]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/workqueue.c
tools build: Use $(shell ) instead of `` to get embedded libperl's ccopts
[mirror_ubuntu-focal-kernel.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
b5fd3b11 53#include <linux/kvm_para.h>
e22bee78 54
ea138446 55#include "workqueue_internal.h"
1da177e4 56
c8e55f36 57enum {
24647570
TH
58 /*
59 * worker_pool flags
bc2ae0f5 60 *
24647570 61 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 68 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 69 *
bc3a1afc 70 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 71 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 72 * worker_attach_to_pool() is in progress.
bc2ae0f5 73 */
692b4825 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 76
c8e55f36 77 /* worker flags */
c8e55f36
TH
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 80 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 84
a9ab775b
TH
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 87
e34cdddb 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 89
29c91e99 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 92
e22bee78
TH
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
3233cdbd
TH
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
e22bee78
TH
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
8698a745 104 * all cpus. Give MIN_NICE.
e22bee78 105 */
8698a745
DY
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
108
109 WQ_NAME_LEN = 24,
c8e55f36 110};
1da177e4
LT
111
112/*
4690c4ab
TH
113 * Structure fields follow one of the following exclusion rules.
114 *
e41e704b
TH
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
4690c4ab 117 *
e22bee78
TH
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
d565ed63 121 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 122 *
d565ed63
TH
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 127 *
1258fae7 128 * A: wq_pool_attach_mutex protected.
822d8405 129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
24acfb71 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 133 *
5b95e1af
LJ
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 137 * RCU for reads.
5b95e1af 138 *
3c25a55d
LJ
139 * WQ: wq->mutex protected.
140 *
24acfb71 141 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
142 *
143 * MD: wq_mayday_lock protected.
1da177e4 144 */
1da177e4 145
2eaebdb3 146/* struct worker is defined in workqueue_internal.h */
c34056a3 147
bd7bdd43 148struct worker_pool {
d565ed63 149 spinlock_t lock; /* the pool lock */
d84ff051 150 int cpu; /* I: the associated cpu */
f3f90ad4 151 int node; /* I: the associated node ID */
9daf9e67 152 int id; /* I: pool ID */
11ebea50 153 unsigned int flags; /* X: flags */
bd7bdd43 154
82607adc
TH
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
bd7bdd43 157 struct list_head worklist; /* L: list of pending works */
ea1abd61 158
5826cc8f
LJ
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
c5aa87bb 166 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
2607d7a6 170 struct worker *manager; /* L: purely informational */
92f9c5c4 171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
24acfb71 188 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 217 * itself is also RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
669de8bd
BVA
264 char *lock_name;
265 struct lock_class_key key;
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
ecf6881f 268 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 269
e2dca7ad 270 /*
24acfb71
TG
271 * Destruction of workqueue_struct is RCU protected to allow walking
272 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
2728fd2f
TH
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
281};
282
e904e6c2
TH
283static struct kmem_cache *pwq_cache;
284
bce90380
TH
285static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
d55262c4
TH
288static bool wq_disable_numa;
289module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
cee22a15 291/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 292static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
293module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
863b710b 295static bool wq_online; /* can kworkers be created yet? */
3347fa09 296
bce90380
TH
297static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
4c16bd32
TH
299/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
68e13a67 302static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 303static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 304static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 305static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 306
e2dca7ad 307static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 308static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 309
ef557180
MG
310/* PL: allowable cpus for unbound wqs and work items */
311static cpumask_var_t wq_unbound_cpumask;
312
313/* CPU where unbound work was last round robin scheduled from this CPU */
314static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 315
f303fccb
TH
316/*
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
320 */
321#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322static bool wq_debug_force_rr_cpu = true;
323#else
324static bool wq_debug_force_rr_cpu = false;
325#endif
326module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327
7d19c5ce 328/* the per-cpu worker pools */
25528213 329static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 330
68e13a67 331static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 332
68e13a67 333/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
334static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335
c5aa87bb 336/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
337static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338
8a2b7538
TH
339/* I: attributes used when instantiating ordered pools on demand */
340static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341
d320c038 342struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 343EXPORT_SYMBOL(system_wq);
044c782c 344struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 345EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 346struct workqueue_struct *system_long_wq __read_mostly;
d320c038 347EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 348struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 349EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 350struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 351EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
352struct workqueue_struct *system_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 356
7d19c5ce 357static int worker_thread(void *__worker);
6ba94429 358static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 359
97bd2347
TH
360#define CREATE_TRACE_POINTS
361#include <trace/events/workqueue.h>
362
68e13a67 363#define assert_rcu_or_pool_mutex() \
24acfb71 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 365 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 366 "RCU or wq_pool_mutex should be held")
5bcab335 367
b09f4fd3 368#define assert_rcu_or_wq_mutex(wq) \
24acfb71 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 370 !lockdep_is_held(&wq->mutex), \
24acfb71 371 "RCU or wq->mutex should be held")
76af4d93 372
5b95e1af 373#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 374 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
375 !lockdep_is_held(&wq->mutex) && \
376 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 377 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 378
f02ae73a
TH
379#define for_each_cpu_worker_pool(pool, cpu) \
380 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
381 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 382 (pool)++)
4ce62e9e 383
17116969
TH
384/**
385 * for_each_pool - iterate through all worker_pools in the system
386 * @pool: iteration cursor
611c92a0 387 * @pi: integer used for iteration
fa1b54e6 388 *
24acfb71 389 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
390 * locked. If the pool needs to be used beyond the locking in effect, the
391 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
392 *
393 * The if/else clause exists only for the lockdep assertion and can be
394 * ignored.
17116969 395 */
611c92a0
TH
396#define for_each_pool(pool, pi) \
397 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 398 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 399 else
17116969 400
822d8405
TH
401/**
402 * for_each_pool_worker - iterate through all workers of a worker_pool
403 * @worker: iteration cursor
822d8405
TH
404 * @pool: worker_pool to iterate workers of
405 *
1258fae7 406 * This must be called with wq_pool_attach_mutex.
822d8405
TH
407 *
408 * The if/else clause exists only for the lockdep assertion and can be
409 * ignored.
410 */
da028469
LJ
411#define for_each_pool_worker(worker, pool) \
412 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 413 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
414 else
415
49e3cf44
TH
416/**
417 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
418 * @pwq: iteration cursor
419 * @wq: the target workqueue
76af4d93 420 *
24acfb71 421 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
422 * If the pwq needs to be used beyond the locking in effect, the caller is
423 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
424 *
425 * The if/else clause exists only for the lockdep assertion and can be
426 * ignored.
49e3cf44
TH
427 */
428#define for_each_pwq(pwq, wq) \
60e0c8af
SAS
429 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
430 lockdep_is_held(&wq->mutex)) \
b09f4fd3 431 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 432 else
f3421797 433
dc186ad7
TG
434#ifdef CONFIG_DEBUG_OBJECTS_WORK
435
436static struct debug_obj_descr work_debug_descr;
437
99777288
SG
438static void *work_debug_hint(void *addr)
439{
440 return ((struct work_struct *) addr)->func;
441}
442
b9fdac7f
CD
443static bool work_is_static_object(void *addr)
444{
445 struct work_struct *work = addr;
446
447 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
448}
449
dc186ad7
TG
450/*
451 * fixup_init is called when:
452 * - an active object is initialized
453 */
02a982a6 454static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
455{
456 struct work_struct *work = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 cancel_work_sync(work);
461 debug_object_init(work, &work_debug_descr);
02a982a6 462 return true;
dc186ad7 463 default:
02a982a6 464 return false;
dc186ad7
TG
465 }
466}
467
dc186ad7
TG
468/*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
02a982a6 472static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
473{
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
02a982a6 480 return true;
dc186ad7 481 default:
02a982a6 482 return false;
dc186ad7
TG
483 }
484}
485
486static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
99777288 488 .debug_hint = work_debug_hint,
b9fdac7f 489 .is_static_object = work_is_static_object,
dc186ad7 490 .fixup_init = work_fixup_init,
dc186ad7
TG
491 .fixup_free = work_fixup_free,
492};
493
494static inline void debug_work_activate(struct work_struct *work)
495{
496 debug_object_activate(work, &work_debug_descr);
497}
498
499static inline void debug_work_deactivate(struct work_struct *work)
500{
501 debug_object_deactivate(work, &work_debug_descr);
502}
503
504void __init_work(struct work_struct *work, int onstack)
505{
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(__init_work);
512
513void destroy_work_on_stack(struct work_struct *work)
514{
515 debug_object_free(work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
ea2e64f2
TG
519void destroy_delayed_work_on_stack(struct delayed_work *work)
520{
521 destroy_timer_on_stack(&work->timer);
522 debug_object_free(&work->work, &work_debug_descr);
523}
524EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525
dc186ad7
TG
526#else
527static inline void debug_work_activate(struct work_struct *work) { }
528static inline void debug_work_deactivate(struct work_struct *work) { }
529#endif
530
4e8b22bd
LB
531/**
532 * worker_pool_assign_id - allocate ID and assing it to @pool
533 * @pool: the pool pointer of interest
534 *
535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536 * successfully, -errno on failure.
537 */
9daf9e67
TH
538static int worker_pool_assign_id(struct worker_pool *pool)
539{
540 int ret;
541
68e13a67 542 lockdep_assert_held(&wq_pool_mutex);
5bcab335 543
4e8b22bd
LB
544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 GFP_KERNEL);
229641a6 546 if (ret >= 0) {
e68035fb 547 pool->id = ret;
229641a6
TH
548 return 0;
549 }
fa1b54e6 550 return ret;
7c3eed5c
TH
551}
552
df2d5ae4
TH
553/**
554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555 * @wq: the target workqueue
556 * @node: the node ID
557 *
24acfb71 558 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 559 * read locked.
df2d5ae4
TH
560 * If the pwq needs to be used beyond the locking in effect, the caller is
561 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
562 *
563 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
564 */
565static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
566 int node)
567{
5b95e1af 568 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
569
570 /*
571 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
572 * delayed item is pending. The plan is to keep CPU -> NODE
573 * mapping valid and stable across CPU on/offlines. Once that
574 * happens, this workaround can be removed.
575 */
576 if (unlikely(node == NUMA_NO_NODE))
577 return wq->dfl_pwq;
578
df2d5ae4
TH
579 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
580}
581
73f53c4a
TH
582static unsigned int work_color_to_flags(int color)
583{
584 return color << WORK_STRUCT_COLOR_SHIFT;
585}
586
587static int get_work_color(struct work_struct *work)
588{
589 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
590 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
591}
592
593static int work_next_color(int color)
594{
595 return (color + 1) % WORK_NR_COLORS;
596}
1da177e4 597
14441960 598/*
112202d9
TH
599 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
600 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 601 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 602 *
112202d9
TH
603 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
604 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
605 * work->data. These functions should only be called while the work is
606 * owned - ie. while the PENDING bit is set.
7a22ad75 607 *
112202d9 608 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 609 * corresponding to a work. Pool is available once the work has been
112202d9 610 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 611 * available only while the work item is queued.
7a22ad75 612 *
bbb68dfa
TH
613 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
614 * canceled. While being canceled, a work item may have its PENDING set
615 * but stay off timer and worklist for arbitrarily long and nobody should
616 * try to steal the PENDING bit.
14441960 617 */
7a22ad75
TH
618static inline void set_work_data(struct work_struct *work, unsigned long data,
619 unsigned long flags)
365970a1 620{
6183c009 621 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
622 atomic_long_set(&work->data, data | flags | work_static(work));
623}
365970a1 624
112202d9 625static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
626 unsigned long extra_flags)
627{
112202d9
TH
628 set_work_data(work, (unsigned long)pwq,
629 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
630}
631
4468a00f
LJ
632static void set_work_pool_and_keep_pending(struct work_struct *work,
633 int pool_id)
634{
635 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
636 WORK_STRUCT_PENDING);
637}
638
7c3eed5c
TH
639static void set_work_pool_and_clear_pending(struct work_struct *work,
640 int pool_id)
7a22ad75 641{
23657bb1
TH
642 /*
643 * The following wmb is paired with the implied mb in
644 * test_and_set_bit(PENDING) and ensures all updates to @work made
645 * here are visible to and precede any updates by the next PENDING
646 * owner.
647 */
648 smp_wmb();
7c3eed5c 649 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
650 /*
651 * The following mb guarantees that previous clear of a PENDING bit
652 * will not be reordered with any speculative LOADS or STORES from
653 * work->current_func, which is executed afterwards. This possible
8bdc6201 654 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
655 * the same @work. E.g. consider this case:
656 *
657 * CPU#0 CPU#1
658 * ---------------------------- --------------------------------
659 *
660 * 1 STORE event_indicated
661 * 2 queue_work_on() {
662 * 3 test_and_set_bit(PENDING)
663 * 4 } set_..._and_clear_pending() {
664 * 5 set_work_data() # clear bit
665 * 6 smp_mb()
666 * 7 work->current_func() {
667 * 8 LOAD event_indicated
668 * }
669 *
670 * Without an explicit full barrier speculative LOAD on line 8 can
671 * be executed before CPU#0 does STORE on line 1. If that happens,
672 * CPU#0 observes the PENDING bit is still set and new execution of
673 * a @work is not queued in a hope, that CPU#1 will eventually
674 * finish the queued @work. Meanwhile CPU#1 does not see
675 * event_indicated is set, because speculative LOAD was executed
676 * before actual STORE.
677 */
678 smp_mb();
7a22ad75 679}
f756d5e2 680
7a22ad75 681static void clear_work_data(struct work_struct *work)
1da177e4 682{
7c3eed5c
TH
683 smp_wmb(); /* see set_work_pool_and_clear_pending() */
684 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
685}
686
112202d9 687static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 688{
e120153d 689 unsigned long data = atomic_long_read(&work->data);
7a22ad75 690
112202d9 691 if (data & WORK_STRUCT_PWQ)
e120153d
TH
692 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
693 else
694 return NULL;
4d707b9f
ON
695}
696
7c3eed5c
TH
697/**
698 * get_work_pool - return the worker_pool a given work was associated with
699 * @work: the work item of interest
700 *
68e13a67 701 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
702 * access under RCU read lock. As such, this function should be
703 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
704 *
705 * All fields of the returned pool are accessible as long as the above
706 * mentioned locking is in effect. If the returned pool needs to be used
707 * beyond the critical section, the caller is responsible for ensuring the
708 * returned pool is and stays online.
d185af30
YB
709 *
710 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
711 */
712static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 713{
e120153d 714 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 715 int pool_id;
7a22ad75 716
68e13a67 717 assert_rcu_or_pool_mutex();
fa1b54e6 718
112202d9
TH
719 if (data & WORK_STRUCT_PWQ)
720 return ((struct pool_workqueue *)
7c3eed5c 721 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 722
7c3eed5c
TH
723 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
724 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
725 return NULL;
726
fa1b54e6 727 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
728}
729
730/**
731 * get_work_pool_id - return the worker pool ID a given work is associated with
732 * @work: the work item of interest
733 *
d185af30 734 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
735 * %WORK_OFFQ_POOL_NONE if none.
736 */
737static int get_work_pool_id(struct work_struct *work)
738{
54d5b7d0
LJ
739 unsigned long data = atomic_long_read(&work->data);
740
112202d9
TH
741 if (data & WORK_STRUCT_PWQ)
742 return ((struct pool_workqueue *)
54d5b7d0 743 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 744
54d5b7d0 745 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
746}
747
bbb68dfa
TH
748static void mark_work_canceling(struct work_struct *work)
749{
7c3eed5c 750 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 751
7c3eed5c
TH
752 pool_id <<= WORK_OFFQ_POOL_SHIFT;
753 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
754}
755
756static bool work_is_canceling(struct work_struct *work)
757{
758 unsigned long data = atomic_long_read(&work->data);
759
112202d9 760 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
761}
762
e22bee78 763/*
3270476a
TH
764 * Policy functions. These define the policies on how the global worker
765 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 766 * they're being called with pool->lock held.
e22bee78
TH
767 */
768
63d95a91 769static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 770{
e19e397a 771 return !atomic_read(&pool->nr_running);
a848e3b6
ON
772}
773
4594bf15 774/*
e22bee78
TH
775 * Need to wake up a worker? Called from anything but currently
776 * running workers.
974271c4
TH
777 *
778 * Note that, because unbound workers never contribute to nr_running, this
706026c2 779 * function will always return %true for unbound pools as long as the
974271c4 780 * worklist isn't empty.
4594bf15 781 */
63d95a91 782static bool need_more_worker(struct worker_pool *pool)
365970a1 783{
63d95a91 784 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 785}
4594bf15 786
e22bee78 787/* Can I start working? Called from busy but !running workers. */
63d95a91 788static bool may_start_working(struct worker_pool *pool)
e22bee78 789{
63d95a91 790 return pool->nr_idle;
e22bee78
TH
791}
792
793/* Do I need to keep working? Called from currently running workers. */
63d95a91 794static bool keep_working(struct worker_pool *pool)
e22bee78 795{
e19e397a
TH
796 return !list_empty(&pool->worklist) &&
797 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
798}
799
800/* Do we need a new worker? Called from manager. */
63d95a91 801static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 802{
63d95a91 803 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 804}
365970a1 805
e22bee78 806/* Do we have too many workers and should some go away? */
63d95a91 807static bool too_many_workers(struct worker_pool *pool)
e22bee78 808{
692b4825 809 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
810 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
811 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
812
813 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
814}
815
4d707b9f 816/*
e22bee78
TH
817 * Wake up functions.
818 */
819
1037de36
LJ
820/* Return the first idle worker. Safe with preemption disabled */
821static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 822{
63d95a91 823 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
824 return NULL;
825
63d95a91 826 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
827}
828
829/**
830 * wake_up_worker - wake up an idle worker
63d95a91 831 * @pool: worker pool to wake worker from
7e11629d 832 *
63d95a91 833 * Wake up the first idle worker of @pool.
7e11629d
TH
834 *
835 * CONTEXT:
d565ed63 836 * spin_lock_irq(pool->lock).
7e11629d 837 */
63d95a91 838static void wake_up_worker(struct worker_pool *pool)
7e11629d 839{
1037de36 840 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
841
842 if (likely(worker))
843 wake_up_process(worker->task);
844}
845
d302f017 846/**
6d25be57 847 * wq_worker_running - a worker is running again
e22bee78 848 * @task: task waking up
e22bee78 849 *
6d25be57 850 * This function is called when a worker returns from schedule()
e22bee78 851 */
6d25be57 852void wq_worker_running(struct task_struct *task)
e22bee78
TH
853{
854 struct worker *worker = kthread_data(task);
855
6d25be57
TG
856 if (!worker->sleeping)
857 return;
51912e72
FW
858
859 /*
860 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
861 * and the nr_running increment below, we may ruin the nr_running reset
862 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
863 * pool. Protect against such race.
864 */
865 preempt_disable();
6d25be57 866 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 867 atomic_inc(&worker->pool->nr_running);
51912e72 868 preempt_enable();
6d25be57 869 worker->sleeping = 0;
e22bee78
TH
870}
871
872/**
873 * wq_worker_sleeping - a worker is going to sleep
874 * @task: task going to sleep
e22bee78 875 *
6d25be57 876 * This function is called from schedule() when a busy worker is
260ae54b
SAS
877 * going to sleep. Preemption needs to be disabled to protect ->sleeping
878 * assignment.
e22bee78 879 */
6d25be57 880void wq_worker_sleeping(struct task_struct *task)
e22bee78 881{
6d25be57 882 struct worker *next, *worker = kthread_data(task);
111c225a 883 struct worker_pool *pool;
e22bee78 884
111c225a
TH
885 /*
886 * Rescuers, which may not have all the fields set up like normal
887 * workers, also reach here, let's not access anything before
888 * checking NOT_RUNNING.
889 */
2d64672e 890 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 891 return;
e22bee78 892
111c225a 893 pool = worker->pool;
111c225a 894
260ae54b
SAS
895 /* Return if preempted before wq_worker_running() was reached */
896 if (worker->sleeping)
6d25be57
TG
897 return;
898
899 worker->sleeping = 1;
900 spin_lock_irq(&pool->lock);
e22bee78
TH
901
902 /*
903 * The counterpart of the following dec_and_test, implied mb,
904 * worklist not empty test sequence is in insert_work().
905 * Please read comment there.
906 *
628c78e7
TH
907 * NOT_RUNNING is clear. This means that we're bound to and
908 * running on the local cpu w/ rq lock held and preemption
909 * disabled, which in turn means that none else could be
d565ed63 910 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 911 * lock is safe.
e22bee78 912 */
e19e397a 913 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
914 !list_empty(&pool->worklist)) {
915 next = first_idle_worker(pool);
916 if (next)
917 wake_up_process(next->task);
918 }
919 spin_unlock_irq(&pool->lock);
e22bee78
TH
920}
921
1b69ac6b
JW
922/**
923 * wq_worker_last_func - retrieve worker's last work function
8194fe94 924 * @task: Task to retrieve last work function of.
1b69ac6b
JW
925 *
926 * Determine the last function a worker executed. This is called from
927 * the scheduler to get a worker's last known identity.
928 *
929 * CONTEXT:
930 * spin_lock_irq(rq->lock)
931 *
4b047002
JW
932 * This function is called during schedule() when a kworker is going
933 * to sleep. It's used by psi to identify aggregation workers during
934 * dequeuing, to allow periodic aggregation to shut-off when that
935 * worker is the last task in the system or cgroup to go to sleep.
936 *
937 * As this function doesn't involve any workqueue-related locking, it
938 * only returns stable values when called from inside the scheduler's
939 * queuing and dequeuing paths, when @task, which must be a kworker,
940 * is guaranteed to not be processing any works.
941 *
1b69ac6b
JW
942 * Return:
943 * The last work function %current executed as a worker, NULL if it
944 * hasn't executed any work yet.
945 */
946work_func_t wq_worker_last_func(struct task_struct *task)
947{
948 struct worker *worker = kthread_data(task);
949
950 return worker->last_func;
951}
952
e22bee78
TH
953/**
954 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 955 * @worker: self
d302f017 956 * @flags: flags to set
d302f017 957 *
228f1d00 958 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 959 *
cb444766 960 * CONTEXT:
d565ed63 961 * spin_lock_irq(pool->lock)
d302f017 962 */
228f1d00 963static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 964{
bd7bdd43 965 struct worker_pool *pool = worker->pool;
e22bee78 966
cb444766
TH
967 WARN_ON_ONCE(worker->task != current);
968
228f1d00 969 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
970 if ((flags & WORKER_NOT_RUNNING) &&
971 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 972 atomic_dec(&pool->nr_running);
e22bee78
TH
973 }
974
d302f017
TH
975 worker->flags |= flags;
976}
977
978/**
e22bee78 979 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 980 * @worker: self
d302f017
TH
981 * @flags: flags to clear
982 *
e22bee78 983 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 984 *
cb444766 985 * CONTEXT:
d565ed63 986 * spin_lock_irq(pool->lock)
d302f017
TH
987 */
988static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
989{
63d95a91 990 struct worker_pool *pool = worker->pool;
e22bee78
TH
991 unsigned int oflags = worker->flags;
992
cb444766
TH
993 WARN_ON_ONCE(worker->task != current);
994
d302f017 995 worker->flags &= ~flags;
e22bee78 996
42c025f3
TH
997 /*
998 * If transitioning out of NOT_RUNNING, increment nr_running. Note
999 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1000 * of multiple flags, not a single flag.
1001 */
e22bee78
TH
1002 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1003 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 1004 atomic_inc(&pool->nr_running);
d302f017
TH
1005}
1006
8cca0eea
TH
1007/**
1008 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1009 * @pool: pool of interest
8cca0eea
TH
1010 * @work: work to find worker for
1011 *
c9e7cf27
TH
1012 * Find a worker which is executing @work on @pool by searching
1013 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1014 * to match, its current execution should match the address of @work and
1015 * its work function. This is to avoid unwanted dependency between
1016 * unrelated work executions through a work item being recycled while still
1017 * being executed.
