]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/workqueue.c
workqueue: make GCWQ_DISASSOCIATED a pool flag
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
bc2ae0f5
TH
49 /*
50 * global_cwq flags
24647570
TH
51 */
52 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
53
54 /*
55 * worker_pool flags
bc2ae0f5 56 *
24647570 57 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 64 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
65 *
66 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
67 * assoc_mutex to avoid changing binding state while
68 * create_worker() is in progress.
bc2ae0f5 69 */
11ebea50 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 71 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 73
c8e55f36
TH
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 81
5f7dabfd 82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 83 WORKER_CPU_INTENSIVE,
db7bccf4 84
e34cdddb 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 86
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
3270476a 103 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 104};
1da177e4
LT
105
106/*
4690c4ab
TH
107 * Structure fields follow one of the following exclusion rules.
108 *
e41e704b
TH
109 * I: Modifiable by initialization/destruction paths and read-only for
110 * everyone else.
4690c4ab 111 *
e22bee78
TH
112 * P: Preemption protected. Disabling preemption is enough and should
113 * only be modified and accessed from the local cpu.
114 *
8b03ae3c 115 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 116 *
e22bee78
TH
117 * X: During normal operation, modification requires gcwq->lock and
118 * should be done only from local cpu. Either disabling preemption
119 * on local cpu or grabbing gcwq->lock is enough for read access.
24647570 120 * If POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 121 *
73f53c4a
TH
122 * F: wq->flush_mutex protected.
123 *
4690c4ab 124 * W: workqueue_lock protected.
1da177e4 125 */
1da177e4 126
2eaebdb3 127/* struct worker is defined in workqueue_internal.h */
c34056a3 128
bd7bdd43
TH
129struct worker_pool {
130 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 131 unsigned int flags; /* X: flags */
bd7bdd43
TH
132
133 struct list_head worklist; /* L: list of pending works */
134 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
135
136 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
137 int nr_idle; /* L: currently idle ones */
138
139 struct list_head idle_list; /* X: list of idle workers */
140 struct timer_list idle_timer; /* L: worker idle timeout */
141 struct timer_list mayday_timer; /* L: SOS timer for workers */
142
24647570 143 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 144 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
145};
146
8b03ae3c 147/*
e22bee78
TH
148 * Global per-cpu workqueue. There's one and only one for each cpu
149 * and all works are queued and processed here regardless of their
150 * target workqueues.
8b03ae3c
TH
151 */
152struct global_cwq {
153 spinlock_t lock; /* the gcwq lock */
154 unsigned int cpu; /* I: the associated cpu */
db7bccf4 155 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 156
bd7bdd43 157 /* workers are chained either in busy_hash or pool idle_list */
42f8570f 158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
c8e55f36
TH
159 /* L: hash of busy workers */
160
e34cdddb 161 struct worker_pool pools[NR_STD_WORKER_POOLS];
330dad5b 162 /* normal and highpri pools */
8b03ae3c
TH
163} ____cacheline_aligned_in_smp;
164
1da177e4 165/*
502ca9d8 166 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
167 * work_struct->data are used for flags and thus cwqs need to be
168 * aligned at two's power of the number of flag bits.
1da177e4
LT
169 */
170struct cpu_workqueue_struct {
bd7bdd43 171 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 172 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
173 int work_color; /* L: current color */
174 int flush_color; /* L: flushing color */
175 int nr_in_flight[WORK_NR_COLORS];
176 /* L: nr of in_flight works */
1e19ffc6 177 int nr_active; /* L: nr of active works */
a0a1a5fd 178 int max_active; /* L: max active works */
1e19ffc6 179 struct list_head delayed_works; /* L: delayed works */
0f900049 180};
1da177e4 181
73f53c4a
TH
182/*
183 * Structure used to wait for workqueue flush.
184 */
185struct wq_flusher {
186 struct list_head list; /* F: list of flushers */
187 int flush_color; /* F: flush color waiting for */
188 struct completion done; /* flush completion */
189};
190
f2e005aa
TH
191/*
192 * All cpumasks are assumed to be always set on UP and thus can't be
193 * used to determine whether there's something to be done.
194 */
195#ifdef CONFIG_SMP
196typedef cpumask_var_t mayday_mask_t;
197#define mayday_test_and_set_cpu(cpu, mask) \
198 cpumask_test_and_set_cpu((cpu), (mask))
199#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
200#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 201#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
202#define free_mayday_mask(mask) free_cpumask_var((mask))
203#else
204typedef unsigned long mayday_mask_t;
205#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
206#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
207#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
208#define alloc_mayday_mask(maskp, gfp) true
209#define free_mayday_mask(mask) do { } while (0)
210#endif
1da177e4
LT
211
212/*
213 * The externally visible workqueue abstraction is an array of
214 * per-CPU workqueues:
215 */
216struct workqueue_struct {
9c5a2ba7 217 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
218 union {
219 struct cpu_workqueue_struct __percpu *pcpu;
220 struct cpu_workqueue_struct *single;
221 unsigned long v;
222 } cpu_wq; /* I: cwq's */
4690c4ab 223 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
224
225 struct mutex flush_mutex; /* protects wq flushing */
226 int work_color; /* F: current work color */
227 int flush_color; /* F: current flush color */
228 atomic_t nr_cwqs_to_flush; /* flush in progress */
229 struct wq_flusher *first_flusher; /* F: first flusher */
230 struct list_head flusher_queue; /* F: flush waiters */
231 struct list_head flusher_overflow; /* F: flush overflow list */
232
f2e005aa 233 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
234 struct worker *rescuer; /* I: rescue worker */
235
9c5a2ba7 236 int nr_drainers; /* W: drain in progress */
dcd989cb 237 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 238#ifdef CONFIG_LOCKDEP
4690c4ab 239 struct lockdep_map lockdep_map;
4e6045f1 240#endif
b196be89 241 char name[]; /* I: workqueue name */
1da177e4
LT
242};
243
d320c038 244struct workqueue_struct *system_wq __read_mostly;
d320c038 245EXPORT_SYMBOL_GPL(system_wq);
044c782c 246struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 247EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 248struct workqueue_struct *system_long_wq __read_mostly;
d320c038 249EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 250struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 251EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 252struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 253EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 254
97bd2347
TH
255#define CREATE_TRACE_POINTS
256#include <trace/events/workqueue.h>
257
4ce62e9e 258#define for_each_worker_pool(pool, gcwq) \
3270476a 259 for ((pool) = &(gcwq)->pools[0]; \
e34cdddb 260 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 261
db7bccf4 262#define for_each_busy_worker(worker, i, pos, gcwq) \
42f8570f 263 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
db7bccf4 264
f3421797
TH
265static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
266 unsigned int sw)
267{
268 if (cpu < nr_cpu_ids) {
269 if (sw & 1) {
270 cpu = cpumask_next(cpu, mask);
271 if (cpu < nr_cpu_ids)
272 return cpu;
273 }
274 if (sw & 2)
275 return WORK_CPU_UNBOUND;
276 }
277 return WORK_CPU_NONE;
278}
279
280static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
281 struct workqueue_struct *wq)
282{
283 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
284}
285
09884951
TH
286/*
287 * CPU iterators
288 *
289 * An extra gcwq is defined for an invalid cpu number
290 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
291 * specific CPU. The following iterators are similar to
292 * for_each_*_cpu() iterators but also considers the unbound gcwq.
293 *
294 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
295 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
296 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
297 * WORK_CPU_UNBOUND for unbound workqueues
298 */
f3421797
TH
299#define for_each_gcwq_cpu(cpu) \
300 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
301 (cpu) < WORK_CPU_NONE; \
302 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
303
304#define for_each_online_gcwq_cpu(cpu) \
305 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
306 (cpu) < WORK_CPU_NONE; \
307 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
308
309#define for_each_cwq_cpu(cpu, wq) \
310 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
311 (cpu) < WORK_CPU_NONE; \
312 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
313
dc186ad7
TG
314#ifdef CONFIG_DEBUG_OBJECTS_WORK
315
316static struct debug_obj_descr work_debug_descr;
317
99777288
SG
318static void *work_debug_hint(void *addr)
319{
320 return ((struct work_struct *) addr)->func;
321}
322
dc186ad7
TG
323/*
324 * fixup_init is called when:
325 * - an active object is initialized
326 */
327static int work_fixup_init(void *addr, enum debug_obj_state state)
328{
329 struct work_struct *work = addr;
330
331 switch (state) {
332 case ODEBUG_STATE_ACTIVE:
333 cancel_work_sync(work);
334 debug_object_init(work, &work_debug_descr);
335 return 1;
336 default:
337 return 0;
338 }
339}
340
341/*
342 * fixup_activate is called when:
343 * - an active object is activated
344 * - an unknown object is activated (might be a statically initialized object)
345 */
346static int work_fixup_activate(void *addr, enum debug_obj_state state)
347{
348 struct work_struct *work = addr;
349
350 switch (state) {
351
352 case ODEBUG_STATE_NOTAVAILABLE:
353 /*
354 * This is not really a fixup. The work struct was
355 * statically initialized. We just make sure that it
356 * is tracked in the object tracker.
357 */
22df02bb 358 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
359 debug_object_init(work, &work_debug_descr);
360 debug_object_activate(work, &work_debug_descr);
361 return 0;
362 }
363 WARN_ON_ONCE(1);
364 return 0;
365
366 case ODEBUG_STATE_ACTIVE:
367 WARN_ON(1);
368
369 default:
370 return 0;
371 }
372}
373
374/*
375 * fixup_free is called when:
376 * - an active object is freed
377 */
378static int work_fixup_free(void *addr, enum debug_obj_state state)
379{
380 struct work_struct *work = addr;
381
382 switch (state) {
383 case ODEBUG_STATE_ACTIVE:
384 cancel_work_sync(work);
385 debug_object_free(work, &work_debug_descr);
386 return 1;
387 default:
388 return 0;
389 }
390}
391
392static struct debug_obj_descr work_debug_descr = {
393 .name = "work_struct",
99777288 394 .debug_hint = work_debug_hint,
dc186ad7
TG
395 .fixup_init = work_fixup_init,
396 .fixup_activate = work_fixup_activate,
397 .fixup_free = work_fixup_free,
398};
399
400static inline void debug_work_activate(struct work_struct *work)
401{
402 debug_object_activate(work, &work_debug_descr);
403}
404
405static inline void debug_work_deactivate(struct work_struct *work)
406{
407 debug_object_deactivate(work, &work_debug_descr);
408}
409
410void __init_work(struct work_struct *work, int onstack)
411{
412 if (onstack)
413 debug_object_init_on_stack(work, &work_debug_descr);
414 else
415 debug_object_init(work, &work_debug_descr);
416}
417EXPORT_SYMBOL_GPL(__init_work);
418
419void destroy_work_on_stack(struct work_struct *work)
420{
421 debug_object_free(work, &work_debug_descr);
422}
423EXPORT_SYMBOL_GPL(destroy_work_on_stack);
424
425#else
426static inline void debug_work_activate(struct work_struct *work) { }
427static inline void debug_work_deactivate(struct work_struct *work) { }
428#endif
429
95402b38
GS
430/* Serializes the accesses to the list of workqueues. */
431static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 432static LIST_HEAD(workqueues);
a0a1a5fd 433static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 434
e22bee78
TH
435/*
436 * The almighty global cpu workqueues. nr_running is the only field
437 * which is expected to be used frequently by other cpus via
438 * try_to_wake_up(). Put it in a separate cacheline.
439 */
8b03ae3c 440static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e34cdddb 441static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
8b03ae3c 442
f3421797 443/*
24647570
TH
444 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
445 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
446 * WORKER_UNBOUND set.
f3421797
TH
447 */
448static struct global_cwq unbound_global_cwq;
e34cdddb
TH
449static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
450 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 451};
f3421797 452
c34056a3 453static int worker_thread(void *__worker);
e2905b29 454static unsigned int work_cpu(struct work_struct *work);
1da177e4 455
e34cdddb 456static int std_worker_pool_pri(struct worker_pool *pool)
3270476a
TH
457{
458 return pool - pool->gcwq->pools;
459}
460
8b03ae3c
TH
461static struct global_cwq *get_gcwq(unsigned int cpu)
462{
f3421797
TH
463 if (cpu != WORK_CPU_UNBOUND)
464 return &per_cpu(global_cwq, cpu);
465 else
466 return &unbound_global_cwq;
8b03ae3c
TH
467}
468
63d95a91 469static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 470{
63d95a91 471 int cpu = pool->gcwq->cpu;
e34cdddb 472 int idx = std_worker_pool_pri(pool);
63d95a91 473
f3421797 474 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 475 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 476 else
4ce62e9e 477 return &unbound_pool_nr_running[idx];
e22bee78
TH
478}
479
1537663f
TH
480static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
481 struct workqueue_struct *wq)
b1f4ec17 482{
f3421797 483 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 484 if (likely(cpu < nr_cpu_ids))
f3421797 485 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
486 } else if (likely(cpu == WORK_CPU_UNBOUND))
487 return wq->cpu_wq.single;
488 return NULL;
b1f4ec17
ON
489}
490
73f53c4a
TH
491static unsigned int work_color_to_flags(int color)
492{
493 return color << WORK_STRUCT_COLOR_SHIFT;
494}
495
496static int get_work_color(struct work_struct *work)
497{
498 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
499 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
500}
501
502static int work_next_color(int color)
503{
504 return (color + 1) % WORK_NR_COLORS;
505}
1da177e4 506
14441960 507/*
b5490077
TH
508 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
509 * contain the pointer to the queued cwq. Once execution starts, the flag
510 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 511 *
bbb68dfa
TH
512 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
513 * and clear_work_data() can be used to set the cwq, cpu or clear
514 * work->data. These functions should only be called while the work is
515 * owned - ie. while the PENDING bit is set.
