]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/workqueue.c
locking/lockdep: Only call init_rcu_head() after RCU has been initialized
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669 41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
c98a9805 50#include <linux/sched/isolation.h>
62635ea8 51#include <linux/nmi.h>
e22bee78 52
ea138446 53#include "workqueue_internal.h"
1da177e4 54
c8e55f36 55enum {
24647570
TH
56 /*
57 * worker_pool flags
bc2ae0f5 58 *
24647570 59 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 66 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 67 *
bc3a1afc 68 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 69 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 70 * worker_attach_to_pool() is in progress.
bc2ae0f5 71 */
692b4825 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
8698a745 102 * all cpus. Give MIN_NICE.
e22bee78 103 */
8698a745
DY
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
1258fae7 126 * A: wq_pool_attach_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
5b95e1af
LJ
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
3c25a55d
LJ
137 * WQ: wq->mutex protected.
138 *
b5927605 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
140 *
141 * MD: wq_mayday_lock protected.
1da177e4 142 */
1da177e4 143
2eaebdb3 144/* struct worker is defined in workqueue_internal.h */
c34056a3 145
bd7bdd43 146struct worker_pool {
d565ed63 147 spinlock_t lock; /* the pool lock */
d84ff051 148 int cpu; /* I: the associated cpu */
f3f90ad4 149 int node; /* I: the associated node ID */
9daf9e67 150 int id; /* I: pool ID */
11ebea50 151 unsigned int flags; /* X: flags */
bd7bdd43 152
82607adc
TH
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
bd7bdd43 155 struct list_head worklist; /* L: list of pending works */
ea1abd61 156
5826cc8f
LJ
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
c5aa87bb 164 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
2607d7a6 168 struct worker *manager; /* L: purely informational */
92f9c5c4 169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
669de8bd
BVA
262 char *lock_name;
263 struct lock_class_key key;
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
863b710b 293static bool wq_online; /* can kworkers be created yet? */
3347fa09 294
bce90380
TH
295static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
4c16bd32
TH
297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
68e13a67 300static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 301static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 302static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 303static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 304
e2dca7ad 305static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 306static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 307
ef557180
MG
308/* PL: allowable cpus for unbound wqs and work items */
309static cpumask_var_t wq_unbound_cpumask;
310
311/* CPU where unbound work was last round robin scheduled from this CPU */
312static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 313
f303fccb
TH
314/*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320static bool wq_debug_force_rr_cpu = true;
321#else
322static bool wq_debug_force_rr_cpu = false;
323#endif
324module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
7d19c5ce 326/* the per-cpu worker pools */
25528213 327static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 328
68e13a67 329static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 330
68e13a67 331/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
332static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
c5aa87bb 334/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
335static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
8a2b7538
TH
337/* I: attributes used when instantiating ordered pools on demand */
338static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
d320c038 340struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 341EXPORT_SYMBOL(system_wq);
044c782c 342struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 343EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 344struct workqueue_struct *system_long_wq __read_mostly;
d320c038 345EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 346struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 347EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 348struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 349EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
350struct workqueue_struct *system_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 354
7d19c5ce 355static int worker_thread(void *__worker);
6ba94429 356static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 357
97bd2347
TH
358#define CREATE_TRACE_POINTS
359#include <trace/events/workqueue.h>
360
68e13a67 361#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
5bcab335 365
b09f4fd3 366#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
76af4d93 370
5b95e1af 371#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 376
f02ae73a
TH
377#define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 380 (pool)++)
4ce62e9e 381
17116969
TH
382/**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
611c92a0 385 * @pi: integer used for iteration
fa1b54e6 386 *
68e13a67
LJ
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
17116969 393 */
611c92a0
TH
394#define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 397 else
17116969 398
822d8405
TH
399/**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
822d8405
TH
402 * @pool: worker_pool to iterate workers of
403 *
1258fae7 404 * This must be called with wq_pool_attach_mutex.
822d8405
TH
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
da028469
LJ
409#define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 411 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
412 else
413
49e3cf44
TH
414/**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
76af4d93 418 *
b09f4fd3 419 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
49e3cf44
TH
425 */
426#define for_each_pwq(pwq, wq) \
76af4d93 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 429 else
f3421797 430
dc186ad7
TG
431#ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433static struct debug_obj_descr work_debug_descr;
434
99777288
SG
435static void *work_debug_hint(void *addr)
436{
437 return ((struct work_struct *) addr)->func;
438}
439
b9fdac7f
CD
440static bool work_is_static_object(void *addr)
441{
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445}
446
dc186ad7
TG
447/*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
02a982a6 451static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
452{
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
02a982a6 459 return true;
dc186ad7 460 default:
02a982a6 461 return false;
dc186ad7
TG
462 }
463}
464
dc186ad7
TG
465/*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
02a982a6 469static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
470{
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
02a982a6 477 return true;
dc186ad7 478 default:
02a982a6 479 return false;
dc186ad7
TG
480 }
481}
482
483static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
99777288 485 .debug_hint = work_debug_hint,
b9fdac7f 486 .is_static_object = work_is_static_object,
dc186ad7 487 .fixup_init = work_fixup_init,
dc186ad7
TG
488 .fixup_free = work_fixup_free,
489};
490
491static inline void debug_work_activate(struct work_struct *work)
492{
493 debug_object_activate(work, &work_debug_descr);
494}
495
496static inline void debug_work_deactivate(struct work_struct *work)
497{
498 debug_object_deactivate(work, &work_debug_descr);
499}
500
501void __init_work(struct work_struct *work, int onstack)
502{
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507}
508EXPORT_SYMBOL_GPL(__init_work);
509
510void destroy_work_on_stack(struct work_struct *work)
511{
512 debug_object_free(work, &work_debug_descr);
513}
514EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
ea2e64f2
TG
516void destroy_delayed_work_on_stack(struct delayed_work *work)
517{
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520}
521EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
dc186ad7
TG
523#else
524static inline void debug_work_activate(struct work_struct *work) { }
525static inline void debug_work_deactivate(struct work_struct *work) { }
526#endif
527
4e8b22bd
LB
528/**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
9daf9e67
TH
535static int worker_pool_assign_id(struct worker_pool *pool)
536{
537 int ret;
538
68e13a67 539 lockdep_assert_held(&wq_pool_mutex);
5bcab335 540
4e8b22bd
LB
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
229641a6 543 if (ret >= 0) {
e68035fb 544 pool->id = ret;
229641a6
TH
545 return 0;
546 }
fa1b54e6 547 return ret;
7c3eed5c
TH
548}
549
df2d5ae4
TH
550/**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
5b95e1af
LJ
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
df2d5ae4
TH
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
559 *
560 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
561 */
562static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564{
5b95e1af 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
df2d5ae4
TH
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577}
578
73f53c4a
TH
579static unsigned int work_color_to_flags(int color)
580{
581 return color << WORK_STRUCT_COLOR_SHIFT;
582}
583
584static int get_work_color(struct work_struct *work)
585{
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588}
589
590static int work_next_color(int color)
591{
592 return (color + 1) % WORK_NR_COLORS;
593}
1da177e4 594
14441960 595/*
112202d9
TH
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 598 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 599 *
112202d9
TH
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
7a22ad75 604 *
112202d9 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 606 * corresponding to a work. Pool is available once the work has been
112202d9 607 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 608 * available only while the work item is queued.
7a22ad75 609 *
bbb68dfa
TH
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
14441960 614 */
7a22ad75
TH
615static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
365970a1 617{
6183c009 618 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
619 atomic_long_set(&work->data, data | flags | work_static(work));
620}
365970a1 621
112202d9 622static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
623 unsigned long extra_flags)
624{
112202d9
TH
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
627}
628
4468a00f
LJ
629static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631{
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634}
635
7c3eed5c
TH
636static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
7a22ad75 638{
23657bb1
TH
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
7c3eed5c 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to qeueue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
7a22ad75 676}
f756d5e2 677
7a22ad75 678static void clear_work_data(struct work_struct *work)
1da177e4 679{
7c3eed5c
TH
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
682}
683
112202d9 684static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 685{
e120153d 686 unsigned long data = atomic_long_read(&work->data);
7a22ad75 687
112202d9 688 if (data & WORK_STRUCT_PWQ)
e120153d
TH
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
4d707b9f
ON
692}
693
7c3eed5c
TH
694/**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
68e13a67
LJ
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
d185af30
YB
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
708 */
709static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 710{
e120153d 711 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 712 int pool_id;
7a22ad75 713
68e13a67 714 assert_rcu_or_pool_mutex();
fa1b54e6 715
112202d9
TH
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
7c3eed5c 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 719
7c3eed5c
TH
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
722 return NULL;
723
fa1b54e6 724 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
725}
726
727/**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
d185af30 731 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734static int get_work_pool_id(struct work_struct *work)
735{
54d5b7d0
LJ
736 unsigned long data = atomic_long_read(&work->data);
737
112202d9
TH
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
54d5b7d0 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 741
54d5b7d0 742 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
743}
744
bbb68dfa
TH
745static void mark_work_canceling(struct work_struct *work)
746{
7c3eed5c 747 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 748
7c3eed5c
TH
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
751}
752
753static bool work_is_canceling(struct work_struct *work)
754{
755 unsigned long data = atomic_long_read(&work->data);
756
112202d9 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
758}
759
e22bee78 760/*
3270476a
TH
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 763 * they're being called with pool->lock held.
e22bee78
TH
764 */
765
63d95a91 766static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 767{
e19e397a 768 return !atomic_read(&pool->nr_running);
a848e3b6
ON
769}
770
4594bf15 771/*
e22bee78
TH
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
974271c4
TH
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
706026c2 776 * function will always return %true for unbound pools as long as the
974271c4 777 * worklist isn't empty.
4594bf15 778 */
63d95a91 779static bool need_more_worker(struct worker_pool *pool)
365970a1 780{
63d95a91 781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 782}
4594bf15 783
e22bee78 784/* Can I start working? Called from busy but !running workers. */
63d95a91 785static bool may_start_working(struct worker_pool *pool)
e22bee78 786{
63d95a91 787 return pool->nr_idle;
e22bee78
TH
788}
789
790/* Do I need to keep working? Called from currently running workers. */
63d95a91 791static bool keep_working(struct worker_pool *pool)
e22bee78 792{
e19e397a
TH
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
795}
796
797/* Do we need a new worker? Called from manager. */
63d95a91 798static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 799{
63d95a91 800 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 801}
365970a1 802
e22bee78 803/* Do we have too many workers and should some go away? */
63d95a91 804static bool too_many_workers(struct worker_pool *pool)
e22bee78 805{
692b4825 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
811}
812
4d707b9f 813/*
e22bee78
TH
814 * Wake up functions.
815 */
816
1037de36
LJ
817/* Return the first idle worker. Safe with preemption disabled */
818static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 819{
63d95a91 820 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
821 return NULL;
822
63d95a91 823 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
824}
825
826/**
827 * wake_up_worker - wake up an idle worker
63d95a91 828 * @pool: worker pool to wake worker from
7e11629d 829 *
63d95a91 830 * Wake up the first idle worker of @pool.
7e11629d
TH
831 *
832 * CONTEXT:
d565ed63 833 * spin_lock_irq(pool->lock).
7e11629d 834 */
63d95a91 835static void wake_up_worker(struct worker_pool *pool)
7e11629d 836{
1037de36 837 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841}
842
d302f017 843/**
e22bee78
TH
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
d84ff051 854void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
855{
856 struct worker *worker = kthread_data(task);
857
36576000 858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 859 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 860 atomic_inc(&worker->pool->nr_running);
36576000 861 }
e22bee78
TH
862}
863
864/**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
e22bee78
TH
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
d185af30 875 * Return:
e22bee78
TH
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
9b7f6597 878struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
879{
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 881 struct worker_pool *pool;
e22bee78 882
111c225a
TH
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
2d64672e 888 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
889 return NULL;
890
111c225a 891 pool = worker->pool;
111c225a 892
e22bee78 893 /* this can only happen on the local cpu */
9b7f6597 894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 895 return NULL;
e22bee78
TH
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
628c78e7
TH
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
d565ed63 905 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 906 * lock is safe.
e22bee78 907 */
e19e397a
TH
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
1037de36 910 to_wakeup = first_idle_worker(pool);
e22bee78
TH
911 return to_wakeup ? to_wakeup->task : NULL;
912}
913
1b69ac6b
JW
914/**
915 * wq_worker_last_func - retrieve worker's last work function
916 *
917 * Determine the last function a worker executed. This is called from
918 * the scheduler to get a worker's last known identity.
919 *
920 * CONTEXT:
921 * spin_lock_irq(rq->lock)
922 *
923 * Return:
924 * The last work function %current executed as a worker, NULL if it
925 * hasn't executed any work yet.
926 */
927work_func_t wq_worker_last_func(struct task_struct *task)
928{
929 struct worker *worker = kthread_data(task);
930
931 return worker->last_func;
932}
933
e22bee78
TH
934/**
935 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 936 * @worker: self
d302f017 937 * @flags: flags to set
d302f017 938 *
228f1d00 939 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 940 *
cb444766 941 * CONTEXT:
d565ed63 942 * spin_lock_irq(pool->lock)
d302f017 943 */
228f1d00 944static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 945{
bd7bdd43 946 struct worker_pool *pool = worker->pool;
e22bee78 947
cb444766
TH
948 WARN_ON_ONCE(worker->task != current);
949
228f1d00 950 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
951 if ((flags & WORKER_NOT_RUNNING) &&
952 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 953 atomic_dec(&pool->nr_running);
e22bee78
TH
954 }
955
d302f017
TH
956 worker->flags |= flags;
957}
958
959/**
e22bee78 960 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 961 * @worker: self
d302f017
TH
962 * @flags: flags to clear
963 *
e22bee78 964 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 965 *
cb444766 966 * CONTEXT:
d565ed63 967 * spin_lock_irq(pool->lock)
d302f017
TH
968 */
969static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
970{
63d95a91 971 struct worker_pool *pool = worker->pool;
e22bee78
TH
972 unsigned int oflags = worker->flags;
973
cb444766
TH
974 WARN_ON_ONCE(worker->task != current);
975
d302f017 976 worker->flags &= ~flags;
e22bee78 977
42c025f3
TH
978 /*
979 * If transitioning out of NOT_RUNNING, increment nr_running. Note
980 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
981 * of multiple flags, not a single flag.
982 */
e22bee78
TH
983 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
984 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 985 atomic_inc(&pool->nr_running);
d302f017
TH
986}
987
8cca0eea
TH
988/**
989 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 990 * @pool: pool of interest
8cca0eea
TH
991 * @work: work to find worker for
992 *
c9e7cf27
TH
993 * Find a worker which is executing @work on @pool by searching
994 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
995 * to match, its current execution should match the address of @work and
996 * its work function. This is to avoid unwanted dependency between
997 * unrelated work executions through a work item being recycled while still
998 * being executed.
999 *
1000 * This is a bit tricky. A work item may be freed once its execution
1001 * starts and nothing prevents the freed area from being recycled for
1002 * another work item. If the same work item address ends up being reused
1003 * before the original execution finishes, workqueue will identify the
1004 * recycled work item as currently executing and make it wait until the
1005 * current execution finishes, introducing an unwanted dependency.
1006 *
c5aa87bb
TH
1007 * This function checks the work item address and work function to avoid
1008 * false positives. Note that this isn't complete as one may construct a
1009 * work function which can introduce dependency onto itself through a
1010 * recycled work item. Well, if somebody wants to shoot oneself in the
1011 * foot that badly, there's only so much we can do, and if such deadlock
1012 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1013 *
1014 * CONTEXT:
d565ed63 1015 * spin_lock_irq(pool->lock).
8cca0eea 1016 *
d185af30
YB
1017 * Return:
1018 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1019 * otherwise.
4d707b9f 1020 */
c9e7cf27 1021static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1022 struct work_struct *work)
4d707b9f 1023{
42f8570f 1024 struct worker *worker;
42f8570f 1025
b67bfe0d 1026 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1027 (unsigned long)work)
1028 if (worker->current_work == work &&
1029 worker->current_func == work->func)
42f8570f
SL
1030 return worker;
1031
1032 return NULL;
4d707b9f
ON
1033}
1034
bf4ede01
TH
1035/**
1036 * move_linked_works - move linked works to a list
1037 * @work: start of series of works to be scheduled
1038 * @head: target list to append @work to
402dd89d 1039 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1040 *
1041 * Schedule linked works starting from @work to @head. Work series to
1042 * be scheduled starts at @work and includes any consecutive work with
1043 * WORK_STRUCT_LINKED set in its predecessor.
1044 *
1045 * If @nextp is not NULL, it's updated to point to the next work of
1046 * the last scheduled work. This allows move_linked_works() to be
1047 * nested inside outer list_for_each_entry_safe().
1048 *
1049 * CONTEXT:
d565ed63 1050 * spin_lock_irq(pool->lock).
bf4ede01
TH
1051 */
1052static void move_linked_works(struct work_struct *work, struct list_head *head,
1053 struct work_struct **nextp)
1054{
1055 struct work_struct *n;
1056
1057 /*
1058 * Linked worklist will always end before the end of the list,
1059 * use NULL for list head.
1060 */
1061 list_for_each_entry_safe_from(work, n, NULL, entry) {
1062 list_move_tail(&work->entry, head);
1063 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1064 break;
1065 }
1066
1067 /*
1068 * If we're already inside safe list traversal and have moved
1069 * multiple works to the scheduled queue, the next position
1070 * needs to be updated.
1071 */
1072 if (nextp)
1073 *nextp = n;
1074}
1075
8864b4e5
TH
1076/**
1077 * get_pwq - get an extra reference on the specified pool_workqueue
1078 * @pwq: pool_workqueue to get
1079 *
1080 * Obtain an extra reference on @pwq. The caller should guarantee that
1081 * @pwq has positive refcnt and be holding the matching pool->lock.
1082 */
1083static void get_pwq(struct pool_workqueue *pwq)
1084{
1085 lockdep_assert_held(&pwq->pool->lock);
1086 WARN_ON_ONCE(pwq->refcnt <= 0);
1087 pwq->refcnt++;
1088}
1089
1090/**
1091 * put_pwq - put a pool_workqueue reference
1092 * @pwq: pool_workqueue to put
1093 *
1094 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1095 * destruction. The caller should be holding the matching pool->lock.
1096 */
1097static void put_pwq(struct pool_workqueue *pwq)
1098{
1099 lockdep_assert_held(&pwq->pool->lock);
1100 if (likely(--pwq->refcnt))
1101 return;
1102 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1103 return;
1104 /*
1105 * @pwq can't be released under pool->lock, bounce to
1106 * pwq_unbound_release_workfn(). This never recurses on the same
1107 * pool->lock as this path is taken only for unbound workqueues and
1108 * the release work item is scheduled on a per-cpu workqueue. To
1109 * avoid lockdep warning, unbound pool->locks are given lockdep
1110 * subclass of 1 in get_unbound_pool().
1111 */
1112 schedule_work(&pwq->unbound_release_work);
1113}
1114
dce90d47
TH
1115/**
1116 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1117 * @pwq: pool_workqueue to put (can be %NULL)
1118 *
1119 * put_pwq() with locking. This function also allows %NULL @pwq.
1120 */
1121static void put_pwq_unlocked(struct pool_workqueue *pwq)
1122{
1123 if (pwq) {
1124 /*
1125 * As both pwqs and pools are sched-RCU protected, the
1126 * following lock operations are safe.
1127 */
1128 spin_lock_irq(&pwq->pool->lock);
1129 put_pwq(pwq);
1130 spin_unlock_irq(&pwq->pool->lock);
1131 }
1132}
1133
112202d9 1134static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1135{
112202d9 1136 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1137
1138 trace_workqueue_activate_work(work);
82607adc
TH
1139 if (list_empty(&pwq->pool->worklist))
1140 pwq->pool->watchdog_ts = jiffies;
112202d9 1141 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1142 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1143 pwq->nr_active++;
bf4ede01
TH
1144}
1145
112202d9 1146static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1147{
112202d9 1148 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1149 struct work_struct, entry);
1150
112202d9 1151 pwq_activate_delayed_work(work);
3aa62497
LJ
1152}
1153
bf4ede01 1154/**
112202d9
TH
1155 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1156 * @pwq: pwq of interest
bf4ede01 1157 * @color: color of work which left the queue
bf4ede01
TH
1158 *
1159 * A work either has completed or is removed from pending queue,
112202d9 1160 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1161 *
1162 * CONTEXT:
d565ed63 1163 * spin_lock_irq(pool->lock).
bf4ede01 1164 */
112202d9 1165static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1166{
8864b4e5 1167 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1168 if (color == WORK_NO_COLOR)
8864b4e5 1169 goto out_put;
bf4ede01 1170
112202d9 1171 pwq->nr_in_flight[color]--;
bf4ede01 1172
112202d9
TH
1173 pwq->nr_active--;
1174 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1175 /* one down, submit a delayed one */
112202d9
TH
1176 if (pwq->nr_active < pwq->max_active)
1177 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1178 }
1179
1180 /* is flush in progress and are we at the flushing tip? */
112202d9 1181 if (likely(pwq->flush_color != color))
8864b4e5 1182 goto out_put;
bf4ede01
TH
1183
1184 /* are there still in-flight works? */
112202d9 1185 if (pwq->nr_in_flight[color])
8864b4e5 1186 goto out_put;
bf4ede01 1187
112202d9
TH
1188 /* this pwq is done, clear flush_color */
1189 pwq->flush_color = -1;
bf4ede01
TH
1190
1191 /*
112202d9 1192 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1193 * will handle the rest.
1194 */
112202d9
TH
1195 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1196 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1197out_put:
1198 put_pwq(pwq);
bf4ede01
TH
1199}
1200
36e227d2 1201/**
bbb68dfa 1202 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1203 * @work: work item to steal
1204 * @is_dwork: @work is a delayed_work
bbb68dfa 1205 * @flags: place to store irq state
36e227d2
TH
1206 *
1207 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1208 * stable state - idle, on timer or on worklist.