1018 *
1019 * This is a bit tricky. A work item may be freed once its execution
1020 * starts and nothing prevents the freed area from being recycled for
1021 * another work item. If the same work item address ends up being reused
1022 * before the original execution finishes, workqueue will identify the
1023 * recycled work item as currently executing and make it wait until the
1024 * current execution finishes, introducing an unwanted dependency.
1025 *
c5aa87bb
TH
1026 * This function checks the work item address and work function to avoid
1027 * false positives. Note that this isn't complete as one may construct a
1028 * work function which can introduce dependency onto itself through a
1029 * recycled work item. Well, if somebody wants to shoot oneself in the
1030 * foot that badly, there's only so much we can do, and if such deadlock
1031 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1032 *
1033 * CONTEXT:
d565ed63 1034 * spin_lock_irq(pool->lock).
8cca0eea 1035 *
d185af30
YB
1036 * Return:
1037 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1038 * otherwise.
4d707b9f 1039 */
c9e7cf27 1040static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1041 struct work_struct *work)
4d707b9f 1042{
42f8570f 1043 struct worker *worker;
42f8570f 1044
b67bfe0d 1045 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1046 (unsigned long)work)
1047 if (worker->current_work == work &&
1048 worker->current_func == work->func)
42f8570f
SL
1049 return worker;
1050
1051 return NULL;
4d707b9f
ON
1052}
1053
bf4ede01
TH
1054/**
1055 * move_linked_works - move linked works to a list
1056 * @work: start of series of works to be scheduled
1057 * @head: target list to append @work to
402dd89d 1058 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1059 *
1060 * Schedule linked works starting from @work to @head. Work series to
1061 * be scheduled starts at @work and includes any consecutive work with
1062 * WORK_STRUCT_LINKED set in its predecessor.
1063 *
1064 * If @nextp is not NULL, it's updated to point to the next work of
1065 * the last scheduled work. This allows move_linked_works() to be
1066 * nested inside outer list_for_each_entry_safe().
1067 *
1068 * CONTEXT:
d565ed63 1069 * spin_lock_irq(pool->lock).
bf4ede01
TH
1070 */
1071static void move_linked_works(struct work_struct *work, struct list_head *head,
1072 struct work_struct **nextp)
1073{
1074 struct work_struct *n;
1075
1076 /*
1077 * Linked worklist will always end before the end of the list,
1078 * use NULL for list head.
1079 */
1080 list_for_each_entry_safe_from(work, n, NULL, entry) {
1081 list_move_tail(&work->entry, head);
1082 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1083 break;
1084 }
1085
1086 /*
1087 * If we're already inside safe list traversal and have moved
1088 * multiple works to the scheduled queue, the next position
1089 * needs to be updated.
1090 */
1091 if (nextp)
1092 *nextp = n;
1093}
1094
8864b4e5
TH
1095/**
1096 * get_pwq - get an extra reference on the specified pool_workqueue
1097 * @pwq: pool_workqueue to get
1098 *
1099 * Obtain an extra reference on @pwq. The caller should guarantee that
1100 * @pwq has positive refcnt and be holding the matching pool->lock.
1101 */
1102static void get_pwq(struct pool_workqueue *pwq)
1103{
1104 lockdep_assert_held(&pwq->pool->lock);
1105 WARN_ON_ONCE(pwq->refcnt <= 0);
1106 pwq->refcnt++;
1107}
1108
1109/**
1110 * put_pwq - put a pool_workqueue reference
1111 * @pwq: pool_workqueue to put
1112 *
1113 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1114 * destruction. The caller should be holding the matching pool->lock.
1115 */
1116static void put_pwq(struct pool_workqueue *pwq)
1117{
1118 lockdep_assert_held(&pwq->pool->lock);
1119 if (likely(--pwq->refcnt))
1120 return;
1121 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1122 return;
1123 /*
1124 * @pwq can't be released under pool->lock, bounce to
1125 * pwq_unbound_release_workfn(). This never recurses on the same
1126 * pool->lock as this path is taken only for unbound workqueues and
1127 * the release work item is scheduled on a per-cpu workqueue. To
1128 * avoid lockdep warning, unbound pool->locks are given lockdep
1129 * subclass of 1 in get_unbound_pool().
1130 */
1131 schedule_work(&pwq->unbound_release_work);
1132}
1133
dce90d47
TH
1134/**
1135 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1136 * @pwq: pool_workqueue to put (can be %NULL)
1137 *
1138 * put_pwq() with locking. This function also allows %NULL @pwq.
1139 */
1140static void put_pwq_unlocked(struct pool_workqueue *pwq)
1141{
1142 if (pwq) {
1143 /*
24acfb71 1144 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1145 * following lock operations are safe.
1146 */
1147 spin_lock_irq(&pwq->pool->lock);
1148 put_pwq(pwq);
1149 spin_unlock_irq(&pwq->pool->lock);
1150 }
1151}
1152
112202d9 1153static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1154{
112202d9 1155 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1156
1157 trace_workqueue_activate_work(work);
82607adc
TH
1158 if (list_empty(&pwq->pool->worklist))
1159 pwq->pool->watchdog_ts = jiffies;
112202d9 1160 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1161 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1162 pwq->nr_active++;
bf4ede01
TH
1163}
1164
112202d9 1165static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1166{
112202d9 1167 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1168 struct work_struct, entry);
1169
112202d9 1170 pwq_activate_delayed_work(work);
3aa62497
LJ
1171}
1172
bf4ede01 1173/**
112202d9
TH
1174 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1175 * @pwq: pwq of interest
bf4ede01 1176 * @color: color of work which left the queue
bf4ede01
TH
1177 *
1178 * A work either has completed or is removed from pending queue,
112202d9 1179 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1180 *
1181 * CONTEXT:
d565ed63 1182 * spin_lock_irq(pool->lock).
bf4ede01 1183 */
112202d9 1184static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1185{
8864b4e5 1186 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1187 if (color == WORK_NO_COLOR)
8864b4e5 1188 goto out_put;
bf4ede01 1189
112202d9 1190 pwq->nr_in_flight[color]--;
bf4ede01 1191
112202d9
TH
1192 pwq->nr_active--;
1193 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1194 /* one down, submit a delayed one */
112202d9
TH
1195 if (pwq->nr_active < pwq->max_active)
1196 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1197 }
1198
1199 /* is flush in progress and are we at the flushing tip? */
112202d9 1200 if (likely(pwq->flush_color != color))
8864b4e5 1201 goto out_put;
bf4ede01
TH
1202
1203 /* are there still in-flight works? */
112202d9 1204 if (pwq->nr_in_flight[color])
8864b4e5 1205 goto out_put;
bf4ede01 1206
112202d9
TH
1207 /* this pwq is done, clear flush_color */
1208 pwq->flush_color = -1;
bf4ede01
TH
1209
1210 /*
112202d9 1211 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1212 * will handle the rest.
1213 */
112202d9
TH
1214 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1215 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1216out_put:
1217 put_pwq(pwq);
bf4ede01
TH
1218}
1219
36e227d2 1220/**
bbb68dfa 1221 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1222 * @work: work item to steal
1223 * @is_dwork: @work is a delayed_work
bbb68dfa 1224 * @flags: place to store irq state
36e227d2
TH
1225 *
1226 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1227 * stable state - idle, on timer or on worklist.
36e227d2 1228 *
d185af30 1229 * Return:
36e227d2
TH
1230 * 1 if @work was pending and we successfully stole PENDING
1231 * 0 if @work was idle and we claimed PENDING
1232 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1233 * -ENOENT if someone else is canceling @work, this state may persist
1234 * for arbitrarily long
36e227d2 1235 *
d185af30 1236 * Note:
bbb68dfa 1237 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1238 * interrupted while holding PENDING and @work off queue, irq must be
1239 * disabled on entry. This, combined with delayed_work->timer being
1240 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1241 *
1242 * On successful return, >= 0, irq is disabled and the caller is
1243 * responsible for releasing it using local_irq_restore(*@flags).
1244 *
e0aecdd8 1245 * This function is safe to call from any context including IRQ handler.
bf4ede01 1246 */
bbb68dfa
TH
1247static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1248 unsigned long *flags)
bf4ede01 1249{
d565ed63 1250 struct worker_pool *pool;
112202d9 1251 struct pool_workqueue *pwq;
bf4ede01 1252
bbb68dfa
TH
1253 local_irq_save(*flags);
1254
36e227d2
TH
1255 /* try to steal the timer if it exists */
1256 if (is_dwork) {
1257 struct delayed_work *dwork = to_delayed_work(work);
1258
e0aecdd8
TH
1259 /*
1260 * dwork->timer is irqsafe. If del_timer() fails, it's
1261 * guaranteed that the timer is not queued anywhere and not
1262 * running on the local CPU.
1263 */
36e227d2
TH
1264 if (likely(del_timer(&dwork->timer)))
1265 return 1;
1266 }
1267
1268 /* try to claim PENDING the normal way */
bf4ede01
TH
1269 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1270 return 0;
1271
24acfb71 1272 rcu_read_lock();
bf4ede01
TH
1273 /*
1274 * The queueing is in progress, or it is already queued. Try to
1275 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1276 */
d565ed63
TH
1277 pool = get_work_pool(work);
1278 if (!pool)
bbb68dfa 1279 goto fail;
bf4ede01 1280
d565ed63 1281 spin_lock(&pool->lock);
0b3dae68 1282 /*
112202d9
TH
1283 * work->data is guaranteed to point to pwq only while the work
1284 * item is queued on pwq->wq, and both updating work->data to point
1285 * to pwq on queueing and to pool on dequeueing are done under
1286 * pwq->pool->lock. This in turn guarantees that, if work->data
1287 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1288 * item is currently queued on that pool.
1289 */
112202d9
TH
1290 pwq = get_work_pwq(work);
1291 if (pwq && pwq->pool == pool) {
16062836
TH
1292 debug_work_deactivate(work);
1293
1294 /*
1295 * A delayed work item cannot be grabbed directly because
1296 * it might have linked NO_COLOR work items which, if left
112202d9 1297 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1298 * management later on and cause stall. Make sure the work
1299 * item is activated before grabbing.
1300 */
1301 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1302 pwq_activate_delayed_work(work);
16062836
TH
1303
1304 list_del_init(&work->entry);
9c34a704 1305 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1306
112202d9 1307 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1308 set_work_pool_and_keep_pending(work, pool->id);
1309
1310 spin_unlock(&pool->lock);
24acfb71 1311 rcu_read_unlock();
16062836 1312 return 1;
bf4ede01 1313 }
d565ed63 1314 spin_unlock(&pool->lock);
bbb68dfa 1315fail:
24acfb71 1316 rcu_read_unlock();
bbb68dfa
TH
1317 local_irq_restore(*flags);
1318 if (work_is_canceling(work))
1319 return -ENOENT;
1320 cpu_relax();
36e227d2 1321 return -EAGAIN;
bf4ede01
TH
1322}
1323
4690c4ab 1324/**
706026c2 1325 * insert_work - insert a work into a pool
112202d9 1326 * @pwq: pwq @work belongs to
4690c4ab
TH
1327 * @work: work to insert
1328 * @head: insertion point
1329 * @extra_flags: extra WORK_STRUCT_* flags to set
1330 *
112202d9 1331 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1332 * work_struct flags.
4690c4ab
TH
1333 *
1334 * CONTEXT:
d565ed63 1335 * spin_lock_irq(pool->lock).
4690c4ab 1336 */
112202d9
TH
1337static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1338 struct list_head *head, unsigned int extra_flags)
b89deed3 1339{
112202d9 1340 struct worker_pool *pool = pwq->pool;
e22bee78 1341
4690c4ab 1342 /* we own @work, set data and link */
112202d9 1343 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1344 list_add_tail(&work->entry, head);
8864b4e5 1345 get_pwq(pwq);
e22bee78
TH
1346
1347 /*
c5aa87bb
TH
1348 * Ensure either wq_worker_sleeping() sees the above
1349 * list_add_tail() or we see zero nr_running to avoid workers lying
1350 * around lazily while there are works to be processed.
e22bee78
TH
1351 */
1352 smp_mb();
1353
63d95a91
TH
1354 if (__need_more_worker(pool))
1355 wake_up_worker(pool);
b89deed3
ON
1356}
1357
c8efcc25
TH
1358/*
1359 * Test whether @work is being queued from another work executing on the
8d03ecfe 1360 * same workqueue.
c8efcc25
TH
1361 */
1362static bool is_chained_work(struct workqueue_struct *wq)
1363{
8d03ecfe
TH
1364 struct worker *worker;
1365
1366 worker = current_wq_worker();
1367 /*
bf393fd4 1368 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1369 * I'm @worker, it's safe to dereference it without locking.
1370 */
112202d9 1371 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1372}
1373
ef557180
MG
1374/*
1375 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1376 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1377 * avoid perturbing sensitive tasks.
1378 */
1379static int wq_select_unbound_cpu(int cpu)
1380{
f303fccb 1381 static bool printed_dbg_warning;
ef557180
MG
1382 int new_cpu;
1383
f303fccb
TH
1384 if (likely(!wq_debug_force_rr_cpu)) {
1385 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1386 return cpu;
1387 } else if (!printed_dbg_warning) {
1388 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1389 printed_dbg_warning = true;
1390 }
1391
ef557180
MG
1392 if (cpumask_empty(wq_unbound_cpumask))
1393 return cpu;
1394
1395 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1396 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1397 if (unlikely(new_cpu >= nr_cpu_ids)) {
1398 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1399 if (unlikely(new_cpu >= nr_cpu_ids))
1400 return cpu;
1401 }
1402 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1403
1404 return new_cpu;
1405}
1406
d84ff051 1407static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1408 struct work_struct *work)
1409{
112202d9 1410 struct pool_workqueue *pwq;
c9178087 1411 struct worker_pool *last_pool;
1e19ffc6 1412 struct list_head *worklist;
8a2e8e5d 1413 unsigned int work_flags;
b75cac93 1414 unsigned int req_cpu = cpu;
8930caba
TH
1415
1416 /*
1417 * While a work item is PENDING && off queue, a task trying to
1418 * steal the PENDING will busy-loop waiting for it to either get
1419 * queued or lose PENDING. Grabbing PENDING and queueing should
1420 * happen with IRQ disabled.
1421 */
8e8eb730 1422 lockdep_assert_irqs_disabled();
1da177e4 1423
1e19ffc6 1424
9ef28a73 1425 /* if draining, only works from the same workqueue are allowed */
618b01eb 1426 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1427 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1428 return;
24acfb71 1429 rcu_read_lock();
9e8cd2f5 1430retry:
c9178087 1431 /* pwq which will be used unless @work is executing elsewhere */
17a1d7b7
HD
1432 if (wq->flags & WQ_UNBOUND) {
1433 if (req_cpu == WORK_CPU_UNBOUND)
1434 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1435 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
17a1d7b7
HD
1436 } else {
1437 if (req_cpu == WORK_CPU_UNBOUND)
1438 cpu = raw_smp_processor_id();
1439 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1440 }
dbf2576e 1441
c9178087
TH
1442 /*
1443 * If @work was previously on a different pool, it might still be
1444 * running there, in which case the work needs to be queued on that
1445 * pool to guarantee non-reentrancy.
1446 */
1447 last_pool = get_work_pool(work);
1448 if (last_pool && last_pool != pwq->pool) {
1449 struct worker *worker;
18aa9eff 1450
c9178087 1451 spin_lock(&last_pool->lock);
18aa9eff 1452
c9178087 1453 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1454
c9178087
TH
1455 if (worker && worker->current_pwq->wq == wq) {
1456 pwq = worker->current_pwq;
8930caba 1457 } else {
c9178087
TH
1458 /* meh... not running there, queue here */
1459 spin_unlock(&last_pool->lock);
112202d9 1460 spin_lock(&pwq->pool->lock);
8930caba 1461 }
f3421797 1462 } else {
112202d9 1463 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1464 }
1465
9e8cd2f5
TH
1466 /*
1467 * pwq is determined and locked. For unbound pools, we could have
1468 * raced with pwq release and it could already be dead. If its
1469 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1470 * without another pwq replacing it in the numa_pwq_tbl or while
1471 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1472 * make forward-progress.
1473 */
1474 if (unlikely(!pwq->refcnt)) {
1475 if (wq->flags & WQ_UNBOUND) {
1476 spin_unlock(&pwq->pool->lock);
1477 cpu_relax();
1478 goto retry;
1479 }
1480 /* oops */
1481 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1482 wq->name, cpu);
1483 }
1484
112202d9
TH
1485 /* pwq determined, queue */
1486 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1487
24acfb71
TG
1488 if (WARN_ON(!list_empty(&work->entry)))
1489 goto out;
1e19ffc6 1490
112202d9
TH
1491 pwq->nr_in_flight[pwq->work_color]++;
1492 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1493
112202d9 1494 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1495 trace_workqueue_activate_work(work);
112202d9
TH
1496 pwq->nr_active++;
1497 worklist = &pwq->pool->worklist;
82607adc
TH
1498 if (list_empty(worklist))
1499 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1500 } else {
1501 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1502 worklist = &pwq->delayed_works;
8a2e8e5d 1503 }
1e19ffc6 1504
06c119ce 1505 debug_work_activate(work);
112202d9 1506 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1507
24acfb71 1508out:
112202d9 1509 spin_unlock(&pwq->pool->lock);
24acfb71 1510 rcu_read_unlock();
1da177e4
LT
1511}
1512
0fcb78c2 1513/**
c1a220e7
ZR
1514 * queue_work_on - queue work on specific cpu
1515 * @cpu: CPU number to execute work on
0fcb78c2
REB
1516 * @wq: workqueue to use
1517 * @work: work to queue
1518 *
c1a220e7
ZR
1519 * We queue the work to a specific CPU, the caller must ensure it
1520 * can't go away.
d185af30
YB
1521 *
1522 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1523 */
d4283e93
TH
1524bool queue_work_on(int cpu, struct workqueue_struct *wq,
1525 struct work_struct *work)
1da177e4 1526{
d4283e93 1527 bool ret = false;
8930caba 1528 unsigned long flags;
ef1ca236 1529
8930caba 1530 local_irq_save(flags);
c1a220e7 1531
22df02bb 1532 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1533 __queue_work(cpu, wq, work);
d4283e93 1534 ret = true;
c1a220e7 1535 }
ef1ca236 1536
8930caba 1537 local_irq_restore(flags);
1da177e4
LT
1538 return ret;
1539}
ad7b1f84 1540EXPORT_SYMBOL(queue_work_on);
1da177e4 1541
8204e0c1
AD
1542/**
1543 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1544 * @node: NUMA node ID that we want to select a CPU from
1545 *
1546 * This function will attempt to find a "random" cpu available on a given
1547 * node. If there are no CPUs available on the given node it will return
1548 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1549 * available CPU if we need to schedule this work.
1550 */
1551static int workqueue_select_cpu_near(int node)
1552{
1553 int cpu;
1554
1555 /* No point in doing this if NUMA isn't enabled for workqueues */
1556 if (!wq_numa_enabled)
1557 return WORK_CPU_UNBOUND;
1558
1559 /* Delay binding to CPU if node is not valid or online */
1560 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1561 return WORK_CPU_UNBOUND;
1562
1563 /* Use local node/cpu if we are already there */
1564 cpu = raw_smp_processor_id();
1565 if (node == cpu_to_node(cpu))
1566 return cpu;
1567
1568 /* Use "random" otherwise know as "first" online CPU of node */
1569 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1570
1571 /* If CPU is valid return that, otherwise just defer */
1572 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1573}
1574
1575/**
1576 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1577 * @node: NUMA node that we are targeting the work for
1578 * @wq: workqueue to use
1579 * @work: work to queue
1580 *
1581 * We queue the work to a "random" CPU within a given NUMA node. The basic
1582 * idea here is to provide a way to somehow associate work with a given
1583 * NUMA node.
1584 *
1585 * This function will only make a best effort attempt at getting this onto
1586 * the right NUMA node. If no node is requested or the requested node is
1587 * offline then we just fall back to standard queue_work behavior.
1588 *
1589 * Currently the "random" CPU ends up being the first available CPU in the
1590 * intersection of cpu_online_mask and the cpumask of the node, unless we
1591 * are running on the node. In that case we just use the current CPU.
1592 *
1593 * Return: %false if @work was already on a queue, %true otherwise.
1594 */
1595bool queue_work_node(int node, struct workqueue_struct *wq,
1596 struct work_struct *work)
1597{
1598 unsigned long flags;
1599 bool ret = false;
1600
1601 /*
1602 * This current implementation is specific to unbound workqueues.
1603 * Specifically we only return the first available CPU for a given
1604 * node instead of cycling through individual CPUs within the node.
1605 *
1606 * If this is used with a per-cpu workqueue then the logic in
1607 * workqueue_select_cpu_near would need to be updated to allow for
1608 * some round robin type logic.
1609 */
1610 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1611
1612 local_irq_save(flags);
1613
1614 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1615 int cpu = workqueue_select_cpu_near(node);
1616
1617 __queue_work(cpu, wq, work);
1618 ret = true;
1619 }
1620
1621 local_irq_restore(flags);
1622 return ret;
1623}
1624EXPORT_SYMBOL_GPL(queue_work_node);
1625
8c20feb6 1626void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1627{
8c20feb6 1628 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1629
e0aecdd8 1630 /* should have been called from irqsafe timer with irq already off */
60c057bc 1631 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1632}
1438ade5 1633EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1634
7beb2edf
TH
1635static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1636 struct delayed_work *dwork, unsigned long delay)
1da177e4 1637{
7beb2edf
TH
1638 struct timer_list *timer = &dwork->timer;
1639 struct work_struct *work = &dwork->work;
7beb2edf 1640
637fdbae 1641 WARN_ON_ONCE(!wq);
841b86f3 1642 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1643 WARN_ON_ONCE(timer_pending(timer));
1644 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1645
8852aac2
TH
1646 /*
1647 * If @delay is 0, queue @dwork->work immediately. This is for
1648 * both optimization and correctness. The earliest @timer can
1649 * expire is on the closest next tick and delayed_work users depend
1650 * on that there's no such delay when @delay is 0.
1651 */
1652 if (!delay) {
1653 __queue_work(cpu, wq, &dwork->work);
1654 return;
1655 }
1656
60c057bc 1657 dwork->wq = wq;
1265057f 1658 dwork->cpu = cpu;
7beb2edf
TH
1659 timer->expires = jiffies + delay;
1660
041bd12e
TH
1661 if (unlikely(cpu != WORK_CPU_UNBOUND))
1662 add_timer_on(timer, cpu);
1663 else
1664 add_timer(timer);
1da177e4
LT
1665}
1666
0fcb78c2
REB
1667/**
1668 * queue_delayed_work_on - queue work on specific CPU after delay
1669 * @cpu: CPU number to execute work on
1670 * @wq: workqueue to use
af9997e4 1671 * @dwork: work to queue
0fcb78c2
REB
1672 * @delay: number of jiffies to wait before queueing
1673 *
d185af30 1674 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1675 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1676 * execution.
0fcb78c2 1677 */
d4283e93
TH
1678bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1679 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1680{
52bad64d 1681 struct work_struct *work = &dwork->work;
d4283e93 1682 bool ret = false;
8930caba 1683 unsigned long flags;
7a6bc1cd 1684
8930caba
TH
1685 /* read the comment in __queue_work() */
1686 local_irq_save(flags);
7a6bc1cd 1687
22df02bb 1688 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1689 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1690 ret = true;
7a6bc1cd 1691 }
8a3e77cc 1692
8930caba 1693 local_irq_restore(flags);
7a6bc1cd
VP
1694 return ret;
1695}
ad7b1f84 1696EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1697
8376fe22
TH
1698/**
1699 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1700 * @cpu: CPU number to execute work on
1701 * @wq: workqueue to use
1702 * @dwork: work to queue
1703 * @delay: number of jiffies to wait before queueing
1704 *
1705 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1706 * modify @dwork's timer so that it expires after @delay. If @delay is
1707 * zero, @work is guaranteed to be scheduled immediately regardless of its
1708 * current state.
