current_func(work);
e36c886a
AV
2270 /*
2271 * While we must be careful to not use "work" after this, the trace
2272 * point will only record its address.
2273 */
1c5da0ec 2274 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2275 lock_map_release(&lockdep_map);
112202d9 2276 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2277
2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2280 " last function: %ps\n",
a2c1c57b
TH
2281 current->comm, preempt_count(), task_pid_nr(current),
2282 worker->current_func);
a62428c0
TH
2283 debug_show_held_locks(current);
2284 dump_stack();
2285 }
2286
b22ce278 2287 /*
025f50f3 2288 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2289 * kernels, where a requeueing work item waiting for something to
2290 * happen could deadlock with stop_machine as such work item could
2291 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2292 * stop_machine. At the same time, report a quiescent RCU state so
2293 * the same condition doesn't freeze RCU.
b22ce278 2294 */
a7e6425e 2295 cond_resched();
b22ce278 2296
a9b8a985 2297 raw_spin_lock_irq(&pool->lock);
a62428c0 2298
fb0e7beb
TH
2299 /* clear cpu intensive status */
2300 if (unlikely(cpu_intensive))
2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302
1b69ac6b
JW
2303 /* tag the worker for identification in schedule() */
2304 worker->last_func = worker->current_func;
2305
a62428c0 2306 /* we're done with it, release */
42f8570f 2307 hash_del(&worker->hentry);
c34056a3 2308 worker->current_work = NULL;
a2c1c57b 2309 worker->current_func = NULL;
112202d9
TH
2310 worker->current_pwq = NULL;
2311 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2312}
2313
affee4b2
TH
2314/**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works. Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
a9b8a985 2323 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2324 * multiple times.
2325 */
2326static void process_scheduled_works(struct worker *worker)
1da177e4 2327{
affee4b2
TH
2328 while (!list_empty(&worker->scheduled)) {
2329 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2330 struct work_struct, entry);
c34056a3 2331 process_one_work(worker, work);
1da177e4 2332 }
1da177e4
LT
2333}
2334
197f6acc
TH
2335static void set_pf_worker(bool val)
2336{
2337 mutex_lock(&wq_pool_attach_mutex);
2338 if (val)
2339 current->flags |= PF_WQ_WORKER;
2340 else
2341 current->flags &= ~PF_WQ_WORKER;
2342 mutex_unlock(&wq_pool_attach_mutex);
2343}
2344
4690c4ab
TH
2345/**
2346 * worker_thread - the worker thread function
c34056a3 2347 * @__worker: self
4690c4ab 2348 *
c5aa87bb
TH
2349 * The worker thread function. All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one. These workers process all
2351 * work items regardless of their specific target workqueue. The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
d185af30
YB
2354 *
2355 * Return: 0
4690c4ab 2356 */
c34056a3 2357static int worker_thread(void *__worker)
1da177e4 2358{
c34056a3 2359 struct worker *worker = __worker;
bd7bdd43 2360 struct worker_pool *pool = worker->pool;
1da177e4 2361
e22bee78 2362 /* tell the scheduler that this is a workqueue worker */
197f6acc 2363 set_pf_worker(true);
c8e55f36 2364woke_up:
a9b8a985 2365 raw_spin_lock_irq(&pool->lock);
1da177e4 2366
a9ab775b
TH
2367 /* am I supposed to die? */
2368 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2369 raw_spin_unlock_irq(&pool->lock);
a9ab775b 2370 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2371 set_pf_worker(false);
60f5a4bc
LJ
2372
2373 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2374 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2375 worker_detach_from_pool(worker);
60f5a4bc 2376 kfree(worker);
a9ab775b 2377 return 0;
c8e55f36 2378 }
affee4b2 2379
c8e55f36 2380 worker_leave_idle(worker);
db7bccf4 2381recheck:
e22bee78 2382 /* no more worker necessary? */
63d95a91 2383 if (!need_more_worker(pool))
e22bee78
TH
2384 goto sleep;
2385
2386 /* do we need to manage? */
63d95a91 2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2388 goto recheck;
2389
c8e55f36
TH
2390 /*
2391 * ->scheduled list can only be filled while a worker is
2392 * preparing to process a work or actually processing it.
2393 * Make sure nobody diddled with it while I was sleeping.
2394 */
6183c009 2395 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2396
e22bee78 2397 /*
a9ab775b
TH
2398 * Finish PREP stage. We're guaranteed to have at least one idle
2399 * worker or that someone else has already assumed the manager
2400 * role. This is where @worker starts participating in concurrency
2401 * management if applicable and concurrency management is restored
2402 * after being rebound. See rebind_workers() for details.
e22bee78 2403 */
a9ab775b 2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2405
2406 do {
c8e55f36 2407 struct work_struct *work =
bd7bdd43 2408 list_first_entry(&pool->worklist,
c8e55f36
TH
2409 struct work_struct, entry);
2410
82607adc
TH
2411 pool->watchdog_ts = jiffies;
2412
c8e55f36
TH
2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 /* optimization path, not strictly necessary */
2415 process_one_work(worker, work);
2416 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2417 process_scheduled_works(worker);
c8e55f36
TH
2418 } else {
2419 move_linked_works(work, &worker->scheduled, NULL);
2420 process_scheduled_works(worker);
affee4b2 2421 }
63d95a91 2422 } while (keep_working(pool));
e22bee78 2423
228f1d00 2424 worker_set_flags(worker, WORKER_PREP);
d313dd85 2425sleep:
c8e55f36 2426 /*
d565ed63
TH
2427 * pool->lock is held and there's no work to process and no need to
2428 * manage, sleep. Workers are woken up only while holding
2429 * pool->lock or from local cpu, so setting the current state
2430 * before releasing pool->lock is enough to prevent losing any
2431 * event.
c8e55f36
TH
2432 */
2433 worker_enter_idle(worker);
c5a94a61 2434 __set_current_state(TASK_IDLE);
a9b8a985 2435 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2436 schedule();
2437 goto woke_up;
1da177e4
LT
2438}
2439
e22bee78
TH
2440/**
2441 * rescuer_thread - the rescuer thread function
111c225a 2442 * @__rescuer: self
e22bee78
TH
2443 *
2444 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2445 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2446 *
706026c2 2447 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2451 * the problem rescuer solves.
2452 *
706026c2
TH
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
d185af30
YB
2458 *
2459 * Return: 0
e22bee78 2460 */
111c225a 2461static int rescuer_thread(void *__rescuer)
e22bee78 2462{
111c225a
TH
2463 struct worker *rescuer = __rescuer;
2464 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2465 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2466 bool should_stop;
e22bee78
TH
2467
2468 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2469
2470 /*
2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2472 * doesn't participate in concurrency management.
2473 */
197f6acc 2474 set_pf_worker(true);
e22bee78 2475repeat:
c5a94a61 2476 set_current_state(TASK_IDLE);
e22bee78 2477
4d595b86
LJ
2478 /*
2479 * By the time the rescuer is requested to stop, the workqueue
2480 * shouldn't have any work pending, but @wq->maydays may still have
2481 * pwq(s) queued. This can happen by non-rescuer workers consuming
2482 * all the work items before the rescuer got to them. Go through
2483 * @wq->maydays processing before acting on should_stop so that the
2484 * list is always empty on exit.
2485 */
2486 should_stop = kthread_should_stop();
e22bee78 2487
493a1724 2488 /* see whether any pwq is asking for help */
a9b8a985 2489 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2490
2491 while (!list_empty(&wq->maydays)) {
2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 struct pool_workqueue, mayday_node);
112202d9 2494 struct worker_pool *pool = pwq->pool;
e22bee78 2495 struct work_struct *work, *n;
82607adc 2496 bool first = true;
e22bee78
TH
2497
2498 __set_current_state(TASK_RUNNING);
493a1724
TH
2499 list_del_init(&pwq->mayday_node);
2500
a9b8a985 2501 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2502
51697d39
LJ
2503 worker_attach_to_pool(rescuer, pool);
2504
a9b8a985 2505 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2506
2507 /*
2508 * Slurp in all works issued via this workqueue and
2509 * process'em.
2510 */
0479c8c5 2511 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 if (get_work_pwq(work) == pwq) {
2514 if (first)
2515 pool->watchdog_ts = jiffies;
e22bee78 2516 move_linked_works(work, scheduled, &n);
82607adc
TH
2517 }
2518 first = false;
2519 }
e22bee78 2520
008847f6
N
2521 if (!list_empty(scheduled)) {
2522 process_scheduled_works(rescuer);
2523
2524 /*
2525 * The above execution of rescued work items could
2526 * have created more to rescue through
2527 * pwq_activate_first_delayed() or chained
2528 * queueing. Let's put @pwq back on mayday list so
2529 * that such back-to-back work items, which may be
2530 * being used to relieve memory pressure, don't
2531 * incur MAYDAY_INTERVAL delay inbetween.
2532 */
4f3f4cf3 2533 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2534 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2535 /*
2536 * Queue iff we aren't racing destruction
2537 * and somebody else hasn't queued it already.
2538 */
2539 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2540 get_pwq(pwq);
2541 list_add_tail(&pwq->mayday_node, &wq->maydays);
2542 }
a9b8a985 2543 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2544 }
2545 }
7576958a 2546
77668c8b
LJ
2547 /*
2548 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2549 * go away while we're still attached to it.
77668c8b
LJ
2550 */
2551 put_pwq(pwq);
2552
7576958a 2553 /*
d8ca83e6 2554 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2555 * regular worker; otherwise, we end up with 0 concurrency
2556 * and stalling the execution.
2557 */
d8ca83e6 2558 if (need_more_worker(pool))
63d95a91 2559 wake_up_worker(pool);
7576958a 2560
a9b8a985 2561 raw_spin_unlock_irq(&pool->lock);
13b1d625 2562
a2d812a2 2563 worker_detach_from_pool(rescuer);
13b1d625 2564
a9b8a985 2565 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2566 }
2567
a9b8a985 2568 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2569
4d595b86
LJ
2570 if (should_stop) {
2571 __set_current_state(TASK_RUNNING);
197f6acc 2572 set_pf_worker(false);
4d595b86
LJ
2573 return 0;
2574 }
2575
111c225a
TH
2576 /* rescuers should never participate in concurrency management */
2577 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2578 schedule();
2579 goto repeat;
1da177e4
LT
2580}
2581
fca839c0
TH
2582/**
2583 * check_flush_dependency - check for flush dependency sanity
2584 * @target_wq: workqueue being flushed
2585 * @target_work: work item being flushed (NULL for workqueue flushes)
2586 *
2587 * %current is trying to flush the whole @target_wq or @target_work on it.
2588 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2589 * reclaiming memory or running on a workqueue which doesn't have
2590 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2591 * a deadlock.
2592 */
2593static void check_flush_dependency(struct workqueue_struct *target_wq,
2594 struct work_struct *target_work)
2595{
2596 work_func_t target_func = target_work ? target_work->func : NULL;
2597 struct worker *worker;
2598
2599 if (target_wq->flags & WQ_MEM_RECLAIM)
2600 return;
2601
2602 worker = current_wq_worker();
2603
2604 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2605 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2606 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2607 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2608 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2609 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2610 worker->current_pwq->wq->name, worker->current_func,
2611 target_wq->name, target_func);
2612}
2613
fc2e4d70
ON
2614struct wq_barrier {
2615 struct work_struct work;
2616 struct completion done;
2607d7a6 2617 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2618};
2619
2620static void wq_barrier_func(struct work_struct *work)
2621{
2622 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2623 complete(&barr->done);
2624}
2625
4690c4ab
TH
2626/**
2627 * insert_wq_barrier - insert a barrier work
112202d9 2628 * @pwq: pwq to insert barrier into
4690c4ab 2629 * @barr: wq_barrier to insert
affee4b2
TH
2630 * @target: target work to attach @barr to
2631 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2632 *
affee4b2
TH
2633 * @barr is linked to @target such that @barr is completed only after
2634 * @target finishes execution. Please note that the ordering
2635 * guarantee is observed only with respect to @target and on the local
2636 * cpu.
2637 *
2638 * Currently, a queued barrier can't be canceled. This is because
2639 * try_to_grab_pending() can't determine whether the work to be
2640 * grabbed is at the head of the queue and thus can't clear LINKED
2641 * flag of the previous work while there must be a valid next work
2642 * after a work with LINKED flag set.
2643 *
2644 * Note that when @worker is non-NULL, @target may be modified
112202d9 2645 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2646 *
2647 * CONTEXT:
a9b8a985 2648 * raw_spin_lock_irq(pool->lock).
4690c4ab 2649 */
112202d9 2650static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2651 struct wq_barrier *barr,
2652 struct work_struct *target, struct worker *worker)
fc2e4d70 2653{
affee4b2
TH
2654 struct list_head *head;
2655 unsigned int linked = 0;
2656
dc186ad7 2657 /*
d565ed63 2658 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2659 * as we know for sure that this will not trigger any of the
2660 * checks and call back into the fixup functions where we
2661 * might deadlock.
2662 */
ca1cab37 2663 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2664 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2665
fd1a5b04
BP
2666 init_completion_map(&barr->done, &target->lockdep_map);
2667
2607d7a6 2668 barr->task = current;
83c22520 2669
affee4b2
TH
2670 /*
2671 * If @target is currently being executed, schedule the
2672 * barrier to the worker; otherwise, put it after @target.
2673 */
2674 if (worker)
2675 head = worker->scheduled.next;
2676 else {
2677 unsigned long *bits = work_data_bits(target);
2678
2679 head = target->entry.next;
2680 /* there can already be other linked works, inherit and set */
2681 linked = *bits & WORK_STRUCT_LINKED;
2682 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2683 }
2684
dc186ad7 2685 debug_work_activate(&barr->work);
112202d9 2686 insert_work(pwq, &barr->work, head,
affee4b2 2687 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2688}
2689
73f53c4a 2690/**
112202d9 2691 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2692 * @wq: workqueue being flushed
2693 * @flush_color: new flush color, < 0 for no-op
2694 * @work_color: new work color, < 0 for no-op
2695 *
112202d9 2696 * Prepare pwqs for workqueue flushing.
73f53c4a 2697 *
112202d9
TH
2698 * If @flush_color is non-negative, flush_color on all pwqs should be
2699 * -1. If no pwq has in-flight commands at the specified color, all
2700 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2701 * has in flight commands, its pwq->flush_color is set to
2702 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2703 * wakeup logic is armed and %true is returned.
2704 *
2705 * The caller should have initialized @wq->first_flusher prior to
2706 * calling this function with non-negative @flush_color. If
2707 * @flush_color is negative, no flush color update is done and %false
2708 * is returned.
2709 *
112202d9 2710 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2711 * work_color which is previous to @work_color and all will be
2712 * advanced to @work_color.
2713 *
2714 * CONTEXT:
3c25a55d 2715 * mutex_lock(wq->mutex).
73f53c4a 2716 *
d185af30 2717 * Return:
73f53c4a
TH
2718 * %true if @flush_color >= 0 and there's something to flush. %false
2719 * otherwise.