36e227d2 1209 *
d185af30 1210 * Return:
36e227d2
TH
1211 * 1 if @work was pending and we successfully stole PENDING
1212 * 0 if @work was idle and we claimed PENDING
1213 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1214 * -ENOENT if someone else is canceling @work, this state may persist
1215 * for arbitrarily long
36e227d2 1216 *
d185af30 1217 * Note:
bbb68dfa 1218 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1219 * interrupted while holding PENDING and @work off queue, irq must be
1220 * disabled on entry. This, combined with delayed_work->timer being
1221 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1222 *
1223 * On successful return, >= 0, irq is disabled and the caller is
1224 * responsible for releasing it using local_irq_restore(*@flags).
1225 *
e0aecdd8 1226 * This function is safe to call from any context including IRQ handler.
bf4ede01 1227 */
bbb68dfa
TH
1228static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1229 unsigned long *flags)
bf4ede01 1230{
d565ed63 1231 struct worker_pool *pool;
112202d9 1232 struct pool_workqueue *pwq;
bf4ede01 1233
bbb68dfa
TH
1234 local_irq_save(*flags);
1235
36e227d2
TH
1236 /* try to steal the timer if it exists */
1237 if (is_dwork) {
1238 struct delayed_work *dwork = to_delayed_work(work);
1239
e0aecdd8
TH
1240 /*
1241 * dwork->timer is irqsafe. If del_timer() fails, it's
1242 * guaranteed that the timer is not queued anywhere and not
1243 * running on the local CPU.
1244 */
36e227d2
TH
1245 if (likely(del_timer(&dwork->timer)))
1246 return 1;
1247 }
1248
1249 /* try to claim PENDING the normal way */
bf4ede01
TH
1250 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1251 return 0;
1252
1253 /*
1254 * The queueing is in progress, or it is already queued. Try to
1255 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1256 */
d565ed63
TH
1257 pool = get_work_pool(work);
1258 if (!pool)
bbb68dfa 1259 goto fail;
bf4ede01 1260
d565ed63 1261 spin_lock(&pool->lock);
0b3dae68 1262 /*
112202d9
TH
1263 * work->data is guaranteed to point to pwq only while the work
1264 * item is queued on pwq->wq, and both updating work->data to point
1265 * to pwq on queueing and to pool on dequeueing are done under
1266 * pwq->pool->lock. This in turn guarantees that, if work->data
1267 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1268 * item is currently queued on that pool.
1269 */
112202d9
TH
1270 pwq = get_work_pwq(work);
1271 if (pwq && pwq->pool == pool) {
16062836
TH
1272 debug_work_deactivate(work);
1273
1274 /*
1275 * A delayed work item cannot be grabbed directly because
1276 * it might have linked NO_COLOR work items which, if left
112202d9 1277 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1278 * management later on and cause stall. Make sure the work
1279 * item is activated before grabbing.
1280 */
1281 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1282 pwq_activate_delayed_work(work);
16062836
TH
1283
1284 list_del_init(&work->entry);
9c34a704 1285 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1286
112202d9 1287 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1288 set_work_pool_and_keep_pending(work, pool->id);
1289
1290 spin_unlock(&pool->lock);
1291 return 1;
bf4ede01 1292 }
d565ed63 1293 spin_unlock(&pool->lock);
bbb68dfa
TH
1294fail:
1295 local_irq_restore(*flags);
1296 if (work_is_canceling(work))
1297 return -ENOENT;
1298 cpu_relax();
36e227d2 1299 return -EAGAIN;
bf4ede01
TH
1300}
1301
4690c4ab 1302/**
706026c2 1303 * insert_work - insert a work into a pool
112202d9 1304 * @pwq: pwq @work belongs to
4690c4ab
TH
1305 * @work: work to insert
1306 * @head: insertion point
1307 * @extra_flags: extra WORK_STRUCT_* flags to set
1308 *
112202d9 1309 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1310 * work_struct flags.
4690c4ab
TH
1311 *
1312 * CONTEXT:
d565ed63 1313 * spin_lock_irq(pool->lock).
4690c4ab 1314 */
112202d9
TH
1315static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1316 struct list_head *head, unsigned int extra_flags)
b89deed3 1317{
112202d9 1318 struct worker_pool *pool = pwq->pool;
e22bee78 1319
4690c4ab 1320 /* we own @work, set data and link */
112202d9 1321 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1322 list_add_tail(&work->entry, head);
8864b4e5 1323 get_pwq(pwq);
e22bee78
TH
1324
1325 /*
c5aa87bb
TH
1326 * Ensure either wq_worker_sleeping() sees the above
1327 * list_add_tail() or we see zero nr_running to avoid workers lying
1328 * around lazily while there are works to be processed.
e22bee78
TH
1329 */
1330 smp_mb();
1331
63d95a91
TH
1332 if (__need_more_worker(pool))
1333 wake_up_worker(pool);
b89deed3
ON
1334}
1335
c8efcc25
TH
1336/*
1337 * Test whether @work is being queued from another work executing on the
8d03ecfe 1338 * same workqueue.
c8efcc25
TH
1339 */
1340static bool is_chained_work(struct workqueue_struct *wq)
1341{
8d03ecfe
TH
1342 struct worker *worker;
1343
1344 worker = current_wq_worker();
1345 /*
1346 * Return %true iff I'm a worker execuing a work item on @wq. If
1347 * I'm @worker, it's safe to dereference it without locking.
1348 */
112202d9 1349 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1350}
1351
ef557180
MG
1352/*
1353 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1354 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1355 * avoid perturbing sensitive tasks.
1356 */
1357static int wq_select_unbound_cpu(int cpu)
1358{
f303fccb 1359 static bool printed_dbg_warning;
ef557180
MG
1360 int new_cpu;
1361
f303fccb
TH
1362 if (likely(!wq_debug_force_rr_cpu)) {
1363 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1364 return cpu;
1365 } else if (!printed_dbg_warning) {
1366 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1367 printed_dbg_warning = true;
1368 }
1369
ef557180
MG
1370 if (cpumask_empty(wq_unbound_cpumask))
1371 return cpu;
1372
1373 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1374 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1375 if (unlikely(new_cpu >= nr_cpu_ids)) {
1376 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1377 if (unlikely(new_cpu >= nr_cpu_ids))
1378 return cpu;
1379 }
1380 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1381
1382 return new_cpu;
1383}
1384
d84ff051 1385static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1386 struct work_struct *work)
1387{
112202d9 1388 struct pool_workqueue *pwq;
c9178087 1389 struct worker_pool *last_pool;
1e19ffc6 1390 struct list_head *worklist;
8a2e8e5d 1391 unsigned int work_flags;
b75cac93 1392 unsigned int req_cpu = cpu;
8930caba
TH
1393
1394 /*
1395 * While a work item is PENDING && off queue, a task trying to
1396 * steal the PENDING will busy-loop waiting for it to either get
1397 * queued or lose PENDING. Grabbing PENDING and queueing should
1398 * happen with IRQ disabled.
1399 */
8e8eb730 1400 lockdep_assert_irqs_disabled();
1da177e4 1401
dc186ad7 1402 debug_work_activate(work);
1e19ffc6 1403
9ef28a73 1404 /* if draining, only works from the same workqueue are allowed */
618b01eb 1405 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1406 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1407 return;
9e8cd2f5 1408retry:
df2d5ae4 1409 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1410 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1411
c9178087 1412 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1413 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1414 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1415 else
1416 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1417
c9178087
TH
1418 /*
1419 * If @work was previously on a different pool, it might still be
1420 * running there, in which case the work needs to be queued on that
1421 * pool to guarantee non-reentrancy.
1422 */
1423 last_pool = get_work_pool(work);
1424 if (last_pool && last_pool != pwq->pool) {
1425 struct worker *worker;
18aa9eff 1426
c9178087 1427 spin_lock(&last_pool->lock);
18aa9eff 1428
c9178087 1429 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1430
c9178087
TH
1431 if (worker && worker->current_pwq->wq == wq) {
1432 pwq = worker->current_pwq;
8930caba 1433 } else {
c9178087
TH
1434 /* meh... not running there, queue here */
1435 spin_unlock(&last_pool->lock);
112202d9 1436 spin_lock(&pwq->pool->lock);
8930caba 1437 }
f3421797 1438 } else {
112202d9 1439 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1440 }
1441
9e8cd2f5
TH
1442 /*
1443 * pwq is determined and locked. For unbound pools, we could have
1444 * raced with pwq release and it could already be dead. If its
1445 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1446 * without another pwq replacing it in the numa_pwq_tbl or while
1447 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1448 * make forward-progress.
1449 */
1450 if (unlikely(!pwq->refcnt)) {
1451 if (wq->flags & WQ_UNBOUND) {
1452 spin_unlock(&pwq->pool->lock);
1453 cpu_relax();
1454 goto retry;
1455 }
1456 /* oops */
1457 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1458 wq->name, cpu);
1459 }
1460
112202d9
TH
1461 /* pwq determined, queue */
1462 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1463
f5b2552b 1464 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1465 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1466 return;
1467 }
1e19ffc6 1468
112202d9
TH
1469 pwq->nr_in_flight[pwq->work_color]++;
1470 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1471
112202d9 1472 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1473 trace_workqueue_activate_work(work);
112202d9
TH
1474 pwq->nr_active++;
1475 worklist = &pwq->pool->worklist;
82607adc
TH
1476 if (list_empty(worklist))
1477 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1478 } else {
1479 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1480 worklist = &pwq->delayed_works;
8a2e8e5d 1481 }
1e19ffc6 1482
112202d9 1483 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1484
112202d9 1485 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1486}
1487
0fcb78c2 1488/**
c1a220e7
ZR
1489 * queue_work_on - queue work on specific cpu
1490 * @cpu: CPU number to execute work on
0fcb78c2
REB
1491 * @wq: workqueue to use
1492 * @work: work to queue
1493 *
c1a220e7
ZR
1494 * We queue the work to a specific CPU, the caller must ensure it
1495 * can't go away.
d185af30
YB
1496 *
1497 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1498 */
d4283e93
TH
1499bool queue_work_on(int cpu, struct workqueue_struct *wq,
1500 struct work_struct *work)
1da177e4 1501{
d4283e93 1502 bool ret = false;
8930caba 1503 unsigned long flags;
ef1ca236 1504
8930caba 1505 local_irq_save(flags);
c1a220e7 1506
22df02bb 1507 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1508 __queue_work(cpu, wq, work);
d4283e93 1509 ret = true;
c1a220e7 1510 }
ef1ca236 1511
8930caba 1512 local_irq_restore(flags);
1da177e4
LT
1513 return ret;
1514}
ad7b1f84 1515EXPORT_SYMBOL(queue_work_on);
1da177e4 1516
8c20feb6 1517void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1518{
8c20feb6 1519 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1520
e0aecdd8 1521 /* should have been called from irqsafe timer with irq already off */
60c057bc 1522 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1523}
1438ade5 1524EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1525
7beb2edf
TH
1526static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1527 struct delayed_work *dwork, unsigned long delay)
1da177e4 1528{
7beb2edf
TH
1529 struct timer_list *timer = &dwork->timer;
1530 struct work_struct *work = &dwork->work;
7beb2edf 1531
637fdbae 1532 WARN_ON_ONCE(!wq);
841b86f3 1533 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1534 WARN_ON_ONCE(timer_pending(timer));
1535 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1536
8852aac2
TH
1537 /*
1538 * If @delay is 0, queue @dwork->work immediately. This is for
1539 * both optimization and correctness. The earliest @timer can
1540 * expire is on the closest next tick and delayed_work users depend
1541 * on that there's no such delay when @delay is 0.
1542 */
1543 if (!delay) {
1544 __queue_work(cpu, wq, &dwork->work);
1545 return;
1546 }
1547
60c057bc 1548 dwork->wq = wq;
1265057f 1549 dwork->cpu = cpu;
7beb2edf
TH
1550 timer->expires = jiffies + delay;
1551
041bd12e
TH
1552 if (unlikely(cpu != WORK_CPU_UNBOUND))
1553 add_timer_on(timer, cpu);
1554 else
1555 add_timer(timer);
1da177e4
LT
1556}
1557
0fcb78c2
REB
1558/**
1559 * queue_delayed_work_on - queue work on specific CPU after delay
1560 * @cpu: CPU number to execute work on
1561 * @wq: workqueue to use
af9997e4 1562 * @dwork: work to queue
0fcb78c2
REB
1563 * @delay: number of jiffies to wait before queueing
1564 *
d185af30 1565 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1566 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1567 * execution.
0fcb78c2 1568 */
d4283e93
TH
1569bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1570 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1571{
52bad64d 1572 struct work_struct *work = &dwork->work;
d4283e93 1573 bool ret = false;
8930caba 1574 unsigned long flags;
7a6bc1cd 1575
8930caba
TH
1576 /* read the comment in __queue_work() */
1577 local_irq_save(flags);
7a6bc1cd 1578
22df02bb 1579 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1580 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1581 ret = true;
7a6bc1cd 1582 }
8a3e77cc 1583
8930caba 1584 local_irq_restore(flags);
7a6bc1cd
VP
1585 return ret;
1586}
ad7b1f84 1587EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1588
8376fe22
TH
1589/**
1590 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1591 * @cpu: CPU number to execute work on
1592 * @wq: workqueue to use
1593 * @dwork: work to queue
1594 * @delay: number of jiffies to wait before queueing
1595 *
1596 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1597 * modify @dwork's timer so that it expires after @delay. If @delay is
1598 * zero, @work is guaranteed to be scheduled immediately regardless of its
1599 * current state.
1600 *
d185af30 1601 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1602 * pending and its timer was modified.
1603 *
e0aecdd8 1604 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1605 * See try_to_grab_pending() for details.
1606 */
1607bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1608 struct delayed_work *dwork, unsigned long delay)
1609{
1610 unsigned long flags;
1611 int ret;
c7fc77f7 1612
8376fe22
TH
1613 do {
1614 ret = try_to_grab_pending(&dwork->work, true, &flags);
1615 } while (unlikely(ret == -EAGAIN));
63bc0362 1616
8376fe22
TH
1617 if (likely(ret >= 0)) {
1618 __queue_delayed_work(cpu, wq, dwork, delay);
1619 local_irq_restore(flags);
7a6bc1cd 1620 }
8376fe22
TH
1621
1622 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1623 return ret;
1624}
8376fe22
TH
1625EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1626
05f0fe6b
TH
1627static void rcu_work_rcufn(struct rcu_head *rcu)
1628{
1629 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1630
1631 /* read the comment in __queue_work() */
1632 local_irq_disable();
1633 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1634 local_irq_enable();
1635}
1636
1637/**
1638 * queue_rcu_work - queue work after a RCU grace period
1639 * @wq: workqueue to use
1640 * @rwork: work to queue
1641 *
1642 * Return: %false if @rwork was already pending, %true otherwise. Note
1643 * that a full RCU grace period is guaranteed only after a %true return.
1644 * While @rwork is guarnateed to be executed after a %false return, the
1645 * execution may happen before a full RCU grace period has passed.
1646 */
1647bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1648{
1649 struct work_struct *work = &rwork->work;
1650
1651 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1652 rwork->wq = wq;
1653 call_rcu(&rwork->rcu, rcu_work_rcufn);
1654 return true;
1655 }
1656
1657 return false;
1658}
1659EXPORT_SYMBOL(queue_rcu_work);
1660
c8e55f36
TH
1661/**
1662 * worker_enter_idle - enter idle state
1663 * @worker: worker which is entering idle state
1664 *
1665 * @worker is entering idle state. Update stats and idle timer if
1666 * necessary.
1667 *
1668 * LOCKING:
d565ed63 1669 * spin_lock_irq(pool->lock).
c8e55f36
TH
1670 */
1671static void worker_enter_idle(struct worker *worker)
1da177e4 1672{
bd7bdd43 1673 struct worker_pool *pool = worker->pool;
c8e55f36 1674
6183c009
TH
1675 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1676 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1677 (worker->hentry.next || worker->hentry.pprev)))
1678 return;
c8e55f36 1679
051e1850 1680 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1681 worker->flags |= WORKER_IDLE;
bd7bdd43 1682 pool->nr_idle++;
e22bee78 1683 worker->last_active = jiffies;
c8e55f36
TH
1684
1685 /* idle_list is LIFO */
bd7bdd43 1686 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1687
628c78e7
TH
1688 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1689 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1690
544ecf31 1691 /*
e8b3f8db 1692 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1693 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1694 * nr_running, the warning may trigger spuriously. Check iff
1695 * unbind is not in progress.
544ecf31 1696 */
24647570 1697 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1698 pool->nr_workers == pool->nr_idle &&
e19e397a 1699 atomic_read(&pool->nr_running));
c8e55f36
TH
1700}
1701
1702/**
1703 * worker_leave_idle - leave idle state
1704 * @worker: worker which is leaving idle state
1705 *
1706 * @worker is leaving idle state. Update stats.
1707 *
1708 * LOCKING:
d565ed63 1709 * spin_lock_irq(pool->lock).
c8e55f36
TH
1710 */
1711static void worker_leave_idle(struct worker *worker)
1712{
bd7bdd43 1713 struct worker_pool *pool = worker->pool;
c8e55f36 1714
6183c009
TH
1715 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1716 return;
d302f017 1717 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1718 pool->nr_idle--;
c8e55f36
TH
1719 list_del_init(&worker->entry);
1720}
1721
f7537df5 1722static struct worker *alloc_worker(int node)
c34056a3
TH
1723{
1724 struct worker *worker;
1725
f7537df5 1726 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1727 if (worker) {
1728 INIT_LIST_HEAD(&worker->entry);
affee4b2 1729 INIT_LIST_HEAD(&worker->scheduled);
da028469 1730 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1731 /* on creation a worker is in !idle && prep state */
1732 worker->flags = WORKER_PREP;
c8e55f36 1733 }
c34056a3
TH
1734 return worker;
1735}
1736
4736cbf7
LJ
1737/**
1738 * worker_attach_to_pool() - attach a worker to a pool
1739 * @worker: worker to be attached
1740 * @pool: the target pool
1741 *
1742 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1743 * cpu-binding of @worker are kept coordinated with the pool across
1744 * cpu-[un]hotplugs.
1745 */
1746static void worker_attach_to_pool(struct worker *worker,
1747 struct worker_pool *pool)
1748{
1258fae7 1749 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1750
1751 /*
1752 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1753 * online CPUs. It'll be re-applied when any of the CPUs come up.
1754 */
1755 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1756
1757 /*
1258fae7
TH
1758 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1759 * stable across this function. See the comments above the flag
1760 * definition for details.
4736cbf7
LJ
1761 */
1762 if (pool->flags & POOL_DISASSOCIATED)
1763 worker->flags |= WORKER_UNBOUND;
1764
1765 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1766 worker->pool = pool;
4736cbf7 1767
1258fae7 1768 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1769}
1770
60f5a4bc
LJ
1771/**
1772 * worker_detach_from_pool() - detach a worker from its pool
1773 * @worker: worker which is attached to its pool
60f5a4bc 1774 *
4736cbf7
LJ
1775 * Undo the attaching which had been done in worker_attach_to_pool(). The
1776 * caller worker shouldn't access to the pool after detached except it has
1777 * other reference to the pool.
60f5a4bc 1778 */
a2d812a2 1779static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1780{
a2d812a2 1781 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1782 struct completion *detach_completion = NULL;
1783
1258fae7 1784 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1785
da028469 1786 list_del(&worker->node);
a2d812a2
TH
1787 worker->pool = NULL;
1788
da028469 1789 if (list_empty(&pool->workers))
60f5a4bc 1790 detach_completion = pool->detach_completion;
1258fae7 1791 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1792
b62c0751
LJ
1793 /* clear leftover flags without pool->lock after it is detached */
1794 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1795
60f5a4bc
LJ
1796 if (detach_completion)
1797 complete(detach_completion);
1798}
1799
c34056a3
TH
1800/**
1801 * create_worker - create a new workqueue worker
63d95a91 1802 * @pool: pool the new worker will belong to
c34056a3 1803 *
051e1850 1804 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1805 *
1806 * CONTEXT:
1807 * Might sleep. Does GFP_KERNEL allocations.
1808 *
d185af30 1809 * Return:
c34056a3
TH
1810 * Pointer to the newly created worker.