1709 *
d185af30 1710 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1711 * pending and its timer was modified.
1712 *
e0aecdd8 1713 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1714 * See try_to_grab_pending() for details.
1715 */
1716bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1717 struct delayed_work *dwork, unsigned long delay)
1718{
1719 unsigned long flags;
1720 int ret;
c7fc77f7 1721
8376fe22
TH
1722 do {
1723 ret = try_to_grab_pending(&dwork->work, true, &flags);
1724 } while (unlikely(ret == -EAGAIN));
63bc0362 1725
8376fe22
TH
1726 if (likely(ret >= 0)) {
1727 __queue_delayed_work(cpu, wq, dwork, delay);
1728 local_irq_restore(flags);
7a6bc1cd 1729 }
8376fe22
TH
1730
1731 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1732 return ret;
1733}
8376fe22
TH
1734EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1735
05f0fe6b
TH
1736static void rcu_work_rcufn(struct rcu_head *rcu)
1737{
1738 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1739
1740 /* read the comment in __queue_work() */
1741 local_irq_disable();
1742 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1743 local_irq_enable();
1744}
1745
1746/**
1747 * queue_rcu_work - queue work after a RCU grace period
1748 * @wq: workqueue to use
1749 * @rwork: work to queue
1750 *
1751 * Return: %false if @rwork was already pending, %true otherwise. Note
1752 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1753 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1754 * execution may happen before a full RCU grace period has passed.
1755 */
1756bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1757{
1758 struct work_struct *work = &rwork->work;
1759
1760 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1761 rwork->wq = wq;
1762 call_rcu(&rwork->rcu, rcu_work_rcufn);
1763 return true;
1764 }
1765
1766 return false;
1767}
1768EXPORT_SYMBOL(queue_rcu_work);
1769
c8e55f36
TH
1770/**
1771 * worker_enter_idle - enter idle state
1772 * @worker: worker which is entering idle state
1773 *
1774 * @worker is entering idle state. Update stats and idle timer if
1775 * necessary.
1776 *
1777 * LOCKING:
d565ed63 1778 * spin_lock_irq(pool->lock).
c8e55f36
TH
1779 */
1780static void worker_enter_idle(struct worker *worker)
1da177e4 1781{
bd7bdd43 1782 struct worker_pool *pool = worker->pool;
c8e55f36 1783
6183c009
TH
1784 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1785 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1786 (worker->hentry.next || worker->hentry.pprev)))
1787 return;
c8e55f36 1788
051e1850 1789 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1790 worker->flags |= WORKER_IDLE;
bd7bdd43 1791 pool->nr_idle++;
e22bee78 1792 worker->last_active = jiffies;
c8e55f36
TH
1793
1794 /* idle_list is LIFO */
bd7bdd43 1795 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1796
628c78e7
TH
1797 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1798 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1799
544ecf31 1800 /*
e8b3f8db 1801 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1802 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1803 * nr_running, the warning may trigger spuriously. Check iff
1804 * unbind is not in progress.
544ecf31 1805 */
24647570 1806 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1807 pool->nr_workers == pool->nr_idle &&
e19e397a 1808 atomic_read(&pool->nr_running));
c8e55f36
TH
1809}
1810
1811/**
1812 * worker_leave_idle - leave idle state
1813 * @worker: worker which is leaving idle state
1814 *
1815 * @worker is leaving idle state. Update stats.
1816 *
1817 * LOCKING:
d565ed63 1818 * spin_lock_irq(pool->lock).
c8e55f36
TH
1819 */
1820static void worker_leave_idle(struct worker *worker)
1821{
bd7bdd43 1822 struct worker_pool *pool = worker->pool;
c8e55f36 1823
6183c009
TH
1824 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1825 return;
d302f017 1826 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1827 pool->nr_idle--;
c8e55f36
TH
1828 list_del_init(&worker->entry);
1829}
1830
f7537df5 1831static struct worker *alloc_worker(int node)
c34056a3
TH
1832{
1833 struct worker *worker;
1834
f7537df5 1835 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1836 if (worker) {
1837 INIT_LIST_HEAD(&worker->entry);
affee4b2 1838 INIT_LIST_HEAD(&worker->scheduled);
da028469 1839 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1840 /* on creation a worker is in !idle && prep state */
1841 worker->flags = WORKER_PREP;
c8e55f36 1842 }
c34056a3
TH
1843 return worker;
1844}
1845
4736cbf7
LJ
1846/**
1847 * worker_attach_to_pool() - attach a worker to a pool
1848 * @worker: worker to be attached
1849 * @pool: the target pool
1850 *
1851 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1852 * cpu-binding of @worker are kept coordinated with the pool across
1853 * cpu-[un]hotplugs.
1854 */
1855static void worker_attach_to_pool(struct worker *worker,
1856 struct worker_pool *pool)
1857{
1258fae7 1858 mutex_lock(&wq_pool_attach_mutex);
4736cbf7 1859
4736cbf7 1860 /*
1258fae7
TH
1861 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1862 * stable across this function. See the comments above the flag
1863 * definition for details.
4736cbf7
LJ
1864 */
1865 if (pool->flags & POOL_DISASSOCIATED)
1866 worker->flags |= WORKER_UNBOUND;
1867
d2bd3f41
PZ
1868 if (worker->rescue_wq)
1869 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1870
4736cbf7 1871 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1872 worker->pool = pool;
4736cbf7 1873
1258fae7 1874 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1875}
1876
60f5a4bc
LJ
1877/**
1878 * worker_detach_from_pool() - detach a worker from its pool
1879 * @worker: worker which is attached to its pool
60f5a4bc 1880 *
4736cbf7
LJ
1881 * Undo the attaching which had been done in worker_attach_to_pool(). The
1882 * caller worker shouldn't access to the pool after detached except it has
1883 * other reference to the pool.
60f5a4bc 1884 */
a2d812a2 1885static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1886{
a2d812a2 1887 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1888 struct completion *detach_completion = NULL;
1889
1258fae7 1890 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1891
da028469 1892 list_del(&worker->node);
a2d812a2
TH
1893 worker->pool = NULL;
1894
da028469 1895 if (list_empty(&pool->workers))
60f5a4bc 1896 detach_completion = pool->detach_completion;
1258fae7 1897 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1898
b62c0751
LJ
1899 /* clear leftover flags without pool->lock after it is detached */
1900 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1901
60f5a4bc
LJ
1902 if (detach_completion)
1903 complete(detach_completion);
1904}
1905
c34056a3
TH
1906/**
1907 * create_worker - create a new workqueue worker
63d95a91 1908 * @pool: pool the new worker will belong to
c34056a3 1909 *
051e1850 1910 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1911 *
1912 * CONTEXT:
1913 * Might sleep. Does GFP_KERNEL allocations.
1914 *
d185af30 1915 * Return:
c34056a3
TH
1916 * Pointer to the newly created worker.
1917 */
bc2ae0f5 1918static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1919{
c34056a3 1920 struct worker *worker = NULL;
f3421797 1921 int id = -1;
e3c916a4 1922 char id_buf[16];
c34056a3 1923
7cda9aae
LJ
1924 /* ID is needed to determine kthread name */
1925 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1926 if (id < 0)
1927 goto fail;
c34056a3 1928
f7537df5 1929 worker = alloc_worker(pool->node);
c34056a3
TH
1930 if (!worker)
1931 goto fail;
1932
c34056a3
TH
1933 worker->id = id;
1934
29c91e99 1935 if (pool->cpu >= 0)
e3c916a4
TH
1936 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1937 pool->attrs->nice < 0 ? "H" : "");
f3421797 1938 else
e3c916a4
TH
1939 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1940
f3f90ad4 1941 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1942 "kworker/%s", id_buf);
c34056a3
TH
1943 if (IS_ERR(worker->task))
1944 goto fail;
1945
91151228 1946 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1947 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1948
da028469 1949 /* successful, attach the worker to the pool */
4736cbf7 1950 worker_attach_to_pool(worker, pool);
822d8405 1951
051e1850
LJ
1952 /* start the newly created worker */
1953 spin_lock_irq(&pool->lock);
1954 worker->pool->nr_workers++;
1955 worker_enter_idle(worker);
1956 wake_up_process(worker->task);
1957 spin_unlock_irq(&pool->lock);
1958
c34056a3 1959 return worker;
822d8405 1960
c34056a3 1961fail:
9625ab17 1962 if (id >= 0)
7cda9aae 1963 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1964 kfree(worker);
1965 return NULL;
1966}
1967
c34056a3
TH
1968/**
1969 * destroy_worker - destroy a workqueue worker
1970 * @worker: worker to be destroyed
1971 *
73eb7fe7
LJ
1972 * Destroy @worker and adjust @pool stats accordingly. The worker should
1973 * be idle.
c8e55f36
TH
1974 *
1975 * CONTEXT:
60f5a4bc 1976 * spin_lock_irq(pool->lock).
c34056a3
TH
1977 */
1978static void destroy_worker(struct worker *worker)
1979{
bd7bdd43 1980 struct worker_pool *pool = worker->pool;
c34056a3 1981
cd549687
TH
1982 lockdep_assert_held(&pool->lock);
1983
c34056a3 1984 /* sanity check frenzy */
6183c009 1985 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1986 WARN_ON(!list_empty(&worker->scheduled)) ||
1987 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1988 return;
c34056a3 1989
73eb7fe7
LJ
1990 pool->nr_workers--;
1991 pool->nr_idle--;
5bdfff96 1992
c8e55f36 1993 list_del_init(&worker->entry);
cb444766 1994 worker->flags |= WORKER_DIE;
60f5a4bc 1995 wake_up_process(worker->task);
c34056a3
TH
1996}
1997
32a6c723 1998static void idle_worker_timeout(struct timer_list *t)
e22bee78 1999{
32a6c723 2000 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 2001
d565ed63 2002 spin_lock_irq(&pool->lock);
e22bee78 2003
3347fc9f 2004 while (too_many_workers(pool)) {
e22bee78
TH
2005 struct worker *worker;
2006 unsigned long expires;
2007
2008 /* idle_list is kept in LIFO order, check the last one */
63d95a91 2009 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2010 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2011
3347fc9f 2012 if (time_before(jiffies, expires)) {
63d95a91 2013 mod_timer(&pool->idle_timer, expires);
3347fc9f 2014 break;
d5abe669 2015 }
3347fc9f
LJ
2016
2017 destroy_worker(worker);
e22bee78
TH
2018 }
2019
d565ed63 2020 spin_unlock_irq(&pool->lock);
e22bee78 2021}
d5abe669 2022
493a1724 2023static void send_mayday(struct work_struct *work)
e22bee78 2024{
112202d9
TH
2025 struct pool_workqueue *pwq = get_work_pwq(work);
2026 struct workqueue_struct *wq = pwq->wq;
493a1724 2027
2e109a28 2028 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2029
493008a8 2030 if (!wq->rescuer)
493a1724 2031 return;
e22bee78
TH
2032
2033 /* mayday mayday mayday */
493a1724 2034 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2035 /*
2036 * If @pwq is for an unbound wq, its base ref may be put at
2037 * any time due to an attribute change. Pin @pwq until the
2038 * rescuer is done with it.
2039 */
2040 get_pwq(pwq);
493a1724 2041 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2042 wake_up_process(wq->rescuer->task);
493a1724 2043 }
e22bee78
TH
2044}
2045
32a6c723 2046static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2047{
32a6c723 2048 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2049 struct work_struct *work;
2050
b2d82909
TH
2051 spin_lock_irq(&pool->lock);
2052 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2053
63d95a91 2054 if (need_to_create_worker(pool)) {
e22bee78
TH
2055 /*
2056 * We've been trying to create a new worker but
2057 * haven't been successful. We might be hitting an
2058 * allocation deadlock. Send distress signals to
2059 * rescuers.
2060 */
63d95a91 2061 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2062 send_mayday(work);
1da177e4 2063 }
e22bee78 2064
b2d82909
TH
2065 spin_unlock(&wq_mayday_lock);
2066 spin_unlock_irq(&pool->lock);
e22bee78 2067
63d95a91 2068 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2069}
2070
e22bee78
TH
2071/**
2072 * maybe_create_worker - create a new worker if necessary
63d95a91 2073 * @pool: pool to create a new worker for
e22bee78 2074 *
63d95a91 2075 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2076 * have at least one idle worker on return from this function. If
2077 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2078 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2079 * possible allocation deadlock.
2080 *
c5aa87bb
TH
2081 * On return, need_to_create_worker() is guaranteed to be %false and
2082 * may_start_working() %true.
e22bee78
TH
2083 *
2084 * LOCKING:
d565ed63 2085 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2086 * multiple times. Does GFP_KERNEL allocations. Called only from
2087 * manager.
e22bee78 2088 */
29187a9e 2089static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2090__releases(&pool->lock)
2091__acquires(&pool->lock)
1da177e4 2092{
e22bee78 2093restart:
d565ed63 2094 spin_unlock_irq(&pool->lock);
9f9c2364 2095
e22bee78 2096 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2097 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2098
2099 while (true) {
051e1850 2100 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2101 break;
1da177e4 2102
e212f361 2103 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2104
63d95a91 2105 if (!need_to_create_worker(pool))
e22bee78
TH
2106 break;
2107 }
2108
63d95a91 2109 del_timer_sync(&pool->mayday_timer);
d565ed63 2110 spin_lock_irq(&pool->lock);
051e1850
LJ
2111 /*
2112 * This is necessary even after a new worker was just successfully
2113 * created as @pool->lock was dropped and the new worker might have
2114 * already become busy.
2115 */
63d95a91 2116 if (need_to_create_worker(pool))
e22bee78 2117 goto restart;
e22bee78
TH
2118}
2119
73f53c4a 2120/**
e22bee78
TH
2121 * manage_workers - manage worker pool
2122 * @worker: self
73f53c4a 2123 *
706026c2 2124 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2125 * to. At any given time, there can be only zero or one manager per
706026c2 2126 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2127 *
2128 * The caller can safely start processing works on false return. On
2129 * true return, it's guaranteed that need_to_create_worker() is false
2130 * and may_start_working() is true.
73f53c4a
TH
2131 *
2132 * CONTEXT:
d565ed63 2133 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2134 * multiple times. Does GFP_KERNEL allocations.
2135 *
d185af30 2136 * Return:
29187a9e
TH
2137 * %false if the pool doesn't need management and the caller can safely
2138 * start processing works, %true if management function was performed and
2139 * the conditions that the caller verified before calling the function may
2140 * no longer be true.
73f53c4a 2141 */
e22bee78 2142static bool manage_workers(struct worker *worker)
73f53c4a 2143{
63d95a91 2144 struct worker_pool *pool = worker->pool;
73f53c4a 2145
692b4825 2146 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2147 return false;
692b4825
TH
2148
2149 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2150 pool->manager = worker;
1e19ffc6 2151
29187a9e 2152 maybe_create_worker(pool);
e22bee78 2153
2607d7a6 2154 pool->manager = NULL;
692b4825
TH
2155 pool->flags &= ~POOL_MANAGER_ACTIVE;
2156 wake_up(&wq_manager_wait);
29187a9e 2157 return true;
73f53c4a
TH
2158}
2159
a62428c0
TH
2160/**
2161 * process_one_work - process single work
c34056a3 2162 * @worker: self
a62428c0
TH
2163 * @work: work to process
2164 *
2165 * Process @work. This function contains all the logics necessary to
2166 * process a single work including synchronization against and
2167 * interaction with other workers on the same cpu, queueing and
2168 * flushing. As long as context requirement is met, any worker can
2169 * call this function to process a work.
2170 *
2171 * CONTEXT:
d565ed63 2172 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2173 */
c34056a3 2174static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2175__releases(&pool->lock)
2176__acquires(&pool->lock)
a62428c0 2177{
112202d9 2178 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2179 struct worker_pool *pool = worker->pool;
112202d9 2180 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2181 int work_color;
7e11629d 2182 struct worker *collision;
a62428c0
TH
2183#ifdef CONFIG_LOCKDEP
2184 /*
2185 * It is permissible to free the struct work_struct from
2186 * inside the function that is called from it, this we need to
2187 * take into account for lockdep too. To avoid bogus "held
2188 * lock freed" warnings as well as problems when looking into
2189 * work->lockdep_map, make a copy and use that here.
2190 */
4d82a1de
PZ
2191 struct lockdep_map lockdep_map;
2192
2193 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2194#endif
807407c0 2195 /* ensure we're on the correct CPU */
85327af6 2196 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2197 raw_smp_processor_id() != pool->cpu);
25511a47 2198
7e11629d
TH
2199 /*
2200 * A single work shouldn't be executed concurrently by
2201 * multiple workers on a single cpu. Check whether anyone is
2202 * already processing the work. If so, defer the work to the
2203 * currently executing one.
2204 */
c9e7cf27 2205 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2206 if (unlikely(collision)) {
2207 move_linked_works(work, &collision->scheduled, NULL);
2208 return;
2209 }
2210
8930caba 2211 /* claim and dequeue */
a62428c0 2212 debug_work_deactivate(work);
c9e7cf27 2213 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2214 worker->current_work = work;
a2c1c57b 2215 worker->current_func = work->func;
112202d9 2216 worker->current_pwq = pwq;
73f53c4a 2217 work_color = get_work_color(work);
7a22ad75 2218
8bf89593
TH
2219 /*
2220 * Record wq name for cmdline and debug reporting, may get
2221 * overridden through set_worker_desc().
2222 */
2223 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2224
a62428c0
TH
2225 list_del_init(&work->entry);
2226
fb0e7beb 2227 /*
228f1d00
LJ
2228 * CPU intensive works don't participate in concurrency management.
2229 * They're the scheduler's responsibility. This takes @worker out
2230 * of concurrency management and the next code block will chain
2231 * execution of the pending work items.
fb0e7beb
TH
2232 */
2233 if (unlikely(cpu_intensive))
228f1d00 2234 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2235
974271c4 2236 /*
a489a03e
LJ
2237 * Wake up another worker if necessary. The condition is always
2238 * false for normal per-cpu workers since nr_running would always
2239 * be >= 1 at this point. This is used to chain execution of the
2240 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2241 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2242 */
a489a03e 2243 if (need_more_worker(pool))
63d95a91 2244 wake_up_worker(pool);
974271c4 2245
8930caba 2246 /*
7c3eed5c 2247 * Record the last pool and clear PENDING which should be the last
d565ed63 2248 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2249 * PENDING and queued state changes happen together while IRQ is
2250 * disabled.
8930caba 2251 */
7c3eed5c 2252 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2253
d565ed63 2254 spin_unlock_irq(&pool->lock);
a62428c0 2255
a1d14934 2256 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2257 lock_map_acquire(&lockdep_map);
e6f3faa7 2258 /*
f52be570
PZ
2259 * Strictly speaking we should mark the invariant state without holding
2260 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2261 *
2262 * However, that would result in:
2263 *
2264 * A(W1)
2265 * WFC(C)
2266 * A(W1)
2267 * C(C)
2268 *
2269 * Which would create W1->C->W1 dependencies, even though there is no
2270 * actual deadlock possible. There are two solutions, using a
2271 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2272 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2273 * these locks.
2274 *
2275 * AFAICT there is no possible deadlock scenario between the
2276 * flush_work() and complete() primitives (except for single-threaded
2277 * workqueues), so hiding them isn't a problem.
2278 */
f52be570 2279 lockdep_invariant_state(true);
e36c886a 2280 trace_workqueue_execute_start(work);
a2c1c57b 2281 worker->current_func(work);
e36c886a
AV
2282 /*
2283 * While we must be careful to not use "work" after this, the trace
2284 * point will only record its address.
2285 */
2286 trace_workqueue_execute_end(work);
a62428c0 2287 lock_map_release(&lockdep_map);
112202d9 2288 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2289
2290 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2291 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2292 " last function: %ps\n",
a2c1c57b
TH
2293 current->comm, preempt_count(), task_pid_nr(current),
2294 worker->current_func);
a62428c0
TH
2295 debug_show_held_locks(current);
2296 dump_stack();
2297 }
2298
b22ce278
TH
2299 /*
2300 * The following prevents a kworker from hogging CPU on !PREEMPT
2301 * kernels, where a requeueing work item waiting for something to
2302 * happen could deadlock with stop_machine as such work item could
2303 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2304 * stop_machine. At the same time, report a quiescent RCU state so
2305 * the same condition doesn't freeze RCU.
b22ce278 2306 */
a7e6425e 2307 cond_resched();
b22ce278 2308
d565ed63 2309 spin_lock_irq(&pool->lock);
a62428c0 2310
fb0e7beb
TH
2311 /* clear cpu intensive status */
2312 if (unlikely(cpu_intensive))
2313 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2314
1b69ac6b
JW
2315 /* tag the worker for identification in schedule() */
2316 worker->last_func = worker->current_func;
2317
a62428c0 2318 /* we're done with it, release */
42f8570f 2319 hash_del(&worker->hentry);
c34056a3 2320 worker->current_work = NULL;
a2c1c57b 2321 worker->current_func = NULL;
112202d9
TH
2322 worker->current_pwq = NULL;
2323 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2324}
2325
affee4b2
TH
2326/**
2327 * process_scheduled_works - process scheduled works
2328 * @worker: self
2329 *
2330 * Process all scheduled works. Please note that the scheduled list
2331 * may change while processing a work, so this function repeatedly
2332 * fetches a work from the top and executes it.
2333 *
2334 * CONTEXT:
d565ed63 2335 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2336 * multiple times.
2337 */
2338static void process_scheduled_works(struct worker *worker)
1da177e4 2339{
affee4b2
TH
2340 while (!list_empty(&worker->scheduled)) {
2341 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2342 struct work_struct, entry);
c34056a3 2343 process_one_work(worker, work);
1da177e4 2344 }
1da177e4
LT
2345}
2346
197f6acc
TH
2347static void set_pf_worker(bool val)
2348{
2349 mutex_lock(&wq_pool_attach_mutex);
2350 if (val)
2351 current->flags |= PF_WQ_WORKER;
2352 else
2353 current->flags &= ~PF_WQ_WORKER;
2354 mutex_unlock(&wq_pool_attach_mutex);
2355}
2356
4690c4ab
TH
2357/**
2358 * worker_thread - the worker thread function
c34056a3 2359 * @__worker: self
4690c4ab 2360 *
c5aa87bb
TH
2361 * The worker thread function. All workers belong to a worker_pool -
2362 * either a per-cpu one or dynamic unbound one. These workers process all
2363 * work items regardless of their specific target workqueue. The only
2364 * exception is work items which belong to workqueues with a rescuer which
2365 * will be explained in rescuer_thread().
d185af30
YB
2366 *
2367 * Return: 0
4690c4ab 2368 */
c34056a3 2369static int worker_thread(void *__worker)
1da177e4 2370{
c34056a3 2371 struct worker *worker = __worker;
bd7bdd43 2372 struct worker_pool *pool = worker->pool;
1da177e4 2373
e22bee78 2374 /* tell the scheduler that this is a workqueue worker */
197f6acc 2375 set_pf_worker(true);
c8e55f36 2376woke_up:
d565ed63 2377 spin_lock_irq(&pool->lock);
1da177e4 2378
a9ab775b
TH
2379 /* am I supposed to die? */
2380 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2381 spin_unlock_irq(&pool->lock);
a9ab775b 2382 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2383 set_pf_worker(false);
60f5a4bc
LJ
2384
2385 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2386 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2387 worker_detach_from_pool(worker);
60f5a4bc 2388 kfree(worker);
a9ab775b 2389 return 0;
c8e55f36 2390 }
affee4b2 2391
c8e55f36 2392 worker_leave_idle(worker);
db7bccf4 2393recheck:
e22bee78 2394 /* no more worker necessary? */
63d95a91 2395 if (!need_more_worker(pool))
e22bee78
TH
2396 goto sleep;
2397
2398 /* do we need to manage? */
63d95a91 2399 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2400 goto recheck;
2401
c8e55f36
TH
2402 /*
2403 * ->scheduled list can only be filled while a worker is
2404 * preparing to process a work or actually processing it.