7a22ad75 516 *
bbb68dfa
TH
517 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
518 * a work. gcwq is available once the work has been queued anywhere after
519 * initialization until it is sync canceled. cwq is available only while
520 * the work item is queued.
7a22ad75 521 *
bbb68dfa
TH
522 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
523 * canceled. While being canceled, a work item may have its PENDING set
524 * but stay off timer and worklist for arbitrarily long and nobody should
525 * try to steal the PENDING bit.
14441960 526 */
7a22ad75
TH
527static inline void set_work_data(struct work_struct *work, unsigned long data,
528 unsigned long flags)
365970a1 529{
4594bf15 530 BUG_ON(!work_pending(work));
7a22ad75
TH
531 atomic_long_set(&work->data, data | flags | work_static(work));
532}
365970a1 533
7a22ad75
TH
534static void set_work_cwq(struct work_struct *work,
535 struct cpu_workqueue_struct *cwq,
536 unsigned long extra_flags)
537{
538 set_work_data(work, (unsigned long)cwq,
e120153d 539 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
540}
541
8930caba
TH
542static void set_work_cpu_and_clear_pending(struct work_struct *work,
543 unsigned int cpu)
7a22ad75 544{
23657bb1
TH
545 /*
546 * The following wmb is paired with the implied mb in
547 * test_and_set_bit(PENDING) and ensures all updates to @work made
548 * here are visible to and precede any updates by the next PENDING
549 * owner.
550 */
551 smp_wmb();
b5490077 552 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 553}
f756d5e2 554
7a22ad75 555static void clear_work_data(struct work_struct *work)
1da177e4 556{
23657bb1 557 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 558 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
559}
560
7a22ad75 561static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 562{
e120153d 563 unsigned long data = atomic_long_read(&work->data);
7a22ad75 564
e120153d
TH
565 if (data & WORK_STRUCT_CWQ)
566 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
567 else
568 return NULL;
4d707b9f
ON
569}
570
7a22ad75 571static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 572{
e120153d 573 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
574 unsigned int cpu;
575
e120153d
TH
576 if (data & WORK_STRUCT_CWQ)
577 return ((struct cpu_workqueue_struct *)
bd7bdd43 578 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 579
b5490077 580 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 581 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
582 return NULL;
583
f3421797 584 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 585 return get_gcwq(cpu);
b1f4ec17
ON
586}
587
bbb68dfa
TH
588static void mark_work_canceling(struct work_struct *work)
589{
590 struct global_cwq *gcwq = get_work_gcwq(work);
591 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
592
593 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
594 WORK_STRUCT_PENDING);
595}
596
597static bool work_is_canceling(struct work_struct *work)
598{
599 unsigned long data = atomic_long_read(&work->data);
600
601 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
602}
603
e22bee78 604/*
3270476a
TH
605 * Policy functions. These define the policies on how the global worker
606 * pools are managed. Unless noted otherwise, these functions assume that
607 * they're being called with gcwq->lock held.
e22bee78
TH
608 */
609
63d95a91 610static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 611{
3270476a 612 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
613}
614
4594bf15 615/*
e22bee78
TH
616 * Need to wake up a worker? Called from anything but currently
617 * running workers.
974271c4
TH
618 *
619 * Note that, because unbound workers never contribute to nr_running, this
620 * function will always return %true for unbound gcwq as long as the
621 * worklist isn't empty.
4594bf15 622 */
63d95a91 623static bool need_more_worker(struct worker_pool *pool)
365970a1 624{
63d95a91 625 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 626}
4594bf15 627
e22bee78 628/* Can I start working? Called from busy but !running workers. */
63d95a91 629static bool may_start_working(struct worker_pool *pool)
e22bee78 630{
63d95a91 631 return pool->nr_idle;
e22bee78
TH
632}
633
634/* Do I need to keep working? Called from currently running workers. */
63d95a91 635static bool keep_working(struct worker_pool *pool)
e22bee78 636{
63d95a91 637 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 638
3270476a 639 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
640}
641
642/* Do we need a new worker? Called from manager. */
63d95a91 643static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 644{
63d95a91 645 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 646}
365970a1 647
e22bee78 648/* Do I need to be the manager? */
63d95a91 649static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 650{
63d95a91 651 return need_to_create_worker(pool) ||
11ebea50 652 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
653}
654
655/* Do we have too many workers and should some go away? */
63d95a91 656static bool too_many_workers(struct worker_pool *pool)
e22bee78 657{
552a37e9 658 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
659 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
660 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 661
ea1abd61
LJ
662 /*
663 * nr_idle and idle_list may disagree if idle rebinding is in
664 * progress. Never return %true if idle_list is empty.
665 */
666 if (list_empty(&pool->idle_list))
667 return false;
668
e22bee78 669 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
670}
671
4d707b9f 672/*
e22bee78
TH
673 * Wake up functions.
674 */
675
7e11629d 676/* Return the first worker. Safe with preemption disabled */
63d95a91 677static struct worker *first_worker(struct worker_pool *pool)
7e11629d 678{
63d95a91 679 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
680 return NULL;
681
63d95a91 682 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
683}
684
685/**
686 * wake_up_worker - wake up an idle worker
63d95a91 687 * @pool: worker pool to wake worker from
7e11629d 688 *
63d95a91 689 * Wake up the first idle worker of @pool.
7e11629d
TH
690 *
691 * CONTEXT:
692 * spin_lock_irq(gcwq->lock).
693 */
63d95a91 694static void wake_up_worker(struct worker_pool *pool)
7e11629d 695{
63d95a91 696 struct worker *worker = first_worker(pool);
7e11629d
TH
697
698 if (likely(worker))
699 wake_up_process(worker->task);
700}
701
d302f017 702/**
e22bee78
TH
703 * wq_worker_waking_up - a worker is waking up
704 * @task: task waking up
705 * @cpu: CPU @task is waking up to
706 *
707 * This function is called during try_to_wake_up() when a worker is
708 * being awoken.
709 *
710 * CONTEXT:
711 * spin_lock_irq(rq->lock)
712 */
713void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
714{
715 struct worker *worker = kthread_data(task);
716
36576000
JK
717 if (!(worker->flags & WORKER_NOT_RUNNING)) {
718 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
63d95a91 719 atomic_inc(get_pool_nr_running(worker->pool));
36576000 720 }
e22bee78
TH
721}
722
723/**
724 * wq_worker_sleeping - a worker is going to sleep
725 * @task: task going to sleep
726 * @cpu: CPU in question, must be the current CPU number
727 *
728 * This function is called during schedule() when a busy worker is
729 * going to sleep. Worker on the same cpu can be woken up by
730 * returning pointer to its task.
731 *
732 * CONTEXT:
733 * spin_lock_irq(rq->lock)
734 *
735 * RETURNS:
736 * Worker task on @cpu to wake up, %NULL if none.
737 */
738struct task_struct *wq_worker_sleeping(struct task_struct *task,
739 unsigned int cpu)
740{
741 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
742 struct worker_pool *pool;
743 atomic_t *nr_running;
e22bee78 744
111c225a
TH
745 /*
746 * Rescuers, which may not have all the fields set up like normal
747 * workers, also reach here, let's not access anything before
748 * checking NOT_RUNNING.
749 */
2d64672e 750 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
751 return NULL;
752
111c225a
TH
753 pool = worker->pool;
754 nr_running = get_pool_nr_running(pool);
755
e22bee78
TH
756 /* this can only happen on the local cpu */
757 BUG_ON(cpu != raw_smp_processor_id());
758
759 /*
760 * The counterpart of the following dec_and_test, implied mb,
761 * worklist not empty test sequence is in insert_work().
762 * Please read comment there.
763 *
628c78e7
TH
764 * NOT_RUNNING is clear. This means that we're bound to and
765 * running on the local cpu w/ rq lock held and preemption
766 * disabled, which in turn means that none else could be
767 * manipulating idle_list, so dereferencing idle_list without gcwq
768 * lock is safe.
e22bee78 769 */
bd7bdd43 770 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 771 to_wakeup = first_worker(pool);
e22bee78
TH
772 return to_wakeup ? to_wakeup->task : NULL;
773}
774
775/**
776 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 777 * @worker: self
d302f017
TH
778 * @flags: flags to set
779 * @wakeup: wakeup an idle worker if necessary
780 *
e22bee78
TH
781 * Set @flags in @worker->flags and adjust nr_running accordingly. If
782 * nr_running becomes zero and @wakeup is %true, an idle worker is
783 * woken up.
d302f017 784 *
cb444766
TH
785 * CONTEXT:
786 * spin_lock_irq(gcwq->lock)
d302f017
TH
787 */
788static inline void worker_set_flags(struct worker *worker, unsigned int flags,
789 bool wakeup)
790{
bd7bdd43 791 struct worker_pool *pool = worker->pool;
e22bee78 792
cb444766
TH
793 WARN_ON_ONCE(worker->task != current);
794
e22bee78
TH
795 /*
796 * If transitioning into NOT_RUNNING, adjust nr_running and
797 * wake up an idle worker as necessary if requested by
798 * @wakeup.
799 */
800 if ((flags & WORKER_NOT_RUNNING) &&
801 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 802 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
803
804 if (wakeup) {
805 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 806 !list_empty(&pool->worklist))
63d95a91 807 wake_up_worker(pool);
e22bee78
TH
808 } else
809 atomic_dec(nr_running);
810 }
811
d302f017
TH
812 worker->flags |= flags;
813}
814
815/**
e22bee78 816 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 817 * @worker: self
d302f017
TH
818 * @flags: flags to clear
819 *
e22bee78 820 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 821 *
cb444766
TH
822 * CONTEXT:
823 * spin_lock_irq(gcwq->lock)
d302f017
TH
824 */
825static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
826{
63d95a91 827 struct worker_pool *pool = worker->pool;
e22bee78
TH
828 unsigned int oflags = worker->flags;
829
cb444766
TH
830 WARN_ON_ONCE(worker->task != current);
831
d302f017 832 worker->flags &= ~flags;
e22bee78 833
42c025f3
TH
834 /*
835 * If transitioning out of NOT_RUNNING, increment nr_running. Note
836 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
837 * of multiple flags, not a single flag.
838 */
e22bee78
TH
839 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
840 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 841 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
842}
843
8cca0eea
TH
844/**
845 * find_worker_executing_work - find worker which is executing a work
846 * @gcwq: gcwq of interest
847 * @work: work to find worker for
848 *
a2c1c57b
TH
849 * Find a worker which is executing @work on @gcwq by searching
850 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
851 * to match, its current execution should match the address of @work and
852 * its work function. This is to avoid unwanted dependency between
853 * unrelated work executions through a work item being recycled while still
854 * being executed.
855 *
856 * This is a bit tricky. A work item may be freed once its execution
857 * starts and nothing prevents the freed area from being recycled for
858 * another work item. If the same work item address ends up being reused
859 * before the original execution finishes, workqueue will identify the
860 * recycled work item as currently executing and make it wait until the
861 * current execution finishes, introducing an unwanted dependency.
862 *
863 * This function checks the work item address, work function and workqueue
864 * to avoid false positives. Note that this isn't complete as one may
865 * construct a work function which can introduce dependency onto itself
866 * through a recycled work item. Well, if somebody wants to shoot oneself
867 * in the foot that badly, there's only so much we can do, and if such
868 * deadlock actually occurs, it should be easy to locate the culprit work
869 * function.
8cca0eea
TH
870 *
871 * CONTEXT:
872 * spin_lock_irq(gcwq->lock).
873 *
874 * RETURNS:
875 * Pointer to worker which is executing @work if found, NULL
876 * otherwise.
4d707b9f 877 */
8cca0eea
TH
878static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
879 struct work_struct *work)
4d707b9f 880{
42f8570f
SL
881 struct worker *worker;
882 struct hlist_node *tmp;
883
a2c1c57b
TH
884 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
885 (unsigned long)work)
886 if (worker->current_work == work &&
887 worker->current_func == work->func)
42f8570f
SL
888 return worker;
889
890 return NULL;
4d707b9f
ON
891}
892
bf4ede01
TH
893/**
894 * move_linked_works - move linked works to a list
895 * @work: start of series of works to be scheduled
896 * @head: target list to append @work to
897 * @nextp: out paramter for nested worklist walking
898 *
899 * Schedule linked works starting from @work to @head. Work series to
900 * be scheduled starts at @work and includes any consecutive work with
901 * WORK_STRUCT_LINKED set in its predecessor.
902 *
903 * If @nextp is not NULL, it's updated to point to the next work of
904 * the last scheduled work. This allows move_linked_works() to be
905 * nested inside outer list_for_each_entry_safe().
906 *
907 * CONTEXT:
908 * spin_lock_irq(gcwq->lock).
909 */
910static void move_linked_works(struct work_struct *work, struct list_head *head,
911 struct work_struct **nextp)
912{
913 struct work_struct *n;
914
915 /*
916 * Linked worklist will always end before the end of the list,
917 * use NULL for list head.
918 */
919 list_for_each_entry_safe_from(work, n, NULL, entry) {
920 list_move_tail(&work->entry, head);
921 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
922 break;
923 }
924
925 /*
926 * If we're already inside safe list traversal and have moved
927 * multiple works to the scheduled queue, the next position
928 * needs to be updated.