2720 */
112202d9 2721static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2722 int flush_color, int work_color)
1da177e4 2723{
73f53c4a 2724 bool wait = false;
49e3cf44 2725 struct pool_workqueue *pwq;
1da177e4 2726
73f53c4a 2727 if (flush_color >= 0) {
6183c009 2728 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2729 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2730 }
2355b70f 2731
49e3cf44 2732 for_each_pwq(pwq, wq) {
112202d9 2733 struct worker_pool *pool = pwq->pool;
fc2e4d70 2734
a9b8a985 2735 raw_spin_lock_irq(&pool->lock);
83c22520 2736
73f53c4a 2737 if (flush_color >= 0) {
6183c009 2738 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2739
112202d9
TH
2740 if (pwq->nr_in_flight[flush_color]) {
2741 pwq->flush_color = flush_color;
2742 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2743 wait = true;
2744 }
2745 }
1da177e4 2746
73f53c4a 2747 if (work_color >= 0) {
6183c009 2748 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2749 pwq->work_color = work_color;
73f53c4a 2750 }
1da177e4 2751
a9b8a985 2752 raw_spin_unlock_irq(&pool->lock);
1da177e4 2753 }
2355b70f 2754
112202d9 2755 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2756 complete(&wq->first_flusher->done);
14441960 2757
73f53c4a 2758 return wait;
1da177e4
LT
2759}
2760
0fcb78c2 2761/**
1da177e4 2762 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2763 * @wq: workqueue to flush
1da177e4 2764 *
c5aa87bb
TH
2765 * This function sleeps until all work items which were queued on entry
2766 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2767 */
7ad5b3a5 2768void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2769{
73f53c4a
TH
2770 struct wq_flusher this_flusher = {
2771 .list = LIST_HEAD_INIT(this_flusher.list),
2772 .flush_color = -1,
fd1a5b04 2773 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2774 };
2775 int next_color;
1da177e4 2776
3347fa09
TH
2777 if (WARN_ON(!wq_online))
2778 return;
2779
87915adc
JB
2780 lock_map_acquire(&wq->lockdep_map);
2781 lock_map_release(&wq->lockdep_map);
2782
3c25a55d 2783 mutex_lock(&wq->mutex);
73f53c4a
TH
2784
2785 /*
2786 * Start-to-wait phase
2787 */
2788 next_color = work_next_color(wq->work_color);
2789
2790 if (next_color != wq->flush_color) {
2791 /*
2792 * Color space is not full. The current work_color
2793 * becomes our flush_color and work_color is advanced
2794 * by one.
2795 */
6183c009 2796 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2797 this_flusher.flush_color = wq->work_color;
2798 wq->work_color = next_color;
2799
2800 if (!wq->first_flusher) {
2801 /* no flush in progress, become the first flusher */
6183c009 2802 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2803
2804 wq->first_flusher = &this_flusher;
2805
112202d9 2806 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2807 wq->work_color)) {
2808 /* nothing to flush, done */
2809 wq->flush_color = next_color;
2810 wq->first_flusher = NULL;
2811 goto out_unlock;
2812 }
2813 } else {
2814 /* wait in queue */
6183c009 2815 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2816 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2817 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2818 }
2819 } else {
2820 /*
2821 * Oops, color space is full, wait on overflow queue.
2822 * The next flush completion will assign us
2823 * flush_color and transfer to flusher_queue.
2824 */
2825 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2826 }
2827
fca839c0
TH
2828 check_flush_dependency(wq, NULL);
2829
3c25a55d 2830 mutex_unlock(&wq->mutex);
73f53c4a
TH
2831
2832 wait_for_completion(&this_flusher.done);
2833
2834 /*
2835 * Wake-up-and-cascade phase
2836 *
2837 * First flushers are responsible for cascading flushes and
2838 * handling overflow. Non-first flushers can simply return.
2839 */
00d5d15b 2840 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2841 return;
2842
3c25a55d 2843 mutex_lock(&wq->mutex);
73f53c4a 2844
4ce48b37
TH
2845 /* we might have raced, check again with mutex held */
2846 if (wq->first_flusher != &this_flusher)
2847 goto out_unlock;
2848
00d5d15b 2849 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2850
6183c009
TH
2851 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2852 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2853
2854 while (true) {
2855 struct wq_flusher *next, *tmp;
2856
2857 /* complete all the flushers sharing the current flush color */
2858 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2859 if (next->flush_color != wq->flush_color)
2860 break;
2861 list_del_init(&next->list);
2862 complete(&next->done);
2863 }
2864
6183c009
TH
2865 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2866 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2867
2868 /* this flush_color is finished, advance by one */
2869 wq->flush_color = work_next_color(wq->flush_color);
2870
2871 /* one color has been freed, handle overflow queue */
2872 if (!list_empty(&wq->flusher_overflow)) {
2873 /*
2874 * Assign the same color to all overflowed
2875 * flushers, advance work_color and append to
2876 * flusher_queue. This is the start-to-wait
2877 * phase for these overflowed flushers.
2878 */
2879 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2880 tmp->flush_color = wq->work_color;
2881
2882 wq->work_color = work_next_color(wq->work_color);
2883
2884 list_splice_tail_init(&wq->flusher_overflow,
2885 &wq->flusher_queue);
112202d9 2886 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2887 }
2888
2889 if (list_empty(&wq->flusher_queue)) {
6183c009 2890 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2891 break;
2892 }
2893
2894 /*
2895 * Need to flush more colors. Make the next flusher
112202d9 2896 * the new first flusher and arm pwqs.
73f53c4a 2897 */
6183c009
TH
2898 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2899 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2900
2901 list_del_init(&next->list);
2902 wq->first_flusher = next;
2903
112202d9 2904 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2905 break;
2906
2907 /*
2908 * Meh... this color is already done, clear first
2909 * flusher and repeat cascading.
2910 */
2911 wq->first_flusher = NULL;
2912 }
2913
2914out_unlock:
3c25a55d 2915 mutex_unlock(&wq->mutex);
1da177e4 2916}
1dadafa8 2917EXPORT_SYMBOL(flush_workqueue);
1da177e4 2918
9c5a2ba7
TH
2919/**
2920 * drain_workqueue - drain a workqueue
2921 * @wq: workqueue to drain
2922 *
2923 * Wait until the workqueue becomes empty. While draining is in progress,
2924 * only chain queueing is allowed. IOW, only currently pending or running
2925 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2926 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2927 * by the depth of chaining and should be relatively short. Whine if it
2928 * takes too long.
2929 */
2930void drain_workqueue(struct workqueue_struct *wq)
2931{
2932 unsigned int flush_cnt = 0;
49e3cf44 2933 struct pool_workqueue *pwq;
9c5a2ba7
TH
2934
2935 /*
2936 * __queue_work() needs to test whether there are drainers, is much
2937 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2938 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2939 */
87fc741e 2940 mutex_lock(&wq->mutex);
9c5a2ba7 2941 if (!wq->nr_drainers++)
618b01eb 2942 wq->flags |= __WQ_DRAINING;
87fc741e 2943 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2944reflush:
2945 flush_workqueue(wq);
2946
b09f4fd3 2947 mutex_lock(&wq->mutex);
76af4d93 2948
49e3cf44 2949 for_each_pwq(pwq, wq) {
fa2563e4 2950 bool drained;
9c5a2ba7 2951
a9b8a985 2952 raw_spin_lock_irq(&pwq->pool->lock);
112202d9 2953 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
a9b8a985 2954 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2955
2956 if (drained)
9c5a2ba7
TH
2957 continue;
2958
2959 if (++flush_cnt == 10 ||
2960 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2961 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2962 wq->name, flush_cnt);
76af4d93 2963
b09f4fd3 2964 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2965 goto reflush;
2966 }
2967
9c5a2ba7 2968 if (!--wq->nr_drainers)
618b01eb 2969 wq->flags &= ~__WQ_DRAINING;
87fc741e 2970 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2971}
2972EXPORT_SYMBOL_GPL(drain_workqueue);
2973
d6e89786
JB
2974static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2975 bool from_cancel)
db700897 2976{
affee4b2 2977 struct worker *worker = NULL;
c9e7cf27 2978 struct worker_pool *pool;
112202d9 2979 struct pool_workqueue *pwq;
db700897
ON
2980
2981 might_sleep();
fa1b54e6 2982
24acfb71 2983 rcu_read_lock();
c9e7cf27 2984 pool = get_work_pool(work);
fa1b54e6 2985 if (!pool) {
24acfb71 2986 rcu_read_unlock();
baf59022 2987 return false;
fa1b54e6 2988 }
db700897 2989
a9b8a985 2990 raw_spin_lock_irq(&pool->lock);
0b3dae68 2991 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2992 pwq = get_work_pwq(work);
2993 if (pwq) {
2994 if (unlikely(pwq->pool != pool))
4690c4ab 2995 goto already_gone;
606a5020 2996 } else {
c9e7cf27 2997 worker = find_worker_executing_work(pool, work);
affee4b2 2998 if (!worker)
4690c4ab 2999 goto already_gone;
112202d9 3000 pwq = worker->current_pwq;
606a5020 3001 }
db700897 3002
fca839c0
TH
3003 check_flush_dependency(pwq->wq, work);
3004
112202d9 3005 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3006 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3007
e159489b 3008 /*
a1d14934
PZ
3009 * Force a lock recursion deadlock when using flush_work() inside a
3010 * single-threaded or rescuer equipped workqueue.
3011 *
3012 * For single threaded workqueues the deadlock happens when the work
3013 * is after the work issuing the flush_work(). For rescuer equipped
3014 * workqueues the deadlock happens when the rescuer stalls, blocking
3015 * forward progress.
e159489b 3016 */
d6e89786
JB
3017 if (!from_cancel &&
3018 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3019 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3020 lock_map_release(&pwq->wq->lockdep_map);
3021 }
24acfb71 3022 rcu_read_unlock();
401a8d04 3023 return true;
4690c4ab 3024already_gone:
a9b8a985 3025 raw_spin_unlock_irq(&pool->lock);
24acfb71 3026 rcu_read_unlock();
401a8d04 3027 return false;
db700897 3028}
baf59022 3029
d6e89786
JB
3030static bool __flush_work(struct work_struct *work, bool from_cancel)
3031{
3032 struct wq_barrier barr;
3033
3034 if (WARN_ON(!wq_online))
3035 return false;
3036
4d43d395
TH
3037 if (WARN_ON(!work->func))
3038 return false;
3039
87915adc
JB
3040 if (!from_cancel) {
3041 lock_map_acquire(&work->lockdep_map);
3042 lock_map_release(&work->lockdep_map);
3043 }
3044
d6e89786
JB
3045 if (start_flush_work(work, &barr, from_cancel)) {
3046 wait_for_completion(&barr.done);
3047 destroy_work_on_stack(&barr.work);
3048 return true;
3049 } else {
3050 return false;
3051 }
3052}
3053
baf59022
TH
3054/**
3055 * flush_work - wait for a work to finish executing the last queueing instance
3056 * @work: the work to flush
3057 *
606a5020
TH
3058 * Wait until @work has finished execution. @work is guaranteed to be idle
3059 * on return if it hasn't been requeued since flush started.
baf59022 3060 *
d185af30 3061 * Return:
baf59022
TH
3062 * %true if flush_work() waited for the work to finish execution,
3063 * %false if it was already idle.
3064 */
3065bool flush_work(struct work_struct *work)
3066{
d6e89786 3067 return __flush_work(work, false);
6e84d644 3068}
606a5020 3069EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3070
8603e1b3 3071struct cwt_wait {
ac6424b9 3072 wait_queue_entry_t wait;
8603e1b3
TH
3073 struct work_struct *work;
3074};
3075
ac6424b9 3076static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3077{
3078 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3079
3080 if (cwait->work != key)
3081 return 0;
3082 return autoremove_wake_function(wait, mode, sync, key);
3083}
3084
36e227d2 3085static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3086{
8603e1b3 3087 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3088 unsigned long flags;
1f1f642e
ON
3089 int ret;
3090
3091 do {
bbb68dfa
TH
3092 ret = try_to_grab_pending(work, is_dwork, &flags);
3093 /*
8603e1b3
TH
3094 * If someone else is already canceling, wait for it to
3095 * finish. flush_work() doesn't work for PREEMPT_NONE
3096 * because we may get scheduled between @work's completion
3097 * and the other canceling task resuming and clearing
3098 * CANCELING - flush_work() will return false immediately
3099 * as @work is no longer busy, try_to_grab_pending() will
3100 * return -ENOENT as @work is still being canceled and the
3101 * other canceling task won't be able to clear CANCELING as
3102 * we're hogging the CPU.
3103 *
3104 * Let's wait for completion using a waitqueue. As this
3105 * may lead to the thundering herd problem, use a custom
3106 * wake function which matches @work along with exclusive
3107 * wait and wakeup.
bbb68dfa 3108 */
8603e1b3
TH
3109 if (unlikely(ret == -ENOENT)) {
3110 struct cwt_wait cwait;
3111
3112 init_wait(&cwait.wait);
3113 cwait.wait.func = cwt_wakefn;
3114 cwait.work = work;
3115
3116 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3117 TASK_UNINTERRUPTIBLE);
3118 if (work_is_canceling(work))
3119 schedule();
3120 finish_wait(&cancel_waitq, &cwait.wait);
3121 }
1f1f642e
ON
3122 } while (unlikely(ret < 0));
3123
bbb68dfa
TH
3124 /* tell other tasks trying to grab @work to back off */
3125 mark_work_canceling(work);
3126 local_irq_restore(flags);
3127
3347fa09
TH
3128 /*
3129 * This allows canceling during early boot. We know that @work
3130 * isn't executing.
3131 */
3132 if (wq_online)
d6e89786 3133 __flush_work(work, true);
3347fa09 3134
7a22ad75 3135 clear_work_data(work);
8603e1b3
TH
3136
3137 /*
3138 * Paired with prepare_to_wait() above so that either
3139 * waitqueue_active() is visible here or !work_is_canceling() is
3140 * visible there.
3141 */
3142 smp_mb();
3143 if (waitqueue_active(&cancel_waitq))
3144 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3145
1f1f642e
ON
3146 return ret;
3147}
3148
6e84d644 3149/**
401a8d04
TH
3150 * cancel_work_sync - cancel a work and wait for it to finish
3151 * @work: the work to cancel
6e84d644 3152 *
401a8d04
TH
3153 * Cancel @work and wait for its execution to finish. This function
3154 * can be used even if the work re-queues itself or migrates to
3155 * another workqueue. On return from this function, @work is
3156 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3157 *
401a8d04
TH
3158 * cancel_work_sync(&delayed_work->work) must not be used for
3159 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3160 *
401a8d04 3161 * The caller must ensure that the workqueue on which @work was last
6e84d644 3162 * queued can't be destroyed before this function returns.
401a8d04 3163 *
d185af30 3164 * Return:
401a8d04 3165 * %true if @work was pending, %false otherwise.
6e84d644 3166 */
401a8d04 3167bool cancel_work_sync(struct work_struct *work)
6e84d644 3168{
36e227d2 3169 return __cancel_work_timer(work, false);
b89deed3 3170}
28e53bdd 3171EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3172
6e84d644 3173/**
401a8d04
TH
3174 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3175 * @dwork: the delayed work to flush
6e84d644 3176 *
401a8d04
TH
3177 * Delayed timer is cancelled and the pending work is queued for
3178 * immediate execution. Like flush_work(), this function only
3179 * considers the last queueing instance of @dwork.
1f1f642e 3180 *
d185af30 3181 * Return:
401a8d04
TH
3182 * %true if flush_work() waited for the work to finish execution,
3183 * %false if it was already idle.
