]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/workqueue.c
locking/lockdep: Add support for dynamic keys
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669 41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
c98a9805 50#include <linux/sched/isolation.h>
62635ea8 51#include <linux/nmi.h>
e22bee78 52
ea138446 53#include "workqueue_internal.h"
1da177e4 54
c8e55f36 55enum {
24647570
TH
56 /*
57 * worker_pool flags
bc2ae0f5 58 *
24647570 59 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 66 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 67 *
bc3a1afc 68 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 69 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 70 * worker_attach_to_pool() is in progress.
bc2ae0f5 71 */
692b4825 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
8698a745 102 * all cpus. Give MIN_NICE.
e22bee78 103 */
8698a745
DY
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
1258fae7 126 * A: wq_pool_attach_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
5b95e1af
LJ
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
3c25a55d
LJ
137 * WQ: wq->mutex protected.
138 *
b5927605 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
140 *
141 * MD: wq_mayday_lock protected.
1da177e4 142 */
1da177e4 143
2eaebdb3 144/* struct worker is defined in workqueue_internal.h */
c34056a3 145
bd7bdd43 146struct worker_pool {
d565ed63 147 spinlock_t lock; /* the pool lock */
d84ff051 148 int cpu; /* I: the associated cpu */
f3f90ad4 149 int node; /* I: the associated node ID */
9daf9e67 150 int id; /* I: pool ID */
11ebea50 151 unsigned int flags; /* X: flags */
bd7bdd43 152
82607adc
TH
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
bd7bdd43 155 struct list_head worklist; /* L: list of pending works */
ea1abd61 156
5826cc8f
LJ
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
c5aa87bb 164 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
2607d7a6 168 struct worker *manager; /* L: purely informational */
92f9c5c4 169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
4690c4ab 262 struct lockdep_map lockdep_map;
4e6045f1 263#endif
ecf6881f 264 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 265
e2dca7ad
TH
266 /*
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
270 */
271 struct rcu_head rcu;
272
2728fd2f
TH
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
277};
278
e904e6c2
TH
279static struct kmem_cache *pwq_cache;
280
bce90380
TH
281static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
283
d55262c4
TH
284static bool wq_disable_numa;
285module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286
cee22a15 287/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 288static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
289module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
863b710b 291static bool wq_online; /* can kworkers be created yet? */
3347fa09 292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 299static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 300static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 301static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 302
e2dca7ad 303static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 304static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 305
ef557180
MG
306/* PL: allowable cpus for unbound wqs and work items */
307static cpumask_var_t wq_unbound_cpumask;
308
309/* CPU where unbound work was last round robin scheduled from this CPU */
310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 311
f303fccb
TH
312/*
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
316 */
317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318static bool wq_debug_force_rr_cpu = true;
319#else
320static bool wq_debug_force_rr_cpu = false;
321#endif
322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323
7d19c5ce 324/* the per-cpu worker pools */
25528213 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 326
68e13a67 327static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 328
68e13a67 329/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331
c5aa87bb 332/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334
8a2b7538
TH
335/* I: attributes used when instantiating ordered pools on demand */
336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337
d320c038 338struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 339EXPORT_SYMBOL(system_wq);
044c782c 340struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 341EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 342struct workqueue_struct *system_long_wq __read_mostly;
d320c038 343EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 344struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 345EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 346struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 347EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
348struct workqueue_struct *system_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 352
7d19c5ce 353static int worker_thread(void *__worker);
6ba94429 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 355
97bd2347
TH
356#define CREATE_TRACE_POINTS
357#include <trace/events/workqueue.h>
358
68e13a67 359#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
5bcab335 363
b09f4fd3 364#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
76af4d93 368
5b95e1af 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 374
f02ae73a
TH
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 378 (pool)++)
4ce62e9e 379
17116969
TH
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
611c92a0 383 * @pi: integer used for iteration
fa1b54e6 384 *
68e13a67
LJ
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
17116969 391 */
611c92a0
TH
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 395 else
17116969 396
822d8405
TH
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
822d8405
TH
400 * @pool: worker_pool to iterate workers of
401 *
1258fae7 402 * This must be called with wq_pool_attach_mutex.
822d8405
TH
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
da028469
LJ
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
410 else
411
49e3cf44
TH
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
76af4d93 416 *
b09f4fd3 417 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
49e3cf44
TH
423 */
424#define for_each_pwq(pwq, wq) \
76af4d93 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 427 else
f3421797 428
dc186ad7
TG
429#ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431static struct debug_obj_descr work_debug_descr;
432
99777288
SG
433static void *work_debug_hint(void *addr)
434{
435 return ((struct work_struct *) addr)->func;
436}
437
b9fdac7f
CD
438static bool work_is_static_object(void *addr)
439{
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443}
444
dc186ad7
TG
445/*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
02a982a6 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
450{
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
02a982a6 457 return true;
dc186ad7 458 default:
02a982a6 459 return false;
dc186ad7
TG
460 }
461}
462
dc186ad7
TG
463/*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
02a982a6 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
468{
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
02a982a6 475 return true;
dc186ad7 476 default:
02a982a6 477 return false;
dc186ad7
TG
478 }
479}
480
481static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
99777288 483 .debug_hint = work_debug_hint,
b9fdac7f 484 .is_static_object = work_is_static_object,
dc186ad7 485 .fixup_init = work_fixup_init,
dc186ad7
TG
486 .fixup_free = work_fixup_free,
487};
488
489static inline void debug_work_activate(struct work_struct *work)
490{
491 debug_object_activate(work, &work_debug_descr);
492}
493
494static inline void debug_work_deactivate(struct work_struct *work)
495{
496 debug_object_deactivate(work, &work_debug_descr);
497}
498
499void __init_work(struct work_struct *work, int onstack)
500{
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(__init_work);
507
508void destroy_work_on_stack(struct work_struct *work)
509{
510 debug_object_free(work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
ea2e64f2
TG
514void destroy_delayed_work_on_stack(struct delayed_work *work)
515{
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
dc186ad7
TG
521#else
522static inline void debug_work_activate(struct work_struct *work) { }
523static inline void debug_work_deactivate(struct work_struct *work) { }
524#endif
525
4e8b22bd
LB
526/**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
9daf9e67
TH
533static int worker_pool_assign_id(struct worker_pool *pool)
534{
535 int ret;
536
68e13a67 537 lockdep_assert_held(&wq_pool_mutex);
5bcab335 538
4e8b22bd
LB
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
229641a6 541 if (ret >= 0) {
e68035fb 542 pool->id = ret;
229641a6
TH
543 return 0;
544 }
fa1b54e6 545 return ret;
7c3eed5c
TH
546}
547
df2d5ae4
TH
548/**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
5b95e1af
LJ
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
df2d5ae4
TH
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
557 *
558 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
559 */
560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562{
5b95e1af 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
df2d5ae4
TH
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575}
576
73f53c4a
TH
577static unsigned int work_color_to_flags(int color)
578{
579 return color << WORK_STRUCT_COLOR_SHIFT;
580}
581
582static int get_work_color(struct work_struct *work)
583{
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586}
587
588static int work_next_color(int color)
589{
590 return (color + 1) % WORK_NR_COLORS;
591}
1da177e4 592
14441960 593/*
112202d9
TH
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 596 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 597 *
112202d9
TH
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
7a22ad75 602 *
112202d9 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 604 * corresponding to a work. Pool is available once the work has been
112202d9 605 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 606 * available only while the work item is queued.
7a22ad75 607 *
bbb68dfa
TH
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
14441960 612 */
7a22ad75
TH
613static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
365970a1 615{
6183c009 616 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
617 atomic_long_set(&work->data, data | flags | work_static(work));
618}
365970a1 619
112202d9 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
621 unsigned long extra_flags)
622{
112202d9
TH
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
625}
626
4468a00f
LJ
627static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629{
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632}
633
7c3eed5c
TH
634static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
7a22ad75 636{
23657bb1
TH
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
7c3eed5c 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
7a22ad75 674}
f756d5e2 675
7a22ad75 676static void clear_work_data(struct work_struct *work)
1da177e4 677{
7c3eed5c
TH
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
680}
681
112202d9 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 683{
e120153d 684 unsigned long data = atomic_long_read(&work->data);
7a22ad75 685
112202d9 686 if (data & WORK_STRUCT_PWQ)
e120153d
TH
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
4d707b9f
ON
690}
691
7c3eed5c
TH
692/**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
68e13a67
LJ
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
d185af30
YB
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
706 */
707static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 708{
e120153d 709 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 710 int pool_id;
7a22ad75 711
68e13a67 712 assert_rcu_or_pool_mutex();
fa1b54e6 713
112202d9
TH
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
7c3eed5c 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 717
7c3eed5c
TH
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
720 return NULL;
721
fa1b54e6 722 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
723}
724
725/**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
d185af30 729 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732static int get_work_pool_id(struct work_struct *work)
733{
54d5b7d0
LJ
734 unsigned long data = atomic_long_read(&work->data);
735
112202d9
TH
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
54d5b7d0 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 739
54d5b7d0 740 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
741}
742
bbb68dfa
TH
743static void mark_work_canceling(struct work_struct *work)
744{
7c3eed5c 745 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 746
7c3eed5c
TH
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
749}
750
751static bool work_is_canceling(struct work_struct *work)
752{
753 unsigned long data = atomic_long_read(&work->data);
754
112202d9 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
756}
757
e22bee78 758/*
3270476a
TH
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 761 * they're being called with pool->lock held.
e22bee78
TH
762 */
763
63d95a91 764static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 765{
e19e397a 766 return !atomic_read(&pool->nr_running);
a848e3b6
ON
767}
768
4594bf15 769/*
e22bee78
TH
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
974271c4
TH
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
706026c2 774 * function will always return %true for unbound pools as long as the
974271c4 775 * worklist isn't empty.
4594bf15 776 */
63d95a91 777static bool need_more_worker(struct worker_pool *pool)
365970a1 778{
63d95a91 779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 780}
4594bf15 781
e22bee78 782/* Can I start working? Called from busy but !running workers. */
63d95a91 783static bool may_start_working(struct worker_pool *pool)
e22bee78 784{
63d95a91 785 return pool->nr_idle;
e22bee78
TH
786}
787
788/* Do I need to keep working? Called from currently running workers. */
63d95a91 789static bool keep_working(struct worker_pool *pool)
e22bee78 790{
e19e397a
TH
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
793}
794
795/* Do we need a new worker? Called from manager. */
63d95a91 796static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 797{
63d95a91 798 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 799}
365970a1 800
e22bee78 801/* Do we have too many workers and should some go away? */
63d95a91 802static bool too_many_workers(struct worker_pool *pool)
e22bee78 803{
692b4825 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
809}
810
4d707b9f 811/*
e22bee78
TH
812 * Wake up functions.
813 */
814
1037de36
LJ
815/* Return the first idle worker. Safe with preemption disabled */
816static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 817{
63d95a91 818 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
819 return NULL;
820
63d95a91 821 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
822}
823
824/**
825 * wake_up_worker - wake up an idle worker
63d95a91 826 * @pool: worker pool to wake worker from
7e11629d 827 *
63d95a91 828 * Wake up the first idle worker of @pool.
7e11629d
TH
829 *
830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock).
7e11629d 832 */
63d95a91 833static void wake_up_worker(struct worker_pool *pool)
7e11629d 834{
1037de36 835 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839}
840
d302f017 841/**
e22bee78
TH
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
845 *
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 */
d84ff051 852void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
853{
854 struct worker *worker = kthread_data(task);
855
36576000 856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 857 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 858 atomic_inc(&worker->pool->nr_running);
36576000 859 }
e22bee78
TH
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
e22bee78
TH
865 *
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
869 *
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
872 *
d185af30 873 * Return:
e22bee78
TH
874 * Worker task on @cpu to wake up, %NULL if none.
875 */
9b7f6597 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
877{
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 879 struct worker_pool *pool;
e22bee78 880
111c225a
TH
881 /*
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
885 */
2d64672e 886 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
887 return NULL;
888
111c225a 889 pool = worker->pool;
111c225a 890
e22bee78 891 /* this can only happen on the local cpu */
9b7f6597 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 893 return NULL;
e22bee78
TH
894
895 /*
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
899 *
628c78e7
TH
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
d565ed63 903 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 904 * lock is safe.
e22bee78 905 */
e19e397a
TH
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
1037de36 908 to_wakeup = first_idle_worker(pool);
e22bee78
TH
909 return to_wakeup ? to_wakeup->task : NULL;
910}
911
1b69ac6b
JW
912/**
913 * wq_worker_last_func - retrieve worker's last work function
914 *
915 * Determine the last function a worker executed. This is called from
916 * the scheduler to get a worker's last known identity.
917 *
918 * CONTEXT:
919 * spin_lock_irq(rq->lock)
920 *
921 * Return:
922 * The last work function %current executed as a worker, NULL if it
923 * hasn't executed any work yet.
924 */
925work_func_t wq_worker_last_func(struct task_struct *task)
926{
927 struct worker *worker = kthread_data(task);
928
929 return worker->last_func;
930}
931
e22bee78
TH
932/**
933 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 934 * @worker: self
d302f017 935 * @flags: flags to set
d302f017 936 *
228f1d00 937 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 938 *
cb444766 939 * CONTEXT:
d565ed63 940 * spin_lock_irq(pool->lock)
d302f017 941 */
228f1d00 942static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 943{
bd7bdd43 944 struct worker_pool *pool = worker->pool;
e22bee78 945
cb444766
TH
946 WARN_ON_ONCE(worker->task != current);
947
228f1d00 948 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
949 if ((flags & WORKER_NOT_RUNNING) &&
950 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 951 atomic_dec(&pool->nr_running);
e22bee78
TH
952 }
953
d302f017
TH
954 worker->flags |= flags;
955}
956
957/**
e22bee78 958 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 959 * @worker: self
d302f017
TH
960 * @flags: flags to clear
961 *
e22bee78 962 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 963 *
cb444766 964 * CONTEXT:
d565ed63 965 * spin_lock_irq(pool->lock)
d302f017
TH
966 */
967static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
968{
63d95a91 969 struct worker_pool *pool = worker->pool;
e22bee78
TH
970 unsigned int oflags = worker->flags;
971
cb444766
TH
972 WARN_ON_ONCE(worker->task != current);
973
d302f017 974 worker->flags &= ~flags;
e22bee78 975
42c025f3
TH
976 /*
977 * If transitioning out of NOT_RUNNING, increment nr_running. Note
978 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
979 * of multiple flags, not a single flag.
980 */
e22bee78
TH
981 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
982 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 983 atomic_inc(&pool->nr_running);
d302f017
TH
984}
985
8cca0eea
TH
986/**
987 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 988 * @pool: pool of interest
8cca0eea
TH
989 * @work: work to find worker for
990 *
c9e7cf27
TH
991 * Find a worker which is executing @work on @pool by searching
992 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
993 * to match, its current execution should match the address of @work and
994 * its work function. This is to avoid unwanted dependency between
995 * unrelated work executions through a work item being recycled while still
996 * being executed.
997 *
998 * This is a bit tricky. A work item may be freed once its execution
999 * starts and nothing prevents the freed area from being recycled for
1000 * another work item. If the same work item address ends up being reused
1001 * before the original execution finishes, workqueue will identify the
1002 * recycled work item as currently executing and make it wait until the
1003 * current execution finishes, introducing an unwanted dependency.
1004 *
c5aa87bb
TH
1005 * This function checks the work item address and work function to avoid
1006 * false positives. Note that this isn't complete as one may construct a
1007 * work function which can introduce dependency onto itself through a
1008 * recycled work item. Well, if somebody wants to shoot oneself in the
1009 * foot that badly, there's only so much we can do, and if such deadlock
1010 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1011 *
1012 * CONTEXT:
d565ed63 1013 * spin_lock_irq(pool->lock).
8cca0eea 1014 *
d185af30
YB
1015 * Return:
1016 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1017 * otherwise.
4d707b9f 1018 */
c9e7cf27 1019static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1020 struct work_struct *work)
4d707b9f 1021{
42f8570f 1022 struct worker *worker;
42f8570f 1023
b67bfe0d 1024 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1025 (unsigned long)work)
1026 if (worker->current_work == work &&
1027 worker->current_func == work->func)
42f8570f
SL
1028 return worker;
1029
1030 return NULL;
4d707b9f
ON
1031}
1032
bf4ede01
TH
1033/**
1034 * move_linked_works - move linked works to a list
1035 * @work: start of series of works to be scheduled
1036 * @head: target list to append @work to
402dd89d 1037 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1038 *
1039 * Schedule linked works starting from @work to @head. Work series to
1040 * be scheduled starts at @work and includes any consecutive work with
1041 * WORK_STRUCT_LINKED set in its predecessor.
1042 *
1043 * If @nextp is not NULL, it's updated to point to the next work of
1044 * the last scheduled work. This allows move_linked_works() to be
1045 * nested inside outer list_for_each_entry_safe().
1046 *
1047 * CONTEXT:
d565ed63 1048 * spin_lock_irq(pool->lock).
bf4ede01
TH
1049 */
1050static void move_linked_works(struct work_struct *work, struct list_head *head,
1051 struct work_struct **nextp)
1052{
1053 struct work_struct *n;
1054
1055 /*
1056 * Linked worklist will always end before the end of the list,
1057 * use NULL for list head.
1058 */
1059 list_for_each_entry_safe_from(work, n, NULL, entry) {
1060 list_move_tail(&work->entry, head);
1061 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1062 break;
1063 }
1064
1065 /*
1066 * If we're already inside safe list traversal and have moved
1067 * multiple works to the scheduled queue, the next position
1068 * needs to be updated.
1069 */
1070 if (nextp)
1071 *nextp = n;
1072}
1073
8864b4e5
TH
1074/**
1075 * get_pwq - get an extra reference on the specified pool_workqueue
1076 * @pwq: pool_workqueue to get
1077 *
1078 * Obtain an extra reference on @pwq. The caller should guarantee that
1079 * @pwq has positive refcnt and be holding the matching pool->lock.
1080 */
1081static void get_pwq(struct pool_workqueue *pwq)
1082{
1083 lockdep_assert_held(&pwq->pool->lock);
1084 WARN_ON_ONCE(pwq->refcnt <= 0);
1085 pwq->refcnt++;
1086}
1087
1088/**
1089 * put_pwq - put a pool_workqueue reference
1090 * @pwq: pool_workqueue to put
1091 *
1092 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1093 * destruction. The caller should be holding the matching pool->lock.
1094 */
1095static void put_pwq(struct pool_workqueue *pwq)
1096{
1097 lockdep_assert_held(&pwq->pool->lock);
1098 if (likely(--pwq->refcnt))
1099 return;
1100 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1101 return;
1102 /*
1103 * @pwq can't be released under pool->lock, bounce to
1104 * pwq_unbound_release_workfn(). This never recurses on the same
1105 * pool->lock as this path is taken only for unbound workqueues and
1106 * the release work item is scheduled on a per-cpu workqueue. To
1107 * avoid lockdep warning, unbound pool->locks are given lockdep
1108 * subclass of 1 in get_unbound_pool().
1109 */
1110 schedule_work(&pwq->unbound_release_work);
1111}
1112
dce90d47
TH
1113/**
1114 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1115 * @pwq: pool_workqueue to put (can be %NULL)
1116 *
1117 * put_pwq() with locking. This function also allows %NULL @pwq.
1118 */
1119static void put_pwq_unlocked(struct pool_workqueue *pwq)
1120{
1121 if (pwq) {
1122 /*
1123 * As both pwqs and pools are sched-RCU protected, the
1124 * following lock operations are safe.
1125 */
1126 spin_lock_irq(&pwq->pool->lock);
1127 put_pwq(pwq);
1128 spin_unlock_irq(&pwq->pool->lock);
1129 }
1130}
1131
112202d9 1132static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1133{
112202d9 1134 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1135
1136 trace_workqueue_activate_work(work);
82607adc
TH
1137 if (list_empty(&pwq->pool->worklist))
1138 pwq->pool->watchdog_ts = jiffies;
112202d9 1139 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1140 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1141 pwq->nr_active++;
bf4ede01
TH
1142}
1143
112202d9 1144static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1145{
112202d9 1146 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1147 struct work_struct, entry);
1148
112202d9 1149 pwq_activate_delayed_work(work);
3aa62497
LJ
1150}
1151
bf4ede01 1152/**
112202d9
TH
1153 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1154 * @pwq: pwq of interest
bf4ede01 1155 * @color: color of work which left the queue
bf4ede01
TH
1156 *
1157 * A work either has completed or is removed from pending queue,
112202d9 1158 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1159 *
1160 * CONTEXT:
d565ed63 1161 * spin_lock_irq(pool->lock).
bf4ede01 1162 */
112202d9 1163static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1164{
8864b4e5 1165 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1166 if (color == WORK_NO_COLOR)
8864b4e5 1167 goto out_put;
bf4ede01 1168
112202d9 1169 pwq->nr_in_flight[color]--;
bf4ede01 1170
112202d9
TH
1171 pwq->nr_active--;
1172 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1173 /* one down, submit a delayed one */
112202d9
TH
1174 if (pwq->nr_active < pwq->max_active)
1175 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1176 }
1177
1178 /* is flush in progress and are we at the flushing tip? */
112202d9 1179 if (likely(pwq->flush_color != color))
8864b4e5 1180 goto out_put;
bf4ede01
TH
1181
1182 /* are there still in-flight works? */
112202d9 1183 if (pwq->nr_in_flight[color])
8864b4e5 1184 goto out_put;
bf4ede01 1185
112202d9
TH
1186 /* this pwq is done, clear flush_color */
1187 pwq->flush_color = -1;
bf4ede01
TH
1188
1189 /*
112202d9 1190 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1191 * will handle the rest.