1811 */
bc2ae0f5 1812static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1813{
c34056a3 1814 struct worker *worker = NULL;
f3421797 1815 int id = -1;
e3c916a4 1816 char id_buf[16];
c34056a3 1817
7cda9aae
LJ
1818 /* ID is needed to determine kthread name */
1819 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1820 if (id < 0)
1821 goto fail;
c34056a3 1822
f7537df5 1823 worker = alloc_worker(pool->node);
c34056a3
TH
1824 if (!worker)
1825 goto fail;
1826
c34056a3
TH
1827 worker->id = id;
1828
29c91e99 1829 if (pool->cpu >= 0)
e3c916a4
TH
1830 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1831 pool->attrs->nice < 0 ? "H" : "");
f3421797 1832 else
e3c916a4
TH
1833 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1834
f3f90ad4 1835 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1836 "kworker/%s", id_buf);
c34056a3
TH
1837 if (IS_ERR(worker->task))
1838 goto fail;
1839
91151228 1840 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1841 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1842
da028469 1843 /* successful, attach the worker to the pool */
4736cbf7 1844 worker_attach_to_pool(worker, pool);
822d8405 1845
051e1850
LJ
1846 /* start the newly created worker */
1847 spin_lock_irq(&pool->lock);
1848 worker->pool->nr_workers++;
1849 worker_enter_idle(worker);
1850 wake_up_process(worker->task);
1851 spin_unlock_irq(&pool->lock);
1852
c34056a3 1853 return worker;
822d8405 1854
c34056a3 1855fail:
9625ab17 1856 if (id >= 0)
7cda9aae 1857 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1858 kfree(worker);
1859 return NULL;
1860}
1861
c34056a3
TH
1862/**
1863 * destroy_worker - destroy a workqueue worker
1864 * @worker: worker to be destroyed
1865 *
73eb7fe7
LJ
1866 * Destroy @worker and adjust @pool stats accordingly. The worker should
1867 * be idle.
c8e55f36
TH
1868 *
1869 * CONTEXT:
60f5a4bc 1870 * spin_lock_irq(pool->lock).
c34056a3
TH
1871 */
1872static void destroy_worker(struct worker *worker)
1873{
bd7bdd43 1874 struct worker_pool *pool = worker->pool;
c34056a3 1875
cd549687
TH
1876 lockdep_assert_held(&pool->lock);
1877
c34056a3 1878 /* sanity check frenzy */
6183c009 1879 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1880 WARN_ON(!list_empty(&worker->scheduled)) ||
1881 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1882 return;
c34056a3 1883
73eb7fe7
LJ
1884 pool->nr_workers--;
1885 pool->nr_idle--;
5bdfff96 1886
c8e55f36 1887 list_del_init(&worker->entry);
cb444766 1888 worker->flags |= WORKER_DIE;
60f5a4bc 1889 wake_up_process(worker->task);
c34056a3
TH
1890}
1891
32a6c723 1892static void idle_worker_timeout(struct timer_list *t)
e22bee78 1893{
32a6c723 1894 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1895
d565ed63 1896 spin_lock_irq(&pool->lock);
e22bee78 1897
3347fc9f 1898 while (too_many_workers(pool)) {
e22bee78
TH
1899 struct worker *worker;
1900 unsigned long expires;
1901
1902 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1903 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1904 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1905
3347fc9f 1906 if (time_before(jiffies, expires)) {
63d95a91 1907 mod_timer(&pool->idle_timer, expires);
3347fc9f 1908 break;
d5abe669 1909 }
3347fc9f
LJ
1910
1911 destroy_worker(worker);
e22bee78
TH
1912 }
1913
d565ed63 1914 spin_unlock_irq(&pool->lock);
e22bee78 1915}
d5abe669 1916
493a1724 1917static void send_mayday(struct work_struct *work)
e22bee78 1918{
112202d9
TH
1919 struct pool_workqueue *pwq = get_work_pwq(work);
1920 struct workqueue_struct *wq = pwq->wq;
493a1724 1921
2e109a28 1922 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1923
493008a8 1924 if (!wq->rescuer)
493a1724 1925 return;
e22bee78
TH
1926
1927 /* mayday mayday mayday */
493a1724 1928 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1929 /*
1930 * If @pwq is for an unbound wq, its base ref may be put at
1931 * any time due to an attribute change. Pin @pwq until the
1932 * rescuer is done with it.
1933 */
1934 get_pwq(pwq);
493a1724 1935 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1936 wake_up_process(wq->rescuer->task);
493a1724 1937 }
e22bee78
TH
1938}
1939
32a6c723 1940static void pool_mayday_timeout(struct timer_list *t)
e22bee78 1941{
32a6c723 1942 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
1943 struct work_struct *work;
1944
b2d82909
TH
1945 spin_lock_irq(&pool->lock);
1946 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1947
63d95a91 1948 if (need_to_create_worker(pool)) {
e22bee78
TH
1949 /*
1950 * We've been trying to create a new worker but
1951 * haven't been successful. We might be hitting an
1952 * allocation deadlock. Send distress signals to
1953 * rescuers.
1954 */
63d95a91 1955 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1956 send_mayday(work);
1da177e4 1957 }
e22bee78 1958
b2d82909
TH
1959 spin_unlock(&wq_mayday_lock);
1960 spin_unlock_irq(&pool->lock);
e22bee78 1961
63d95a91 1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1963}
1964
e22bee78
TH
1965/**
1966 * maybe_create_worker - create a new worker if necessary
63d95a91 1967 * @pool: pool to create a new worker for
e22bee78 1968 *
63d95a91 1969 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1970 * have at least one idle worker on return from this function. If
1971 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1972 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1973 * possible allocation deadlock.
1974 *
c5aa87bb
TH
1975 * On return, need_to_create_worker() is guaranteed to be %false and
1976 * may_start_working() %true.
e22bee78
TH
1977 *
1978 * LOCKING:
d565ed63 1979 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1980 * multiple times. Does GFP_KERNEL allocations. Called only from
1981 * manager.
e22bee78 1982 */
29187a9e 1983static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1984__releases(&pool->lock)
1985__acquires(&pool->lock)
1da177e4 1986{
e22bee78 1987restart:
d565ed63 1988 spin_unlock_irq(&pool->lock);
9f9c2364 1989
e22bee78 1990 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1991 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1992
1993 while (true) {
051e1850 1994 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1995 break;
1da177e4 1996
e212f361 1997 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1998
63d95a91 1999 if (!need_to_create_worker(pool))
e22bee78
TH
2000 break;
2001 }
2002
63d95a91 2003 del_timer_sync(&pool->mayday_timer);
d565ed63 2004 spin_lock_irq(&pool->lock);
051e1850
LJ
2005 /*
2006 * This is necessary even after a new worker was just successfully
2007 * created as @pool->lock was dropped and the new worker might have
2008 * already become busy.
2009 */
63d95a91 2010 if (need_to_create_worker(pool))
e22bee78 2011 goto restart;
e22bee78
TH
2012}
2013
73f53c4a 2014/**
e22bee78
TH
2015 * manage_workers - manage worker pool
2016 * @worker: self
73f53c4a 2017 *
706026c2 2018 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2019 * to. At any given time, there can be only zero or one manager per
706026c2 2020 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2021 *
2022 * The caller can safely start processing works on false return. On
2023 * true return, it's guaranteed that need_to_create_worker() is false
2024 * and may_start_working() is true.
73f53c4a
TH
2025 *
2026 * CONTEXT:
d565ed63 2027 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2028 * multiple times. Does GFP_KERNEL allocations.
2029 *
d185af30 2030 * Return:
29187a9e
TH
2031 * %false if the pool doesn't need management and the caller can safely
2032 * start processing works, %true if management function was performed and
2033 * the conditions that the caller verified before calling the function may
2034 * no longer be true.
73f53c4a 2035 */
e22bee78 2036static bool manage_workers(struct worker *worker)
73f53c4a 2037{
63d95a91 2038 struct worker_pool *pool = worker->pool;
73f53c4a 2039
692b4825 2040 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2041 return false;
692b4825
TH
2042
2043 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2044 pool->manager = worker;
1e19ffc6 2045
29187a9e 2046 maybe_create_worker(pool);
e22bee78 2047
2607d7a6 2048 pool->manager = NULL;
692b4825
TH
2049 pool->flags &= ~POOL_MANAGER_ACTIVE;
2050 wake_up(&wq_manager_wait);
29187a9e 2051 return true;
73f53c4a
TH
2052}
2053
a62428c0
TH
2054/**
2055 * process_one_work - process single work
c34056a3 2056 * @worker: self
a62428c0
TH
2057 * @work: work to process
2058 *
2059 * Process @work. This function contains all the logics necessary to
2060 * process a single work including synchronization against and
2061 * interaction with other workers on the same cpu, queueing and
2062 * flushing. As long as context requirement is met, any worker can
2063 * call this function to process a work.
2064 *
2065 * CONTEXT:
d565ed63 2066 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2067 */
c34056a3 2068static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2069__releases(&pool->lock)
2070__acquires(&pool->lock)
a62428c0 2071{
112202d9 2072 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2073 struct worker_pool *pool = worker->pool;
112202d9 2074 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2075 int work_color;
7e11629d 2076 struct worker *collision;
a62428c0
TH
2077#ifdef CONFIG_LOCKDEP
2078 /*
2079 * It is permissible to free the struct work_struct from
2080 * inside the function that is called from it, this we need to
2081 * take into account for lockdep too. To avoid bogus "held
2082 * lock freed" warnings as well as problems when looking into
2083 * work->lockdep_map, make a copy and use that here.
2084 */
4d82a1de
PZ
2085 struct lockdep_map lockdep_map;
2086
2087 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2088#endif
807407c0 2089 /* ensure we're on the correct CPU */
85327af6 2090 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2091 raw_smp_processor_id() != pool->cpu);
25511a47 2092
7e11629d
TH
2093 /*
2094 * A single work shouldn't be executed concurrently by
2095 * multiple workers on a single cpu. Check whether anyone is
2096 * already processing the work. If so, defer the work to the
2097 * currently executing one.
2098 */
c9e7cf27 2099 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2100 if (unlikely(collision)) {
2101 move_linked_works(work, &collision->scheduled, NULL);
2102 return;
2103 }
2104
8930caba 2105 /* claim and dequeue */
a62428c0 2106 debug_work_deactivate(work);
c9e7cf27 2107 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2108 worker->current_work = work;
a2c1c57b 2109 worker->current_func = work->func;
112202d9 2110 worker->current_pwq = pwq;
73f53c4a 2111 work_color = get_work_color(work);
7a22ad75 2112
8bf89593
TH
2113 /*
2114 * Record wq name for cmdline and debug reporting, may get
2115 * overridden through set_worker_desc().
2116 */
2117 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2118
a62428c0
TH
2119 list_del_init(&work->entry);
2120
fb0e7beb 2121 /*
228f1d00
LJ
2122 * CPU intensive works don't participate in concurrency management.
2123 * They're the scheduler's responsibility. This takes @worker out
2124 * of concurrency management and the next code block will chain
2125 * execution of the pending work items.
fb0e7beb
TH
2126 */
2127 if (unlikely(cpu_intensive))
228f1d00 2128 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2129
974271c4 2130 /*
a489a03e
LJ
2131 * Wake up another worker if necessary. The condition is always
2132 * false for normal per-cpu workers since nr_running would always
2133 * be >= 1 at this point. This is used to chain execution of the
2134 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2135 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2136 */
a489a03e 2137 if (need_more_worker(pool))
63d95a91 2138 wake_up_worker(pool);
974271c4 2139
8930caba 2140 /*
7c3eed5c 2141 * Record the last pool and clear PENDING which should be the last
d565ed63 2142 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2143 * PENDING and queued state changes happen together while IRQ is
2144 * disabled.
8930caba 2145 */
7c3eed5c 2146 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2147
d565ed63 2148 spin_unlock_irq(&pool->lock);
a62428c0 2149
a1d14934 2150 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2151 lock_map_acquire(&lockdep_map);
e6f3faa7 2152 /*
f52be570
PZ
2153 * Strictly speaking we should mark the invariant state without holding
2154 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2155 *
2156 * However, that would result in:
2157 *
2158 * A(W1)
2159 * WFC(C)
2160 * A(W1)
2161 * C(C)
2162 *
2163 * Which would create W1->C->W1 dependencies, even though there is no
2164 * actual deadlock possible. There are two solutions, using a
2165 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2166 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2167 * these locks.
2168 *
2169 * AFAICT there is no possible deadlock scenario between the
2170 * flush_work() and complete() primitives (except for single-threaded
2171 * workqueues), so hiding them isn't a problem.
2172 */
f52be570 2173 lockdep_invariant_state(true);
e36c886a 2174 trace_workqueue_execute_start(work);
a2c1c57b 2175 worker->current_func(work);
e36c886a
AV
2176 /*
2177 * While we must be careful to not use "work" after this, the trace
2178 * point will only record its address.
2179 */
2180 trace_workqueue_execute_end(work);
a62428c0 2181 lock_map_release(&lockdep_map);
112202d9 2182 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2183
2184 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2185 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2186 " last function: %pf\n",
a2c1c57b
TH
2187 current->comm, preempt_count(), task_pid_nr(current),
2188 worker->current_func);
a62428c0
TH
2189 debug_show_held_locks(current);
2190 dump_stack();
2191 }
2192
b22ce278
TH
2193 /*
2194 * The following prevents a kworker from hogging CPU on !PREEMPT
2195 * kernels, where a requeueing work item waiting for something to
2196 * happen could deadlock with stop_machine as such work item could
2197 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2198 * stop_machine. At the same time, report a quiescent RCU state so
2199 * the same condition doesn't freeze RCU.
b22ce278 2200 */
a7e6425e 2201 cond_resched();
b22ce278 2202
d565ed63 2203 spin_lock_irq(&pool->lock);
a62428c0 2204
fb0e7beb
TH
2205 /* clear cpu intensive status */
2206 if (unlikely(cpu_intensive))
2207 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2208
1b69ac6b
JW
2209 /* tag the worker for identification in schedule() */
2210 worker->last_func = worker->current_func;
2211
a62428c0 2212 /* we're done with it, release */
42f8570f 2213 hash_del(&worker->hentry);
c34056a3 2214 worker->current_work = NULL;
a2c1c57b 2215 worker->current_func = NULL;
112202d9
TH
2216 worker->current_pwq = NULL;
2217 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2218}
2219
affee4b2
TH
2220/**
2221 * process_scheduled_works - process scheduled works
2222 * @worker: self
2223 *
2224 * Process all scheduled works. Please note that the scheduled list
2225 * may change while processing a work, so this function repeatedly
2226 * fetches a work from the top and executes it.
2227 *
2228 * CONTEXT:
d565ed63 2229 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2230 * multiple times.
2231 */
2232static void process_scheduled_works(struct worker *worker)
1da177e4 2233{
affee4b2
TH
2234 while (!list_empty(&worker->scheduled)) {
2235 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2236 struct work_struct, entry);
c34056a3 2237 process_one_work(worker, work);
1da177e4 2238 }
1da177e4
LT
2239}
2240
197f6acc
TH
2241static void set_pf_worker(bool val)
2242{
2243 mutex_lock(&wq_pool_attach_mutex);
2244 if (val)
2245 current->flags |= PF_WQ_WORKER;
2246 else
2247 current->flags &= ~PF_WQ_WORKER;
2248 mutex_unlock(&wq_pool_attach_mutex);
2249}
2250
4690c4ab
TH
2251/**
2252 * worker_thread - the worker thread function
c34056a3 2253 * @__worker: self
4690c4ab 2254 *
c5aa87bb
TH
2255 * The worker thread function. All workers belong to a worker_pool -
2256 * either a per-cpu one or dynamic unbound one. These workers process all
2257 * work items regardless of their specific target workqueue. The only
2258 * exception is work items which belong to workqueues with a rescuer which
2259 * will be explained in rescuer_thread().
d185af30
YB
2260 *
2261 * Return: 0
4690c4ab 2262 */
c34056a3 2263static int worker_thread(void *__worker)
1da177e4 2264{
c34056a3 2265 struct worker *worker = __worker;
bd7bdd43 2266 struct worker_pool *pool = worker->pool;
1da177e4 2267
e22bee78 2268 /* tell the scheduler that this is a workqueue worker */
197f6acc 2269 set_pf_worker(true);
c8e55f36 2270woke_up:
d565ed63 2271 spin_lock_irq(&pool->lock);
1da177e4 2272
a9ab775b
TH
2273 /* am I supposed to die? */
2274 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2275 spin_unlock_irq(&pool->lock);
a9ab775b 2276 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2277 set_pf_worker(false);
60f5a4bc
LJ
2278
2279 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2280 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2281 worker_detach_from_pool(worker);
60f5a4bc 2282 kfree(worker);
a9ab775b 2283 return 0;
c8e55f36 2284 }
affee4b2 2285
c8e55f36 2286 worker_leave_idle(worker);
db7bccf4 2287recheck:
e22bee78 2288 /* no more worker necessary? */
63d95a91 2289 if (!need_more_worker(pool))
e22bee78
TH
2290 goto sleep;
2291
2292 /* do we need to manage? */
63d95a91 2293 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2294 goto recheck;
2295
c8e55f36
TH
2296 /*
2297 * ->scheduled list can only be filled while a worker is
2298 * preparing to process a work or actually processing it.
2299 * Make sure nobody diddled with it while I was sleeping.
2300 */
6183c009 2301 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2302
e22bee78 2303 /*
a9ab775b
TH
2304 * Finish PREP stage. We're guaranteed to have at least one idle
2305 * worker or that someone else has already assumed the manager
2306 * role. This is where @worker starts participating in concurrency
2307 * management if applicable and concurrency management is restored
2308 * after being rebound. See rebind_workers() for details.
e22bee78 2309 */
a9ab775b 2310 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2311
2312 do {
c8e55f36 2313 struct work_struct *work =
bd7bdd43 2314 list_first_entry(&pool->worklist,
c8e55f36
TH
2315 struct work_struct, entry);
2316
82607adc
TH
2317 pool->watchdog_ts = jiffies;
2318
c8e55f36
TH
2319 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2320 /* optimization path, not strictly necessary */
2321 process_one_work(worker, work);
2322 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2323 process_scheduled_works(worker);
c8e55f36
TH
2324 } else {
2325 move_linked_works(work, &worker->scheduled, NULL);
2326 process_scheduled_works(worker);
affee4b2 2327 }
63d95a91 2328 } while (keep_working(pool));
e22bee78 2329
228f1d00 2330 worker_set_flags(worker, WORKER_PREP);
d313dd85 2331sleep:
c8e55f36 2332 /*
d565ed63
TH
2333 * pool->lock is held and there's no work to process and no need to
2334 * manage, sleep. Workers are woken up only while holding
2335 * pool->lock or from local cpu, so setting the current state
2336 * before releasing pool->lock is enough to prevent losing any
2337 * event.
c8e55f36
TH
2338 */
2339 worker_enter_idle(worker);
c5a94a61 2340 __set_current_state(TASK_IDLE);
d565ed63 2341 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2342 schedule();
2343 goto woke_up;
1da177e4
LT
2344}
2345
e22bee78
TH
2346/**
2347 * rescuer_thread - the rescuer thread function
111c225a 2348 * @__rescuer: self
e22bee78
TH
2349 *
2350 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2351 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2352 *
706026c2 2353 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2354 * worker which uses GFP_KERNEL allocation which has slight chance of
2355 * developing into deadlock if some works currently on the same queue
2356 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2357 * the problem rescuer solves.
2358 *
706026c2
TH
2359 * When such condition is possible, the pool summons rescuers of all
2360 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2361 * those works so that forward progress can be guaranteed.
2362 *
2363 * This should happen rarely.
d185af30
YB
2364 *
2365 * Return: 0
e22bee78 2366 */
111c225a 2367static int rescuer_thread(void *__rescuer)
e22bee78 2368{
111c225a
TH
2369 struct worker *rescuer = __rescuer;
2370 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2371 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2372 bool should_stop;
e22bee78
TH
2373
2374 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2375
2376 /*
2377 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2378 * doesn't participate in concurrency management.
2379 */
197f6acc 2380 set_pf_worker(true);
e22bee78 2381repeat:
c5a94a61 2382 set_current_state(TASK_IDLE);
e22bee78 2383
4d595b86
LJ
2384 /*
2385 * By the time the rescuer is requested to stop, the workqueue
2386 * shouldn't have any work pending, but @wq->maydays may still have
2387 * pwq(s) queued. This can happen by non-rescuer workers consuming
2388 * all the work items before the rescuer got to them. Go through
2389 * @wq->maydays processing before acting on should_stop so that the
2390 * list is always empty on exit.
2391 */
2392 should_stop = kthread_should_stop();
e22bee78 2393
493a1724 2394 /* see whether any pwq is asking for help */
2e109a28 2395 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2396
2397 while (!list_empty(&wq->maydays)) {
2398 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2399 struct pool_workqueue, mayday_node);
112202d9 2400 struct worker_pool *pool = pwq->pool;
e22bee78 2401 struct work_struct *work, *n;
82607adc 2402 bool first = true;
e22bee78
TH
2403
2404 __set_current_state(TASK_RUNNING);
493a1724
TH
2405 list_del_init(&pwq->mayday_node);
2406
2e109a28 2407 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2408
51697d39
LJ
2409 worker_attach_to_pool(rescuer, pool);
2410
2411 spin_lock_irq(&pool->lock);
e22bee78
TH
2412
2413 /*
2414 * Slurp in all works issued via this workqueue and
2415 * process'em.
2416 */
0479c8c5 2417 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2418 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2419 if (get_work_pwq(work) == pwq) {
2420 if (first)
2421 pool->watchdog_ts = jiffies;
e22bee78 2422 move_linked_works(work, scheduled, &n);
82607adc
TH
2423 }
2424 first = false;
2425 }
e22bee78 2426
008847f6
N
2427 if (!list_empty(scheduled)) {
2428 process_scheduled_works(rescuer);
2429
2430 /*
2431 * The above execution of rescued work items could
2432 * have created more to rescue through
2433 * pwq_activate_first_delayed() or chained
2434 * queueing. Let's put @pwq back on mayday list so
2435 * that such back-to-back work items, which may be
2436 * being used to relieve memory pressure, don't
2437 * incur MAYDAY_INTERVAL delay inbetween.
2438 */
2439 if (need_to_create_worker(pool)) {
2440 spin_lock(&wq_mayday_lock);
2441 get_pwq(pwq);
2442 list_move_tail(&pwq->mayday_node, &wq->maydays);
2443 spin_unlock(&wq_mayday_lock);
2444 }
2445 }
7576958a 2446
77668c8b
LJ
2447 /*
2448 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2449 * go away while we're still attached to it.
77668c8b
LJ
2450 */
2451 put_pwq(pwq);
2452
7576958a 2453 /*
d8ca83e6 2454 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2455 * regular worker; otherwise, we end up with 0 concurrency
2456 * and stalling the execution.
2457 */
d8ca83e6 2458 if (need_more_worker(pool))
63d95a91 2459 wake_up_worker(pool);
7576958a 2460
13b1d625
LJ
2461 spin_unlock_irq(&pool->lock);
2462
a2d812a2 2463 worker_detach_from_pool(rescuer);
13b1d625
LJ
2464
2465 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2466 }
2467
2e109a28 2468 spin_unlock_irq(&wq_mayday_lock);
493a1724 2469
4d595b86
LJ
2470 if (should_stop) {
2471 __set_current_state(TASK_RUNNING);
197f6acc 2472 set_pf_worker(false);
4d595b86
LJ
2473 return 0;
2474 }
2475
111c225a
TH
2476 /* rescuers should never participate in concurrency management */
2477 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2478 schedule();
2479 goto repeat;
1da177e4
LT
2480}
2481
fca839c0
TH
2482/**
2483 * check_flush_dependency - check for flush dependency sanity
2484 * @target_wq: workqueue being flushed
2485 * @target_work: work item being flushed (NULL for workqueue flushes)
2486 *
2487 * %current is trying to flush the whole @target_wq or @target_work on it.