929 */
930 if (nextp)
931 *nextp = n;
932}
933
3aa62497 934static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 935{
3aa62497 936 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
937
938 trace_workqueue_activate_work(work);
939 move_linked_works(work, &cwq->pool->worklist, NULL);
940 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
941 cwq->nr_active++;
942}
943
3aa62497
LJ
944static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
945{
946 struct work_struct *work = list_first_entry(&cwq->delayed_works,
947 struct work_struct, entry);
948
949 cwq_activate_delayed_work(work);
950}
951
bf4ede01
TH
952/**
953 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
954 * @cwq: cwq of interest
955 * @color: color of work which left the queue
bf4ede01
TH
956 *
957 * A work either has completed or is removed from pending queue,
958 * decrement nr_in_flight of its cwq and handle workqueue flushing.
959 *
960 * CONTEXT:
961 * spin_lock_irq(gcwq->lock).
962 */
b3f9f405 963static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
964{
965 /* ignore uncolored works */
966 if (color == WORK_NO_COLOR)
967 return;
968
969 cwq->nr_in_flight[color]--;
970
b3f9f405
LJ
971 cwq->nr_active--;
972 if (!list_empty(&cwq->delayed_works)) {
973 /* one down, submit a delayed one */
974 if (cwq->nr_active < cwq->max_active)
975 cwq_activate_first_delayed(cwq);
bf4ede01
TH
976 }
977
978 /* is flush in progress and are we at the flushing tip? */
979 if (likely(cwq->flush_color != color))
980 return;
981
982 /* are there still in-flight works? */
983 if (cwq->nr_in_flight[color])
984 return;
985
986 /* this cwq is done, clear flush_color */
987 cwq->flush_color = -1;
988
989 /*
990 * If this was the last cwq, wake up the first flusher. It
991 * will handle the rest.
992 */
993 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
994 complete(&cwq->wq->first_flusher->done);
995}
996
36e227d2 997/**
bbb68dfa 998 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
999 * @work: work item to steal
1000 * @is_dwork: @work is a delayed_work
bbb68dfa 1001 * @flags: place to store irq state
36e227d2
TH
1002 *
1003 * Try to grab PENDING bit of @work. This function can handle @work in any
1004 * stable state - idle, on timer or on worklist. Return values are
1005 *
1006 * 1 if @work was pending and we successfully stole PENDING
1007 * 0 if @work was idle and we claimed PENDING
1008 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1009 * -ENOENT if someone else is canceling @work, this state may persist
1010 * for arbitrarily long
36e227d2 1011 *
bbb68dfa 1012 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1013 * interrupted while holding PENDING and @work off queue, irq must be
1014 * disabled on entry. This, combined with delayed_work->timer being
1015 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1016 *
1017 * On successful return, >= 0, irq is disabled and the caller is
1018 * responsible for releasing it using local_irq_restore(*@flags).
1019 *
e0aecdd8 1020 * This function is safe to call from any context including IRQ handler.
bf4ede01 1021 */
bbb68dfa
TH
1022static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1023 unsigned long *flags)
bf4ede01
TH
1024{
1025 struct global_cwq *gcwq;
bf4ede01 1026
bbb68dfa
TH
1027 local_irq_save(*flags);
1028
36e227d2
TH
1029 /* try to steal the timer if it exists */
1030 if (is_dwork) {
1031 struct delayed_work *dwork = to_delayed_work(work);
1032
e0aecdd8
TH
1033 /*
1034 * dwork->timer is irqsafe. If del_timer() fails, it's
1035 * guaranteed that the timer is not queued anywhere and not
1036 * running on the local CPU.
1037 */
36e227d2
TH
1038 if (likely(del_timer(&dwork->timer)))
1039 return 1;
1040 }
1041
1042 /* try to claim PENDING the normal way */
bf4ede01
TH
1043 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1044 return 0;
1045
1046 /*
1047 * The queueing is in progress, or it is already queued. Try to
1048 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1049 */
1050 gcwq = get_work_gcwq(work);
1051 if (!gcwq)
bbb68dfa 1052 goto fail;
bf4ede01 1053
bbb68dfa 1054 spin_lock(&gcwq->lock);
bf4ede01
TH
1055 if (!list_empty(&work->entry)) {
1056 /*
1057 * This work is queued, but perhaps we locked the wrong gcwq.
1058 * In that case we must see the new value after rmb(), see
1059 * insert_work()->wmb().
1060 */
1061 smp_rmb();
1062 if (gcwq == get_work_gcwq(work)) {
1063 debug_work_deactivate(work);
3aa62497
LJ
1064
1065 /*
1066 * A delayed work item cannot be grabbed directly
1067 * because it might have linked NO_COLOR work items
1068 * which, if left on the delayed_list, will confuse
1069 * cwq->nr_active management later on and cause
1070 * stall. Make sure the work item is activated
1071 * before grabbing.
1072 */
1073 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1074 cwq_activate_delayed_work(work);
1075
bf4ede01
TH
1076 list_del_init(&work->entry);
1077 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1078 get_work_color(work));
36e227d2 1079
bbb68dfa 1080 spin_unlock(&gcwq->lock);
36e227d2 1081 return 1;
bf4ede01
TH
1082 }
1083 }
bbb68dfa
TH
1084 spin_unlock(&gcwq->lock);
1085fail:
1086 local_irq_restore(*flags);
1087 if (work_is_canceling(work))
1088 return -ENOENT;
1089 cpu_relax();
36e227d2 1090 return -EAGAIN;
bf4ede01
TH
1091}
1092
4690c4ab 1093/**
7e11629d 1094 * insert_work - insert a work into gcwq
4690c4ab
TH
1095 * @cwq: cwq @work belongs to
1096 * @work: work to insert
1097 * @head: insertion point
1098 * @extra_flags: extra WORK_STRUCT_* flags to set
1099 *
7e11629d
TH
1100 * Insert @work which belongs to @cwq into @gcwq after @head.
1101 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1102 *
1103 * CONTEXT:
8b03ae3c 1104 * spin_lock_irq(gcwq->lock).
4690c4ab 1105 */
b89deed3 1106static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1107 struct work_struct *work, struct list_head *head,
1108 unsigned int extra_flags)
b89deed3 1109{
63d95a91 1110 struct worker_pool *pool = cwq->pool;
e22bee78 1111
4690c4ab 1112 /* we own @work, set data and link */
7a22ad75 1113 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1114
6e84d644
ON
1115 /*
1116 * Ensure that we get the right work->data if we see the
1117 * result of list_add() below, see try_to_grab_pending().
1118 */
1119 smp_wmb();
4690c4ab 1120
1a4d9b0a 1121 list_add_tail(&work->entry, head);
e22bee78
TH
1122
1123 /*
1124 * Ensure either worker_sched_deactivated() sees the above
1125 * list_add_tail() or we see zero nr_running to avoid workers
1126 * lying around lazily while there are works to be processed.
1127 */
1128 smp_mb();
1129
63d95a91
TH
1130 if (__need_more_worker(pool))
1131 wake_up_worker(pool);
b89deed3
ON
1132}
1133
c8efcc25
TH
1134/*
1135 * Test whether @work is being queued from another work executing on the
1136 * same workqueue. This is rather expensive and should only be used from
1137 * cold paths.
1138 */
1139static bool is_chained_work(struct workqueue_struct *wq)
1140{
1141 unsigned long flags;
1142 unsigned int cpu;
1143
1144 for_each_gcwq_cpu(cpu) {
1145 struct global_cwq *gcwq = get_gcwq(cpu);
1146 struct worker *worker;
1147 struct hlist_node *pos;
1148 int i;
1149
1150 spin_lock_irqsave(&gcwq->lock, flags);
1151 for_each_busy_worker(worker, i, pos, gcwq) {
1152 if (worker->task != current)
1153 continue;
1154 spin_unlock_irqrestore(&gcwq->lock, flags);
1155 /*
1156 * I'm @worker, no locking necessary. See if @work
1157 * is headed to the same workqueue.
1158 */
1159 return worker->current_cwq->wq == wq;
1160 }
1161 spin_unlock_irqrestore(&gcwq->lock, flags);
1162 }
1163 return false;
1164}
1165
4690c4ab 1166static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1167 struct work_struct *work)
1168{
502ca9d8
TH
1169 struct global_cwq *gcwq;
1170 struct cpu_workqueue_struct *cwq;
1e19ffc6 1171 struct list_head *worklist;
8a2e8e5d 1172 unsigned int work_flags;
b75cac93 1173 unsigned int req_cpu = cpu;
8930caba
TH
1174
1175 /*
1176 * While a work item is PENDING && off queue, a task trying to
1177 * steal the PENDING will busy-loop waiting for it to either get
1178 * queued or lose PENDING. Grabbing PENDING and queueing should
1179 * happen with IRQ disabled.
1180 */
1181 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1182
dc186ad7 1183 debug_work_activate(work);
1e19ffc6 1184
c8efcc25 1185 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1186 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1187 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1188 return;
1189
c7fc77f7
TH
1190 /* determine gcwq to use */
1191 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1192 struct global_cwq *last_gcwq;
1193
57469821 1194 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1195 cpu = raw_smp_processor_id();
1196
18aa9eff 1197 /*
dbf2576e
TH
1198 * It's multi cpu. If @work was previously on a different
1199 * cpu, it might still be running there, in which case the
1200 * work needs to be queued on that cpu to guarantee
1201 * non-reentrancy.
18aa9eff 1202 */
502ca9d8 1203 gcwq = get_gcwq(cpu);
dbf2576e
TH
1204 last_gcwq = get_work_gcwq(work);
1205
1206 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1207 struct worker *worker;
1208
8930caba 1209 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1210
1211 worker = find_worker_executing_work(last_gcwq, work);
1212
1213 if (worker && worker->current_cwq->wq == wq)
1214 gcwq = last_gcwq;
1215 else {
1216 /* meh... not running there, queue here */
8930caba
TH
1217 spin_unlock(&last_gcwq->lock);
1218 spin_lock(&gcwq->lock);
18aa9eff 1219 }
8930caba
TH
1220 } else {
1221 spin_lock(&gcwq->lock);
1222 }
f3421797
TH
1223 } else {
1224 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1225 spin_lock(&gcwq->lock);
502ca9d8
TH
1226 }
1227
1228 /* gcwq determined, get cwq and queue */
1229 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1230 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1231
f5b2552b 1232 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1233 spin_unlock(&gcwq->lock);
f5b2552b
DC
1234 return;
1235 }
1e19ffc6 1236
73f53c4a 1237 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1238 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1239
1240 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1241 trace_workqueue_activate_work(work);
1e19ffc6 1242 cwq->nr_active++;
3270476a 1243 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1244 } else {
1245 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1246 worklist = &cwq->delayed_works;
8a2e8e5d 1247 }
1e19ffc6 1248
8a2e8e5d 1249 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1250
8930caba 1251 spin_unlock(&gcwq->lock);
1da177e4
LT
1252}
1253
0fcb78c2 1254/**
c1a220e7
ZR
1255 * queue_work_on - queue work on specific cpu
1256 * @cpu: CPU number to execute work on
0fcb78c2
REB
1257 * @wq: workqueue to use
1258 * @work: work to queue
1259 *
d4283e93 1260 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1261 *
c1a220e7
ZR
1262 * We queue the work to a specific CPU, the caller must ensure it
1263 * can't go away.
1da177e4 1264 */
d4283e93
TH
1265bool queue_work_on(int cpu, struct workqueue_struct *wq,
1266 struct work_struct *work)
1da177e4 1267{
d4283e93 1268 bool ret = false;
8930caba 1269 unsigned long flags;
ef1ca236 1270
8930caba 1271 local_irq_save(flags);
c1a220e7 1272
22df02bb 1273 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1274 __queue_work(cpu, wq, work);
d4283e93 1275 ret = true;
c1a220e7 1276 }
ef1ca236 1277
8930caba 1278 local_irq_restore(flags);
1da177e4
LT
1279 return ret;
1280}
c1a220e7 1281EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1282
c1a220e7 1283/**
0a13c00e 1284 * queue_work - queue work on a workqueue
c1a220e7
ZR
1285 * @wq: workqueue to use
1286 * @work: work to queue
1287 *
d4283e93 1288 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1289 *
0a13c00e
TH
1290 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1291 * it can be processed by another CPU.
c1a220e7 1292 */
d4283e93 1293bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1294{
57469821 1295 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1296}
0a13c00e 1297EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1298
d8e794df 1299void delayed_work_timer_fn(unsigned long __data)
1da177e4 1300{
52bad64d 1301 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1302 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1303
e0aecdd8 1304 /* should have been called from irqsafe timer with irq already off */
1265057f 1305 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1306}
d8e794df 1307EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1308
7beb2edf
TH
1309static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1310 struct delayed_work *dwork, unsigned long delay)
1da177e4 1311{
7beb2edf
TH
1312 struct timer_list *timer = &dwork->timer;
1313 struct work_struct *work = &dwork->work;
1314 unsigned int lcpu;
1315
1316 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1317 timer->data != (unsigned long)dwork);
fc4b514f
TH
1318 WARN_ON_ONCE(timer_pending(timer));
1319 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1320
8852aac2
TH
1321 /*
1322 * If @delay is 0, queue @dwork->work immediately. This is for
1323 * both optimization and correctness. The earliest @timer can
1324 * expire is on the closest next tick and delayed_work users depend
1325 * on that there's no such delay when @delay is 0.