1192 */
112202d9
TH
1193 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1194 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1195out_put:
1196 put_pwq(pwq);
bf4ede01
TH
1197}
1198
36e227d2 1199/**
bbb68dfa 1200 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1201 * @work: work item to steal
1202 * @is_dwork: @work is a delayed_work
bbb68dfa 1203 * @flags: place to store irq state
36e227d2
TH
1204 *
1205 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1206 * stable state - idle, on timer or on worklist.
36e227d2 1207 *
d185af30 1208 * Return:
36e227d2
TH
1209 * 1 if @work was pending and we successfully stole PENDING
1210 * 0 if @work was idle and we claimed PENDING
1211 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1212 * -ENOENT if someone else is canceling @work, this state may persist
1213 * for arbitrarily long
36e227d2 1214 *
d185af30 1215 * Note:
bbb68dfa 1216 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1217 * interrupted while holding PENDING and @work off queue, irq must be
1218 * disabled on entry. This, combined with delayed_work->timer being
1219 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1220 *
1221 * On successful return, >= 0, irq is disabled and the caller is
1222 * responsible for releasing it using local_irq_restore(*@flags).
1223 *
e0aecdd8 1224 * This function is safe to call from any context including IRQ handler.
bf4ede01 1225 */
bbb68dfa
TH
1226static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1227 unsigned long *flags)
bf4ede01 1228{
d565ed63 1229 struct worker_pool *pool;
112202d9 1230 struct pool_workqueue *pwq;
bf4ede01 1231
bbb68dfa
TH
1232 local_irq_save(*flags);
1233
36e227d2
TH
1234 /* try to steal the timer if it exists */
1235 if (is_dwork) {
1236 struct delayed_work *dwork = to_delayed_work(work);
1237
e0aecdd8
TH
1238 /*
1239 * dwork->timer is irqsafe. If del_timer() fails, it's
1240 * guaranteed that the timer is not queued anywhere and not
1241 * running on the local CPU.
1242 */
36e227d2
TH
1243 if (likely(del_timer(&dwork->timer)))
1244 return 1;
1245 }
1246
1247 /* try to claim PENDING the normal way */
bf4ede01
TH
1248 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1249 return 0;
1250
1251 /*
1252 * The queueing is in progress, or it is already queued. Try to
1253 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1254 */
d565ed63
TH
1255 pool = get_work_pool(work);
1256 if (!pool)
bbb68dfa 1257 goto fail;
bf4ede01 1258
d565ed63 1259 spin_lock(&pool->lock);
0b3dae68 1260 /*
112202d9
TH
1261 * work->data is guaranteed to point to pwq only while the work
1262 * item is queued on pwq->wq, and both updating work->data to point
1263 * to pwq on queueing and to pool on dequeueing are done under
1264 * pwq->pool->lock. This in turn guarantees that, if work->data
1265 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1266 * item is currently queued on that pool.
1267 */
112202d9
TH
1268 pwq = get_work_pwq(work);
1269 if (pwq && pwq->pool == pool) {
16062836
TH
1270 debug_work_deactivate(work);
1271
1272 /*
1273 * A delayed work item cannot be grabbed directly because
1274 * it might have linked NO_COLOR work items which, if left
112202d9 1275 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1276 * management later on and cause stall. Make sure the work
1277 * item is activated before grabbing.
1278 */
1279 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1280 pwq_activate_delayed_work(work);
16062836
TH
1281
1282 list_del_init(&work->entry);
9c34a704 1283 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1284
112202d9 1285 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1286 set_work_pool_and_keep_pending(work, pool->id);
1287
1288 spin_unlock(&pool->lock);
1289 return 1;
bf4ede01 1290 }
d565ed63 1291 spin_unlock(&pool->lock);
bbb68dfa
TH
1292fail:
1293 local_irq_restore(*flags);
1294 if (work_is_canceling(work))
1295 return -ENOENT;
1296 cpu_relax();
36e227d2 1297 return -EAGAIN;
bf4ede01
TH
1298}
1299
4690c4ab 1300/**
706026c2 1301 * insert_work - insert a work into a pool
112202d9 1302 * @pwq: pwq @work belongs to
4690c4ab
TH
1303 * @work: work to insert
1304 * @head: insertion point
1305 * @extra_flags: extra WORK_STRUCT_* flags to set
1306 *
112202d9 1307 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1308 * work_struct flags.
4690c4ab
TH
1309 *
1310 * CONTEXT:
d565ed63 1311 * spin_lock_irq(pool->lock).
4690c4ab 1312 */
112202d9
TH
1313static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1314 struct list_head *head, unsigned int extra_flags)
b89deed3 1315{
112202d9 1316 struct worker_pool *pool = pwq->pool;
e22bee78 1317
4690c4ab 1318 /* we own @work, set data and link */
112202d9 1319 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1320 list_add_tail(&work->entry, head);
8864b4e5 1321 get_pwq(pwq);
e22bee78
TH
1322
1323 /*
c5aa87bb
TH
1324 * Ensure either wq_worker_sleeping() sees the above
1325 * list_add_tail() or we see zero nr_running to avoid workers lying
1326 * around lazily while there are works to be processed.
e22bee78
TH
1327 */
1328 smp_mb();
1329
63d95a91
TH
1330 if (__need_more_worker(pool))
1331 wake_up_worker(pool);
b89deed3
ON
1332}
1333
c8efcc25
TH
1334/*
1335 * Test whether @work is being queued from another work executing on the
8d03ecfe 1336 * same workqueue.
c8efcc25
TH
1337 */
1338static bool is_chained_work(struct workqueue_struct *wq)
1339{
8d03ecfe
TH
1340 struct worker *worker;
1341
1342 worker = current_wq_worker();
1343 /*
1344 * Return %true iff I'm a worker execuing a work item on @wq. If
1345 * I'm @worker, it's safe to dereference it without locking.
1346 */
112202d9 1347 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1348}
1349
ef557180
MG
1350/*
1351 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1352 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1353 * avoid perturbing sensitive tasks.
1354 */
1355static int wq_select_unbound_cpu(int cpu)
1356{
f303fccb 1357 static bool printed_dbg_warning;
ef557180
MG
1358 int new_cpu;
1359
f303fccb
TH
1360 if (likely(!wq_debug_force_rr_cpu)) {
1361 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1362 return cpu;
1363 } else if (!printed_dbg_warning) {
1364 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1365 printed_dbg_warning = true;
1366 }
1367
ef557180
MG
1368 if (cpumask_empty(wq_unbound_cpumask))
1369 return cpu;
1370
1371 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1372 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1373 if (unlikely(new_cpu >= nr_cpu_ids)) {
1374 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1375 if (unlikely(new_cpu >= nr_cpu_ids))
1376 return cpu;
1377 }
1378 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1379
1380 return new_cpu;
1381}
1382
d84ff051 1383static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1384 struct work_struct *work)
1385{
112202d9 1386 struct pool_workqueue *pwq;
c9178087 1387 struct worker_pool *last_pool;
1e19ffc6 1388 struct list_head *worklist;
8a2e8e5d 1389 unsigned int work_flags;
b75cac93 1390 unsigned int req_cpu = cpu;
8930caba
TH
1391
1392 /*
1393 * While a work item is PENDING && off queue, a task trying to
1394 * steal the PENDING will busy-loop waiting for it to either get
1395 * queued or lose PENDING. Grabbing PENDING and queueing should
1396 * happen with IRQ disabled.
1397 */
8e8eb730 1398 lockdep_assert_irqs_disabled();
1da177e4 1399
dc186ad7 1400 debug_work_activate(work);
1e19ffc6 1401
9ef28a73 1402 /* if draining, only works from the same workqueue are allowed */
618b01eb 1403 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1404 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1405 return;
9e8cd2f5 1406retry:
df2d5ae4 1407 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1408 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1409
c9178087 1410 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1411 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1412 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1413 else
1414 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1415
c9178087
TH
1416 /*
1417 * If @work was previously on a different pool, it might still be
1418 * running there, in which case the work needs to be queued on that
1419 * pool to guarantee non-reentrancy.
1420 */
1421 last_pool = get_work_pool(work);
1422 if (last_pool && last_pool != pwq->pool) {
1423 struct worker *worker;
18aa9eff 1424
c9178087 1425 spin_lock(&last_pool->lock);
18aa9eff 1426
c9178087 1427 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1428
c9178087
TH
1429 if (worker && worker->current_pwq->wq == wq) {
1430 pwq = worker->current_pwq;
8930caba 1431 } else {
c9178087
TH
1432 /* meh... not running there, queue here */
1433 spin_unlock(&last_pool->lock);
112202d9 1434 spin_lock(&pwq->pool->lock);
8930caba 1435 }
f3421797 1436 } else {
112202d9 1437 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1438 }
1439
9e8cd2f5
TH
1440 /*
1441 * pwq is determined and locked. For unbound pools, we could have
1442 * raced with pwq release and it could already be dead. If its
1443 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1444 * without another pwq replacing it in the numa_pwq_tbl or while
1445 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1446 * make forward-progress.
1447 */
1448 if (unlikely(!pwq->refcnt)) {
1449 if (wq->flags & WQ_UNBOUND) {
1450 spin_unlock(&pwq->pool->lock);
1451 cpu_relax();
1452 goto retry;
1453 }
1454 /* oops */
1455 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1456 wq->name, cpu);
1457 }
1458
112202d9
TH
1459 /* pwq determined, queue */
1460 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1461
f5b2552b 1462 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1463 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1464 return;
1465 }
1e19ffc6 1466
112202d9
TH
1467 pwq->nr_in_flight[pwq->work_color]++;
1468 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1469
112202d9 1470 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1471 trace_workqueue_activate_work(work);
112202d9
TH
1472 pwq->nr_active++;
1473 worklist = &pwq->pool->worklist;
82607adc
TH
1474 if (list_empty(worklist))
1475 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1476 } else {
1477 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1478 worklist = &pwq->delayed_works;
8a2e8e5d 1479 }
1e19ffc6 1480
112202d9 1481 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1482
112202d9 1483 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1484}
1485
0fcb78c2 1486/**
c1a220e7
ZR
1487 * queue_work_on - queue work on specific cpu
1488 * @cpu: CPU number to execute work on
0fcb78c2
REB
1489 * @wq: workqueue to use
1490 * @work: work to queue
1491 *
c1a220e7
ZR
1492 * We queue the work to a specific CPU, the caller must ensure it
1493 * can't go away.
d185af30
YB
1494 *
1495 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1496 */
d4283e93
TH
1497bool queue_work_on(int cpu, struct workqueue_struct *wq,
1498 struct work_struct *work)
1da177e4 1499{
d4283e93 1500 bool ret = false;
8930caba 1501 unsigned long flags;
ef1ca236 1502
8930caba 1503 local_irq_save(flags);
c1a220e7 1504
22df02bb 1505 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1506 __queue_work(cpu, wq, work);
d4283e93 1507 ret = true;
c1a220e7 1508 }
ef1ca236 1509
8930caba 1510 local_irq_restore(flags);
1da177e4
LT
1511 return ret;
1512}
ad7b1f84 1513EXPORT_SYMBOL(queue_work_on);
1da177e4 1514
8c20feb6 1515void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1516{
8c20feb6 1517 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1518
e0aecdd8 1519 /* should have been called from irqsafe timer with irq already off */
60c057bc 1520 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1521}
1438ade5 1522EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1523
7beb2edf
TH
1524static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1525 struct delayed_work *dwork, unsigned long delay)
1da177e4 1526{
7beb2edf
TH
1527 struct timer_list *timer = &dwork->timer;
1528 struct work_struct *work = &dwork->work;
7beb2edf 1529
637fdbae 1530 WARN_ON_ONCE(!wq);
841b86f3 1531 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1532 WARN_ON_ONCE(timer_pending(timer));
1533 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1534
8852aac2
TH
1535 /*
1536 * If @delay is 0, queue @dwork->work immediately. This is for
1537 * both optimization and correctness. The earliest @timer can
1538 * expire is on the closest next tick and delayed_work users depend
1539 * on that there's no such delay when @delay is 0.
1540 */
1541 if (!delay) {
1542 __queue_work(cpu, wq, &dwork->work);
1543 return;
1544 }
1545
60c057bc 1546 dwork->wq = wq;
1265057f 1547 dwork->cpu = cpu;
7beb2edf
TH
1548 timer->expires = jiffies + delay;
1549
041bd12e
TH
1550 if (unlikely(cpu != WORK_CPU_UNBOUND))
1551 add_timer_on(timer, cpu);
1552 else
1553 add_timer(timer);
1da177e4
LT
1554}
1555
0fcb78c2
REB
1556/**
1557 * queue_delayed_work_on - queue work on specific CPU after delay
1558 * @cpu: CPU number to execute work on
1559 * @wq: workqueue to use
af9997e4 1560 * @dwork: work to queue
0fcb78c2
REB
1561 * @delay: number of jiffies to wait before queueing
1562 *
d185af30 1563 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1564 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1565 * execution.
0fcb78c2 1566 */
d4283e93
TH
1567bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1568 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1569{
52bad64d 1570 struct work_struct *work = &dwork->work;
d4283e93 1571 bool ret = false;
8930caba 1572 unsigned long flags;
7a6bc1cd 1573
8930caba
TH
1574 /* read the comment in __queue_work() */
1575 local_irq_save(flags);
7a6bc1cd 1576
22df02bb 1577 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1578 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1579 ret = true;
7a6bc1cd 1580 }
8a3e77cc 1581
8930caba 1582 local_irq_restore(flags);
7a6bc1cd
VP
1583 return ret;
1584}
ad7b1f84 1585EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1586
8376fe22
TH
1587/**
1588 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1589 * @cpu: CPU number to execute work on
1590 * @wq: workqueue to use
1591 * @dwork: work to queue
1592 * @delay: number of jiffies to wait before queueing
1593 *
1594 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1595 * modify @dwork's timer so that it expires after @delay. If @delay is
1596 * zero, @work is guaranteed to be scheduled immediately regardless of its
1597 * current state.
1598 *
d185af30 1599 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1600 * pending and its timer was modified.
1601 *
e0aecdd8 1602 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1603 * See try_to_grab_pending() for details.
1604 */
1605bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1606 struct delayed_work *dwork, unsigned long delay)
1607{
1608 unsigned long flags;
1609 int ret;
c7fc77f7 1610
8376fe22
TH
1611 do {
1612 ret = try_to_grab_pending(&dwork->work, true, &flags);
1613 } while (unlikely(ret == -EAGAIN));
63bc0362 1614
8376fe22
TH
1615 if (likely(ret >= 0)) {
1616 __queue_delayed_work(cpu, wq, dwork, delay);
1617 local_irq_restore(flags);
7a6bc1cd 1618 }
8376fe22
TH
1619
1620 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1621 return ret;
1622}
8376fe22
TH
1623EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1624
05f0fe6b
TH
1625static void rcu_work_rcufn(struct rcu_head *rcu)
1626{
1627 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1628
1629 /* read the comment in __queue_work() */
1630 local_irq_disable();
1631 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1632 local_irq_enable();
1633}
1634
1635/**
1636 * queue_rcu_work - queue work after a RCU grace period
1637 * @wq: workqueue to use
1638 * @rwork: work to queue
1639 *
1640 * Return: %false if @rwork was already pending, %true otherwise. Note
1641 * that a full RCU grace period is guaranteed only after a %true return.
1642 * While @rwork is guarnateed to be executed after a %false return, the
1643 * execution may happen before a full RCU grace period has passed.
1644 */
1645bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1646{
1647 struct work_struct *work = &rwork->work;
1648
1649 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1650 rwork->wq = wq;
1651 call_rcu(&rwork->rcu, rcu_work_rcufn);
1652 return true;
1653 }
1654
1655 return false;
1656}
1657EXPORT_SYMBOL(queue_rcu_work);
1658
c8e55f36
TH
1659/**
1660 * worker_enter_idle - enter idle state
1661 * @worker: worker which is entering idle state
1662 *
1663 * @worker is entering idle state. Update stats and idle timer if
1664 * necessary.
1665 *
1666 * LOCKING:
d565ed63 1667 * spin_lock_irq(pool->lock).
c8e55f36
TH
1668 */
1669static void worker_enter_idle(struct worker *worker)
1da177e4 1670{
bd7bdd43 1671 struct worker_pool *pool = worker->pool;
c8e55f36 1672
6183c009
TH
1673 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1674 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1675 (worker->hentry.next || worker->hentry.pprev)))
1676 return;
c8e55f36 1677
051e1850 1678 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1679 worker->flags |= WORKER_IDLE;
bd7bdd43 1680 pool->nr_idle++;
e22bee78 1681 worker->last_active = jiffies;
c8e55f36
TH
1682
1683 /* idle_list is LIFO */
bd7bdd43 1684 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1685
628c78e7
TH
1686 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1687 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1688
544ecf31 1689 /*
e8b3f8db 1690 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1691 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1692 * nr_running, the warning may trigger spuriously. Check iff
1693 * unbind is not in progress.
544ecf31 1694 */
24647570 1695 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1696 pool->nr_workers == pool->nr_idle &&
e19e397a 1697 atomic_read(&pool->nr_running));
c8e55f36
TH
1698}
1699
1700/**
1701 * worker_leave_idle - leave idle state
1702 * @worker: worker which is leaving idle state
1703 *
1704 * @worker is leaving idle state. Update stats.
1705 *
1706 * LOCKING:
d565ed63 1707 * spin_lock_irq(pool->lock).
c8e55f36
TH
1708 */
1709static void worker_leave_idle(struct worker *worker)
1710{
bd7bdd43 1711 struct worker_pool *pool = worker->pool;
c8e55f36 1712
6183c009
TH
1713 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1714 return;
d302f017 1715 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1716 pool->nr_idle--;
c8e55f36
TH
1717 list_del_init(&worker->entry);
1718}
1719
f7537df5 1720static struct worker *alloc_worker(int node)
c34056a3
TH
1721{
1722 struct worker *worker;
1723
f7537df5 1724 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1725 if (worker) {
1726 INIT_LIST_HEAD(&worker->entry);
affee4b2 1727 INIT_LIST_HEAD(&worker->scheduled);
da028469 1728 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1729 /* on creation a worker is in !idle && prep state */
1730 worker->flags = WORKER_PREP;
c8e55f36 1731 }
c34056a3
TH
1732 return worker;
1733}
1734
4736cbf7
LJ
1735/**
1736 * worker_attach_to_pool() - attach a worker to a pool
1737 * @worker: worker to be attached
1738 * @pool: the target pool
1739 *
1740 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1741 * cpu-binding of @worker are kept coordinated with the pool across
1742 * cpu-[un]hotplugs.
1743 */
1744static void worker_attach_to_pool(struct worker *worker,
1745 struct worker_pool *pool)
1746{
1258fae7 1747 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1748
1749 /*
1750 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1751 * online CPUs. It'll be re-applied when any of the CPUs come up.
1752 */
1753 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1754
1755 /*
1258fae7
TH
1756 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1757 * stable across this function. See the comments above the flag
1758 * definition for details.
4736cbf7
LJ
1759 */
1760 if (pool->flags & POOL_DISASSOCIATED)
1761 worker->flags |= WORKER_UNBOUND;
1762
1763 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1764 worker->pool = pool;
4736cbf7 1765
1258fae7 1766 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1767}
1768
60f5a4bc
LJ
1769/**
1770 * worker_detach_from_pool() - detach a worker from its pool
1771 * @worker: worker which is attached to its pool
60f5a4bc 1772 *
4736cbf7
LJ
1773 * Undo the attaching which had been done in worker_attach_to_pool(). The
1774 * caller worker shouldn't access to the pool after detached except it has
1775 * other reference to the pool.
60f5a4bc 1776 */
a2d812a2 1777static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1778{
a2d812a2 1779 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1780 struct completion *detach_completion = NULL;
1781
1258fae7 1782 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1783
da028469 1784 list_del(&worker->node);
a2d812a2
TH
1785 worker->pool = NULL;
1786
da028469 1787 if (list_empty(&pool->workers))
60f5a4bc 1788 detach_completion = pool->detach_completion;
1258fae7 1789 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1790
b62c0751
LJ
1791 /* clear leftover flags without pool->lock after it is detached */
1792 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1793
60f5a4bc
LJ
1794 if (detach_completion)
1795 complete(detach_completion);
1796}
1797
c34056a3
TH
1798/**
1799 * create_worker - create a new workqueue worker
63d95a91 1800 * @pool: pool the new worker will belong to
c34056a3 1801 *
051e1850 1802 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1803 *
1804 * CONTEXT:
1805 * Might sleep. Does GFP_KERNEL allocations.
1806 *
d185af30 1807 * Return:
c34056a3
TH
1808 * Pointer to the newly created worker.