2488 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2489 * reclaiming memory or running on a workqueue which doesn't have
2490 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2491 * a deadlock.
2492 */
2493static void check_flush_dependency(struct workqueue_struct *target_wq,
2494 struct work_struct *target_work)
2495{
2496 work_func_t target_func = target_work ? target_work->func : NULL;
2497 struct worker *worker;
2498
2499 if (target_wq->flags & WQ_MEM_RECLAIM)
2500 return;
2501
2502 worker = current_wq_worker();
2503
2504 WARN_ONCE(current->flags & PF_MEMALLOC,
2505 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2506 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2507 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2508 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2509 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2510 worker->current_pwq->wq->name, worker->current_func,
2511 target_wq->name, target_func);
2512}
2513
fc2e4d70
ON
2514struct wq_barrier {
2515 struct work_struct work;
2516 struct completion done;
2607d7a6 2517 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2518};
2519
2520static void wq_barrier_func(struct work_struct *work)
2521{
2522 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2523 complete(&barr->done);
2524}
2525
4690c4ab
TH
2526/**
2527 * insert_wq_barrier - insert a barrier work
112202d9 2528 * @pwq: pwq to insert barrier into
4690c4ab 2529 * @barr: wq_barrier to insert
affee4b2
TH
2530 * @target: target work to attach @barr to
2531 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2532 *
affee4b2
TH
2533 * @barr is linked to @target such that @barr is completed only after
2534 * @target finishes execution. Please note that the ordering
2535 * guarantee is observed only with respect to @target and on the local
2536 * cpu.
2537 *
2538 * Currently, a queued barrier can't be canceled. This is because
2539 * try_to_grab_pending() can't determine whether the work to be
2540 * grabbed is at the head of the queue and thus can't clear LINKED
2541 * flag of the previous work while there must be a valid next work
2542 * after a work with LINKED flag set.
2543 *
2544 * Note that when @worker is non-NULL, @target may be modified
112202d9 2545 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2546 *
2547 * CONTEXT:
d565ed63 2548 * spin_lock_irq(pool->lock).
4690c4ab 2549 */
112202d9 2550static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2551 struct wq_barrier *barr,
2552 struct work_struct *target, struct worker *worker)
fc2e4d70 2553{
affee4b2
TH
2554 struct list_head *head;
2555 unsigned int linked = 0;
2556
dc186ad7 2557 /*
d565ed63 2558 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2559 * as we know for sure that this will not trigger any of the
2560 * checks and call back into the fixup functions where we
2561 * might deadlock.
2562 */
ca1cab37 2563 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2564 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2565
fd1a5b04
BP
2566 init_completion_map(&barr->done, &target->lockdep_map);
2567
2607d7a6 2568 barr->task = current;
83c22520 2569
affee4b2
TH
2570 /*
2571 * If @target is currently being executed, schedule the
2572 * barrier to the worker; otherwise, put it after @target.
2573 */
2574 if (worker)
2575 head = worker->scheduled.next;
2576 else {
2577 unsigned long *bits = work_data_bits(target);
2578
2579 head = target->entry.next;
2580 /* there can already be other linked works, inherit and set */
2581 linked = *bits & WORK_STRUCT_LINKED;
2582 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2583 }
2584
dc186ad7 2585 debug_work_activate(&barr->work);
112202d9 2586 insert_work(pwq, &barr->work, head,
affee4b2 2587 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2588}
2589
73f53c4a 2590/**
112202d9 2591 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2592 * @wq: workqueue being flushed
2593 * @flush_color: new flush color, < 0 for no-op
2594 * @work_color: new work color, < 0 for no-op
2595 *
112202d9 2596 * Prepare pwqs for workqueue flushing.
73f53c4a 2597 *
112202d9
TH
2598 * If @flush_color is non-negative, flush_color on all pwqs should be
2599 * -1. If no pwq has in-flight commands at the specified color, all
2600 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2601 * has in flight commands, its pwq->flush_color is set to
2602 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2603 * wakeup logic is armed and %true is returned.
2604 *
2605 * The caller should have initialized @wq->first_flusher prior to
2606 * calling this function with non-negative @flush_color. If
2607 * @flush_color is negative, no flush color update is done and %false
2608 * is returned.
2609 *
112202d9 2610 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2611 * work_color which is previous to @work_color and all will be
2612 * advanced to @work_color.
2613 *
2614 * CONTEXT:
3c25a55d 2615 * mutex_lock(wq->mutex).
73f53c4a 2616 *
d185af30 2617 * Return:
73f53c4a
TH
2618 * %true if @flush_color >= 0 and there's something to flush. %false
2619 * otherwise.
2620 */
112202d9 2621static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2622 int flush_color, int work_color)
1da177e4 2623{
73f53c4a 2624 bool wait = false;
49e3cf44 2625 struct pool_workqueue *pwq;
1da177e4 2626
73f53c4a 2627 if (flush_color >= 0) {
6183c009 2628 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2629 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2630 }
2355b70f 2631
49e3cf44 2632 for_each_pwq(pwq, wq) {
112202d9 2633 struct worker_pool *pool = pwq->pool;
fc2e4d70 2634
b09f4fd3 2635 spin_lock_irq(&pool->lock);
83c22520 2636
73f53c4a 2637 if (flush_color >= 0) {
6183c009 2638 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2639
112202d9
TH
2640 if (pwq->nr_in_flight[flush_color]) {
2641 pwq->flush_color = flush_color;
2642 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2643 wait = true;
2644 }
2645 }
1da177e4 2646
73f53c4a 2647 if (work_color >= 0) {
6183c009 2648 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2649 pwq->work_color = work_color;
73f53c4a 2650 }
1da177e4 2651
b09f4fd3 2652 spin_unlock_irq(&pool->lock);
1da177e4 2653 }
2355b70f 2654
112202d9 2655 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2656 complete(&wq->first_flusher->done);
14441960 2657
73f53c4a 2658 return wait;
1da177e4
LT
2659}
2660
0fcb78c2 2661/**
1da177e4 2662 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2663 * @wq: workqueue to flush
1da177e4 2664 *
c5aa87bb
TH
2665 * This function sleeps until all work items which were queued on entry
2666 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2667 */
7ad5b3a5 2668void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2669{
73f53c4a
TH
2670 struct wq_flusher this_flusher = {
2671 .list = LIST_HEAD_INIT(this_flusher.list),
2672 .flush_color = -1,
fd1a5b04 2673 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2674 };
2675 int next_color;
1da177e4 2676
3347fa09
TH
2677 if (WARN_ON(!wq_online))
2678 return;
2679
87915adc
JB
2680 lock_map_acquire(&wq->lockdep_map);
2681 lock_map_release(&wq->lockdep_map);
2682
3c25a55d 2683 mutex_lock(&wq->mutex);
73f53c4a
TH
2684
2685 /*
2686 * Start-to-wait phase
2687 */
2688 next_color = work_next_color(wq->work_color);
2689
2690 if (next_color != wq->flush_color) {
2691 /*
2692 * Color space is not full. The current work_color
2693 * becomes our flush_color and work_color is advanced
2694 * by one.
2695 */
6183c009 2696 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2697 this_flusher.flush_color = wq->work_color;
2698 wq->work_color = next_color;
2699
2700 if (!wq->first_flusher) {
2701 /* no flush in progress, become the first flusher */
6183c009 2702 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2703
2704 wq->first_flusher = &this_flusher;
2705
112202d9 2706 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2707 wq->work_color)) {
2708 /* nothing to flush, done */
2709 wq->flush_color = next_color;
2710 wq->first_flusher = NULL;
2711 goto out_unlock;
2712 }
2713 } else {
2714 /* wait in queue */
6183c009 2715 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2716 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2717 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2718 }
2719 } else {
2720 /*
2721 * Oops, color space is full, wait on overflow queue.
2722 * The next flush completion will assign us
2723 * flush_color and transfer to flusher_queue.
2724 */
2725 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2726 }
2727
fca839c0
TH
2728 check_flush_dependency(wq, NULL);
2729
3c25a55d 2730 mutex_unlock(&wq->mutex);
73f53c4a
TH
2731
2732 wait_for_completion(&this_flusher.done);
2733
2734 /*
2735 * Wake-up-and-cascade phase
2736 *
2737 * First flushers are responsible for cascading flushes and
2738 * handling overflow. Non-first flushers can simply return.
2739 */
2740 if (wq->first_flusher != &this_flusher)
2741 return;
2742
3c25a55d 2743 mutex_lock(&wq->mutex);
73f53c4a 2744
4ce48b37
TH
2745 /* we might have raced, check again with mutex held */
2746 if (wq->first_flusher != &this_flusher)
2747 goto out_unlock;
2748
73f53c4a
TH
2749 wq->first_flusher = NULL;
2750
6183c009
TH
2751 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2752 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2753
2754 while (true) {
2755 struct wq_flusher *next, *tmp;
2756
2757 /* complete all the flushers sharing the current flush color */
2758 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2759 if (next->flush_color != wq->flush_color)
2760 break;
2761 list_del_init(&next->list);
2762 complete(&next->done);
2763 }
2764
6183c009
TH
2765 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2766 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2767
2768 /* this flush_color is finished, advance by one */
2769 wq->flush_color = work_next_color(wq->flush_color);
2770
2771 /* one color has been freed, handle overflow queue */
2772 if (!list_empty(&wq->flusher_overflow)) {
2773 /*
2774 * Assign the same color to all overflowed
2775 * flushers, advance work_color and append to
2776 * flusher_queue. This is the start-to-wait
2777 * phase for these overflowed flushers.
2778 */
2779 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2780 tmp->flush_color = wq->work_color;
2781
2782 wq->work_color = work_next_color(wq->work_color);
2783
2784 list_splice_tail_init(&wq->flusher_overflow,
2785 &wq->flusher_queue);
112202d9 2786 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2787 }
2788
2789 if (list_empty(&wq->flusher_queue)) {
6183c009 2790 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2791 break;
2792 }
2793
2794 /*
2795 * Need to flush more colors. Make the next flusher
112202d9 2796 * the new first flusher and arm pwqs.
73f53c4a 2797 */
6183c009
TH
2798 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2799 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2800
2801 list_del_init(&next->list);
2802 wq->first_flusher = next;
2803
112202d9 2804 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2805 break;
2806
2807 /*
2808 * Meh... this color is already done, clear first
2809 * flusher and repeat cascading.
2810 */
2811 wq->first_flusher = NULL;
2812 }
2813
2814out_unlock:
3c25a55d 2815 mutex_unlock(&wq->mutex);
1da177e4 2816}
1dadafa8 2817EXPORT_SYMBOL(flush_workqueue);
1da177e4 2818
9c5a2ba7
TH
2819/**
2820 * drain_workqueue - drain a workqueue
2821 * @wq: workqueue to drain
2822 *
2823 * Wait until the workqueue becomes empty. While draining is in progress,
2824 * only chain queueing is allowed. IOW, only currently pending or running
2825 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2826 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2827 * by the depth of chaining and should be relatively short. Whine if it
2828 * takes too long.
2829 */
2830void drain_workqueue(struct workqueue_struct *wq)
2831{
2832 unsigned int flush_cnt = 0;
49e3cf44 2833 struct pool_workqueue *pwq;
9c5a2ba7
TH
2834
2835 /*
2836 * __queue_work() needs to test whether there are drainers, is much
2837 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2838 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2839 */
87fc741e 2840 mutex_lock(&wq->mutex);
9c5a2ba7 2841 if (!wq->nr_drainers++)
618b01eb 2842 wq->flags |= __WQ_DRAINING;
87fc741e 2843 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2844reflush:
2845 flush_workqueue(wq);
2846
b09f4fd3 2847 mutex_lock(&wq->mutex);
76af4d93 2848
49e3cf44 2849 for_each_pwq(pwq, wq) {
fa2563e4 2850 bool drained;
9c5a2ba7 2851
b09f4fd3 2852 spin_lock_irq(&pwq->pool->lock);
112202d9 2853 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2854 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2855
2856 if (drained)
9c5a2ba7
TH
2857 continue;
2858
2859 if (++flush_cnt == 10 ||
2860 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2861 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2862 wq->name, flush_cnt);
76af4d93 2863
b09f4fd3 2864 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2865 goto reflush;
2866 }
2867
9c5a2ba7 2868 if (!--wq->nr_drainers)
618b01eb 2869 wq->flags &= ~__WQ_DRAINING;
87fc741e 2870 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2871}
2872EXPORT_SYMBOL_GPL(drain_workqueue);
2873
d6e89786
JB
2874static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2875 bool from_cancel)
db700897 2876{
affee4b2 2877 struct worker *worker = NULL;
c9e7cf27 2878 struct worker_pool *pool;
112202d9 2879 struct pool_workqueue *pwq;
db700897
ON
2880
2881 might_sleep();
fa1b54e6
TH
2882
2883 local_irq_disable();
c9e7cf27 2884 pool = get_work_pool(work);
fa1b54e6
TH
2885 if (!pool) {
2886 local_irq_enable();
baf59022 2887 return false;
fa1b54e6 2888 }
db700897 2889
fa1b54e6 2890 spin_lock(&pool->lock);
0b3dae68 2891 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2892 pwq = get_work_pwq(work);
2893 if (pwq) {
2894 if (unlikely(pwq->pool != pool))
4690c4ab 2895 goto already_gone;
606a5020 2896 } else {
c9e7cf27 2897 worker = find_worker_executing_work(pool, work);
affee4b2 2898 if (!worker)
4690c4ab 2899 goto already_gone;
112202d9 2900 pwq = worker->current_pwq;
606a5020 2901 }
db700897 2902
fca839c0
TH
2903 check_flush_dependency(pwq->wq, work);
2904
112202d9 2905 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2906 spin_unlock_irq(&pool->lock);
7a22ad75 2907
e159489b 2908 /*
a1d14934
PZ
2909 * Force a lock recursion deadlock when using flush_work() inside a
2910 * single-threaded or rescuer equipped workqueue.
2911 *
2912 * For single threaded workqueues the deadlock happens when the work
2913 * is after the work issuing the flush_work(). For rescuer equipped
2914 * workqueues the deadlock happens when the rescuer stalls, blocking
2915 * forward progress.
e159489b 2916 */
d6e89786
JB
2917 if (!from_cancel &&
2918 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 2919 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2920 lock_map_release(&pwq->wq->lockdep_map);
2921 }
e159489b 2922
401a8d04 2923 return true;
4690c4ab 2924already_gone:
d565ed63 2925 spin_unlock_irq(&pool->lock);
401a8d04 2926 return false;
db700897 2927}
baf59022 2928
d6e89786
JB
2929static bool __flush_work(struct work_struct *work, bool from_cancel)
2930{
2931 struct wq_barrier barr;
2932
2933 if (WARN_ON(!wq_online))
2934 return false;
2935
87915adc
JB
2936 if (!from_cancel) {
2937 lock_map_acquire(&work->lockdep_map);
2938 lock_map_release(&work->lockdep_map);
2939 }
2940
d6e89786
JB
2941 if (start_flush_work(work, &barr, from_cancel)) {
2942 wait_for_completion(&barr.done);
2943 destroy_work_on_stack(&barr.work);
2944 return true;
2945 } else {
2946 return false;
2947 }
2948}
2949
baf59022
TH
2950/**
2951 * flush_work - wait for a work to finish executing the last queueing instance
2952 * @work: the work to flush
2953 *
606a5020
TH
2954 * Wait until @work has finished execution. @work is guaranteed to be idle
2955 * on return if it hasn't been requeued since flush started.
baf59022 2956 *
d185af30 2957 * Return:
baf59022
TH
2958 * %true if flush_work() waited for the work to finish execution,
2959 * %false if it was already idle.
2960 */
2961bool flush_work(struct work_struct *work)
2962{
d6e89786 2963 return __flush_work(work, false);
6e84d644 2964}
606a5020 2965EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2966
8603e1b3 2967struct cwt_wait {
ac6424b9 2968 wait_queue_entry_t wait;
8603e1b3
TH
2969 struct work_struct *work;
2970};
2971
ac6424b9 2972static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2973{
2974 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2975
2976 if (cwait->work != key)
2977 return 0;
2978 return autoremove_wake_function(wait, mode, sync, key);
2979}
2980
36e227d2 2981static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2982{
8603e1b3 2983 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2984 unsigned long flags;
1f1f642e
ON
2985 int ret;
2986
2987 do {
bbb68dfa
TH
2988 ret = try_to_grab_pending(work, is_dwork, &flags);
2989 /*
8603e1b3
TH
2990 * If someone else is already canceling, wait for it to
2991 * finish. flush_work() doesn't work for PREEMPT_NONE
2992 * because we may get scheduled between @work's completion
2993 * and the other canceling task resuming and clearing
2994 * CANCELING - flush_work() will return false immediately
2995 * as @work is no longer busy, try_to_grab_pending() will
2996 * return -ENOENT as @work is still being canceled and the
2997 * other canceling task won't be able to clear CANCELING as
2998 * we're hogging the CPU.
2999 *
3000 * Let's wait for completion using a waitqueue. As this
3001 * may lead to the thundering herd problem, use a custom
3002 * wake function which matches @work along with exclusive
3003 * wait and wakeup.
bbb68dfa 3004 */
8603e1b3
TH
3005 if (unlikely(ret == -ENOENT)) {
3006 struct cwt_wait cwait;
3007
3008 init_wait(&cwait.wait);
3009 cwait.wait.func = cwt_wakefn;
3010 cwait.work = work;
3011
3012 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3013 TASK_UNINTERRUPTIBLE);
3014 if (work_is_canceling(work))
3015 schedule();
3016 finish_wait(&cancel_waitq, &cwait.wait);
3017 }
1f1f642e
ON
3018 } while (unlikely(ret < 0));
3019
bbb68dfa
TH
3020 /* tell other tasks trying to grab @work to back off */
3021 mark_work_canceling(work);
3022 local_irq_restore(flags);
3023
3347fa09
TH
3024 /*
3025 * This allows canceling during early boot. We know that @work
3026 * isn't executing.
3027 */
3028 if (wq_online)
d6e89786 3029 __flush_work(work, true);
3347fa09 3030
7a22ad75 3031 clear_work_data(work);
8603e1b3
TH
3032
3033 /*
3034 * Paired with prepare_to_wait() above so that either
3035 * waitqueue_active() is visible here or !work_is_canceling() is
3036 * visible there.
3037 */
3038 smp_mb();
3039 if (waitqueue_active(&cancel_waitq))
3040 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3041
1f1f642e
ON
3042 return ret;
3043}
3044
6e84d644 3045/**
401a8d04
TH
3046 * cancel_work_sync - cancel a work and wait for it to finish
3047 * @work: the work to cancel
6e84d644 3048 *
401a8d04
TH
3049 * Cancel @work and wait for its execution to finish. This function
3050 * can be used even if the work re-queues itself or migrates to
3051 * another workqueue. On return from this function, @work is
3052 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3053 *
401a8d04
TH
3054 * cancel_work_sync(&delayed_work->work) must not be used for
3055 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3056 *
401a8d04 3057 * The caller must ensure that the workqueue on which @work was last
6e84d644 3058 * queued can't be destroyed before this function returns.
401a8d04 3059 *
d185af30 3060 * Return:
401a8d04 3061 * %true if @work was pending, %false otherwise.
6e84d644 3062 */
401a8d04 3063bool cancel_work_sync(struct work_struct *work)
6e84d644 3064{
36e227d2 3065 return __cancel_work_timer(work, false);
b89deed3 3066}
28e53bdd 3067EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3068
6e84d644 3069/**
401a8d04
TH
3070 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3071 * @dwork: the delayed work to flush
6e84d644 3072 *
401a8d04
TH
3073 * Delayed timer is cancelled and the pending work is queued for
3074 * immediate execution. Like flush_work(), this function only
3075 * considers the last queueing instance of @dwork.
1f1f642e 3076 *
d185af30 3077 * Return:
401a8d04
TH
3078 * %true if flush_work() waited for the work to finish execution,
3079 * %false if it was already idle.
6e84d644 3080 */
401a8d04
TH
3081bool flush_delayed_work(struct delayed_work *dwork)
3082{
8930caba 3083 local_irq_disable();
401a8d04 3084 if (del_timer_sync(&dwork->timer))
60c057bc 3085 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3086 local_irq_enable();
401a8d04
TH
3087 return flush_work(&dwork->work);
3088}
3089EXPORT_SYMBOL(flush_delayed_work);
3090
05f0fe6b
TH
3091/**
3092 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3093 * @rwork: the rcu work to flush
3094 *
3095 * Return:
3096 * %true if flush_rcu_work() waited for the work to finish execution,
3097 * %false if it was already idle.
3098 */
3099bool flush_rcu_work(struct rcu_work *rwork)
3100{
3101 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3102 rcu_barrier();
3103 flush_work(&rwork->work);
3104 return true;
3105 } else {
3106 return flush_work(&rwork->work);
3107 }
3108}
3109EXPORT_SYMBOL(flush_rcu_work);
3110
f72b8792
JA
3111static bool __cancel_work(struct work_struct *work, bool is_dwork)
3112{
3113 unsigned long flags;
3114 int ret;
3115
3116 do {
3117 ret = try_to_grab_pending(work, is_dwork, &flags);
3118 } while (unlikely(ret == -EAGAIN));
3119
3120 if (unlikely(ret < 0))
3121 return false;
3122
3123 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3124 local_irq_restore(flags);
3125 return ret;
3126}
3127
09383498 3128/**
57b30ae7
TH
3129 * cancel_delayed_work - cancel a delayed work
3130 * @dwork: delayed_work to cancel
09383498 3131 *
d185af30
YB
3132 * Kill off a pending delayed_work.