6e84d644 3184 */
401a8d04
TH
3185bool flush_delayed_work(struct delayed_work *dwork)
3186{
8930caba 3187 local_irq_disable();
401a8d04 3188 if (del_timer_sync(&dwork->timer))
60c057bc 3189 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3190 local_irq_enable();
401a8d04
TH
3191 return flush_work(&dwork->work);
3192}
3193EXPORT_SYMBOL(flush_delayed_work);
3194
05f0fe6b
TH
3195/**
3196 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3197 * @rwork: the rcu work to flush
3198 *
3199 * Return:
3200 * %true if flush_rcu_work() waited for the work to finish execution,
3201 * %false if it was already idle.
3202 */
3203bool flush_rcu_work(struct rcu_work *rwork)
3204{
3205 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3206 rcu_barrier();
3207 flush_work(&rwork->work);
3208 return true;
3209 } else {
3210 return flush_work(&rwork->work);
3211 }
3212}
3213EXPORT_SYMBOL(flush_rcu_work);
3214
f72b8792
JA
3215static bool __cancel_work(struct work_struct *work, bool is_dwork)
3216{
3217 unsigned long flags;
3218 int ret;
3219
3220 do {
3221 ret = try_to_grab_pending(work, is_dwork, &flags);
3222 } while (unlikely(ret == -EAGAIN));
3223
3224 if (unlikely(ret < 0))
3225 return false;
3226
3227 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3228 local_irq_restore(flags);
3229 return ret;
3230}
3231
09383498 3232/**
57b30ae7
TH
3233 * cancel_delayed_work - cancel a delayed work
3234 * @dwork: delayed_work to cancel
09383498 3235 *
d185af30
YB
3236 * Kill off a pending delayed_work.
3237 *
3238 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3239 * pending.
3240 *
3241 * Note:
3242 * The work callback function may still be running on return, unless
3243 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3244 * use cancel_delayed_work_sync() to wait on it.
09383498 3245 *
57b30ae7 3246 * This function is safe to call from any context including IRQ handler.
09383498 3247 */
57b30ae7 3248bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3249{
f72b8792 3250 return __cancel_work(&dwork->work, true);
09383498 3251}
57b30ae7 3252EXPORT_SYMBOL(cancel_delayed_work);
09383498 3253
401a8d04
TH
3254/**
3255 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3256 * @dwork: the delayed work cancel
3257 *
3258 * This is cancel_work_sync() for delayed works.
3259 *
d185af30 3260 * Return:
401a8d04
TH
3261 * %true if @dwork was pending, %false otherwise.
3262 */
3263bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3264{
36e227d2 3265 return __cancel_work_timer(&dwork->work, true);
6e84d644 3266}
f5a421a4 3267EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3268
b6136773 3269/**
31ddd871 3270 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3271 * @func: the function to call
b6136773 3272 *
31ddd871
TH
3273 * schedule_on_each_cpu() executes @func on each online CPU using the
3274 * system workqueue and blocks until all CPUs have completed.
b6136773 3275 * schedule_on_each_cpu() is very slow.
31ddd871 3276 *
d185af30 3277 * Return:
31ddd871 3278 * 0 on success, -errno on failure.
b6136773 3279 */
65f27f38 3280int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3281{
3282 int cpu;
38f51568 3283 struct work_struct __percpu *works;
15316ba8 3284
b6136773
AM
3285 works = alloc_percpu(struct work_struct);
3286 if (!works)
15316ba8 3287 return -ENOMEM;
b6136773 3288
93981800
TH
3289 get_online_cpus();
3290
15316ba8 3291 for_each_online_cpu(cpu) {
9bfb1839
IM
3292 struct work_struct *work = per_cpu_ptr(works, cpu);
3293
3294 INIT_WORK(work, func);
b71ab8c2 3295 schedule_work_on(cpu, work);
65a64464 3296 }
93981800
TH
3297
3298 for_each_online_cpu(cpu)
3299 flush_work(per_cpu_ptr(works, cpu));
3300
95402b38 3301 put_online_cpus();
b6136773 3302 free_percpu(works);
15316ba8
CL
3303 return 0;
3304}
3305
1fa44eca
JB
3306/**
3307 * execute_in_process_context - reliably execute the routine with user context
3308 * @fn: the function to execute
1fa44eca
JB
3309 * @ew: guaranteed storage for the execute work structure (must
3310 * be available when the work executes)
3311 *
3312 * Executes the function immediately if process context is available,
3313 * otherwise schedules the function for delayed execution.
3314 *
d185af30 3315 * Return: 0 - function was executed
1fa44eca
JB
3316 * 1 - function was scheduled for execution
3317 */
65f27f38 3318int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3319{
3320 if (!in_interrupt()) {
65f27f38 3321 fn(&ew->work);
1fa44eca
JB
3322 return 0;
3323 }
3324
65f27f38 3325 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3326 schedule_work(&ew->work);
3327
3328 return 1;
3329}
3330EXPORT_SYMBOL_GPL(execute_in_process_context);
3331
6ba94429
FW
3332/**
3333 * free_workqueue_attrs - free a workqueue_attrs
3334 * @attrs: workqueue_attrs to free
226223ab 3335 *
6ba94429 3336 * Undo alloc_workqueue_attrs().
226223ab 3337 */
513c98d0 3338void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3339{
6ba94429
FW
3340 if (attrs) {
3341 free_cpumask_var(attrs->cpumask);
3342 kfree(attrs);
3343 }
226223ab
TH
3344}
3345
6ba94429
FW
3346/**
3347 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3348 *
3349 * Allocate a new workqueue_attrs, initialize with default settings and
3350 * return it.
3351 *
3352 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3353 */
513c98d0 3354struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3355{
6ba94429 3356 struct workqueue_attrs *attrs;
226223ab 3357
be69d00d 3358 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3359 if (!attrs)
3360 goto fail;
be69d00d 3361 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3362 goto fail;
3363
3364 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3365 return attrs;
3366fail:
3367 free_workqueue_attrs(attrs);
3368 return NULL;
226223ab
TH
3369}
3370
6ba94429
FW
3371static void copy_workqueue_attrs(struct workqueue_attrs *to,
3372 const struct workqueue_attrs *from)
226223ab 3373{
6ba94429
FW
3374 to->nice = from->nice;
3375 cpumask_copy(to->cpumask, from->cpumask);
3376 /*
3377 * Unlike hash and equality test, this function doesn't ignore
3378 * ->no_numa as it is used for both pool and wq attrs. Instead,
3379 * get_unbound_pool() explicitly clears ->no_numa after copying.
3380 */
3381 to->no_numa = from->no_numa;
226223ab
TH
3382}
3383
6ba94429
FW
3384/* hash value of the content of @attr */
3385static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3386{
6ba94429 3387 u32 hash = 0;
226223ab 3388
6ba94429
FW
3389 hash = jhash_1word(attrs->nice, hash);
3390 hash = jhash(cpumask_bits(attrs->cpumask),
3391 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3392 return hash;
226223ab 3393}
226223ab 3394
6ba94429
FW
3395/* content equality test */
3396static bool wqattrs_equal(const struct workqueue_attrs *a,
3397 const struct workqueue_attrs *b)
226223ab 3398{
6ba94429
FW
3399 if (a->nice != b->nice)
3400 return false;
3401 if (!cpumask_equal(a->cpumask, b->cpumask))
3402 return false;
3403 return true;
226223ab
TH
3404}
3405
6ba94429
FW
3406/**
3407 * init_worker_pool - initialize a newly zalloc'd worker_pool
3408 * @pool: worker_pool to initialize
3409 *
402dd89d 3410 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3411 *
3412 * Return: 0 on success, -errno on failure. Even on failure, all fields
3413 * inside @pool proper are initialized and put_unbound_pool() can be called
3414 * on @pool safely to release it.
3415 */
3416static int init_worker_pool(struct worker_pool *pool)
226223ab 3417{
a9b8a985 3418 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3419 pool->id = -1;
3420 pool->cpu = -1;
3421 pool->node = NUMA_NO_NODE;
3422 pool->flags |= POOL_DISASSOCIATED;
82607adc 3423 pool->watchdog_ts = jiffies;
6ba94429
FW
3424 INIT_LIST_HEAD(&pool->worklist);
3425 INIT_LIST_HEAD(&pool->idle_list);
3426 hash_init(pool->busy_hash);
226223ab 3427
32a6c723 3428 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3429
32a6c723 3430 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3431
6ba94429 3432 INIT_LIST_HEAD(&pool->workers);
226223ab 3433
6ba94429
FW
3434 ida_init(&pool->worker_ida);
3435 INIT_HLIST_NODE(&pool->hash_node);
3436 pool->refcnt = 1;
226223ab 3437
6ba94429 3438 /* shouldn't fail above this point */
be69d00d 3439 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3440 if (!pool->attrs)
3441 return -ENOMEM;
3442 return 0;
226223ab
TH
3443}
3444
669de8bd
BVA
3445#ifdef CONFIG_LOCKDEP
3446static void wq_init_lockdep(struct workqueue_struct *wq)
3447{
3448 char *lock_name;
3449
3450 lockdep_register_key(&wq->key);
3451 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3452 if (!lock_name)
3453 lock_name = wq->name;
69a106c0
QC
3454
3455 wq->lock_name = lock_name;
669de8bd
BVA
3456 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3457}
3458
3459static void wq_unregister_lockdep(struct workqueue_struct *wq)
3460{
3461 lockdep_unregister_key(&wq->key);
3462}
3463
3464static void wq_free_lockdep(struct workqueue_struct *wq)
3465{
3466 if (wq->lock_name != wq->name)
3467 kfree(wq->lock_name);
3468}
3469#else
3470static void wq_init_lockdep(struct workqueue_struct *wq)
3471{
3472}
3473
3474static void wq_unregister_lockdep(struct workqueue_struct *wq)
3475{
3476}
3477
3478static void wq_free_lockdep(struct workqueue_struct *wq)
3479{
3480}
3481#endif
3482
6ba94429 3483static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3484{
6ba94429
FW
3485 struct workqueue_struct *wq =
3486 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3487
669de8bd
BVA
3488 wq_free_lockdep(wq);
3489
6ba94429
FW
3490 if (!(wq->flags & WQ_UNBOUND))
3491 free_percpu(wq->cpu_pwqs);
226223ab 3492 else
6ba94429 3493 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3494
6ba94429 3495 kfree(wq);
226223ab
TH
3496}
3497
6ba94429 3498static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3499{
6ba94429 3500 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3501
6ba94429
FW
3502 ida_destroy(&pool->worker_ida);
3503 free_workqueue_attrs(pool->attrs);
3504 kfree(pool);
226223ab
TH
3505}
3506
d8bb65ab
SAS
3507/* This returns with the lock held on success (pool manager is inactive). */
3508static bool wq_manager_inactive(struct worker_pool *pool)
3509{
a9b8a985 3510 raw_spin_lock_irq(&pool->lock);
d8bb65ab
SAS
3511
3512 if (pool->flags & POOL_MANAGER_ACTIVE) {
a9b8a985 3513 raw_spin_unlock_irq(&pool->lock);
d8bb65ab
SAS
3514 return false;
3515 }
3516 return true;
3517}
3518
6ba94429
FW
3519/**
3520 * put_unbound_pool - put a worker_pool
3521 * @pool: worker_pool to put
3522 *
24acfb71 3523 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3524 * safe manner. get_unbound_pool() calls this function on its failure path
3525 * and this function should be able to release pools which went through,
3526 * successfully or not, init_worker_pool().
3527 *
3528 * Should be called with wq_pool_mutex held.
3529 */
3530static void put_unbound_pool(struct worker_pool *pool)
226223ab 3531{
6ba94429
FW
3532 DECLARE_COMPLETION_ONSTACK(detach_completion);
3533 struct worker *worker;
226223ab 3534
6ba94429 3535 lockdep_assert_held(&wq_pool_mutex);
226223ab 3536
6ba94429
FW
3537 if (--pool->refcnt)
3538 return;
226223ab 3539
6ba94429
FW
3540 /* sanity checks */
3541 if (WARN_ON(!(pool->cpu < 0)) ||
3542 WARN_ON(!list_empty(&pool->worklist)))
3543 return;
226223ab 3544
6ba94429
FW
3545 /* release id and unhash */
3546 if (pool->id >= 0)
3547 idr_remove(&worker_pool_idr, pool->id);
3548 hash_del(&pool->hash_node);
d55262c4 3549
6ba94429 3550 /*
692b4825
TH
3551 * Become the manager and destroy all workers. This prevents
3552 * @pool's workers from blocking on attach_mutex. We're the last
3553 * manager and @pool gets freed with the flag set.
d8bb65ab
SAS
3554 * Because of how wq_manager_inactive() works, we will hold the
3555 * spinlock after a successful wait.
6ba94429 3556 */
d8bb65ab
SAS
3557 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3558 TASK_UNINTERRUPTIBLE);
692b4825
TH
3559 pool->flags |= POOL_MANAGER_ACTIVE;
3560
6ba94429
FW
3561 while ((worker = first_idle_worker(pool)))
3562 destroy_worker(worker);
3563 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3564 raw_spin_unlock_irq(&pool->lock);
d55262c4 3565
1258fae7 3566 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3567 if (!list_empty(&pool->workers))
3568 pool->detach_completion = &detach_completion;
1258fae7 3569 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3570
6ba94429
FW
3571 if (pool->detach_completion)
3572 wait_for_completion(pool->detach_completion);
226223ab 3573
6ba94429
FW
3574 /* shut down the timers */
3575 del_timer_sync(&pool->idle_timer);
3576 del_timer_sync(&pool->mayday_timer);
226223ab 3577
24acfb71 3578 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3579 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3580}
3581
3582/**
6ba94429
FW
3583 * get_unbound_pool - get a worker_pool with the specified attributes
3584 * @attrs: the attributes of the worker_pool to get
226223ab 3585 *
6ba94429
FW
3586 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3587 * reference count and return it. If there already is a matching
3588 * worker_pool, it will be used; otherwise, this function attempts to
3589 * create a new one.
226223ab 3590 *
6ba94429 3591 * Should be called with wq_pool_mutex held.
226223ab 3592 *
6ba94429
FW
3593 * Return: On success, a worker_pool with the same attributes as @attrs.
3594 * On failure, %NULL.
226223ab 3595 */
6ba94429 3596static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3597{
6ba94429
FW
3598 u32 hash = wqattrs_hash(attrs);
3599 struct worker_pool *pool;
3600 int node;
e2273584 3601 int target_node = NUMA_NO_NODE;
226223ab 3602
6ba94429 3603 lockdep_assert_held(&wq_pool_mutex);
226223ab 3604
6ba94429
FW
3605 /* do we already have a matching pool? */
3606 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3607 if (wqattrs_equal(pool->attrs, attrs)) {
3608 pool->refcnt++;
3609 return pool;
3610 }
3611 }
226223ab 3612
e2273584
XP
3613 /* if cpumask is contained inside a NUMA node, we belong to that node */
3614 if (wq_numa_enabled) {
3615 for_each_node(node) {
3616 if (cpumask_subset(attrs->cpumask,
3617 wq_numa_possible_cpumask[node])) {
3618 target_node = node;
3619 break;
3620 }
3621 }
3622 }
3623
6ba94429 3624 /* nope, create a new one */
e2273584 3625 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3626 if (!pool || init_worker_pool(pool) < 0)
3627 goto fail;
3628
3629 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3630 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3631 pool->node = target_node;
226223ab
TH
3632
3633 /*
6ba94429
FW
3634 * no_numa isn't a worker_pool attribute, always clear it. See
3635 * 'struct workqueue_attrs' comments for detail.