1809 */
bc2ae0f5 1810static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1811{
c34056a3 1812 struct worker *worker = NULL;
f3421797 1813 int id = -1;
e3c916a4 1814 char id_buf[16];
c34056a3 1815
7cda9aae
LJ
1816 /* ID is needed to determine kthread name */
1817 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1818 if (id < 0)
1819 goto fail;
c34056a3 1820
f7537df5 1821 worker = alloc_worker(pool->node);
c34056a3
TH
1822 if (!worker)
1823 goto fail;
1824
c34056a3
TH
1825 worker->id = id;
1826
29c91e99 1827 if (pool->cpu >= 0)
e3c916a4
TH
1828 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1829 pool->attrs->nice < 0 ? "H" : "");
f3421797 1830 else
e3c916a4
TH
1831 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1832
f3f90ad4 1833 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1834 "kworker/%s", id_buf);
c34056a3
TH
1835 if (IS_ERR(worker->task))
1836 goto fail;
1837
91151228 1838 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1839 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1840
da028469 1841 /* successful, attach the worker to the pool */
4736cbf7 1842 worker_attach_to_pool(worker, pool);
822d8405 1843
051e1850
LJ
1844 /* start the newly created worker */
1845 spin_lock_irq(&pool->lock);
1846 worker->pool->nr_workers++;
1847 worker_enter_idle(worker);
1848 wake_up_process(worker->task);
1849 spin_unlock_irq(&pool->lock);
1850
c34056a3 1851 return worker;
822d8405 1852
c34056a3 1853fail:
9625ab17 1854 if (id >= 0)
7cda9aae 1855 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1856 kfree(worker);
1857 return NULL;
1858}
1859
c34056a3
TH
1860/**
1861 * destroy_worker - destroy a workqueue worker
1862 * @worker: worker to be destroyed
1863 *
73eb7fe7
LJ
1864 * Destroy @worker and adjust @pool stats accordingly. The worker should
1865 * be idle.
c8e55f36
TH
1866 *
1867 * CONTEXT:
60f5a4bc 1868 * spin_lock_irq(pool->lock).
c34056a3
TH
1869 */
1870static void destroy_worker(struct worker *worker)
1871{
bd7bdd43 1872 struct worker_pool *pool = worker->pool;
c34056a3 1873
cd549687
TH
1874 lockdep_assert_held(&pool->lock);
1875
c34056a3 1876 /* sanity check frenzy */
6183c009 1877 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1878 WARN_ON(!list_empty(&worker->scheduled)) ||
1879 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1880 return;
c34056a3 1881
73eb7fe7
LJ
1882 pool->nr_workers--;
1883 pool->nr_idle--;
5bdfff96 1884
c8e55f36 1885 list_del_init(&worker->entry);
cb444766 1886 worker->flags |= WORKER_DIE;
60f5a4bc 1887 wake_up_process(worker->task);
c34056a3
TH
1888}
1889
32a6c723 1890static void idle_worker_timeout(struct timer_list *t)
e22bee78 1891{
32a6c723 1892 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1893
d565ed63 1894 spin_lock_irq(&pool->lock);
e22bee78 1895
3347fc9f 1896 while (too_many_workers(pool)) {
e22bee78
TH
1897 struct worker *worker;
1898 unsigned long expires;
1899
1900 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1901 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1902 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1903
3347fc9f 1904 if (time_before(jiffies, expires)) {
63d95a91 1905 mod_timer(&pool->idle_timer, expires);
3347fc9f 1906 break;
d5abe669 1907 }
3347fc9f
LJ
1908
1909 destroy_worker(worker);
e22bee78
TH
1910 }
1911
d565ed63 1912 spin_unlock_irq(&pool->lock);
e22bee78 1913}
d5abe669 1914
493a1724 1915static void send_mayday(struct work_struct *work)
e22bee78 1916{
112202d9
TH
1917 struct pool_workqueue *pwq = get_work_pwq(work);
1918 struct workqueue_struct *wq = pwq->wq;
493a1724 1919
2e109a28 1920 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1921
493008a8 1922 if (!wq->rescuer)
493a1724 1923 return;
e22bee78
TH
1924
1925 /* mayday mayday mayday */
493a1724 1926 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1927 /*
1928 * If @pwq is for an unbound wq, its base ref may be put at
1929 * any time due to an attribute change. Pin @pwq until the
1930 * rescuer is done with it.
1931 */
1932 get_pwq(pwq);
493a1724 1933 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1934 wake_up_process(wq->rescuer->task);
493a1724 1935 }
e22bee78
TH
1936}
1937
32a6c723 1938static void pool_mayday_timeout(struct timer_list *t)
e22bee78 1939{
32a6c723 1940 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
1941 struct work_struct *work;
1942
b2d82909
TH
1943 spin_lock_irq(&pool->lock);
1944 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1945
63d95a91 1946 if (need_to_create_worker(pool)) {
e22bee78
TH
1947 /*
1948 * We've been trying to create a new worker but
1949 * haven't been successful. We might be hitting an
1950 * allocation deadlock. Send distress signals to
1951 * rescuers.
1952 */
63d95a91 1953 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1954 send_mayday(work);
1da177e4 1955 }
e22bee78 1956
b2d82909
TH
1957 spin_unlock(&wq_mayday_lock);
1958 spin_unlock_irq(&pool->lock);
e22bee78 1959
63d95a91 1960 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1961}
1962
e22bee78
TH
1963/**
1964 * maybe_create_worker - create a new worker if necessary
63d95a91 1965 * @pool: pool to create a new worker for
e22bee78 1966 *
63d95a91 1967 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1968 * have at least one idle worker on return from this function. If
1969 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1970 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1971 * possible allocation deadlock.
1972 *
c5aa87bb
TH
1973 * On return, need_to_create_worker() is guaranteed to be %false and
1974 * may_start_working() %true.
e22bee78
TH
1975 *
1976 * LOCKING:
d565ed63 1977 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1978 * multiple times. Does GFP_KERNEL allocations. Called only from
1979 * manager.
e22bee78 1980 */
29187a9e 1981static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1982__releases(&pool->lock)
1983__acquires(&pool->lock)
1da177e4 1984{
e22bee78 1985restart:
d565ed63 1986 spin_unlock_irq(&pool->lock);
9f9c2364 1987
e22bee78 1988 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1989 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1990
1991 while (true) {
051e1850 1992 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1993 break;
1da177e4 1994
e212f361 1995 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1996
63d95a91 1997 if (!need_to_create_worker(pool))
e22bee78
TH
1998 break;
1999 }
2000
63d95a91 2001 del_timer_sync(&pool->mayday_timer);
d565ed63 2002 spin_lock_irq(&pool->lock);
051e1850
LJ
2003 /*
2004 * This is necessary even after a new worker was just successfully
2005 * created as @pool->lock was dropped and the new worker might have
2006 * already become busy.
2007 */
63d95a91 2008 if (need_to_create_worker(pool))
e22bee78 2009 goto restart;
e22bee78
TH
2010}
2011
73f53c4a 2012/**
e22bee78
TH
2013 * manage_workers - manage worker pool
2014 * @worker: self
73f53c4a 2015 *
706026c2 2016 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2017 * to. At any given time, there can be only zero or one manager per
706026c2 2018 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2019 *
2020 * The caller can safely start processing works on false return. On
2021 * true return, it's guaranteed that need_to_create_worker() is false
2022 * and may_start_working() is true.
73f53c4a
TH
2023 *
2024 * CONTEXT:
d565ed63 2025 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2026 * multiple times. Does GFP_KERNEL allocations.
2027 *
d185af30 2028 * Return:
29187a9e
TH
2029 * %false if the pool doesn't need management and the caller can safely
2030 * start processing works, %true if management function was performed and
2031 * the conditions that the caller verified before calling the function may
2032 * no longer be true.
73f53c4a 2033 */
e22bee78 2034static bool manage_workers(struct worker *worker)
73f53c4a 2035{
63d95a91 2036 struct worker_pool *pool = worker->pool;
73f53c4a 2037
692b4825 2038 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2039 return false;
692b4825
TH
2040
2041 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2042 pool->manager = worker;
1e19ffc6 2043
29187a9e 2044 maybe_create_worker(pool);
e22bee78 2045
2607d7a6 2046 pool->manager = NULL;
692b4825
TH
2047 pool->flags &= ~POOL_MANAGER_ACTIVE;
2048 wake_up(&wq_manager_wait);
29187a9e 2049 return true;
73f53c4a
TH
2050}
2051
a62428c0
TH
2052/**
2053 * process_one_work - process single work
c34056a3 2054 * @worker: self
a62428c0
TH
2055 * @work: work to process
2056 *
2057 * Process @work. This function contains all the logics necessary to
2058 * process a single work including synchronization against and
2059 * interaction with other workers on the same cpu, queueing and
2060 * flushing. As long as context requirement is met, any worker can
2061 * call this function to process a work.
2062 *
2063 * CONTEXT:
d565ed63 2064 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2065 */
c34056a3 2066static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2067__releases(&pool->lock)
2068__acquires(&pool->lock)
a62428c0 2069{
112202d9 2070 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2071 struct worker_pool *pool = worker->pool;
112202d9 2072 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2073 int work_color;
7e11629d 2074 struct worker *collision;
a62428c0
TH
2075#ifdef CONFIG_LOCKDEP
2076 /*
2077 * It is permissible to free the struct work_struct from
2078 * inside the function that is called from it, this we need to
2079 * take into account for lockdep too. To avoid bogus "held
2080 * lock freed" warnings as well as problems when looking into
2081 * work->lockdep_map, make a copy and use that here.
2082 */
4d82a1de
PZ
2083 struct lockdep_map lockdep_map;
2084
2085 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2086#endif
807407c0 2087 /* ensure we're on the correct CPU */
85327af6 2088 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2089 raw_smp_processor_id() != pool->cpu);
25511a47 2090
7e11629d
TH
2091 /*
2092 * A single work shouldn't be executed concurrently by
2093 * multiple workers on a single cpu. Check whether anyone is
2094 * already processing the work. If so, defer the work to the
2095 * currently executing one.
2096 */
c9e7cf27 2097 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2098 if (unlikely(collision)) {
2099 move_linked_works(work, &collision->scheduled, NULL);
2100 return;
2101 }
2102
8930caba 2103 /* claim and dequeue */
a62428c0 2104 debug_work_deactivate(work);
c9e7cf27 2105 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2106 worker->current_work = work;
a2c1c57b 2107 worker->current_func = work->func;
112202d9 2108 worker->current_pwq = pwq;
73f53c4a 2109 work_color = get_work_color(work);
7a22ad75 2110
8bf89593
TH
2111 /*
2112 * Record wq name for cmdline and debug reporting, may get
2113 * overridden through set_worker_desc().
2114 */
2115 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2116
a62428c0
TH
2117 list_del_init(&work->entry);
2118
fb0e7beb 2119 /*
228f1d00
LJ
2120 * CPU intensive works don't participate in concurrency management.
2121 * They're the scheduler's responsibility. This takes @worker out
2122 * of concurrency management and the next code block will chain
2123 * execution of the pending work items.
fb0e7beb
TH
2124 */
2125 if (unlikely(cpu_intensive))
228f1d00 2126 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2127
974271c4 2128 /*
a489a03e
LJ
2129 * Wake up another worker if necessary. The condition is always
2130 * false for normal per-cpu workers since nr_running would always
2131 * be >= 1 at this point. This is used to chain execution of the
2132 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2133 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2134 */
a489a03e 2135 if (need_more_worker(pool))
63d95a91 2136 wake_up_worker(pool);
974271c4 2137
8930caba 2138 /*
7c3eed5c 2139 * Record the last pool and clear PENDING which should be the last
d565ed63 2140 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2141 * PENDING and queued state changes happen together while IRQ is
2142 * disabled.
8930caba 2143 */
7c3eed5c 2144 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2145
d565ed63 2146 spin_unlock_irq(&pool->lock);
a62428c0 2147
a1d14934 2148 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2149 lock_map_acquire(&lockdep_map);
e6f3faa7 2150 /*
f52be570
PZ
2151 * Strictly speaking we should mark the invariant state without holding
2152 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2153 *
2154 * However, that would result in:
2155 *
2156 * A(W1)
2157 * WFC(C)
2158 * A(W1)
2159 * C(C)
2160 *
2161 * Which would create W1->C->W1 dependencies, even though there is no
2162 * actual deadlock possible. There are two solutions, using a
2163 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2164 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2165 * these locks.
2166 *
2167 * AFAICT there is no possible deadlock scenario between the
2168 * flush_work() and complete() primitives (except for single-threaded
2169 * workqueues), so hiding them isn't a problem.
2170 */
f52be570 2171 lockdep_invariant_state(true);
e36c886a 2172 trace_workqueue_execute_start(work);
a2c1c57b 2173 worker->current_func(work);
e36c886a
AV
2174 /*
2175 * While we must be careful to not use "work" after this, the trace
2176 * point will only record its address.
2177 */
2178 trace_workqueue_execute_end(work);
a62428c0 2179 lock_map_release(&lockdep_map);
112202d9 2180 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2181
2182 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2183 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2184 " last function: %pf\n",
a2c1c57b
TH
2185 current->comm, preempt_count(), task_pid_nr(current),
2186 worker->current_func);
a62428c0
TH
2187 debug_show_held_locks(current);
2188 dump_stack();
2189 }
2190
b22ce278
TH
2191 /*
2192 * The following prevents a kworker from hogging CPU on !PREEMPT
2193 * kernels, where a requeueing work item waiting for something to
2194 * happen could deadlock with stop_machine as such work item could
2195 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2196 * stop_machine. At the same time, report a quiescent RCU state so
2197 * the same condition doesn't freeze RCU.
b22ce278 2198 */
a7e6425e 2199 cond_resched();
b22ce278 2200
d565ed63 2201 spin_lock_irq(&pool->lock);
a62428c0 2202
fb0e7beb
TH
2203 /* clear cpu intensive status */
2204 if (unlikely(cpu_intensive))
2205 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2206
1b69ac6b
JW
2207 /* tag the worker for identification in schedule() */
2208 worker->last_func = worker->current_func;
2209
a62428c0 2210 /* we're done with it, release */
42f8570f 2211 hash_del(&worker->hentry);
c34056a3 2212 worker->current_work = NULL;
a2c1c57b 2213 worker->current_func = NULL;
112202d9
TH
2214 worker->current_pwq = NULL;
2215 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2216}
2217
affee4b2
TH
2218/**
2219 * process_scheduled_works - process scheduled works
2220 * @worker: self
2221 *
2222 * Process all scheduled works. Please note that the scheduled list
2223 * may change while processing a work, so this function repeatedly
2224 * fetches a work from the top and executes it.
2225 *
2226 * CONTEXT:
d565ed63 2227 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2228 * multiple times.
2229 */
2230static void process_scheduled_works(struct worker *worker)
1da177e4 2231{
affee4b2
TH
2232 while (!list_empty(&worker->scheduled)) {
2233 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2234 struct work_struct, entry);
c34056a3 2235 process_one_work(worker, work);
1da177e4 2236 }
1da177e4
LT
2237}
2238
197f6acc
TH
2239static void set_pf_worker(bool val)
2240{
2241 mutex_lock(&wq_pool_attach_mutex);
2242 if (val)
2243 current->flags |= PF_WQ_WORKER;
2244 else
2245 current->flags &= ~PF_WQ_WORKER;
2246 mutex_unlock(&wq_pool_attach_mutex);
2247}
2248
4690c4ab
TH
2249/**
2250 * worker_thread - the worker thread function
c34056a3 2251 * @__worker: self
4690c4ab 2252 *
c5aa87bb
TH
2253 * The worker thread function. All workers belong to a worker_pool -
2254 * either a per-cpu one or dynamic unbound one. These workers process all
2255 * work items regardless of their specific target workqueue. The only
2256 * exception is work items which belong to workqueues with a rescuer which
2257 * will be explained in rescuer_thread().
d185af30
YB
2258 *
2259 * Return: 0
4690c4ab 2260 */
c34056a3 2261static int worker_thread(void *__worker)
1da177e4 2262{
c34056a3 2263 struct worker *worker = __worker;
bd7bdd43 2264 struct worker_pool *pool = worker->pool;
1da177e4 2265
e22bee78 2266 /* tell the scheduler that this is a workqueue worker */
197f6acc 2267 set_pf_worker(true);
c8e55f36 2268woke_up:
d565ed63 2269 spin_lock_irq(&pool->lock);
1da177e4 2270
a9ab775b
TH
2271 /* am I supposed to die? */
2272 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2273 spin_unlock_irq(&pool->lock);
a9ab775b 2274 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2275 set_pf_worker(false);
60f5a4bc
LJ
2276
2277 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2278 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2279 worker_detach_from_pool(worker);
60f5a4bc 2280 kfree(worker);
a9ab775b 2281 return 0;
c8e55f36 2282 }
affee4b2 2283
c8e55f36 2284 worker_leave_idle(worker);
db7bccf4 2285recheck:
e22bee78 2286 /* no more worker necessary? */
63d95a91 2287 if (!need_more_worker(pool))
e22bee78
TH
2288 goto sleep;
2289
2290 /* do we need to manage? */
63d95a91 2291 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2292 goto recheck;
2293
c8e55f36
TH
2294 /*
2295 * ->scheduled list can only be filled while a worker is
2296 * preparing to process a work or actually processing it.
2297 * Make sure nobody diddled with it while I was sleeping.
2298 */
6183c009 2299 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2300
e22bee78 2301 /*
a9ab775b
TH
2302 * Finish PREP stage. We're guaranteed to have at least one idle
2303 * worker or that someone else has already assumed the manager
2304 * role. This is where @worker starts participating in concurrency
2305 * management if applicable and concurrency management is restored
2306 * after being rebound. See rebind_workers() for details.
e22bee78 2307 */
a9ab775b 2308 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2309
2310 do {
c8e55f36 2311 struct work_struct *work =
bd7bdd43 2312 list_first_entry(&pool->worklist,
c8e55f36
TH
2313 struct work_struct, entry);
2314
82607adc
TH
2315 pool->watchdog_ts = jiffies;
2316
c8e55f36
TH
2317 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2318 /* optimization path, not strictly necessary */
2319 process_one_work(worker, work);
2320 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2321 process_scheduled_works(worker);
c8e55f36
TH
2322 } else {
2323 move_linked_works(work, &worker->scheduled, NULL);
2324 process_scheduled_works(worker);
affee4b2 2325 }
63d95a91 2326 } while (keep_working(pool));
e22bee78 2327
228f1d00 2328 worker_set_flags(worker, WORKER_PREP);
d313dd85 2329sleep:
c8e55f36 2330 /*
d565ed63
TH
2331 * pool->lock is held and there's no work to process and no need to
2332 * manage, sleep. Workers are woken up only while holding
2333 * pool->lock or from local cpu, so setting the current state
2334 * before releasing pool->lock is enough to prevent losing any
2335 * event.
c8e55f36
TH
2336 */
2337 worker_enter_idle(worker);
c5a94a61 2338 __set_current_state(TASK_IDLE);
d565ed63 2339 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2340 schedule();
2341 goto woke_up;
1da177e4
LT
2342}
2343
e22bee78
TH
2344/**
2345 * rescuer_thread - the rescuer thread function
111c225a 2346 * @__rescuer: self
e22bee78
TH
2347 *
2348 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2349 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2350 *
706026c2 2351 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2352 * worker which uses GFP_KERNEL allocation which has slight chance of
2353 * developing into deadlock if some works currently on the same queue
2354 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2355 * the problem rescuer solves.
2356 *
706026c2
TH
2357 * When such condition is possible, the pool summons rescuers of all
2358 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2359 * those works so that forward progress can be guaranteed.
2360 *
2361 * This should happen rarely.
d185af30
YB
2362 *
2363 * Return: 0
e22bee78 2364 */
111c225a 2365static int rescuer_thread(void *__rescuer)
e22bee78 2366{
111c225a
TH
2367 struct worker *rescuer = __rescuer;
2368 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2369 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2370 bool should_stop;
e22bee78
TH
2371
2372 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2373
2374 /*
2375 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2376 * doesn't participate in concurrency management.
2377 */
197f6acc 2378 set_pf_worker(true);
e22bee78 2379repeat:
c5a94a61 2380 set_current_state(TASK_IDLE);
e22bee78 2381
4d595b86
LJ
2382 /*
2383 * By the time the rescuer is requested to stop, the workqueue
2384 * shouldn't have any work pending, but @wq->maydays may still have
2385 * pwq(s) queued. This can happen by non-rescuer workers consuming
2386 * all the work items before the rescuer got to them. Go through
2387 * @wq->maydays processing before acting on should_stop so that the
2388 * list is always empty on exit.
2389 */
2390 should_stop = kthread_should_stop();
e22bee78 2391
493a1724 2392 /* see whether any pwq is asking for help */
2e109a28 2393 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2394
2395 while (!list_empty(&wq->maydays)) {
2396 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2397 struct pool_workqueue, mayday_node);
112202d9 2398 struct worker_pool *pool = pwq->pool;
e22bee78 2399 struct work_struct *work, *n;
82607adc 2400 bool first = true;
e22bee78
TH
2401
2402 __set_current_state(TASK_RUNNING);
493a1724
TH
2403 list_del_init(&pwq->mayday_node);
2404
2e109a28 2405 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2406
51697d39
LJ
2407 worker_attach_to_pool(rescuer, pool);
2408
2409 spin_lock_irq(&pool->lock);
e22bee78
TH
2410
2411 /*
2412 * Slurp in all works issued via this workqueue and
2413 * process'em.
2414 */
0479c8c5 2415 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2416 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2417 if (get_work_pwq(work) == pwq) {
2418 if (first)
2419 pool->watchdog_ts = jiffies;
e22bee78 2420 move_linked_works(work, scheduled, &n);
82607adc
TH
2421 }
2422 first = false;
2423 }
e22bee78 2424
008847f6
N
2425 if (!list_empty(scheduled)) {
2426 process_scheduled_works(rescuer);
2427
2428 /*
2429 * The above execution of rescued work items could
2430 * have created more to rescue through
2431 * pwq_activate_first_delayed() or chained
2432 * queueing. Let's put @pwq back on mayday list so
2433 * that such back-to-back work items, which may be
2434 * being used to relieve memory pressure, don't
2435 * incur MAYDAY_INTERVAL delay inbetween.
2436 */
2437 if (need_to_create_worker(pool)) {
2438 spin_lock(&wq_mayday_lock);
2439 get_pwq(pwq);
2440 list_move_tail(&pwq->mayday_node, &wq->maydays);
2441 spin_unlock(&wq_mayday_lock);
2442 }
2443 }
7576958a 2444
77668c8b
LJ
2445 /*
2446 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2447 * go away while we're still attached to it.
77668c8b
LJ
2448 */
2449 put_pwq(pwq);
2450
7576958a 2451 /*
d8ca83e6 2452 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2453 * regular worker; otherwise, we end up with 0 concurrency
2454 * and stalling the execution.