3133 *
3134 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3135 * pending.
3136 *
3137 * Note:
3138 * The work callback function may still be running on return, unless
3139 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3140 * use cancel_delayed_work_sync() to wait on it.
09383498 3141 *
57b30ae7 3142 * This function is safe to call from any context including IRQ handler.
09383498 3143 */
57b30ae7 3144bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3145{
f72b8792 3146 return __cancel_work(&dwork->work, true);
09383498 3147}
57b30ae7 3148EXPORT_SYMBOL(cancel_delayed_work);
09383498 3149
401a8d04
TH
3150/**
3151 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3152 * @dwork: the delayed work cancel
3153 *
3154 * This is cancel_work_sync() for delayed works.
3155 *
d185af30 3156 * Return:
401a8d04
TH
3157 * %true if @dwork was pending, %false otherwise.
3158 */
3159bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3160{
36e227d2 3161 return __cancel_work_timer(&dwork->work, true);
6e84d644 3162}
f5a421a4 3163EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3164
b6136773 3165/**
31ddd871 3166 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3167 * @func: the function to call
b6136773 3168 *
31ddd871
TH
3169 * schedule_on_each_cpu() executes @func on each online CPU using the
3170 * system workqueue and blocks until all CPUs have completed.
b6136773 3171 * schedule_on_each_cpu() is very slow.
31ddd871 3172 *
d185af30 3173 * Return:
31ddd871 3174 * 0 on success, -errno on failure.
b6136773 3175 */
65f27f38 3176int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3177{
3178 int cpu;
38f51568 3179 struct work_struct __percpu *works;
15316ba8 3180
b6136773
AM
3181 works = alloc_percpu(struct work_struct);
3182 if (!works)
15316ba8 3183 return -ENOMEM;
b6136773 3184
93981800
TH
3185 get_online_cpus();
3186
15316ba8 3187 for_each_online_cpu(cpu) {
9bfb1839
IM
3188 struct work_struct *work = per_cpu_ptr(works, cpu);
3189
3190 INIT_WORK(work, func);
b71ab8c2 3191 schedule_work_on(cpu, work);
65a64464 3192 }
93981800
TH
3193
3194 for_each_online_cpu(cpu)
3195 flush_work(per_cpu_ptr(works, cpu));
3196
95402b38 3197 put_online_cpus();
b6136773 3198 free_percpu(works);
15316ba8
CL
3199 return 0;
3200}
3201
1fa44eca
JB
3202/**
3203 * execute_in_process_context - reliably execute the routine with user context
3204 * @fn: the function to execute
1fa44eca
JB
3205 * @ew: guaranteed storage for the execute work structure (must
3206 * be available when the work executes)
3207 *
3208 * Executes the function immediately if process context is available,
3209 * otherwise schedules the function for delayed execution.
3210 *
d185af30 3211 * Return: 0 - function was executed
1fa44eca
JB
3212 * 1 - function was scheduled for execution
3213 */
65f27f38 3214int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3215{
3216 if (!in_interrupt()) {
65f27f38 3217 fn(&ew->work);
1fa44eca
JB
3218 return 0;
3219 }
3220
65f27f38 3221 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3222 schedule_work(&ew->work);
3223
3224 return 1;
3225}
3226EXPORT_SYMBOL_GPL(execute_in_process_context);
3227
6ba94429
FW
3228/**
3229 * free_workqueue_attrs - free a workqueue_attrs
3230 * @attrs: workqueue_attrs to free
226223ab 3231 *
6ba94429 3232 * Undo alloc_workqueue_attrs().
226223ab 3233 */
6ba94429 3234void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3235{
6ba94429
FW
3236 if (attrs) {
3237 free_cpumask_var(attrs->cpumask);
3238 kfree(attrs);
3239 }
226223ab
TH
3240}
3241
6ba94429
FW
3242/**
3243 * alloc_workqueue_attrs - allocate a workqueue_attrs
3244 * @gfp_mask: allocation mask to use
3245 *
3246 * Allocate a new workqueue_attrs, initialize with default settings and
3247 * return it.
3248 *
3249 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3250 */
3251struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3252{
6ba94429 3253 struct workqueue_attrs *attrs;
226223ab 3254
6ba94429
FW
3255 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3256 if (!attrs)
3257 goto fail;
3258 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3259 goto fail;
3260
3261 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3262 return attrs;
3263fail:
3264 free_workqueue_attrs(attrs);
3265 return NULL;
226223ab
TH
3266}
3267
6ba94429
FW
3268static void copy_workqueue_attrs(struct workqueue_attrs *to,
3269 const struct workqueue_attrs *from)
226223ab 3270{
6ba94429
FW
3271 to->nice = from->nice;
3272 cpumask_copy(to->cpumask, from->cpumask);
3273 /*
3274 * Unlike hash and equality test, this function doesn't ignore
3275 * ->no_numa as it is used for both pool and wq attrs. Instead,
3276 * get_unbound_pool() explicitly clears ->no_numa after copying.
3277 */
3278 to->no_numa = from->no_numa;
226223ab
TH
3279}
3280
6ba94429
FW
3281/* hash value of the content of @attr */
3282static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3283{
6ba94429 3284 u32 hash = 0;
226223ab 3285
6ba94429
FW
3286 hash = jhash_1word(attrs->nice, hash);
3287 hash = jhash(cpumask_bits(attrs->cpumask),
3288 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3289 return hash;
226223ab 3290}
226223ab 3291
6ba94429
FW
3292/* content equality test */
3293static bool wqattrs_equal(const struct workqueue_attrs *a,
3294 const struct workqueue_attrs *b)
226223ab 3295{
6ba94429
FW
3296 if (a->nice != b->nice)
3297 return false;
3298 if (!cpumask_equal(a->cpumask, b->cpumask))
3299 return false;
3300 return true;
226223ab
TH
3301}
3302
6ba94429
FW
3303/**
3304 * init_worker_pool - initialize a newly zalloc'd worker_pool
3305 * @pool: worker_pool to initialize
3306 *
402dd89d 3307 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3308 *
3309 * Return: 0 on success, -errno on failure. Even on failure, all fields
3310 * inside @pool proper are initialized and put_unbound_pool() can be called
3311 * on @pool safely to release it.
3312 */
3313static int init_worker_pool(struct worker_pool *pool)
226223ab 3314{
6ba94429
FW
3315 spin_lock_init(&pool->lock);
3316 pool->id = -1;
3317 pool->cpu = -1;
3318 pool->node = NUMA_NO_NODE;
3319 pool->flags |= POOL_DISASSOCIATED;
82607adc 3320 pool->watchdog_ts = jiffies;
6ba94429
FW
3321 INIT_LIST_HEAD(&pool->worklist);
3322 INIT_LIST_HEAD(&pool->idle_list);
3323 hash_init(pool->busy_hash);
226223ab 3324
32a6c723 3325 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3326
32a6c723 3327 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3328
6ba94429 3329 INIT_LIST_HEAD(&pool->workers);
226223ab 3330
6ba94429
FW
3331 ida_init(&pool->worker_ida);
3332 INIT_HLIST_NODE(&pool->hash_node);
3333 pool->refcnt = 1;
226223ab 3334
6ba94429
FW
3335 /* shouldn't fail above this point */
3336 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3337 if (!pool->attrs)
3338 return -ENOMEM;
3339 return 0;
226223ab
TH
3340}
3341
669de8bd
BVA
3342#ifdef CONFIG_LOCKDEP
3343static void wq_init_lockdep(struct workqueue_struct *wq)
3344{
3345 char *lock_name;
3346
3347 lockdep_register_key(&wq->key);
3348 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3349 if (!lock_name)
3350 lock_name = wq->name;
3351 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3352}
3353
3354static void wq_unregister_lockdep(struct workqueue_struct *wq)
3355{
3356 lockdep_unregister_key(&wq->key);
3357}
3358
3359static void wq_free_lockdep(struct workqueue_struct *wq)
3360{
3361 if (wq->lock_name != wq->name)
3362 kfree(wq->lock_name);
3363}
3364#else
3365static void wq_init_lockdep(struct workqueue_struct *wq)
3366{
3367}
3368
3369static void wq_unregister_lockdep(struct workqueue_struct *wq)
3370{
3371}
3372
3373static void wq_free_lockdep(struct workqueue_struct *wq)
3374{
3375}
3376#endif
3377
6ba94429 3378static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3379{
6ba94429
FW
3380 struct workqueue_struct *wq =
3381 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3382
669de8bd
BVA
3383 wq_free_lockdep(wq);
3384
6ba94429
FW
3385 if (!(wq->flags & WQ_UNBOUND))
3386 free_percpu(wq->cpu_pwqs);
226223ab 3387 else
6ba94429 3388 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3389
6ba94429
FW
3390 kfree(wq->rescuer);
3391 kfree(wq);
226223ab
TH
3392}
3393
6ba94429 3394static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3395{
6ba94429 3396 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3397
6ba94429
FW
3398 ida_destroy(&pool->worker_ida);
3399 free_workqueue_attrs(pool->attrs);
3400 kfree(pool);
226223ab
TH
3401}
3402
6ba94429
FW
3403/**
3404 * put_unbound_pool - put a worker_pool
3405 * @pool: worker_pool to put
3406 *
3407 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3408 * safe manner. get_unbound_pool() calls this function on its failure path
3409 * and this function should be able to release pools which went through,
3410 * successfully or not, init_worker_pool().
3411 *
3412 * Should be called with wq_pool_mutex held.
3413 */
3414static void put_unbound_pool(struct worker_pool *pool)
226223ab 3415{
6ba94429
FW
3416 DECLARE_COMPLETION_ONSTACK(detach_completion);
3417 struct worker *worker;
226223ab 3418
6ba94429 3419 lockdep_assert_held(&wq_pool_mutex);
226223ab 3420
6ba94429
FW
3421 if (--pool->refcnt)
3422 return;
226223ab 3423
6ba94429
FW
3424 /* sanity checks */
3425 if (WARN_ON(!(pool->cpu < 0)) ||
3426 WARN_ON(!list_empty(&pool->worklist)))
3427 return;
226223ab 3428
6ba94429
FW
3429 /* release id and unhash */
3430 if (pool->id >= 0)
3431 idr_remove(&worker_pool_idr, pool->id);
3432 hash_del(&pool->hash_node);
d55262c4 3433
6ba94429 3434 /*
692b4825
TH
3435 * Become the manager and destroy all workers. This prevents
3436 * @pool's workers from blocking on attach_mutex. We're the last
3437 * manager and @pool gets freed with the flag set.
6ba94429 3438 */
6ba94429 3439 spin_lock_irq(&pool->lock);
692b4825
TH
3440 wait_event_lock_irq(wq_manager_wait,
3441 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3442 pool->flags |= POOL_MANAGER_ACTIVE;
3443
6ba94429
FW
3444 while ((worker = first_idle_worker(pool)))
3445 destroy_worker(worker);
3446 WARN_ON(pool->nr_workers || pool->nr_idle);
3447 spin_unlock_irq(&pool->lock);
d55262c4 3448
1258fae7 3449 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3450 if (!list_empty(&pool->workers))
3451 pool->detach_completion = &detach_completion;
1258fae7 3452 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3453
6ba94429
FW
3454 if (pool->detach_completion)
3455 wait_for_completion(pool->detach_completion);
226223ab 3456
6ba94429
FW
3457 /* shut down the timers */
3458 del_timer_sync(&pool->idle_timer);
3459 del_timer_sync(&pool->mayday_timer);
226223ab 3460
6ba94429 3461 /* sched-RCU protected to allow dereferences from get_work_pool() */
25b00775 3462 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3463}
3464
3465/**
6ba94429
FW
3466 * get_unbound_pool - get a worker_pool with the specified attributes
3467 * @attrs: the attributes of the worker_pool to get
226223ab 3468 *
6ba94429
FW
3469 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3470 * reference count and return it. If there already is a matching
3471 * worker_pool, it will be used; otherwise, this function attempts to
3472 * create a new one.
226223ab 3473 *
6ba94429 3474 * Should be called with wq_pool_mutex held.
226223ab 3475 *
6ba94429
FW
3476 * Return: On success, a worker_pool with the same attributes as @attrs.
3477 * On failure, %NULL.
226223ab 3478 */
6ba94429 3479static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3480{
6ba94429
FW
3481 u32 hash = wqattrs_hash(attrs);
3482 struct worker_pool *pool;
3483 int node;
e2273584 3484 int target_node = NUMA_NO_NODE;
226223ab 3485
6ba94429 3486 lockdep_assert_held(&wq_pool_mutex);
226223ab 3487
6ba94429
FW
3488 /* do we already have a matching pool? */
3489 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3490 if (wqattrs_equal(pool->attrs, attrs)) {
3491 pool->refcnt++;
3492 return pool;
3493 }
3494 }
226223ab 3495
e2273584
XP
3496 /* if cpumask is contained inside a NUMA node, we belong to that node */
3497 if (wq_numa_enabled) {
3498 for_each_node(node) {
3499 if (cpumask_subset(attrs->cpumask,
3500 wq_numa_possible_cpumask[node])) {
3501 target_node = node;
3502 break;
3503 }
3504 }
3505 }
3506
6ba94429 3507 /* nope, create a new one */
e2273584 3508 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3509 if (!pool || init_worker_pool(pool) < 0)
3510 goto fail;
3511
3512 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3513 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3514 pool->node = target_node;
226223ab
TH
3515
3516 /*
6ba94429
FW
3517 * no_numa isn't a worker_pool attribute, always clear it. See
3518 * 'struct workqueue_attrs' comments for detail.
226223ab 3519 */
6ba94429 3520 pool->attrs->no_numa = false;
226223ab 3521
6ba94429
FW
3522 if (worker_pool_assign_id(pool) < 0)
3523 goto fail;
226223ab 3524
6ba94429 3525 /* create and start the initial worker */
3347fa09 3526 if (wq_online && !create_worker(pool))
6ba94429 3527 goto fail;
226223ab 3528
6ba94429
FW
3529 /* install */
3530 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3531
6ba94429
FW
3532 return pool;
3533fail:
3534 if (pool)
3535 put_unbound_pool(pool);
3536 return NULL;
226223ab 3537}
226223ab 3538
6ba94429 3539static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3540{
6ba94429
FW
3541 kmem_cache_free(pwq_cache,
3542 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3543}
3544
6ba94429
FW
3545/*
3546 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3547 * and needs to be destroyed.
7a4e344c 3548 */
6ba94429 3549static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3550{
6ba94429
FW
3551 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3552 unbound_release_work);
3553 struct workqueue_struct *wq = pwq->wq;
3554 struct worker_pool *pool = pwq->pool;
3555 bool is_last;
7a4e344c 3556
6ba94429
FW
3557 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3558 return;
7a4e344c 3559
6ba94429
FW
3560 mutex_lock(&wq->mutex);
3561 list_del_rcu(&pwq->pwqs_node);
3562 is_last = list_empty(&wq->pwqs);
3563 mutex_unlock(&wq->mutex);
3564
3565 mutex_lock(&wq_pool_mutex);
3566 put_unbound_pool(pool);
3567 mutex_unlock(&wq_pool_mutex);
3568
25b00775 3569 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3570
2865a8fb 3571 /*
6ba94429
FW
3572 * If we're the last pwq going away, @wq is already dead and no one
3573 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3574 */
669de8bd
BVA
3575 if (is_last) {
3576 wq_unregister_lockdep(wq);
25b00775 3577 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3578 }
29c91e99
TH
3579}
3580
7a4e344c 3581/**
6ba94429
FW
3582 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3583 * @pwq: target pool_workqueue
d185af30 3584 *
6ba94429
FW
3585 * If @pwq isn't freezing, set @pwq->max_active to the associated
3586 * workqueue's saved_max_active and activate delayed work items
3587 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3588 */
6ba94429 3589static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3590{
6ba94429
FW
3591 struct workqueue_struct *wq = pwq->wq;
3592 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3593 unsigned long flags;
4e1a1f9a 3594
6ba94429
FW
3595 /* for @wq->saved_max_active */
3596 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3597
6ba94429
FW
3598 /* fast exit for non-freezable wqs */
3599 if (!freezable && pwq->max_active == wq->saved_max_active)
3600 return;
7a4e344c 3601
3347fa09
TH
3602 /* this function can be called during early boot w/ irq disabled */
3603 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3604
6ba94429
FW
3605 /*
3606 * During [un]freezing, the caller is responsible for ensuring that
3607 * this function is called at least once after @workqueue_freezing
3608 * is updated and visible.
3609 */
3610 if (!freezable || !workqueue_freezing) {
3611 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3612
6ba94429
FW
3613 while (!list_empty(&pwq->delayed_works) &&
3614 pwq->nr_active < pwq->max_active)
3615 pwq_activate_first_delayed(pwq);
e2dca7ad 3616
6ba94429
FW
3617 /*
3618 * Need to kick a worker after thawed or an unbound wq's
3619 * max_active is bumped. It's a slow path. Do it always.
3620 */
3621 wake_up_worker(pwq->pool);
3622 } else {
3623 pwq->max_active = 0;
3624 }
e2dca7ad 3625
3347fa09 3626 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3627}
3628
6ba94429
FW
3629/* initialize newly alloced @pwq which is associated with @wq and @pool */
3630static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3631 struct worker_pool *pool)
29c91e99 3632{
6ba94429 3633 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3634
6ba94429
FW
3635 memset(pwq, 0, sizeof(*pwq));
3636
3637 pwq->pool = pool;
3638 pwq->wq = wq;
3639 pwq->flush_color = -1;
3640 pwq->refcnt = 1;
3641 INIT_LIST_HEAD(&pwq->delayed_works);
3642 INIT_LIST_HEAD(&pwq->pwqs_node);
3643 INIT_LIST_HEAD(&pwq->mayday_node);
3644 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3645}
3646
6ba94429
FW
3647/* sync @pwq with the current state of its associated wq and link it */
3648static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3649{
6ba94429 3650 struct workqueue_struct *wq = pwq->wq;
29c91e99 3651
6ba94429 3652 lockdep_assert_held(&wq->mutex);
a892cacc 3653
6ba94429
FW
3654 /* may be called multiple times, ignore if already linked */
3655 if (!list_empty(&pwq->pwqs_node))
29c91e99 3656 return;
29c91e99 3657
6ba94429
FW
3658 /* set the matching work_color */
3659 pwq->work_color = wq->work_color;
29c91e99 3660
6ba94429
FW
3661 /* sync max_active to the current setting */
3662 pwq_adjust_max_active(pwq);
29c91e99 3663
6ba94429
FW
3664 /* link in @pwq */
3665 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3666}
29c91e99 3667
6ba94429
FW
3668/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3669static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3670 const struct workqueue_attrs *attrs)
3671{
3672 struct worker_pool *pool;
3673 struct pool_workqueue *pwq;
60f5a4bc 3674
6ba94429 3675 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3676
6ba94429
FW
3677 pool = get_unbound_pool(attrs);
3678 if (!pool)
3679 return NULL;
60f5a4bc 3680
6ba94429
FW
3681 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3682 if (!pwq) {
3683 put_unbound_pool(pool);
3684 return NULL;
3685 }
29c91e99 3686
6ba94429
FW
3687 init_pwq(pwq, wq, pool);
3688 return pwq;
3689}
29c91e99 3690
29c91e99 3691/**
30186c6f 3692 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3693 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3694 * @node: the target NUMA node
3695 * @cpu_going_down: if >= 0, the CPU to consider as offline
3696 * @cpumask: outarg, the resulting cpumask
29c91e99 3697 *
6ba94429
FW
3698 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3699 * @cpu_going_down is >= 0, that cpu is considered offline during
3700 * calculation. The result is stored in @cpumask.
a892cacc 3701 *
6ba94429
FW
3702 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3703 * enabled and @node has online CPUs requested by @attrs, the returned
3704 * cpumask is the intersection of the possible CPUs of @node and
3705 * @attrs->cpumask.
d185af30 3706 *
6ba94429
FW
3707 * The caller is responsible for ensuring that the cpumask of @node stays
3708 * stable.
3709 *
3710 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3711 * %false if equal.
29c91e99 3712 */
6ba94429
FW
3713static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3714 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3715{
6ba94429
FW
3716 if (!wq_numa_enabled || attrs->no_numa)
3717 goto use_dfl;
29c91e99 3718
6ba94429
FW
3719 /* does @node have any online CPUs @attrs wants? */
3720 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3721 if (cpu_going_down >= 0)
3722 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3723
6ba94429
FW
3724 if (cpumask_empty(cpumask))
3725 goto use_dfl;
4c16bd32
TH
3726
3727 /* yeap, return possible CPUs in @node that @attrs wants */
3728 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3729
3730 if (cpumask_empty(cpumask)) {
3731 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3732 "possible intersect\n");
3733 return false;
3734 }
3735
4c16bd32
TH
3736 return !cpumask_equal(cpumask, attrs->cpumask);
3737
3738use_dfl:
3739 cpumask_copy(cpumask, attrs->cpumask);
3740 return false;
3741}
3742
1befcf30
TH
3743/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3744static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3745 int node,
3746 struct pool_workqueue *pwq)
3747{
3748 struct pool_workqueue *old_pwq;
3749
5b95e1af 3750 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3751 lockdep_assert_held(&wq->mutex);
3752
3753 /* link_pwq() can handle duplicate calls */
3754 link_pwq(pwq);
3755
3756 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3757 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3758 return old_pwq;
3759}
3760
2d5f0764
LJ
3761/* context to store the prepared attrs & pwqs before applying */
3762struct apply_wqattrs_ctx {
3763 struct workqueue_struct *wq; /* target workqueue */
3764 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3765 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3766 struct pool_workqueue *dfl_pwq;
3767 struct pool_workqueue *pwq_tbl[];
3768};
3769
3770/* free the resources after success or abort */
3771static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3772{
3773 if (ctx) {
3774 int node;
3775
3776 for_each_node(node)
3777 put_pwq_unlocked(ctx->pwq_tbl[node]);
3778 put_pwq_unlocked(ctx->dfl_pwq);
3779
3780 free_workqueue_attrs(ctx->attrs);
3781
3782 kfree(ctx);
3783 }
3784}
3785
3786/* allocate the attrs and pwqs for later installation */
3787static struct apply_wqattrs_ctx *
3788apply_wqattrs_prepare(struct workqueue_struct *wq,
3789 const struct workqueue_attrs *attrs)
9e8cd2f5 3790{
2d5f0764 3791 struct apply_wqattrs_ctx *ctx;
4c16bd32 3792 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3793 int node;
9e8cd2f5 3794
2d5f0764 3795 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3796
acafe7e3 3797 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3798
13e2e556 3799 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3800 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3801 if (!ctx || !new_attrs || !tmp_attrs)
3802 goto out_free;
13e2e556 3803
042f7df1
LJ
3804 /*
3805 * Calculate the attrs of the default pwq.