226223ab 3636 */
6ba94429 3637 pool->attrs->no_numa = false;
226223ab 3638
6ba94429
FW
3639 if (worker_pool_assign_id(pool) < 0)
3640 goto fail;
226223ab 3641
6ba94429 3642 /* create and start the initial worker */
3347fa09 3643 if (wq_online && !create_worker(pool))
6ba94429 3644 goto fail;
226223ab 3645
6ba94429
FW
3646 /* install */
3647 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3648
6ba94429
FW
3649 return pool;
3650fail:
3651 if (pool)
3652 put_unbound_pool(pool);
3653 return NULL;
226223ab 3654}
226223ab 3655
6ba94429 3656static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3657{
6ba94429
FW
3658 kmem_cache_free(pwq_cache,
3659 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3660}
3661
6ba94429
FW
3662/*
3663 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3664 * and needs to be destroyed.
7a4e344c 3665 */
6ba94429 3666static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3667{
6ba94429
FW
3668 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3669 unbound_release_work);
3670 struct workqueue_struct *wq = pwq->wq;
3671 struct worker_pool *pool = pwq->pool;
3672 bool is_last;
7a4e344c 3673
6ba94429
FW
3674 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3675 return;
7a4e344c 3676
6ba94429
FW
3677 mutex_lock(&wq->mutex);
3678 list_del_rcu(&pwq->pwqs_node);
3679 is_last = list_empty(&wq->pwqs);
3680 mutex_unlock(&wq->mutex);
3681
3682 mutex_lock(&wq_pool_mutex);
3683 put_unbound_pool(pool);
3684 mutex_unlock(&wq_pool_mutex);
3685
25b00775 3686 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3687
2865a8fb 3688 /*
6ba94429
FW
3689 * If we're the last pwq going away, @wq is already dead and no one
3690 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3691 */
669de8bd
BVA
3692 if (is_last) {
3693 wq_unregister_lockdep(wq);
25b00775 3694 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3695 }
29c91e99
TH
3696}
3697
7a4e344c 3698/**
6ba94429
FW
3699 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3700 * @pwq: target pool_workqueue
d185af30 3701 *
6ba94429
FW
3702 * If @pwq isn't freezing, set @pwq->max_active to the associated
3703 * workqueue's saved_max_active and activate delayed work items
3704 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3705 */
6ba94429 3706static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3707{
6ba94429
FW
3708 struct workqueue_struct *wq = pwq->wq;
3709 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3710 unsigned long flags;
4e1a1f9a 3711
6ba94429
FW
3712 /* for @wq->saved_max_active */
3713 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3714
6ba94429
FW
3715 /* fast exit for non-freezable wqs */
3716 if (!freezable && pwq->max_active == wq->saved_max_active)
3717 return;
7a4e344c 3718
3347fa09 3719 /* this function can be called during early boot w/ irq disabled */
a9b8a985 3720 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3721
6ba94429
FW
3722 /*
3723 * During [un]freezing, the caller is responsible for ensuring that
3724 * this function is called at least once after @workqueue_freezing
3725 * is updated and visible.
3726 */
3727 if (!freezable || !workqueue_freezing) {
3728 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3729
6ba94429
FW
3730 while (!list_empty(&pwq->delayed_works) &&
3731 pwq->nr_active < pwq->max_active)
3732 pwq_activate_first_delayed(pwq);
e2dca7ad 3733
6ba94429
FW
3734 /*
3735 * Need to kick a worker after thawed or an unbound wq's
3736 * max_active is bumped. It's a slow path. Do it always.
3737 */
3738 wake_up_worker(pwq->pool);
3739 } else {
3740 pwq->max_active = 0;
3741 }
e2dca7ad 3742
a9b8a985 3743 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3744}
3745
6ba94429
FW
3746/* initialize newly alloced @pwq which is associated with @wq and @pool */
3747static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3748 struct worker_pool *pool)
29c91e99 3749{
6ba94429 3750 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3751
6ba94429
FW
3752 memset(pwq, 0, sizeof(*pwq));
3753
3754 pwq->pool = pool;
3755 pwq->wq = wq;
3756 pwq->flush_color = -1;
3757 pwq->refcnt = 1;
3758 INIT_LIST_HEAD(&pwq->delayed_works);
3759 INIT_LIST_HEAD(&pwq->pwqs_node);
3760 INIT_LIST_HEAD(&pwq->mayday_node);
3761 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3762}
3763
6ba94429
FW
3764/* sync @pwq with the current state of its associated wq and link it */
3765static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3766{
6ba94429 3767 struct workqueue_struct *wq = pwq->wq;
29c91e99 3768
6ba94429 3769 lockdep_assert_held(&wq->mutex);
a892cacc 3770
6ba94429
FW
3771 /* may be called multiple times, ignore if already linked */
3772 if (!list_empty(&pwq->pwqs_node))
29c91e99 3773 return;
29c91e99 3774
6ba94429
FW
3775 /* set the matching work_color */
3776 pwq->work_color = wq->work_color;
29c91e99 3777
6ba94429
FW
3778 /* sync max_active to the current setting */
3779 pwq_adjust_max_active(pwq);
29c91e99 3780
6ba94429
FW
3781 /* link in @pwq */
3782 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3783}
29c91e99 3784
6ba94429
FW
3785/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3786static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3787 const struct workqueue_attrs *attrs)
3788{
3789 struct worker_pool *pool;
3790 struct pool_workqueue *pwq;
60f5a4bc 3791
6ba94429 3792 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3793
6ba94429
FW
3794 pool = get_unbound_pool(attrs);
3795 if (!pool)
3796 return NULL;
60f5a4bc 3797
6ba94429
FW
3798 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3799 if (!pwq) {
3800 put_unbound_pool(pool);
3801 return NULL;
3802 }
29c91e99 3803
6ba94429
FW
3804 init_pwq(pwq, wq, pool);
3805 return pwq;
3806}
29c91e99 3807
29c91e99 3808/**
30186c6f 3809 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3810 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3811 * @node: the target NUMA node
3812 * @cpu_going_down: if >= 0, the CPU to consider as offline
3813 * @cpumask: outarg, the resulting cpumask
29c91e99 3814 *
6ba94429
FW
3815 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3816 * @cpu_going_down is >= 0, that cpu is considered offline during
3817 * calculation. The result is stored in @cpumask.
a892cacc 3818 *
6ba94429
FW
3819 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3820 * enabled and @node has online CPUs requested by @attrs, the returned
3821 * cpumask is the intersection of the possible CPUs of @node and
3822 * @attrs->cpumask.
d185af30 3823 *
6ba94429
FW
3824 * The caller is responsible for ensuring that the cpumask of @node stays
3825 * stable.
3826 *
3827 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3828 * %false if equal.
29c91e99 3829 */
6ba94429
FW
3830static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3831 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3832{
6ba94429
FW
3833 if (!wq_numa_enabled || attrs->no_numa)
3834 goto use_dfl;
29c91e99 3835
6ba94429
FW
3836 /* does @node have any online CPUs @attrs wants? */
3837 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3838 if (cpu_going_down >= 0)
3839 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3840
6ba94429
FW
3841 if (cpumask_empty(cpumask))
3842 goto use_dfl;
4c16bd32
TH
3843
3844 /* yeap, return possible CPUs in @node that @attrs wants */
3845 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3846
3847 if (cpumask_empty(cpumask)) {
3848 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3849 "possible intersect\n");
3850 return false;
3851 }
3852
4c16bd32
TH
3853 return !cpumask_equal(cpumask, attrs->cpumask);
3854
3855use_dfl:
3856 cpumask_copy(cpumask, attrs->cpumask);
3857 return false;
3858}
3859
1befcf30
TH
3860/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3861static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3862 int node,
3863 struct pool_workqueue *pwq)
3864{
3865 struct pool_workqueue *old_pwq;
3866
5b95e1af 3867 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3868 lockdep_assert_held(&wq->mutex);
3869
3870 /* link_pwq() can handle duplicate calls */
3871 link_pwq(pwq);
3872
3873 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3874 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3875 return old_pwq;
3876}
3877
2d5f0764
LJ
3878/* context to store the prepared attrs & pwqs before applying */
3879struct apply_wqattrs_ctx {
3880 struct workqueue_struct *wq; /* target workqueue */
3881 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3882 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3883 struct pool_workqueue *dfl_pwq;
3884 struct pool_workqueue *pwq_tbl[];
3885};
3886
3887/* free the resources after success or abort */
3888static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3889{
3890 if (ctx) {
3891 int node;
3892
3893 for_each_node(node)
3894 put_pwq_unlocked(ctx->pwq_tbl[node]);
3895 put_pwq_unlocked(ctx->dfl_pwq);
3896
3897 free_workqueue_attrs(ctx->attrs);
3898
3899 kfree(ctx);
3900 }
3901}
3902
3903/* allocate the attrs and pwqs for later installation */
3904static struct apply_wqattrs_ctx *
3905apply_wqattrs_prepare(struct workqueue_struct *wq,
3906 const struct workqueue_attrs *attrs)
9e8cd2f5 3907{
2d5f0764 3908 struct apply_wqattrs_ctx *ctx;
4c16bd32 3909 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3910 int node;
9e8cd2f5 3911
2d5f0764 3912 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3913
acafe7e3 3914 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3915
be69d00d
TG
3916 new_attrs = alloc_workqueue_attrs();
3917 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3918 if (!ctx || !new_attrs || !tmp_attrs)
3919 goto out_free;
13e2e556 3920
042f7df1
LJ
3921 /*
3922 * Calculate the attrs of the default pwq.
3923 * If the user configured cpumask doesn't overlap with the
3924 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3925 */
13e2e556 3926 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3927 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3928 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3929 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3930
4c16bd32
TH
3931 /*
3932 * We may create multiple pwqs with differing cpumasks. Make a
3933 * copy of @new_attrs which will be modified and used to obtain
3934 * pools.
3935 */
3936 copy_workqueue_attrs(tmp_attrs, new_attrs);
3937
4c16bd32
TH
3938 /*
3939 * If something goes wrong during CPU up/down, we'll fall back to
3940 * the default pwq covering whole @attrs->cpumask. Always create
3941 * it even if we don't use it immediately.
3942 */
2d5f0764
LJ
3943 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3944 if (!ctx->dfl_pwq)
3945 goto out_free;
4c16bd32
TH
3946
3947 for_each_node(node) {
042f7df1 3948 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3949 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3950 if (!ctx->pwq_tbl[node])
3951 goto out_free;
4c16bd32 3952 } else {
2d5f0764
LJ
3953 ctx->dfl_pwq->refcnt++;
3954 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3955 }
3956 }
3957
042f7df1
LJ
3958 /* save the user configured attrs and sanitize it. */
3959 copy_workqueue_attrs(new_attrs, attrs);
3960 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3961 ctx->attrs = new_attrs;
042f7df1 3962
2d5f0764
LJ
3963 ctx->wq = wq;
3964 free_workqueue_attrs(tmp_attrs);
3965 return ctx;
3966
3967out_free:
3968 free_workqueue_attrs(tmp_attrs);
3969 free_workqueue_attrs(new_attrs);
3970 apply_wqattrs_cleanup(ctx);
3971 return NULL;
3972}
3973
3974/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3975static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3976{
3977 int node;
9e8cd2f5 3978
4c16bd32 3979 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3980 mutex_lock(&ctx->wq->mutex);
a892cacc 3981
2d5f0764 3982 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3983
3984 /* save the previous pwq and install the new one */
f147f29e 3985 for_each_node(node)
2d5f0764
LJ
3986 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3987 ctx->pwq_tbl[node]);
4c16bd32
TH
3988
3989 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3990 link_pwq(ctx->dfl_pwq);
3991 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3992
2d5f0764
LJ
3993 mutex_unlock(&ctx->wq->mutex);
3994}
9e8cd2f5 3995
a0111cf6
LJ
3996static void apply_wqattrs_lock(void)
3997{
3998 /* CPUs should stay stable across pwq creations and installations */
3999 get_online_cpus();
4000 mutex_lock(&wq_pool_mutex);
4001}
4002
4003static void apply_wqattrs_unlock(void)
4004{
4005 mutex_unlock(&wq_pool_mutex);
4006 put_online_cpus();
4007}
4008
4009static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4010 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4011{
4012 struct apply_wqattrs_ctx *ctx;
4c16bd32 4013
2d5f0764
LJ
4014 /* only unbound workqueues can change attributes */
4015 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4016 return -EINVAL;
13e2e556 4017
2d5f0764 4018 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4019 if (!list_empty(&wq->pwqs)) {
4020 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4021 return -EINVAL;
4022
4023 wq->flags &= ~__WQ_ORDERED;
4024 }
2d5f0764 4025
2d5f0764 4026 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4027 if (!ctx)
4028 return -ENOMEM;
2d5f0764
LJ
4029
4030 /* the ctx has been prepared successfully, let's commit it */
6201171e 4031 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4032 apply_wqattrs_cleanup(ctx);
4033
6201171e 4034 return 0;
9e8cd2f5
TH
4035}
4036
a0111cf6
LJ
4037/**
4038 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4039 * @wq: the target workqueue
4040 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4041 *
4042 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4043 * machines, this function maps a separate pwq to each NUMA node with
4044 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4045 * NUMA node it was issued on. Older pwqs are released as in-flight work
4046 * items finish. Note that a work item which repeatedly requeues itself
4047 * back-to-back will stay on its current pwq.
4048 *
4049 * Performs GFP_KERNEL allocations.
4050 *
509b3204
DJ
4051 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4052 *
a0111cf6
LJ
4053 * Return: 0 on success and -errno on failure.
4054 */
513c98d0 4055int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4056 const struct workqueue_attrs *attrs)
4057{
4058 int ret;
4059
509b3204
DJ
4060 lockdep_assert_cpus_held();
4061
4062 mutex_lock(&wq_pool_mutex);
a0111cf6 4063 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4064 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4065
4066 return ret;
4067}
4068
4c16bd32
TH
4069/**
4070 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4071 * @wq: the target workqueue
4072 * @cpu: the CPU coming up or going down
4073 * @online: whether @cpu is coming up or going down
4074 *
4075 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4076 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4077 * @wq accordingly.
4078 *
4079 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4080 * falls back to @wq->dfl_pwq which may not be optimal but is always
4081 * correct.
4082 *
4083 * Note that when the last allowed CPU of a NUMA node goes offline for a
4084 * workqueue with a cpumask spanning multiple nodes, the workers which were
4085 * already executing the work items for the workqueue will lose their CPU
4086 * affinity and may execute on any CPU. This is similar to how per-cpu
4087 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4088 * affinity, it's the user's responsibility to flush the work item from
4089 * CPU_DOWN_PREPARE.
4090 */
4091static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4092 bool online)
4093{
4094 int node = cpu_to_node(cpu);
4095 int cpu_off = online ? -1 : cpu;
4096 struct pool_workqueue *old_pwq = NULL, *pwq;
4097 struct workqueue_attrs *target_attrs;
4098 cpumask_t *cpumask;
4099
4100 lockdep_assert_held(&wq_pool_mutex);
4101
f7142ed4
LJ
4102 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4103 wq->unbound_attrs->no_numa)
4c16bd32
TH
4104 return;
4105
4106 /*
4107 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4108 * Let's use a preallocated one. The following buf is protected by
4109 * CPU hotplug exclusion.