1326 */
1327 if (!delay) {
1328 __queue_work(cpu, wq, &dwork->work);
1329 return;
1330 }
1331
7beb2edf 1332 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1333
7beb2edf
TH
1334 /*
1335 * This stores cwq for the moment, for the timer_fn. Note that the
1336 * work's gcwq is preserved to allow reentrance detection for
1337 * delayed works.
1338 */
1339 if (!(wq->flags & WQ_UNBOUND)) {
1340 struct global_cwq *gcwq = get_work_gcwq(work);
1341
e42986de
JK
1342 /*
1343 * If we cannot get the last gcwq from @work directly,
1344 * select the last CPU such that it avoids unnecessarily
1345 * triggering non-reentrancy check in __queue_work().
1346 */
1347 lcpu = cpu;
1348 if (gcwq)
7beb2edf 1349 lcpu = gcwq->cpu;
e42986de 1350 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1351 lcpu = raw_smp_processor_id();
1352 } else {
1353 lcpu = WORK_CPU_UNBOUND;
1354 }
1355
1356 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1357
1265057f 1358 dwork->cpu = cpu;
7beb2edf
TH
1359 timer->expires = jiffies + delay;
1360
1361 if (unlikely(cpu != WORK_CPU_UNBOUND))
1362 add_timer_on(timer, cpu);
1363 else
1364 add_timer(timer);
1da177e4
LT
1365}
1366
0fcb78c2
REB
1367/**
1368 * queue_delayed_work_on - queue work on specific CPU after delay
1369 * @cpu: CPU number to execute work on
1370 * @wq: workqueue to use
af9997e4 1371 * @dwork: work to queue
0fcb78c2
REB
1372 * @delay: number of jiffies to wait before queueing
1373 *
715f1300
TH
1374 * Returns %false if @work was already on a queue, %true otherwise. If
1375 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1376 * execution.
0fcb78c2 1377 */
d4283e93
TH
1378bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1379 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1380{
52bad64d 1381 struct work_struct *work = &dwork->work;
d4283e93 1382 bool ret = false;
8930caba 1383 unsigned long flags;
7a6bc1cd 1384
8930caba
TH
1385 /* read the comment in __queue_work() */
1386 local_irq_save(flags);
7a6bc1cd 1387
22df02bb 1388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1389 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1390 ret = true;
7a6bc1cd 1391 }
8a3e77cc 1392
8930caba 1393 local_irq_restore(flags);
7a6bc1cd
VP
1394 return ret;
1395}
ae90dd5d 1396EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1397
0a13c00e
TH
1398/**
1399 * queue_delayed_work - queue work on a workqueue after delay
1400 * @wq: workqueue to use
1401 * @dwork: delayable work to queue
1402 * @delay: number of jiffies to wait before queueing
1403 *
715f1300 1404 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1405 */
d4283e93 1406bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1407 struct delayed_work *dwork, unsigned long delay)
1408{
57469821 1409 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1410}
1411EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1412
8376fe22
TH
1413/**
1414 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1415 * @cpu: CPU number to execute work on
1416 * @wq: workqueue to use
1417 * @dwork: work to queue
1418 * @delay: number of jiffies to wait before queueing
1419 *
1420 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1421 * modify @dwork's timer so that it expires after @delay. If @delay is
1422 * zero, @work is guaranteed to be scheduled immediately regardless of its
1423 * current state.
1424 *
1425 * Returns %false if @dwork was idle and queued, %true if @dwork was
1426 * pending and its timer was modified.
1427 *
e0aecdd8 1428 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1429 * See try_to_grab_pending() for details.
1430 */
1431bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1432 struct delayed_work *dwork, unsigned long delay)
1433{
1434 unsigned long flags;
1435 int ret;
c7fc77f7 1436
8376fe22
TH
1437 do {
1438 ret = try_to_grab_pending(&dwork->work, true, &flags);
1439 } while (unlikely(ret == -EAGAIN));
63bc0362 1440
8376fe22
TH
1441 if (likely(ret >= 0)) {
1442 __queue_delayed_work(cpu, wq, dwork, delay);
1443 local_irq_restore(flags);
7a6bc1cd 1444 }
8376fe22
TH
1445
1446 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1447 return ret;
1448}
8376fe22
TH
1449EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1450
1451/**
1452 * mod_delayed_work - modify delay of or queue a delayed work
1453 * @wq: workqueue to use
1454 * @dwork: work to queue
1455 * @delay: number of jiffies to wait before queueing
1456 *
1457 * mod_delayed_work_on() on local CPU.
1458 */
1459bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1460 unsigned long delay)
1461{
1462 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1463}
1464EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1465
c8e55f36
TH
1466/**
1467 * worker_enter_idle - enter idle state
1468 * @worker: worker which is entering idle state
1469 *
1470 * @worker is entering idle state. Update stats and idle timer if
1471 * necessary.
1472 *
1473 * LOCKING:
1474 * spin_lock_irq(gcwq->lock).
1475 */
1476static void worker_enter_idle(struct worker *worker)
1da177e4 1477{
bd7bdd43 1478 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1479
1480 BUG_ON(worker->flags & WORKER_IDLE);
1481 BUG_ON(!list_empty(&worker->entry) &&
1482 (worker->hentry.next || worker->hentry.pprev));
1483
cb444766
TH
1484 /* can't use worker_set_flags(), also called from start_worker() */
1485 worker->flags |= WORKER_IDLE;
bd7bdd43 1486 pool->nr_idle++;
e22bee78 1487 worker->last_active = jiffies;
c8e55f36
TH
1488
1489 /* idle_list is LIFO */
bd7bdd43 1490 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1491
628c78e7
TH
1492 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1493 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1494
544ecf31 1495 /*
628c78e7
TH
1496 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1497 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1498 * nr_running, the warning may trigger spuriously. Check iff
1499 * unbind is not in progress.
544ecf31 1500 */
24647570 1501 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1502 pool->nr_workers == pool->nr_idle &&
63d95a91 1503 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1504}
1505
1506/**
1507 * worker_leave_idle - leave idle state
1508 * @worker: worker which is leaving idle state
1509 *
1510 * @worker is leaving idle state. Update stats.
1511 *
1512 * LOCKING:
1513 * spin_lock_irq(gcwq->lock).
1514 */
1515static void worker_leave_idle(struct worker *worker)
1516{
bd7bdd43 1517 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1518
1519 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1520 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1521 pool->nr_idle--;
c8e55f36
TH
1522 list_del_init(&worker->entry);
1523}
1524
e22bee78
TH
1525/**
1526 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1527 * @worker: self
1528 *
1529 * Works which are scheduled while the cpu is online must at least be
1530 * scheduled to a worker which is bound to the cpu so that if they are
1531 * flushed from cpu callbacks while cpu is going down, they are
1532 * guaranteed to execute on the cpu.
1533 *
1534 * This function is to be used by rogue workers and rescuers to bind
1535 * themselves to the target cpu and may race with cpu going down or
1536 * coming online. kthread_bind() can't be used because it may put the
1537 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1538 * verbatim as it's best effort and blocking and gcwq may be
1539 * [dis]associated in the meantime.
1540 *
f2d5a0ee 1541 * This function tries set_cpus_allowed() and locks gcwq and verifies the
24647570 1542 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1543 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1544 * enters idle state or fetches works without dropping lock, it can
1545 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1546 *
1547 * CONTEXT:
1548 * Might sleep. Called without any lock but returns with gcwq->lock
1549 * held.
1550 *
1551 * RETURNS:
1552 * %true if the associated gcwq is online (@worker is successfully
1553 * bound), %false if offline.
1554 */
1555static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1556__acquires(&gcwq->lock)
e22bee78 1557{
24647570
TH
1558 struct worker_pool *pool = worker->pool;
1559 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1560 struct task_struct *task = worker->task;
1561
1562 while (true) {
4e6045f1 1563 /*
e22bee78
TH
1564 * The following call may fail, succeed or succeed
1565 * without actually migrating the task to the cpu if
1566 * it races with cpu hotunplug operation. Verify
24647570 1567 * against POOL_DISASSOCIATED.
4e6045f1 1568 */
24647570 1569 if (!(pool->flags & POOL_DISASSOCIATED))
f3421797 1570 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1571
1572 spin_lock_irq(&gcwq->lock);
24647570 1573 if (pool->flags & POOL_DISASSOCIATED)
e22bee78
TH
1574 return false;
1575 if (task_cpu(task) == gcwq->cpu &&
1576 cpumask_equal(&current->cpus_allowed,
1577 get_cpu_mask(gcwq->cpu)))
1578 return true;
1579 spin_unlock_irq(&gcwq->lock);
1580
5035b20f
TH
1581 /*
1582 * We've raced with CPU hot[un]plug. Give it a breather
1583 * and retry migration. cond_resched() is required here;
1584 * otherwise, we might deadlock against cpu_stop trying to
1585 * bring down the CPU on non-preemptive kernel.
1586 */
e22bee78 1587 cpu_relax();
5035b20f 1588 cond_resched();
e22bee78
TH
1589 }
1590}
1591
25511a47 1592/*
ea1abd61 1593 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1594 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1595 */
1596static void idle_worker_rebind(struct worker *worker)
1597{
1598 struct global_cwq *gcwq = worker->pool->gcwq;
1599
5f7dabfd
LJ
1600 /* CPU may go down again inbetween, clear UNBOUND only on success */
1601 if (worker_maybe_bind_and_lock(worker))
1602 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1603
ea1abd61
LJ
1604 /* rebind complete, become available again */
1605 list_add(&worker->entry, &worker->pool->idle_list);
1606 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1607}
1608
e22bee78 1609/*
25511a47 1610 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1611 * the associated cpu which is coming back online. This is scheduled by
1612 * cpu up but can race with other cpu hotplug operations and may be
1613 * executed twice without intervening cpu down.
e22bee78 1614 */
25511a47 1615static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1616{
1617 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1618 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1619
eab6d828
LJ
1620 if (worker_maybe_bind_and_lock(worker))
1621 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1622
1623 spin_unlock_irq(&gcwq->lock);
1624}
1625
25511a47
TH
1626/**
1627 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1628 * @gcwq: gcwq of interest
1629 *
1630 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1631 * is different for idle and busy ones.
1632 *
ea1abd61
LJ
1633 * Idle ones will be removed from the idle_list and woken up. They will
1634 * add themselves back after completing rebind. This ensures that the
1635 * idle_list doesn't contain any unbound workers when re-bound busy workers
1636 * try to perform local wake-ups for concurrency management.
25511a47 1637 *
ea1abd61
LJ
1638 * Busy workers can rebind after they finish their current work items.
1639 * Queueing the rebind work item at the head of the scheduled list is
1640 * enough. Note that nr_running will be properly bumped as busy workers
1641 * rebind.
25511a47 1642 *
ea1abd61
LJ
1643 * On return, all non-manager workers are scheduled for rebind - see
1644 * manage_workers() for the manager special case. Any idle worker
1645 * including the manager will not appear on @idle_list until rebind is
1646 * complete, making local wake-ups safe.
25511a47
TH
1647 */
1648static void rebind_workers(struct global_cwq *gcwq)
25511a47 1649{
25511a47 1650 struct worker_pool *pool;
ea1abd61 1651 struct worker *worker, *n;
25511a47
TH
1652 struct hlist_node *pos;
1653 int i;
1654
1655 lockdep_assert_held(&gcwq->lock);
1656
1657 for_each_worker_pool(pool, gcwq)
b2eb83d1 1658 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1659
5f7dabfd 1660 /* dequeue and kick idle ones */
25511a47 1661 for_each_worker_pool(pool, gcwq) {
ea1abd61 1662 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1663 /*
1664 * idle workers should be off @pool->idle_list
1665 * until rebind is complete to avoid receiving
1666 * premature local wake-ups.
1667 */
1668 list_del_init(&worker->entry);
25511a47 1669
5f7dabfd
LJ
1670 /*
1671 * worker_thread() will see the above dequeuing
1672 * and call idle_worker_rebind().
1673 */
25511a47
TH
1674 wake_up_process(worker->task);
1675 }
1676 }
1677
ea1abd61 1678 /* rebind busy workers */
25511a47
TH
1679 for_each_busy_worker(worker, i, pos, gcwq) {
1680 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1681 struct workqueue_struct *wq;
25511a47
TH
1682
1683 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1684 work_data_bits(rebind_work)))
1685 continue;
1686
25511a47 1687 debug_work_activate(rebind_work);
90beca5d 1688
e2b6a6d5
JK
1689 /*
1690 * wq doesn't really matter but let's keep @worker->pool
1691 * and @cwq->pool consistent for sanity.
1692 */
e34cdddb 1693 if (std_worker_pool_pri(worker->pool))
e2b6a6d5
JK
1694 wq = system_highpri_wq;
1695 else
1696 wq = system_wq;
ec58815a 1697
e2b6a6d5
JK
1698 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1699 worker->scheduled.next,
1700 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1701 }
25511a47
TH
1702}
1703
c34056a3
TH
1704static struct worker *alloc_worker(void)
1705{
1706 struct worker *worker;
1707
1708 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1709 if (worker) {
1710 INIT_LIST_HEAD(&worker->entry);
affee4b2 1711 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1712 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1713 /* on creation a worker is in !idle && prep state */
1714 worker->flags = WORKER_PREP;
c8e55f36 1715 }
c34056a3
TH
1716 return worker;
1717}
1718
1719/**
1720 * create_worker - create a new workqueue worker
63d95a91 1721 * @pool: pool the new worker will belong to
c34056a3 1722 *
63d95a91 1723 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1724 * can be started by calling start_worker() or destroyed using
1725 * destroy_worker().