2405 * Make sure nobody diddled with it while I was sleeping.
2406 */
6183c009 2407 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2408
e22bee78 2409 /*
a9ab775b
TH
2410 * Finish PREP stage. We're guaranteed to have at least one idle
2411 * worker or that someone else has already assumed the manager
2412 * role. This is where @worker starts participating in concurrency
2413 * management if applicable and concurrency management is restored
2414 * after being rebound. See rebind_workers() for details.
e22bee78 2415 */
a9ab775b 2416 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2417
2418 do {
c8e55f36 2419 struct work_struct *work =
bd7bdd43 2420 list_first_entry(&pool->worklist,
c8e55f36
TH
2421 struct work_struct, entry);
2422
82607adc
TH
2423 pool->watchdog_ts = jiffies;
2424
c8e55f36
TH
2425 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2426 /* optimization path, not strictly necessary */
2427 process_one_work(worker, work);
2428 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2429 process_scheduled_works(worker);
c8e55f36
TH
2430 } else {
2431 move_linked_works(work, &worker->scheduled, NULL);
2432 process_scheduled_works(worker);
affee4b2 2433 }
63d95a91 2434 } while (keep_working(pool));
e22bee78 2435
228f1d00 2436 worker_set_flags(worker, WORKER_PREP);
d313dd85 2437sleep:
c8e55f36 2438 /*
d565ed63
TH
2439 * pool->lock is held and there's no work to process and no need to
2440 * manage, sleep. Workers are woken up only while holding
2441 * pool->lock or from local cpu, so setting the current state
2442 * before releasing pool->lock is enough to prevent losing any
2443 * event.
c8e55f36
TH
2444 */
2445 worker_enter_idle(worker);
c5a94a61 2446 __set_current_state(TASK_IDLE);
d565ed63 2447 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2448 schedule();
2449 goto woke_up;
1da177e4
LT
2450}
2451
e22bee78
TH
2452/**
2453 * rescuer_thread - the rescuer thread function
111c225a 2454 * @__rescuer: self
e22bee78
TH
2455 *
2456 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2457 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2458 *
706026c2 2459 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2460 * worker which uses GFP_KERNEL allocation which has slight chance of
2461 * developing into deadlock if some works currently on the same queue
2462 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2463 * the problem rescuer solves.
2464 *
706026c2
TH
2465 * When such condition is possible, the pool summons rescuers of all
2466 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2467 * those works so that forward progress can be guaranteed.
2468 *
2469 * This should happen rarely.
d185af30
YB
2470 *
2471 * Return: 0
e22bee78 2472 */
111c225a 2473static int rescuer_thread(void *__rescuer)
e22bee78 2474{
111c225a
TH
2475 struct worker *rescuer = __rescuer;
2476 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2477 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2478 bool should_stop;
e22bee78
TH
2479
2480 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2481
2482 /*
2483 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2484 * doesn't participate in concurrency management.
2485 */
197f6acc 2486 set_pf_worker(true);
e22bee78 2487repeat:
c5a94a61 2488 set_current_state(TASK_IDLE);
e22bee78 2489
4d595b86
LJ
2490 /*
2491 * By the time the rescuer is requested to stop, the workqueue
2492 * shouldn't have any work pending, but @wq->maydays may still have
2493 * pwq(s) queued. This can happen by non-rescuer workers consuming
2494 * all the work items before the rescuer got to them. Go through
2495 * @wq->maydays processing before acting on should_stop so that the
2496 * list is always empty on exit.
2497 */
2498 should_stop = kthread_should_stop();
e22bee78 2499
493a1724 2500 /* see whether any pwq is asking for help */
2e109a28 2501 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2502
2503 while (!list_empty(&wq->maydays)) {
2504 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2505 struct pool_workqueue, mayday_node);
112202d9 2506 struct worker_pool *pool = pwq->pool;
e22bee78 2507 struct work_struct *work, *n;
82607adc 2508 bool first = true;
e22bee78
TH
2509
2510 __set_current_state(TASK_RUNNING);
493a1724
TH
2511 list_del_init(&pwq->mayday_node);
2512
2e109a28 2513 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2514
51697d39
LJ
2515 worker_attach_to_pool(rescuer, pool);
2516
2517 spin_lock_irq(&pool->lock);
e22bee78
TH
2518
2519 /*
2520 * Slurp in all works issued via this workqueue and
2521 * process'em.
2522 */
0479c8c5 2523 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2524 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2525 if (get_work_pwq(work) == pwq) {
2526 if (first)
2527 pool->watchdog_ts = jiffies;
e22bee78 2528 move_linked_works(work, scheduled, &n);
82607adc
TH
2529 }
2530 first = false;
2531 }
e22bee78 2532
008847f6
N
2533 if (!list_empty(scheduled)) {
2534 process_scheduled_works(rescuer);
2535
2536 /*
2537 * The above execution of rescued work items could
2538 * have created more to rescue through
2539 * pwq_activate_first_delayed() or chained
2540 * queueing. Let's put @pwq back on mayday list so
2541 * that such back-to-back work items, which may be
2542 * being used to relieve memory pressure, don't
2543 * incur MAYDAY_INTERVAL delay inbetween.
2544 */
2545 if (need_to_create_worker(pool)) {
2546 spin_lock(&wq_mayday_lock);
63567df7
TH
2547 /*
2548 * Queue iff we aren't racing destruction
2549 * and somebody else hasn't queued it already.
2550 */
2551 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2552 get_pwq(pwq);
2553 list_add_tail(&pwq->mayday_node, &wq->maydays);
2554 }
008847f6
N
2555 spin_unlock(&wq_mayday_lock);
2556 }
2557 }
7576958a 2558
77668c8b
LJ
2559 /*
2560 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2561 * go away while we're still attached to it.
77668c8b
LJ
2562 */
2563 put_pwq(pwq);
2564
7576958a 2565 /*
d8ca83e6 2566 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2567 * regular worker; otherwise, we end up with 0 concurrency
2568 * and stalling the execution.
2569 */
d8ca83e6 2570 if (need_more_worker(pool))
63d95a91 2571 wake_up_worker(pool);
7576958a 2572
13b1d625
LJ
2573 spin_unlock_irq(&pool->lock);
2574
a2d812a2 2575 worker_detach_from_pool(rescuer);
13b1d625
LJ
2576
2577 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2578 }
2579
2e109a28 2580 spin_unlock_irq(&wq_mayday_lock);
493a1724 2581
4d595b86
LJ
2582 if (should_stop) {
2583 __set_current_state(TASK_RUNNING);
197f6acc 2584 set_pf_worker(false);
4d595b86
LJ
2585 return 0;
2586 }
2587
111c225a
TH
2588 /* rescuers should never participate in concurrency management */
2589 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2590 schedule();
2591 goto repeat;
1da177e4
LT
2592}
2593
fca839c0
TH
2594/**
2595 * check_flush_dependency - check for flush dependency sanity
2596 * @target_wq: workqueue being flushed
2597 * @target_work: work item being flushed (NULL for workqueue flushes)
2598 *
2599 * %current is trying to flush the whole @target_wq or @target_work on it.
2600 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2601 * reclaiming memory or running on a workqueue which doesn't have
2602 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2603 * a deadlock.
2604 */
2605static void check_flush_dependency(struct workqueue_struct *target_wq,
2606 struct work_struct *target_work)
2607{
2608 work_func_t target_func = target_work ? target_work->func : NULL;
2609 struct worker *worker;
2610
2611 if (target_wq->flags & WQ_MEM_RECLAIM)
2612 return;
2613
2614 worker = current_wq_worker();
2615
2616 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2617 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2618 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2619 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2620 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2621 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2622 worker->current_pwq->wq->name, worker->current_func,
2623 target_wq->name, target_func);
2624}
2625
fc2e4d70
ON
2626struct wq_barrier {
2627 struct work_struct work;
2628 struct completion done;
2607d7a6 2629 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2630};
2631
2632static void wq_barrier_func(struct work_struct *work)
2633{
2634 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2635 complete(&barr->done);
2636}
2637
4690c4ab
TH
2638/**
2639 * insert_wq_barrier - insert a barrier work
112202d9 2640 * @pwq: pwq to insert barrier into
4690c4ab 2641 * @barr: wq_barrier to insert
affee4b2
TH
2642 * @target: target work to attach @barr to
2643 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2644 *
affee4b2
TH
2645 * @barr is linked to @target such that @barr is completed only after
2646 * @target finishes execution. Please note that the ordering
2647 * guarantee is observed only with respect to @target and on the local
2648 * cpu.
2649 *
2650 * Currently, a queued barrier can't be canceled. This is because
2651 * try_to_grab_pending() can't determine whether the work to be
2652 * grabbed is at the head of the queue and thus can't clear LINKED
2653 * flag of the previous work while there must be a valid next work
2654 * after a work with LINKED flag set.
2655 *
2656 * Note that when @worker is non-NULL, @target may be modified
112202d9 2657 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2658 *
2659 * CONTEXT:
d565ed63 2660 * spin_lock_irq(pool->lock).
4690c4ab 2661 */
112202d9 2662static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2663 struct wq_barrier *barr,
2664 struct work_struct *target, struct worker *worker)
fc2e4d70 2665{
affee4b2
TH
2666 struct list_head *head;
2667 unsigned int linked = 0;
2668
dc186ad7 2669 /*
d565ed63 2670 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2671 * as we know for sure that this will not trigger any of the
2672 * checks and call back into the fixup functions where we
2673 * might deadlock.
2674 */
ca1cab37 2675 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2676 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2677
fd1a5b04
BP
2678 init_completion_map(&barr->done, &target->lockdep_map);
2679
2607d7a6 2680 barr->task = current;
83c22520 2681
affee4b2
TH
2682 /*
2683 * If @target is currently being executed, schedule the
2684 * barrier to the worker; otherwise, put it after @target.
2685 */
2686 if (worker)
2687 head = worker->scheduled.next;
2688 else {
2689 unsigned long *bits = work_data_bits(target);
2690
2691 head = target->entry.next;
2692 /* there can already be other linked works, inherit and set */
2693 linked = *bits & WORK_STRUCT_LINKED;
2694 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2695 }
2696
dc186ad7 2697 debug_work_activate(&barr->work);
112202d9 2698 insert_work(pwq, &barr->work, head,
affee4b2 2699 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2700}
2701
73f53c4a 2702/**
112202d9 2703 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2704 * @wq: workqueue being flushed
2705 * @flush_color: new flush color, < 0 for no-op
2706 * @work_color: new work color, < 0 for no-op
2707 *
112202d9 2708 * Prepare pwqs for workqueue flushing.
73f53c4a 2709 *
112202d9
TH
2710 * If @flush_color is non-negative, flush_color on all pwqs should be
2711 * -1. If no pwq has in-flight commands at the specified color, all
2712 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2713 * has in flight commands, its pwq->flush_color is set to
2714 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2715 * wakeup logic is armed and %true is returned.
2716 *
2717 * The caller should have initialized @wq->first_flusher prior to
2718 * calling this function with non-negative @flush_color. If
2719 * @flush_color is negative, no flush color update is done and %false
2720 * is returned.
2721 *
112202d9 2722 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2723 * work_color which is previous to @work_color and all will be
2724 * advanced to @work_color.
2725 *
2726 * CONTEXT:
3c25a55d 2727 * mutex_lock(wq->mutex).
73f53c4a 2728 *
d185af30 2729 * Return:
73f53c4a
TH
2730 * %true if @flush_color >= 0 and there's something to flush. %false
2731 * otherwise.
2732 */
112202d9 2733static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2734 int flush_color, int work_color)
1da177e4 2735{
73f53c4a 2736 bool wait = false;
49e3cf44 2737 struct pool_workqueue *pwq;
1da177e4 2738
73f53c4a 2739 if (flush_color >= 0) {
6183c009 2740 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2741 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2742 }
2355b70f 2743
49e3cf44 2744 for_each_pwq(pwq, wq) {
112202d9 2745 struct worker_pool *pool = pwq->pool;
fc2e4d70 2746
b09f4fd3 2747 spin_lock_irq(&pool->lock);
83c22520 2748
73f53c4a 2749 if (flush_color >= 0) {
6183c009 2750 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2751
112202d9
TH
2752 if (pwq->nr_in_flight[flush_color]) {
2753 pwq->flush_color = flush_color;
2754 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2755 wait = true;
2756 }
2757 }
1da177e4 2758
73f53c4a 2759 if (work_color >= 0) {
6183c009 2760 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2761 pwq->work_color = work_color;
73f53c4a 2762 }
1da177e4 2763
b09f4fd3 2764 spin_unlock_irq(&pool->lock);
1da177e4 2765 }
2355b70f 2766
112202d9 2767 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2768 complete(&wq->first_flusher->done);
14441960 2769
73f53c4a 2770 return wait;
1da177e4
LT
2771}
2772
0fcb78c2 2773/**
1da177e4 2774 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2775 * @wq: workqueue to flush
1da177e4 2776 *
c5aa87bb
TH
2777 * This function sleeps until all work items which were queued on entry
2778 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2779 */
7ad5b3a5 2780void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2781{
73f53c4a
TH
2782 struct wq_flusher this_flusher = {
2783 .list = LIST_HEAD_INIT(this_flusher.list),
2784 .flush_color = -1,
fd1a5b04 2785 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2786 };
2787 int next_color;
1da177e4 2788
3347fa09
TH
2789 if (WARN_ON(!wq_online))
2790 return;
2791
87915adc
JB
2792 lock_map_acquire(&wq->lockdep_map);
2793 lock_map_release(&wq->lockdep_map);
2794
3c25a55d 2795 mutex_lock(&wq->mutex);
73f53c4a
TH
2796
2797 /*
2798 * Start-to-wait phase
2799 */
2800 next_color = work_next_color(wq->work_color);
2801
2802 if (next_color != wq->flush_color) {
2803 /*
2804 * Color space is not full. The current work_color
2805 * becomes our flush_color and work_color is advanced
2806 * by one.
2807 */
6183c009 2808 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2809 this_flusher.flush_color = wq->work_color;
2810 wq->work_color = next_color;
2811
2812 if (!wq->first_flusher) {
2813 /* no flush in progress, become the first flusher */
6183c009 2814 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2815
2816 wq->first_flusher = &this_flusher;
2817
112202d9 2818 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2819 wq->work_color)) {
2820 /* nothing to flush, done */
2821 wq->flush_color = next_color;
2822 wq->first_flusher = NULL;
2823 goto out_unlock;
2824 }
2825 } else {
2826 /* wait in queue */
6183c009 2827 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2828 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2829 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2830 }
2831 } else {
2832 /*
2833 * Oops, color space is full, wait on overflow queue.
2834 * The next flush completion will assign us
2835 * flush_color and transfer to flusher_queue.
2836 */
2837 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2838 }
2839
fca839c0
TH
2840 check_flush_dependency(wq, NULL);
2841
3c25a55d 2842 mutex_unlock(&wq->mutex);
73f53c4a
TH
2843
2844 wait_for_completion(&this_flusher.done);
2845
2846 /*
2847 * Wake-up-and-cascade phase
2848 *
2849 * First flushers are responsible for cascading flushes and
2850 * handling overflow. Non-first flushers can simply return.
2851 */
2852 if (wq->first_flusher != &this_flusher)
2853 return;
2854
3c25a55d 2855 mutex_lock(&wq->mutex);
73f53c4a 2856
4ce48b37
TH
2857 /* we might have raced, check again with mutex held */
2858 if (wq->first_flusher != &this_flusher)
2859 goto out_unlock;
2860
73f53c4a
TH
2861 wq->first_flusher = NULL;
2862
6183c009
TH
2863 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2864 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2865
2866 while (true) {
2867 struct wq_flusher *next, *tmp;
2868
2869 /* complete all the flushers sharing the current flush color */
2870 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2871 if (next->flush_color != wq->flush_color)
2872 break;
2873 list_del_init(&next->list);
2874 complete(&next->done);
2875 }
2876
6183c009
TH
2877 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2878 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2879
2880 /* this flush_color is finished, advance by one */
2881 wq->flush_color = work_next_color(wq->flush_color);
2882
2883 /* one color has been freed, handle overflow queue */
2884 if (!list_empty(&wq->flusher_overflow)) {
2885 /*
2886 * Assign the same color to all overflowed
2887 * flushers, advance work_color and append to
2888 * flusher_queue. This is the start-to-wait
2889 * phase for these overflowed flushers.
2890 */
2891 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2892 tmp->flush_color = wq->work_color;
2893
2894 wq->work_color = work_next_color(wq->work_color);
2895
2896 list_splice_tail_init(&wq->flusher_overflow,
2897 &wq->flusher_queue);
112202d9 2898 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2899 }
2900
2901 if (list_empty(&wq->flusher_queue)) {
6183c009 2902 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2903 break;
2904 }
2905
2906 /*
2907 * Need to flush more colors. Make the next flusher
112202d9 2908 * the new first flusher and arm pwqs.
73f53c4a 2909 */
6183c009
TH
2910 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2911 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2912
2913 list_del_init(&next->list);
2914 wq->first_flusher = next;
2915
112202d9 2916 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2917 break;
2918
2919 /*
2920 * Meh... this color is already done, clear first
2921 * flusher and repeat cascading.
2922 */
2923 wq->first_flusher = NULL;
2924 }
2925
2926out_unlock:
3c25a55d 2927 mutex_unlock(&wq->mutex);
1da177e4 2928}
1dadafa8 2929EXPORT_SYMBOL(flush_workqueue);
1da177e4 2930
9c5a2ba7
TH
2931/**
2932 * drain_workqueue - drain a workqueue
2933 * @wq: workqueue to drain
2934 *
2935 * Wait until the workqueue becomes empty. While draining is in progress,
2936 * only chain queueing is allowed. IOW, only currently pending or running
2937 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2938 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2939 * by the depth of chaining and should be relatively short. Whine if it
2940 * takes too long.
2941 */
2942void drain_workqueue(struct workqueue_struct *wq)
2943{
2944 unsigned int flush_cnt = 0;
49e3cf44 2945 struct pool_workqueue *pwq;
9c5a2ba7
TH
2946
2947 /*
2948 * __queue_work() needs to test whether there are drainers, is much
2949 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2950 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2951 */
87fc741e 2952 mutex_lock(&wq->mutex);
9c5a2ba7 2953 if (!wq->nr_drainers++)
618b01eb 2954 wq->flags |= __WQ_DRAINING;
87fc741e 2955 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2956reflush:
2957 flush_workqueue(wq);
2958
b09f4fd3 2959 mutex_lock(&wq->mutex);
76af4d93 2960
49e3cf44 2961 for_each_pwq(pwq, wq) {
fa2563e4 2962 bool drained;
9c5a2ba7 2963
b09f4fd3 2964 spin_lock_irq(&pwq->pool->lock);
112202d9 2965 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2966 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2967
2968 if (drained)
9c5a2ba7
TH
2969 continue;
2970
2971 if (++flush_cnt == 10 ||
2972 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2973 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2974 wq->name, flush_cnt);
76af4d93 2975
b09f4fd3 2976 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2977 goto reflush;
2978 }
2979
9c5a2ba7 2980 if (!--wq->nr_drainers)
618b01eb 2981 wq->flags &= ~__WQ_DRAINING;
87fc741e 2982 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2983}
2984EXPORT_SYMBOL_GPL(drain_workqueue);
2985
d6e89786
JB
2986static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2987 bool from_cancel)
db700897 2988{
affee4b2 2989 struct worker *worker = NULL;
c9e7cf27 2990 struct worker_pool *pool;
112202d9 2991 struct pool_workqueue *pwq;
db700897
ON
2992
2993 might_sleep();
fa1b54e6 2994
24acfb71 2995 rcu_read_lock();
c9e7cf27 2996 pool = get_work_pool(work);
fa1b54e6 2997 if (!pool) {
24acfb71 2998 rcu_read_unlock();
baf59022 2999 return false;
fa1b54e6 3000 }
db700897 3001
24acfb71 3002 spin_lock_irq(&pool->lock);
0b3dae68 3003 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
3004 pwq = get_work_pwq(work);
3005 if (pwq) {
3006 if (unlikely(pwq->pool != pool))
4690c4ab 3007 goto already_gone;
606a5020 3008 } else {
c9e7cf27 3009 worker = find_worker_executing_work(pool, work);
affee4b2 3010 if (!worker)
4690c4ab 3011 goto already_gone;
112202d9 3012 pwq = worker->current_pwq;
606a5020 3013 }
db700897 3014
fca839c0
TH
3015 check_flush_dependency(pwq->wq, work);
3016
112202d9 3017 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3018 spin_unlock_irq(&pool->lock);
7a22ad75 3019
e159489b 3020 /*
a1d14934
PZ
3021 * Force a lock recursion deadlock when using flush_work() inside a
3022 * single-threaded or rescuer equipped workqueue.
3023 *
3024 * For single threaded workqueues the deadlock happens when the work
3025 * is after the work issuing the flush_work(). For rescuer equipped
3026 * workqueues the deadlock happens when the rescuer stalls, blocking
3027 * forward progress.
e159489b 3028 */
d6e89786
JB
3029 if (!from_cancel &&
3030 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3031 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3032 lock_map_release(&pwq->wq->lockdep_map);
3033 }
24acfb71 3034 rcu_read_unlock();
401a8d04 3035 return true;
4690c4ab 3036already_gone:
d565ed63 3037 spin_unlock_irq(&pool->lock);
24acfb71 3038 rcu_read_unlock();
401a8d04 3039 return false;
db700897 3040}
baf59022 3041
d6e89786
JB
3042static bool __flush_work(struct work_struct *work, bool from_cancel)
3043{
3044 struct wq_barrier barr;
3045
3046 if (WARN_ON(!wq_online))
3047 return false;
3048
4d43d395
TH
3049 if (WARN_ON(!work->func))
3050 return false;
3051
87915adc
JB
3052 if (!from_cancel) {
3053 lock_map_acquire(&work->lockdep_map);
3054 lock_map_release(&work->lockdep_map);
3055 }
3056
d6e89786
JB
3057 if (start_flush_work(work, &barr, from_cancel)) {
3058 wait_for_completion(&barr.done);
3059 destroy_work_on_stack(&barr.work);
3060 return true;
3061 } else {
3062 return false;
3063 }
3064}
3065
baf59022
TH
3066/**
3067 * flush_work - wait for a work to finish executing the last queueing instance
3068 * @work: the work to flush
3069 *
606a5020
TH
3070 * Wait until @work has finished execution. @work is guaranteed to be idle
3071 * on return if it hasn't been requeued since flush started.
baf59022 3072 *
d185af30 3073 * Return:
baf59022
TH
3074 * %true if flush_work() waited for the work to finish execution,
3075 * %false if it was already idle.
3076 */
3077bool flush_work(struct work_struct *work)
3078{
d6e89786 3079 return __flush_work(work, false);
6e84d644 3080}
606a5020 3081EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3082
8603e1b3 3083struct cwt_wait {
ac6424b9 3084 wait_queue_entry_t wait;
8603e1b3
TH
3085 struct work_struct *work;
3086};
3087
ac6424b9 3088static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3089{
3090 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3091
3092 if (cwait->work != key)
3093 return 0;
3094 return autoremove_wake_function(wait, mode, sync, key);
3095}
3096
36e227d2 3097static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3098{
8603e1b3 3099 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3100 unsigned long flags;
1f1f642e
ON
3101 int ret;
3102
3103 do {
bbb68dfa
TH
3104 ret = try_to_grab_pending(work, is_dwork, &flags);
3105 /*
8603e1b3
TH
3106 * If someone else is already canceling, wait for it to
3107 * finish. flush_work() doesn't work for PREEMPT_NONE
3108 * because we may get scheduled between @work's completion
3109 * and the other canceling task resuming and clearing
3110 * CANCELING - flush_work() will return false immediately
3111 * as @work is no longer busy, try_to_grab_pending() will
3112 * return -ENOENT as @work is still being canceled and the
3113 * other canceling task won't be able to clear CANCELING as
3114 * we're hogging the CPU.