3806 * If the user configured cpumask doesn't overlap with the
3807 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3808 */
13e2e556 3809 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3810 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3811 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3812 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3813
4c16bd32
TH
3814 /*
3815 * We may create multiple pwqs with differing cpumasks. Make a
3816 * copy of @new_attrs which will be modified and used to obtain
3817 * pools.
3818 */
3819 copy_workqueue_attrs(tmp_attrs, new_attrs);
3820
4c16bd32
TH
3821 /*
3822 * If something goes wrong during CPU up/down, we'll fall back to
3823 * the default pwq covering whole @attrs->cpumask. Always create
3824 * it even if we don't use it immediately.
3825 */
2d5f0764
LJ
3826 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3827 if (!ctx->dfl_pwq)
3828 goto out_free;
4c16bd32
TH
3829
3830 for_each_node(node) {
042f7df1 3831 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3832 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3833 if (!ctx->pwq_tbl[node])
3834 goto out_free;
4c16bd32 3835 } else {
2d5f0764
LJ
3836 ctx->dfl_pwq->refcnt++;
3837 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3838 }
3839 }
3840
042f7df1
LJ
3841 /* save the user configured attrs and sanitize it. */
3842 copy_workqueue_attrs(new_attrs, attrs);
3843 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3844 ctx->attrs = new_attrs;
042f7df1 3845
2d5f0764
LJ
3846 ctx->wq = wq;
3847 free_workqueue_attrs(tmp_attrs);
3848 return ctx;
3849
3850out_free:
3851 free_workqueue_attrs(tmp_attrs);
3852 free_workqueue_attrs(new_attrs);
3853 apply_wqattrs_cleanup(ctx);
3854 return NULL;
3855}
3856
3857/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3858static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3859{
3860 int node;
9e8cd2f5 3861
4c16bd32 3862 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3863 mutex_lock(&ctx->wq->mutex);
a892cacc 3864
2d5f0764 3865 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3866
3867 /* save the previous pwq and install the new one */
f147f29e 3868 for_each_node(node)
2d5f0764
LJ
3869 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3870 ctx->pwq_tbl[node]);
4c16bd32
TH
3871
3872 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3873 link_pwq(ctx->dfl_pwq);
3874 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3875
2d5f0764
LJ
3876 mutex_unlock(&ctx->wq->mutex);
3877}
9e8cd2f5 3878
a0111cf6
LJ
3879static void apply_wqattrs_lock(void)
3880{
3881 /* CPUs should stay stable across pwq creations and installations */
3882 get_online_cpus();
3883 mutex_lock(&wq_pool_mutex);
3884}
3885
3886static void apply_wqattrs_unlock(void)
3887{
3888 mutex_unlock(&wq_pool_mutex);
3889 put_online_cpus();
3890}
3891
3892static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3893 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3894{
3895 struct apply_wqattrs_ctx *ctx;
4c16bd32 3896
2d5f0764
LJ
3897 /* only unbound workqueues can change attributes */
3898 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3899 return -EINVAL;
13e2e556 3900
2d5f0764 3901 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3902 if (!list_empty(&wq->pwqs)) {
3903 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3904 return -EINVAL;
3905
3906 wq->flags &= ~__WQ_ORDERED;
3907 }
2d5f0764 3908
2d5f0764 3909 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3910 if (!ctx)
3911 return -ENOMEM;
2d5f0764
LJ
3912
3913 /* the ctx has been prepared successfully, let's commit it */
6201171e 3914 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3915 apply_wqattrs_cleanup(ctx);
3916
6201171e 3917 return 0;
9e8cd2f5
TH
3918}
3919
a0111cf6
LJ
3920/**
3921 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3922 * @wq: the target workqueue
3923 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3924 *
3925 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3926 * machines, this function maps a separate pwq to each NUMA node with
3927 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3928 * NUMA node it was issued on. Older pwqs are released as in-flight work
3929 * items finish. Note that a work item which repeatedly requeues itself
3930 * back-to-back will stay on its current pwq.
3931 *
3932 * Performs GFP_KERNEL allocations.
3933 *
3934 * Return: 0 on success and -errno on failure.
3935 */
3936int apply_workqueue_attrs(struct workqueue_struct *wq,
3937 const struct workqueue_attrs *attrs)
3938{
3939 int ret;
3940
3941 apply_wqattrs_lock();
3942 ret = apply_workqueue_attrs_locked(wq, attrs);
3943 apply_wqattrs_unlock();
3944
3945 return ret;
3946}
6106c0f8 3947EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 3948
4c16bd32
TH
3949/**
3950 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3951 * @wq: the target workqueue
3952 * @cpu: the CPU coming up or going down
3953 * @online: whether @cpu is coming up or going down
3954 *
3955 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3956 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3957 * @wq accordingly.
3958 *
3959 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3960 * falls back to @wq->dfl_pwq which may not be optimal but is always
3961 * correct.
3962 *
3963 * Note that when the last allowed CPU of a NUMA node goes offline for a
3964 * workqueue with a cpumask spanning multiple nodes, the workers which were
3965 * already executing the work items for the workqueue will lose their CPU
3966 * affinity and may execute on any CPU. This is similar to how per-cpu
3967 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3968 * affinity, it's the user's responsibility to flush the work item from
3969 * CPU_DOWN_PREPARE.
3970 */
3971static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3972 bool online)
3973{
3974 int node = cpu_to_node(cpu);
3975 int cpu_off = online ? -1 : cpu;
3976 struct pool_workqueue *old_pwq = NULL, *pwq;
3977 struct workqueue_attrs *target_attrs;
3978 cpumask_t *cpumask;
3979
3980 lockdep_assert_held(&wq_pool_mutex);
3981
f7142ed4
LJ
3982 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3983 wq->unbound_attrs->no_numa)
4c16bd32
TH
3984 return;
3985
3986 /*
3987 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3988 * Let's use a preallocated one. The following buf is protected by
3989 * CPU hotplug exclusion.
3990 */
3991 target_attrs = wq_update_unbound_numa_attrs_buf;
3992 cpumask = target_attrs->cpumask;
3993
4c16bd32
TH
3994 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3995 pwq = unbound_pwq_by_node(wq, node);
3996
3997 /*
3998 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3999 * different from the default pwq's, we need to compare it to @pwq's
4000 * and create a new one if they don't match. If the target cpumask
4001 * equals the default pwq's, the default pwq should be used.
4c16bd32 4002 */
042f7df1 4003 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4004 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4005 return;
4c16bd32 4006 } else {
534a3fbb 4007 goto use_dfl_pwq;
4c16bd32
TH
4008 }
4009
4c16bd32
TH
4010 /* create a new pwq */
4011 pwq = alloc_unbound_pwq(wq, target_attrs);
4012 if (!pwq) {
2d916033
FF
4013 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4014 wq->name);
77f300b1 4015 goto use_dfl_pwq;
4c16bd32
TH
4016 }
4017
f7142ed4 4018 /* Install the new pwq. */
4c16bd32
TH
4019 mutex_lock(&wq->mutex);
4020 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4021 goto out_unlock;
4022
4023use_dfl_pwq:
f7142ed4 4024 mutex_lock(&wq->mutex);
4c16bd32
TH
4025 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4026 get_pwq(wq->dfl_pwq);
4027 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4028 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4029out_unlock:
4030 mutex_unlock(&wq->mutex);
4031 put_pwq_unlocked(old_pwq);
4032}
4033
30cdf249 4034static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4035{
49e3cf44 4036 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4037 int cpu, ret;
30cdf249
TH
4038
4039 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4040 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4041 if (!wq->cpu_pwqs)
30cdf249
TH
4042 return -ENOMEM;
4043
4044 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4045 struct pool_workqueue *pwq =
4046 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4047 struct worker_pool *cpu_pools =
f02ae73a 4048 per_cpu(cpu_worker_pools, cpu);
f3421797 4049
f147f29e
TH
4050 init_pwq(pwq, wq, &cpu_pools[highpri]);
4051
4052 mutex_lock(&wq->mutex);
1befcf30 4053 link_pwq(pwq);
f147f29e 4054 mutex_unlock(&wq->mutex);
30cdf249 4055 }
9e8cd2f5 4056 return 0;
8a2b7538
TH
4057 } else if (wq->flags & __WQ_ORDERED) {
4058 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4059 /* there should only be single pwq for ordering guarantee */
4060 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4061 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4062 "ordering guarantee broken for workqueue %s\n", wq->name);
4063 return ret;
30cdf249 4064 } else {
9e8cd2f5 4065 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4066 }
0f900049
TH
4067}
4068
f3421797
TH
4069static int wq_clamp_max_active(int max_active, unsigned int flags,
4070 const char *name)
b71ab8c2 4071{
f3421797
TH
4072 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4073
4074 if (max_active < 1 || max_active > lim)
044c782c
VI
4075 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4076 max_active, name, 1, lim);
b71ab8c2 4077
f3421797 4078 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4079}
4080
983c7515
TH
4081/*
4082 * Workqueues which may be used during memory reclaim should have a rescuer
4083 * to guarantee forward progress.
4084 */
4085static int init_rescuer(struct workqueue_struct *wq)
4086{
4087 struct worker *rescuer;
4088 int ret;
4089
4090 if (!(wq->flags & WQ_MEM_RECLAIM))
4091 return 0;
4092
4093 rescuer = alloc_worker(NUMA_NO_NODE);
4094 if (!rescuer)
4095 return -ENOMEM;
4096
4097 rescuer->rescue_wq = wq;
4098 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4099 ret = PTR_ERR_OR_ZERO(rescuer->task);
4100 if (ret) {
4101 kfree(rescuer);
4102 return ret;
4103 }
4104
4105 wq->rescuer = rescuer;
4106 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4107 wake_up_process(rescuer->task);
4108
4109 return 0;
4110}
4111
669de8bd
BVA
4112struct workqueue_struct *alloc_workqueue(const char *fmt,
4113 unsigned int flags,
4114 int max_active, ...)
1da177e4 4115{
df2d5ae4 4116 size_t tbl_size = 0;
ecf6881f 4117 va_list args;
1da177e4 4118 struct workqueue_struct *wq;
49e3cf44 4119 struct pool_workqueue *pwq;
b196be89 4120
5c0338c6
TH
4121 /*
4122 * Unbound && max_active == 1 used to imply ordered, which is no
4123 * longer the case on NUMA machines due to per-node pools. While
4124 * alloc_ordered_workqueue() is the right way to create an ordered
4125 * workqueue, keep the previous behavior to avoid subtle breakages
4126 * on NUMA.
4127 */
4128 if ((flags & WQ_UNBOUND) && max_active == 1)
4129 flags |= __WQ_ORDERED;
4130
cee22a15
VK
4131 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4132 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4133 flags |= WQ_UNBOUND;
4134
ecf6881f 4135 /* allocate wq and format name */
df2d5ae4 4136 if (flags & WQ_UNBOUND)
ddcb57e2 4137 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4138
4139 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4140 if (!wq)
d2c1d404 4141 return NULL;
b196be89 4142
6029a918
TH
4143 if (flags & WQ_UNBOUND) {
4144 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4145 if (!wq->unbound_attrs)
4146 goto err_free_wq;
4147 }
4148
669de8bd 4149 va_start(args, max_active);
ecf6881f 4150 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4151 va_end(args);
1da177e4 4152
d320c038 4153 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4154 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4155
b196be89 4156 /* init wq */
97e37d7b 4157 wq->flags = flags;
a0a1a5fd 4158 wq->saved_max_active = max_active;
3c25a55d 4159 mutex_init(&wq->mutex);
112202d9 4160 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4161 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4162 INIT_LIST_HEAD(&wq->flusher_queue);
4163 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4164 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4165
669de8bd 4166 wq_init_lockdep(wq);
cce1a165 4167 INIT_LIST_HEAD(&wq->list);
3af24433 4168
30cdf249 4169 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4170 goto err_free_wq;
1537663f 4171
40c17f75 4172 if (wq_online && init_rescuer(wq) < 0)
983c7515 4173 goto err_destroy;
3af24433 4174
226223ab
TH
4175 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4176 goto err_destroy;
4177
a0a1a5fd 4178 /*
68e13a67
LJ
4179 * wq_pool_mutex protects global freeze state and workqueues list.
4180 * Grab it, adjust max_active and add the new @wq to workqueues
4181 * list.
a0a1a5fd 4182 */
68e13a67 4183 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4184
a357fc03 4185 mutex_lock(&wq->mutex);
699ce097
TH
4186 for_each_pwq(pwq, wq)
4187 pwq_adjust_max_active(pwq);
a357fc03 4188 mutex_unlock(&wq->mutex);
a0a1a5fd 4189
e2dca7ad 4190 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4191
68e13a67 4192 mutex_unlock(&wq_pool_mutex);
1537663f 4193
3af24433 4194 return wq;
d2c1d404
TH
4195
4196err_free_wq:
6029a918 4197 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4198 kfree(wq);
4199 return NULL;
4200err_destroy:
4201 destroy_workqueue(wq);
4690c4ab 4202 return NULL;
3af24433 4203}
669de8bd 4204EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4205
3af24433
ON
4206/**
4207 * destroy_workqueue - safely terminate a workqueue
4208 * @wq: target workqueue
4209 *
4210 * Safely destroy a workqueue. All work currently pending will be done first.
4211 */
4212void destroy_workqueue(struct workqueue_struct *wq)
4213{
49e3cf44 4214 struct pool_workqueue *pwq;
4c16bd32 4215 int node;
3af24433 4216
9c5a2ba7
TH
4217 /* drain it before proceeding with destruction */
4218 drain_workqueue(wq);
c8efcc25 4219
6183c009 4220 /* sanity checks */
b09f4fd3 4221 mutex_lock(&wq->mutex);
49e3cf44 4222 for_each_pwq(pwq, wq) {
6183c009
TH
4223 int i;
4224
76af4d93
TH
4225 for (i = 0; i < WORK_NR_COLORS; i++) {
4226 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4227 mutex_unlock(&wq->mutex);
fa07fb6a 4228 show_workqueue_state();
6183c009 4229 return;
76af4d93
TH
4230 }
4231 }
4232
5c529597 4233 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4234 WARN_ON(pwq->nr_active) ||
76af4d93 4235 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4236 mutex_unlock(&wq->mutex);
fa07fb6a 4237 show_workqueue_state();
6183c009 4238 return;
76af4d93 4239 }
6183c009 4240 }
b09f4fd3 4241 mutex_unlock(&wq->mutex);
6183c009 4242
a0a1a5fd
TH
4243 /*
4244 * wq list is used to freeze wq, remove from list after
4245 * flushing is complete in case freeze races us.
4246 */
68e13a67 4247 mutex_lock(&wq_pool_mutex);
e2dca7ad 4248 list_del_rcu(&wq->list);
68e13a67 4249 mutex_unlock(&wq_pool_mutex);
3af24433 4250
226223ab
TH
4251 workqueue_sysfs_unregister(wq);
4252
e2dca7ad 4253 if (wq->rescuer)
e22bee78 4254 kthread_stop(wq->rescuer->task);
e22bee78 4255
8864b4e5 4256 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4257 wq_unregister_lockdep(wq);
8864b4e5
TH
4258 /*
4259 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4260 * schedule RCU free.
8864b4e5 4261 */
25b00775 4262 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4263 } else {
4264 /*
4265 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4266 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4267 * @wq will be freed when the last pwq is released.
8864b4e5 4268 */
4c16bd32
TH
4269 for_each_node(node) {
4270 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4271 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4272 put_pwq_unlocked(pwq);
4273 }
4274
4275 /*
4276 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4277 * put. Don't access it afterwards.
4278 */
4279 pwq = wq->dfl_pwq;
4280 wq->dfl_pwq = NULL;
dce90d47 4281 put_pwq_unlocked(pwq);
29c91e99 4282 }
3af24433
ON
4283}
4284EXPORT_SYMBOL_GPL(destroy_workqueue);
4285
dcd989cb
TH
4286/**
4287 * workqueue_set_max_active - adjust max_active of a workqueue
4288 * @wq: target workqueue
4289 * @max_active: new max_active value.
4290 *
4291 * Set max_active of @wq to @max_active.
4292 *
4293 * CONTEXT:
4294 * Don't call from IRQ context.
4295 */
4296void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4297{
49e3cf44 4298 struct pool_workqueue *pwq;
dcd989cb 4299
8719dcea 4300 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4301 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4302 return;
4303
f3421797 4304 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4305
a357fc03 4306 mutex_lock(&wq->mutex);
dcd989cb 4307
0a94efb5 4308 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4309 wq->saved_max_active = max_active;
4310
699ce097
TH
4311 for_each_pwq(pwq, wq)
4312 pwq_adjust_max_active(pwq);
93981800 4313
a357fc03 4314 mutex_unlock(&wq->mutex);
15316ba8 4315}
dcd989cb 4316EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4317
27d4ee03
LW
4318/**
4319 * current_work - retrieve %current task's work struct
4320 *
4321 * Determine if %current task is a workqueue worker and what it's working on.
4322 * Useful to find out the context that the %current task is running in.
4323 *
4324 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4325 */
4326struct work_struct *current_work(void)
4327{
4328 struct worker *worker = current_wq_worker();
4329
4330 return worker ? worker->current_work : NULL;
4331}
4332EXPORT_SYMBOL(current_work);
4333
e6267616
TH
4334/**
4335 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4336 *
4337 * Determine whether %current is a workqueue rescuer. Can be used from
4338 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4339 *
4340 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4341 */
4342bool current_is_workqueue_rescuer(void)
4343{
4344 struct worker *worker = current_wq_worker();
4345
6a092dfd 4346 return worker && worker->rescue_wq;
e6267616
TH
4347}
4348
eef6a7d5 4349/**
dcd989cb
TH
4350 * workqueue_congested - test whether a workqueue is congested
4351 * @cpu: CPU in question
4352 * @wq: target workqueue
eef6a7d5 4353 *
dcd989cb
TH
4354 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4355 * no synchronization around this function and the test result is
4356 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4357 *
d3251859
TH
4358 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4359 * Note that both per-cpu and unbound workqueues may be associated with
4360 * multiple pool_workqueues which have separate congested states. A
4361 * workqueue being congested on one CPU doesn't mean the workqueue is also
4362 * contested on other CPUs / NUMA nodes.
4363 *
d185af30 4364 * Return:
dcd989cb 4365 * %true if congested, %false otherwise.
eef6a7d5 4366 */
d84ff051 4367bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4368{
7fb98ea7 4369 struct pool_workqueue *pwq;
76af4d93
TH
4370 bool ret;
4371
88109453 4372 rcu_read_lock_sched();
7fb98ea7 4373
d3251859
TH
4374 if (cpu == WORK_CPU_UNBOUND)
4375 cpu = smp_processor_id();
4376
7fb98ea7
TH
4377 if (!(wq->flags & WQ_UNBOUND))
4378 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4379 else
df2d5ae4 4380 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4381
76af4d93 4382 ret = !list_empty(&pwq->delayed_works);
88109453 4383 rcu_read_unlock_sched();
76af4d93
TH
4384
4385 return ret;
1da177e4 4386}
dcd989cb 4387EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4388
dcd989cb
TH
4389/**
4390 * work_busy - test whether a work is currently pending or running
4391 * @work: the work to be tested
4392 *
4393 * Test whether @work is currently pending or running. There is no
4394 * synchronization around this function and the test result is
4395 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4396 *
d185af30 4397 * Return:
dcd989cb
TH
4398 * OR'd bitmask of WORK_BUSY_* bits.
4399 */
4400unsigned int work_busy(struct work_struct *work)
1da177e4 4401{
fa1b54e6 4402 struct worker_pool *pool;
dcd989cb
TH
4403 unsigned long flags;
4404 unsigned int ret = 0;
1da177e4 4405
dcd989cb
TH
4406 if (work_pending(work))
4407 ret |= WORK_BUSY_PENDING;
1da177e4 4408
fa1b54e6
TH
4409 local_irq_save(flags);
4410 pool = get_work_pool(work);
038366c5 4411 if (pool) {
fa1b54e6 4412 spin_lock(&pool->lock);
038366c5
LJ
4413 if (find_worker_executing_work(pool, work))
4414 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4415 spin_unlock(&pool->lock);
038366c5 4416 }
fa1b54e6 4417 local_irq_restore(flags);
1da177e4 4418
dcd989cb 4419 return ret;
1da177e4 4420}
dcd989cb 4421EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4422
3d1cb205
TH
4423/**
4424 * set_worker_desc - set description for the current work item
4425 * @fmt: printf-style format string
4426 * @...: arguments for the format string
4427 *
4428 * This function can be called by a running work function to describe what
4429 * the work item is about. If the worker task gets dumped, this
4430 * information will be printed out together to help debugging. The
4431 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4432 */
4433void set_worker_desc(const char *fmt, ...)
4434{
4435 struct worker *worker = current_wq_worker();
4436 va_list args;
4437
4438 if (worker) {
4439 va_start(args, fmt);
4440 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4441 va_end(args);
3d1cb205
TH
4442 }
4443}
5c750d58 4444EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4445
4446/**
4447 * print_worker_info - print out worker information and description
4448 * @log_lvl: the log level to use when printing
4449 * @task: target task
4450 *
4451 * If @task is a worker and currently executing a work item, print out the
4452 * name of the workqueue being serviced and worker description set with
4453 * set_worker_desc() by the currently executing work item.