4110 */
4111 target_attrs = wq_update_unbound_numa_attrs_buf;
4112 cpumask = target_attrs->cpumask;
4113
4c16bd32
TH
4114 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4115 pwq = unbound_pwq_by_node(wq, node);
4116
4117 /*
4118 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4119 * different from the default pwq's, we need to compare it to @pwq's
4120 * and create a new one if they don't match. If the target cpumask
4121 * equals the default pwq's, the default pwq should be used.
4c16bd32 4122 */
042f7df1 4123 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4124 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4125 return;
4c16bd32 4126 } else {
534a3fbb 4127 goto use_dfl_pwq;
4c16bd32
TH
4128 }
4129
4c16bd32
TH
4130 /* create a new pwq */
4131 pwq = alloc_unbound_pwq(wq, target_attrs);
4132 if (!pwq) {
2d916033
FF
4133 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4134 wq->name);
77f300b1 4135 goto use_dfl_pwq;
4c16bd32
TH
4136 }
4137
f7142ed4 4138 /* Install the new pwq. */
4c16bd32
TH
4139 mutex_lock(&wq->mutex);
4140 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4141 goto out_unlock;
4142
4143use_dfl_pwq:
f7142ed4 4144 mutex_lock(&wq->mutex);
a9b8a985 4145 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4146 get_pwq(wq->dfl_pwq);
a9b8a985 4147 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32
TH
4148 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4149out_unlock:
4150 mutex_unlock(&wq->mutex);
4151 put_pwq_unlocked(old_pwq);
4152}
4153
30cdf249 4154static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4155{
49e3cf44 4156 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4157 int cpu, ret;
30cdf249
TH
4158
4159 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4160 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4161 if (!wq->cpu_pwqs)
30cdf249
TH
4162 return -ENOMEM;
4163
4164 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4165 struct pool_workqueue *pwq =
4166 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4167 struct worker_pool *cpu_pools =
f02ae73a 4168 per_cpu(cpu_worker_pools, cpu);
f3421797 4169
f147f29e
TH
4170 init_pwq(pwq, wq, &cpu_pools[highpri]);
4171
4172 mutex_lock(&wq->mutex);
1befcf30 4173 link_pwq(pwq);
f147f29e 4174 mutex_unlock(&wq->mutex);
30cdf249 4175 }
9e8cd2f5 4176 return 0;
509b3204
DJ
4177 }
4178
4179 get_online_cpus();
4180 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4181 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4182 /* there should only be single pwq for ordering guarantee */
4183 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4184 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4185 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4186 } else {
509b3204 4187 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4188 }
509b3204
DJ
4189 put_online_cpus();
4190
4191 return ret;
0f900049
TH
4192}
4193
f3421797
TH
4194static int wq_clamp_max_active(int max_active, unsigned int flags,
4195 const char *name)
b71ab8c2 4196{
f3421797
TH
4197 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4198
4199 if (max_active < 1 || max_active > lim)
044c782c
VI
4200 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4201 max_active, name, 1, lim);
b71ab8c2 4202
f3421797 4203 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4204}
4205
983c7515
TH
4206/*
4207 * Workqueues which may be used during memory reclaim should have a rescuer
4208 * to guarantee forward progress.
4209 */
4210static int init_rescuer(struct workqueue_struct *wq)
4211{
4212 struct worker *rescuer;
b92b36ea 4213 int ret;
983c7515
TH
4214
4215 if (!(wq->flags & WQ_MEM_RECLAIM))
4216 return 0;
4217
4218 rescuer = alloc_worker(NUMA_NO_NODE);
4219 if (!rescuer)
4220 return -ENOMEM;
4221
4222 rescuer->rescue_wq = wq;
4223 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4224 if (IS_ERR(rescuer->task)) {
b92b36ea 4225 ret = PTR_ERR(rescuer->task);
983c7515 4226 kfree(rescuer);
b92b36ea 4227 return ret;
983c7515
TH
4228 }
4229
4230 wq->rescuer = rescuer;
4231 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4232 wake_up_process(rescuer->task);
4233
4234 return 0;
4235}
4236
a2775bbc 4237__printf(1, 4)
669de8bd
BVA
4238struct workqueue_struct *alloc_workqueue(const char *fmt,
4239 unsigned int flags,
4240 int max_active, ...)
1da177e4 4241{
df2d5ae4 4242 size_t tbl_size = 0;
ecf6881f 4243 va_list args;
1da177e4 4244 struct workqueue_struct *wq;
49e3cf44 4245 struct pool_workqueue *pwq;
b196be89 4246
5c0338c6
TH
4247 /*
4248 * Unbound && max_active == 1 used to imply ordered, which is no
4249 * longer the case on NUMA machines due to per-node pools. While
4250 * alloc_ordered_workqueue() is the right way to create an ordered
4251 * workqueue, keep the previous behavior to avoid subtle breakages
4252 * on NUMA.
4253 */
4254 if ((flags & WQ_UNBOUND) && max_active == 1)
4255 flags |= __WQ_ORDERED;
4256
cee22a15
VK
4257 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4258 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4259 flags |= WQ_UNBOUND;
4260
ecf6881f 4261 /* allocate wq and format name */
df2d5ae4 4262 if (flags & WQ_UNBOUND)
ddcb57e2 4263 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4264
4265 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4266 if (!wq)
d2c1d404 4267 return NULL;
b196be89 4268
6029a918 4269 if (flags & WQ_UNBOUND) {
be69d00d 4270 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4271 if (!wq->unbound_attrs)
4272 goto err_free_wq;
4273 }
4274
669de8bd 4275 va_start(args, max_active);
ecf6881f 4276 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4277 va_end(args);
1da177e4 4278
d320c038 4279 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4280 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4281
b196be89 4282 /* init wq */
97e37d7b 4283 wq->flags = flags;
a0a1a5fd 4284 wq->saved_max_active = max_active;
3c25a55d 4285 mutex_init(&wq->mutex);
112202d9 4286 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4287 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4288 INIT_LIST_HEAD(&wq->flusher_queue);
4289 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4290 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4291
669de8bd 4292 wq_init_lockdep(wq);
cce1a165 4293 INIT_LIST_HEAD(&wq->list);
3af24433 4294
30cdf249 4295 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4296 goto err_unreg_lockdep;
1537663f 4297
40c17f75 4298 if (wq_online && init_rescuer(wq) < 0)
983c7515 4299 goto err_destroy;
3af24433 4300
226223ab
TH
4301 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4302 goto err_destroy;
4303
a0a1a5fd 4304 /*
68e13a67
LJ
4305 * wq_pool_mutex protects global freeze state and workqueues list.
4306 * Grab it, adjust max_active and add the new @wq to workqueues
4307 * list.
a0a1a5fd 4308 */
68e13a67 4309 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4310
a357fc03 4311 mutex_lock(&wq->mutex);
699ce097
TH
4312 for_each_pwq(pwq, wq)
4313 pwq_adjust_max_active(pwq);
a357fc03 4314 mutex_unlock(&wq->mutex);
a0a1a5fd 4315
e2dca7ad 4316 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4317
68e13a67 4318 mutex_unlock(&wq_pool_mutex);
1537663f 4319
3af24433 4320 return wq;
d2c1d404 4321
82efcab3 4322err_unreg_lockdep:
009bb421
BVA
4323 wq_unregister_lockdep(wq);
4324 wq_free_lockdep(wq);
82efcab3 4325err_free_wq:
6029a918 4326 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4327 kfree(wq);
4328 return NULL;
4329err_destroy:
4330 destroy_workqueue(wq);
4690c4ab 4331 return NULL;
3af24433 4332}
669de8bd 4333EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4334
c29eb853
TH
4335static bool pwq_busy(struct pool_workqueue *pwq)
4336{
4337 int i;
4338
4339 for (i = 0; i < WORK_NR_COLORS; i++)
4340 if (pwq->nr_in_flight[i])
4341 return true;
4342
4343 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4344 return true;
4345 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4346 return true;
4347
4348 return false;
4349}
4350
3af24433
ON
4351/**
4352 * destroy_workqueue - safely terminate a workqueue
4353 * @wq: target workqueue
4354 *
4355 * Safely destroy a workqueue. All work currently pending will be done first.
4356 */
4357void destroy_workqueue(struct workqueue_struct *wq)
4358{
49e3cf44 4359 struct pool_workqueue *pwq;
4c16bd32 4360 int node;
3af24433 4361
def98c84
TH
4362 /*
4363 * Remove it from sysfs first so that sanity check failure doesn't
4364 * lead to sysfs name conflicts.
4365 */
4366 workqueue_sysfs_unregister(wq);
4367
9c5a2ba7
TH
4368 /* drain it before proceeding with destruction */
4369 drain_workqueue(wq);
c8efcc25 4370
def98c84
TH
4371 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4372 if (wq->rescuer) {
4373 struct worker *rescuer = wq->rescuer;
4374
4375 /* this prevents new queueing */
a9b8a985 4376 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4377 wq->rescuer = NULL;
a9b8a985 4378 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4379
4380 /* rescuer will empty maydays list before exiting */
4381 kthread_stop(rescuer->task);
8efe1223 4382 kfree(rescuer);
def98c84
TH
4383 }
4384
c29eb853
TH
4385 /*
4386 * Sanity checks - grab all the locks so that we wait for all
4387 * in-flight operations which may do put_pwq().
4388 */
4389 mutex_lock(&wq_pool_mutex);
b09f4fd3 4390 mutex_lock(&wq->mutex);
49e3cf44 4391 for_each_pwq(pwq, wq) {
a9b8a985 4392 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4393 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4394 pr_warn("%s: %s has the following busy pwq\n",
4395 __func__, wq->name);
c29eb853 4396 show_pwq(pwq);
a9b8a985 4397 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4398 mutex_unlock(&wq->mutex);
c29eb853 4399 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4400 show_workqueue_state();
6183c009 4401 return;
76af4d93 4402 }
a9b8a985 4403 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4404 }
b09f4fd3 4405 mutex_unlock(&wq->mutex);
6183c009 4406
a0a1a5fd
TH
4407 /*
4408 * wq list is used to freeze wq, remove from list after
4409 * flushing is complete in case freeze races us.
4410 */
e2dca7ad 4411 list_del_rcu(&wq->list);
68e13a67 4412 mutex_unlock(&wq_pool_mutex);
3af24433 4413
8864b4e5 4414 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4415 wq_unregister_lockdep(wq);
8864b4e5
TH
4416 /*
4417 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4418 * schedule RCU free.
8864b4e5 4419 */
25b00775 4420 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4421 } else {
4422 /*
4423 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4424 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4425 * @wq will be freed when the last pwq is released.
8864b4e5 4426 */
4c16bd32
TH
4427 for_each_node(node) {
4428 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4429 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4430 put_pwq_unlocked(pwq);
4431 }
4432
4433 /*
4434 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4435 * put. Don't access it afterwards.
4436 */
4437 pwq = wq->dfl_pwq;
4438 wq->dfl_pwq = NULL;
dce90d47 4439 put_pwq_unlocked(pwq);
29c91e99 4440 }
3af24433
ON
4441}
4442EXPORT_SYMBOL_GPL(destroy_workqueue);
4443
dcd989cb
TH
4444/**
4445 * workqueue_set_max_active - adjust max_active of a workqueue
4446 * @wq: target workqueue
4447 * @max_active: new max_active value.
4448 *
4449 * Set max_active of @wq to @max_active.
4450 *
4451 * CONTEXT:
4452 * Don't call from IRQ context.
4453 */
4454void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4455{
49e3cf44 4456 struct pool_workqueue *pwq;
dcd989cb 4457
8719dcea 4458 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4459 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4460 return;
4461
f3421797 4462 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4463
a357fc03 4464 mutex_lock(&wq->mutex);
dcd989cb 4465
0a94efb5 4466 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4467 wq->saved_max_active = max_active;
4468
699ce097
TH
4469 for_each_pwq(pwq, wq)
4470 pwq_adjust_max_active(pwq);
93981800 4471
a357fc03 4472 mutex_unlock(&wq->mutex);
15316ba8 4473}
dcd989cb 4474EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4475
27d4ee03
LW
4476/**
4477 * current_work - retrieve %current task's work struct
4478 *
4479 * Determine if %current task is a workqueue worker and what it's working on.
4480 * Useful to find out the context that the %current task is running in.
4481 *
4482 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4483 */
4484struct work_struct *current_work(void)
4485{
4486 struct worker *worker = current_wq_worker();
4487
4488 return worker ? worker->current_work : NULL;
4489}
4490EXPORT_SYMBOL(current_work);
4491
e6267616
TH
4492/**
4493 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4494 *
4495 * Determine whether %current is a workqueue rescuer. Can be used from
4496 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4497 *
4498 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4499 */
4500bool current_is_workqueue_rescuer(void)
4501{
4502 struct worker *worker = current_wq_worker();
4503
6a092dfd 4504 return worker && worker->rescue_wq;
e6267616
TH
4505}
4506
eef6a7d5 4507/**
dcd989cb
TH
4508 * workqueue_congested - test whether a workqueue is congested
4509 * @cpu: CPU in question
4510 * @wq: target workqueue
eef6a7d5 4511 *
dcd989cb
TH
4512 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4513 * no synchronization around this function and the test result is
4514 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4515 *
d3251859
TH
4516 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4517 * Note that both per-cpu and unbound workqueues may be associated with
4518 * multiple pool_workqueues which have separate congested states. A
4519 * workqueue being congested on one CPU doesn't mean the workqueue is also
4520 * contested on other CPUs / NUMA nodes.
4521 *
d185af30 4522 * Return:
dcd989cb 4523 * %true if congested, %false otherwise.
eef6a7d5 4524 */
d84ff051 4525bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4526{
7fb98ea7 4527 struct pool_workqueue *pwq;
76af4d93
TH
4528 bool ret;
4529
24acfb71
TG
4530 rcu_read_lock();
4531 preempt_disable();
7fb98ea7 4532
d3251859
TH
4533 if (cpu == WORK_CPU_UNBOUND)
4534 cpu = smp_processor_id();
4535
7fb98ea7
TH
4536 if (!(wq->flags & WQ_UNBOUND))
4537 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4538 else
df2d5ae4 4539 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4540
76af4d93 4541 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4542 preempt_enable();
4543 rcu_read_unlock();
76af4d93
TH
4544
4545 return ret;
1da177e4 4546}
dcd989cb 4547EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4548
dcd989cb
TH
4549/**
4550 * work_busy - test whether a work is currently pending or running
4551 * @work: the work to be tested
4552 *
4553 * Test whether @work is currently pending or running. There is no
4554 * synchronization around this function and the test result is
4555 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4556 *
d185af30 4557 * Return:
dcd989cb
TH
4558 * OR'd bitmask of WORK_BUSY_* bits.