1726 *
1727 * CONTEXT:
1728 * Might sleep. Does GFP_KERNEL allocations.
1729 *
1730 * RETURNS:
1731 * Pointer to the newly created worker.
1732 */
bc2ae0f5 1733static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1734{
63d95a91 1735 struct global_cwq *gcwq = pool->gcwq;
e34cdddb 1736 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1737 struct worker *worker = NULL;
f3421797 1738 int id = -1;
c34056a3 1739
8b03ae3c 1740 spin_lock_irq(&gcwq->lock);
bd7bdd43 1741 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1742 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1743 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1744 goto fail;
8b03ae3c 1745 spin_lock_irq(&gcwq->lock);
c34056a3 1746 }
8b03ae3c 1747 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1748
1749 worker = alloc_worker();
1750 if (!worker)
1751 goto fail;
1752
bd7bdd43 1753 worker->pool = pool;
c34056a3
TH
1754 worker->id = id;
1755
bc2ae0f5 1756 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1757 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1758 worker, cpu_to_node(gcwq->cpu),
1759 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1760 else
1761 worker->task = kthread_create(worker_thread, worker,
3270476a 1762 "kworker/u:%d%s", id, pri);
c34056a3
TH
1763 if (IS_ERR(worker->task))
1764 goto fail;
1765
e34cdddb 1766 if (std_worker_pool_pri(pool))
3270476a
TH
1767 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1768
db7bccf4 1769 /*
bc2ae0f5 1770 * Determine CPU binding of the new worker depending on
24647570 1771 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1772 * flag remains stable across this function. See the comments
1773 * above the flag definition for details.
1774 *
1775 * As an unbound worker may later become a regular one if CPU comes
1776 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1777 */
24647570 1778 if (!(pool->flags & POOL_DISASSOCIATED)) {
8b03ae3c 1779 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1780 } else {
db7bccf4 1781 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1782 worker->flags |= WORKER_UNBOUND;
f3421797 1783 }
c34056a3
TH
1784
1785 return worker;
1786fail:
1787 if (id >= 0) {
8b03ae3c 1788 spin_lock_irq(&gcwq->lock);
bd7bdd43 1789 ida_remove(&pool->worker_ida, id);
8b03ae3c 1790 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1791 }
1792 kfree(worker);
1793 return NULL;
1794}
1795
1796/**
1797 * start_worker - start a newly created worker
1798 * @worker: worker to start
1799 *
c8e55f36 1800 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1801 *
1802 * CONTEXT:
8b03ae3c 1803 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1804 */
1805static void start_worker(struct worker *worker)
1806{
cb444766 1807 worker->flags |= WORKER_STARTED;
bd7bdd43 1808 worker->pool->nr_workers++;
c8e55f36 1809 worker_enter_idle(worker);
c34056a3
TH
1810 wake_up_process(worker->task);
1811}
1812
1813/**
1814 * destroy_worker - destroy a workqueue worker
1815 * @worker: worker to be destroyed
1816 *
c8e55f36
TH
1817 * Destroy @worker and adjust @gcwq stats accordingly.
1818 *
1819 * CONTEXT:
1820 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1821 */
1822static void destroy_worker(struct worker *worker)
1823{
bd7bdd43
TH
1824 struct worker_pool *pool = worker->pool;
1825 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1826 int id = worker->id;
1827
1828 /* sanity check frenzy */
1829 BUG_ON(worker->current_work);
affee4b2 1830 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1831
c8e55f36 1832 if (worker->flags & WORKER_STARTED)
bd7bdd43 1833 pool->nr_workers--;
c8e55f36 1834 if (worker->flags & WORKER_IDLE)
bd7bdd43 1835 pool->nr_idle--;
c8e55f36
TH
1836
1837 list_del_init(&worker->entry);
cb444766 1838 worker->flags |= WORKER_DIE;
c8e55f36
TH
1839
1840 spin_unlock_irq(&gcwq->lock);
1841
c34056a3
TH
1842 kthread_stop(worker->task);
1843 kfree(worker);
1844
8b03ae3c 1845 spin_lock_irq(&gcwq->lock);
bd7bdd43 1846 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1847}
1848
63d95a91 1849static void idle_worker_timeout(unsigned long __pool)
e22bee78 1850{
63d95a91
TH
1851 struct worker_pool *pool = (void *)__pool;
1852 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1853
1854 spin_lock_irq(&gcwq->lock);
1855
63d95a91 1856 if (too_many_workers(pool)) {
e22bee78
TH
1857 struct worker *worker;
1858 unsigned long expires;
1859
1860 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1861 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1862 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1863
1864 if (time_before(jiffies, expires))
63d95a91 1865 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1866 else {
1867 /* it's been idle for too long, wake up manager */
11ebea50 1868 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1869 wake_up_worker(pool);
d5abe669 1870 }
e22bee78
TH
1871 }
1872
1873 spin_unlock_irq(&gcwq->lock);
1874}
d5abe669 1875
e22bee78
TH
1876static bool send_mayday(struct work_struct *work)
1877{
1878 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1879 struct workqueue_struct *wq = cwq->wq;
f3421797 1880 unsigned int cpu;
e22bee78
TH
1881
1882 if (!(wq->flags & WQ_RESCUER))
1883 return false;
1884
1885 /* mayday mayday mayday */
bd7bdd43 1886 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1887 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1888 if (cpu == WORK_CPU_UNBOUND)
1889 cpu = 0;
f2e005aa 1890 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1891 wake_up_process(wq->rescuer->task);
1892 return true;
1893}
1894
63d95a91 1895static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1896{
63d95a91
TH
1897 struct worker_pool *pool = (void *)__pool;
1898 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1899 struct work_struct *work;
1900
1901 spin_lock_irq(&gcwq->lock);
1902
63d95a91 1903 if (need_to_create_worker(pool)) {
e22bee78
TH
1904 /*
1905 * We've been trying to create a new worker but
1906 * haven't been successful. We might be hitting an
1907 * allocation deadlock. Send distress signals to
1908 * rescuers.
1909 */
63d95a91 1910 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1911 send_mayday(work);
1da177e4 1912 }
e22bee78
TH
1913
1914 spin_unlock_irq(&gcwq->lock);
1915
63d95a91 1916 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1917}
1918
e22bee78
TH
1919/**
1920 * maybe_create_worker - create a new worker if necessary
63d95a91 1921 * @pool: pool to create a new worker for
e22bee78 1922 *
63d95a91 1923 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1924 * have at least one idle worker on return from this function. If
1925 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1926 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1927 * possible allocation deadlock.
1928 *
1929 * On return, need_to_create_worker() is guaranteed to be false and
1930 * may_start_working() true.
1931 *
1932 * LOCKING:
1933 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1934 * multiple times. Does GFP_KERNEL allocations. Called only from
1935 * manager.
1936 *
1937 * RETURNS:
1938 * false if no action was taken and gcwq->lock stayed locked, true
1939 * otherwise.
1940 */
63d95a91 1941static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1942__releases(&gcwq->lock)
1943__acquires(&gcwq->lock)
1da177e4 1944{
63d95a91
TH
1945 struct global_cwq *gcwq = pool->gcwq;
1946
1947 if (!need_to_create_worker(pool))
e22bee78
TH
1948 return false;
1949restart:
9f9c2364
TH
1950 spin_unlock_irq(&gcwq->lock);
1951
e22bee78 1952 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1953 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1954
1955 while (true) {
1956 struct worker *worker;
1957
bc2ae0f5 1958 worker = create_worker(pool);
e22bee78 1959 if (worker) {
63d95a91 1960 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1961 spin_lock_irq(&gcwq->lock);
1962 start_worker(worker);
63d95a91 1963 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1964 return true;
1965 }
1966
63d95a91 1967 if (!need_to_create_worker(pool))
e22bee78 1968 break;
1da177e4 1969
e22bee78
TH
1970 __set_current_state(TASK_INTERRUPTIBLE);
1971 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1972
63d95a91 1973 if (!need_to_create_worker(pool))
e22bee78
TH
1974 break;
1975 }
1976
63d95a91 1977 del_timer_sync(&pool->mayday_timer);
e22bee78 1978 spin_lock_irq(&gcwq->lock);
63d95a91 1979 if (need_to_create_worker(pool))
e22bee78
TH
1980 goto restart;
1981 return true;
1982}
1983
1984/**
1985 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1986 * @pool: pool to destroy workers for
e22bee78 1987 *
63d95a91 1988 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1989 * IDLE_WORKER_TIMEOUT.
1990 *
1991 * LOCKING:
1992 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1993 * multiple times. Called only from manager.
1994 *
1995 * RETURNS:
1996 * false if no action was taken and gcwq->lock stayed locked, true
1997 * otherwise.
1998 */
63d95a91 1999static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2000{
2001 bool ret = false;
1da177e4 2002
63d95a91 2003 while (too_many_workers(pool)) {
e22bee78
TH
2004 struct worker *worker;
2005 unsigned long expires;
3af24433 2006
63d95a91 2007 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2008 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2009
e22bee78 2010 if (time_before(jiffies, expires)) {
63d95a91 2011 mod_timer(&pool->idle_timer, expires);
3af24433 2012 break;
e22bee78 2013 }
1da177e4 2014
e22bee78
TH
2015 destroy_worker(worker);
2016 ret = true;
1da177e4 2017 }
1e19ffc6 2018
e22bee78 2019 return ret;
1e19ffc6
TH
2020}
2021
73f53c4a 2022/**
e22bee78
TH
2023 * manage_workers - manage worker pool
2024 * @worker: self
73f53c4a 2025 *
e22bee78
TH
2026 * Assume the manager role and manage gcwq worker pool @worker belongs
2027 * to. At any given time, there can be only zero or one manager per
2028 * gcwq. The exclusion is handled automatically by this function.
2029 *
2030 * The caller can safely start processing works on false return. On
2031 * true return, it's guaranteed that need_to_create_worker() is false
2032 * and may_start_working() is true.
73f53c4a
TH
2033 *
2034 * CONTEXT:
e22bee78
TH
2035 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2036 * multiple times. Does GFP_KERNEL allocations.
2037 *
2038 * RETURNS:
2039 * false if no action was taken and gcwq->lock stayed locked, true if
2040 * some action was taken.
73f53c4a 2041 */
e22bee78 2042static bool manage_workers(struct worker *worker)
73f53c4a 2043{
63d95a91 2044 struct worker_pool *pool = worker->pool;
e22bee78 2045 bool ret = false;
73f53c4a 2046
ee378aa4 2047 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2048 return ret;
1e19ffc6 2049
552a37e9 2050 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2051
ee378aa4
LJ
2052 /*
2053 * To simplify both worker management and CPU hotplug, hold off
2054 * management while hotplug is in progress. CPU hotplug path can't
2055 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2056 * lead to idle worker depletion (all become busy thinking someone
2057 * else is managing) which in turn can result in deadlock under
b2eb83d1 2058 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2059 * manager against CPU hotplug.
2060 *
b2eb83d1 2061 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2062 * progress. trylock first without dropping @gcwq->lock.
2063 */
b2eb83d1 2064 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2065 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2066 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2067 /*
2068 * CPU hotplug could have happened while we were waiting
b2eb83d1 2069 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2070 * because manager isn't either on idle or busy list, and
2071 * @gcwq's state and ours could have deviated.
2072 *
b2eb83d1 2073 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2074 * simply try to bind. It will succeed or fail depending
2075 * on @gcwq's current state. Try it and adjust
2076 * %WORKER_UNBOUND accordingly.
2077 */
2078 if (worker_maybe_bind_and_lock(worker))
2079 worker->flags &= ~WORKER_UNBOUND;
2080 else
2081 worker->flags |= WORKER_UNBOUND;
73f53c4a 2082
ee378aa4
LJ
2083 ret = true;
2084 }
73f53c4a 2085
11ebea50 2086 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2087
2088 /*
e22bee78
TH
2089 * Destroy and then create so that may_start_working() is true
2090 * on return.
73f53c4a 2091 */
63d95a91
TH
2092 ret |= maybe_destroy_workers(pool);
2093 ret |= maybe_create_worker(pool);
e22bee78 2094
552a37e9 2095 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2096 mutex_unlock(&pool->assoc_mutex);
e22bee78 2097 return ret;
73f53c4a
TH
2098}
2099
a62428c0
TH
2100/**
2101 * process_one_work - process single work
c34056a3 2102 * @worker: self
a62428c0
TH
2103 * @work: work to process
2104 *
2105 * Process @work. This function contains all the logics necessary to
2106 * process a single work including synchronization against and
2107 * interaction with other workers on the same cpu, queueing and
2108 * flushing. As long as context requirement is met, any worker can
2109 * call this function to process a work.
2110 *
2111 * CONTEXT:
8b03ae3c 2112 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2113 */
c34056a3 2114static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2115__releases(&gcwq->lock)
2116__acquires(&gcwq->lock)
a62428c0 2117{
7e11629d 2118 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2119 struct worker_pool *pool = worker->pool;
2120 struct global_cwq *gcwq = pool->gcwq;
fb0e7beb 2121 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2122 int work_color;
7e11629d 2123 struct worker *collision;
a62428c0
TH
2124#ifdef CONFIG_LOCKDEP
2125 /*
2126 * It is permissible to free the struct work_struct from
2127 * inside the function that is called from it, this we need to
2128 * take into account for lockdep too. To avoid bogus "held
2129 * lock freed" warnings as well as problems when looking into
2130 * work->lockdep_map, make a copy and use that here.