4454 *
4455 * This function can be safely called on any task as long as the
4456 * task_struct itself is accessible. While safe, this function isn't
4457 * synchronized and may print out mixups or garbages of limited length.
4458 */
4459void print_worker_info(const char *log_lvl, struct task_struct *task)
4460{
4461 work_func_t *fn = NULL;
4462 char name[WQ_NAME_LEN] = { };
4463 char desc[WORKER_DESC_LEN] = { };
4464 struct pool_workqueue *pwq = NULL;
4465 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4466 struct worker *worker;
4467
4468 if (!(task->flags & PF_WQ_WORKER))
4469 return;
4470
4471 /*
4472 * This function is called without any synchronization and @task
4473 * could be in any state. Be careful with dereferences.
4474 */
e700591a 4475 worker = kthread_probe_data(task);
3d1cb205
TH
4476
4477 /*
8bf89593
TH
4478 * Carefully copy the associated workqueue's workfn, name and desc.
4479 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4480 */
4481 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4482 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4483 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4484 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4485 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4486
4487 if (fn || name[0] || desc[0]) {
4488 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
8bf89593 4489 if (strcmp(name, desc))
3d1cb205
TH
4490 pr_cont(" (%s)", desc);
4491 pr_cont("\n");
4492 }
4493}
4494
3494fc30
TH
4495static void pr_cont_pool_info(struct worker_pool *pool)
4496{
4497 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4498 if (pool->node != NUMA_NO_NODE)
4499 pr_cont(" node=%d", pool->node);
4500 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4501}
4502
4503static void pr_cont_work(bool comma, struct work_struct *work)
4504{
4505 if (work->func == wq_barrier_func) {
4506 struct wq_barrier *barr;
4507
4508 barr = container_of(work, struct wq_barrier, work);
4509
4510 pr_cont("%s BAR(%d)", comma ? "," : "",
4511 task_pid_nr(barr->task));
4512 } else {
4513 pr_cont("%s %pf", comma ? "," : "", work->func);
4514 }
4515}
4516
4517static void show_pwq(struct pool_workqueue *pwq)
4518{
4519 struct worker_pool *pool = pwq->pool;
4520 struct work_struct *work;
4521 struct worker *worker;
4522 bool has_in_flight = false, has_pending = false;
4523 int bkt;
4524
4525 pr_info(" pwq %d:", pool->id);
4526 pr_cont_pool_info(pool);
4527
4528 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4529 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4530
4531 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4532 if (worker->current_pwq == pwq) {
4533 has_in_flight = true;
4534 break;
4535 }
4536 }
4537 if (has_in_flight) {
4538 bool comma = false;
4539
4540 pr_info(" in-flight:");
4541 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4542 if (worker->current_pwq != pwq)
4543 continue;
4544
4545 pr_cont("%s %d%s:%pf", comma ? "," : "",
4546 task_pid_nr(worker->task),
4547 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4548 worker->current_func);
4549 list_for_each_entry(work, &worker->scheduled, entry)
4550 pr_cont_work(false, work);
4551 comma = true;
4552 }
4553 pr_cont("\n");
4554 }
4555
4556 list_for_each_entry(work, &pool->worklist, entry) {
4557 if (get_work_pwq(work) == pwq) {
4558 has_pending = true;
4559 break;
4560 }
4561 }
4562 if (has_pending) {
4563 bool comma = false;
4564
4565 pr_info(" pending:");
4566 list_for_each_entry(work, &pool->worklist, entry) {
4567 if (get_work_pwq(work) != pwq)
4568 continue;
4569
4570 pr_cont_work(comma, work);
4571 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4572 }
4573 pr_cont("\n");
4574 }
4575
4576 if (!list_empty(&pwq->delayed_works)) {
4577 bool comma = false;
4578
4579 pr_info(" delayed:");
4580 list_for_each_entry(work, &pwq->delayed_works, entry) {
4581 pr_cont_work(comma, work);
4582 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4583 }
4584 pr_cont("\n");
4585 }
4586}
4587
4588/**
4589 * show_workqueue_state - dump workqueue state
4590 *
7b776af6
RL
4591 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4592 * all busy workqueues and pools.
3494fc30
TH
4593 */
4594void show_workqueue_state(void)
4595{
4596 struct workqueue_struct *wq;
4597 struct worker_pool *pool;
4598 unsigned long flags;
4599 int pi;
4600
4601 rcu_read_lock_sched();
4602
4603 pr_info("Showing busy workqueues and worker pools:\n");
4604
4605 list_for_each_entry_rcu(wq, &workqueues, list) {
4606 struct pool_workqueue *pwq;
4607 bool idle = true;
4608
4609 for_each_pwq(pwq, wq) {
4610 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4611 idle = false;
4612 break;
4613 }
4614 }
4615 if (idle)
4616 continue;
4617
4618 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4619
4620 for_each_pwq(pwq, wq) {
4621 spin_lock_irqsave(&pwq->pool->lock, flags);
4622 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4623 show_pwq(pwq);
4624 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4625 /*
4626 * We could be printing a lot from atomic context, e.g.
4627 * sysrq-t -> show_workqueue_state(). Avoid triggering
4628 * hard lockup.
4629 */
4630 touch_nmi_watchdog();
3494fc30
TH
4631 }
4632 }
4633
4634 for_each_pool(pool, pi) {
4635 struct worker *worker;
4636 bool first = true;
4637
4638 spin_lock_irqsave(&pool->lock, flags);
4639 if (pool->nr_workers == pool->nr_idle)
4640 goto next_pool;
4641
4642 pr_info("pool %d:", pool->id);
4643 pr_cont_pool_info(pool);
82607adc
TH
4644 pr_cont(" hung=%us workers=%d",
4645 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4646 pool->nr_workers);
3494fc30
TH
4647 if (pool->manager)
4648 pr_cont(" manager: %d",
4649 task_pid_nr(pool->manager->task));
4650 list_for_each_entry(worker, &pool->idle_list, entry) {
4651 pr_cont(" %s%d", first ? "idle: " : "",
4652 task_pid_nr(worker->task));
4653 first = false;
4654 }
4655 pr_cont("\n");
4656 next_pool:
4657 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4658 /*
4659 * We could be printing a lot from atomic context, e.g.
4660 * sysrq-t -> show_workqueue_state(). Avoid triggering
4661 * hard lockup.
4662 */
4663 touch_nmi_watchdog();
3494fc30
TH
4664 }
4665
4666 rcu_read_unlock_sched();
4667}
4668
6b59808b
TH
4669/* used to show worker information through /proc/PID/{comm,stat,status} */
4670void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4671{
6b59808b
TH
4672 int off;
4673
4674 /* always show the actual comm */
4675 off = strscpy(buf, task->comm, size);
4676 if (off < 0)
4677 return;
4678
197f6acc 4679 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4680 mutex_lock(&wq_pool_attach_mutex);
4681
197f6acc
TH
4682 if (task->flags & PF_WQ_WORKER) {
4683 struct worker *worker = kthread_data(task);
4684 struct worker_pool *pool = worker->pool;
6b59808b 4685
197f6acc
TH
4686 if (pool) {
4687 spin_lock_irq(&pool->lock);
4688 /*
4689 * ->desc tracks information (wq name or
4690 * set_worker_desc()) for the latest execution. If
4691 * current, prepend '+', otherwise '-'.
4692 */
4693 if (worker->desc[0] != '\0') {
4694 if (worker->current_work)
4695 scnprintf(buf + off, size - off, "+%s",
4696 worker->desc);
4697 else
4698 scnprintf(buf + off, size - off, "-%s",
4699 worker->desc);
4700 }
4701 spin_unlock_irq(&pool->lock);
6b59808b 4702 }
6b59808b
TH
4703 }
4704
4705 mutex_unlock(&wq_pool_attach_mutex);
4706}
4707
66448bc2
MM
4708#ifdef CONFIG_SMP
4709
db7bccf4
TH
4710/*
4711 * CPU hotplug.
4712 *
e22bee78 4713 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4714 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4715 * pool which make migrating pending and scheduled works very
e22bee78 4716 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4717 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4718 * blocked draining impractical.
4719 *
24647570 4720 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4721 * running as an unbound one and allowing it to be reattached later if the
4722 * cpu comes back online.
db7bccf4 4723 */
1da177e4 4724
e8b3f8db 4725static void unbind_workers(int cpu)
3af24433 4726{
4ce62e9e 4727 struct worker_pool *pool;
db7bccf4 4728 struct worker *worker;
3af24433 4729
f02ae73a 4730 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4731 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4732 spin_lock_irq(&pool->lock);
3af24433 4733
94cf58bb 4734 /*
92f9c5c4 4735 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4736 * unbound and set DISASSOCIATED. Before this, all workers
4737 * except for the ones which are still executing works from
4738 * before the last CPU down must be on the cpu. After
4739 * this, they may become diasporas.
4740 */
da028469 4741 for_each_pool_worker(worker, pool)
c9e7cf27 4742 worker->flags |= WORKER_UNBOUND;
06ba38a9 4743
24647570 4744 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4745
94cf58bb 4746 spin_unlock_irq(&pool->lock);
1258fae7 4747 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4748
eb283428
LJ
4749 /*
4750 * Call schedule() so that we cross rq->lock and thus can
4751 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4752 * This is necessary as scheduler callbacks may be invoked
4753 * from other cpus.
4754 */
4755 schedule();
06ba38a9 4756
eb283428
LJ
4757 /*
4758 * Sched callbacks are disabled now. Zap nr_running.
4759 * After this, nr_running stays zero and need_more_worker()
4760 * and keep_working() are always true as long as the
4761 * worklist is not empty. This pool now behaves as an
4762 * unbound (in terms of concurrency management) pool which
4763 * are served by workers tied to the pool.
4764 */
e19e397a 4765 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4766
4767 /*
4768 * With concurrency management just turned off, a busy
4769 * worker blocking could lead to lengthy stalls. Kick off
4770 * unbound chain execution of currently pending work items.
4771 */
4772 spin_lock_irq(&pool->lock);
4773 wake_up_worker(pool);
4774 spin_unlock_irq(&pool->lock);
4775 }
3af24433 4776}
3af24433 4777
bd7c089e
TH
4778/**
4779 * rebind_workers - rebind all workers of a pool to the associated CPU
4780 * @pool: pool of interest
4781 *
a9ab775b 4782 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4783 */
4784static void rebind_workers(struct worker_pool *pool)
4785{
a9ab775b 4786 struct worker *worker;
bd7c089e 4787
1258fae7 4788 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4789
a9ab775b
TH
4790 /*
4791 * Restore CPU affinity of all workers. As all idle workers should
4792 * be on the run-queue of the associated CPU before any local
402dd89d 4793 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4794 * of all workers first and then clear UNBOUND. As we're called
4795 * from CPU_ONLINE, the following shouldn't fail.
4796 */
da028469 4797 for_each_pool_worker(worker, pool)
a9ab775b
TH
4798 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4799 pool->attrs->cpumask) < 0);
bd7c089e 4800
a9ab775b 4801 spin_lock_irq(&pool->lock);
f7c17d26 4802
3de5e884 4803 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4804
da028469 4805 for_each_pool_worker(worker, pool) {
a9ab775b 4806 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4807
4808 /*
a9ab775b
TH
4809 * A bound idle worker should actually be on the runqueue
4810 * of the associated CPU for local wake-ups targeting it to
4811 * work. Kick all idle workers so that they migrate to the
4812 * associated CPU. Doing this in the same loop as
4813 * replacing UNBOUND with REBOUND is safe as no worker will
4814 * be bound before @pool->lock is released.
bd7c089e 4815 */
a9ab775b
TH
4816 if (worker_flags & WORKER_IDLE)
4817 wake_up_process(worker->task);
bd7c089e 4818
a9ab775b
TH
4819 /*
4820 * We want to clear UNBOUND but can't directly call
4821 * worker_clr_flags() or adjust nr_running. Atomically
4822 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4823 * @worker will clear REBOUND using worker_clr_flags() when
4824 * it initiates the next execution cycle thus restoring
4825 * concurrency management. Note that when or whether
4826 * @worker clears REBOUND doesn't affect correctness.
4827 *
c95491ed 4828 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b
TH
4829 * tested without holding any lock in
4830 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4831 * fail incorrectly leading to premature concurrency
4832 * management operations.
4833 */
4834 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4835 worker_flags |= WORKER_REBOUND;
4836 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4837 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4838 }
a9ab775b
TH
4839
4840 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4841}
4842
7dbc725e
TH
4843/**
4844 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4845 * @pool: unbound pool of interest
4846 * @cpu: the CPU which is coming up
4847 *
4848 * An unbound pool may end up with a cpumask which doesn't have any online
4849 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4850 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4851 * online CPU before, cpus_allowed of all its workers should be restored.
4852 */
4853static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4854{
4855 static cpumask_t cpumask;
4856 struct worker *worker;
7dbc725e 4857
1258fae7 4858 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
4859
4860 /* is @cpu allowed for @pool? */
4861 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4862 return;
4863
7dbc725e 4864 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4865
4866 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4867 for_each_pool_worker(worker, pool)
d945b5e9 4868 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4869}
4870
7ee681b2
TG
4871int workqueue_prepare_cpu(unsigned int cpu)
4872{
4873 struct worker_pool *pool;
4874
4875 for_each_cpu_worker_pool(pool, cpu) {
4876 if (pool->nr_workers)
4877 continue;
4878 if (!create_worker(pool))
4879 return -ENOMEM;
4880 }
4881 return 0;
4882}
4883
4884int workqueue_online_cpu(unsigned int cpu)
3af24433 4885{
4ce62e9e 4886 struct worker_pool *pool;
4c16bd32 4887 struct workqueue_struct *wq;
7dbc725e 4888 int pi;
3ce63377 4889
7ee681b2 4890 mutex_lock(&wq_pool_mutex);
7dbc725e 4891
7ee681b2 4892 for_each_pool(pool, pi) {
1258fae7 4893 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4894
7ee681b2
TG
4895 if (pool->cpu == cpu)
4896 rebind_workers(pool);
4897 else if (pool->cpu < 0)
4898 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4899
1258fae7 4900 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 4901 }
6ba94429 4902
7ee681b2
TG
4903 /* update NUMA affinity of unbound workqueues */
4904 list_for_each_entry(wq, &workqueues, list)
4905 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4906
7ee681b2
TG
4907 mutex_unlock(&wq_pool_mutex);
4908 return 0;
6ba94429
FW
4909}
4910
7ee681b2 4911int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4912{
6ba94429
FW
4913 struct workqueue_struct *wq;
4914
7ee681b2 4915 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
4916 if (WARN_ON(cpu != smp_processor_id()))
4917 return -1;
4918
4919 unbind_workers(cpu);
7ee681b2
TG
4920
4921 /* update NUMA affinity of unbound workqueues */
4922 mutex_lock(&wq_pool_mutex);
4923 list_for_each_entry(wq, &workqueues, list)
4924 wq_update_unbound_numa(wq, cpu, false);
4925 mutex_unlock(&wq_pool_mutex);
4926
7ee681b2 4927 return 0;
6ba94429
FW
4928}
4929
6ba94429
FW
4930struct work_for_cpu {
4931 struct work_struct work;
4932 long (*fn)(void *);
4933 void *arg;
4934 long ret;
4935};
4936
4937static void work_for_cpu_fn(struct work_struct *work)
4938{
4939 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4940
4941 wfc->ret = wfc->fn(wfc->arg);
4942}
4943
4944/**
22aceb31 4945 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4946 * @cpu: the cpu to run on
4947 * @fn: the function to run
4948 * @arg: the function arg
4949 *
4950 * It is up to the caller to ensure that the cpu doesn't go offline.
4951 * The caller must not hold any locks which would prevent @fn from completing.
4952 *
4953 * Return: The value @fn returns.
4954 */
4955long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4956{
4957 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4958
4959 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4960 schedule_work_on(cpu, &wfc.work);
4961 flush_work(&wfc.work);
4962 destroy_work_on_stack(&wfc.work);
4963 return wfc.ret;
4964}
4965EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4966
4967/**
4968 * work_on_cpu_safe - run a function in thread context on a particular cpu
4969 * @cpu: the cpu to run on
4970 * @fn: the function to run
4971 * @arg: the function argument
4972 *
4973 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4974 * any locks which would prevent @fn from completing.
4975 *
4976 * Return: The value @fn returns.
4977 */
4978long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4979{
4980 long ret = -ENODEV;
4981
4982 get_online_cpus();
4983 if (cpu_online(cpu))
4984 ret = work_on_cpu(cpu, fn, arg);
4985 put_online_cpus();
4986 return ret;
4987}
4988EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4989#endif /* CONFIG_SMP */
4990
4991#ifdef CONFIG_FREEZER
4992
4993/**
4994 * freeze_workqueues_begin - begin freezing workqueues
4995 *
4996 * Start freezing workqueues. After this function returns, all freezable
4997 * workqueues will queue new works to their delayed_works list instead of
4998 * pool->worklist.
4999 *
5000 * CONTEXT:
5001 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5002 */
5003void freeze_workqueues_begin(void)
5004{
5005 struct workqueue_struct *wq;
5006 struct pool_workqueue *pwq;
5007
5008 mutex_lock(&wq_pool_mutex);
5009
5010 WARN_ON_ONCE(workqueue_freezing);
5011 workqueue_freezing = true;
5012
5013 list_for_each_entry(wq, &workqueues, list) {
5014 mutex_lock(&wq->mutex);
5015 for_each_pwq(pwq, wq)
5016 pwq_adjust_max_active(pwq);
5017 mutex_unlock(&wq->mutex);
5018 }
5019
5020 mutex_unlock(&wq_pool_mutex);
5021}
5022
5023/**
5024 * freeze_workqueues_busy - are freezable workqueues still busy?
5025 *
5026 * Check whether freezing is complete. This function must be called
5027 * between freeze_workqueues_begin() and thaw_workqueues().
5028 *
5029 * CONTEXT:
5030 * Grabs and releases wq_pool_mutex.
5031 *
5032 * Return:
5033 * %true if some freezable workqueues are still busy. %false if freezing
5034 * is complete.
5035 */
5036bool freeze_workqueues_busy(void)
5037{
5038 bool busy = false;
5039 struct workqueue_struct *wq;
5040 struct pool_workqueue *pwq;
5041
5042 mutex_lock(&wq_pool_mutex);
5043
5044 WARN_ON_ONCE(!workqueue_freezing);
5045
5046 list_for_each_entry(wq, &workqueues, list) {
5047 if (!(wq->flags & WQ_FREEZABLE))
5048 continue;
5049 /*
5050 * nr_active is monotonically decreasing. It's safe
5051 * to peek without lock.
5052 */
5053 rcu_read_lock_sched();
5054 for_each_pwq(pwq, wq) {
5055 WARN_ON_ONCE(pwq->nr_active < 0);
5056 if (pwq->nr_active) {
5057 busy = true;
5058 rcu_read_unlock_sched();
5059 goto out_unlock;
5060 }
5061 }
5062 rcu_read_unlock_sched();
5063 }
5064out_unlock:
5065 mutex_unlock(&wq_pool_mutex);
5066 return busy;
5067}
5068
5069/**
5070 * thaw_workqueues - thaw workqueues
5071 *
5072 * Thaw workqueues. Normal queueing is restored and all collected
5073 * frozen works are transferred to their respective pool worklists.
5074 *
5075 * CONTEXT:
5076 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5077 */
5078void thaw_workqueues(void)
5079{
5080 struct workqueue_struct *wq;
5081 struct pool_workqueue *pwq;
5082
5083 mutex_lock(&wq_pool_mutex);
5084
5085 if (!workqueue_freezing)
5086 goto out_unlock;
5087
5088 workqueue_freezing = false;
5089
5090 /* restore max_active and repopulate worklist */
5091 list_for_each_entry(wq, &workqueues, list) {
5092 mutex_lock(&wq->mutex);
5093 for_each_pwq(pwq, wq)
5094 pwq_adjust_max_active(pwq);
5095 mutex_unlock(&wq->mutex);
5096 }
5097
5098out_unlock:
5099 mutex_unlock(&wq_pool_mutex);
5100}
5101#endif /* CONFIG_FREEZER */
5102
042f7df1
LJ
5103static int workqueue_apply_unbound_cpumask(void)
5104{
5105 LIST_HEAD(ctxs);
5106 int ret = 0;
5107 struct workqueue_struct *wq;
5108 struct apply_wqattrs_ctx *ctx, *n;
5109
5110 lockdep_assert_held(&wq_pool_mutex);
5111
5112 list_for_each_entry(wq, &workqueues, list) {
5113 if (!(wq->flags & WQ_UNBOUND))
5114 continue;
5115 /* creating multiple pwqs breaks ordering guarantee */
5116 if (wq->flags & __WQ_ORDERED)
5117 continue;
5118
5119 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5120 if (!ctx) {
5121 ret = -ENOMEM;
5122 break;
5123 }
5124
5125 list_add_tail(&ctx->list, &ctxs);
5126 }
5127
5128 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5129 if (!ret)
5130 apply_wqattrs_commit(ctx);
5131 apply_wqattrs_cleanup(ctx);
5132 }
5133
5134 return ret;
5135}
5136
5137/**
5138 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5139 * @cpumask: the cpumask to set
5140 *
5141 * The low-level workqueues cpumask is a global cpumask that limits
5142 * the affinity of all unbound workqueues. This function check the @cpumask
5143 * and apply it to all unbound workqueues and updates all pwqs of them.
5144 *
5145 * Retun: 0 - Success
5146 * -EINVAL - Invalid @cpumask
5147 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5148 */
5149int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5150{
5151 int ret = -EINVAL;
5152 cpumask_var_t saved_cpumask;
5153
5154 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5155 return -ENOMEM;
5156
c98a9805
TS
5157 /*
5158 * Not excluding isolated cpus on purpose.