3115 *
3116 * Let's wait for completion using a waitqueue. As this
3117 * may lead to the thundering herd problem, use a custom
3118 * wake function which matches @work along with exclusive
3119 * wait and wakeup.
bbb68dfa 3120 */
8603e1b3
TH
3121 if (unlikely(ret == -ENOENT)) {
3122 struct cwt_wait cwait;
3123
3124 init_wait(&cwait.wait);
3125 cwait.wait.func = cwt_wakefn;
3126 cwait.work = work;
3127
3128 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3129 TASK_UNINTERRUPTIBLE);
3130 if (work_is_canceling(work))
3131 schedule();
3132 finish_wait(&cancel_waitq, &cwait.wait);
3133 }
1f1f642e
ON
3134 } while (unlikely(ret < 0));
3135
bbb68dfa
TH
3136 /* tell other tasks trying to grab @work to back off */
3137 mark_work_canceling(work);
3138 local_irq_restore(flags);
3139
3347fa09
TH
3140 /*
3141 * This allows canceling during early boot. We know that @work
3142 * isn't executing.
3143 */
3144 if (wq_online)
d6e89786 3145 __flush_work(work, true);
3347fa09 3146
7a22ad75 3147 clear_work_data(work);
8603e1b3
TH
3148
3149 /*
3150 * Paired with prepare_to_wait() above so that either
3151 * waitqueue_active() is visible here or !work_is_canceling() is
3152 * visible there.
3153 */
3154 smp_mb();
3155 if (waitqueue_active(&cancel_waitq))
3156 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3157
1f1f642e
ON
3158 return ret;
3159}
3160
6e84d644 3161/**
401a8d04
TH
3162 * cancel_work_sync - cancel a work and wait for it to finish
3163 * @work: the work to cancel
6e84d644 3164 *
401a8d04
TH
3165 * Cancel @work and wait for its execution to finish. This function
3166 * can be used even if the work re-queues itself or migrates to
3167 * another workqueue. On return from this function, @work is
3168 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3169 *
401a8d04
TH
3170 * cancel_work_sync(&delayed_work->work) must not be used for
3171 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3172 *
401a8d04 3173 * The caller must ensure that the workqueue on which @work was last
6e84d644 3174 * queued can't be destroyed before this function returns.
401a8d04 3175 *
d185af30 3176 * Return:
401a8d04 3177 * %true if @work was pending, %false otherwise.
6e84d644 3178 */
401a8d04 3179bool cancel_work_sync(struct work_struct *work)
6e84d644 3180{
36e227d2 3181 return __cancel_work_timer(work, false);
b89deed3 3182}
28e53bdd 3183EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3184
6e84d644 3185/**
401a8d04
TH
3186 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3187 * @dwork: the delayed work to flush
6e84d644 3188 *
401a8d04
TH
3189 * Delayed timer is cancelled and the pending work is queued for
3190 * immediate execution. Like flush_work(), this function only
3191 * considers the last queueing instance of @dwork.
1f1f642e 3192 *
d185af30 3193 * Return:
401a8d04
TH
3194 * %true if flush_work() waited for the work to finish execution,
3195 * %false if it was already idle.
6e84d644 3196 */
401a8d04
TH
3197bool flush_delayed_work(struct delayed_work *dwork)
3198{
8930caba 3199 local_irq_disable();
401a8d04 3200 if (del_timer_sync(&dwork->timer))
60c057bc 3201 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3202 local_irq_enable();
401a8d04
TH
3203 return flush_work(&dwork->work);
3204}
3205EXPORT_SYMBOL(flush_delayed_work);
3206
05f0fe6b
TH
3207/**
3208 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3209 * @rwork: the rcu work to flush
3210 *
3211 * Return:
3212 * %true if flush_rcu_work() waited for the work to finish execution,
3213 * %false if it was already idle.
3214 */
3215bool flush_rcu_work(struct rcu_work *rwork)
3216{
3217 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3218 rcu_barrier();
3219 flush_work(&rwork->work);
3220 return true;
3221 } else {
3222 return flush_work(&rwork->work);
3223 }
3224}
3225EXPORT_SYMBOL(flush_rcu_work);
3226
f72b8792
JA
3227static bool __cancel_work(struct work_struct *work, bool is_dwork)
3228{
3229 unsigned long flags;
3230 int ret;
3231
3232 do {
3233 ret = try_to_grab_pending(work, is_dwork, &flags);
3234 } while (unlikely(ret == -EAGAIN));
3235
3236 if (unlikely(ret < 0))
3237 return false;
3238
3239 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3240 local_irq_restore(flags);
3241 return ret;
3242}
3243
09383498 3244/**
57b30ae7
TH
3245 * cancel_delayed_work - cancel a delayed work
3246 * @dwork: delayed_work to cancel
09383498 3247 *
d185af30
YB
3248 * Kill off a pending delayed_work.
3249 *
3250 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3251 * pending.
3252 *
3253 * Note:
3254 * The work callback function may still be running on return, unless
3255 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3256 * use cancel_delayed_work_sync() to wait on it.
09383498 3257 *
57b30ae7 3258 * This function is safe to call from any context including IRQ handler.
09383498 3259 */
57b30ae7 3260bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3261{
f72b8792 3262 return __cancel_work(&dwork->work, true);
09383498 3263}
57b30ae7 3264EXPORT_SYMBOL(cancel_delayed_work);
09383498 3265
401a8d04
TH
3266/**
3267 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3268 * @dwork: the delayed work cancel
3269 *
3270 * This is cancel_work_sync() for delayed works.
3271 *
d185af30 3272 * Return:
401a8d04
TH
3273 * %true if @dwork was pending, %false otherwise.
3274 */
3275bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3276{
36e227d2 3277 return __cancel_work_timer(&dwork->work, true);
6e84d644 3278}
f5a421a4 3279EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3280
b6136773 3281/**
31ddd871 3282 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3283 * @func: the function to call
b6136773 3284 *
31ddd871
TH
3285 * schedule_on_each_cpu() executes @func on each online CPU using the
3286 * system workqueue and blocks until all CPUs have completed.
b6136773 3287 * schedule_on_each_cpu() is very slow.
31ddd871 3288 *
d185af30 3289 * Return:
31ddd871 3290 * 0 on success, -errno on failure.
b6136773 3291 */
65f27f38 3292int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3293{
3294 int cpu;
38f51568 3295 struct work_struct __percpu *works;
15316ba8 3296
b6136773
AM
3297 works = alloc_percpu(struct work_struct);
3298 if (!works)
15316ba8 3299 return -ENOMEM;
b6136773 3300
93981800
TH
3301 get_online_cpus();
3302
15316ba8 3303 for_each_online_cpu(cpu) {
9bfb1839
IM
3304 struct work_struct *work = per_cpu_ptr(works, cpu);
3305
3306 INIT_WORK(work, func);
b71ab8c2 3307 schedule_work_on(cpu, work);
65a64464 3308 }
93981800
TH
3309
3310 for_each_online_cpu(cpu)
3311 flush_work(per_cpu_ptr(works, cpu));
3312
95402b38 3313 put_online_cpus();
b6136773 3314 free_percpu(works);
15316ba8
CL
3315 return 0;
3316}
3317
1fa44eca
JB
3318/**
3319 * execute_in_process_context - reliably execute the routine with user context
3320 * @fn: the function to execute
1fa44eca
JB
3321 * @ew: guaranteed storage for the execute work structure (must
3322 * be available when the work executes)
3323 *
3324 * Executes the function immediately if process context is available,
3325 * otherwise schedules the function for delayed execution.
3326 *
d185af30 3327 * Return: 0 - function was executed
1fa44eca
JB
3328 * 1 - function was scheduled for execution
3329 */
65f27f38 3330int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3331{
3332 if (!in_interrupt()) {
65f27f38 3333 fn(&ew->work);
1fa44eca
JB
3334 return 0;
3335 }
3336
65f27f38 3337 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3338 schedule_work(&ew->work);
3339
3340 return 1;
3341}
3342EXPORT_SYMBOL_GPL(execute_in_process_context);
3343
6ba94429
FW
3344/**
3345 * free_workqueue_attrs - free a workqueue_attrs
3346 * @attrs: workqueue_attrs to free
226223ab 3347 *
6ba94429 3348 * Undo alloc_workqueue_attrs().
226223ab 3349 */
513c98d0 3350void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3351{
6ba94429
FW
3352 if (attrs) {
3353 free_cpumask_var(attrs->cpumask);
3354 kfree(attrs);
3355 }
226223ab
TH
3356}
3357
6ba94429
FW
3358/**
3359 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3360 *
3361 * Allocate a new workqueue_attrs, initialize with default settings and
3362 * return it.
3363 *
3364 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3365 */
513c98d0 3366struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3367{
6ba94429 3368 struct workqueue_attrs *attrs;
226223ab 3369
be69d00d 3370 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3371 if (!attrs)
3372 goto fail;
be69d00d 3373 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3374 goto fail;
3375
3376 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3377 return attrs;
3378fail:
3379 free_workqueue_attrs(attrs);
3380 return NULL;
226223ab
TH
3381}
3382
6ba94429
FW
3383static void copy_workqueue_attrs(struct workqueue_attrs *to,
3384 const struct workqueue_attrs *from)
226223ab 3385{
6ba94429
FW
3386 to->nice = from->nice;
3387 cpumask_copy(to->cpumask, from->cpumask);
3388 /*
3389 * Unlike hash and equality test, this function doesn't ignore
3390 * ->no_numa as it is used for both pool and wq attrs. Instead,
3391 * get_unbound_pool() explicitly clears ->no_numa after copying.
3392 */
3393 to->no_numa = from->no_numa;
226223ab
TH
3394}
3395
6ba94429
FW
3396/* hash value of the content of @attr */
3397static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3398{
6ba94429 3399 u32 hash = 0;
226223ab 3400
6ba94429
FW
3401 hash = jhash_1word(attrs->nice, hash);
3402 hash = jhash(cpumask_bits(attrs->cpumask),
3403 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3404 return hash;
226223ab 3405}
226223ab 3406
6ba94429
FW
3407/* content equality test */
3408static bool wqattrs_equal(const struct workqueue_attrs *a,
3409 const struct workqueue_attrs *b)
226223ab 3410{
6ba94429
FW
3411 if (a->nice != b->nice)
3412 return false;
3413 if (!cpumask_equal(a->cpumask, b->cpumask))
3414 return false;
3415 return true;
226223ab
TH
3416}
3417
6ba94429
FW
3418/**
3419 * init_worker_pool - initialize a newly zalloc'd worker_pool
3420 * @pool: worker_pool to initialize
3421 *
402dd89d 3422 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3423 *
3424 * Return: 0 on success, -errno on failure. Even on failure, all fields
3425 * inside @pool proper are initialized and put_unbound_pool() can be called
3426 * on @pool safely to release it.
3427 */
3428static int init_worker_pool(struct worker_pool *pool)
226223ab 3429{
6ba94429
FW
3430 spin_lock_init(&pool->lock);
3431 pool->id = -1;
3432 pool->cpu = -1;
3433 pool->node = NUMA_NO_NODE;
3434 pool->flags |= POOL_DISASSOCIATED;
82607adc 3435 pool->watchdog_ts = jiffies;
6ba94429
FW
3436 INIT_LIST_HEAD(&pool->worklist);
3437 INIT_LIST_HEAD(&pool->idle_list);
3438 hash_init(pool->busy_hash);
226223ab 3439
32a6c723 3440 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3441
32a6c723 3442 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3443
6ba94429 3444 INIT_LIST_HEAD(&pool->workers);
226223ab 3445
6ba94429
FW
3446 ida_init(&pool->worker_ida);
3447 INIT_HLIST_NODE(&pool->hash_node);
3448 pool->refcnt = 1;
226223ab 3449
6ba94429 3450 /* shouldn't fail above this point */
be69d00d 3451 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3452 if (!pool->attrs)
3453 return -ENOMEM;
3454 return 0;
226223ab
TH
3455}
3456
669de8bd
BVA
3457#ifdef CONFIG_LOCKDEP
3458static void wq_init_lockdep(struct workqueue_struct *wq)
3459{
3460 char *lock_name;
3461
3462 lockdep_register_key(&wq->key);
3463 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3464 if (!lock_name)
3465 lock_name = wq->name;
69a106c0
QC
3466
3467 wq->lock_name = lock_name;
669de8bd
BVA
3468 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3469}
3470
3471static void wq_unregister_lockdep(struct workqueue_struct *wq)
3472{
3473 lockdep_unregister_key(&wq->key);
3474}
3475
3476static void wq_free_lockdep(struct workqueue_struct *wq)
3477{
3478 if (wq->lock_name != wq->name)
3479 kfree(wq->lock_name);
3480}
3481#else
3482static void wq_init_lockdep(struct workqueue_struct *wq)
3483{
3484}
3485
3486static void wq_unregister_lockdep(struct workqueue_struct *wq)
3487{
3488}
3489
3490static void wq_free_lockdep(struct workqueue_struct *wq)
3491{
3492}
3493#endif
3494
6ba94429 3495static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3496{
6ba94429
FW
3497 struct workqueue_struct *wq =
3498 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3499
669de8bd
BVA
3500 wq_free_lockdep(wq);
3501
6ba94429
FW
3502 if (!(wq->flags & WQ_UNBOUND))
3503 free_percpu(wq->cpu_pwqs);
226223ab 3504 else
6ba94429 3505 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3506
6ba94429
FW
3507 kfree(wq->rescuer);
3508 kfree(wq);
226223ab
TH
3509}
3510
6ba94429 3511static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3512{
6ba94429 3513 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3514
6ba94429
FW
3515 ida_destroy(&pool->worker_ida);
3516 free_workqueue_attrs(pool->attrs);
3517 kfree(pool);
226223ab
TH
3518}
3519
6ba94429
FW
3520/**
3521 * put_unbound_pool - put a worker_pool
3522 * @pool: worker_pool to put
3523 *
24acfb71 3524 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3525 * safe manner. get_unbound_pool() calls this function on its failure path
3526 * and this function should be able to release pools which went through,
3527 * successfully or not, init_worker_pool().
3528 *
3529 * Should be called with wq_pool_mutex held.
3530 */
3531static void put_unbound_pool(struct worker_pool *pool)
226223ab 3532{
6ba94429
FW
3533 DECLARE_COMPLETION_ONSTACK(detach_completion);
3534 struct worker *worker;
226223ab 3535
6ba94429 3536 lockdep_assert_held(&wq_pool_mutex);
226223ab 3537
6ba94429
FW
3538 if (--pool->refcnt)
3539 return;
226223ab 3540
6ba94429
FW
3541 /* sanity checks */
3542 if (WARN_ON(!(pool->cpu < 0)) ||
3543 WARN_ON(!list_empty(&pool->worklist)))
3544 return;
226223ab 3545
6ba94429
FW
3546 /* release id and unhash */
3547 if (pool->id >= 0)
3548 idr_remove(&worker_pool_idr, pool->id);
3549 hash_del(&pool->hash_node);
d55262c4 3550
6ba94429 3551 /*
692b4825
TH
3552 * Become the manager and destroy all workers. This prevents
3553 * @pool's workers from blocking on attach_mutex. We're the last
3554 * manager and @pool gets freed with the flag set.
6ba94429 3555 */
6ba94429 3556 spin_lock_irq(&pool->lock);
692b4825
TH
3557 wait_event_lock_irq(wq_manager_wait,
3558 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3559 pool->flags |= POOL_MANAGER_ACTIVE;
3560
6ba94429
FW
3561 while ((worker = first_idle_worker(pool)))
3562 destroy_worker(worker);
3563 WARN_ON(pool->nr_workers || pool->nr_idle);
3564 spin_unlock_irq(&pool->lock);
d55262c4 3565
1258fae7 3566 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3567 if (!list_empty(&pool->workers))
3568 pool->detach_completion = &detach_completion;
1258fae7 3569 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3570
6ba94429
FW
3571 if (pool->detach_completion)
3572 wait_for_completion(pool->detach_completion);
226223ab 3573
6ba94429
FW
3574 /* shut down the timers */
3575 del_timer_sync(&pool->idle_timer);
3576 del_timer_sync(&pool->mayday_timer);
226223ab 3577
24acfb71 3578 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3579 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3580}
3581
3582/**
6ba94429
FW
3583 * get_unbound_pool - get a worker_pool with the specified attributes
3584 * @attrs: the attributes of the worker_pool to get
226223ab 3585 *
6ba94429
FW
3586 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3587 * reference count and return it. If there already is a matching
3588 * worker_pool, it will be used; otherwise, this function attempts to
3589 * create a new one.
226223ab 3590 *
6ba94429 3591 * Should be called with wq_pool_mutex held.
226223ab 3592 *
6ba94429
FW
3593 * Return: On success, a worker_pool with the same attributes as @attrs.
3594 * On failure, %NULL.
226223ab 3595 */
6ba94429 3596static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3597{
6ba94429
FW
3598 u32 hash = wqattrs_hash(attrs);
3599 struct worker_pool *pool;
3600 int node;
e2273584 3601 int target_node = NUMA_NO_NODE;
226223ab 3602
6ba94429 3603 lockdep_assert_held(&wq_pool_mutex);
226223ab 3604
6ba94429
FW
3605 /* do we already have a matching pool? */
3606 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3607 if (wqattrs_equal(pool->attrs, attrs)) {
3608 pool->refcnt++;
3609 return pool;
3610 }
3611 }
226223ab 3612
e2273584
XP
3613 /* if cpumask is contained inside a NUMA node, we belong to that node */
3614 if (wq_numa_enabled) {
3615 for_each_node(node) {
3616 if (cpumask_subset(attrs->cpumask,
3617 wq_numa_possible_cpumask[node])) {
3618 target_node = node;
3619 break;
3620 }
3621 }
3622 }
3623
6ba94429 3624 /* nope, create a new one */
e2273584 3625 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3626 if (!pool || init_worker_pool(pool) < 0)
3627 goto fail;
3628
3629 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3630 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3631 pool->node = target_node;
226223ab
TH
3632
3633 /*
6ba94429
FW
3634 * no_numa isn't a worker_pool attribute, always clear it. See
3635 * 'struct workqueue_attrs' comments for detail.
226223ab 3636 */
6ba94429 3637 pool->attrs->no_numa = false;
226223ab 3638
6ba94429
FW
3639 if (worker_pool_assign_id(pool) < 0)
3640 goto fail;
226223ab 3641
6ba94429 3642 /* create and start the initial worker */
3347fa09 3643 if (wq_online && !create_worker(pool))
6ba94429 3644 goto fail;
226223ab 3645
6ba94429
FW
3646 /* install */
3647 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3648
6ba94429
FW
3649 return pool;
3650fail:
3651 if (pool)
3652 put_unbound_pool(pool);
3653 return NULL;
226223ab 3654}
226223ab 3655
6ba94429 3656static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3657{
6ba94429
FW
3658 kmem_cache_free(pwq_cache,
3659 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3660}
3661
6ba94429
FW
3662/*
3663 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3664 * and needs to be destroyed.
7a4e344c 3665 */
6ba94429 3666static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3667{
6ba94429
FW
3668 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3669 unbound_release_work);
3670 struct workqueue_struct *wq = pwq->wq;
3671 struct worker_pool *pool = pwq->pool;
4e3173ce 3672 bool is_last = false;
7a4e344c 3673
4e3173ce
YY
3674 /*
3675 * when @pwq is not linked, it doesn't hold any reference to the
3676 * @wq, and @wq is invalid to access.
3677 */
3678 if (!list_empty(&pwq->pwqs_node)) {
3679 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3680 return;
7a4e344c 3681
4e3173ce
YY
3682 mutex_lock(&wq->mutex);
3683 list_del_rcu(&pwq->pwqs_node);
3684 is_last = list_empty(&wq->pwqs);
3685 mutex_unlock(&wq->mutex);
3686 }
6ba94429
FW
3687
3688 mutex_lock(&wq_pool_mutex);
3689 put_unbound_pool(pool);
3690 mutex_unlock(&wq_pool_mutex);
3691
25b00775 3692 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3693
2865a8fb 3694 /*
6ba94429
FW
3695 * If we're the last pwq going away, @wq is already dead and no one
3696 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3697 */
669de8bd
BVA
3698 if (is_last) {
3699 wq_unregister_lockdep(wq);
25b00775 3700 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3701 }
29c91e99
TH
3702}
3703
7a4e344c 3704/**
6ba94429
FW
3705 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3706 * @pwq: target pool_workqueue
d185af30 3707 *
6ba94429
FW
3708 * If @pwq isn't freezing, set @pwq->max_active to the associated
3709 * workqueue's saved_max_active and activate delayed work items
3710 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3711 */
6ba94429 3712static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3713{
6ba94429
FW
3714 struct workqueue_struct *wq = pwq->wq;
3715 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3716 unsigned long flags;
4e1a1f9a 3717
6ba94429
FW
3718 /* for @wq->saved_max_active */
3719 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3720
6ba94429
FW
3721 /* fast exit for non-freezable wqs */
3722 if (!freezable && pwq->max_active == wq->saved_max_active)
3723 return;
7a4e344c 3724
3347fa09
TH
3725 /* this function can be called during early boot w/ irq disabled */
3726 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3727
6ba94429
FW
3728 /*
3729 * During [un]freezing, the caller is responsible for ensuring that
3730 * this function is called at least once after @workqueue_freezing
3731 * is updated and visible.
3732 */
3733 if (!freezable || !workqueue_freezing) {
1d8fe463
YY
3734 bool kick = false;
3735
6ba94429 3736 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3737
6ba94429 3738 while (!list_empty(&pwq->delayed_works) &&
1d8fe463 3739 pwq->nr_active < pwq->max_active) {
6ba94429 3740 pwq_activate_first_delayed(pwq);
1d8fe463
YY
3741 kick = true;
3742 }
e2dca7ad 3743
6ba94429
FW
3744 /*
3745 * Need to kick a worker after thawed or an unbound wq's
1d8fe463
YY
3746 * max_active is bumped. In realtime scenarios, always kicking a
3747 * worker will cause interference on the isolated cpu cores, so
3748 * let's kick iff work items were activated.