2455 */
d8ca83e6 2456 if (need_more_worker(pool))
63d95a91 2457 wake_up_worker(pool);
7576958a 2458
13b1d625
LJ
2459 spin_unlock_irq(&pool->lock);
2460
a2d812a2 2461 worker_detach_from_pool(rescuer);
13b1d625
LJ
2462
2463 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2464 }
2465
2e109a28 2466 spin_unlock_irq(&wq_mayday_lock);
493a1724 2467
4d595b86
LJ
2468 if (should_stop) {
2469 __set_current_state(TASK_RUNNING);
197f6acc 2470 set_pf_worker(false);
4d595b86
LJ
2471 return 0;
2472 }
2473
111c225a
TH
2474 /* rescuers should never participate in concurrency management */
2475 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2476 schedule();
2477 goto repeat;
1da177e4
LT
2478}
2479
fca839c0
TH
2480/**
2481 * check_flush_dependency - check for flush dependency sanity
2482 * @target_wq: workqueue being flushed
2483 * @target_work: work item being flushed (NULL for workqueue flushes)
2484 *
2485 * %current is trying to flush the whole @target_wq or @target_work on it.
2486 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2487 * reclaiming memory or running on a workqueue which doesn't have
2488 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2489 * a deadlock.
2490 */
2491static void check_flush_dependency(struct workqueue_struct *target_wq,
2492 struct work_struct *target_work)
2493{
2494 work_func_t target_func = target_work ? target_work->func : NULL;
2495 struct worker *worker;
2496
2497 if (target_wq->flags & WQ_MEM_RECLAIM)
2498 return;
2499
2500 worker = current_wq_worker();
2501
2502 WARN_ONCE(current->flags & PF_MEMALLOC,
2503 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2504 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2505 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2506 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2507 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2508 worker->current_pwq->wq->name, worker->current_func,
2509 target_wq->name, target_func);
2510}
2511
fc2e4d70
ON
2512struct wq_barrier {
2513 struct work_struct work;
2514 struct completion done;
2607d7a6 2515 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2516};
2517
2518static void wq_barrier_func(struct work_struct *work)
2519{
2520 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2521 complete(&barr->done);
2522}
2523
4690c4ab
TH
2524/**
2525 * insert_wq_barrier - insert a barrier work
112202d9 2526 * @pwq: pwq to insert barrier into
4690c4ab 2527 * @barr: wq_barrier to insert
affee4b2
TH
2528 * @target: target work to attach @barr to
2529 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2530 *
affee4b2
TH
2531 * @barr is linked to @target such that @barr is completed only after
2532 * @target finishes execution. Please note that the ordering
2533 * guarantee is observed only with respect to @target and on the local
2534 * cpu.
2535 *
2536 * Currently, a queued barrier can't be canceled. This is because
2537 * try_to_grab_pending() can't determine whether the work to be
2538 * grabbed is at the head of the queue and thus can't clear LINKED
2539 * flag of the previous work while there must be a valid next work
2540 * after a work with LINKED flag set.
2541 *
2542 * Note that when @worker is non-NULL, @target may be modified
112202d9 2543 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2544 *
2545 * CONTEXT:
d565ed63 2546 * spin_lock_irq(pool->lock).
4690c4ab 2547 */
112202d9 2548static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2549 struct wq_barrier *barr,
2550 struct work_struct *target, struct worker *worker)
fc2e4d70 2551{
affee4b2
TH
2552 struct list_head *head;
2553 unsigned int linked = 0;
2554
dc186ad7 2555 /*
d565ed63 2556 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2557 * as we know for sure that this will not trigger any of the
2558 * checks and call back into the fixup functions where we
2559 * might deadlock.
2560 */
ca1cab37 2561 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2562 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2563
fd1a5b04
BP
2564 init_completion_map(&barr->done, &target->lockdep_map);
2565
2607d7a6 2566 barr->task = current;
83c22520 2567
affee4b2
TH
2568 /*
2569 * If @target is currently being executed, schedule the
2570 * barrier to the worker; otherwise, put it after @target.
2571 */
2572 if (worker)
2573 head = worker->scheduled.next;
2574 else {
2575 unsigned long *bits = work_data_bits(target);
2576
2577 head = target->entry.next;
2578 /* there can already be other linked works, inherit and set */
2579 linked = *bits & WORK_STRUCT_LINKED;
2580 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2581 }
2582
dc186ad7 2583 debug_work_activate(&barr->work);
112202d9 2584 insert_work(pwq, &barr->work, head,
affee4b2 2585 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2586}
2587
73f53c4a 2588/**
112202d9 2589 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2590 * @wq: workqueue being flushed
2591 * @flush_color: new flush color, < 0 for no-op
2592 * @work_color: new work color, < 0 for no-op
2593 *
112202d9 2594 * Prepare pwqs for workqueue flushing.
73f53c4a 2595 *
112202d9
TH
2596 * If @flush_color is non-negative, flush_color on all pwqs should be
2597 * -1. If no pwq has in-flight commands at the specified color, all
2598 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2599 * has in flight commands, its pwq->flush_color is set to
2600 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2601 * wakeup logic is armed and %true is returned.
2602 *
2603 * The caller should have initialized @wq->first_flusher prior to
2604 * calling this function with non-negative @flush_color. If
2605 * @flush_color is negative, no flush color update is done and %false
2606 * is returned.
2607 *
112202d9 2608 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2609 * work_color which is previous to @work_color and all will be
2610 * advanced to @work_color.
2611 *
2612 * CONTEXT:
3c25a55d 2613 * mutex_lock(wq->mutex).
73f53c4a 2614 *
d185af30 2615 * Return:
73f53c4a
TH
2616 * %true if @flush_color >= 0 and there's something to flush. %false
2617 * otherwise.
2618 */
112202d9 2619static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2620 int flush_color, int work_color)
1da177e4 2621{
73f53c4a 2622 bool wait = false;
49e3cf44 2623 struct pool_workqueue *pwq;
1da177e4 2624
73f53c4a 2625 if (flush_color >= 0) {
6183c009 2626 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2627 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2628 }
2355b70f 2629
49e3cf44 2630 for_each_pwq(pwq, wq) {
112202d9 2631 struct worker_pool *pool = pwq->pool;
fc2e4d70 2632
b09f4fd3 2633 spin_lock_irq(&pool->lock);
83c22520 2634
73f53c4a 2635 if (flush_color >= 0) {
6183c009 2636 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2637
112202d9
TH
2638 if (pwq->nr_in_flight[flush_color]) {
2639 pwq->flush_color = flush_color;
2640 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2641 wait = true;
2642 }
2643 }
1da177e4 2644
73f53c4a 2645 if (work_color >= 0) {
6183c009 2646 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2647 pwq->work_color = work_color;
73f53c4a 2648 }
1da177e4 2649
b09f4fd3 2650 spin_unlock_irq(&pool->lock);
1da177e4 2651 }
2355b70f 2652
112202d9 2653 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2654 complete(&wq->first_flusher->done);
14441960 2655
73f53c4a 2656 return wait;
1da177e4
LT
2657}
2658
0fcb78c2 2659/**
1da177e4 2660 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2661 * @wq: workqueue to flush
1da177e4 2662 *
c5aa87bb
TH
2663 * This function sleeps until all work items which were queued on entry
2664 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2665 */
7ad5b3a5 2666void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2667{
73f53c4a
TH
2668 struct wq_flusher this_flusher = {
2669 .list = LIST_HEAD_INIT(this_flusher.list),
2670 .flush_color = -1,
fd1a5b04 2671 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2672 };
2673 int next_color;
1da177e4 2674
3347fa09
TH
2675 if (WARN_ON(!wq_online))
2676 return;
2677
87915adc
JB
2678 lock_map_acquire(&wq->lockdep_map);
2679 lock_map_release(&wq->lockdep_map);
2680
3c25a55d 2681 mutex_lock(&wq->mutex);
73f53c4a
TH
2682
2683 /*
2684 * Start-to-wait phase
2685 */
2686 next_color = work_next_color(wq->work_color);
2687
2688 if (next_color != wq->flush_color) {
2689 /*
2690 * Color space is not full. The current work_color
2691 * becomes our flush_color and work_color is advanced
2692 * by one.
2693 */
6183c009 2694 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2695 this_flusher.flush_color = wq->work_color;
2696 wq->work_color = next_color;
2697
2698 if (!wq->first_flusher) {
2699 /* no flush in progress, become the first flusher */
6183c009 2700 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2701
2702 wq->first_flusher = &this_flusher;
2703
112202d9 2704 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2705 wq->work_color)) {
2706 /* nothing to flush, done */
2707 wq->flush_color = next_color;
2708 wq->first_flusher = NULL;
2709 goto out_unlock;
2710 }
2711 } else {
2712 /* wait in queue */
6183c009 2713 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2714 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2715 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2716 }
2717 } else {
2718 /*
2719 * Oops, color space is full, wait on overflow queue.
2720 * The next flush completion will assign us
2721 * flush_color and transfer to flusher_queue.
2722 */
2723 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2724 }
2725
fca839c0
TH
2726 check_flush_dependency(wq, NULL);
2727
3c25a55d 2728 mutex_unlock(&wq->mutex);
73f53c4a
TH
2729
2730 wait_for_completion(&this_flusher.done);
2731
2732 /*
2733 * Wake-up-and-cascade phase
2734 *
2735 * First flushers are responsible for cascading flushes and
2736 * handling overflow. Non-first flushers can simply return.
2737 */
2738 if (wq->first_flusher != &this_flusher)
2739 return;
2740
3c25a55d 2741 mutex_lock(&wq->mutex);
73f53c4a 2742
4ce48b37
TH
2743 /* we might have raced, check again with mutex held */
2744 if (wq->first_flusher != &this_flusher)
2745 goto out_unlock;
2746
73f53c4a
TH
2747 wq->first_flusher = NULL;
2748
6183c009
TH
2749 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2750 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2751
2752 while (true) {
2753 struct wq_flusher *next, *tmp;
2754
2755 /* complete all the flushers sharing the current flush color */
2756 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2757 if (next->flush_color != wq->flush_color)
2758 break;
2759 list_del_init(&next->list);
2760 complete(&next->done);
2761 }
2762
6183c009
TH
2763 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2764 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2765
2766 /* this flush_color is finished, advance by one */
2767 wq->flush_color = work_next_color(wq->flush_color);
2768
2769 /* one color has been freed, handle overflow queue */
2770 if (!list_empty(&wq->flusher_overflow)) {
2771 /*
2772 * Assign the same color to all overflowed
2773 * flushers, advance work_color and append to
2774 * flusher_queue. This is the start-to-wait
2775 * phase for these overflowed flushers.
2776 */
2777 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2778 tmp->flush_color = wq->work_color;
2779
2780 wq->work_color = work_next_color(wq->work_color);
2781
2782 list_splice_tail_init(&wq->flusher_overflow,
2783 &wq->flusher_queue);
112202d9 2784 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2785 }
2786
2787 if (list_empty(&wq->flusher_queue)) {
6183c009 2788 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2789 break;
2790 }
2791
2792 /*
2793 * Need to flush more colors. Make the next flusher
112202d9 2794 * the new first flusher and arm pwqs.
73f53c4a 2795 */
6183c009
TH
2796 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2797 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2798
2799 list_del_init(&next->list);
2800 wq->first_flusher = next;
2801
112202d9 2802 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2803 break;
2804
2805 /*
2806 * Meh... this color is already done, clear first
2807 * flusher and repeat cascading.
2808 */
2809 wq->first_flusher = NULL;
2810 }
2811
2812out_unlock:
3c25a55d 2813 mutex_unlock(&wq->mutex);
1da177e4 2814}
1dadafa8 2815EXPORT_SYMBOL(flush_workqueue);
1da177e4 2816
9c5a2ba7
TH
2817/**
2818 * drain_workqueue - drain a workqueue
2819 * @wq: workqueue to drain
2820 *
2821 * Wait until the workqueue becomes empty. While draining is in progress,
2822 * only chain queueing is allowed. IOW, only currently pending or running
2823 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2824 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2825 * by the depth of chaining and should be relatively short. Whine if it
2826 * takes too long.
2827 */
2828void drain_workqueue(struct workqueue_struct *wq)
2829{
2830 unsigned int flush_cnt = 0;
49e3cf44 2831 struct pool_workqueue *pwq;
9c5a2ba7
TH
2832
2833 /*
2834 * __queue_work() needs to test whether there are drainers, is much
2835 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2836 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2837 */
87fc741e 2838 mutex_lock(&wq->mutex);
9c5a2ba7 2839 if (!wq->nr_drainers++)
618b01eb 2840 wq->flags |= __WQ_DRAINING;
87fc741e 2841 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2842reflush:
2843 flush_workqueue(wq);
2844
b09f4fd3 2845 mutex_lock(&wq->mutex);
76af4d93 2846
49e3cf44 2847 for_each_pwq(pwq, wq) {
fa2563e4 2848 bool drained;
9c5a2ba7 2849
b09f4fd3 2850 spin_lock_irq(&pwq->pool->lock);
112202d9 2851 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2852 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2853
2854 if (drained)
9c5a2ba7
TH
2855 continue;
2856
2857 if (++flush_cnt == 10 ||
2858 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2859 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2860 wq->name, flush_cnt);
76af4d93 2861
b09f4fd3 2862 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2863 goto reflush;
2864 }
2865
9c5a2ba7 2866 if (!--wq->nr_drainers)
618b01eb 2867 wq->flags &= ~__WQ_DRAINING;
87fc741e 2868 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2869}
2870EXPORT_SYMBOL_GPL(drain_workqueue);
2871
d6e89786
JB
2872static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2873 bool from_cancel)
db700897 2874{
affee4b2 2875 struct worker *worker = NULL;
c9e7cf27 2876 struct worker_pool *pool;
112202d9 2877 struct pool_workqueue *pwq;
db700897
ON
2878
2879 might_sleep();
fa1b54e6
TH
2880
2881 local_irq_disable();
c9e7cf27 2882 pool = get_work_pool(work);
fa1b54e6
TH
2883 if (!pool) {
2884 local_irq_enable();
baf59022 2885 return false;
fa1b54e6 2886 }
db700897 2887
fa1b54e6 2888 spin_lock(&pool->lock);
0b3dae68 2889 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2890 pwq = get_work_pwq(work);
2891 if (pwq) {
2892 if (unlikely(pwq->pool != pool))
4690c4ab 2893 goto already_gone;
606a5020 2894 } else {
c9e7cf27 2895 worker = find_worker_executing_work(pool, work);
affee4b2 2896 if (!worker)
4690c4ab 2897 goto already_gone;
112202d9 2898 pwq = worker->current_pwq;
606a5020 2899 }
db700897 2900
fca839c0
TH
2901 check_flush_dependency(pwq->wq, work);
2902
112202d9 2903 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2904 spin_unlock_irq(&pool->lock);
7a22ad75 2905
e159489b 2906 /*
a1d14934
PZ
2907 * Force a lock recursion deadlock when using flush_work() inside a
2908 * single-threaded or rescuer equipped workqueue.
2909 *
2910 * For single threaded workqueues the deadlock happens when the work
2911 * is after the work issuing the flush_work(). For rescuer equipped
2912 * workqueues the deadlock happens when the rescuer stalls, blocking
2913 * forward progress.
e159489b 2914 */
d6e89786
JB
2915 if (!from_cancel &&
2916 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 2917 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2918 lock_map_release(&pwq->wq->lockdep_map);
2919 }
e159489b 2920
401a8d04 2921 return true;
4690c4ab 2922already_gone:
d565ed63 2923 spin_unlock_irq(&pool->lock);
401a8d04 2924 return false;
db700897 2925}
baf59022 2926
d6e89786
JB
2927static bool __flush_work(struct work_struct *work, bool from_cancel)
2928{
2929 struct wq_barrier barr;
2930
2931 if (WARN_ON(!wq_online))
2932 return false;
2933
87915adc
JB
2934 if (!from_cancel) {
2935 lock_map_acquire(&work->lockdep_map);
2936 lock_map_release(&work->lockdep_map);
2937 }
2938
d6e89786
JB
2939 if (start_flush_work(work, &barr, from_cancel)) {
2940 wait_for_completion(&barr.done);
2941 destroy_work_on_stack(&barr.work);
2942 return true;
2943 } else {
2944 return false;
2945 }
2946}
2947
baf59022
TH
2948/**
2949 * flush_work - wait for a work to finish executing the last queueing instance
2950 * @work: the work to flush
2951 *
606a5020
TH
2952 * Wait until @work has finished execution. @work is guaranteed to be idle
2953 * on return if it hasn't been requeued since flush started.
baf59022 2954 *
d185af30 2955 * Return:
baf59022
TH
2956 * %true if flush_work() waited for the work to finish execution,
2957 * %false if it was already idle.
2958 */
2959bool flush_work(struct work_struct *work)
2960{
d6e89786 2961 return __flush_work(work, false);
6e84d644 2962}
606a5020 2963EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2964
8603e1b3 2965struct cwt_wait {
ac6424b9 2966 wait_queue_entry_t wait;
8603e1b3
TH
2967 struct work_struct *work;
2968};
2969
ac6424b9 2970static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2971{
2972 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2973
2974 if (cwait->work != key)
2975 return 0;
2976 return autoremove_wake_function(wait, mode, sync, key);
2977}
2978
36e227d2 2979static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2980{
8603e1b3 2981 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2982 unsigned long flags;
1f1f642e
ON
2983 int ret;
2984
2985 do {
bbb68dfa
TH
2986 ret = try_to_grab_pending(work, is_dwork, &flags);
2987 /*
8603e1b3
TH
2988 * If someone else is already canceling, wait for it to
2989 * finish. flush_work() doesn't work for PREEMPT_NONE
2990 * because we may get scheduled between @work's completion
2991 * and the other canceling task resuming and clearing
2992 * CANCELING - flush_work() will return false immediately
2993 * as @work is no longer busy, try_to_grab_pending() will
2994 * return -ENOENT as @work is still being canceled and the
2995 * other canceling task won't be able to clear CANCELING as
2996 * we're hogging the CPU.
2997 *
2998 * Let's wait for completion using a waitqueue. As this
2999 * may lead to the thundering herd problem, use a custom
3000 * wake function which matches @work along with exclusive
3001 * wait and wakeup.
bbb68dfa 3002 */
8603e1b3
TH
3003 if (unlikely(ret == -ENOENT)) {
3004 struct cwt_wait cwait;
3005
3006 init_wait(&cwait.wait);
3007 cwait.wait.func = cwt_wakefn;
3008 cwait.work = work;
3009
3010 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3011 TASK_UNINTERRUPTIBLE);
3012 if (work_is_canceling(work))
3013 schedule();
3014 finish_wait(&cancel_waitq, &cwait.wait);
3015 }
1f1f642e
ON
3016 } while (unlikely(ret < 0));
3017
bbb68dfa
TH
3018 /* tell other tasks trying to grab @work to back off */
3019 mark_work_canceling(work);
3020 local_irq_restore(flags);
3021
3347fa09
TH
3022 /*
3023 * This allows canceling during early boot. We know that @work
3024 * isn't executing.
3025 */
3026 if (wq_online)
d6e89786 3027 __flush_work(work, true);
3347fa09 3028
7a22ad75 3029 clear_work_data(work);
8603e1b3
TH
3030
3031 /*
3032 * Paired with prepare_to_wait() above so that either
3033 * waitqueue_active() is visible here or !work_is_canceling() is
3034 * visible there.
3035 */
3036 smp_mb();
3037 if (waitqueue_active(&cancel_waitq))
3038 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3039
1f1f642e
ON
3040 return ret;
3041}
3042
6e84d644 3043/**
401a8d04
TH
3044 * cancel_work_sync - cancel a work and wait for it to finish
3045 * @work: the work to cancel
6e84d644 3046 *
401a8d04
TH
3047 * Cancel @work and wait for its execution to finish. This function
3048 * can be used even if the work re-queues itself or migrates to
3049 * another workqueue. On return from this function, @work is
3050 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3051 *
401a8d04
TH
3052 * cancel_work_sync(&delayed_work->work) must not be used for
3053 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3054 *
401a8d04 3055 * The caller must ensure that the workqueue on which @work was last
6e84d644 3056 * queued can't be destroyed before this function returns.
401a8d04 3057 *
d185af30 3058 * Return:
401a8d04 3059 * %true if @work was pending, %false otherwise.
6e84d644 3060 */
401a8d04 3061bool cancel_work_sync(struct work_struct *work)
6e84d644 3062{
36e227d2 3063 return __cancel_work_timer(work, false);
b89deed3 3064}
28e53bdd 3065EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3066
6e84d644 3067/**
401a8d04
TH
3068 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3069 * @dwork: the delayed work to flush
6e84d644 3070 *
401a8d04
TH
3071 * Delayed timer is cancelled and the pending work is queued for
3072 * immediate execution. Like flush_work(), this function only
3073 * considers the last queueing instance of @dwork.
1f1f642e 3074 *
d185af30 3075 * Return:
401a8d04
TH
3076 * %true if flush_work() waited for the work to finish execution,
3077 * %false if it was already idle.
6e84d644 3078 */
401a8d04
TH
3079bool flush_delayed_work(struct delayed_work *dwork)
3080{
8930caba 3081 local_irq_disable();
401a8d04 3082 if (del_timer_sync(&dwork->timer))
60c057bc 3083 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3084 local_irq_enable();
401a8d04
TH
3085 return flush_work(&dwork->work);
3086}
3087EXPORT_SYMBOL(flush_delayed_work);
3088
05f0fe6b
TH
3089/**
3090 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3091 * @rwork: the rcu work to flush
3092 *
3093 * Return:
3094 * %true if flush_rcu_work() waited for the work to finish execution,
3095 * %false if it was already idle.