4559 */
4560unsigned int work_busy(struct work_struct *work)
1da177e4 4561{
fa1b54e6 4562 struct worker_pool *pool;
dcd989cb
TH
4563 unsigned long flags;
4564 unsigned int ret = 0;
1da177e4 4565
dcd989cb
TH
4566 if (work_pending(work))
4567 ret |= WORK_BUSY_PENDING;
1da177e4 4568
24acfb71 4569 rcu_read_lock();
fa1b54e6 4570 pool = get_work_pool(work);
038366c5 4571 if (pool) {
a9b8a985 4572 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4573 if (find_worker_executing_work(pool, work))
4574 ret |= WORK_BUSY_RUNNING;
a9b8a985 4575 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4576 }
24acfb71 4577 rcu_read_unlock();
1da177e4 4578
dcd989cb 4579 return ret;
1da177e4 4580}
dcd989cb 4581EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4582
3d1cb205
TH
4583/**
4584 * set_worker_desc - set description for the current work item
4585 * @fmt: printf-style format string
4586 * @...: arguments for the format string
4587 *
4588 * This function can be called by a running work function to describe what
4589 * the work item is about. If the worker task gets dumped, this
4590 * information will be printed out together to help debugging. The
4591 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4592 */
4593void set_worker_desc(const char *fmt, ...)
4594{
4595 struct worker *worker = current_wq_worker();
4596 va_list args;
4597
4598 if (worker) {
4599 va_start(args, fmt);
4600 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4601 va_end(args);
3d1cb205
TH
4602 }
4603}
5c750d58 4604EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4605
4606/**
4607 * print_worker_info - print out worker information and description
4608 * @log_lvl: the log level to use when printing
4609 * @task: target task
4610 *
4611 * If @task is a worker and currently executing a work item, print out the
4612 * name of the workqueue being serviced and worker description set with
4613 * set_worker_desc() by the currently executing work item.
4614 *
4615 * This function can be safely called on any task as long as the
4616 * task_struct itself is accessible. While safe, this function isn't
4617 * synchronized and may print out mixups or garbages of limited length.
4618 */
4619void print_worker_info(const char *log_lvl, struct task_struct *task)
4620{
4621 work_func_t *fn = NULL;
4622 char name[WQ_NAME_LEN] = { };
4623 char desc[WORKER_DESC_LEN] = { };
4624 struct pool_workqueue *pwq = NULL;
4625 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4626 struct worker *worker;
4627
4628 if (!(task->flags & PF_WQ_WORKER))
4629 return;
4630
4631 /*
4632 * This function is called without any synchronization and @task
4633 * could be in any state. Be careful with dereferences.
4634 */
e700591a 4635 worker = kthread_probe_data(task);
3d1cb205
TH
4636
4637 /*
8bf89593
TH
4638 * Carefully copy the associated workqueue's workfn, name and desc.
4639 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4640 */
fe557319
CH
4641 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4642 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4643 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4644 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4645 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4646
4647 if (fn || name[0] || desc[0]) {
d75f773c 4648 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4649 if (strcmp(name, desc))
3d1cb205
TH
4650 pr_cont(" (%s)", desc);
4651 pr_cont("\n");
4652 }
4653}
4654
3494fc30
TH
4655static void pr_cont_pool_info(struct worker_pool *pool)
4656{
4657 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4658 if (pool->node != NUMA_NO_NODE)
4659 pr_cont(" node=%d", pool->node);
4660 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4661}
4662
4663static void pr_cont_work(bool comma, struct work_struct *work)
4664{
4665 if (work->func == wq_barrier_func) {
4666 struct wq_barrier *barr;
4667
4668 barr = container_of(work, struct wq_barrier, work);
4669
4670 pr_cont("%s BAR(%d)", comma ? "," : "",
4671 task_pid_nr(barr->task));
4672 } else {
d75f773c 4673 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4674 }
4675}
4676
4677static void show_pwq(struct pool_workqueue *pwq)
4678{
4679 struct worker_pool *pool = pwq->pool;
4680 struct work_struct *work;
4681 struct worker *worker;
4682 bool has_in_flight = false, has_pending = false;
4683 int bkt;
4684
4685 pr_info(" pwq %d:", pool->id);
4686 pr_cont_pool_info(pool);
4687
e66b39af
TH
4688 pr_cont(" active=%d/%d refcnt=%d%s\n",
4689 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4690 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4691
4692 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4693 if (worker->current_pwq == pwq) {
4694 has_in_flight = true;
4695 break;
4696 }
4697 }
4698 if (has_in_flight) {
4699 bool comma = false;
4700
4701 pr_info(" in-flight:");
4702 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4703 if (worker->current_pwq != pwq)
4704 continue;
4705
d75f773c 4706 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4707 task_pid_nr(worker->task),
30ae2fc0 4708 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4709 worker->current_func);
4710 list_for_each_entry(work, &worker->scheduled, entry)
4711 pr_cont_work(false, work);
4712 comma = true;
4713 }
4714 pr_cont("\n");
4715 }
4716
4717 list_for_each_entry(work, &pool->worklist, entry) {
4718 if (get_work_pwq(work) == pwq) {
4719 has_pending = true;
4720 break;
4721 }
4722 }
4723 if (has_pending) {
4724 bool comma = false;
4725
4726 pr_info(" pending:");
4727 list_for_each_entry(work, &pool->worklist, entry) {
4728 if (get_work_pwq(work) != pwq)
4729 continue;
4730
4731 pr_cont_work(comma, work);
4732 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4733 }
4734 pr_cont("\n");
4735 }
4736
4737 if (!list_empty(&pwq->delayed_works)) {
4738 bool comma = false;
4739
4740 pr_info(" delayed:");
4741 list_for_each_entry(work, &pwq->delayed_works, entry) {
4742 pr_cont_work(comma, work);
4743 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4744 }
4745 pr_cont("\n");
4746 }
4747}
4748
4749/**
4750 * show_workqueue_state - dump workqueue state
4751 *
7b776af6
RL
4752 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4753 * all busy workqueues and pools.
3494fc30
TH
4754 */
4755void show_workqueue_state(void)
4756{
4757 struct workqueue_struct *wq;
4758 struct worker_pool *pool;
4759 unsigned long flags;
4760 int pi;
4761
24acfb71 4762 rcu_read_lock();
3494fc30
TH
4763
4764 pr_info("Showing busy workqueues and worker pools:\n");
4765
4766 list_for_each_entry_rcu(wq, &workqueues, list) {
4767 struct pool_workqueue *pwq;
4768 bool idle = true;
4769
4770 for_each_pwq(pwq, wq) {
4771 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4772 idle = false;
4773 break;
4774 }
4775 }
4776 if (idle)
4777 continue;
4778
4779 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4780
4781 for_each_pwq(pwq, wq) {
a9b8a985 4782 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3494fc30
TH
4783 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4784 show_pwq(pwq);
a9b8a985 4785 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4786 /*
4787 * We could be printing a lot from atomic context, e.g.
4788 * sysrq-t -> show_workqueue_state(). Avoid triggering
4789 * hard lockup.
4790 */
4791 touch_nmi_watchdog();
3494fc30
TH
4792 }
4793 }
4794
4795 for_each_pool(pool, pi) {
4796 struct worker *worker;
4797 bool first = true;
4798
a9b8a985 4799 raw_spin_lock_irqsave(&pool->lock, flags);
3494fc30
TH
4800 if (pool->nr_workers == pool->nr_idle)
4801 goto next_pool;
4802
4803 pr_info("pool %d:", pool->id);
4804 pr_cont_pool_info(pool);
82607adc
TH
4805 pr_cont(" hung=%us workers=%d",
4806 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4807 pool->nr_workers);
3494fc30
TH
4808 if (pool->manager)
4809 pr_cont(" manager: %d",
4810 task_pid_nr(pool->manager->task));
4811 list_for_each_entry(worker, &pool->idle_list, entry) {
4812 pr_cont(" %s%d", first ? "idle: " : "",
4813 task_pid_nr(worker->task));
4814 first = false;
4815 }
4816 pr_cont("\n");
4817 next_pool:
a9b8a985 4818 raw_spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4819 /*
4820 * We could be printing a lot from atomic context, e.g.
4821 * sysrq-t -> show_workqueue_state(). Avoid triggering
4822 * hard lockup.
4823 */
4824 touch_nmi_watchdog();
3494fc30
TH
4825 }
4826
24acfb71 4827 rcu_read_unlock();
3494fc30
TH
4828}
4829
6b59808b
TH
4830/* used to show worker information through /proc/PID/{comm,stat,status} */
4831void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4832{
6b59808b
TH
4833 int off;
4834
4835 /* always show the actual comm */
4836 off = strscpy(buf, task->comm, size);
4837 if (off < 0)
4838 return;
4839
197f6acc 4840 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4841 mutex_lock(&wq_pool_attach_mutex);
4842
197f6acc
TH
4843 if (task->flags & PF_WQ_WORKER) {
4844 struct worker *worker = kthread_data(task);
4845 struct worker_pool *pool = worker->pool;
6b59808b 4846
197f6acc 4847 if (pool) {
a9b8a985 4848 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
4849 /*
4850 * ->desc tracks information (wq name or
4851 * set_worker_desc()) for the latest execution. If
4852 * current, prepend '+', otherwise '-'.
4853 */
4854 if (worker->desc[0] != '\0') {
4855 if (worker->current_work)
4856 scnprintf(buf + off, size - off, "+%s",
4857 worker->desc);
4858 else
4859 scnprintf(buf + off, size - off, "-%s",
4860 worker->desc);
4861 }
a9b8a985 4862 raw_spin_unlock_irq(&pool->lock);
6b59808b 4863 }
6b59808b
TH
4864 }
4865
4866 mutex_unlock(&wq_pool_attach_mutex);
4867}
4868
66448bc2
MM
4869#ifdef CONFIG_SMP
4870
db7bccf4
TH
4871/*
4872 * CPU hotplug.
4873 *
e22bee78 4874 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4875 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4876 * pool which make migrating pending and scheduled works very
e22bee78 4877 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4878 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4879 * blocked draining impractical.
4880 *
24647570 4881 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4882 * running as an unbound one and allowing it to be reattached later if the
4883 * cpu comes back online.
db7bccf4 4884 */
1da177e4 4885
e8b3f8db 4886static void unbind_workers(int cpu)
3af24433 4887{
4ce62e9e 4888 struct worker_pool *pool;
db7bccf4 4889 struct worker *worker;
3af24433 4890
f02ae73a 4891 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4892 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 4893 raw_spin_lock_irq(&pool->lock);
3af24433 4894
94cf58bb 4895 /*
92f9c5c4 4896 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4897 * unbound and set DISASSOCIATED. Before this, all workers
4898 * except for the ones which are still executing works from
4899 * before the last CPU down must be on the cpu. After
4900 * this, they may become diasporas.
4901 */
da028469 4902 for_each_pool_worker(worker, pool)
c9e7cf27 4903 worker->flags |= WORKER_UNBOUND;
06ba38a9 4904
24647570 4905 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4906
a9b8a985 4907 raw_spin_unlock_irq(&pool->lock);
1258fae7 4908 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4909
eb283428
LJ
4910 /*
4911 * Call schedule() so that we cross rq->lock and thus can
4912 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4913 * This is necessary as scheduler callbacks may be invoked
4914 * from other cpus.
4915 */
4916 schedule();
06ba38a9 4917
eb283428
LJ
4918 /*
4919 * Sched callbacks are disabled now. Zap nr_running.
4920 * After this, nr_running stays zero and need_more_worker()
4921 * and keep_working() are always true as long as the
4922 * worklist is not empty. This pool now behaves as an
4923 * unbound (in terms of concurrency management) pool which
4924 * are served by workers tied to the pool.
4925 */
e19e397a 4926 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4927
4928 /*
4929 * With concurrency management just turned off, a busy
4930 * worker blocking could lead to lengthy stalls. Kick off
4931 * unbound chain execution of currently pending work items.
4932 */
a9b8a985 4933 raw_spin_lock_irq(&pool->lock);
eb283428 4934 wake_up_worker(pool);
a9b8a985 4935 raw_spin_unlock_irq(&pool->lock);
eb283428 4936 }
3af24433 4937}
3af24433 4938
bd7c089e
TH
4939/**
4940 * rebind_workers - rebind all workers of a pool to the associated CPU
4941 * @pool: pool of interest
4942 *
a9ab775b 4943 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4944 */
4945static void rebind_workers(struct worker_pool *pool)
4946{
a9ab775b 4947 struct worker *worker;
bd7c089e 4948
1258fae7 4949 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4950
a9ab775b
TH
4951 /*
4952 * Restore CPU affinity of all workers. As all idle workers should
4953 * be on the run-queue of the associated CPU before any local
402dd89d 4954 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4955 * of all workers first and then clear UNBOUND. As we're called
4956 * from CPU_ONLINE, the following shouldn't fail.
4957 */
da028469 4958 for_each_pool_worker(worker, pool)
a9ab775b
TH
4959 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4960 pool->attrs->cpumask) < 0);
bd7c089e 4961
a9b8a985 4962 raw_spin_lock_irq(&pool->lock);
f7c17d26 4963
3de5e884 4964 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4965
da028469 4966 for_each_pool_worker(worker, pool) {
a9ab775b 4967 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4968
4969 /*
a9ab775b
TH
4970 * A bound idle worker should actually be on the runqueue
4971 * of the associated CPU for local wake-ups targeting it to
4972 * work. Kick all idle workers so that they migrate to the
4973 * associated CPU. Doing this in the same loop as
4974 * replacing UNBOUND with REBOUND is safe as no worker will
4975 * be bound before @pool->lock is released.
bd7c089e 4976 */
a9ab775b
TH
4977 if (worker_flags & WORKER_IDLE)
4978 wake_up_process(worker->task);
bd7c089e 4979
a9ab775b
TH
4980 /*
4981 * We want to clear UNBOUND but can't directly call
4982 * worker_clr_flags() or adjust nr_running. Atomically
4983 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4984 * @worker will clear REBOUND using worker_clr_flags() when
4985 * it initiates the next execution cycle thus restoring
4986 * concurrency management. Note that when or whether
4987 * @worker clears REBOUND doesn't affect correctness.
4988 *
c95491ed 4989 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 4990 * tested without holding any lock in
6d25be57 4991 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
4992 * fail incorrectly leading to premature concurrency
4993 * management operations.
4994 */
4995 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4996 worker_flags |= WORKER_REBOUND;
4997 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4998 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4999 }
a9ab775b 5000
a9b8a985 5001 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5002}
5003
7dbc725e
TH
5004/**
5005 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5006 * @pool: unbound pool of interest
5007 * @cpu: the CPU which is coming up
5008 *
5009 * An unbound pool may end up with a cpumask which doesn't have any online
5010 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5011 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5012 * online CPU before, cpus_allowed of all its workers should be restored.