6ba94429 3749 */
1d8fe463
YY
3750 if (kick)
3751 wake_up_worker(pwq->pool);
6ba94429
FW
3752 } else {
3753 pwq->max_active = 0;
3754 }
e2dca7ad 3755
3347fa09 3756 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3757}
3758
6ba94429
FW
3759/* initialize newly alloced @pwq which is associated with @wq and @pool */
3760static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3761 struct worker_pool *pool)
29c91e99 3762{
6ba94429 3763 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3764
6ba94429
FW
3765 memset(pwq, 0, sizeof(*pwq));
3766
3767 pwq->pool = pool;
3768 pwq->wq = wq;
3769 pwq->flush_color = -1;
3770 pwq->refcnt = 1;
3771 INIT_LIST_HEAD(&pwq->delayed_works);
3772 INIT_LIST_HEAD(&pwq->pwqs_node);
3773 INIT_LIST_HEAD(&pwq->mayday_node);
3774 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3775}
3776
6ba94429
FW
3777/* sync @pwq with the current state of its associated wq and link it */
3778static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3779{
6ba94429 3780 struct workqueue_struct *wq = pwq->wq;
29c91e99 3781
6ba94429 3782 lockdep_assert_held(&wq->mutex);
a892cacc 3783
6ba94429
FW
3784 /* may be called multiple times, ignore if already linked */
3785 if (!list_empty(&pwq->pwqs_node))
29c91e99 3786 return;
29c91e99 3787
6ba94429
FW
3788 /* set the matching work_color */
3789 pwq->work_color = wq->work_color;
29c91e99 3790
6ba94429
FW
3791 /* sync max_active to the current setting */
3792 pwq_adjust_max_active(pwq);
29c91e99 3793
6ba94429
FW
3794 /* link in @pwq */
3795 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3796}
29c91e99 3797
6ba94429
FW
3798/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3799static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3800 const struct workqueue_attrs *attrs)
3801{
3802 struct worker_pool *pool;
3803 struct pool_workqueue *pwq;
60f5a4bc 3804
6ba94429 3805 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3806
6ba94429
FW
3807 pool = get_unbound_pool(attrs);
3808 if (!pool)
3809 return NULL;
60f5a4bc 3810
6ba94429
FW
3811 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3812 if (!pwq) {
3813 put_unbound_pool(pool);
3814 return NULL;
3815 }
29c91e99 3816
6ba94429
FW
3817 init_pwq(pwq, wq, pool);
3818 return pwq;
3819}
29c91e99 3820
29c91e99 3821/**
30186c6f 3822 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3823 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3824 * @node: the target NUMA node
3825 * @cpu_going_down: if >= 0, the CPU to consider as offline
3826 * @cpumask: outarg, the resulting cpumask
29c91e99 3827 *
6ba94429
FW
3828 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3829 * @cpu_going_down is >= 0, that cpu is considered offline during
3830 * calculation. The result is stored in @cpumask.
a892cacc 3831 *
6ba94429
FW
3832 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3833 * enabled and @node has online CPUs requested by @attrs, the returned
3834 * cpumask is the intersection of the possible CPUs of @node and
3835 * @attrs->cpumask.
d185af30 3836 *
6ba94429
FW
3837 * The caller is responsible for ensuring that the cpumask of @node stays
3838 * stable.
3839 *
3840 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3841 * %false if equal.
29c91e99 3842 */
6ba94429
FW
3843static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3844 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3845{
6ba94429
FW
3846 if (!wq_numa_enabled || attrs->no_numa)
3847 goto use_dfl;
29c91e99 3848
6ba94429
FW
3849 /* does @node have any online CPUs @attrs wants? */
3850 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3851 if (cpu_going_down >= 0)
3852 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3853
6ba94429
FW
3854 if (cpumask_empty(cpumask))
3855 goto use_dfl;
4c16bd32
TH
3856
3857 /* yeap, return possible CPUs in @node that @attrs wants */
3858 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3859
3860 if (cpumask_empty(cpumask)) {
3861 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3862 "possible intersect\n");
3863 return false;
3864 }
3865
4c16bd32
TH
3866 return !cpumask_equal(cpumask, attrs->cpumask);
3867
3868use_dfl:
3869 cpumask_copy(cpumask, attrs->cpumask);
3870 return false;
3871}
3872
1befcf30
TH
3873/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3874static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3875 int node,
3876 struct pool_workqueue *pwq)
3877{
3878 struct pool_workqueue *old_pwq;
3879
5b95e1af 3880 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3881 lockdep_assert_held(&wq->mutex);
3882
3883 /* link_pwq() can handle duplicate calls */
3884 link_pwq(pwq);
3885
3886 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3887 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3888 return old_pwq;
3889}
3890
2d5f0764
LJ
3891/* context to store the prepared attrs & pwqs before applying */
3892struct apply_wqattrs_ctx {
3893 struct workqueue_struct *wq; /* target workqueue */
3894 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3895 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3896 struct pool_workqueue *dfl_pwq;
3897 struct pool_workqueue *pwq_tbl[];
3898};
3899
3900/* free the resources after success or abort */
3901static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3902{
3903 if (ctx) {
3904 int node;
3905
3906 for_each_node(node)
3907 put_pwq_unlocked(ctx->pwq_tbl[node]);
3908 put_pwq_unlocked(ctx->dfl_pwq);
3909
3910 free_workqueue_attrs(ctx->attrs);
3911
3912 kfree(ctx);
3913 }
3914}
3915
3916/* allocate the attrs and pwqs for later installation */
3917static struct apply_wqattrs_ctx *
3918apply_wqattrs_prepare(struct workqueue_struct *wq,
3919 const struct workqueue_attrs *attrs)
9e8cd2f5 3920{
2d5f0764 3921 struct apply_wqattrs_ctx *ctx;
4c16bd32 3922 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3923 int node;
9e8cd2f5 3924
2d5f0764 3925 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3926
acafe7e3 3927 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3928
be69d00d
TG
3929 new_attrs = alloc_workqueue_attrs();
3930 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3931 if (!ctx || !new_attrs || !tmp_attrs)
3932 goto out_free;
13e2e556 3933
042f7df1
LJ
3934 /*
3935 * Calculate the attrs of the default pwq.
3936 * If the user configured cpumask doesn't overlap with the
3937 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3938 */
13e2e556 3939 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3940 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3941 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3942 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3943
4c16bd32
TH
3944 /*
3945 * We may create multiple pwqs with differing cpumasks. Make a
3946 * copy of @new_attrs which will be modified and used to obtain
3947 * pools.
3948 */
3949 copy_workqueue_attrs(tmp_attrs, new_attrs);
3950
4c16bd32
TH
3951 /*
3952 * If something goes wrong during CPU up/down, we'll fall back to
3953 * the default pwq covering whole @attrs->cpumask. Always create
3954 * it even if we don't use it immediately.
3955 */
2d5f0764
LJ
3956 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3957 if (!ctx->dfl_pwq)
3958 goto out_free;
4c16bd32
TH
3959
3960 for_each_node(node) {
042f7df1 3961 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3962 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3963 if (!ctx->pwq_tbl[node])
3964 goto out_free;
4c16bd32 3965 } else {
2d5f0764
LJ
3966 ctx->dfl_pwq->refcnt++;
3967 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3968 }
3969 }
3970
042f7df1
LJ
3971 /* save the user configured attrs and sanitize it. */
3972 copy_workqueue_attrs(new_attrs, attrs);
3973 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3974 ctx->attrs = new_attrs;
042f7df1 3975
2d5f0764
LJ
3976 ctx->wq = wq;
3977 free_workqueue_attrs(tmp_attrs);
3978 return ctx;
3979
3980out_free:
3981 free_workqueue_attrs(tmp_attrs);
3982 free_workqueue_attrs(new_attrs);
3983 apply_wqattrs_cleanup(ctx);
3984 return NULL;
3985}
3986
3987/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3988static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3989{
3990 int node;
9e8cd2f5 3991
4c16bd32 3992 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3993 mutex_lock(&ctx->wq->mutex);
a892cacc 3994
2d5f0764 3995 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3996
3997 /* save the previous pwq and install the new one */
f147f29e 3998 for_each_node(node)
2d5f0764
LJ
3999 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4000 ctx->pwq_tbl[node]);
4c16bd32
TH
4001
4002 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
4003 link_pwq(ctx->dfl_pwq);
4004 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 4005
2d5f0764
LJ
4006 mutex_unlock(&ctx->wq->mutex);
4007}
9e8cd2f5 4008
a0111cf6
LJ
4009static void apply_wqattrs_lock(void)
4010{
4011 /* CPUs should stay stable across pwq creations and installations */
4012 get_online_cpus();
4013 mutex_lock(&wq_pool_mutex);
4014}
4015
4016static void apply_wqattrs_unlock(void)
4017{
4018 mutex_unlock(&wq_pool_mutex);
4019 put_online_cpus();
4020}
4021
4022static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4023 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4024{
4025 struct apply_wqattrs_ctx *ctx;
4c16bd32 4026
2d5f0764
LJ
4027 /* only unbound workqueues can change attributes */
4028 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4029 return -EINVAL;
13e2e556 4030
2d5f0764 4031 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4032 if (!list_empty(&wq->pwqs)) {
4033 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4034 return -EINVAL;
4035
4036 wq->flags &= ~__WQ_ORDERED;
4037 }
2d5f0764 4038
2d5f0764 4039 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4040 if (!ctx)
4041 return -ENOMEM;
2d5f0764
LJ
4042
4043 /* the ctx has been prepared successfully, let's commit it */
6201171e 4044 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4045 apply_wqattrs_cleanup(ctx);
4046
6201171e 4047 return 0;
9e8cd2f5
TH
4048}
4049
a0111cf6
LJ
4050/**
4051 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4052 * @wq: the target workqueue
4053 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4054 *
4055 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4056 * machines, this function maps a separate pwq to each NUMA node with
4057 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4058 * NUMA node it was issued on. Older pwqs are released as in-flight work
4059 * items finish. Note that a work item which repeatedly requeues itself
4060 * back-to-back will stay on its current pwq.
4061 *
4062 * Performs GFP_KERNEL allocations.
4063 *
509b3204
DJ
4064 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4065 *
a0111cf6
LJ
4066 * Return: 0 on success and -errno on failure.
4067 */
513c98d0 4068int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4069 const struct workqueue_attrs *attrs)
4070{
4071 int ret;
4072
509b3204
DJ
4073 lockdep_assert_cpus_held();
4074
4075 mutex_lock(&wq_pool_mutex);
a0111cf6 4076 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4077 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4078
4079 return ret;
4080}
4081
4c16bd32
TH
4082/**
4083 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4084 * @wq: the target workqueue
4085 * @cpu: the CPU coming up or going down
4086 * @online: whether @cpu is coming up or going down
4087 *
4088 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4089 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4090 * @wq accordingly.
4091 *
4092 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4093 * falls back to @wq->dfl_pwq which may not be optimal but is always
4094 * correct.
4095 *
4096 * Note that when the last allowed CPU of a NUMA node goes offline for a
4097 * workqueue with a cpumask spanning multiple nodes, the workers which were
4098 * already executing the work items for the workqueue will lose their CPU
4099 * affinity and may execute on any CPU. This is similar to how per-cpu
4100 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4101 * affinity, it's the user's responsibility to flush the work item from
4102 * CPU_DOWN_PREPARE.
4103 */
4104static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4105 bool online)
4106{
4107 int node = cpu_to_node(cpu);
4108 int cpu_off = online ? -1 : cpu;
4109 struct pool_workqueue *old_pwq = NULL, *pwq;
4110 struct workqueue_attrs *target_attrs;
4111 cpumask_t *cpumask;
4112
4113 lockdep_assert_held(&wq_pool_mutex);
4114
f7142ed4
LJ
4115 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4116 wq->unbound_attrs->no_numa)
4c16bd32
TH
4117 return;
4118
4119 /*
4120 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4121 * Let's use a preallocated one. The following buf is protected by
4122 * CPU hotplug exclusion.
4123 */
4124 target_attrs = wq_update_unbound_numa_attrs_buf;
4125 cpumask = target_attrs->cpumask;
4126
4c16bd32
TH
4127 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4128 pwq = unbound_pwq_by_node(wq, node);
4129
4130 /*
4131 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4132 * different from the default pwq's, we need to compare it to @pwq's
4133 * and create a new one if they don't match. If the target cpumask
4134 * equals the default pwq's, the default pwq should be used.
4c16bd32 4135 */
042f7df1 4136 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4137 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4138 return;
4c16bd32 4139 } else {
534a3fbb 4140 goto use_dfl_pwq;
4c16bd32
TH
4141 }
4142
4c16bd32
TH
4143 /* create a new pwq */
4144 pwq = alloc_unbound_pwq(wq, target_attrs);
4145 if (!pwq) {
2d916033
FF
4146 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4147 wq->name);
77f300b1 4148 goto use_dfl_pwq;
4c16bd32
TH
4149 }
4150
f7142ed4 4151 /* Install the new pwq. */
4c16bd32
TH
4152 mutex_lock(&wq->mutex);
4153 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4154 goto out_unlock;
4155
4156use_dfl_pwq:
f7142ed4 4157 mutex_lock(&wq->mutex);
4c16bd32
TH
4158 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4159 get_pwq(wq->dfl_pwq);
4160 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4161 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4162out_unlock:
4163 mutex_unlock(&wq->mutex);
4164 put_pwq_unlocked(old_pwq);
4165}
4166
30cdf249 4167static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4168{
49e3cf44 4169 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4170 int cpu, ret;
30cdf249
TH
4171
4172 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4173 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4174 if (!wq->cpu_pwqs)
30cdf249
TH
4175 return -ENOMEM;
4176
4177 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4178 struct pool_workqueue *pwq =
4179 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4180 struct worker_pool *cpu_pools =
f02ae73a 4181 per_cpu(cpu_worker_pools, cpu);
f3421797 4182
f147f29e
TH
4183 init_pwq(pwq, wq, &cpu_pools[highpri]);
4184
4185 mutex_lock(&wq->mutex);
1befcf30 4186 link_pwq(pwq);
f147f29e 4187 mutex_unlock(&wq->mutex);
30cdf249 4188 }
9e8cd2f5 4189 return 0;
509b3204
DJ
4190 }
4191
4192 get_online_cpus();
4193 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4194 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4195 /* there should only be single pwq for ordering guarantee */
4196 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4197 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4198 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4199 } else {
509b3204 4200 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4201 }
509b3204
DJ
4202 put_online_cpus();
4203
4204 return ret;
0f900049
TH
4205}
4206
f3421797
TH
4207static int wq_clamp_max_active(int max_active, unsigned int flags,
4208 const char *name)
b71ab8c2 4209{
f3421797
TH
4210 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4211
4212 if (max_active < 1 || max_active > lim)
044c782c
VI
4213 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4214 max_active, name, 1, lim);
b71ab8c2 4215
f3421797 4216 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4217}
4218
983c7515
TH
4219/*
4220 * Workqueues which may be used during memory reclaim should have a rescuer
4221 * to guarantee forward progress.
4222 */
4223static int init_rescuer(struct workqueue_struct *wq)
4224{
4225 struct worker *rescuer;
4226 int ret;
4227
4228 if (!(wq->flags & WQ_MEM_RECLAIM))
4229 return 0;
4230
4231 rescuer = alloc_worker(NUMA_NO_NODE);
4232 if (!rescuer)
4233 return -ENOMEM;
4234
4235 rescuer->rescue_wq = wq;
4236 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4237 ret = PTR_ERR_OR_ZERO(rescuer->task);
4238 if (ret) {
4239 kfree(rescuer);
4240 return ret;
4241 }
4242
4243 wq->rescuer = rescuer;
4244 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4245 wake_up_process(rescuer->task);
4246
4247 return 0;
4248}
4249
a2775bbc 4250__printf(1, 4)
669de8bd
BVA
4251struct workqueue_struct *alloc_workqueue(const char *fmt,
4252 unsigned int flags,
4253 int max_active, ...)
1da177e4 4254{
df2d5ae4 4255 size_t tbl_size = 0;
ecf6881f 4256 va_list args;
1da177e4 4257 struct workqueue_struct *wq;
49e3cf44 4258 struct pool_workqueue *pwq;
b196be89 4259
5c0338c6
TH
4260 /*
4261 * Unbound && max_active == 1 used to imply ordered, which is no
4262 * longer the case on NUMA machines due to per-node pools. While
4263 * alloc_ordered_workqueue() is the right way to create an ordered
4264 * workqueue, keep the previous behavior to avoid subtle breakages
4265 * on NUMA.
4266 */
4267 if ((flags & WQ_UNBOUND) && max_active == 1)
4268 flags |= __WQ_ORDERED;
4269
cee22a15
VK
4270 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4271 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4272 flags |= WQ_UNBOUND;
4273
ecf6881f 4274 /* allocate wq and format name */
df2d5ae4 4275 if (flags & WQ_UNBOUND)
ddcb57e2 4276 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4277
4278 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4279 if (!wq)
d2c1d404 4280 return NULL;
b196be89 4281
6029a918 4282 if (flags & WQ_UNBOUND) {
be69d00d 4283 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4284 if (!wq->unbound_attrs)
4285 goto err_free_wq;
4286 }
4287
669de8bd 4288 va_start(args, max_active);
ecf6881f 4289 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4290 va_end(args);
1da177e4 4291
d320c038 4292 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4293 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4294
b196be89 4295 /* init wq */
97e37d7b 4296 wq->flags = flags;
a0a1a5fd 4297 wq->saved_max_active = max_active;
3c25a55d 4298 mutex_init(&wq->mutex);
112202d9 4299 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4300 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4301 INIT_LIST_HEAD(&wq->flusher_queue);
4302 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4303 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4304
669de8bd 4305 wq_init_lockdep(wq);
cce1a165 4306 INIT_LIST_HEAD(&wq->list);
3af24433 4307
30cdf249 4308 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4309 goto err_unreg_lockdep;
1537663f 4310
40c17f75 4311 if (wq_online && init_rescuer(wq) < 0)
983c7515 4312 goto err_destroy;
3af24433 4313
226223ab
TH
4314 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4315 goto err_destroy;
4316
a0a1a5fd 4317 /*
68e13a67
LJ
4318 * wq_pool_mutex protects global freeze state and workqueues list.
4319 * Grab it, adjust max_active and add the new @wq to workqueues
4320 * list.
a0a1a5fd 4321 */
68e13a67 4322 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4323
a357fc03 4324 mutex_lock(&wq->mutex);
699ce097
TH
4325 for_each_pwq(pwq, wq)
4326 pwq_adjust_max_active(pwq);
a357fc03 4327 mutex_unlock(&wq->mutex);
a0a1a5fd 4328
e2dca7ad 4329 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4330
68e13a67 4331 mutex_unlock(&wq_pool_mutex);
1537663f 4332
3af24433 4333 return wq;
d2c1d404 4334
82efcab3 4335err_unreg_lockdep:
009bb421
BVA
4336 wq_unregister_lockdep(wq);
4337 wq_free_lockdep(wq);
82efcab3 4338err_free_wq:
6029a918 4339 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4340 kfree(wq);
4341 return NULL;
4342err_destroy:
4343 destroy_workqueue(wq);
4690c4ab 4344 return NULL;
3af24433 4345}
669de8bd 4346EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4347
3af24433
ON
4348/**
4349 * destroy_workqueue - safely terminate a workqueue
4350 * @wq: target workqueue
4351 *
4352 * Safely destroy a workqueue. All work currently pending will be done first.
4353 */
4354void destroy_workqueue(struct workqueue_struct *wq)
4355{
49e3cf44 4356 struct pool_workqueue *pwq;
4c16bd32 4357 int node;
3af24433 4358
dbcc6601
TH
4359 /*
4360 * Remove it from sysfs first so that sanity check failure doesn't
4361 * lead to sysfs name conflicts.
4362 */
4363 workqueue_sysfs_unregister(wq);
4364
9c5a2ba7
TH
4365 /* drain it before proceeding with destruction */
4366 drain_workqueue(wq);
c8efcc25 4367
dbcc6601
TH
4368 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4369 if (wq->rescuer) {
4370 struct worker *rescuer = wq->rescuer;
4371
4372 /* this prevents new queueing */
4373 spin_lock_irq(&wq_mayday_lock);
4374 wq->rescuer = NULL;
4375 spin_unlock_irq(&wq_mayday_lock);
4376
4377 /* rescuer will empty maydays list before exiting */
4378 kthread_stop(rescuer->task);
57df7da5 4379 kfree(rescuer);
dbcc6601
TH
4380 }
4381
6183c009 4382 /* sanity checks */
b09f4fd3 4383 mutex_lock(&wq->mutex);
49e3cf44 4384 for_each_pwq(pwq, wq) {
6183c009
TH
4385 int i;
4386
76af4d93
TH
4387 for (i = 0; i < WORK_NR_COLORS; i++) {
4388 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4389 mutex_unlock(&wq->mutex);
fa07fb6a 4390 show_workqueue_state();
6183c009 4391 return;
76af4d93
TH
4392 }
4393 }
4394
5c529597 4395 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4396 WARN_ON(pwq->nr_active) ||
76af4d93 4397 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4398 mutex_unlock(&wq->mutex);
fa07fb6a 4399 show_workqueue_state();
6183c009 4400 return;
76af4d93 4401 }
6183c009 4402 }
b09f4fd3 4403 mutex_unlock(&wq->mutex);
6183c009 4404
a0a1a5fd
TH
4405 /*
4406 * wq list is used to freeze wq, remove from list after
4407 * flushing is complete in case freeze races us.
4408 */
68e13a67 4409 mutex_lock(&wq_pool_mutex);
e2dca7ad 4410 list_del_rcu(&wq->list);
68e13a67 4411 mutex_unlock(&wq_pool_mutex);
3af24433 4412
8864b4e5 4413 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4414 wq_unregister_lockdep(wq);
8864b4e5
TH
4415 /*
4416 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4417 * schedule RCU free.
8864b4e5 4418 */
25b00775 4419 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4420 } else {
4421 /*
4422 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4423 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4424 * @wq will be freed when the last pwq is released.
8864b4e5 4425 */
4c16bd32
TH
4426 for_each_node(node) {
4427 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4428 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4429 put_pwq_unlocked(pwq);
4430 }
4431
4432 /*
4433 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4434 * put. Don't access it afterwards.
4435 */
4436 pwq = wq->dfl_pwq;
4437 wq->dfl_pwq = NULL;
dce90d47 4438 put_pwq_unlocked(pwq);
29c91e99 4439 }
3af24433
ON
4440}
4441EXPORT_SYMBOL_GPL(destroy_workqueue);
4442
dcd989cb
TH
4443/**
4444 * workqueue_set_max_active - adjust max_active of a workqueue
4445 * @wq: target workqueue
4446 * @max_active: new max_active value.
4447 *
4448 * Set max_active of @wq to @max_active.
4449 *
4450 * CONTEXT:
4451 * Don't call from IRQ context.
4452 */
4453void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4454{
49e3cf44 4455 struct pool_workqueue *pwq;
dcd989cb 4456
8719dcea 4457 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4458 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4459 return;
4460
f3421797 4461 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4462
a357fc03 4463 mutex_lock(&wq->mutex);
dcd989cb 4464
0a94efb5 4465 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4466 wq->saved_max_active = max_active;
4467
699ce097
TH
4468 for_each_pwq(pwq, wq)
4469 pwq_adjust_max_active(pwq);
93981800 4470
a357fc03 4471 mutex_unlock(&wq->mutex);
15316ba8 4472}
dcd989cb 4473EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4474
27d4ee03
LW
4475/**
4476 * current_work - retrieve %current task's work struct
4477 *
4478 * Determine if %current task is a workqueue worker and what it's working on.
4479 * Useful to find out the context that the %current task is running in.
4480 *
4481 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4482 */
4483struct work_struct *current_work(void)
4484{
4485 struct worker *worker = current_wq_worker();
4486
4487 return worker ? worker->current_work : NULL;
4488}
4489EXPORT_SYMBOL(current_work);
4490
e6267616
TH
4491/**
4492 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4493 *
4494 * Determine whether %current is a workqueue rescuer. Can be used from
4495 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4496 *
4497 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4498 */
4499bool current_is_workqueue_rescuer(void)
4500{
4501 struct worker *worker = current_wq_worker();
4502
6a092dfd 4503 return worker && worker->rescue_wq;
e6267616
TH
4504}
4505
eef6a7d5 4506/**
dcd989cb
TH
4507 * workqueue_congested - test whether a workqueue is congested
4508 * @cpu: CPU in question
4509 * @wq: target workqueue
eef6a7d5 4510 *
dcd989cb
TH
4511 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4512 * no synchronization around this function and the test result is
4513 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4514 *
d3251859
TH
4515 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4516 * Note that both per-cpu and unbound workqueues may be associated with
4517 * multiple pool_workqueues which have separate congested states. A
4518 * workqueue being congested on one CPU doesn't mean the workqueue is also
4519 * contested on other CPUs / NUMA nodes.