3096 */
3097bool flush_rcu_work(struct rcu_work *rwork)
3098{
3099 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3100 rcu_barrier();
3101 flush_work(&rwork->work);
3102 return true;
3103 } else {
3104 return flush_work(&rwork->work);
3105 }
3106}
3107EXPORT_SYMBOL(flush_rcu_work);
3108
f72b8792
JA
3109static bool __cancel_work(struct work_struct *work, bool is_dwork)
3110{
3111 unsigned long flags;
3112 int ret;
3113
3114 do {
3115 ret = try_to_grab_pending(work, is_dwork, &flags);
3116 } while (unlikely(ret == -EAGAIN));
3117
3118 if (unlikely(ret < 0))
3119 return false;
3120
3121 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3122 local_irq_restore(flags);
3123 return ret;
3124}
3125
09383498 3126/**
57b30ae7
TH
3127 * cancel_delayed_work - cancel a delayed work
3128 * @dwork: delayed_work to cancel
09383498 3129 *
d185af30
YB
3130 * Kill off a pending delayed_work.
3131 *
3132 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3133 * pending.
3134 *
3135 * Note:
3136 * The work callback function may still be running on return, unless
3137 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3138 * use cancel_delayed_work_sync() to wait on it.
09383498 3139 *
57b30ae7 3140 * This function is safe to call from any context including IRQ handler.
09383498 3141 */
57b30ae7 3142bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3143{
f72b8792 3144 return __cancel_work(&dwork->work, true);
09383498 3145}
57b30ae7 3146EXPORT_SYMBOL(cancel_delayed_work);
09383498 3147
401a8d04
TH
3148/**
3149 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3150 * @dwork: the delayed work cancel
3151 *
3152 * This is cancel_work_sync() for delayed works.
3153 *
d185af30 3154 * Return:
401a8d04
TH
3155 * %true if @dwork was pending, %false otherwise.
3156 */
3157bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3158{
36e227d2 3159 return __cancel_work_timer(&dwork->work, true);
6e84d644 3160}
f5a421a4 3161EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3162
b6136773 3163/**
31ddd871 3164 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3165 * @func: the function to call
b6136773 3166 *
31ddd871
TH
3167 * schedule_on_each_cpu() executes @func on each online CPU using the
3168 * system workqueue and blocks until all CPUs have completed.
b6136773 3169 * schedule_on_each_cpu() is very slow.
31ddd871 3170 *
d185af30 3171 * Return:
31ddd871 3172 * 0 on success, -errno on failure.
b6136773 3173 */
65f27f38 3174int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3175{
3176 int cpu;
38f51568 3177 struct work_struct __percpu *works;
15316ba8 3178
b6136773
AM
3179 works = alloc_percpu(struct work_struct);
3180 if (!works)
15316ba8 3181 return -ENOMEM;
b6136773 3182
93981800
TH
3183 get_online_cpus();
3184
15316ba8 3185 for_each_online_cpu(cpu) {
9bfb1839
IM
3186 struct work_struct *work = per_cpu_ptr(works, cpu);
3187
3188 INIT_WORK(work, func);
b71ab8c2 3189 schedule_work_on(cpu, work);
65a64464 3190 }
93981800
TH
3191
3192 for_each_online_cpu(cpu)
3193 flush_work(per_cpu_ptr(works, cpu));
3194
95402b38 3195 put_online_cpus();
b6136773 3196 free_percpu(works);
15316ba8
CL
3197 return 0;
3198}
3199
1fa44eca
JB
3200/**
3201 * execute_in_process_context - reliably execute the routine with user context
3202 * @fn: the function to execute
1fa44eca
JB
3203 * @ew: guaranteed storage for the execute work structure (must
3204 * be available when the work executes)
3205 *
3206 * Executes the function immediately if process context is available,
3207 * otherwise schedules the function for delayed execution.
3208 *
d185af30 3209 * Return: 0 - function was executed
1fa44eca
JB
3210 * 1 - function was scheduled for execution
3211 */
65f27f38 3212int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3213{
3214 if (!in_interrupt()) {
65f27f38 3215 fn(&ew->work);
1fa44eca
JB
3216 return 0;
3217 }
3218
65f27f38 3219 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3220 schedule_work(&ew->work);
3221
3222 return 1;
3223}
3224EXPORT_SYMBOL_GPL(execute_in_process_context);
3225
6ba94429
FW
3226/**
3227 * free_workqueue_attrs - free a workqueue_attrs
3228 * @attrs: workqueue_attrs to free
226223ab 3229 *
6ba94429 3230 * Undo alloc_workqueue_attrs().
226223ab 3231 */
6ba94429 3232void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3233{
6ba94429
FW
3234 if (attrs) {
3235 free_cpumask_var(attrs->cpumask);
3236 kfree(attrs);
3237 }
226223ab
TH
3238}
3239
6ba94429
FW
3240/**
3241 * alloc_workqueue_attrs - allocate a workqueue_attrs
3242 * @gfp_mask: allocation mask to use
3243 *
3244 * Allocate a new workqueue_attrs, initialize with default settings and
3245 * return it.
3246 *
3247 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3248 */
3249struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3250{
6ba94429 3251 struct workqueue_attrs *attrs;
226223ab 3252
6ba94429
FW
3253 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3254 if (!attrs)
3255 goto fail;
3256 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3257 goto fail;
3258
3259 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3260 return attrs;
3261fail:
3262 free_workqueue_attrs(attrs);
3263 return NULL;
226223ab
TH
3264}
3265
6ba94429
FW
3266static void copy_workqueue_attrs(struct workqueue_attrs *to,
3267 const struct workqueue_attrs *from)
226223ab 3268{
6ba94429
FW
3269 to->nice = from->nice;
3270 cpumask_copy(to->cpumask, from->cpumask);
3271 /*
3272 * Unlike hash and equality test, this function doesn't ignore
3273 * ->no_numa as it is used for both pool and wq attrs. Instead,
3274 * get_unbound_pool() explicitly clears ->no_numa after copying.
3275 */
3276 to->no_numa = from->no_numa;
226223ab
TH
3277}
3278
6ba94429
FW
3279/* hash value of the content of @attr */
3280static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3281{
6ba94429 3282 u32 hash = 0;
226223ab 3283
6ba94429
FW
3284 hash = jhash_1word(attrs->nice, hash);
3285 hash = jhash(cpumask_bits(attrs->cpumask),
3286 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3287 return hash;
226223ab 3288}
226223ab 3289
6ba94429
FW
3290/* content equality test */
3291static bool wqattrs_equal(const struct workqueue_attrs *a,
3292 const struct workqueue_attrs *b)
226223ab 3293{
6ba94429
FW
3294 if (a->nice != b->nice)
3295 return false;
3296 if (!cpumask_equal(a->cpumask, b->cpumask))
3297 return false;
3298 return true;
226223ab
TH
3299}
3300
6ba94429
FW
3301/**
3302 * init_worker_pool - initialize a newly zalloc'd worker_pool
3303 * @pool: worker_pool to initialize
3304 *
402dd89d 3305 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3306 *
3307 * Return: 0 on success, -errno on failure. Even on failure, all fields
3308 * inside @pool proper are initialized and put_unbound_pool() can be called
3309 * on @pool safely to release it.
3310 */
3311static int init_worker_pool(struct worker_pool *pool)
226223ab 3312{
6ba94429
FW
3313 spin_lock_init(&pool->lock);
3314 pool->id = -1;
3315 pool->cpu = -1;
3316 pool->node = NUMA_NO_NODE;
3317 pool->flags |= POOL_DISASSOCIATED;
82607adc 3318 pool->watchdog_ts = jiffies;
6ba94429
FW
3319 INIT_LIST_HEAD(&pool->worklist);
3320 INIT_LIST_HEAD(&pool->idle_list);
3321 hash_init(pool->busy_hash);
226223ab 3322
32a6c723 3323 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3324
32a6c723 3325 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3326
6ba94429 3327 INIT_LIST_HEAD(&pool->workers);
226223ab 3328
6ba94429
FW
3329 ida_init(&pool->worker_ida);
3330 INIT_HLIST_NODE(&pool->hash_node);
3331 pool->refcnt = 1;
226223ab 3332
6ba94429
FW
3333 /* shouldn't fail above this point */
3334 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3335 if (!pool->attrs)
3336 return -ENOMEM;
3337 return 0;
226223ab
TH
3338}
3339
6ba94429 3340static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3341{
6ba94429
FW
3342 struct workqueue_struct *wq =
3343 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3344
6ba94429
FW
3345 if (!(wq->flags & WQ_UNBOUND))
3346 free_percpu(wq->cpu_pwqs);
226223ab 3347 else
6ba94429 3348 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3349
6ba94429
FW
3350 kfree(wq->rescuer);
3351 kfree(wq);
226223ab
TH
3352}
3353
6ba94429 3354static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3355{
6ba94429 3356 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3357
6ba94429
FW
3358 ida_destroy(&pool->worker_ida);
3359 free_workqueue_attrs(pool->attrs);
3360 kfree(pool);
226223ab
TH
3361}
3362
6ba94429
FW
3363/**
3364 * put_unbound_pool - put a worker_pool
3365 * @pool: worker_pool to put
3366 *
3367 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3368 * safe manner. get_unbound_pool() calls this function on its failure path
3369 * and this function should be able to release pools which went through,
3370 * successfully or not, init_worker_pool().
3371 *
3372 * Should be called with wq_pool_mutex held.
3373 */
3374static void put_unbound_pool(struct worker_pool *pool)
226223ab 3375{
6ba94429
FW
3376 DECLARE_COMPLETION_ONSTACK(detach_completion);
3377 struct worker *worker;
226223ab 3378
6ba94429 3379 lockdep_assert_held(&wq_pool_mutex);
226223ab 3380
6ba94429
FW
3381 if (--pool->refcnt)
3382 return;
226223ab 3383
6ba94429
FW
3384 /* sanity checks */
3385 if (WARN_ON(!(pool->cpu < 0)) ||
3386 WARN_ON(!list_empty(&pool->worklist)))
3387 return;
226223ab 3388
6ba94429
FW
3389 /* release id and unhash */
3390 if (pool->id >= 0)
3391 idr_remove(&worker_pool_idr, pool->id);
3392 hash_del(&pool->hash_node);
d55262c4 3393
6ba94429 3394 /*
692b4825
TH
3395 * Become the manager and destroy all workers. This prevents
3396 * @pool's workers from blocking on attach_mutex. We're the last
3397 * manager and @pool gets freed with the flag set.
6ba94429 3398 */
6ba94429 3399 spin_lock_irq(&pool->lock);
692b4825
TH
3400 wait_event_lock_irq(wq_manager_wait,
3401 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3402 pool->flags |= POOL_MANAGER_ACTIVE;
3403
6ba94429
FW
3404 while ((worker = first_idle_worker(pool)))
3405 destroy_worker(worker);
3406 WARN_ON(pool->nr_workers || pool->nr_idle);
3407 spin_unlock_irq(&pool->lock);
d55262c4 3408
1258fae7 3409 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3410 if (!list_empty(&pool->workers))
3411 pool->detach_completion = &detach_completion;
1258fae7 3412 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3413
6ba94429
FW
3414 if (pool->detach_completion)
3415 wait_for_completion(pool->detach_completion);
226223ab 3416
6ba94429
FW
3417 /* shut down the timers */
3418 del_timer_sync(&pool->idle_timer);
3419 del_timer_sync(&pool->mayday_timer);
226223ab 3420
6ba94429 3421 /* sched-RCU protected to allow dereferences from get_work_pool() */
25b00775 3422 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3423}
3424
3425/**
6ba94429
FW
3426 * get_unbound_pool - get a worker_pool with the specified attributes
3427 * @attrs: the attributes of the worker_pool to get
226223ab 3428 *
6ba94429
FW
3429 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3430 * reference count and return it. If there already is a matching
3431 * worker_pool, it will be used; otherwise, this function attempts to
3432 * create a new one.
226223ab 3433 *
6ba94429 3434 * Should be called with wq_pool_mutex held.
226223ab 3435 *
6ba94429
FW
3436 * Return: On success, a worker_pool with the same attributes as @attrs.
3437 * On failure, %NULL.
226223ab 3438 */
6ba94429 3439static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3440{
6ba94429
FW
3441 u32 hash = wqattrs_hash(attrs);
3442 struct worker_pool *pool;
3443 int node;
e2273584 3444 int target_node = NUMA_NO_NODE;
226223ab 3445
6ba94429 3446 lockdep_assert_held(&wq_pool_mutex);
226223ab 3447
6ba94429
FW
3448 /* do we already have a matching pool? */
3449 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3450 if (wqattrs_equal(pool->attrs, attrs)) {
3451 pool->refcnt++;
3452 return pool;
3453 }
3454 }
226223ab 3455
e2273584
XP
3456 /* if cpumask is contained inside a NUMA node, we belong to that node */
3457 if (wq_numa_enabled) {
3458 for_each_node(node) {
3459 if (cpumask_subset(attrs->cpumask,
3460 wq_numa_possible_cpumask[node])) {
3461 target_node = node;
3462 break;
3463 }
3464 }
3465 }
3466
6ba94429 3467 /* nope, create a new one */
e2273584 3468 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3469 if (!pool || init_worker_pool(pool) < 0)
3470 goto fail;
3471
3472 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3473 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3474 pool->node = target_node;
226223ab
TH
3475
3476 /*
6ba94429
FW
3477 * no_numa isn't a worker_pool attribute, always clear it. See
3478 * 'struct workqueue_attrs' comments for detail.
226223ab 3479 */
6ba94429 3480 pool->attrs->no_numa = false;
226223ab 3481
6ba94429
FW
3482 if (worker_pool_assign_id(pool) < 0)
3483 goto fail;
226223ab 3484
6ba94429 3485 /* create and start the initial worker */
3347fa09 3486 if (wq_online && !create_worker(pool))
6ba94429 3487 goto fail;
226223ab 3488
6ba94429
FW
3489 /* install */
3490 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3491
6ba94429
FW
3492 return pool;
3493fail:
3494 if (pool)
3495 put_unbound_pool(pool);
3496 return NULL;
226223ab 3497}
226223ab 3498
6ba94429 3499static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3500{
6ba94429
FW
3501 kmem_cache_free(pwq_cache,
3502 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3503}
3504
6ba94429
FW
3505/*
3506 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3507 * and needs to be destroyed.
7a4e344c 3508 */
6ba94429 3509static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3510{
6ba94429
FW
3511 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3512 unbound_release_work);
3513 struct workqueue_struct *wq = pwq->wq;
3514 struct worker_pool *pool = pwq->pool;
3515 bool is_last;
7a4e344c 3516
6ba94429
FW
3517 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3518 return;
7a4e344c 3519
6ba94429
FW
3520 mutex_lock(&wq->mutex);
3521 list_del_rcu(&pwq->pwqs_node);
3522 is_last = list_empty(&wq->pwqs);
3523 mutex_unlock(&wq->mutex);
3524
3525 mutex_lock(&wq_pool_mutex);
3526 put_unbound_pool(pool);
3527 mutex_unlock(&wq_pool_mutex);
3528
25b00775 3529 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3530
2865a8fb 3531 /*
6ba94429
FW
3532 * If we're the last pwq going away, @wq is already dead and no one
3533 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3534 */
6ba94429 3535 if (is_last)
25b00775 3536 call_rcu(&wq->rcu, rcu_free_wq);
29c91e99
TH
3537}
3538
7a4e344c 3539/**
6ba94429
FW
3540 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3541 * @pwq: target pool_workqueue
d185af30 3542 *
6ba94429
FW
3543 * If @pwq isn't freezing, set @pwq->max_active to the associated
3544 * workqueue's saved_max_active and activate delayed work items
3545 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3546 */
6ba94429 3547static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3548{
6ba94429
FW
3549 struct workqueue_struct *wq = pwq->wq;
3550 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3551 unsigned long flags;
4e1a1f9a 3552
6ba94429
FW
3553 /* for @wq->saved_max_active */
3554 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3555
6ba94429
FW
3556 /* fast exit for non-freezable wqs */
3557 if (!freezable && pwq->max_active == wq->saved_max_active)
3558 return;
7a4e344c 3559
3347fa09
TH
3560 /* this function can be called during early boot w/ irq disabled */
3561 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3562
6ba94429
FW
3563 /*
3564 * During [un]freezing, the caller is responsible for ensuring that
3565 * this function is called at least once after @workqueue_freezing
3566 * is updated and visible.
3567 */
3568 if (!freezable || !workqueue_freezing) {
3569 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3570
6ba94429
FW
3571 while (!list_empty(&pwq->delayed_works) &&
3572 pwq->nr_active < pwq->max_active)
3573 pwq_activate_first_delayed(pwq);
e2dca7ad 3574
6ba94429
FW
3575 /*
3576 * Need to kick a worker after thawed or an unbound wq's
3577 * max_active is bumped. It's a slow path. Do it always.
3578 */
3579 wake_up_worker(pwq->pool);
3580 } else {
3581 pwq->max_active = 0;
3582 }
e2dca7ad 3583
3347fa09 3584 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3585}
3586
6ba94429
FW
3587/* initialize newly alloced @pwq which is associated with @wq and @pool */
3588static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3589 struct worker_pool *pool)
29c91e99 3590{
6ba94429 3591 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3592
6ba94429
FW
3593 memset(pwq, 0, sizeof(*pwq));
3594
3595 pwq->pool = pool;
3596 pwq->wq = wq;
3597 pwq->flush_color = -1;
3598 pwq->refcnt = 1;
3599 INIT_LIST_HEAD(&pwq->delayed_works);
3600 INIT_LIST_HEAD(&pwq->pwqs_node);
3601 INIT_LIST_HEAD(&pwq->mayday_node);
3602 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3603}
3604
6ba94429
FW
3605/* sync @pwq with the current state of its associated wq and link it */
3606static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3607{
6ba94429 3608 struct workqueue_struct *wq = pwq->wq;
29c91e99 3609
6ba94429 3610 lockdep_assert_held(&wq->mutex);
a892cacc 3611
6ba94429
FW
3612 /* may be called multiple times, ignore if already linked */
3613 if (!list_empty(&pwq->pwqs_node))
29c91e99 3614 return;
29c91e99 3615
6ba94429
FW
3616 /* set the matching work_color */
3617 pwq->work_color = wq->work_color;
29c91e99 3618
6ba94429
FW
3619 /* sync max_active to the current setting */
3620 pwq_adjust_max_active(pwq);
29c91e99 3621
6ba94429
FW
3622 /* link in @pwq */
3623 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3624}
29c91e99 3625
6ba94429
FW
3626/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3627static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3628 const struct workqueue_attrs *attrs)
3629{
3630 struct worker_pool *pool;
3631 struct pool_workqueue *pwq;
60f5a4bc 3632
6ba94429 3633 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3634
6ba94429
FW
3635 pool = get_unbound_pool(attrs);
3636 if (!pool)
3637 return NULL;
60f5a4bc 3638
6ba94429
FW
3639 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3640 if (!pwq) {
3641 put_unbound_pool(pool);
3642 return NULL;
3643 }
29c91e99 3644
6ba94429
FW
3645 init_pwq(pwq, wq, pool);
3646 return pwq;
3647}
29c91e99 3648
29c91e99 3649/**
30186c6f 3650 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3651 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3652 * @node: the target NUMA node
3653 * @cpu_going_down: if >= 0, the CPU to consider as offline
3654 * @cpumask: outarg, the resulting cpumask
29c91e99 3655 *
6ba94429
FW
3656 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3657 * @cpu_going_down is >= 0, that cpu is considered offline during
3658 * calculation. The result is stored in @cpumask.
a892cacc 3659 *
6ba94429
FW
3660 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3661 * enabled and @node has online CPUs requested by @attrs, the returned
3662 * cpumask is the intersection of the possible CPUs of @node and
3663 * @attrs->cpumask.
d185af30 3664 *
6ba94429
FW
3665 * The caller is responsible for ensuring that the cpumask of @node stays
3666 * stable.
3667 *
3668 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3669 * %false if equal.
29c91e99 3670 */
6ba94429
FW
3671static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3672 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3673{
6ba94429
FW
3674 if (!wq_numa_enabled || attrs->no_numa)
3675 goto use_dfl;
29c91e99 3676
6ba94429
FW
3677 /* does @node have any online CPUs @attrs wants? */
3678 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3679 if (cpu_going_down >= 0)
3680 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3681
6ba94429
FW
3682 if (cpumask_empty(cpumask))
3683 goto use_dfl;
4c16bd32
TH
3684
3685 /* yeap, return possible CPUs in @node that @attrs wants */
3686 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3687
3688 if (cpumask_empty(cpumask)) {
3689 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3690 "possible intersect\n");
3691 return false;
3692 }
3693
4c16bd32
TH
3694 return !cpumask_equal(cpumask, attrs->cpumask);
3695
3696use_dfl:
3697 cpumask_copy(cpumask, attrs->cpumask);
3698 return false;
3699}
3700
1befcf30
TH
3701/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3702static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3703 int node,
3704 struct pool_workqueue *pwq)
3705{
3706 struct pool_workqueue *old_pwq;
3707
5b95e1af 3708 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3709 lockdep_assert_held(&wq->mutex);
3710
3711 /* link_pwq() can handle duplicate calls */
3712 link_pwq(pwq);
3713
3714 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3715 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3716 return old_pwq;
3717}
3718
2d5f0764
LJ
3719/* context to store the prepared attrs & pwqs before applying */
3720struct apply_wqattrs_ctx {
3721 struct workqueue_struct *wq; /* target workqueue */
3722 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3723 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3724 struct pool_workqueue *dfl_pwq;
3725 struct pool_workqueue *pwq_tbl[];
3726};
3727
3728/* free the resources after success or abort */
3729static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3730{
3731 if (ctx) {
3732 int node;
3733
3734 for_each_node(node)
3735 put_pwq_unlocked(ctx->pwq_tbl[node]);
3736 put_pwq_unlocked(ctx->dfl_pwq);
3737
3738 free_workqueue_attrs(ctx->attrs);
3739
3740 kfree(ctx);
3741 }
3742}
3743
3744/* allocate the attrs and pwqs for later installation */
3745static struct apply_wqattrs_ctx *
3746apply_wqattrs_prepare(struct workqueue_struct *wq,
3747 const struct workqueue_attrs *attrs)
9e8cd2f5 3748{
2d5f0764 3749 struct apply_wqattrs_ctx *ctx;
4c16bd32 3750 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3751 int node;
9e8cd2f5 3752
2d5f0764 3753 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3754
acafe7e3 3755 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3756
13e2e556 3757 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3758 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3759 if (!ctx || !new_attrs || !tmp_attrs)
3760 goto out_free;
13e2e556 3761
042f7df1
LJ
3762 /*
3763 * Calculate the attrs of the default pwq.