5013 */
5014static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5015{
5016 static cpumask_t cpumask;
5017 struct worker *worker;
7dbc725e 5018
1258fae7 5019 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5020
5021 /* is @cpu allowed for @pool? */
5022 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5023 return;
5024
7dbc725e 5025 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5026
5027 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5028 for_each_pool_worker(worker, pool)
d945b5e9 5029 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5030}
5031
7ee681b2
TG
5032int workqueue_prepare_cpu(unsigned int cpu)
5033{
5034 struct worker_pool *pool;
5035
5036 for_each_cpu_worker_pool(pool, cpu) {
5037 if (pool->nr_workers)
5038 continue;
5039 if (!create_worker(pool))
5040 return -ENOMEM;
5041 }
5042 return 0;
5043}
5044
5045int workqueue_online_cpu(unsigned int cpu)
3af24433 5046{
4ce62e9e 5047 struct worker_pool *pool;
4c16bd32 5048 struct workqueue_struct *wq;
7dbc725e 5049 int pi;
3ce63377 5050
7ee681b2 5051 mutex_lock(&wq_pool_mutex);
7dbc725e 5052
7ee681b2 5053 for_each_pool(pool, pi) {
1258fae7 5054 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5055
7ee681b2
TG
5056 if (pool->cpu == cpu)
5057 rebind_workers(pool);
5058 else if (pool->cpu < 0)
5059 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5060
1258fae7 5061 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5062 }
6ba94429 5063
7ee681b2
TG
5064 /* update NUMA affinity of unbound workqueues */
5065 list_for_each_entry(wq, &workqueues, list)
5066 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5067
7ee681b2
TG
5068 mutex_unlock(&wq_pool_mutex);
5069 return 0;
6ba94429
FW
5070}
5071
7ee681b2 5072int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5073{
6ba94429
FW
5074 struct workqueue_struct *wq;
5075
7ee681b2 5076 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5077 if (WARN_ON(cpu != smp_processor_id()))
5078 return -1;
5079
5080 unbind_workers(cpu);
7ee681b2
TG
5081
5082 /* update NUMA affinity of unbound workqueues */
5083 mutex_lock(&wq_pool_mutex);
5084 list_for_each_entry(wq, &workqueues, list)
5085 wq_update_unbound_numa(wq, cpu, false);
5086 mutex_unlock(&wq_pool_mutex);
5087
7ee681b2 5088 return 0;
6ba94429
FW
5089}
5090
6ba94429
FW
5091struct work_for_cpu {
5092 struct work_struct work;
5093 long (*fn)(void *);
5094 void *arg;
5095 long ret;
5096};
5097
5098static void work_for_cpu_fn(struct work_struct *work)
5099{
5100 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5101
5102 wfc->ret = wfc->fn(wfc->arg);
5103}
5104
5105/**
22aceb31 5106 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5107 * @cpu: the cpu to run on
5108 * @fn: the function to run
5109 * @arg: the function arg
5110 *
5111 * It is up to the caller to ensure that the cpu doesn't go offline.
5112 * The caller must not hold any locks which would prevent @fn from completing.
5113 *
5114 * Return: The value @fn returns.
5115 */
5116long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5117{
5118 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5119
5120 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5121 schedule_work_on(cpu, &wfc.work);
5122 flush_work(&wfc.work);
5123 destroy_work_on_stack(&wfc.work);
5124 return wfc.ret;
5125}
5126EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5127
5128/**
5129 * work_on_cpu_safe - run a function in thread context on a particular cpu
5130 * @cpu: the cpu to run on
5131 * @fn: the function to run
5132 * @arg: the function argument
5133 *
5134 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5135 * any locks which would prevent @fn from completing.
5136 *
5137 * Return: The value @fn returns.
5138 */
5139long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5140{
5141 long ret = -ENODEV;
5142
5143 get_online_cpus();
5144 if (cpu_online(cpu))
5145 ret = work_on_cpu(cpu, fn, arg);
5146 put_online_cpus();
5147 return ret;
5148}
5149EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5150#endif /* CONFIG_SMP */
5151
5152#ifdef CONFIG_FREEZER
5153
5154/**
5155 * freeze_workqueues_begin - begin freezing workqueues
5156 *
5157 * Start freezing workqueues. After this function returns, all freezable
5158 * workqueues will queue new works to their delayed_works list instead of
5159 * pool->worklist.
5160 *
5161 * CONTEXT:
5162 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5163 */
5164void freeze_workqueues_begin(void)
5165{
5166 struct workqueue_struct *wq;
5167 struct pool_workqueue *pwq;
5168
5169 mutex_lock(&wq_pool_mutex);
5170
5171 WARN_ON_ONCE(workqueue_freezing);
5172 workqueue_freezing = true;
5173
5174 list_for_each_entry(wq, &workqueues, list) {
5175 mutex_lock(&wq->mutex);
5176 for_each_pwq(pwq, wq)
5177 pwq_adjust_max_active(pwq);
5178 mutex_unlock(&wq->mutex);
5179 }
5180
5181 mutex_unlock(&wq_pool_mutex);
5182}
5183
5184/**
5185 * freeze_workqueues_busy - are freezable workqueues still busy?
5186 *
5187 * Check whether freezing is complete. This function must be called
5188 * between freeze_workqueues_begin() and thaw_workqueues().
5189 *
5190 * CONTEXT:
5191 * Grabs and releases wq_pool_mutex.
5192 *
5193 * Return:
5194 * %true if some freezable workqueues are still busy. %false if freezing
5195 * is complete.
5196 */
5197bool freeze_workqueues_busy(void)
5198{
5199 bool busy = false;
5200 struct workqueue_struct *wq;
5201 struct pool_workqueue *pwq;
5202
5203 mutex_lock(&wq_pool_mutex);
5204
5205 WARN_ON_ONCE(!workqueue_freezing);
5206
5207 list_for_each_entry(wq, &workqueues, list) {
5208 if (!(wq->flags & WQ_FREEZABLE))
5209 continue;
5210 /*
5211 * nr_active is monotonically decreasing. It's safe
5212 * to peek without lock.
5213 */
24acfb71 5214 rcu_read_lock();
6ba94429
FW
5215 for_each_pwq(pwq, wq) {
5216 WARN_ON_ONCE(pwq->nr_active < 0);
5217 if (pwq->nr_active) {
5218 busy = true;
24acfb71 5219 rcu_read_unlock();
6ba94429
FW
5220 goto out_unlock;
5221 }
5222 }
24acfb71 5223 rcu_read_unlock();
6ba94429
FW
5224 }
5225out_unlock:
5226 mutex_unlock(&wq_pool_mutex);
5227 return busy;
5228}
5229
5230/**
5231 * thaw_workqueues - thaw workqueues
5232 *
5233 * Thaw workqueues. Normal queueing is restored and all collected
5234 * frozen works are transferred to their respective pool worklists.
5235 *
5236 * CONTEXT:
5237 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5238 */
5239void thaw_workqueues(void)
5240{
5241 struct workqueue_struct *wq;
5242 struct pool_workqueue *pwq;
5243
5244 mutex_lock(&wq_pool_mutex);
5245
5246 if (!workqueue_freezing)
5247 goto out_unlock;
5248
5249 workqueue_freezing = false;
5250
5251 /* restore max_active and repopulate worklist */
5252 list_for_each_entry(wq, &workqueues, list) {
5253 mutex_lock(&wq->mutex);
5254 for_each_pwq(pwq, wq)
5255 pwq_adjust_max_active(pwq);
5256 mutex_unlock(&wq->mutex);
5257 }
5258
5259out_unlock:
5260 mutex_unlock(&wq_pool_mutex);
5261}
5262#endif /* CONFIG_FREEZER */
5263
042f7df1
LJ
5264static int workqueue_apply_unbound_cpumask(void)
5265{
5266 LIST_HEAD(ctxs);
5267 int ret = 0;
5268 struct workqueue_struct *wq;
5269 struct apply_wqattrs_ctx *ctx, *n;
5270
5271 lockdep_assert_held(&wq_pool_mutex);
5272
5273 list_for_each_entry(wq, &workqueues, list) {
5274 if (!(wq->flags & WQ_UNBOUND))
5275 continue;
5276 /* creating multiple pwqs breaks ordering guarantee */
5277 if (wq->flags & __WQ_ORDERED)
5278 continue;
5279
5280 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5281 if (!ctx) {
5282 ret = -ENOMEM;
5283 break;
5284 }
5285
5286 list_add_tail(&ctx->list, &ctxs);
5287 }
5288
5289 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5290 if (!ret)
5291 apply_wqattrs_commit(ctx);
5292 apply_wqattrs_cleanup(ctx);
5293 }
5294
5295 return ret;
5296}
5297
5298/**
5299 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5300 * @cpumask: the cpumask to set
5301 *
5302 * The low-level workqueues cpumask is a global cpumask that limits
5303 * the affinity of all unbound workqueues. This function check the @cpumask
5304 * and apply it to all unbound workqueues and updates all pwqs of them.
5305 *
5306 * Retun: 0 - Success
5307 * -EINVAL - Invalid @cpumask
5308 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5309 */
5310int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5311{
5312 int ret = -EINVAL;
5313 cpumask_var_t saved_cpumask;
5314
5315 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5316 return -ENOMEM;
5317
c98a9805
TS
5318 /*
5319 * Not excluding isolated cpus on purpose.
5320 * If the user wishes to include them, we allow that.
5321 */
042f7df1
LJ
5322 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5323 if (!cpumask_empty(cpumask)) {
a0111cf6 5324 apply_wqattrs_lock();
042f7df1
LJ
5325
5326 /* save the old wq_unbound_cpumask. */
5327 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5328
5329 /* update wq_unbound_cpumask at first and apply it to wqs. */
5330 cpumask_copy(wq_unbound_cpumask, cpumask);
5331 ret = workqueue_apply_unbound_cpumask();
5332
5333 /* restore the wq_unbound_cpumask when failed. */
5334 if (ret < 0)
5335 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5336
a0111cf6 5337 apply_wqattrs_unlock();
042f7df1 5338 }
042f7df1
LJ
5339
5340 free_cpumask_var(saved_cpumask);
5341 return ret;
5342}
5343
6ba94429
FW
5344#ifdef CONFIG_SYSFS
5345/*
5346 * Workqueues with WQ_SYSFS flag set is visible to userland via
5347 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5348 * following attributes.
5349 *
5350 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5351 * max_active RW int : maximum number of in-flight work items
5352 *
5353 * Unbound workqueues have the following extra attributes.
5354 *
9a19b463 5355 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5356 * nice RW int : nice value of the workers
5357 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5358 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5359 */
5360struct wq_device {
5361 struct workqueue_struct *wq;
5362 struct device dev;
5363};
5364
5365static struct workqueue_struct *dev_to_wq(struct device *dev)
5366{
5367 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5368
5369 return wq_dev->wq;
5370}
5371
5372static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5373 char *buf)
5374{
5375 struct workqueue_struct *wq = dev_to_wq(dev);
5376
5377 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5378}
5379static DEVICE_ATTR_RO(per_cpu);
5380
5381static ssize_t max_active_show(struct device *dev,
5382 struct device_attribute *attr, char *buf)
5383{
5384 struct workqueue_struct *wq = dev_to_wq(dev);
5385
5386 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5387}
5388
5389static ssize_t max_active_store(struct device *dev,
5390 struct device_attribute *attr, const char *buf,
5391 size_t count)
5392{
5393 struct workqueue_struct *wq = dev_to_wq(dev);
5394 int val;
5395
5396 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5397 return -EINVAL;
5398
5399 workqueue_set_max_active(wq, val);
5400 return count;
5401}
5402static DEVICE_ATTR_RW(max_active);
5403
5404static struct attribute *wq_sysfs_attrs[] = {
5405 &dev_attr_per_cpu.attr,
5406 &dev_attr_max_active.attr,
5407 NULL,
5408};
5409ATTRIBUTE_GROUPS(wq_sysfs);
5410
5411static ssize_t wq_pool_ids_show(struct device *dev,
5412 struct device_attribute *attr, char *buf)
5413{
5414 struct workqueue_struct *wq = dev_to_wq(dev);
5415 const char *delim = "";
5416 int node, written = 0;
5417
24acfb71
TG
5418 get_online_cpus();
5419 rcu_read_lock();
6ba94429
FW
5420 for_each_node(node) {
5421 written += scnprintf(buf + written, PAGE_SIZE - written,
5422 "%s%d:%d", delim, node,
5423 unbound_pwq_by_node(wq, node)->pool->id);
5424 delim = " ";
5425 }
5426 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5427 rcu_read_unlock();
5428 put_online_cpus();
6ba94429
FW
5429
5430 return written;
5431}
5432
5433static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5434 char *buf)
5435{
5436 struct workqueue_struct *wq = dev_to_wq(dev);
5437 int written;
5438
5439 mutex_lock(&wq->mutex);
5440 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5441 mutex_unlock(&wq->mutex);
5442
5443 return written;
5444}
5445
5446/* prepare workqueue_attrs for sysfs store operations */
5447static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5448{
5449 struct workqueue_attrs *attrs;
5450
899a94fe
LJ
5451 lockdep_assert_held(&wq_pool_mutex);
5452
be69d00d 5453 attrs = alloc_workqueue_attrs();
6ba94429
FW
5454 if (!attrs)
5455 return NULL;
5456
6ba94429 5457 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5458 return attrs;
5459}
5460
5461static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5462 const char *buf, size_t count)
5463{
5464 struct workqueue_struct *wq = dev_to_wq(dev);
5465 struct workqueue_attrs *attrs;
d4d3e257
LJ
5466 int ret = -ENOMEM;
5467
5468 apply_wqattrs_lock();
6ba94429
FW
5469
5470 attrs = wq_sysfs_prep_attrs(wq);
5471 if (!attrs)
d4d3e257 5472 goto out_unlock;
6ba94429
FW
5473
5474 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5475 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5476 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5477 else
5478 ret = -EINVAL;
5479
d4d3e257
LJ
5480out_unlock:
5481 apply_wqattrs_unlock();
6ba94429
FW
5482 free_workqueue_attrs(attrs);
5483 return ret ?: count;
5484}
5485
5486static ssize_t wq_cpumask_show(struct device *dev,
5487 struct device_attribute *attr, char *buf)
5488{
5489 struct workqueue_struct *wq = dev_to_wq(dev);
5490 int written;
5491
5492 mutex_lock(&wq->mutex);
5493 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5494 cpumask_pr_args(wq->unbound_attrs->cpumask));
5495 mutex_unlock(&wq->mutex);
5496 return written;
5497}
5498
5499static ssize_t wq_cpumask_store(struct device *dev,
5500 struct device_attribute *attr,
5501 const char *buf, size_t count)
5502{
5503 struct workqueue_struct *wq = dev_to_wq(dev);
5504 struct workqueue_attrs *attrs;
d4d3e257
LJ
5505 int ret = -ENOMEM;
5506
5507 apply_wqattrs_lock();
6ba94429
FW
5508
5509 attrs = wq_sysfs_prep_attrs(wq);
5510 if (!attrs)
d4d3e257 5511 goto out_unlock;
6ba94429
FW
5512
5513 ret = cpumask_parse(buf, attrs->cpumask);
5514 if (!ret)
d4d3e257 5515 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5516
d4d3e257
LJ
5517out_unlock:
5518 apply_wqattrs_unlock();
6ba94429
FW
5519 free_workqueue_attrs(attrs);
5520 return ret ?: count;
5521}
5522
5523static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5524 char *buf)
5525{
5526 struct workqueue_struct *wq = dev_to_wq(dev);
5527 int written;
7dbc725e 5528
6ba94429
FW
5529 mutex_lock(&wq->mutex);
5530 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5531 !wq->unbound_attrs->no_numa);
5532 mutex_unlock(&wq->mutex);
4c16bd32 5533
6ba94429 5534 return written;
65758202
TH
5535}
5536
6ba94429
FW
5537static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5538 const char *buf, size_t count)
65758202 5539{
6ba94429
FW
5540 struct workqueue_struct *wq = dev_to_wq(dev);
5541 struct workqueue_attrs *attrs;
d4d3e257
LJ
5542 int v, ret = -ENOMEM;
5543
5544 apply_wqattrs_lock();
4c16bd32 5545
6ba94429
FW
5546 attrs = wq_sysfs_prep_attrs(wq);
5547 if (!attrs)
d4d3e257 5548 goto out_unlock;
4c16bd32 5549
6ba94429
FW
5550 ret = -EINVAL;
5551 if (sscanf(buf, "%d", &v) == 1) {
5552 attrs->no_numa = !v;
d4d3e257 5553 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5554 }
6ba94429 5555
d4d3e257
LJ
5556out_unlock:
5557 apply_wqattrs_unlock();
6ba94429
FW
5558 free_workqueue_attrs(attrs);
5559 return ret ?: count;
65758202
TH
5560}
5561
6ba94429
FW
5562static struct device_attribute wq_sysfs_unbound_attrs[] = {
5563 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5564 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5565 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5566 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5567 __ATTR_NULL,
5568};
8ccad40d 5569
6ba94429
FW
5570static struct bus_type wq_subsys = {
5571 .name = "workqueue",
5572 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5573};
5574
b05a7928
FW
5575static ssize_t wq_unbound_cpumask_show(struct device *dev,
5576 struct device_attribute *attr, char *buf)
5577{
5578 int written;
5579
042f7df1 5580 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5581 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5582 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5583 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5584
5585 return written;
5586}
5587
042f7df1
LJ
5588static ssize_t wq_unbound_cpumask_store(struct device *dev,
5589 struct device_attribute *attr, const char *buf, size_t count)
5590{
5591 cpumask_var_t cpumask;
5592 int ret;
5593
5594 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5595 return -ENOMEM;
5596
5597 ret = cpumask_parse(buf, cpumask);
5598 if (!ret)
5599 ret = workqueue_set_unbound_cpumask(cpumask);
5600
5601 free_cpumask_var(cpumask);
5602 return ret ? ret : count;
5603}
5604
b05a7928 5605static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5606 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5607 wq_unbound_cpumask_store);
b05a7928 5608
6ba94429 5609static int __init wq_sysfs_init(void)
2d3854a3 5610{
b05a7928
FW
5611 int err;
5612
5613 err = subsys_virtual_register(&wq_subsys, NULL);
5614 if (err)
5615 return err;
5616
5617 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5618}
6ba94429 5619core_initcall(wq_sysfs_init);
2d3854a3 5620
6ba94429 5621static void wq_device_release(struct device *dev)
2d3854a3 5622{
6ba94429 5623 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5624
6ba94429 5625 kfree(wq_dev);
2d3854a3 5626}
a0a1a5fd
TH
5627
5628/**
6ba94429
FW
5629 * workqueue_sysfs_register - make a workqueue visible in sysfs
5630 * @wq: the workqueue to register
a0a1a5fd 5631 *
6ba94429
FW
5632 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5633 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5634 * which is the preferred method.