4520 *
d185af30 4521 * Return:
dcd989cb 4522 * %true if congested, %false otherwise.
eef6a7d5 4523 */
d84ff051 4524bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4525{
7fb98ea7 4526 struct pool_workqueue *pwq;
76af4d93
TH
4527 bool ret;
4528
24acfb71
TG
4529 rcu_read_lock();
4530 preempt_disable();
7fb98ea7 4531
d3251859
TH
4532 if (cpu == WORK_CPU_UNBOUND)
4533 cpu = smp_processor_id();
4534
7fb98ea7
TH
4535 if (!(wq->flags & WQ_UNBOUND))
4536 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4537 else
df2d5ae4 4538 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4539
76af4d93 4540 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4541 preempt_enable();
4542 rcu_read_unlock();
76af4d93
TH
4543
4544 return ret;
1da177e4 4545}
dcd989cb 4546EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4547
dcd989cb
TH
4548/**
4549 * work_busy - test whether a work is currently pending or running
4550 * @work: the work to be tested
4551 *
4552 * Test whether @work is currently pending or running. There is no
4553 * synchronization around this function and the test result is
4554 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4555 *
d185af30 4556 * Return:
dcd989cb
TH
4557 * OR'd bitmask of WORK_BUSY_* bits.
4558 */
4559unsigned int work_busy(struct work_struct *work)
1da177e4 4560{
fa1b54e6 4561 struct worker_pool *pool;
dcd989cb
TH
4562 unsigned long flags;
4563 unsigned int ret = 0;
1da177e4 4564
dcd989cb
TH
4565 if (work_pending(work))
4566 ret |= WORK_BUSY_PENDING;
1da177e4 4567
24acfb71 4568 rcu_read_lock();
fa1b54e6 4569 pool = get_work_pool(work);
038366c5 4570 if (pool) {
24acfb71 4571 spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4572 if (find_worker_executing_work(pool, work))
4573 ret |= WORK_BUSY_RUNNING;
24acfb71 4574 spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4575 }
24acfb71 4576 rcu_read_unlock();
1da177e4 4577
dcd989cb 4578 return ret;
1da177e4 4579}
dcd989cb 4580EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4581
3d1cb205
TH
4582/**
4583 * set_worker_desc - set description for the current work item
4584 * @fmt: printf-style format string
4585 * @...: arguments for the format string
4586 *
4587 * This function can be called by a running work function to describe what
4588 * the work item is about. If the worker task gets dumped, this
4589 * information will be printed out together to help debugging. The
4590 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4591 */
4592void set_worker_desc(const char *fmt, ...)
4593{
4594 struct worker *worker = current_wq_worker();
4595 va_list args;
4596
4597 if (worker) {
4598 va_start(args, fmt);
4599 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4600 va_end(args);
3d1cb205
TH
4601 }
4602}
5c750d58 4603EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4604
4605/**
4606 * print_worker_info - print out worker information and description
4607 * @log_lvl: the log level to use when printing
4608 * @task: target task
4609 *
4610 * If @task is a worker and currently executing a work item, print out the
4611 * name of the workqueue being serviced and worker description set with
4612 * set_worker_desc() by the currently executing work item.
4613 *
4614 * This function can be safely called on any task as long as the
4615 * task_struct itself is accessible. While safe, this function isn't
4616 * synchronized and may print out mixups or garbages of limited length.
4617 */
4618void print_worker_info(const char *log_lvl, struct task_struct *task)
4619{
4620 work_func_t *fn = NULL;
4621 char name[WQ_NAME_LEN] = { };
4622 char desc[WORKER_DESC_LEN] = { };
4623 struct pool_workqueue *pwq = NULL;
4624 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4625 struct worker *worker;
4626
4627 if (!(task->flags & PF_WQ_WORKER))
4628 return;
4629
4630 /*
4631 * This function is called without any synchronization and @task
4632 * could be in any state. Be careful with dereferences.
4633 */
e700591a 4634 worker = kthread_probe_data(task);
3d1cb205
TH
4635
4636 /*
8bf89593
TH
4637 * Carefully copy the associated workqueue's workfn, name and desc.
4638 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4639 */
4640 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4641 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4642 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4643 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4644 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4645
4646 if (fn || name[0] || desc[0]) {
d75f773c 4647 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4648 if (strcmp(name, desc))
3d1cb205
TH
4649 pr_cont(" (%s)", desc);
4650 pr_cont("\n");
4651 }
4652}
4653
3494fc30
TH
4654static void pr_cont_pool_info(struct worker_pool *pool)
4655{
4656 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4657 if (pool->node != NUMA_NO_NODE)
4658 pr_cont(" node=%d", pool->node);
4659 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4660}
4661
4662static void pr_cont_work(bool comma, struct work_struct *work)
4663{
4664 if (work->func == wq_barrier_func) {
4665 struct wq_barrier *barr;
4666
4667 barr = container_of(work, struct wq_barrier, work);
4668
4669 pr_cont("%s BAR(%d)", comma ? "," : "",
4670 task_pid_nr(barr->task));
4671 } else {
d75f773c 4672 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4673 }
4674}
4675
4676static void show_pwq(struct pool_workqueue *pwq)
4677{
4678 struct worker_pool *pool = pwq->pool;
4679 struct work_struct *work;
4680 struct worker *worker;
4681 bool has_in_flight = false, has_pending = false;
4682 int bkt;
4683
4684 pr_info(" pwq %d:", pool->id);
4685 pr_cont_pool_info(pool);
4686
63567df7
TH
4687 pr_cont(" active=%d/%d refcnt=%d%s\n",
4688 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4689 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4690
4691 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4692 if (worker->current_pwq == pwq) {
4693 has_in_flight = true;
4694 break;
4695 }
4696 }
4697 if (has_in_flight) {
4698 bool comma = false;
4699
4700 pr_info(" in-flight:");
4701 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4702 if (worker->current_pwq != pwq)
4703 continue;
4704
d75f773c 4705 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30
TH
4706 task_pid_nr(worker->task),
4707 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4708 worker->current_func);
4709 list_for_each_entry(work, &worker->scheduled, entry)
4710 pr_cont_work(false, work);
4711 comma = true;
4712 }
4713 pr_cont("\n");
4714 }
4715
4716 list_for_each_entry(work, &pool->worklist, entry) {
4717 if (get_work_pwq(work) == pwq) {
4718 has_pending = true;
4719 break;
4720 }
4721 }
4722 if (has_pending) {
4723 bool comma = false;
4724
4725 pr_info(" pending:");
4726 list_for_each_entry(work, &pool->worklist, entry) {
4727 if (get_work_pwq(work) != pwq)
4728 continue;
4729
4730 pr_cont_work(comma, work);
4731 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4732 }
4733 pr_cont("\n");
4734 }
4735
4736 if (!list_empty(&pwq->delayed_works)) {
4737 bool comma = false;
4738
4739 pr_info(" delayed:");
4740 list_for_each_entry(work, &pwq->delayed_works, entry) {
4741 pr_cont_work(comma, work);
4742 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4743 }
4744 pr_cont("\n");
4745 }
4746}
4747
4748/**
4749 * show_workqueue_state - dump workqueue state
4750 *
7b776af6
RL
4751 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4752 * all busy workqueues and pools.
3494fc30
TH
4753 */
4754void show_workqueue_state(void)
4755{
4756 struct workqueue_struct *wq;
4757 struct worker_pool *pool;
4758 unsigned long flags;
4759 int pi;
4760
24acfb71 4761 rcu_read_lock();
3494fc30
TH
4762
4763 pr_info("Showing busy workqueues and worker pools:\n");
4764
4765 list_for_each_entry_rcu(wq, &workqueues, list) {
4766 struct pool_workqueue *pwq;
4767 bool idle = true;
4768
4769 for_each_pwq(pwq, wq) {
4770 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4771 idle = false;
4772 break;
4773 }
4774 }
4775 if (idle)
4776 continue;
4777
4778 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4779
4780 for_each_pwq(pwq, wq) {
4781 spin_lock_irqsave(&pwq->pool->lock, flags);
4782 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4783 show_pwq(pwq);
4784 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4785 /*
4786 * We could be printing a lot from atomic context, e.g.
4787 * sysrq-t -> show_workqueue_state(). Avoid triggering
4788 * hard lockup.
4789 */
4790 touch_nmi_watchdog();
3494fc30
TH
4791 }
4792 }
4793
4794 for_each_pool(pool, pi) {
4795 struct worker *worker;
4796 bool first = true;
4797
4798 spin_lock_irqsave(&pool->lock, flags);
4799 if (pool->nr_workers == pool->nr_idle)
4800 goto next_pool;
4801
4802 pr_info("pool %d:", pool->id);
4803 pr_cont_pool_info(pool);
82607adc
TH
4804 pr_cont(" hung=%us workers=%d",
4805 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4806 pool->nr_workers);
3494fc30
TH
4807 if (pool->manager)
4808 pr_cont(" manager: %d",
4809 task_pid_nr(pool->manager->task));
4810 list_for_each_entry(worker, &pool->idle_list, entry) {
4811 pr_cont(" %s%d", first ? "idle: " : "",
4812 task_pid_nr(worker->task));
4813 first = false;
4814 }
4815 pr_cont("\n");
4816 next_pool:
4817 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4818 /*
4819 * We could be printing a lot from atomic context, e.g.
4820 * sysrq-t -> show_workqueue_state(). Avoid triggering
4821 * hard lockup.
4822 */
4823 touch_nmi_watchdog();
3494fc30
TH
4824 }
4825
24acfb71 4826 rcu_read_unlock();
3494fc30
TH
4827}
4828
6b59808b
TH
4829/* used to show worker information through /proc/PID/{comm,stat,status} */
4830void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4831{
6b59808b
TH
4832 int off;
4833
4834 /* always show the actual comm */
4835 off = strscpy(buf, task->comm, size);
4836 if (off < 0)
4837 return;
4838
197f6acc 4839 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4840 mutex_lock(&wq_pool_attach_mutex);
4841
197f6acc
TH
4842 if (task->flags & PF_WQ_WORKER) {
4843 struct worker *worker = kthread_data(task);
4844 struct worker_pool *pool = worker->pool;
6b59808b 4845
197f6acc
TH
4846 if (pool) {
4847 spin_lock_irq(&pool->lock);
4848 /*
4849 * ->desc tracks information (wq name or
4850 * set_worker_desc()) for the latest execution. If
4851 * current, prepend '+', otherwise '-'.
4852 */
4853 if (worker->desc[0] != '\0') {
4854 if (worker->current_work)
4855 scnprintf(buf + off, size - off, "+%s",
4856 worker->desc);
4857 else
4858 scnprintf(buf + off, size - off, "-%s",
4859 worker->desc);
4860 }
4861 spin_unlock_irq(&pool->lock);
6b59808b 4862 }
6b59808b
TH
4863 }
4864
4865 mutex_unlock(&wq_pool_attach_mutex);
4866}
4867
66448bc2
MM
4868#ifdef CONFIG_SMP
4869
db7bccf4
TH
4870/*
4871 * CPU hotplug.
4872 *
e22bee78 4873 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4874 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4875 * pool which make migrating pending and scheduled works very
e22bee78 4876 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4877 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4878 * blocked draining impractical.
4879 *
24647570 4880 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4881 * running as an unbound one and allowing it to be reattached later if the
4882 * cpu comes back online.
db7bccf4 4883 */
1da177e4 4884
e8b3f8db 4885static void unbind_workers(int cpu)
3af24433 4886{
4ce62e9e 4887 struct worker_pool *pool;
db7bccf4 4888 struct worker *worker;
3af24433 4889
f02ae73a 4890 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4891 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4892 spin_lock_irq(&pool->lock);
3af24433 4893
94cf58bb 4894 /*
92f9c5c4 4895 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4896 * unbound and set DISASSOCIATED. Before this, all workers
4897 * except for the ones which are still executing works from
4898 * before the last CPU down must be on the cpu. After
4899 * this, they may become diasporas.
4900 */
da028469 4901 for_each_pool_worker(worker, pool)
c9e7cf27 4902 worker->flags |= WORKER_UNBOUND;
06ba38a9 4903
24647570 4904 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4905
94cf58bb 4906 spin_unlock_irq(&pool->lock);
1258fae7 4907 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4908
eb283428
LJ
4909 /*
4910 * Call schedule() so that we cross rq->lock and thus can
4911 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4912 * This is necessary as scheduler callbacks may be invoked
4913 * from other cpus.
4914 */
4915 schedule();
06ba38a9 4916
eb283428
LJ
4917 /*
4918 * Sched callbacks are disabled now. Zap nr_running.
4919 * After this, nr_running stays zero and need_more_worker()
4920 * and keep_working() are always true as long as the
4921 * worklist is not empty. This pool now behaves as an
4922 * unbound (in terms of concurrency management) pool which
4923 * are served by workers tied to the pool.
4924 */
e19e397a 4925 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4926
4927 /*
4928 * With concurrency management just turned off, a busy
4929 * worker blocking could lead to lengthy stalls. Kick off
4930 * unbound chain execution of currently pending work items.
4931 */
4932 spin_lock_irq(&pool->lock);
4933 wake_up_worker(pool);
4934 spin_unlock_irq(&pool->lock);
4935 }
3af24433 4936}
3af24433 4937
bd7c089e
TH
4938/**
4939 * rebind_workers - rebind all workers of a pool to the associated CPU
4940 * @pool: pool of interest
4941 *
a9ab775b 4942 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4943 */
4944static void rebind_workers(struct worker_pool *pool)
4945{
a9ab775b 4946 struct worker *worker;
bd7c089e 4947
1258fae7 4948 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4949
a9ab775b
TH
4950 /*
4951 * Restore CPU affinity of all workers. As all idle workers should
4952 * be on the run-queue of the associated CPU before any local
402dd89d 4953 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4954 * of all workers first and then clear UNBOUND. As we're called
4955 * from CPU_ONLINE, the following shouldn't fail.
4956 */
da028469 4957 for_each_pool_worker(worker, pool)
a9ab775b
TH
4958 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4959 pool->attrs->cpumask) < 0);
bd7c089e 4960
a9ab775b 4961 spin_lock_irq(&pool->lock);
f7c17d26 4962
3de5e884 4963 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4964
da028469 4965 for_each_pool_worker(worker, pool) {
a9ab775b 4966 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4967
4968 /*
a9ab775b
TH
4969 * A bound idle worker should actually be on the runqueue
4970 * of the associated CPU for local wake-ups targeting it to
4971 * work. Kick all idle workers so that they migrate to the
4972 * associated CPU. Doing this in the same loop as
4973 * replacing UNBOUND with REBOUND is safe as no worker will
4974 * be bound before @pool->lock is released.
bd7c089e 4975 */
a9ab775b
TH
4976 if (worker_flags & WORKER_IDLE)
4977 wake_up_process(worker->task);
bd7c089e 4978
a9ab775b
TH
4979 /*
4980 * We want to clear UNBOUND but can't directly call
4981 * worker_clr_flags() or adjust nr_running. Atomically
4982 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4983 * @worker will clear REBOUND using worker_clr_flags() when
4984 * it initiates the next execution cycle thus restoring
4985 * concurrency management. Note that when or whether
4986 * @worker clears REBOUND doesn't affect correctness.
4987 *
c95491ed 4988 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 4989 * tested without holding any lock in
6d25be57 4990 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
4991 * fail incorrectly leading to premature concurrency
4992 * management operations.
4993 */
4994 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4995 worker_flags |= WORKER_REBOUND;
4996 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4997 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4998 }
a9ab775b
TH
4999
5000 spin_unlock_irq(&pool->lock);
bd7c089e
TH
5001}
5002
7dbc725e
TH
5003/**
5004 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5005 * @pool: unbound pool of interest
5006 * @cpu: the CPU which is coming up
5007 *
5008 * An unbound pool may end up with a cpumask which doesn't have any online
5009 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5010 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5011 * online CPU before, cpus_allowed of all its workers should be restored.
5012 */
5013static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5014{
5015 static cpumask_t cpumask;
5016 struct worker *worker;
7dbc725e 5017
1258fae7 5018 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5019
5020 /* is @cpu allowed for @pool? */
5021 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5022 return;
5023
7dbc725e 5024 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5025
5026 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5027 for_each_pool_worker(worker, pool)
d945b5e9 5028 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5029}
5030
7ee681b2
TG
5031int workqueue_prepare_cpu(unsigned int cpu)
5032{
5033 struct worker_pool *pool;
5034
5035 for_each_cpu_worker_pool(pool, cpu) {
5036 if (pool->nr_workers)
5037 continue;
5038 if (!create_worker(pool))
5039 return -ENOMEM;
5040 }
5041 return 0;
5042}
5043
5044int workqueue_online_cpu(unsigned int cpu)
3af24433 5045{
4ce62e9e 5046 struct worker_pool *pool;
4c16bd32 5047 struct workqueue_struct *wq;
7dbc725e 5048 int pi;
3ce63377 5049
7ee681b2 5050 mutex_lock(&wq_pool_mutex);
7dbc725e 5051
7ee681b2 5052 for_each_pool(pool, pi) {
1258fae7 5053 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5054
7ee681b2
TG
5055 if (pool->cpu == cpu)
5056 rebind_workers(pool);
5057 else if (pool->cpu < 0)
5058 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5059
1258fae7 5060 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5061 }
6ba94429 5062
7ee681b2
TG
5063 /* update NUMA affinity of unbound workqueues */
5064 list_for_each_entry(wq, &workqueues, list)
5065 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5066
7ee681b2
TG
5067 mutex_unlock(&wq_pool_mutex);
5068 return 0;
6ba94429
FW
5069}
5070
7ee681b2 5071int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5072{
6ba94429
FW
5073 struct workqueue_struct *wq;
5074
7ee681b2 5075 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5076 if (WARN_ON(cpu != smp_processor_id()))
5077 return -1;
5078
5079 unbind_workers(cpu);
7ee681b2
TG
5080
5081 /* update NUMA affinity of unbound workqueues */
5082 mutex_lock(&wq_pool_mutex);
5083 list_for_each_entry(wq, &workqueues, list)
5084 wq_update_unbound_numa(wq, cpu, false);
5085 mutex_unlock(&wq_pool_mutex);
5086
7ee681b2 5087 return 0;
6ba94429
FW
5088}
5089
6ba94429
FW
5090struct work_for_cpu {
5091 struct work_struct work;
5092 long (*fn)(void *);
5093 void *arg;
5094 long ret;
5095};
5096
5097static void work_for_cpu_fn(struct work_struct *work)
5098{
5099 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5100
5101 wfc->ret = wfc->fn(wfc->arg);
5102}
5103
5104/**
22aceb31 5105 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5106 * @cpu: the cpu to run on
5107 * @fn: the function to run
5108 * @arg: the function arg
5109 *
5110 * It is up to the caller to ensure that the cpu doesn't go offline.
5111 * The caller must not hold any locks which would prevent @fn from completing.
5112 *
5113 * Return: The value @fn returns.
5114 */
5115long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5116{
5117 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5118
5119 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5120 schedule_work_on(cpu, &wfc.work);
5121 flush_work(&wfc.work);
5122 destroy_work_on_stack(&wfc.work);
5123 return wfc.ret;
5124}
5125EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5126
5127/**
5128 * work_on_cpu_safe - run a function in thread context on a particular cpu
5129 * @cpu: the cpu to run on
5130 * @fn: the function to run
5131 * @arg: the function argument
5132 *
5133 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5134 * any locks which would prevent @fn from completing.
5135 *
5136 * Return: The value @fn returns.
5137 */
5138long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5139{
5140 long ret = -ENODEV;
5141
5142 get_online_cpus();
5143 if (cpu_online(cpu))
5144 ret = work_on_cpu(cpu, fn, arg);
5145 put_online_cpus();
5146 return ret;
5147}
5148EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5149#endif /* CONFIG_SMP */
5150
5151#ifdef CONFIG_FREEZER
5152
5153/**
5154 * freeze_workqueues_begin - begin freezing workqueues
5155 *
5156 * Start freezing workqueues. After this function returns, all freezable
5157 * workqueues will queue new works to their delayed_works list instead of
5158 * pool->worklist.
5159 *
5160 * CONTEXT:
5161 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5162 */
5163void freeze_workqueues_begin(void)
5164{
5165 struct workqueue_struct *wq;
5166 struct pool_workqueue *pwq;
5167
5168 mutex_lock(&wq_pool_mutex);
5169
5170 WARN_ON_ONCE(workqueue_freezing);
5171 workqueue_freezing = true;
5172
5173 list_for_each_entry(wq, &workqueues, list) {
5174 mutex_lock(&wq->mutex);
5175 for_each_pwq(pwq, wq)
5176 pwq_adjust_max_active(pwq);
5177 mutex_unlock(&wq->mutex);
5178 }
5179
5180 mutex_unlock(&wq_pool_mutex);
5181}
5182
5183/**
5184 * freeze_workqueues_busy - are freezable workqueues still busy?
5185 *
5186 * Check whether freezing is complete. This function must be called
5187 * between freeze_workqueues_begin() and thaw_workqueues().
5188 *
5189 * CONTEXT:
5190 * Grabs and releases wq_pool_mutex.
5191 *
5192 * Return:
5193 * %true if some freezable workqueues are still busy. %false if freezing
5194 * is complete.
5195 */
5196bool freeze_workqueues_busy(void)
5197{
5198 bool busy = false;
5199 struct workqueue_struct *wq;
5200 struct pool_workqueue *pwq;
5201
5202 mutex_lock(&wq_pool_mutex);
5203
5204 WARN_ON_ONCE(!workqueue_freezing);
5205
5206 list_for_each_entry(wq, &workqueues, list) {
5207 if (!(wq->flags & WQ_FREEZABLE))
5208 continue;
5209 /*
5210 * nr_active is monotonically decreasing. It's safe
5211 * to peek without lock.
5212 */
24acfb71 5213 rcu_read_lock();
6ba94429
FW
5214 for_each_pwq(pwq, wq) {
5215 WARN_ON_ONCE(pwq->nr_active < 0);
5216 if (pwq->nr_active) {
5217 busy = true;
24acfb71 5218 rcu_read_unlock();
6ba94429
FW
5219 goto out_unlock;
5220 }
5221 }
24acfb71 5222 rcu_read_unlock();
6ba94429
FW
5223 }
5224out_unlock:
5225 mutex_unlock(&wq_pool_mutex);
5226 return busy;
5227}
5228
5229/**
5230 * thaw_workqueues - thaw workqueues
5231 *
5232 * Thaw workqueues. Normal queueing is restored and all collected
5233 * frozen works are transferred to their respective pool worklists.
5234 *
5235 * CONTEXT:
5236 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5237 */
5238void thaw_workqueues(void)
5239{
5240 struct workqueue_struct *wq;
5241 struct pool_workqueue *pwq;
5242
5243 mutex_lock(&wq_pool_mutex);
5244
5245 if (!workqueue_freezing)
5246 goto out_unlock;
5247
5248 workqueue_freezing = false;
5249
5250 /* restore max_active and repopulate worklist */
5251 list_for_each_entry(wq, &workqueues, list) {
5252 mutex_lock(&wq->mutex);
5253 for_each_pwq(pwq, wq)
5254 pwq_adjust_max_active(pwq);
5255 mutex_unlock(&wq->mutex);
5256 }
5257
5258out_unlock:
5259 mutex_unlock(&wq_pool_mutex);
5260}
5261#endif /* CONFIG_FREEZER */
5262
042f7df1
LJ
5263static int workqueue_apply_unbound_cpumask(void)
5264{
5265 LIST_HEAD(ctxs);
5266 int ret = 0;
5267 struct workqueue_struct *wq;
5268 struct apply_wqattrs_ctx *ctx, *n;
5269
5270 lockdep_assert_held(&wq_pool_mutex);
5271
5272 list_for_each_entry(wq, &workqueues, list) {
5273 if (!(wq->flags & WQ_UNBOUND))
5274 continue;
5275 /* creating multiple pwqs breaks ordering guarantee */
5276 if (wq->flags & __WQ_ORDERED)
5277 continue;
5278
5279 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5280 if (!ctx) {
5281 ret = -ENOMEM;
5282 break;
5283 }
5284
5285 list_add_tail(&ctx->list, &ctxs);
5286 }
5287
5288 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5289 if (!ret)
5290 apply_wqattrs_commit(ctx);
5291 apply_wqattrs_cleanup(ctx);
5292 }
5293
5294 return ret;
5295}
5296
5297/**
5298 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5299 * @cpumask: the cpumask to set
5300 *
5301 * The low-level workqueues cpumask is a global cpumask that limits
5302 * the affinity of all unbound workqueues. This function check the @cpumask
5303 * and apply it to all unbound workqueues and updates all pwqs of them.