3764 * If the user configured cpumask doesn't overlap with the
3765 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3766 */
13e2e556 3767 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3768 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3769 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3770 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3771
4c16bd32
TH
3772 /*
3773 * We may create multiple pwqs with differing cpumasks. Make a
3774 * copy of @new_attrs which will be modified and used to obtain
3775 * pools.
3776 */
3777 copy_workqueue_attrs(tmp_attrs, new_attrs);
3778
4c16bd32
TH
3779 /*
3780 * If something goes wrong during CPU up/down, we'll fall back to
3781 * the default pwq covering whole @attrs->cpumask. Always create
3782 * it even if we don't use it immediately.
3783 */
2d5f0764
LJ
3784 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3785 if (!ctx->dfl_pwq)
3786 goto out_free;
4c16bd32
TH
3787
3788 for_each_node(node) {
042f7df1 3789 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3790 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3791 if (!ctx->pwq_tbl[node])
3792 goto out_free;
4c16bd32 3793 } else {
2d5f0764
LJ
3794 ctx->dfl_pwq->refcnt++;
3795 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3796 }
3797 }
3798
042f7df1
LJ
3799 /* save the user configured attrs and sanitize it. */
3800 copy_workqueue_attrs(new_attrs, attrs);
3801 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3802 ctx->attrs = new_attrs;
042f7df1 3803
2d5f0764
LJ
3804 ctx->wq = wq;
3805 free_workqueue_attrs(tmp_attrs);
3806 return ctx;
3807
3808out_free:
3809 free_workqueue_attrs(tmp_attrs);
3810 free_workqueue_attrs(new_attrs);
3811 apply_wqattrs_cleanup(ctx);
3812 return NULL;
3813}
3814
3815/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3816static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3817{
3818 int node;
9e8cd2f5 3819
4c16bd32 3820 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3821 mutex_lock(&ctx->wq->mutex);
a892cacc 3822
2d5f0764 3823 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3824
3825 /* save the previous pwq and install the new one */
f147f29e 3826 for_each_node(node)
2d5f0764
LJ
3827 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3828 ctx->pwq_tbl[node]);
4c16bd32
TH
3829
3830 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3831 link_pwq(ctx->dfl_pwq);
3832 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3833
2d5f0764
LJ
3834 mutex_unlock(&ctx->wq->mutex);
3835}
9e8cd2f5 3836
a0111cf6
LJ
3837static void apply_wqattrs_lock(void)
3838{
3839 /* CPUs should stay stable across pwq creations and installations */
3840 get_online_cpus();
3841 mutex_lock(&wq_pool_mutex);
3842}
3843
3844static void apply_wqattrs_unlock(void)
3845{
3846 mutex_unlock(&wq_pool_mutex);
3847 put_online_cpus();
3848}
3849
3850static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3851 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3852{
3853 struct apply_wqattrs_ctx *ctx;
4c16bd32 3854
2d5f0764
LJ
3855 /* only unbound workqueues can change attributes */
3856 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3857 return -EINVAL;
13e2e556 3858
2d5f0764 3859 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3860 if (!list_empty(&wq->pwqs)) {
3861 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3862 return -EINVAL;
3863
3864 wq->flags &= ~__WQ_ORDERED;
3865 }
2d5f0764 3866
2d5f0764 3867 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3868 if (!ctx)
3869 return -ENOMEM;
2d5f0764
LJ
3870
3871 /* the ctx has been prepared successfully, let's commit it */
6201171e 3872 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3873 apply_wqattrs_cleanup(ctx);
3874
6201171e 3875 return 0;
9e8cd2f5
TH
3876}
3877
a0111cf6
LJ
3878/**
3879 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3880 * @wq: the target workqueue
3881 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3882 *
3883 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3884 * machines, this function maps a separate pwq to each NUMA node with
3885 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3886 * NUMA node it was issued on. Older pwqs are released as in-flight work
3887 * items finish. Note that a work item which repeatedly requeues itself
3888 * back-to-back will stay on its current pwq.
3889 *
3890 * Performs GFP_KERNEL allocations.
3891 *
3892 * Return: 0 on success and -errno on failure.
3893 */
3894int apply_workqueue_attrs(struct workqueue_struct *wq,
3895 const struct workqueue_attrs *attrs)
3896{
3897 int ret;
3898
3899 apply_wqattrs_lock();
3900 ret = apply_workqueue_attrs_locked(wq, attrs);
3901 apply_wqattrs_unlock();
3902
3903 return ret;
3904}
6106c0f8 3905EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 3906
4c16bd32
TH
3907/**
3908 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3909 * @wq: the target workqueue
3910 * @cpu: the CPU coming up or going down
3911 * @online: whether @cpu is coming up or going down
3912 *
3913 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3914 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3915 * @wq accordingly.
3916 *
3917 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3918 * falls back to @wq->dfl_pwq which may not be optimal but is always
3919 * correct.
3920 *
3921 * Note that when the last allowed CPU of a NUMA node goes offline for a
3922 * workqueue with a cpumask spanning multiple nodes, the workers which were
3923 * already executing the work items for the workqueue will lose their CPU
3924 * affinity and may execute on any CPU. This is similar to how per-cpu
3925 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3926 * affinity, it's the user's responsibility to flush the work item from
3927 * CPU_DOWN_PREPARE.
3928 */
3929static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3930 bool online)
3931{
3932 int node = cpu_to_node(cpu);
3933 int cpu_off = online ? -1 : cpu;
3934 struct pool_workqueue *old_pwq = NULL, *pwq;
3935 struct workqueue_attrs *target_attrs;
3936 cpumask_t *cpumask;
3937
3938 lockdep_assert_held(&wq_pool_mutex);
3939
f7142ed4
LJ
3940 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3941 wq->unbound_attrs->no_numa)
4c16bd32
TH
3942 return;
3943
3944 /*
3945 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3946 * Let's use a preallocated one. The following buf is protected by
3947 * CPU hotplug exclusion.
3948 */
3949 target_attrs = wq_update_unbound_numa_attrs_buf;
3950 cpumask = target_attrs->cpumask;
3951
4c16bd32
TH
3952 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3953 pwq = unbound_pwq_by_node(wq, node);
3954
3955 /*
3956 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3957 * different from the default pwq's, we need to compare it to @pwq's
3958 * and create a new one if they don't match. If the target cpumask
3959 * equals the default pwq's, the default pwq should be used.
4c16bd32 3960 */
042f7df1 3961 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3962 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3963 return;
4c16bd32 3964 } else {
534a3fbb 3965 goto use_dfl_pwq;
4c16bd32
TH
3966 }
3967
4c16bd32
TH
3968 /* create a new pwq */
3969 pwq = alloc_unbound_pwq(wq, target_attrs);
3970 if (!pwq) {
2d916033
FF
3971 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3972 wq->name);
77f300b1 3973 goto use_dfl_pwq;
4c16bd32
TH
3974 }
3975
f7142ed4 3976 /* Install the new pwq. */
4c16bd32
TH
3977 mutex_lock(&wq->mutex);
3978 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3979 goto out_unlock;
3980
3981use_dfl_pwq:
f7142ed4 3982 mutex_lock(&wq->mutex);
4c16bd32
TH
3983 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3984 get_pwq(wq->dfl_pwq);
3985 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3986 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3987out_unlock:
3988 mutex_unlock(&wq->mutex);
3989 put_pwq_unlocked(old_pwq);
3990}
3991
30cdf249 3992static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3993{
49e3cf44 3994 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3995 int cpu, ret;
30cdf249
TH
3996
3997 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3998 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3999 if (!wq->cpu_pwqs)
30cdf249
TH
4000 return -ENOMEM;
4001
4002 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4003 struct pool_workqueue *pwq =
4004 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4005 struct worker_pool *cpu_pools =
f02ae73a 4006 per_cpu(cpu_worker_pools, cpu);
f3421797 4007
f147f29e
TH
4008 init_pwq(pwq, wq, &cpu_pools[highpri]);
4009
4010 mutex_lock(&wq->mutex);
1befcf30 4011 link_pwq(pwq);
f147f29e 4012 mutex_unlock(&wq->mutex);
30cdf249 4013 }
9e8cd2f5 4014 return 0;
8a2b7538
TH
4015 } else if (wq->flags & __WQ_ORDERED) {
4016 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4017 /* there should only be single pwq for ordering guarantee */
4018 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4019 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4020 "ordering guarantee broken for workqueue %s\n", wq->name);
4021 return ret;
30cdf249 4022 } else {
9e8cd2f5 4023 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4024 }
0f900049
TH
4025}
4026
f3421797
TH
4027static int wq_clamp_max_active(int max_active, unsigned int flags,
4028 const char *name)
b71ab8c2 4029{
f3421797
TH
4030 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4031
4032 if (max_active < 1 || max_active > lim)
044c782c
VI
4033 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4034 max_active, name, 1, lim);
b71ab8c2 4035
f3421797 4036 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4037}
4038
983c7515
TH
4039/*
4040 * Workqueues which may be used during memory reclaim should have a rescuer
4041 * to guarantee forward progress.
4042 */
4043static int init_rescuer(struct workqueue_struct *wq)
4044{
4045 struct worker *rescuer;
4046 int ret;
4047
4048 if (!(wq->flags & WQ_MEM_RECLAIM))
4049 return 0;
4050
4051 rescuer = alloc_worker(NUMA_NO_NODE);
4052 if (!rescuer)
4053 return -ENOMEM;
4054
4055 rescuer->rescue_wq = wq;
4056 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4057 ret = PTR_ERR_OR_ZERO(rescuer->task);
4058 if (ret) {
4059 kfree(rescuer);
4060 return ret;
4061 }
4062
4063 wq->rescuer = rescuer;
4064 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4065 wake_up_process(rescuer->task);
4066
4067 return 0;
4068}
4069
b196be89 4070struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4071 unsigned int flags,
4072 int max_active,
4073 struct lock_class_key *key,
b196be89 4074 const char *lock_name, ...)
1da177e4 4075{
df2d5ae4 4076 size_t tbl_size = 0;
ecf6881f 4077 va_list args;
1da177e4 4078 struct workqueue_struct *wq;
49e3cf44 4079 struct pool_workqueue *pwq;
b196be89 4080
5c0338c6
TH
4081 /*
4082 * Unbound && max_active == 1 used to imply ordered, which is no
4083 * longer the case on NUMA machines due to per-node pools. While
4084 * alloc_ordered_workqueue() is the right way to create an ordered
4085 * workqueue, keep the previous behavior to avoid subtle breakages
4086 * on NUMA.
4087 */
4088 if ((flags & WQ_UNBOUND) && max_active == 1)
4089 flags |= __WQ_ORDERED;
4090
cee22a15
VK
4091 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4092 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4093 flags |= WQ_UNBOUND;
4094
ecf6881f 4095 /* allocate wq and format name */
df2d5ae4 4096 if (flags & WQ_UNBOUND)
ddcb57e2 4097 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4098
4099 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4100 if (!wq)
d2c1d404 4101 return NULL;
b196be89 4102
6029a918
TH
4103 if (flags & WQ_UNBOUND) {
4104 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4105 if (!wq->unbound_attrs)
4106 goto err_free_wq;
4107 }
4108
ecf6881f
TH
4109 va_start(args, lock_name);
4110 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4111 va_end(args);
1da177e4 4112
d320c038 4113 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4114 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4115
b196be89 4116 /* init wq */
97e37d7b 4117 wq->flags = flags;
a0a1a5fd 4118 wq->saved_max_active = max_active;
3c25a55d 4119 mutex_init(&wq->mutex);
112202d9 4120 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4121 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4122 INIT_LIST_HEAD(&wq->flusher_queue);
4123 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4124 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4125
eb13ba87 4126 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4127 INIT_LIST_HEAD(&wq->list);
3af24433 4128
30cdf249 4129 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4130 goto err_free_wq;
1537663f 4131
40c17f75 4132 if (wq_online && init_rescuer(wq) < 0)
983c7515 4133 goto err_destroy;
3af24433 4134
226223ab
TH
4135 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4136 goto err_destroy;
4137
a0a1a5fd 4138 /*
68e13a67
LJ
4139 * wq_pool_mutex protects global freeze state and workqueues list.
4140 * Grab it, adjust max_active and add the new @wq to workqueues
4141 * list.
a0a1a5fd 4142 */
68e13a67 4143 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4144
a357fc03 4145 mutex_lock(&wq->mutex);
699ce097
TH
4146 for_each_pwq(pwq, wq)
4147 pwq_adjust_max_active(pwq);
a357fc03 4148 mutex_unlock(&wq->mutex);
a0a1a5fd 4149
e2dca7ad 4150 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4151
68e13a67 4152 mutex_unlock(&wq_pool_mutex);
1537663f 4153
3af24433 4154 return wq;
d2c1d404
TH
4155
4156err_free_wq:
6029a918 4157 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4158 kfree(wq);
4159 return NULL;
4160err_destroy:
4161 destroy_workqueue(wq);
4690c4ab 4162 return NULL;
3af24433 4163}
d320c038 4164EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4165
3af24433
ON
4166/**
4167 * destroy_workqueue - safely terminate a workqueue
4168 * @wq: target workqueue
4169 *
4170 * Safely destroy a workqueue. All work currently pending will be done first.
4171 */
4172void destroy_workqueue(struct workqueue_struct *wq)
4173{
49e3cf44 4174 struct pool_workqueue *pwq;
4c16bd32 4175 int node;
3af24433 4176
9c5a2ba7
TH
4177 /* drain it before proceeding with destruction */
4178 drain_workqueue(wq);
c8efcc25 4179
6183c009 4180 /* sanity checks */
b09f4fd3 4181 mutex_lock(&wq->mutex);
49e3cf44 4182 for_each_pwq(pwq, wq) {
6183c009
TH
4183 int i;
4184
76af4d93
TH
4185 for (i = 0; i < WORK_NR_COLORS; i++) {
4186 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4187 mutex_unlock(&wq->mutex);
fa07fb6a 4188 show_workqueue_state();
6183c009 4189 return;
76af4d93
TH
4190 }
4191 }
4192
5c529597 4193 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4194 WARN_ON(pwq->nr_active) ||
76af4d93 4195 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4196 mutex_unlock(&wq->mutex);
fa07fb6a 4197 show_workqueue_state();
6183c009 4198 return;
76af4d93 4199 }
6183c009 4200 }
b09f4fd3 4201 mutex_unlock(&wq->mutex);
6183c009 4202
a0a1a5fd
TH
4203 /*
4204 * wq list is used to freeze wq, remove from list after
4205 * flushing is complete in case freeze races us.
4206 */
68e13a67 4207 mutex_lock(&wq_pool_mutex);
e2dca7ad 4208 list_del_rcu(&wq->list);
68e13a67 4209 mutex_unlock(&wq_pool_mutex);
3af24433 4210
226223ab
TH
4211 workqueue_sysfs_unregister(wq);
4212
e2dca7ad 4213 if (wq->rescuer)
e22bee78 4214 kthread_stop(wq->rescuer->task);
e22bee78 4215
8864b4e5
TH
4216 if (!(wq->flags & WQ_UNBOUND)) {
4217 /*
4218 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4219 * schedule RCU free.
8864b4e5 4220 */
25b00775 4221 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4222 } else {
4223 /*
4224 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4225 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4226 * @wq will be freed when the last pwq is released.
8864b4e5 4227 */
4c16bd32
TH
4228 for_each_node(node) {
4229 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4230 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4231 put_pwq_unlocked(pwq);
4232 }
4233
4234 /*
4235 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4236 * put. Don't access it afterwards.
4237 */
4238 pwq = wq->dfl_pwq;
4239 wq->dfl_pwq = NULL;
dce90d47 4240 put_pwq_unlocked(pwq);
29c91e99 4241 }
3af24433
ON
4242}
4243EXPORT_SYMBOL_GPL(destroy_workqueue);
4244
dcd989cb
TH
4245/**
4246 * workqueue_set_max_active - adjust max_active of a workqueue
4247 * @wq: target workqueue
4248 * @max_active: new max_active value.
4249 *
4250 * Set max_active of @wq to @max_active.
4251 *
4252 * CONTEXT:
4253 * Don't call from IRQ context.
4254 */
4255void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4256{
49e3cf44 4257 struct pool_workqueue *pwq;
dcd989cb 4258
8719dcea 4259 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4260 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4261 return;
4262
f3421797 4263 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4264
a357fc03 4265 mutex_lock(&wq->mutex);
dcd989cb 4266
0a94efb5 4267 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4268 wq->saved_max_active = max_active;
4269
699ce097
TH
4270 for_each_pwq(pwq, wq)
4271 pwq_adjust_max_active(pwq);
93981800 4272
a357fc03 4273 mutex_unlock(&wq->mutex);
15316ba8 4274}
dcd989cb 4275EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4276
27d4ee03
LW
4277/**
4278 * current_work - retrieve %current task's work struct
4279 *
4280 * Determine if %current task is a workqueue worker and what it's working on.
4281 * Useful to find out the context that the %current task is running in.
4282 *
4283 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4284 */
4285struct work_struct *current_work(void)
4286{
4287 struct worker *worker = current_wq_worker();
4288
4289 return worker ? worker->current_work : NULL;
4290}
4291EXPORT_SYMBOL(current_work);
4292
e6267616
TH
4293/**
4294 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4295 *
4296 * Determine whether %current is a workqueue rescuer. Can be used from
4297 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4298 *
4299 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4300 */
4301bool current_is_workqueue_rescuer(void)
4302{
4303 struct worker *worker = current_wq_worker();
4304
6a092dfd 4305 return worker && worker->rescue_wq;
e6267616
TH
4306}
4307
eef6a7d5 4308/**
dcd989cb
TH
4309 * workqueue_congested - test whether a workqueue is congested
4310 * @cpu: CPU in question
4311 * @wq: target workqueue
eef6a7d5 4312 *
dcd989cb
TH
4313 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4314 * no synchronization around this function and the test result is
4315 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4316 *
d3251859
TH
4317 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4318 * Note that both per-cpu and unbound workqueues may be associated with
4319 * multiple pool_workqueues which have separate congested states. A
4320 * workqueue being congested on one CPU doesn't mean the workqueue is also
4321 * contested on other CPUs / NUMA nodes.
4322 *
d185af30 4323 * Return:
dcd989cb 4324 * %true if congested, %false otherwise.
eef6a7d5 4325 */
d84ff051 4326bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4327{
7fb98ea7 4328 struct pool_workqueue *pwq;
76af4d93
TH
4329 bool ret;
4330
88109453 4331 rcu_read_lock_sched();
7fb98ea7 4332
d3251859
TH
4333 if (cpu == WORK_CPU_UNBOUND)
4334 cpu = smp_processor_id();
4335
7fb98ea7
TH
4336 if (!(wq->flags & WQ_UNBOUND))
4337 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4338 else
df2d5ae4 4339 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4340
76af4d93 4341 ret = !list_empty(&pwq->delayed_works);
88109453 4342 rcu_read_unlock_sched();
76af4d93
TH
4343
4344 return ret;
1da177e4 4345}
dcd989cb 4346EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4347
dcd989cb
TH
4348/**
4349 * work_busy - test whether a work is currently pending or running
4350 * @work: the work to be tested
4351 *
4352 * Test whether @work is currently pending or running. There is no
4353 * synchronization around this function and the test result is
4354 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4355 *
d185af30 4356 * Return:
dcd989cb
TH
4357 * OR'd bitmask of WORK_BUSY_* bits.
4358 */
4359unsigned int work_busy(struct work_struct *work)
1da177e4 4360{
fa1b54e6 4361 struct worker_pool *pool;
dcd989cb
TH
4362 unsigned long flags;
4363 unsigned int ret = 0;
1da177e4 4364
dcd989cb
TH
4365 if (work_pending(work))
4366 ret |= WORK_BUSY_PENDING;
1da177e4 4367
fa1b54e6
TH
4368 local_irq_save(flags);
4369 pool = get_work_pool(work);
038366c5 4370 if (pool) {
fa1b54e6 4371 spin_lock(&pool->lock);
038366c5
LJ
4372 if (find_worker_executing_work(pool, work))
4373 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4374 spin_unlock(&pool->lock);
038366c5 4375 }
fa1b54e6 4376 local_irq_restore(flags);
1da177e4 4377
dcd989cb 4378 return ret;
1da177e4 4379}
dcd989cb 4380EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4381
3d1cb205
TH
4382/**
4383 * set_worker_desc - set description for the current work item
4384 * @fmt: printf-style format string
4385 * @...: arguments for the format string
4386 *
4387 * This function can be called by a running work function to describe what
4388 * the work item is about. If the worker task gets dumped, this
4389 * information will be printed out together to help debugging. The
4390 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4391 */
4392void set_worker_desc(const char *fmt, ...)
4393{
4394 struct worker *worker = current_wq_worker();
4395 va_list args;
4396
4397 if (worker) {
4398 va_start(args, fmt);
4399 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4400 va_end(args);
3d1cb205
TH
4401 }
4402}
5c750d58 4403EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4404
4405/**
4406 * print_worker_info - print out worker information and description
4407 * @log_lvl: the log level to use when printing
4408 * @task: target task
4409 *
4410 * If @task is a worker and currently executing a work item, print out the
4411 * name of the workqueue being serviced and worker description set with
4412 * set_worker_desc() by the currently executing work item.