2131 */
4d82a1de
PZ
2132 struct lockdep_map lockdep_map;
2133
2134 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2135#endif
6fec10a1
TH
2136 /*
2137 * Ensure we're on the correct CPU. DISASSOCIATED test is
2138 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2139 * unbound or a disassociated pool.
6fec10a1 2140 */
5f7dabfd 2141 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2142 !(pool->flags & POOL_DISASSOCIATED) &&
25511a47
TH
2143 raw_smp_processor_id() != gcwq->cpu);
2144
7e11629d
TH
2145 /*
2146 * A single work shouldn't be executed concurrently by
2147 * multiple workers on a single cpu. Check whether anyone is
2148 * already processing the work. If so, defer the work to the
2149 * currently executing one.
2150 */
42f8570f 2151 collision = find_worker_executing_work(gcwq, work);
7e11629d
TH
2152 if (unlikely(collision)) {
2153 move_linked_works(work, &collision->scheduled, NULL);
2154 return;
2155 }
2156
8930caba 2157 /* claim and dequeue */
a62428c0 2158 debug_work_deactivate(work);
023f27d3 2159 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2160 worker->current_work = work;
a2c1c57b 2161 worker->current_func = work->func;
8cca0eea 2162 worker->current_cwq = cwq;
73f53c4a 2163 work_color = get_work_color(work);
7a22ad75 2164
a62428c0
TH
2165 list_del_init(&work->entry);
2166
fb0e7beb
TH
2167 /*
2168 * CPU intensive works don't participate in concurrency
2169 * management. They're the scheduler's responsibility.
2170 */
2171 if (unlikely(cpu_intensive))
2172 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2173
974271c4
TH
2174 /*
2175 * Unbound gcwq isn't concurrency managed and work items should be
2176 * executed ASAP. Wake up another worker if necessary.
2177 */
63d95a91
TH
2178 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2179 wake_up_worker(pool);
974271c4 2180
8930caba 2181 /*
23657bb1
TH
2182 * Record the last CPU and clear PENDING which should be the last
2183 * update to @work. Also, do this inside @gcwq->lock so that
2184 * PENDING and queued state changes happen together while IRQ is
2185 * disabled.
8930caba 2186 */
8930caba 2187 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2188
8b03ae3c 2189 spin_unlock_irq(&gcwq->lock);
a62428c0 2190
e159489b 2191 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2192 lock_map_acquire(&lockdep_map);
e36c886a 2193 trace_workqueue_execute_start(work);
a2c1c57b 2194 worker->current_func(work);
e36c886a
AV
2195 /*
2196 * While we must be careful to not use "work" after this, the trace
2197 * point will only record its address.
2198 */
2199 trace_workqueue_execute_end(work);
a62428c0
TH
2200 lock_map_release(&lockdep_map);
2201 lock_map_release(&cwq->wq->lockdep_map);
2202
2203 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2204 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2205 " last function: %pf\n",
a2c1c57b
TH
2206 current->comm, preempt_count(), task_pid_nr(current),
2207 worker->current_func);
a62428c0
TH
2208 debug_show_held_locks(current);
2209 dump_stack();
2210 }
2211
8b03ae3c 2212 spin_lock_irq(&gcwq->lock);
a62428c0 2213
fb0e7beb
TH
2214 /* clear cpu intensive status */
2215 if (unlikely(cpu_intensive))
2216 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2217
a62428c0 2218 /* we're done with it, release */
42f8570f 2219 hash_del(&worker->hentry);
c34056a3 2220 worker->current_work = NULL;
a2c1c57b 2221 worker->current_func = NULL;
8cca0eea 2222 worker->current_cwq = NULL;
b3f9f405 2223 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2224}
2225
affee4b2
TH
2226/**
2227 * process_scheduled_works - process scheduled works
2228 * @worker: self
2229 *
2230 * Process all scheduled works. Please note that the scheduled list
2231 * may change while processing a work, so this function repeatedly
2232 * fetches a work from the top and executes it.
2233 *
2234 * CONTEXT:
8b03ae3c 2235 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2236 * multiple times.
2237 */
2238static void process_scheduled_works(struct worker *worker)
1da177e4 2239{
affee4b2
TH
2240 while (!list_empty(&worker->scheduled)) {
2241 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2242 struct work_struct, entry);
c34056a3 2243 process_one_work(worker, work);
1da177e4 2244 }
1da177e4
LT
2245}
2246
4690c4ab
TH
2247/**
2248 * worker_thread - the worker thread function
c34056a3 2249 * @__worker: self
4690c4ab 2250 *
e22bee78
TH
2251 * The gcwq worker thread function. There's a single dynamic pool of
2252 * these per each cpu. These workers process all works regardless of
2253 * their specific target workqueue. The only exception is works which
2254 * belong to workqueues with a rescuer which will be explained in
2255 * rescuer_thread().
4690c4ab 2256 */
c34056a3 2257static int worker_thread(void *__worker)
1da177e4 2258{
c34056a3 2259 struct worker *worker = __worker;
bd7bdd43
TH
2260 struct worker_pool *pool = worker->pool;
2261 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2262
e22bee78
TH
2263 /* tell the scheduler that this is a workqueue worker */
2264 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2265woke_up:
c8e55f36 2266 spin_lock_irq(&gcwq->lock);
1da177e4 2267
5f7dabfd
LJ
2268 /* we are off idle list if destruction or rebind is requested */
2269 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2270 spin_unlock_irq(&gcwq->lock);
25511a47 2271
5f7dabfd 2272 /* if DIE is set, destruction is requested */
25511a47
TH
2273 if (worker->flags & WORKER_DIE) {
2274 worker->task->flags &= ~PF_WQ_WORKER;
2275 return 0;
2276 }
2277
5f7dabfd 2278 /* otherwise, rebind */
25511a47
TH
2279 idle_worker_rebind(worker);
2280 goto woke_up;
c8e55f36 2281 }
affee4b2 2282
c8e55f36 2283 worker_leave_idle(worker);
db7bccf4 2284recheck:
e22bee78 2285 /* no more worker necessary? */
63d95a91 2286 if (!need_more_worker(pool))
e22bee78
TH
2287 goto sleep;
2288
2289 /* do we need to manage? */
63d95a91 2290 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2291 goto recheck;
2292
c8e55f36
TH
2293 /*
2294 * ->scheduled list can only be filled while a worker is
2295 * preparing to process a work or actually processing it.
2296 * Make sure nobody diddled with it while I was sleeping.
2297 */
2298 BUG_ON(!list_empty(&worker->scheduled));
2299
e22bee78
TH
2300 /*
2301 * When control reaches this point, we're guaranteed to have
2302 * at least one idle worker or that someone else has already
2303 * assumed the manager role.
2304 */
2305 worker_clr_flags(worker, WORKER_PREP);
2306
2307 do {
c8e55f36 2308 struct work_struct *work =
bd7bdd43 2309 list_first_entry(&pool->worklist,
c8e55f36
TH
2310 struct work_struct, entry);
2311
2312 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2313 /* optimization path, not strictly necessary */
2314 process_one_work(worker, work);
2315 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2316 process_scheduled_works(worker);
c8e55f36
TH
2317 } else {
2318 move_linked_works(work, &worker->scheduled, NULL);
2319 process_scheduled_works(worker);
affee4b2 2320 }
63d95a91 2321 } while (keep_working(pool));
e22bee78
TH
2322
2323 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2324sleep:
63d95a91 2325 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2326 goto recheck;
d313dd85 2327
c8e55f36 2328 /*
e22bee78
TH
2329 * gcwq->lock is held and there's no work to process and no
2330 * need to manage, sleep. Workers are woken up only while
2331 * holding gcwq->lock or from local cpu, so setting the
2332 * current state before releasing gcwq->lock is enough to
2333 * prevent losing any event.
c8e55f36
TH
2334 */
2335 worker_enter_idle(worker);
2336 __set_current_state(TASK_INTERRUPTIBLE);
2337 spin_unlock_irq(&gcwq->lock);
2338 schedule();
2339 goto woke_up;
1da177e4
LT
2340}
2341
e22bee78
TH
2342/**
2343 * rescuer_thread - the rescuer thread function
111c225a 2344 * @__rescuer: self
e22bee78
TH
2345 *
2346 * Workqueue rescuer thread function. There's one rescuer for each
2347 * workqueue which has WQ_RESCUER set.
2348 *
2349 * Regular work processing on a gcwq may block trying to create a new
2350 * worker which uses GFP_KERNEL allocation which has slight chance of
2351 * developing into deadlock if some works currently on the same queue
2352 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2353 * the problem rescuer solves.
2354 *
2355 * When such condition is possible, the gcwq summons rescuers of all
2356 * workqueues which have works queued on the gcwq and let them process
2357 * those works so that forward progress can be guaranteed.
2358 *
2359 * This should happen rarely.
2360 */
111c225a 2361static int rescuer_thread(void *__rescuer)
e22bee78 2362{
111c225a
TH
2363 struct worker *rescuer = __rescuer;
2364 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2365 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2366 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2367 unsigned int cpu;
2368
2369 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2370
2371 /*
2372 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2373 * doesn't participate in concurrency management.
2374 */
2375 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2376repeat:
2377 set_current_state(TASK_INTERRUPTIBLE);
2378
412d32e6
MG
2379 if (kthread_should_stop()) {
2380 __set_current_state(TASK_RUNNING);
111c225a 2381 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2382 return 0;
412d32e6 2383 }
e22bee78 2384
f3421797
TH
2385 /*
2386 * See whether any cpu is asking for help. Unbounded
2387 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2388 */
f2e005aa 2389 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2390 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2391 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2392 struct worker_pool *pool = cwq->pool;
2393 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2394 struct work_struct *work, *n;
2395
2396 __set_current_state(TASK_RUNNING);
f2e005aa 2397 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2398
2399 /* migrate to the target cpu if possible */
bd7bdd43 2400 rescuer->pool = pool;
e22bee78
TH
2401 worker_maybe_bind_and_lock(rescuer);
2402
2403 /*
2404 * Slurp in all works issued via this workqueue and
2405 * process'em.
2406 */
2407 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2408 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2409 if (get_work_cwq(work) == cwq)
2410 move_linked_works(work, scheduled, &n);
2411
2412 process_scheduled_works(rescuer);
7576958a
TH
2413
2414 /*
2415 * Leave this gcwq. If keep_working() is %true, notify a
2416 * regular worker; otherwise, we end up with 0 concurrency
2417 * and stalling the execution.
2418 */
63d95a91
TH
2419 if (keep_working(pool))
2420 wake_up_worker(pool);
7576958a 2421
e22bee78
TH
2422 spin_unlock_irq(&gcwq->lock);
2423 }
2424
111c225a
TH
2425 /* rescuers should never participate in concurrency management */
2426 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2427 schedule();
2428 goto repeat;
1da177e4
LT
2429}
2430
fc2e4d70
ON
2431struct wq_barrier {
2432 struct work_struct work;
2433 struct completion done;
2434};
2435
2436static void wq_barrier_func(struct work_struct *work)
2437{
2438 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2439 complete(&barr->done);
2440}
2441
4690c4ab
TH
2442/**
2443 * insert_wq_barrier - insert a barrier work
2444 * @cwq: cwq to insert barrier into
2445 * @barr: wq_barrier to insert
affee4b2
TH
2446 * @target: target work to attach @barr to
2447 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2448 *
affee4b2
TH
2449 * @barr is linked to @target such that @barr is completed only after
2450 * @target finishes execution. Please note that the ordering
2451 * guarantee is observed only with respect to @target and on the local
2452 * cpu.
2453 *
2454 * Currently, a queued barrier can't be canceled. This is because
2455 * try_to_grab_pending() can't determine whether the work to be
2456 * grabbed is at the head of the queue and thus can't clear LINKED
2457 * flag of the previous work while there must be a valid next work
2458 * after a work with LINKED flag set.
2459 *
2460 * Note that when @worker is non-NULL, @target may be modified
2461 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2462 *
2463 * CONTEXT:
8b03ae3c 2464 * spin_lock_irq(gcwq->lock).
4690c4ab 2465 */
83c22520 2466static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2467 struct wq_barrier *barr,
2468 struct work_struct *target, struct worker *worker)
fc2e4d70 2469{
affee4b2
TH
2470 struct list_head *head;
2471 unsigned int linked = 0;
2472
dc186ad7 2473 /*
8b03ae3c 2474 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2475 * as we know for sure that this will not trigger any of the
2476 * checks and call back into the fixup functions where we
2477 * might deadlock.
2478 */
ca1cab37 2479 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2480 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2481 init_completion(&barr->done);
83c22520 2482
affee4b2
TH
2483 /*
2484 * If @target is currently being executed, schedule the
2485 * barrier to the worker; otherwise, put it after @target.
2486 */
2487 if (worker)
2488 head = worker->scheduled.next;
2489 else {
2490 unsigned long *bits = work_data_bits(target);
2491
2492 head = target->entry.next;
2493 /* there can already be other linked works, inherit and set */
2494 linked = *bits & WORK_STRUCT_LINKED;
2495 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2496 }
2497
dc186ad7 2498 debug_work_activate(&barr->work);
affee4b2
TH
2499 insert_work(cwq, &barr->work, head,
2500 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2501}
2502
73f53c4a
TH
2503/**
2504 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2505 * @wq: workqueue being flushed
2506 * @flush_color: new flush color, < 0 for no-op
2507 * @work_color: new work color, < 0 for no-op
2508 *
2509 * Prepare cwqs for workqueue flushing.