5304 *
5305 * Retun: 0 - Success
5306 * -EINVAL - Invalid @cpumask
5307 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5308 */
5309int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5310{
5311 int ret = -EINVAL;
5312 cpumask_var_t saved_cpumask;
5313
c98a9805
TS
5314 /*
5315 * Not excluding isolated cpus on purpose.
5316 * If the user wishes to include them, we allow that.
5317 */
042f7df1
LJ
5318 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5319 if (!cpumask_empty(cpumask)) {
a0111cf6 5320 apply_wqattrs_lock();
28196c94
MD
5321 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5322 ret = 0;
5323 goto out_unlock;
5324 }
5325
5326 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5327 ret = -ENOMEM;
5328 goto out_unlock;
5329 }
042f7df1
LJ
5330
5331 /* save the old wq_unbound_cpumask. */
5332 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5333
5334 /* update wq_unbound_cpumask at first and apply it to wqs. */
5335 cpumask_copy(wq_unbound_cpumask, cpumask);
5336 ret = workqueue_apply_unbound_cpumask();
5337
5338 /* restore the wq_unbound_cpumask when failed. */
5339 if (ret < 0)
5340 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5341
28196c94
MD
5342 free_cpumask_var(saved_cpumask);
5343out_unlock:
a0111cf6 5344 apply_wqattrs_unlock();
042f7df1 5345 }
042f7df1 5346
042f7df1
LJ
5347 return ret;
5348}
5349
6ba94429
FW
5350#ifdef CONFIG_SYSFS
5351/*
5352 * Workqueues with WQ_SYSFS flag set is visible to userland via
5353 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5354 * following attributes.
5355 *
5356 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5357 * max_active RW int : maximum number of in-flight work items
5358 *
5359 * Unbound workqueues have the following extra attributes.
5360 *
9a19b463 5361 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5362 * nice RW int : nice value of the workers
5363 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5364 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5365 */
5366struct wq_device {
5367 struct workqueue_struct *wq;
5368 struct device dev;
5369};
5370
5371static struct workqueue_struct *dev_to_wq(struct device *dev)
5372{
5373 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5374
5375 return wq_dev->wq;
5376}
5377
5378static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5379 char *buf)
5380{
5381 struct workqueue_struct *wq = dev_to_wq(dev);
5382
5383 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5384}
5385static DEVICE_ATTR_RO(per_cpu);
5386
5387static ssize_t max_active_show(struct device *dev,
5388 struct device_attribute *attr, char *buf)
5389{
5390 struct workqueue_struct *wq = dev_to_wq(dev);
5391
5392 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5393}
5394
5395static ssize_t max_active_store(struct device *dev,
5396 struct device_attribute *attr, const char *buf,
5397 size_t count)
5398{
5399 struct workqueue_struct *wq = dev_to_wq(dev);
5400 int val;
5401
5402 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5403 return -EINVAL;
5404
5405 workqueue_set_max_active(wq, val);
5406 return count;
5407}
5408static DEVICE_ATTR_RW(max_active);
5409
5410static struct attribute *wq_sysfs_attrs[] = {
5411 &dev_attr_per_cpu.attr,
5412 &dev_attr_max_active.attr,
5413 NULL,
5414};
5415ATTRIBUTE_GROUPS(wq_sysfs);
5416
5417static ssize_t wq_pool_ids_show(struct device *dev,
5418 struct device_attribute *attr, char *buf)
5419{
5420 struct workqueue_struct *wq = dev_to_wq(dev);
5421 const char *delim = "";
5422 int node, written = 0;
5423
24acfb71
TG
5424 get_online_cpus();
5425 rcu_read_lock();
6ba94429
FW
5426 for_each_node(node) {
5427 written += scnprintf(buf + written, PAGE_SIZE - written,
5428 "%s%d:%d", delim, node,
5429 unbound_pwq_by_node(wq, node)->pool->id);
5430 delim = " ";
5431 }
5432 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5433 rcu_read_unlock();
5434 put_online_cpus();
6ba94429
FW
5435
5436 return written;
5437}
5438
5439static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5440 char *buf)
5441{
5442 struct workqueue_struct *wq = dev_to_wq(dev);
5443 int written;
5444
5445 mutex_lock(&wq->mutex);
5446 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5447 mutex_unlock(&wq->mutex);
5448
5449 return written;
5450}
5451
5452/* prepare workqueue_attrs for sysfs store operations */
5453static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5454{
5455 struct workqueue_attrs *attrs;
5456
899a94fe
LJ
5457 lockdep_assert_held(&wq_pool_mutex);
5458
be69d00d 5459 attrs = alloc_workqueue_attrs();
6ba94429
FW
5460 if (!attrs)
5461 return NULL;
5462
6ba94429 5463 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5464 return attrs;
5465}
5466
5467static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5468 const char *buf, size_t count)
5469{
5470 struct workqueue_struct *wq = dev_to_wq(dev);
5471 struct workqueue_attrs *attrs;
d4d3e257
LJ
5472 int ret = -ENOMEM;
5473
5474 apply_wqattrs_lock();
6ba94429
FW
5475
5476 attrs = wq_sysfs_prep_attrs(wq);
5477 if (!attrs)
d4d3e257 5478 goto out_unlock;
6ba94429
FW
5479
5480 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5481 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5482 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5483 else
5484 ret = -EINVAL;
5485
d4d3e257
LJ
5486out_unlock:
5487 apply_wqattrs_unlock();
6ba94429
FW
5488 free_workqueue_attrs(attrs);
5489 return ret ?: count;
5490}
5491
5492static ssize_t wq_cpumask_show(struct device *dev,
5493 struct device_attribute *attr, char *buf)
5494{
5495 struct workqueue_struct *wq = dev_to_wq(dev);
5496 int written;
5497
5498 mutex_lock(&wq->mutex);
5499 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5500 cpumask_pr_args(wq->unbound_attrs->cpumask));
5501 mutex_unlock(&wq->mutex);
5502 return written;
5503}
5504
5505static ssize_t wq_cpumask_store(struct device *dev,
5506 struct device_attribute *attr,
5507 const char *buf, size_t count)
5508{
5509 struct workqueue_struct *wq = dev_to_wq(dev);
5510 struct workqueue_attrs *attrs;
d4d3e257
LJ
5511 int ret = -ENOMEM;
5512
5513 apply_wqattrs_lock();
6ba94429
FW
5514
5515 attrs = wq_sysfs_prep_attrs(wq);
5516 if (!attrs)
d4d3e257 5517 goto out_unlock;
6ba94429
FW
5518
5519 ret = cpumask_parse(buf, attrs->cpumask);
5520 if (!ret)
d4d3e257 5521 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5522
d4d3e257
LJ
5523out_unlock:
5524 apply_wqattrs_unlock();
6ba94429
FW
5525 free_workqueue_attrs(attrs);
5526 return ret ?: count;
5527}
5528
5529static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5530 char *buf)
5531{
5532 struct workqueue_struct *wq = dev_to_wq(dev);
5533 int written;
7dbc725e 5534
6ba94429
FW
5535 mutex_lock(&wq->mutex);
5536 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5537 !wq->unbound_attrs->no_numa);
5538 mutex_unlock(&wq->mutex);
4c16bd32 5539
6ba94429 5540 return written;
65758202
TH
5541}
5542
6ba94429
FW
5543static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5544 const char *buf, size_t count)
65758202 5545{
6ba94429
FW
5546 struct workqueue_struct *wq = dev_to_wq(dev);
5547 struct workqueue_attrs *attrs;
d4d3e257
LJ
5548 int v, ret = -ENOMEM;
5549
5550 apply_wqattrs_lock();
4c16bd32 5551
6ba94429
FW
5552 attrs = wq_sysfs_prep_attrs(wq);
5553 if (!attrs)
d4d3e257 5554 goto out_unlock;
4c16bd32 5555
6ba94429
FW
5556 ret = -EINVAL;
5557 if (sscanf(buf, "%d", &v) == 1) {
5558 attrs->no_numa = !v;
d4d3e257 5559 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5560 }
6ba94429 5561
d4d3e257
LJ
5562out_unlock:
5563 apply_wqattrs_unlock();
6ba94429
FW
5564 free_workqueue_attrs(attrs);
5565 return ret ?: count;
65758202
TH
5566}
5567
6ba94429
FW
5568static struct device_attribute wq_sysfs_unbound_attrs[] = {
5569 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5570 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5571 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5572 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5573 __ATTR_NULL,
5574};
8ccad40d 5575
6ba94429
FW
5576static struct bus_type wq_subsys = {
5577 .name = "workqueue",
5578 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5579};
5580
b05a7928
FW
5581static ssize_t wq_unbound_cpumask_show(struct device *dev,
5582 struct device_attribute *attr, char *buf)
5583{
5584 int written;
5585
042f7df1 5586 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5587 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5588 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5589 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5590
5591 return written;
5592}
5593
042f7df1
LJ
5594static ssize_t wq_unbound_cpumask_store(struct device *dev,
5595 struct device_attribute *attr, const char *buf, size_t count)
5596{
5597 cpumask_var_t cpumask;
5598 int ret;
5599
5600 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5601 return -ENOMEM;
5602
5603 ret = cpumask_parse(buf, cpumask);
5604 if (!ret)
5605 ret = workqueue_set_unbound_cpumask(cpumask);
5606
5607 free_cpumask_var(cpumask);
5608 return ret ? ret : count;
5609}
5610
b05a7928 5611static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5612 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5613 wq_unbound_cpumask_store);
b05a7928 5614
6ba94429 5615static int __init wq_sysfs_init(void)
2d3854a3 5616{
b05a7928
FW
5617 int err;
5618
5619 err = subsys_virtual_register(&wq_subsys, NULL);
5620 if (err)
5621 return err;
5622
5623 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5624}
6ba94429 5625core_initcall(wq_sysfs_init);
2d3854a3 5626
6ba94429 5627static void wq_device_release(struct device *dev)
2d3854a3 5628{
6ba94429 5629 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5630
6ba94429 5631 kfree(wq_dev);
2d3854a3 5632}
a0a1a5fd
TH
5633
5634/**
6ba94429
FW
5635 * workqueue_sysfs_register - make a workqueue visible in sysfs
5636 * @wq: the workqueue to register
a0a1a5fd 5637 *
6ba94429
FW
5638 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5639 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5640 * which is the preferred method.
a0a1a5fd 5641 *
6ba94429
FW
5642 * Workqueue user should use this function directly iff it wants to apply
5643 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5644 * apply_workqueue_attrs() may race against userland updating the
5645 * attributes.
5646 *
5647 * Return: 0 on success, -errno on failure.
a0a1a5fd 5648 */
6ba94429 5649int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5650{
6ba94429
FW
5651 struct wq_device *wq_dev;
5652 int ret;
a0a1a5fd 5653
6ba94429 5654 /*
402dd89d 5655 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5656 * attributes breaks ordering guarantee. Disallow exposing ordered
5657 * workqueues.
5658 */
0a94efb5 5659 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5660 return -EINVAL;
a0a1a5fd 5661
6ba94429
FW
5662 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5663 if (!wq_dev)
5664 return -ENOMEM;
5bcab335 5665
6ba94429
FW
5666 wq_dev->wq = wq;
5667 wq_dev->dev.bus = &wq_subsys;
6ba94429 5668 wq_dev->dev.release = wq_device_release;
23217b44 5669 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5670
6ba94429
FW
5671 /*
5672 * unbound_attrs are created separately. Suppress uevent until
5673 * everything is ready.
5674 */
5675 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5676
6ba94429
FW
5677 ret = device_register(&wq_dev->dev);
5678 if (ret) {
537f4146 5679 put_device(&wq_dev->dev);
6ba94429
FW
5680 wq->wq_dev = NULL;
5681 return ret;
5682 }
a0a1a5fd 5683
6ba94429
FW
5684 if (wq->flags & WQ_UNBOUND) {
5685 struct device_attribute *attr;
a0a1a5fd 5686
6ba94429
FW
5687 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5688 ret = device_create_file(&wq_dev->dev, attr);
5689 if (ret) {
5690 device_unregister(&wq_dev->dev);
5691 wq->wq_dev = NULL;
5692 return ret;
a0a1a5fd
TH
5693 }
5694 }
5695 }
6ba94429
FW
5696
5697 dev_set_uevent_suppress(&wq_dev->dev, false);
5698 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5699 return 0;
a0a1a5fd
TH
5700}
5701
5702/**
6ba94429
FW
5703 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5704 * @wq: the workqueue to unregister
a0a1a5fd 5705 *
6ba94429 5706 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5707 */
6ba94429 5708static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5709{
6ba94429 5710 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5711
6ba94429
FW
5712 if (!wq->wq_dev)
5713 return;
a0a1a5fd 5714
6ba94429
FW
5715 wq->wq_dev = NULL;
5716 device_unregister(&wq_dev->dev);
a0a1a5fd 5717}
6ba94429
FW
5718#else /* CONFIG_SYSFS */
5719static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5720#endif /* CONFIG_SYSFS */
a0a1a5fd 5721
82607adc
TH
5722/*
5723 * Workqueue watchdog.
5724 *
5725 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5726 * flush dependency, a concurrency managed work item which stays RUNNING
5727 * indefinitely. Workqueue stalls can be very difficult to debug as the
5728 * usual warning mechanisms don't trigger and internal workqueue state is
5729 * largely opaque.
5730 *
5731 * Workqueue watchdog monitors all worker pools periodically and dumps
5732 * state if some pools failed to make forward progress for a while where
5733 * forward progress is defined as the first item on ->worklist changing.
5734 *
5735 * This mechanism is controlled through the kernel parameter
5736 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5737 * corresponding sysfs parameter file.
5738 */
5739#ifdef CONFIG_WQ_WATCHDOG
5740
82607adc 5741static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5742static struct timer_list wq_watchdog_timer;
82607adc
TH
5743
5744static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5745static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5746
5747static void wq_watchdog_reset_touched(void)
5748{
5749 int cpu;
5750
5751 wq_watchdog_touched = jiffies;
5752 for_each_possible_cpu(cpu)
5753 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5754}
5755
5cd79d6a 5756static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5757{
5758 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5759 bool lockup_detected = false;
b5fd3b11 5760 unsigned long now = jiffies;
82607adc
TH
5761 struct worker_pool *pool;
5762 int pi;
5763
5764 if (!thresh)
5765 return;
5766
5767 rcu_read_lock();
5768
5769 for_each_pool(pool, pi) {
5770 unsigned long pool_ts, touched, ts;
5771
5772 if (list_empty(&pool->worklist))
5773 continue;
5774
b5fd3b11
SS
5775 /*
5776 * If a virtual machine is stopped by the host it can look to
5777 * the watchdog like a stall.
5778 */
5779 kvm_check_and_clear_guest_paused();
5780
82607adc
TH
5781 /* get the latest of pool and touched timestamps */
5782 pool_ts = READ_ONCE(pool->watchdog_ts);
5783 touched = READ_ONCE(wq_watchdog_touched);
5784
5785 if (time_after(pool_ts, touched))
5786 ts = pool_ts;
5787 else
5788 ts = touched;
5789
5790 if (pool->cpu >= 0) {
5791 unsigned long cpu_touched =
5792 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5793 pool->cpu));
5794 if (time_after(cpu_touched, ts))
5795 ts = cpu_touched;
5796 }
5797
5798 /* did we stall? */
b5fd3b11 5799 if (time_after(now, ts + thresh)) {
82607adc
TH
5800 lockup_detected = true;
5801 pr_emerg("BUG: workqueue lockup - pool");
5802 pr_cont_pool_info(pool);
5803 pr_cont(" stuck for %us!\n",
b5fd3b11 5804 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc
TH
5805 }
5806 }
5807
5808 rcu_read_unlock();
5809
5810 if (lockup_detected)
5811 show_workqueue_state();
5812
5813 wq_watchdog_reset_touched();
5814 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5815}
5816
cb9d7fd5 5817notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5818{
5819 if (cpu >= 0)
5820 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5821 else
5822 wq_watchdog_touched = jiffies;
5823}
5824
5825static void wq_watchdog_set_thresh(unsigned long thresh)
5826{
5827 wq_watchdog_thresh = 0;
5828 del_timer_sync(&wq_watchdog_timer);
5829
5830 if (thresh) {
5831 wq_watchdog_thresh = thresh;
5832 wq_watchdog_reset_touched();
5833 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5834 }
5835}
5836
5837static int wq_watchdog_param_set_thresh(const char *val,
5838 const struct kernel_param *kp)
5839{
5840 unsigned long thresh;
5841 int ret;
5842
5843 ret = kstrtoul(val, 0, &thresh);
5844 if (ret)
5845 return ret;
5846
5847 if (system_wq)
5848 wq_watchdog_set_thresh(thresh);
5849 else
5850 wq_watchdog_thresh = thresh;
5851
5852 return 0;
5853}
5854
5855static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5856 .set = wq_watchdog_param_set_thresh,
5857 .get = param_get_ulong,
5858};
5859
5860module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5861 0644);
5862
5863static void wq_watchdog_init(void)
5864{
5cd79d6a 5865 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5866 wq_watchdog_set_thresh(wq_watchdog_thresh);
5867}
5868
5869#else /* CONFIG_WQ_WATCHDOG */
5870
5871static inline void wq_watchdog_init(void) { }
5872
5873#endif /* CONFIG_WQ_WATCHDOG */
5874
bce90380
TH
5875static void __init wq_numa_init(void)
5876{
5877 cpumask_var_t *tbl;
5878 int node, cpu;
5879
bce90380
TH
5880 if (num_possible_nodes() <= 1)
5881 return;
5882
d55262c4
TH
5883 if (wq_disable_numa) {
5884 pr_info("workqueue: NUMA affinity support disabled\n");
5885 return;
5886 }
5887
61bf1cf6
ZL
5888 for_each_possible_cpu(cpu) {
5889 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5890 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5891 return;
5892 }
5893 }
5894
be69d00d 5895 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5896 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5897
bce90380
TH
5898 /*
5899 * We want masks of possible CPUs of each node which isn't readily
5900 * available. Build one from cpu_to_node() which should have been
5901 * fully initialized by now.
5902 */
6396bb22 5903 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5904 BUG_ON(!tbl);
5905
5906 for_each_node(node)
5a6024f1 5907 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5908 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5909
5910 for_each_possible_cpu(cpu) {
5911 node = cpu_to_node(cpu);
bce90380
TH
5912 cpumask_set_cpu(cpu, tbl[node]);
5913 }
5914
5915 wq_numa_possible_cpumask = tbl;
5916 wq_numa_enabled = true;
5917}
5918
3347fa09
TH
5919/**
5920 * workqueue_init_early - early init for workqueue subsystem
5921 *
5922 * This is the first half of two-staged workqueue subsystem initialization
5923 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5924 * idr are up. It sets up all the data structures and system workqueues
5925 * and allows early boot code to create workqueues and queue/cancel work
5926 * items. Actual work item execution starts only after kthreads can be
5927 * created and scheduled right before early initcalls.
5928 */
5929int __init workqueue_init_early(void)
1da177e4 5930{
7a4e344c 5931 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5932 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5933 int i, cpu;
c34056a3 5934
e904e6c2
TH
5935 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5936
b05a7928 5937 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5938 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5939
e904e6c2
TH
5940 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5941
706026c2 5942 /* initialize CPU pools */
29c91e99 5943 for_each_possible_cpu(cpu) {
4ce62e9e 5944 struct worker_pool *pool;
8b03ae3c 5945
7a4e344c 5946 i = 0;
f02ae73a 5947 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5948 BUG_ON(init_worker_pool(pool));
ec22ca5e 5949 pool->cpu = cpu;
29c91e99 5950 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5951 pool->attrs->nice = std_nice[i++];
f3f90ad4 5952 pool->node = cpu_to_node(cpu);
7a4e344c 5953
9daf9e67 5954 /* alloc pool ID */
68e13a67 5955 mutex_lock(&wq_pool_mutex);
9daf9e67 5956 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5957 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5958 }
8b03ae3c
TH
5959 }
5960
8a2b7538 5961 /* create default unbound and ordered wq attrs */
29c91e99
TH
5962 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5963 struct workqueue_attrs *attrs;
5964
be69d00d 5965 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 5966 attrs->nice = std_nice[i];
29c91e99 5967 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5968
5969 /*
5970 * An ordered wq should have only one pwq as ordering is
5971 * guaranteed by max_active which is enforced by pwqs.
5972 * Turn off NUMA so that dfl_pwq is used for all nodes.
5973 */
be69d00d 5974 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
5975 attrs->nice = std_nice[i];
5976 attrs->no_numa = true;
5977 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5978 }
5979
d320c038 5980 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5981 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5982 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5983 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5984 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5985 system_freezable_wq = alloc_workqueue("events_freezable",
5986 WQ_FREEZABLE, 0);
0668106c
VK
5987 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5988 WQ_POWER_EFFICIENT, 0);
5989 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5990 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5991 0);
1aabe902 5992 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5993 !system_unbound_wq || !system_freezable_wq ||
5994 !system_power_efficient_wq ||
5995 !system_freezable_power_efficient_wq);
82607adc 5996
3347fa09
TH
5997 return 0;
5998}
5999
6000/**
6001 * workqueue_init - bring workqueue subsystem fully online
6002 *
6003 * This is the latter half of two-staged workqueue subsystem initialization
6004 * and invoked as soon as kthreads can be created and scheduled.
6005 * Workqueues have been created and work items queued on them, but there
6006 * are no kworkers executing the work items yet. Populate the worker pools
6007 * with the initial workers and enable future kworker creations.
6008 */
6009int __init workqueue_init(void)
6010{
2186d9f9 6011 struct workqueue_struct *wq;
3347fa09
TH
6012 struct worker_pool *pool;
6013 int cpu, bkt;
6014
2186d9f9
TH
6015 /*
6016 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6017 * CPU to node mapping may not be available that early on some
6018 * archs such as power and arm64. As per-cpu pools created
6019 * previously could be missing node hint and unbound pools NUMA
6020 * affinity, fix them up.
40c17f75
TH
6021 *
6022 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6023 */
6024 wq_numa_init();
6025
6026 mutex_lock(&wq_pool_mutex);
6027
6028 for_each_possible_cpu(cpu) {
6029 for_each_cpu_worker_pool(pool, cpu) {
6030 pool->node = cpu_to_node(cpu);
6031 }
6032 }
6033
40c17f75 6034 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6035 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6036 WARN(init_rescuer(wq),
6037 "workqueue: failed to create early rescuer for %s",
6038 wq->name);
6039 }
2186d9f9
TH
6040
6041 mutex_unlock(&wq_pool_mutex);
6042
3347fa09
TH
6043 /* create the initial workers */
6044 for_each_online_cpu(cpu) {
6045 for_each_cpu_worker_pool(pool, cpu) {
6046 pool->flags &= ~POOL_DISASSOCIATED;
6047 BUG_ON(!create_worker(pool));
6048 }
6049 }
6050
6051 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6052 BUG_ON(!create_worker(pool));
6053
6054 wq_online = true;
82607adc
TH
6055 wq_watchdog_init();
6056
6ee0578b 6057 return 0;
1da177e4 6058}