4413 *
4414 * This function can be safely called on any task as long as the
4415 * task_struct itself is accessible. While safe, this function isn't
4416 * synchronized and may print out mixups or garbages of limited length.
4417 */
4418void print_worker_info(const char *log_lvl, struct task_struct *task)
4419{
4420 work_func_t *fn = NULL;
4421 char name[WQ_NAME_LEN] = { };
4422 char desc[WORKER_DESC_LEN] = { };
4423 struct pool_workqueue *pwq = NULL;
4424 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4425 struct worker *worker;
4426
4427 if (!(task->flags & PF_WQ_WORKER))
4428 return;
4429
4430 /*
4431 * This function is called without any synchronization and @task
4432 * could be in any state. Be careful with dereferences.
4433 */
e700591a 4434 worker = kthread_probe_data(task);
3d1cb205
TH
4435
4436 /*
8bf89593
TH
4437 * Carefully copy the associated workqueue's workfn, name and desc.
4438 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4439 */
4440 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4441 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4442 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4443 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4444 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4445
4446 if (fn || name[0] || desc[0]) {
4447 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
8bf89593 4448 if (strcmp(name, desc))
3d1cb205
TH
4449 pr_cont(" (%s)", desc);
4450 pr_cont("\n");
4451 }
4452}
4453
3494fc30
TH
4454static void pr_cont_pool_info(struct worker_pool *pool)
4455{
4456 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4457 if (pool->node != NUMA_NO_NODE)
4458 pr_cont(" node=%d", pool->node);
4459 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4460}
4461
4462static void pr_cont_work(bool comma, struct work_struct *work)
4463{
4464 if (work->func == wq_barrier_func) {
4465 struct wq_barrier *barr;
4466
4467 barr = container_of(work, struct wq_barrier, work);
4468
4469 pr_cont("%s BAR(%d)", comma ? "," : "",
4470 task_pid_nr(barr->task));
4471 } else {
4472 pr_cont("%s %pf", comma ? "," : "", work->func);
4473 }
4474}
4475
4476static void show_pwq(struct pool_workqueue *pwq)
4477{
4478 struct worker_pool *pool = pwq->pool;
4479 struct work_struct *work;
4480 struct worker *worker;
4481 bool has_in_flight = false, has_pending = false;
4482 int bkt;
4483
4484 pr_info(" pwq %d:", pool->id);
4485 pr_cont_pool_info(pool);
4486
4487 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4488 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4489
4490 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4491 if (worker->current_pwq == pwq) {
4492 has_in_flight = true;
4493 break;
4494 }
4495 }
4496 if (has_in_flight) {
4497 bool comma = false;
4498
4499 pr_info(" in-flight:");
4500 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4501 if (worker->current_pwq != pwq)
4502 continue;
4503
4504 pr_cont("%s %d%s:%pf", comma ? "," : "",
4505 task_pid_nr(worker->task),
4506 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4507 worker->current_func);
4508 list_for_each_entry(work, &worker->scheduled, entry)
4509 pr_cont_work(false, work);
4510 comma = true;
4511 }
4512 pr_cont("\n");
4513 }
4514
4515 list_for_each_entry(work, &pool->worklist, entry) {
4516 if (get_work_pwq(work) == pwq) {
4517 has_pending = true;
4518 break;
4519 }
4520 }
4521 if (has_pending) {
4522 bool comma = false;
4523
4524 pr_info(" pending:");
4525 list_for_each_entry(work, &pool->worklist, entry) {
4526 if (get_work_pwq(work) != pwq)
4527 continue;
4528
4529 pr_cont_work(comma, work);
4530 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4531 }
4532 pr_cont("\n");
4533 }
4534
4535 if (!list_empty(&pwq->delayed_works)) {
4536 bool comma = false;
4537
4538 pr_info(" delayed:");
4539 list_for_each_entry(work, &pwq->delayed_works, entry) {
4540 pr_cont_work(comma, work);
4541 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4542 }
4543 pr_cont("\n");
4544 }
4545}
4546
4547/**
4548 * show_workqueue_state - dump workqueue state
4549 *
7b776af6
RL
4550 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4551 * all busy workqueues and pools.
3494fc30
TH
4552 */
4553void show_workqueue_state(void)
4554{
4555 struct workqueue_struct *wq;
4556 struct worker_pool *pool;
4557 unsigned long flags;
4558 int pi;
4559
4560 rcu_read_lock_sched();
4561
4562 pr_info("Showing busy workqueues and worker pools:\n");
4563
4564 list_for_each_entry_rcu(wq, &workqueues, list) {
4565 struct pool_workqueue *pwq;
4566 bool idle = true;
4567
4568 for_each_pwq(pwq, wq) {
4569 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4570 idle = false;
4571 break;
4572 }
4573 }
4574 if (idle)
4575 continue;
4576
4577 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4578
4579 for_each_pwq(pwq, wq) {
4580 spin_lock_irqsave(&pwq->pool->lock, flags);
4581 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4582 show_pwq(pwq);
4583 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4584 /*
4585 * We could be printing a lot from atomic context, e.g.
4586 * sysrq-t -> show_workqueue_state(). Avoid triggering
4587 * hard lockup.
4588 */
4589 touch_nmi_watchdog();
3494fc30
TH
4590 }
4591 }
4592
4593 for_each_pool(pool, pi) {
4594 struct worker *worker;
4595 bool first = true;
4596
4597 spin_lock_irqsave(&pool->lock, flags);
4598 if (pool->nr_workers == pool->nr_idle)
4599 goto next_pool;
4600
4601 pr_info("pool %d:", pool->id);
4602 pr_cont_pool_info(pool);
82607adc
TH
4603 pr_cont(" hung=%us workers=%d",
4604 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4605 pool->nr_workers);
3494fc30
TH
4606 if (pool->manager)
4607 pr_cont(" manager: %d",
4608 task_pid_nr(pool->manager->task));
4609 list_for_each_entry(worker, &pool->idle_list, entry) {
4610 pr_cont(" %s%d", first ? "idle: " : "",
4611 task_pid_nr(worker->task));
4612 first = false;
4613 }
4614 pr_cont("\n");
4615 next_pool:
4616 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4617 /*
4618 * We could be printing a lot from atomic context, e.g.
4619 * sysrq-t -> show_workqueue_state(). Avoid triggering
4620 * hard lockup.
4621 */
4622 touch_nmi_watchdog();
3494fc30
TH
4623 }
4624
4625 rcu_read_unlock_sched();
4626}
4627
6b59808b
TH
4628/* used to show worker information through /proc/PID/{comm,stat,status} */
4629void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4630{
6b59808b
TH
4631 int off;
4632
4633 /* always show the actual comm */
4634 off = strscpy(buf, task->comm, size);
4635 if (off < 0)
4636 return;
4637
197f6acc 4638 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4639 mutex_lock(&wq_pool_attach_mutex);
4640
197f6acc
TH
4641 if (task->flags & PF_WQ_WORKER) {
4642 struct worker *worker = kthread_data(task);
4643 struct worker_pool *pool = worker->pool;
6b59808b 4644
197f6acc
TH
4645 if (pool) {
4646 spin_lock_irq(&pool->lock);
4647 /*
4648 * ->desc tracks information (wq name or
4649 * set_worker_desc()) for the latest execution. If
4650 * current, prepend '+', otherwise '-'.
4651 */
4652 if (worker->desc[0] != '\0') {
4653 if (worker->current_work)
4654 scnprintf(buf + off, size - off, "+%s",
4655 worker->desc);
4656 else
4657 scnprintf(buf + off, size - off, "-%s",
4658 worker->desc);
4659 }
4660 spin_unlock_irq(&pool->lock);
6b59808b 4661 }
6b59808b
TH
4662 }
4663
4664 mutex_unlock(&wq_pool_attach_mutex);
4665}
4666
66448bc2
MM
4667#ifdef CONFIG_SMP
4668
db7bccf4
TH
4669/*
4670 * CPU hotplug.
4671 *
e22bee78 4672 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4673 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4674 * pool which make migrating pending and scheduled works very
e22bee78 4675 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4676 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4677 * blocked draining impractical.
4678 *
24647570 4679 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4680 * running as an unbound one and allowing it to be reattached later if the
4681 * cpu comes back online.
db7bccf4 4682 */
1da177e4 4683
e8b3f8db 4684static void unbind_workers(int cpu)
3af24433 4685{
4ce62e9e 4686 struct worker_pool *pool;
db7bccf4 4687 struct worker *worker;
3af24433 4688
f02ae73a 4689 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4690 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4691 spin_lock_irq(&pool->lock);
3af24433 4692
94cf58bb 4693 /*
92f9c5c4 4694 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4695 * unbound and set DISASSOCIATED. Before this, all workers
4696 * except for the ones which are still executing works from
4697 * before the last CPU down must be on the cpu. After
4698 * this, they may become diasporas.
4699 */
da028469 4700 for_each_pool_worker(worker, pool)
c9e7cf27 4701 worker->flags |= WORKER_UNBOUND;
06ba38a9 4702
24647570 4703 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4704
94cf58bb 4705 spin_unlock_irq(&pool->lock);
1258fae7 4706 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4707
eb283428
LJ
4708 /*
4709 * Call schedule() so that we cross rq->lock and thus can
4710 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4711 * This is necessary as scheduler callbacks may be invoked
4712 * from other cpus.
4713 */
4714 schedule();
06ba38a9 4715
eb283428
LJ
4716 /*
4717 * Sched callbacks are disabled now. Zap nr_running.
4718 * After this, nr_running stays zero and need_more_worker()
4719 * and keep_working() are always true as long as the
4720 * worklist is not empty. This pool now behaves as an
4721 * unbound (in terms of concurrency management) pool which
4722 * are served by workers tied to the pool.
4723 */
e19e397a 4724 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4725
4726 /*
4727 * With concurrency management just turned off, a busy
4728 * worker blocking could lead to lengthy stalls. Kick off
4729 * unbound chain execution of currently pending work items.
4730 */
4731 spin_lock_irq(&pool->lock);
4732 wake_up_worker(pool);
4733 spin_unlock_irq(&pool->lock);
4734 }
3af24433 4735}
3af24433 4736
bd7c089e
TH
4737/**
4738 * rebind_workers - rebind all workers of a pool to the associated CPU
4739 * @pool: pool of interest
4740 *
a9ab775b 4741 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4742 */
4743static void rebind_workers(struct worker_pool *pool)
4744{
a9ab775b 4745 struct worker *worker;
bd7c089e 4746
1258fae7 4747 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4748
a9ab775b
TH
4749 /*
4750 * Restore CPU affinity of all workers. As all idle workers should
4751 * be on the run-queue of the associated CPU before any local
402dd89d 4752 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4753 * of all workers first and then clear UNBOUND. As we're called
4754 * from CPU_ONLINE, the following shouldn't fail.
4755 */
da028469 4756 for_each_pool_worker(worker, pool)
a9ab775b
TH
4757 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4758 pool->attrs->cpumask) < 0);
bd7c089e 4759
a9ab775b 4760 spin_lock_irq(&pool->lock);
f7c17d26 4761
3de5e884 4762 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4763
da028469 4764 for_each_pool_worker(worker, pool) {
a9ab775b 4765 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4766
4767 /*
a9ab775b
TH
4768 * A bound idle worker should actually be on the runqueue
4769 * of the associated CPU for local wake-ups targeting it to
4770 * work. Kick all idle workers so that they migrate to the
4771 * associated CPU. Doing this in the same loop as
4772 * replacing UNBOUND with REBOUND is safe as no worker will
4773 * be bound before @pool->lock is released.
bd7c089e 4774 */
a9ab775b
TH
4775 if (worker_flags & WORKER_IDLE)
4776 wake_up_process(worker->task);
bd7c089e 4777
a9ab775b
TH
4778 /*
4779 * We want to clear UNBOUND but can't directly call
4780 * worker_clr_flags() or adjust nr_running. Atomically
4781 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4782 * @worker will clear REBOUND using worker_clr_flags() when
4783 * it initiates the next execution cycle thus restoring
4784 * concurrency management. Note that when or whether
4785 * @worker clears REBOUND doesn't affect correctness.
4786 *
c95491ed 4787 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b
TH
4788 * tested without holding any lock in
4789 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4790 * fail incorrectly leading to premature concurrency
4791 * management operations.
4792 */
4793 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4794 worker_flags |= WORKER_REBOUND;
4795 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4796 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4797 }
a9ab775b
TH
4798
4799 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4800}
4801
7dbc725e
TH
4802/**
4803 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4804 * @pool: unbound pool of interest
4805 * @cpu: the CPU which is coming up
4806 *
4807 * An unbound pool may end up with a cpumask which doesn't have any online
4808 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4809 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4810 * online CPU before, cpus_allowed of all its workers should be restored.
4811 */
4812static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4813{
4814 static cpumask_t cpumask;
4815 struct worker *worker;
7dbc725e 4816
1258fae7 4817 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
4818
4819 /* is @cpu allowed for @pool? */
4820 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4821 return;
4822
7dbc725e 4823 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4824
4825 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4826 for_each_pool_worker(worker, pool)
d945b5e9 4827 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4828}
4829
7ee681b2
TG
4830int workqueue_prepare_cpu(unsigned int cpu)
4831{
4832 struct worker_pool *pool;
4833
4834 for_each_cpu_worker_pool(pool, cpu) {
4835 if (pool->nr_workers)
4836 continue;
4837 if (!create_worker(pool))
4838 return -ENOMEM;
4839 }
4840 return 0;
4841}
4842
4843int workqueue_online_cpu(unsigned int cpu)
3af24433 4844{
4ce62e9e 4845 struct worker_pool *pool;
4c16bd32 4846 struct workqueue_struct *wq;
7dbc725e 4847 int pi;
3ce63377 4848
7ee681b2 4849 mutex_lock(&wq_pool_mutex);
7dbc725e 4850
7ee681b2 4851 for_each_pool(pool, pi) {
1258fae7 4852 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4853
7ee681b2
TG
4854 if (pool->cpu == cpu)
4855 rebind_workers(pool);
4856 else if (pool->cpu < 0)
4857 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4858
1258fae7 4859 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 4860 }
6ba94429 4861
7ee681b2
TG
4862 /* update NUMA affinity of unbound workqueues */
4863 list_for_each_entry(wq, &workqueues, list)
4864 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4865
7ee681b2
TG
4866 mutex_unlock(&wq_pool_mutex);
4867 return 0;
6ba94429
FW
4868}
4869
7ee681b2 4870int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4871{
6ba94429
FW
4872 struct workqueue_struct *wq;
4873
7ee681b2 4874 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
4875 if (WARN_ON(cpu != smp_processor_id()))
4876 return -1;
4877
4878 unbind_workers(cpu);
7ee681b2
TG
4879
4880 /* update NUMA affinity of unbound workqueues */
4881 mutex_lock(&wq_pool_mutex);
4882 list_for_each_entry(wq, &workqueues, list)
4883 wq_update_unbound_numa(wq, cpu, false);
4884 mutex_unlock(&wq_pool_mutex);
4885
7ee681b2 4886 return 0;
6ba94429
FW
4887}
4888
6ba94429
FW
4889struct work_for_cpu {
4890 struct work_struct work;
4891 long (*fn)(void *);
4892 void *arg;
4893 long ret;
4894};
4895
4896static void work_for_cpu_fn(struct work_struct *work)
4897{
4898 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4899
4900 wfc->ret = wfc->fn(wfc->arg);
4901}
4902
4903/**
22aceb31 4904 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4905 * @cpu: the cpu to run on
4906 * @fn: the function to run
4907 * @arg: the function arg
4908 *
4909 * It is up to the caller to ensure that the cpu doesn't go offline.
4910 * The caller must not hold any locks which would prevent @fn from completing.
4911 *
4912 * Return: The value @fn returns.
4913 */
4914long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4915{
4916 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4917
4918 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4919 schedule_work_on(cpu, &wfc.work);
4920 flush_work(&wfc.work);
4921 destroy_work_on_stack(&wfc.work);
4922 return wfc.ret;
4923}
4924EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4925
4926/**
4927 * work_on_cpu_safe - run a function in thread context on a particular cpu
4928 * @cpu: the cpu to run on
4929 * @fn: the function to run
4930 * @arg: the function argument
4931 *
4932 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4933 * any locks which would prevent @fn from completing.
4934 *
4935 * Return: The value @fn returns.
4936 */
4937long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4938{
4939 long ret = -ENODEV;
4940
4941 get_online_cpus();
4942 if (cpu_online(cpu))
4943 ret = work_on_cpu(cpu, fn, arg);
4944 put_online_cpus();
4945 return ret;
4946}
4947EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4948#endif /* CONFIG_SMP */
4949
4950#ifdef CONFIG_FREEZER
4951
4952/**
4953 * freeze_workqueues_begin - begin freezing workqueues
4954 *
4955 * Start freezing workqueues. After this function returns, all freezable
4956 * workqueues will queue new works to their delayed_works list instead of
4957 * pool->worklist.
4958 *
4959 * CONTEXT:
4960 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4961 */
4962void freeze_workqueues_begin(void)
4963{
4964 struct workqueue_struct *wq;
4965 struct pool_workqueue *pwq;
4966
4967 mutex_lock(&wq_pool_mutex);
4968
4969 WARN_ON_ONCE(workqueue_freezing);
4970 workqueue_freezing = true;
4971
4972 list_for_each_entry(wq, &workqueues, list) {
4973 mutex_lock(&wq->mutex);
4974 for_each_pwq(pwq, wq)
4975 pwq_adjust_max_active(pwq);
4976 mutex_unlock(&wq->mutex);
4977 }
4978
4979 mutex_unlock(&wq_pool_mutex);
4980}
4981
4982/**
4983 * freeze_workqueues_busy - are freezable workqueues still busy?
4984 *
4985 * Check whether freezing is complete. This function must be called
4986 * between freeze_workqueues_begin() and thaw_workqueues().
4987 *
4988 * CONTEXT:
4989 * Grabs and releases wq_pool_mutex.
4990 *
4991 * Return:
4992 * %true if some freezable workqueues are still busy. %false if freezing
4993 * is complete.
4994 */
4995bool freeze_workqueues_busy(void)
4996{
4997 bool busy = false;
4998 struct workqueue_struct *wq;
4999 struct pool_workqueue *pwq;
5000
5001 mutex_lock(&wq_pool_mutex);
5002
5003 WARN_ON_ONCE(!workqueue_freezing);
5004
5005 list_for_each_entry(wq, &workqueues, list) {
5006 if (!(wq->flags & WQ_FREEZABLE))
5007 continue;
5008 /*
5009 * nr_active is monotonically decreasing. It's safe
5010 * to peek without lock.
5011 */
5012 rcu_read_lock_sched();
5013 for_each_pwq(pwq, wq) {
5014 WARN_ON_ONCE(pwq->nr_active < 0);
5015 if (pwq->nr_active) {
5016 busy = true;
5017 rcu_read_unlock_sched();
5018 goto out_unlock;
5019 }
5020 }
5021 rcu_read_unlock_sched();
5022 }
5023out_unlock:
5024 mutex_unlock(&wq_pool_mutex);
5025 return busy;
5026}
5027
5028/**
5029 * thaw_workqueues - thaw workqueues
5030 *
5031 * Thaw workqueues. Normal queueing is restored and all collected
5032 * frozen works are transferred to their respective pool worklists.
5033 *
5034 * CONTEXT:
5035 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5036 */
5037void thaw_workqueues(void)
5038{
5039 struct workqueue_struct *wq;
5040 struct pool_workqueue *pwq;
5041
5042 mutex_lock(&wq_pool_mutex);
5043
5044 if (!workqueue_freezing)
5045 goto out_unlock;
5046
5047 workqueue_freezing = false;
5048
5049 /* restore max_active and repopulate worklist */
5050 list_for_each_entry(wq, &workqueues, list) {
5051 mutex_lock(&wq->mutex);
5052 for_each_pwq(pwq, wq)
5053 pwq_adjust_max_active(pwq);
5054 mutex_unlock(&wq->mutex);
5055 }
5056
5057out_unlock:
5058 mutex_unlock(&wq_pool_mutex);
5059}
5060#endif /* CONFIG_FREEZER */
5061
042f7df1
LJ
5062static int workqueue_apply_unbound_cpumask(void)
5063{
5064 LIST_HEAD(ctxs);
5065 int ret = 0;
5066 struct workqueue_struct *wq;
5067 struct apply_wqattrs_ctx *ctx, *n;
5068
5069 lockdep_assert_held(&wq_pool_mutex);
5070
5071 list_for_each_entry(wq, &workqueues, list) {
5072 if (!(wq->flags & WQ_UNBOUND))
5073 continue;
5074 /* creating multiple pwqs breaks ordering guarantee */
5075 if (wq->flags & __WQ_ORDERED)
5076 continue;
5077
5078 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5079 if (!ctx) {
5080 ret = -ENOMEM;
5081 break;
5082 }
5083
5084 list_add_tail(&ctx->list, &ctxs);
5085 }
5086
5087 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5088 if (!ret)
5089 apply_wqattrs_commit(ctx);
5090 apply_wqattrs_cleanup(ctx);
5091 }
5092
5093 return ret;
5094}
5095
5096/**
5097 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5098 * @cpumask: the cpumask to set
5099 *
5100 * The low-level workqueues cpumask is a global cpumask that limits
5101 * the affinity of all unbound workqueues. This function check the @cpumask
5102 * and apply it to all unbound workqueues and updates all pwqs of them.
5103 *
5104 * Retun: 0 - Success
5105 * -EINVAL - Invalid @cpumask
5106 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5107 */
5108int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5109{
5110 int ret = -EINVAL;
5111 cpumask_var_t saved_cpumask;
5112
5113 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5114 return -ENOMEM;
5115
c98a9805
TS
5116 /*
5117 * Not excluding isolated cpus on purpose.
5118 * If the user wishes to include them, we allow that.