a0a1a5fd 5635 *
6ba94429
FW
5636 * Workqueue user should use this function directly iff it wants to apply
5637 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5638 * apply_workqueue_attrs() may race against userland updating the
5639 * attributes.
5640 *
5641 * Return: 0 on success, -errno on failure.
a0a1a5fd 5642 */
6ba94429 5643int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5644{
6ba94429
FW
5645 struct wq_device *wq_dev;
5646 int ret;
a0a1a5fd 5647
6ba94429 5648 /*
402dd89d 5649 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5650 * attributes breaks ordering guarantee. Disallow exposing ordered
5651 * workqueues.
5652 */
0a94efb5 5653 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5654 return -EINVAL;
a0a1a5fd 5655
6ba94429
FW
5656 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5657 if (!wq_dev)
5658 return -ENOMEM;
5bcab335 5659
6ba94429
FW
5660 wq_dev->wq = wq;
5661 wq_dev->dev.bus = &wq_subsys;
6ba94429 5662 wq_dev->dev.release = wq_device_release;
23217b44 5663 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5664
6ba94429
FW
5665 /*
5666 * unbound_attrs are created separately. Suppress uevent until
5667 * everything is ready.
5668 */
5669 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5670
6ba94429
FW
5671 ret = device_register(&wq_dev->dev);
5672 if (ret) {
537f4146 5673 put_device(&wq_dev->dev);
6ba94429
FW
5674 wq->wq_dev = NULL;
5675 return ret;
5676 }
a0a1a5fd 5677
6ba94429
FW
5678 if (wq->flags & WQ_UNBOUND) {
5679 struct device_attribute *attr;
a0a1a5fd 5680
6ba94429
FW
5681 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5682 ret = device_create_file(&wq_dev->dev, attr);
5683 if (ret) {
5684 device_unregister(&wq_dev->dev);
5685 wq->wq_dev = NULL;
5686 return ret;
a0a1a5fd
TH
5687 }
5688 }
5689 }
6ba94429
FW
5690
5691 dev_set_uevent_suppress(&wq_dev->dev, false);
5692 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5693 return 0;
a0a1a5fd
TH
5694}
5695
5696/**
6ba94429
FW
5697 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5698 * @wq: the workqueue to unregister
a0a1a5fd 5699 *
6ba94429 5700 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5701 */
6ba94429 5702static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5703{
6ba94429 5704 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5705
6ba94429
FW
5706 if (!wq->wq_dev)
5707 return;
a0a1a5fd 5708
6ba94429
FW
5709 wq->wq_dev = NULL;
5710 device_unregister(&wq_dev->dev);
a0a1a5fd 5711}
6ba94429
FW
5712#else /* CONFIG_SYSFS */
5713static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5714#endif /* CONFIG_SYSFS */
a0a1a5fd 5715
82607adc
TH
5716/*
5717 * Workqueue watchdog.
5718 *
5719 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5720 * flush dependency, a concurrency managed work item which stays RUNNING
5721 * indefinitely. Workqueue stalls can be very difficult to debug as the
5722 * usual warning mechanisms don't trigger and internal workqueue state is
5723 * largely opaque.
5724 *
5725 * Workqueue watchdog monitors all worker pools periodically and dumps
5726 * state if some pools failed to make forward progress for a while where
5727 * forward progress is defined as the first item on ->worklist changing.
5728 *
5729 * This mechanism is controlled through the kernel parameter
5730 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5731 * corresponding sysfs parameter file.
5732 */
5733#ifdef CONFIG_WQ_WATCHDOG
5734
82607adc 5735static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5736static struct timer_list wq_watchdog_timer;
82607adc
TH
5737
5738static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5739static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5740
5741static void wq_watchdog_reset_touched(void)
5742{
5743 int cpu;
5744
5745 wq_watchdog_touched = jiffies;
5746 for_each_possible_cpu(cpu)
5747 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5748}
5749
5cd79d6a 5750static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5751{
5752 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5753 bool lockup_detected = false;
5754 struct worker_pool *pool;
5755 int pi;
5756
5757 if (!thresh)
5758 return;
5759
5760 rcu_read_lock();
5761
5762 for_each_pool(pool, pi) {
5763 unsigned long pool_ts, touched, ts;
5764
5765 if (list_empty(&pool->worklist))
5766 continue;
5767
5768 /* get the latest of pool and touched timestamps */
5769 pool_ts = READ_ONCE(pool->watchdog_ts);
5770 touched = READ_ONCE(wq_watchdog_touched);
5771
5772 if (time_after(pool_ts, touched))
5773 ts = pool_ts;
5774 else
5775 ts = touched;
5776
5777 if (pool->cpu >= 0) {
5778 unsigned long cpu_touched =
5779 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5780 pool->cpu));
5781 if (time_after(cpu_touched, ts))
5782 ts = cpu_touched;
5783 }
5784
5785 /* did we stall? */
5786 if (time_after(jiffies, ts + thresh)) {
5787 lockup_detected = true;
5788 pr_emerg("BUG: workqueue lockup - pool");
5789 pr_cont_pool_info(pool);
5790 pr_cont(" stuck for %us!\n",
5791 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5792 }
5793 }
5794
5795 rcu_read_unlock();
5796
5797 if (lockup_detected)
5798 show_workqueue_state();
5799
5800 wq_watchdog_reset_touched();
5801 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5802}
5803
cb9d7fd5 5804notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5805{
5806 if (cpu >= 0)
5807 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5808 else
5809 wq_watchdog_touched = jiffies;
5810}
5811
5812static void wq_watchdog_set_thresh(unsigned long thresh)
5813{
5814 wq_watchdog_thresh = 0;
5815 del_timer_sync(&wq_watchdog_timer);
5816
5817 if (thresh) {
5818 wq_watchdog_thresh = thresh;
5819 wq_watchdog_reset_touched();
5820 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5821 }
5822}
5823
5824static int wq_watchdog_param_set_thresh(const char *val,
5825 const struct kernel_param *kp)
5826{
5827 unsigned long thresh;
5828 int ret;
5829
5830 ret = kstrtoul(val, 0, &thresh);
5831 if (ret)
5832 return ret;
5833
5834 if (system_wq)
5835 wq_watchdog_set_thresh(thresh);
5836 else
5837 wq_watchdog_thresh = thresh;
5838
5839 return 0;
5840}
5841
5842static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5843 .set = wq_watchdog_param_set_thresh,
5844 .get = param_get_ulong,
5845};
5846
5847module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5848 0644);
5849
5850static void wq_watchdog_init(void)
5851{
5cd79d6a 5852 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5853 wq_watchdog_set_thresh(wq_watchdog_thresh);
5854}
5855
5856#else /* CONFIG_WQ_WATCHDOG */
5857
5858static inline void wq_watchdog_init(void) { }
5859
5860#endif /* CONFIG_WQ_WATCHDOG */
5861
bce90380
TH
5862static void __init wq_numa_init(void)
5863{
5864 cpumask_var_t *tbl;
5865 int node, cpu;
5866
bce90380
TH
5867 if (num_possible_nodes() <= 1)
5868 return;
5869
d55262c4
TH
5870 if (wq_disable_numa) {
5871 pr_info("workqueue: NUMA affinity support disabled\n");
5872 return;
5873 }
5874
be69d00d 5875 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5876 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5877
bce90380
TH
5878 /*
5879 * We want masks of possible CPUs of each node which isn't readily
5880 * available. Build one from cpu_to_node() which should have been
5881 * fully initialized by now.
5882 */
6396bb22 5883 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5884 BUG_ON(!tbl);
5885
5886 for_each_node(node)
5a6024f1 5887 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5888 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5889
5890 for_each_possible_cpu(cpu) {
5891 node = cpu_to_node(cpu);
5892 if (WARN_ON(node == NUMA_NO_NODE)) {
5893 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5894 /* happens iff arch is bonkers, let's just proceed */
5895 return;
5896 }
5897 cpumask_set_cpu(cpu, tbl[node]);
5898 }
5899
5900 wq_numa_possible_cpumask = tbl;
5901 wq_numa_enabled = true;
5902}
5903
3347fa09
TH
5904/**
5905 * workqueue_init_early - early init for workqueue subsystem
5906 *
5907 * This is the first half of two-staged workqueue subsystem initialization
5908 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5909 * idr are up. It sets up all the data structures and system workqueues
5910 * and allows early boot code to create workqueues and queue/cancel work
5911 * items. Actual work item execution starts only after kthreads can be
5912 * created and scheduled right before early initcalls.
5913 */
2333e829 5914void __init workqueue_init_early(void)
1da177e4 5915{
7a4e344c 5916 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5917 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5918 int i, cpu;
c34056a3 5919
10cdb157 5920 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 5921
b05a7928 5922 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5923 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5924
e904e6c2
TH
5925 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5926
706026c2 5927 /* initialize CPU pools */
29c91e99 5928 for_each_possible_cpu(cpu) {
4ce62e9e 5929 struct worker_pool *pool;
8b03ae3c 5930
7a4e344c 5931 i = 0;
f02ae73a 5932 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5933 BUG_ON(init_worker_pool(pool));
ec22ca5e 5934 pool->cpu = cpu;
29c91e99 5935 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5936 pool->attrs->nice = std_nice[i++];
f3f90ad4 5937 pool->node = cpu_to_node(cpu);
7a4e344c 5938
9daf9e67 5939 /* alloc pool ID */
68e13a67 5940 mutex_lock(&wq_pool_mutex);
9daf9e67 5941 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5942 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5943 }
8b03ae3c
TH
5944 }
5945
8a2b7538 5946 /* create default unbound and ordered wq attrs */
29c91e99
TH
5947 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5948 struct workqueue_attrs *attrs;
5949
be69d00d 5950 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 5951 attrs->nice = std_nice[i];
29c91e99 5952 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5953
5954 /*
5955 * An ordered wq should have only one pwq as ordering is
5956 * guaranteed by max_active which is enforced by pwqs.
5957 * Turn off NUMA so that dfl_pwq is used for all nodes.
5958 */
be69d00d 5959 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
5960 attrs->nice = std_nice[i];
5961 attrs->no_numa = true;
5962 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5963 }
5964
d320c038 5965 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5966 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5967 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5968 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5969 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5970 system_freezable_wq = alloc_workqueue("events_freezable",
5971 WQ_FREEZABLE, 0);
0668106c
VK
5972 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5973 WQ_POWER_EFFICIENT, 0);
5974 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5975 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5976 0);
1aabe902 5977 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5978 !system_unbound_wq || !system_freezable_wq ||
5979 !system_power_efficient_wq ||
5980 !system_freezable_power_efficient_wq);
3347fa09
TH
5981}
5982
5983/**
5984 * workqueue_init - bring workqueue subsystem fully online
5985 *
5986 * This is the latter half of two-staged workqueue subsystem initialization
5987 * and invoked as soon as kthreads can be created and scheduled.
5988 * Workqueues have been created and work items queued on them, but there
5989 * are no kworkers executing the work items yet. Populate the worker pools
5990 * with the initial workers and enable future kworker creations.
5991 */
2333e829 5992void __init workqueue_init(void)
3347fa09 5993{
2186d9f9 5994 struct workqueue_struct *wq;
3347fa09
TH
5995 struct worker_pool *pool;
5996 int cpu, bkt;
5997
2186d9f9
TH
5998 /*
5999 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6000 * CPU to node mapping may not be available that early on some
6001 * archs such as power and arm64. As per-cpu pools created
6002 * previously could be missing node hint and unbound pools NUMA
6003 * affinity, fix them up.
40c17f75
TH
6004 *
6005 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6006 */
6007 wq_numa_init();
6008
6009 mutex_lock(&wq_pool_mutex);
6010
6011 for_each_possible_cpu(cpu) {
6012 for_each_cpu_worker_pool(pool, cpu) {
6013 pool->node = cpu_to_node(cpu);
6014 }
6015 }
6016
40c17f75 6017 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6018 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6019 WARN(init_rescuer(wq),
6020 "workqueue: failed to create early rescuer for %s",
6021 wq->name);
6022 }
2186d9f9
TH
6023
6024 mutex_unlock(&wq_pool_mutex);
6025
3347fa09
TH
6026 /* create the initial workers */
6027 for_each_online_cpu(cpu) {
6028 for_each_cpu_worker_pool(pool, cpu) {
6029 pool->flags &= ~POOL_DISASSOCIATED;
6030 BUG_ON(!create_worker(pool));
6031 }
6032 }
6033
6034 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6035 BUG_ON(!create_worker(pool));
6036
6037 wq_online = true;
82607adc 6038 wq_watchdog_init();
1da177e4 6039}