2510 *
2511 * If @flush_color is non-negative, flush_color on all cwqs should be
2512 * -1. If no cwq has in-flight commands at the specified color, all
2513 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2514 * has in flight commands, its cwq->flush_color is set to
2515 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2516 * wakeup logic is armed and %true is returned.
2517 *
2518 * The caller should have initialized @wq->first_flusher prior to
2519 * calling this function with non-negative @flush_color. If
2520 * @flush_color is negative, no flush color update is done and %false
2521 * is returned.
2522 *
2523 * If @work_color is non-negative, all cwqs should have the same
2524 * work_color which is previous to @work_color and all will be
2525 * advanced to @work_color.
2526 *
2527 * CONTEXT:
2528 * mutex_lock(wq->flush_mutex).
2529 *
2530 * RETURNS:
2531 * %true if @flush_color >= 0 and there's something to flush. %false
2532 * otherwise.
2533 */
2534static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2535 int flush_color, int work_color)
1da177e4 2536{
73f53c4a
TH
2537 bool wait = false;
2538 unsigned int cpu;
1da177e4 2539
73f53c4a
TH
2540 if (flush_color >= 0) {
2541 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2542 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2543 }
2355b70f 2544
f3421797 2545 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2546 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2547 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2548
8b03ae3c 2549 spin_lock_irq(&gcwq->lock);
83c22520 2550
73f53c4a
TH
2551 if (flush_color >= 0) {
2552 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2553
73f53c4a
TH
2554 if (cwq->nr_in_flight[flush_color]) {
2555 cwq->flush_color = flush_color;
2556 atomic_inc(&wq->nr_cwqs_to_flush);
2557 wait = true;
2558 }
2559 }
1da177e4 2560
73f53c4a
TH
2561 if (work_color >= 0) {
2562 BUG_ON(work_color != work_next_color(cwq->work_color));
2563 cwq->work_color = work_color;
2564 }
1da177e4 2565
8b03ae3c 2566 spin_unlock_irq(&gcwq->lock);
1da177e4 2567 }
2355b70f 2568
73f53c4a
TH
2569 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2570 complete(&wq->first_flusher->done);
14441960 2571
73f53c4a 2572 return wait;
1da177e4
LT
2573}
2574
0fcb78c2 2575/**
1da177e4 2576 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2577 * @wq: workqueue to flush
1da177e4
LT
2578 *
2579 * Forces execution of the workqueue and blocks until its completion.
2580 * This is typically used in driver shutdown handlers.
2581 *
fc2e4d70
ON
2582 * We sleep until all works which were queued on entry have been handled,
2583 * but we are not livelocked by new incoming ones.
1da177e4 2584 */
7ad5b3a5 2585void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2586{
73f53c4a
TH
2587 struct wq_flusher this_flusher = {
2588 .list = LIST_HEAD_INIT(this_flusher.list),
2589 .flush_color = -1,
2590 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2591 };
2592 int next_color;
1da177e4 2593
3295f0ef
IM
2594 lock_map_acquire(&wq->lockdep_map);
2595 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2596
2597 mutex_lock(&wq->flush_mutex);
2598
2599 /*
2600 * Start-to-wait phase
2601 */
2602 next_color = work_next_color(wq->work_color);
2603
2604 if (next_color != wq->flush_color) {
2605 /*
2606 * Color space is not full. The current work_color
2607 * becomes our flush_color and work_color is advanced
2608 * by one.
2609 */
2610 BUG_ON(!list_empty(&wq->flusher_overflow));
2611 this_flusher.flush_color = wq->work_color;
2612 wq->work_color = next_color;
2613
2614 if (!wq->first_flusher) {
2615 /* no flush in progress, become the first flusher */
2616 BUG_ON(wq->flush_color != this_flusher.flush_color);
2617
2618 wq->first_flusher = &this_flusher;
2619
2620 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2621 wq->work_color)) {
2622 /* nothing to flush, done */
2623 wq->flush_color = next_color;
2624 wq->first_flusher = NULL;
2625 goto out_unlock;
2626 }
2627 } else {
2628 /* wait in queue */
2629 BUG_ON(wq->flush_color == this_flusher.flush_color);
2630 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2631 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2632 }
2633 } else {
2634 /*
2635 * Oops, color space is full, wait on overflow queue.
2636 * The next flush completion will assign us
2637 * flush_color and transfer to flusher_queue.
2638 */
2639 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2640 }
2641
2642 mutex_unlock(&wq->flush_mutex);
2643
2644 wait_for_completion(&this_flusher.done);
2645
2646 /*
2647 * Wake-up-and-cascade phase
2648 *
2649 * First flushers are responsible for cascading flushes and
2650 * handling overflow. Non-first flushers can simply return.
2651 */
2652 if (wq->first_flusher != &this_flusher)
2653 return;
2654
2655 mutex_lock(&wq->flush_mutex);
2656
4ce48b37
TH
2657 /* we might have raced, check again with mutex held */
2658 if (wq->first_flusher != &this_flusher)
2659 goto out_unlock;
2660
73f53c4a
TH
2661 wq->first_flusher = NULL;
2662
2663 BUG_ON(!list_empty(&this_flusher.list));
2664 BUG_ON(wq->flush_color != this_flusher.flush_color);
2665
2666 while (true) {
2667 struct wq_flusher *next, *tmp;
2668
2669 /* complete all the flushers sharing the current flush color */
2670 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2671 if (next->flush_color != wq->flush_color)
2672 break;
2673 list_del_init(&next->list);
2674 complete(&next->done);
2675 }
2676
2677 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2678 wq->flush_color != work_next_color(wq->work_color));
2679
2680 /* this flush_color is finished, advance by one */
2681 wq->flush_color = work_next_color(wq->flush_color);
2682
2683 /* one color has been freed, handle overflow queue */
2684 if (!list_empty(&wq->flusher_overflow)) {
2685 /*
2686 * Assign the same color to all overflowed
2687 * flushers, advance work_color and append to
2688 * flusher_queue. This is the start-to-wait
2689 * phase for these overflowed flushers.
2690 */
2691 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2692 tmp->flush_color = wq->work_color;
2693
2694 wq->work_color = work_next_color(wq->work_color);
2695
2696 list_splice_tail_init(&wq->flusher_overflow,
2697 &wq->flusher_queue);
2698 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2699 }
2700
2701 if (list_empty(&wq->flusher_queue)) {
2702 BUG_ON(wq->flush_color != wq->work_color);
2703 break;
2704 }
2705
2706 /*
2707 * Need to flush more colors. Make the next flusher
2708 * the new first flusher and arm cwqs.
2709 */
2710 BUG_ON(wq->flush_color == wq->work_color);
2711 BUG_ON(wq->flush_color != next->flush_color);
2712
2713 list_del_init(&next->list);
2714 wq->first_flusher = next;
2715
2716 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2717 break;
2718
2719 /*
2720 * Meh... this color is already done, clear first
2721 * flusher and repeat cascading.
2722 */
2723 wq->first_flusher = NULL;
2724 }
2725
2726out_unlock:
2727 mutex_unlock(&wq->flush_mutex);
1da177e4 2728}
ae90dd5d 2729EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2730
9c5a2ba7
TH
2731/**
2732 * drain_workqueue - drain a workqueue
2733 * @wq: workqueue to drain
2734 *
2735 * Wait until the workqueue becomes empty. While draining is in progress,
2736 * only chain queueing is allowed. IOW, only currently pending or running
2737 * work items on @wq can queue further work items on it. @wq is flushed
2738 * repeatedly until it becomes empty. The number of flushing is detemined
2739 * by the depth of chaining and should be relatively short. Whine if it
2740 * takes too long.
2741 */
2742void drain_workqueue(struct workqueue_struct *wq)
2743{
2744 unsigned int flush_cnt = 0;
2745 unsigned int cpu;
2746
2747 /*
2748 * __queue_work() needs to test whether there are drainers, is much
2749 * hotter than drain_workqueue() and already looks at @wq->flags.
2750 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2751 */
2752 spin_lock(&workqueue_lock);
2753 if (!wq->nr_drainers++)
2754 wq->flags |= WQ_DRAINING;
2755 spin_unlock(&workqueue_lock);
2756reflush:
2757 flush_workqueue(wq);
2758
2759 for_each_cwq_cpu(cpu, wq) {
2760 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2761 bool drained;
9c5a2ba7 2762
bd7bdd43 2763 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2764 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2765 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2766
2767 if (drained)
9c5a2ba7
TH
2768 continue;
2769
2770 if (++flush_cnt == 10 ||
2771 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2772 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2773 wq->name, flush_cnt);
9c5a2ba7
TH
2774 goto reflush;
2775 }
2776
2777 spin_lock(&workqueue_lock);
2778 if (!--wq->nr_drainers)
2779 wq->flags &= ~WQ_DRAINING;
2780 spin_unlock(&workqueue_lock);
2781}
2782EXPORT_SYMBOL_GPL(drain_workqueue);
2783
606a5020 2784static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2785{
affee4b2 2786 struct worker *worker = NULL;
8b03ae3c 2787 struct global_cwq *gcwq;
db700897 2788 struct cpu_workqueue_struct *cwq;
db700897
ON
2789
2790 might_sleep();
7a22ad75
TH
2791 gcwq = get_work_gcwq(work);
2792 if (!gcwq)
baf59022 2793 return false;
db700897 2794
8b03ae3c 2795 spin_lock_irq(&gcwq->lock);
db700897
ON
2796 if (!list_empty(&work->entry)) {
2797 /*
2798 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2799 * If it was re-queued to a different gcwq under us, we
2800 * are not going to wait.
db700897
ON
2801 */
2802 smp_rmb();
7a22ad75 2803 cwq = get_work_cwq(work);
bd7bdd43 2804 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2805 goto already_gone;
606a5020 2806 } else {
7a22ad75 2807 worker = find_worker_executing_work(gcwq, work);
affee4b2 2808 if (!worker)
4690c4ab 2809 goto already_gone;
7a22ad75 2810 cwq = worker->current_cwq;
606a5020 2811 }
db700897 2812
baf59022 2813 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2814 spin_unlock_irq(&gcwq->lock);
7a22ad75 2815
e159489b
TH
2816 /*
2817 * If @max_active is 1 or rescuer is in use, flushing another work
2818 * item on the same workqueue may lead to deadlock. Make sure the
2819 * flusher is not running on the same workqueue by verifying write
2820 * access.
2821 */
2822 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2823 lock_map_acquire(&cwq->wq->lockdep_map);
2824 else
2825 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2826 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2827
401a8d04 2828 return true;
4690c4ab 2829already_gone:
8b03ae3c 2830 spin_unlock_irq(&gcwq->lock);
401a8d04 2831 return false;
db700897 2832}
baf59022
TH
2833
2834/**
2835 * flush_work - wait for a work to finish executing the last queueing instance
2836 * @work: the work to flush
2837 *
606a5020
TH
2838 * Wait until @work has finished execution. @work is guaranteed to be idle
2839 * on return if it hasn't been requeued since flush started.
baf59022
TH
2840 *
2841 * RETURNS:
2842 * %true if flush_work() waited for the work to finish execution,
2843 * %false if it was already idle.
2844 */
2845bool flush_work(struct work_struct *work)
2846{
2847 struct wq_barrier barr;
2848
0976dfc1
SB
2849 lock_map_acquire(&work->lockdep_map);
2850 lock_map_release(&work->lockdep_map);
2851
606a5020 2852 if (start_flush_work(work, &barr)) {
401a8d04
TH
2853 wait_for_completion(&barr.done);
2854 destroy_work_on_stack(&barr.work);
2855 return true;
606a5020 2856 } else {
401a8d04 2857 return false;
6e84d644 2858 }
6e84d644 2859}
606a5020 2860EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2861
36e227d2 2862static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2863{
bbb68dfa 2864 unsigned long flags;
1f1f642e
ON
2865 int ret;
2866
2867 do {
bbb68dfa
TH
2868 ret = try_to_grab_pending(work, is_dwork, &flags);
2869 /*
2870 * If someone else is canceling, wait for the same event it
2871 * would be waiting for before retrying.
2872 */
2873 if (unlikely(ret == -ENOENT))
606a5020 2874 flush_work(work);
1f1f642e
ON
2875 } while (unlikely(ret < 0));
2876
bbb68dfa
TH
2877 /* tell other tasks trying to grab @work to back off */
2878 mark_work_canceling(work);
2879 local_irq_restore(flags);
2880
606a5020 2881 flush_work(work);
7a22ad75 2882 clear_work_data(work);
1f1f642e
ON
2883 return ret;
2884}
2885
6e84d644 2886/**
401a8d04
TH
2887 * cancel_work_sync - cancel a work and wait for it to finish
2888 * @work: the work to cancel
6e84d644 2889 *
401a8d04
TH
2890 * Cancel @work and wait for its execution to finish. This function
2891 * can be used even if the work re-queues itself or migrates to
2892 * another workqueue. On return from this function, @work is
2893 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2894 *
401a8d04
TH
2895 * cancel_work_sync(&delayed_work->work) must not be used for
2896 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2897 *
401a8d04 2898 * The caller must ensure that the workqueue on which @work was last
6e84d644 2899 * queued can't be destroyed before this function returns.
401a8d04
TH
2900 *
2901 * RETURNS:
2902 * %true if @work was pending, %false otherwise.