5119 */
042f7df1
LJ
5120 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5121 if (!cpumask_empty(cpumask)) {
a0111cf6 5122 apply_wqattrs_lock();
042f7df1
LJ
5123
5124 /* save the old wq_unbound_cpumask. */
5125 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5126
5127 /* update wq_unbound_cpumask at first and apply it to wqs. */
5128 cpumask_copy(wq_unbound_cpumask, cpumask);
5129 ret = workqueue_apply_unbound_cpumask();
5130
5131 /* restore the wq_unbound_cpumask when failed. */
5132 if (ret < 0)
5133 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5134
a0111cf6 5135 apply_wqattrs_unlock();
042f7df1 5136 }
042f7df1
LJ
5137
5138 free_cpumask_var(saved_cpumask);
5139 return ret;
5140}
5141
6ba94429
FW
5142#ifdef CONFIG_SYSFS
5143/*
5144 * Workqueues with WQ_SYSFS flag set is visible to userland via
5145 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5146 * following attributes.
5147 *
5148 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5149 * max_active RW int : maximum number of in-flight work items
5150 *
5151 * Unbound workqueues have the following extra attributes.
5152 *
9a19b463 5153 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5154 * nice RW int : nice value of the workers
5155 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5156 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5157 */
5158struct wq_device {
5159 struct workqueue_struct *wq;
5160 struct device dev;
5161};
5162
5163static struct workqueue_struct *dev_to_wq(struct device *dev)
5164{
5165 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5166
5167 return wq_dev->wq;
5168}
5169
5170static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5171 char *buf)
5172{
5173 struct workqueue_struct *wq = dev_to_wq(dev);
5174
5175 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5176}
5177static DEVICE_ATTR_RO(per_cpu);
5178
5179static ssize_t max_active_show(struct device *dev,
5180 struct device_attribute *attr, char *buf)
5181{
5182 struct workqueue_struct *wq = dev_to_wq(dev);
5183
5184 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5185}
5186
5187static ssize_t max_active_store(struct device *dev,
5188 struct device_attribute *attr, const char *buf,
5189 size_t count)
5190{
5191 struct workqueue_struct *wq = dev_to_wq(dev);
5192 int val;
5193
5194 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5195 return -EINVAL;
5196
5197 workqueue_set_max_active(wq, val);
5198 return count;
5199}
5200static DEVICE_ATTR_RW(max_active);
5201
5202static struct attribute *wq_sysfs_attrs[] = {
5203 &dev_attr_per_cpu.attr,
5204 &dev_attr_max_active.attr,
5205 NULL,
5206};
5207ATTRIBUTE_GROUPS(wq_sysfs);
5208
5209static ssize_t wq_pool_ids_show(struct device *dev,
5210 struct device_attribute *attr, char *buf)
5211{
5212 struct workqueue_struct *wq = dev_to_wq(dev);
5213 const char *delim = "";
5214 int node, written = 0;
5215
5216 rcu_read_lock_sched();
5217 for_each_node(node) {
5218 written += scnprintf(buf + written, PAGE_SIZE - written,
5219 "%s%d:%d", delim, node,
5220 unbound_pwq_by_node(wq, node)->pool->id);
5221 delim = " ";
5222 }
5223 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5224 rcu_read_unlock_sched();
5225
5226 return written;
5227}
5228
5229static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5230 char *buf)
5231{
5232 struct workqueue_struct *wq = dev_to_wq(dev);
5233 int written;
5234
5235 mutex_lock(&wq->mutex);
5236 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5237 mutex_unlock(&wq->mutex);
5238
5239 return written;
5240}
5241
5242/* prepare workqueue_attrs for sysfs store operations */
5243static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5244{
5245 struct workqueue_attrs *attrs;
5246
899a94fe
LJ
5247 lockdep_assert_held(&wq_pool_mutex);
5248
6ba94429
FW
5249 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5250 if (!attrs)
5251 return NULL;
5252
6ba94429 5253 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5254 return attrs;
5255}
5256
5257static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5258 const char *buf, size_t count)
5259{
5260 struct workqueue_struct *wq = dev_to_wq(dev);
5261 struct workqueue_attrs *attrs;
d4d3e257
LJ
5262 int ret = -ENOMEM;
5263
5264 apply_wqattrs_lock();
6ba94429
FW
5265
5266 attrs = wq_sysfs_prep_attrs(wq);
5267 if (!attrs)
d4d3e257 5268 goto out_unlock;
6ba94429
FW
5269
5270 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5271 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5272 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5273 else
5274 ret = -EINVAL;
5275
d4d3e257
LJ
5276out_unlock:
5277 apply_wqattrs_unlock();
6ba94429
FW
5278 free_workqueue_attrs(attrs);
5279 return ret ?: count;
5280}
5281
5282static ssize_t wq_cpumask_show(struct device *dev,
5283 struct device_attribute *attr, char *buf)
5284{
5285 struct workqueue_struct *wq = dev_to_wq(dev);
5286 int written;
5287
5288 mutex_lock(&wq->mutex);
5289 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5290 cpumask_pr_args(wq->unbound_attrs->cpumask));
5291 mutex_unlock(&wq->mutex);
5292 return written;
5293}
5294
5295static ssize_t wq_cpumask_store(struct device *dev,
5296 struct device_attribute *attr,
5297 const char *buf, size_t count)
5298{
5299 struct workqueue_struct *wq = dev_to_wq(dev);
5300 struct workqueue_attrs *attrs;
d4d3e257
LJ
5301 int ret = -ENOMEM;
5302
5303 apply_wqattrs_lock();
6ba94429
FW
5304
5305 attrs = wq_sysfs_prep_attrs(wq);
5306 if (!attrs)
d4d3e257 5307 goto out_unlock;
6ba94429
FW
5308
5309 ret = cpumask_parse(buf, attrs->cpumask);
5310 if (!ret)
d4d3e257 5311 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5312
d4d3e257
LJ
5313out_unlock:
5314 apply_wqattrs_unlock();
6ba94429
FW
5315 free_workqueue_attrs(attrs);
5316 return ret ?: count;
5317}
5318
5319static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5320 char *buf)
5321{
5322 struct workqueue_struct *wq = dev_to_wq(dev);
5323 int written;
7dbc725e 5324
6ba94429
FW
5325 mutex_lock(&wq->mutex);
5326 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5327 !wq->unbound_attrs->no_numa);
5328 mutex_unlock(&wq->mutex);
4c16bd32 5329
6ba94429 5330 return written;
65758202
TH
5331}
5332
6ba94429
FW
5333static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5334 const char *buf, size_t count)
65758202 5335{
6ba94429
FW
5336 struct workqueue_struct *wq = dev_to_wq(dev);
5337 struct workqueue_attrs *attrs;
d4d3e257
LJ
5338 int v, ret = -ENOMEM;
5339
5340 apply_wqattrs_lock();
4c16bd32 5341
6ba94429
FW
5342 attrs = wq_sysfs_prep_attrs(wq);
5343 if (!attrs)
d4d3e257 5344 goto out_unlock;
4c16bd32 5345
6ba94429
FW
5346 ret = -EINVAL;
5347 if (sscanf(buf, "%d", &v) == 1) {
5348 attrs->no_numa = !v;
d4d3e257 5349 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5350 }
6ba94429 5351
d4d3e257
LJ
5352out_unlock:
5353 apply_wqattrs_unlock();
6ba94429
FW
5354 free_workqueue_attrs(attrs);
5355 return ret ?: count;
65758202
TH
5356}
5357
6ba94429
FW
5358static struct device_attribute wq_sysfs_unbound_attrs[] = {
5359 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5360 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5361 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5362 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5363 __ATTR_NULL,
5364};
8ccad40d 5365
6ba94429
FW
5366static struct bus_type wq_subsys = {
5367 .name = "workqueue",
5368 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5369};
5370
b05a7928
FW
5371static ssize_t wq_unbound_cpumask_show(struct device *dev,
5372 struct device_attribute *attr, char *buf)
5373{
5374 int written;
5375
042f7df1 5376 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5377 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5378 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5379 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5380
5381 return written;
5382}
5383
042f7df1
LJ
5384static ssize_t wq_unbound_cpumask_store(struct device *dev,
5385 struct device_attribute *attr, const char *buf, size_t count)
5386{
5387 cpumask_var_t cpumask;
5388 int ret;
5389
5390 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5391 return -ENOMEM;
5392
5393 ret = cpumask_parse(buf, cpumask);
5394 if (!ret)
5395 ret = workqueue_set_unbound_cpumask(cpumask);
5396
5397 free_cpumask_var(cpumask);
5398 return ret ? ret : count;
5399}
5400
b05a7928 5401static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5402 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5403 wq_unbound_cpumask_store);
b05a7928 5404
6ba94429 5405static int __init wq_sysfs_init(void)
2d3854a3 5406{
b05a7928
FW
5407 int err;
5408
5409 err = subsys_virtual_register(&wq_subsys, NULL);
5410 if (err)
5411 return err;
5412
5413 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5414}
6ba94429 5415core_initcall(wq_sysfs_init);
2d3854a3 5416
6ba94429 5417static void wq_device_release(struct device *dev)
2d3854a3 5418{
6ba94429 5419 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5420
6ba94429 5421 kfree(wq_dev);
2d3854a3 5422}
a0a1a5fd
TH
5423
5424/**
6ba94429
FW
5425 * workqueue_sysfs_register - make a workqueue visible in sysfs
5426 * @wq: the workqueue to register
a0a1a5fd 5427 *
6ba94429
FW
5428 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5429 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5430 * which is the preferred method.
a0a1a5fd 5431 *
6ba94429
FW
5432 * Workqueue user should use this function directly iff it wants to apply
5433 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5434 * apply_workqueue_attrs() may race against userland updating the
5435 * attributes.
5436 *
5437 * Return: 0 on success, -errno on failure.
a0a1a5fd 5438 */
6ba94429 5439int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5440{
6ba94429
FW
5441 struct wq_device *wq_dev;
5442 int ret;
a0a1a5fd 5443
6ba94429 5444 /*
402dd89d 5445 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5446 * attributes breaks ordering guarantee. Disallow exposing ordered
5447 * workqueues.
5448 */
0a94efb5 5449 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5450 return -EINVAL;
a0a1a5fd 5451
6ba94429
FW
5452 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5453 if (!wq_dev)
5454 return -ENOMEM;
5bcab335 5455
6ba94429
FW
5456 wq_dev->wq = wq;
5457 wq_dev->dev.bus = &wq_subsys;
6ba94429 5458 wq_dev->dev.release = wq_device_release;
23217b44 5459 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5460
6ba94429
FW
5461 /*
5462 * unbound_attrs are created separately. Suppress uevent until
5463 * everything is ready.
5464 */
5465 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5466
6ba94429
FW
5467 ret = device_register(&wq_dev->dev);
5468 if (ret) {
537f4146 5469 put_device(&wq_dev->dev);
6ba94429
FW
5470 wq->wq_dev = NULL;
5471 return ret;
5472 }
a0a1a5fd 5473
6ba94429
FW
5474 if (wq->flags & WQ_UNBOUND) {
5475 struct device_attribute *attr;
a0a1a5fd 5476
6ba94429
FW
5477 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5478 ret = device_create_file(&wq_dev->dev, attr);
5479 if (ret) {
5480 device_unregister(&wq_dev->dev);
5481 wq->wq_dev = NULL;
5482 return ret;
a0a1a5fd
TH
5483 }
5484 }
5485 }
6ba94429
FW
5486
5487 dev_set_uevent_suppress(&wq_dev->dev, false);
5488 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5489 return 0;
a0a1a5fd
TH
5490}
5491
5492/**
6ba94429
FW
5493 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5494 * @wq: the workqueue to unregister
a0a1a5fd 5495 *
6ba94429 5496 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5497 */
6ba94429 5498static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5499{
6ba94429 5500 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5501
6ba94429
FW
5502 if (!wq->wq_dev)
5503 return;
a0a1a5fd 5504
6ba94429
FW
5505 wq->wq_dev = NULL;
5506 device_unregister(&wq_dev->dev);
a0a1a5fd 5507}
6ba94429
FW
5508#else /* CONFIG_SYSFS */
5509static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5510#endif /* CONFIG_SYSFS */
a0a1a5fd 5511
82607adc
TH
5512/*
5513 * Workqueue watchdog.
5514 *
5515 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5516 * flush dependency, a concurrency managed work item which stays RUNNING
5517 * indefinitely. Workqueue stalls can be very difficult to debug as the
5518 * usual warning mechanisms don't trigger and internal workqueue state is
5519 * largely opaque.
5520 *
5521 * Workqueue watchdog monitors all worker pools periodically and dumps
5522 * state if some pools failed to make forward progress for a while where
5523 * forward progress is defined as the first item on ->worklist changing.
5524 *
5525 * This mechanism is controlled through the kernel parameter
5526 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5527 * corresponding sysfs parameter file.
5528 */
5529#ifdef CONFIG_WQ_WATCHDOG
5530
82607adc 5531static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5532static struct timer_list wq_watchdog_timer;
82607adc
TH
5533
5534static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5535static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5536
5537static void wq_watchdog_reset_touched(void)
5538{
5539 int cpu;
5540
5541 wq_watchdog_touched = jiffies;
5542 for_each_possible_cpu(cpu)
5543 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5544}
5545
5cd79d6a 5546static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5547{
5548 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5549 bool lockup_detected = false;
5550 struct worker_pool *pool;
5551 int pi;
5552
5553 if (!thresh)
5554 return;
5555
5556 rcu_read_lock();
5557
5558 for_each_pool(pool, pi) {
5559 unsigned long pool_ts, touched, ts;
5560
5561 if (list_empty(&pool->worklist))
5562 continue;
5563
5564 /* get the latest of pool and touched timestamps */
5565 pool_ts = READ_ONCE(pool->watchdog_ts);
5566 touched = READ_ONCE(wq_watchdog_touched);
5567
5568 if (time_after(pool_ts, touched))
5569 ts = pool_ts;
5570 else
5571 ts = touched;
5572
5573 if (pool->cpu >= 0) {
5574 unsigned long cpu_touched =
5575 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5576 pool->cpu));
5577 if (time_after(cpu_touched, ts))
5578 ts = cpu_touched;
5579 }
5580
5581 /* did we stall? */
5582 if (time_after(jiffies, ts + thresh)) {
5583 lockup_detected = true;
5584 pr_emerg("BUG: workqueue lockup - pool");
5585 pr_cont_pool_info(pool);
5586 pr_cont(" stuck for %us!\n",
5587 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5588 }
5589 }
5590
5591 rcu_read_unlock();
5592
5593 if (lockup_detected)
5594 show_workqueue_state();
5595
5596 wq_watchdog_reset_touched();
5597 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5598}
5599
cb9d7fd5 5600notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5601{
5602 if (cpu >= 0)
5603 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5604 else
5605 wq_watchdog_touched = jiffies;
5606}
5607
5608static void wq_watchdog_set_thresh(unsigned long thresh)
5609{
5610 wq_watchdog_thresh = 0;
5611 del_timer_sync(&wq_watchdog_timer);
5612
5613 if (thresh) {
5614 wq_watchdog_thresh = thresh;
5615 wq_watchdog_reset_touched();
5616 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5617 }
5618}
5619
5620static int wq_watchdog_param_set_thresh(const char *val,
5621 const struct kernel_param *kp)
5622{
5623 unsigned long thresh;
5624 int ret;
5625
5626 ret = kstrtoul(val, 0, &thresh);
5627 if (ret)
5628 return ret;
5629
5630 if (system_wq)
5631 wq_watchdog_set_thresh(thresh);
5632 else
5633 wq_watchdog_thresh = thresh;
5634
5635 return 0;
5636}
5637
5638static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5639 .set = wq_watchdog_param_set_thresh,
5640 .get = param_get_ulong,
5641};
5642
5643module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5644 0644);
5645
5646static void wq_watchdog_init(void)
5647{
5cd79d6a 5648 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5649 wq_watchdog_set_thresh(wq_watchdog_thresh);
5650}
5651
5652#else /* CONFIG_WQ_WATCHDOG */
5653
5654static inline void wq_watchdog_init(void) { }
5655
5656#endif /* CONFIG_WQ_WATCHDOG */
5657
bce90380
TH
5658static void __init wq_numa_init(void)
5659{
5660 cpumask_var_t *tbl;
5661 int node, cpu;
5662
bce90380
TH
5663 if (num_possible_nodes() <= 1)
5664 return;
5665
d55262c4
TH
5666 if (wq_disable_numa) {
5667 pr_info("workqueue: NUMA affinity support disabled\n");
5668 return;
5669 }
5670
4c16bd32
TH
5671 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5672 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5673
bce90380
TH
5674 /*
5675 * We want masks of possible CPUs of each node which isn't readily
5676 * available. Build one from cpu_to_node() which should have been
5677 * fully initialized by now.
5678 */
6396bb22 5679 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5680 BUG_ON(!tbl);
5681
5682 for_each_node(node)
5a6024f1 5683 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5684 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5685
5686 for_each_possible_cpu(cpu) {
5687 node = cpu_to_node(cpu);
5688 if (WARN_ON(node == NUMA_NO_NODE)) {
5689 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5690 /* happens iff arch is bonkers, let's just proceed */
5691 return;
5692 }
5693 cpumask_set_cpu(cpu, tbl[node]);
5694 }
5695
5696 wq_numa_possible_cpumask = tbl;
5697 wq_numa_enabled = true;
5698}
5699
3347fa09
TH
5700/**
5701 * workqueue_init_early - early init for workqueue subsystem
5702 *
5703 * This is the first half of two-staged workqueue subsystem initialization
5704 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5705 * idr are up. It sets up all the data structures and system workqueues
5706 * and allows early boot code to create workqueues and queue/cancel work
5707 * items. Actual work item execution starts only after kthreads can be
5708 * created and scheduled right before early initcalls.
5709 */
5710int __init workqueue_init_early(void)
1da177e4 5711{
7a4e344c 5712 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5713 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5714 int i, cpu;
c34056a3 5715
e904e6c2
TH
5716 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5717
b05a7928 5718 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5719 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5720
e904e6c2
TH
5721 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5722
706026c2 5723 /* initialize CPU pools */
29c91e99 5724 for_each_possible_cpu(cpu) {
4ce62e9e 5725 struct worker_pool *pool;
8b03ae3c 5726
7a4e344c 5727 i = 0;
f02ae73a 5728 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5729 BUG_ON(init_worker_pool(pool));
ec22ca5e 5730 pool->cpu = cpu;
29c91e99 5731 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5732 pool->attrs->nice = std_nice[i++];
f3f90ad4 5733 pool->node = cpu_to_node(cpu);
7a4e344c 5734
9daf9e67 5735 /* alloc pool ID */
68e13a67 5736 mutex_lock(&wq_pool_mutex);
9daf9e67 5737 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5738 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5739 }
8b03ae3c
TH
5740 }
5741
8a2b7538 5742 /* create default unbound and ordered wq attrs */
29c91e99
TH
5743 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5744 struct workqueue_attrs *attrs;
5745
5746 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5747 attrs->nice = std_nice[i];
29c91e99 5748 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5749
5750 /*
5751 * An ordered wq should have only one pwq as ordering is
5752 * guaranteed by max_active which is enforced by pwqs.
5753 * Turn off NUMA so that dfl_pwq is used for all nodes.
5754 */
5755 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5756 attrs->nice = std_nice[i];
5757 attrs->no_numa = true;
5758 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5759 }
5760
d320c038 5761 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5762 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5763 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5764 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5765 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5766 system_freezable_wq = alloc_workqueue("events_freezable",
5767 WQ_FREEZABLE, 0);
0668106c
VK
5768 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5769 WQ_POWER_EFFICIENT, 0);
5770 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5771 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5772 0);
1aabe902 5773 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5774 !system_unbound_wq || !system_freezable_wq ||
5775 !system_power_efficient_wq ||
5776 !system_freezable_power_efficient_wq);
82607adc 5777
3347fa09
TH
5778 return 0;
5779}
5780
5781/**
5782 * workqueue_init - bring workqueue subsystem fully online
5783 *
5784 * This is the latter half of two-staged workqueue subsystem initialization
5785 * and invoked as soon as kthreads can be created and scheduled.
5786 * Workqueues have been created and work items queued on them, but there
5787 * are no kworkers executing the work items yet. Populate the worker pools
5788 * with the initial workers and enable future kworker creations.
5789 */
5790int __init workqueue_init(void)
5791{
2186d9f9 5792 struct workqueue_struct *wq;
3347fa09
TH
5793 struct worker_pool *pool;
5794 int cpu, bkt;
5795
2186d9f9
TH
5796 /*
5797 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5798 * CPU to node mapping may not be available that early on some
5799 * archs such as power and arm64. As per-cpu pools created
5800 * previously could be missing node hint and unbound pools NUMA
5801 * affinity, fix them up.
40c17f75
TH
5802 *
5803 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5804 */
5805 wq_numa_init();
5806
5807 mutex_lock(&wq_pool_mutex);
5808
5809 for_each_possible_cpu(cpu) {
5810 for_each_cpu_worker_pool(pool, cpu) {
5811 pool->node = cpu_to_node(cpu);
5812 }
5813 }
5814
40c17f75 5815 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5816 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5817 WARN(init_rescuer(wq),
5818 "workqueue: failed to create early rescuer for %s",
5819 wq->name);
5820 }
2186d9f9
TH
5821
5822 mutex_unlock(&wq_pool_mutex);
5823
3347fa09
TH
5824 /* create the initial workers */
5825 for_each_online_cpu(cpu) {
5826 for_each_cpu_worker_pool(pool, cpu) {
5827 pool->flags &= ~POOL_DISASSOCIATED;
5828 BUG_ON(!create_worker(pool));
5829 }
5830 }
5831
5832 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5833 BUG_ON(!create_worker(pool));
5834
5835 wq_online = true;
82607adc
TH
5836 wq_watchdog_init();
5837
6ee0578b 5838 return 0;
1da177e4 5839}