5159 * If the user wishes to include them, we allow that.
5160 */
042f7df1
LJ
5161 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5162 if (!cpumask_empty(cpumask)) {
a0111cf6 5163 apply_wqattrs_lock();
042f7df1
LJ
5164
5165 /* save the old wq_unbound_cpumask. */
5166 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5167
5168 /* update wq_unbound_cpumask at first and apply it to wqs. */
5169 cpumask_copy(wq_unbound_cpumask, cpumask);
5170 ret = workqueue_apply_unbound_cpumask();
5171
5172 /* restore the wq_unbound_cpumask when failed. */
5173 if (ret < 0)
5174 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5175
a0111cf6 5176 apply_wqattrs_unlock();
042f7df1 5177 }
042f7df1
LJ
5178
5179 free_cpumask_var(saved_cpumask);
5180 return ret;
5181}
5182
6ba94429
FW
5183#ifdef CONFIG_SYSFS
5184/*
5185 * Workqueues with WQ_SYSFS flag set is visible to userland via
5186 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5187 * following attributes.
5188 *
5189 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5190 * max_active RW int : maximum number of in-flight work items
5191 *
5192 * Unbound workqueues have the following extra attributes.
5193 *
9a19b463 5194 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5195 * nice RW int : nice value of the workers
5196 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5197 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5198 */
5199struct wq_device {
5200 struct workqueue_struct *wq;
5201 struct device dev;
5202};
5203
5204static struct workqueue_struct *dev_to_wq(struct device *dev)
5205{
5206 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5207
5208 return wq_dev->wq;
5209}
5210
5211static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5212 char *buf)
5213{
5214 struct workqueue_struct *wq = dev_to_wq(dev);
5215
5216 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5217}
5218static DEVICE_ATTR_RO(per_cpu);
5219
5220static ssize_t max_active_show(struct device *dev,
5221 struct device_attribute *attr, char *buf)
5222{
5223 struct workqueue_struct *wq = dev_to_wq(dev);
5224
5225 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5226}
5227
5228static ssize_t max_active_store(struct device *dev,
5229 struct device_attribute *attr, const char *buf,
5230 size_t count)
5231{
5232 struct workqueue_struct *wq = dev_to_wq(dev);
5233 int val;
5234
5235 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5236 return -EINVAL;
5237
5238 workqueue_set_max_active(wq, val);
5239 return count;
5240}
5241static DEVICE_ATTR_RW(max_active);
5242
5243static struct attribute *wq_sysfs_attrs[] = {
5244 &dev_attr_per_cpu.attr,
5245 &dev_attr_max_active.attr,
5246 NULL,
5247};
5248ATTRIBUTE_GROUPS(wq_sysfs);
5249
5250static ssize_t wq_pool_ids_show(struct device *dev,
5251 struct device_attribute *attr, char *buf)
5252{
5253 struct workqueue_struct *wq = dev_to_wq(dev);
5254 const char *delim = "";
5255 int node, written = 0;
5256
5257 rcu_read_lock_sched();
5258 for_each_node(node) {
5259 written += scnprintf(buf + written, PAGE_SIZE - written,
5260 "%s%d:%d", delim, node,
5261 unbound_pwq_by_node(wq, node)->pool->id);
5262 delim = " ";
5263 }
5264 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5265 rcu_read_unlock_sched();
5266
5267 return written;
5268}
5269
5270static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5271 char *buf)
5272{
5273 struct workqueue_struct *wq = dev_to_wq(dev);
5274 int written;
5275
5276 mutex_lock(&wq->mutex);
5277 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5278 mutex_unlock(&wq->mutex);
5279
5280 return written;
5281}
5282
5283/* prepare workqueue_attrs for sysfs store operations */
5284static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5285{
5286 struct workqueue_attrs *attrs;
5287
899a94fe
LJ
5288 lockdep_assert_held(&wq_pool_mutex);
5289
6ba94429
FW
5290 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5291 if (!attrs)
5292 return NULL;
5293
6ba94429 5294 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5295 return attrs;
5296}
5297
5298static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5299 const char *buf, size_t count)
5300{
5301 struct workqueue_struct *wq = dev_to_wq(dev);
5302 struct workqueue_attrs *attrs;
d4d3e257
LJ
5303 int ret = -ENOMEM;
5304
5305 apply_wqattrs_lock();
6ba94429
FW
5306
5307 attrs = wq_sysfs_prep_attrs(wq);
5308 if (!attrs)
d4d3e257 5309 goto out_unlock;
6ba94429
FW
5310
5311 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5312 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5313 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5314 else
5315 ret = -EINVAL;
5316
d4d3e257
LJ
5317out_unlock:
5318 apply_wqattrs_unlock();
6ba94429
FW
5319 free_workqueue_attrs(attrs);
5320 return ret ?: count;
5321}
5322
5323static ssize_t wq_cpumask_show(struct device *dev,
5324 struct device_attribute *attr, char *buf)
5325{
5326 struct workqueue_struct *wq = dev_to_wq(dev);
5327 int written;
5328
5329 mutex_lock(&wq->mutex);
5330 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5331 cpumask_pr_args(wq->unbound_attrs->cpumask));
5332 mutex_unlock(&wq->mutex);
5333 return written;
5334}
5335
5336static ssize_t wq_cpumask_store(struct device *dev,
5337 struct device_attribute *attr,
5338 const char *buf, size_t count)
5339{
5340 struct workqueue_struct *wq = dev_to_wq(dev);
5341 struct workqueue_attrs *attrs;
d4d3e257
LJ
5342 int ret = -ENOMEM;
5343
5344 apply_wqattrs_lock();
6ba94429
FW
5345
5346 attrs = wq_sysfs_prep_attrs(wq);
5347 if (!attrs)
d4d3e257 5348 goto out_unlock;
6ba94429
FW
5349
5350 ret = cpumask_parse(buf, attrs->cpumask);
5351 if (!ret)
d4d3e257 5352 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5353
d4d3e257
LJ
5354out_unlock:
5355 apply_wqattrs_unlock();
6ba94429
FW
5356 free_workqueue_attrs(attrs);
5357 return ret ?: count;
5358}
5359
5360static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5361 char *buf)
5362{
5363 struct workqueue_struct *wq = dev_to_wq(dev);
5364 int written;
7dbc725e 5365
6ba94429
FW
5366 mutex_lock(&wq->mutex);
5367 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5368 !wq->unbound_attrs->no_numa);
5369 mutex_unlock(&wq->mutex);
4c16bd32 5370
6ba94429 5371 return written;
65758202
TH
5372}
5373
6ba94429
FW
5374static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5375 const char *buf, size_t count)
65758202 5376{
6ba94429
FW
5377 struct workqueue_struct *wq = dev_to_wq(dev);
5378 struct workqueue_attrs *attrs;
d4d3e257
LJ
5379 int v, ret = -ENOMEM;
5380
5381 apply_wqattrs_lock();
4c16bd32 5382
6ba94429
FW
5383 attrs = wq_sysfs_prep_attrs(wq);
5384 if (!attrs)
d4d3e257 5385 goto out_unlock;
4c16bd32 5386
6ba94429
FW
5387 ret = -EINVAL;
5388 if (sscanf(buf, "%d", &v) == 1) {
5389 attrs->no_numa = !v;
d4d3e257 5390 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5391 }
6ba94429 5392
d4d3e257
LJ
5393out_unlock:
5394 apply_wqattrs_unlock();
6ba94429
FW
5395 free_workqueue_attrs(attrs);
5396 return ret ?: count;
65758202
TH
5397}
5398
6ba94429
FW
5399static struct device_attribute wq_sysfs_unbound_attrs[] = {
5400 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5401 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5402 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5403 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5404 __ATTR_NULL,
5405};
8ccad40d 5406
6ba94429
FW
5407static struct bus_type wq_subsys = {
5408 .name = "workqueue",
5409 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5410};
5411
b05a7928
FW
5412static ssize_t wq_unbound_cpumask_show(struct device *dev,
5413 struct device_attribute *attr, char *buf)
5414{
5415 int written;
5416
042f7df1 5417 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5418 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5419 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5420 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5421
5422 return written;
5423}
5424
042f7df1
LJ
5425static ssize_t wq_unbound_cpumask_store(struct device *dev,
5426 struct device_attribute *attr, const char *buf, size_t count)
5427{
5428 cpumask_var_t cpumask;
5429 int ret;
5430
5431 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5432 return -ENOMEM;
5433
5434 ret = cpumask_parse(buf, cpumask);
5435 if (!ret)
5436 ret = workqueue_set_unbound_cpumask(cpumask);
5437
5438 free_cpumask_var(cpumask);
5439 return ret ? ret : count;
5440}
5441
b05a7928 5442static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5443 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5444 wq_unbound_cpumask_store);
b05a7928 5445
6ba94429 5446static int __init wq_sysfs_init(void)
2d3854a3 5447{
b05a7928
FW
5448 int err;
5449
5450 err = subsys_virtual_register(&wq_subsys, NULL);
5451 if (err)
5452 return err;
5453
5454 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5455}
6ba94429 5456core_initcall(wq_sysfs_init);
2d3854a3 5457
6ba94429 5458static void wq_device_release(struct device *dev)
2d3854a3 5459{
6ba94429 5460 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5461
6ba94429 5462 kfree(wq_dev);
2d3854a3 5463}
a0a1a5fd
TH
5464
5465/**
6ba94429
FW
5466 * workqueue_sysfs_register - make a workqueue visible in sysfs
5467 * @wq: the workqueue to register
a0a1a5fd 5468 *
6ba94429
FW
5469 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5470 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5471 * which is the preferred method.
a0a1a5fd 5472 *
6ba94429
FW
5473 * Workqueue user should use this function directly iff it wants to apply
5474 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5475 * apply_workqueue_attrs() may race against userland updating the
5476 * attributes.
5477 *
5478 * Return: 0 on success, -errno on failure.
a0a1a5fd 5479 */
6ba94429 5480int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5481{
6ba94429
FW
5482 struct wq_device *wq_dev;
5483 int ret;
a0a1a5fd 5484
6ba94429 5485 /*
402dd89d 5486 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5487 * attributes breaks ordering guarantee. Disallow exposing ordered
5488 * workqueues.
5489 */
0a94efb5 5490 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5491 return -EINVAL;
a0a1a5fd 5492
6ba94429
FW
5493 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5494 if (!wq_dev)
5495 return -ENOMEM;
5bcab335 5496
6ba94429
FW
5497 wq_dev->wq = wq;
5498 wq_dev->dev.bus = &wq_subsys;
6ba94429 5499 wq_dev->dev.release = wq_device_release;
23217b44 5500 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5501
6ba94429
FW
5502 /*
5503 * unbound_attrs are created separately. Suppress uevent until
5504 * everything is ready.
5505 */
5506 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5507
6ba94429
FW
5508 ret = device_register(&wq_dev->dev);
5509 if (ret) {
537f4146 5510 put_device(&wq_dev->dev);
6ba94429
FW
5511 wq->wq_dev = NULL;
5512 return ret;
5513 }
a0a1a5fd 5514
6ba94429
FW
5515 if (wq->flags & WQ_UNBOUND) {
5516 struct device_attribute *attr;
a0a1a5fd 5517
6ba94429
FW
5518 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5519 ret = device_create_file(&wq_dev->dev, attr);
5520 if (ret) {
5521 device_unregister(&wq_dev->dev);
5522 wq->wq_dev = NULL;
5523 return ret;
a0a1a5fd
TH
5524 }
5525 }
5526 }
6ba94429
FW
5527
5528 dev_set_uevent_suppress(&wq_dev->dev, false);
5529 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5530 return 0;
a0a1a5fd
TH
5531}
5532
5533/**
6ba94429
FW
5534 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5535 * @wq: the workqueue to unregister
a0a1a5fd 5536 *
6ba94429 5537 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5538 */
6ba94429 5539static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5540{
6ba94429 5541 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5542
6ba94429
FW
5543 if (!wq->wq_dev)
5544 return;
a0a1a5fd 5545
6ba94429
FW
5546 wq->wq_dev = NULL;
5547 device_unregister(&wq_dev->dev);
a0a1a5fd 5548}
6ba94429
FW
5549#else /* CONFIG_SYSFS */
5550static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5551#endif /* CONFIG_SYSFS */
a0a1a5fd 5552
82607adc
TH
5553/*
5554 * Workqueue watchdog.
5555 *
5556 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5557 * flush dependency, a concurrency managed work item which stays RUNNING
5558 * indefinitely. Workqueue stalls can be very difficult to debug as the
5559 * usual warning mechanisms don't trigger and internal workqueue state is
5560 * largely opaque.
5561 *
5562 * Workqueue watchdog monitors all worker pools periodically and dumps
5563 * state if some pools failed to make forward progress for a while where
5564 * forward progress is defined as the first item on ->worklist changing.
5565 *
5566 * This mechanism is controlled through the kernel parameter
5567 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5568 * corresponding sysfs parameter file.
5569 */
5570#ifdef CONFIG_WQ_WATCHDOG
5571
82607adc 5572static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5573static struct timer_list wq_watchdog_timer;
82607adc
TH
5574
5575static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5576static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5577
5578static void wq_watchdog_reset_touched(void)
5579{
5580 int cpu;
5581
5582 wq_watchdog_touched = jiffies;
5583 for_each_possible_cpu(cpu)
5584 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5585}
5586
5cd79d6a 5587static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5588{
5589 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5590 bool lockup_detected = false;
5591 struct worker_pool *pool;
5592 int pi;
5593
5594 if (!thresh)
5595 return;
5596
5597 rcu_read_lock();
5598
5599 for_each_pool(pool, pi) {
5600 unsigned long pool_ts, touched, ts;
5601
5602 if (list_empty(&pool->worklist))
5603 continue;
5604
5605 /* get the latest of pool and touched timestamps */
5606 pool_ts = READ_ONCE(pool->watchdog_ts);
5607 touched = READ_ONCE(wq_watchdog_touched);
5608
5609 if (time_after(pool_ts, touched))
5610 ts = pool_ts;
5611 else
5612 ts = touched;
5613
5614 if (pool->cpu >= 0) {
5615 unsigned long cpu_touched =
5616 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5617 pool->cpu));
5618 if (time_after(cpu_touched, ts))
5619 ts = cpu_touched;
5620 }
5621
5622 /* did we stall? */
5623 if (time_after(jiffies, ts + thresh)) {
5624 lockup_detected = true;
5625 pr_emerg("BUG: workqueue lockup - pool");
5626 pr_cont_pool_info(pool);
5627 pr_cont(" stuck for %us!\n",
5628 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5629 }
5630 }
5631
5632 rcu_read_unlock();
5633
5634 if (lockup_detected)
5635 show_workqueue_state();
5636
5637 wq_watchdog_reset_touched();
5638 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5639}
5640
cb9d7fd5 5641notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5642{
5643 if (cpu >= 0)
5644 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5645 else
5646 wq_watchdog_touched = jiffies;
5647}
5648
5649static void wq_watchdog_set_thresh(unsigned long thresh)
5650{
5651 wq_watchdog_thresh = 0;
5652 del_timer_sync(&wq_watchdog_timer);
5653
5654 if (thresh) {
5655 wq_watchdog_thresh = thresh;
5656 wq_watchdog_reset_touched();
5657 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5658 }
5659}
5660
5661static int wq_watchdog_param_set_thresh(const char *val,
5662 const struct kernel_param *kp)
5663{
5664 unsigned long thresh;
5665 int ret;
5666
5667 ret = kstrtoul(val, 0, &thresh);
5668 if (ret)
5669 return ret;
5670
5671 if (system_wq)
5672 wq_watchdog_set_thresh(thresh);
5673 else
5674 wq_watchdog_thresh = thresh;
5675
5676 return 0;
5677}
5678
5679static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5680 .set = wq_watchdog_param_set_thresh,
5681 .get = param_get_ulong,
5682};
5683
5684module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5685 0644);
5686
5687static void wq_watchdog_init(void)
5688{
5cd79d6a 5689 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5690 wq_watchdog_set_thresh(wq_watchdog_thresh);
5691}
5692
5693#else /* CONFIG_WQ_WATCHDOG */
5694
5695static inline void wq_watchdog_init(void) { }
5696
5697#endif /* CONFIG_WQ_WATCHDOG */
5698
bce90380
TH
5699static void __init wq_numa_init(void)
5700{
5701 cpumask_var_t *tbl;
5702 int node, cpu;
5703
bce90380
TH
5704 if (num_possible_nodes() <= 1)
5705 return;
5706
d55262c4
TH
5707 if (wq_disable_numa) {
5708 pr_info("workqueue: NUMA affinity support disabled\n");
5709 return;
5710 }
5711
4c16bd32
TH
5712 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5713 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5714
bce90380
TH
5715 /*
5716 * We want masks of possible CPUs of each node which isn't readily
5717 * available. Build one from cpu_to_node() which should have been
5718 * fully initialized by now.
5719 */
6396bb22 5720 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5721 BUG_ON(!tbl);
5722
5723 for_each_node(node)
5a6024f1 5724 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5725 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5726
5727 for_each_possible_cpu(cpu) {
5728 node = cpu_to_node(cpu);
5729 if (WARN_ON(node == NUMA_NO_NODE)) {
5730 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5731 /* happens iff arch is bonkers, let's just proceed */
5732 return;
5733 }
5734 cpumask_set_cpu(cpu, tbl[node]);
5735 }
5736
5737 wq_numa_possible_cpumask = tbl;
5738 wq_numa_enabled = true;
5739}
5740
3347fa09
TH
5741/**
5742 * workqueue_init_early - early init for workqueue subsystem
5743 *
5744 * This is the first half of two-staged workqueue subsystem initialization
5745 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5746 * idr are up. It sets up all the data structures and system workqueues
5747 * and allows early boot code to create workqueues and queue/cancel work
5748 * items. Actual work item execution starts only after kthreads can be
5749 * created and scheduled right before early initcalls.
5750 */
5751int __init workqueue_init_early(void)
1da177e4 5752{
7a4e344c 5753 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5754 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5755 int i, cpu;
c34056a3 5756
e904e6c2
TH
5757 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5758
b05a7928 5759 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5760 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5761
e904e6c2
TH
5762 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5763
706026c2 5764 /* initialize CPU pools */
29c91e99 5765 for_each_possible_cpu(cpu) {
4ce62e9e 5766 struct worker_pool *pool;
8b03ae3c 5767
7a4e344c 5768 i = 0;
f02ae73a 5769 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5770 BUG_ON(init_worker_pool(pool));
ec22ca5e 5771 pool->cpu = cpu;
29c91e99 5772 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5773 pool->attrs->nice = std_nice[i++];
f3f90ad4 5774 pool->node = cpu_to_node(cpu);
7a4e344c 5775
9daf9e67 5776 /* alloc pool ID */
68e13a67 5777 mutex_lock(&wq_pool_mutex);
9daf9e67 5778 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5779 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5780 }
8b03ae3c
TH
5781 }
5782
8a2b7538 5783 /* create default unbound and ordered wq attrs */
29c91e99
TH
5784 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5785 struct workqueue_attrs *attrs;
5786
5787 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5788 attrs->nice = std_nice[i];
29c91e99 5789 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5790
5791 /*
5792 * An ordered wq should have only one pwq as ordering is
5793 * guaranteed by max_active which is enforced by pwqs.
5794 * Turn off NUMA so that dfl_pwq is used for all nodes.
5795 */
5796 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5797 attrs->nice = std_nice[i];
5798 attrs->no_numa = true;
5799 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5800 }
5801
d320c038 5802 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5803 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5804 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5805 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5806 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5807 system_freezable_wq = alloc_workqueue("events_freezable",
5808 WQ_FREEZABLE, 0);
0668106c
VK
5809 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5810 WQ_POWER_EFFICIENT, 0);
5811 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5812 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5813 0);
1aabe902 5814 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5815 !system_unbound_wq || !system_freezable_wq ||
5816 !system_power_efficient_wq ||
5817 !system_freezable_power_efficient_wq);
82607adc 5818
3347fa09
TH
5819 return 0;
5820}
5821
5822/**
5823 * workqueue_init - bring workqueue subsystem fully online
5824 *
5825 * This is the latter half of two-staged workqueue subsystem initialization
5826 * and invoked as soon as kthreads can be created and scheduled.
5827 * Workqueues have been created and work items queued on them, but there
5828 * are no kworkers executing the work items yet. Populate the worker pools
5829 * with the initial workers and enable future kworker creations.
5830 */
5831int __init workqueue_init(void)
5832{
2186d9f9 5833 struct workqueue_struct *wq;
3347fa09
TH
5834 struct worker_pool *pool;
5835 int cpu, bkt;
5836
2186d9f9
TH
5837 /*
5838 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5839 * CPU to node mapping may not be available that early on some
5840 * archs such as power and arm64. As per-cpu pools created
5841 * previously could be missing node hint and unbound pools NUMA
5842 * affinity, fix them up.
40c17f75
TH
5843 *
5844 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5845 */
5846 wq_numa_init();
5847
5848 mutex_lock(&wq_pool_mutex);
5849
5850 for_each_possible_cpu(cpu) {
5851 for_each_cpu_worker_pool(pool, cpu) {
5852 pool->node = cpu_to_node(cpu);
5853 }
5854 }
5855
40c17f75 5856 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5857 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5858 WARN(init_rescuer(wq),
5859 "workqueue: failed to create early rescuer for %s",
5860 wq->name);
5861 }
2186d9f9
TH
5862
5863 mutex_unlock(&wq_pool_mutex);
5864
3347fa09
TH
5865 /* create the initial workers */
5866 for_each_online_cpu(cpu) {
5867 for_each_cpu_worker_pool(pool, cpu) {
5868 pool->flags &= ~POOL_DISASSOCIATED;
5869 BUG_ON(!create_worker(pool));
5870 }
5871 }
5872
5873 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5874 BUG_ON(!create_worker(pool));
5875
5876 wq_online = true;
82607adc
TH
5877 wq_watchdog_init();
5878
6ee0578b 5879 return 0;
1da177e4 5880}