6e84d644 2903 */
401a8d04 2904bool cancel_work_sync(struct work_struct *work)
6e84d644 2905{
36e227d2 2906 return __cancel_work_timer(work, false);
b89deed3 2907}
28e53bdd 2908EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2909
6e84d644 2910/**
401a8d04
TH
2911 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2912 * @dwork: the delayed work to flush
6e84d644 2913 *
401a8d04
TH
2914 * Delayed timer is cancelled and the pending work is queued for
2915 * immediate execution. Like flush_work(), this function only
2916 * considers the last queueing instance of @dwork.
1f1f642e 2917 *
401a8d04
TH
2918 * RETURNS:
2919 * %true if flush_work() waited for the work to finish execution,
2920 * %false if it was already idle.
6e84d644 2921 */
401a8d04
TH
2922bool flush_delayed_work(struct delayed_work *dwork)
2923{
8930caba 2924 local_irq_disable();
401a8d04 2925 if (del_timer_sync(&dwork->timer))
1265057f 2926 __queue_work(dwork->cpu,
401a8d04 2927 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2928 local_irq_enable();
401a8d04
TH
2929 return flush_work(&dwork->work);
2930}
2931EXPORT_SYMBOL(flush_delayed_work);
2932
09383498 2933/**
57b30ae7
TH
2934 * cancel_delayed_work - cancel a delayed work
2935 * @dwork: delayed_work to cancel
09383498 2936 *
57b30ae7
TH
2937 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2938 * and canceled; %false if wasn't pending. Note that the work callback
2939 * function may still be running on return, unless it returns %true and the
2940 * work doesn't re-arm itself. Explicitly flush or use
2941 * cancel_delayed_work_sync() to wait on it.
09383498 2942 *
57b30ae7 2943 * This function is safe to call from any context including IRQ handler.
09383498 2944 */
57b30ae7 2945bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2946{
57b30ae7
TH
2947 unsigned long flags;
2948 int ret;
2949
2950 do {
2951 ret = try_to_grab_pending(&dwork->work, true, &flags);
2952 } while (unlikely(ret == -EAGAIN));
2953
2954 if (unlikely(ret < 0))
2955 return false;
2956
2957 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2958 local_irq_restore(flags);
c0158ca6 2959 return ret;
09383498 2960}
57b30ae7 2961EXPORT_SYMBOL(cancel_delayed_work);
09383498 2962
401a8d04
TH
2963/**
2964 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2965 * @dwork: the delayed work cancel
2966 *
2967 * This is cancel_work_sync() for delayed works.
2968 *
2969 * RETURNS:
2970 * %true if @dwork was pending, %false otherwise.
2971 */
2972bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2973{
36e227d2 2974 return __cancel_work_timer(&dwork->work, true);
6e84d644 2975}
f5a421a4 2976EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2977
0fcb78c2 2978/**
c1a220e7
ZR
2979 * schedule_work_on - put work task on a specific cpu
2980 * @cpu: cpu to put the work task on
2981 * @work: job to be done
2982 *
2983 * This puts a job on a specific cpu
2984 */
d4283e93 2985bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2986{
d320c038 2987 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2988}
2989EXPORT_SYMBOL(schedule_work_on);
2990
0fcb78c2 2991/**
0fcb78c2
REB
2992 * schedule_work - put work task in global workqueue
2993 * @work: job to be done
0fcb78c2 2994 *
d4283e93
TH
2995 * Returns %false if @work was already on the kernel-global workqueue and
2996 * %true otherwise.
5b0f437d
BVA
2997 *
2998 * This puts a job in the kernel-global workqueue if it was not already
2999 * queued and leaves it in the same position on the kernel-global
3000 * workqueue otherwise.
0fcb78c2 3001 */
d4283e93 3002bool schedule_work(struct work_struct *work)
1da177e4 3003{
d320c038 3004 return queue_work(system_wq, work);
1da177e4 3005}
ae90dd5d 3006EXPORT_SYMBOL(schedule_work);
1da177e4 3007
0fcb78c2
REB
3008/**
3009 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3010 * @cpu: cpu to use
52bad64d 3011 * @dwork: job to be done
0fcb78c2
REB
3012 * @delay: number of jiffies to wait
3013 *
3014 * After waiting for a given time this puts a job in the kernel-global
3015 * workqueue on the specified CPU.
3016 */
d4283e93
TH
3017bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3018 unsigned long delay)
1da177e4 3019{
d320c038 3020 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3021}
ae90dd5d 3022EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3023
0fcb78c2
REB
3024/**
3025 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3026 * @dwork: job to be done
3027 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3028 *
3029 * After waiting for a given time this puts a job in the kernel-global
3030 * workqueue.
3031 */
d4283e93 3032bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3033{
d320c038 3034 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3035}
ae90dd5d 3036EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3037
b6136773 3038/**
31ddd871 3039 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3040 * @func: the function to call
b6136773 3041 *
31ddd871
TH
3042 * schedule_on_each_cpu() executes @func on each online CPU using the
3043 * system workqueue and blocks until all CPUs have completed.
b6136773 3044 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3045 *
3046 * RETURNS:
3047 * 0 on success, -errno on failure.
b6136773 3048 */
65f27f38 3049int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3050{
3051 int cpu;
38f51568 3052 struct work_struct __percpu *works;
15316ba8 3053
b6136773
AM
3054 works = alloc_percpu(struct work_struct);
3055 if (!works)
15316ba8 3056 return -ENOMEM;
b6136773 3057
93981800
TH
3058 get_online_cpus();
3059
15316ba8 3060 for_each_online_cpu(cpu) {
9bfb1839
IM
3061 struct work_struct *work = per_cpu_ptr(works, cpu);
3062
3063 INIT_WORK(work, func);
b71ab8c2 3064 schedule_work_on(cpu, work);
65a64464 3065 }
93981800
TH
3066
3067 for_each_online_cpu(cpu)
3068 flush_work(per_cpu_ptr(works, cpu));
3069
95402b38 3070 put_online_cpus();
b6136773 3071 free_percpu(works);
15316ba8
CL
3072 return 0;
3073}
3074
eef6a7d5
AS
3075/**
3076 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3077 *
3078 * Forces execution of the kernel-global workqueue and blocks until its
3079 * completion.
3080 *
3081 * Think twice before calling this function! It's very easy to get into
3082 * trouble if you don't take great care. Either of the following situations
3083 * will lead to deadlock:
3084 *
3085 * One of the work items currently on the workqueue needs to acquire
3086 * a lock held by your code or its caller.
3087 *
3088 * Your code is running in the context of a work routine.
3089 *
3090 * They will be detected by lockdep when they occur, but the first might not
3091 * occur very often. It depends on what work items are on the workqueue and
3092 * what locks they need, which you have no control over.
3093 *
3094 * In most situations flushing the entire workqueue is overkill; you merely
3095 * need to know that a particular work item isn't queued and isn't running.
3096 * In such cases you should use cancel_delayed_work_sync() or
3097 * cancel_work_sync() instead.
3098 */
1da177e4
LT
3099void flush_scheduled_work(void)
3100{
d320c038 3101 flush_workqueue(system_wq);
1da177e4 3102}
ae90dd5d 3103EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3104
1fa44eca
JB
3105/**
3106 * execute_in_process_context - reliably execute the routine with user context
3107 * @fn: the function to execute
1fa44eca
JB
3108 * @ew: guaranteed storage for the execute work structure (must
3109 * be available when the work executes)
3110 *
3111 * Executes the function immediately if process context is available,
3112 * otherwise schedules the function for delayed execution.
3113 *
3114 * Returns: 0 - function was executed
3115 * 1 - function was scheduled for execution
3116 */
65f27f38 3117int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3118{
3119 if (!in_interrupt()) {
65f27f38 3120 fn(&ew->work);
1fa44eca
JB
3121 return 0;
3122 }
3123
65f27f38 3124 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3125 schedule_work(&ew->work);
3126
3127 return 1;
3128}
3129EXPORT_SYMBOL_GPL(execute_in_process_context);
3130
1da177e4
LT
3131int keventd_up(void)
3132{
d320c038 3133 return system_wq != NULL;
1da177e4
LT
3134}
3135
bdbc5dd7 3136static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3137{
65a64464 3138 /*
0f900049
TH
3139 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3140 * Make sure that the alignment isn't lower than that of
3141 * unsigned long long.
65a64464 3142 */
0f900049
TH
3143 const size_t size = sizeof(struct cpu_workqueue_struct);
3144 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3145 __alignof__(unsigned long long));
65a64464 3146
e06ffa1e 3147 if (!(wq->flags & WQ_UNBOUND))
f3421797 3148 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3149 else {
f3421797
TH
3150 void *ptr;
3151
3152 /*
3153 * Allocate enough room to align cwq and put an extra
3154 * pointer at the end pointing back to the originally
3155 * allocated pointer which will be used for free.
3156 */
3157 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3158 if (ptr) {
3159 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3160 *(void **)(wq->cpu_wq.single + 1) = ptr;
3161 }
bdbc5dd7 3162 }
f3421797 3163
0415b00d 3164 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3165 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3166 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3167}
3168
bdbc5dd7 3169static void free_cwqs(struct workqueue_struct *wq)
0f900049 3170{
e06ffa1e 3171 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3172 free_percpu(wq->cpu_wq.pcpu);
3173 else if (wq->cpu_wq.single) {
3174 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3175 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3176 }
0f900049
TH
3177}
3178
f3421797
TH
3179static int wq_clamp_max_active(int max_active, unsigned int flags,
3180 const char *name)
b71ab8c2 3181{
f3421797
TH
3182 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3183
3184 if (max_active < 1 || max_active > lim)
044c782c
VI
3185 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3186 max_active, name, 1, lim);
b71ab8c2 3187
f3421797 3188 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3189}
3190
b196be89 3191struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3192 unsigned int flags,
3193 int max_active,
3194 struct lock_class_key *key,
b196be89 3195 const char *lock_name, ...)
1da177e4 3196{
b196be89 3197 va_list args, args1;
1da177e4 3198 struct workqueue_struct *wq;
c34056a3 3199 unsigned int cpu;
b196be89
TH
3200 size_t namelen;
3201
3202 /* determine namelen, allocate wq and format name */
3203 va_start(args, lock_name);
3204 va_copy(args1, args);
3205 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3206
3207 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3208 if (!wq)
3209 goto err;
3210
3211 vsnprintf(wq->name, namelen, fmt, args1);
3212 va_end(args);
3213 va_end(args1);
1da177e4 3214
6370a6ad
TH
3215 /*
3216 * Workqueues which may be used during memory reclaim should
3217 * have a rescuer to guarantee forward progress.
3218 */
3219 if (flags & WQ_MEM_RECLAIM)
3220 flags |= WQ_RESCUER;
3221
d320c038 3222 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3223 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3224
b196be89 3225 /* init wq */
97e37d7b 3226 wq->flags = flags;
a0a1a5fd 3227 wq->saved_max_active = max_active;
73f53c4a
TH
3228 mutex_init(&wq->flush_mutex);
3229 atomic_set(&wq->nr_cwqs_to_flush, 0);
3230 INIT_LIST_HEAD(&wq->flusher_queue);
3231 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3232
eb13ba87 3233 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3234 INIT_LIST_HEAD(&wq->list);
3af24433 3235
bdbc5dd7
TH
3236 if (alloc_cwqs(wq) < 0)
3237 goto err;
3238
f3421797 3239 for_each_cwq_cpu(cpu, wq) {
1537663f 3240 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3241 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3242 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3243
0f900049 3244 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3245 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3246 cwq->wq = wq;
73f53c4a 3247 cwq->flush_color = -1;
1e19ffc6 3248 cwq->max_active = max_active;
1e19ffc6 3249 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3250 }
1537663f 3251
e22bee78
TH
3252 if (flags & WQ_RESCUER) {
3253 struct worker *rescuer;
3254
f2e005aa 3255 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3256 goto err;
3257
3258 wq->rescuer = rescuer = alloc_worker();
3259 if (!rescuer)
3260 goto err;
3261
111c225a
TH
3262 rescuer->rescue_wq = wq;
3263 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3264 wq->name);
e22bee78
TH
3265 if (IS_ERR(rescuer->task))
3266 goto err;
3267
e22bee78
TH
3268 rescuer->task->flags |= PF_THREAD_BOUND;
3269 wake_up_process(rescuer->task);
3af24433
ON
3270 }
3271
a0a1a5fd
TH
3272 /*
3273 * workqueue_lock protects global freeze state and workqueues
3274 * list. Grab it, set max_active accordingly and add the new
3275 * workqueue to workqueues list.
3276 */
1537663f 3277 spin_lock(&workqueue_lock);
a0a1a5fd 3278
58a69cb4 3279 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3280 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3281 get_cwq(cpu, wq)->max_active = 0;
3282
1537663f 3283 list_add(&wq->list, &workqueues);
a0a1a5fd 3284
1537663f
TH
3285 spin_unlock(&workqueue_lock);
3286
3af24433 3287 return wq;
4690c4ab
TH
3288err:
3289 if (wq) {
bdbc5dd7 3290 free_cwqs(wq);
f2e005aa 3291 free_mayday_mask(wq->mayday_mask);
e22bee78 3292 kfree(wq->rescuer);
4690c4ab
TH
3293 kfree(wq);
3294 }
3295 return NULL;
3af24433 3296}
d320c038 3297EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3298
3af24433
ON
3299/**
3300 * destroy_workqueue - safely terminate a workqueue
3301 * @wq: target workqueue
3302 *
3303 * Safely destroy a workqueue. All work currently pending will be done first.
3304 */
3305void destroy_workqueue(struct workqueue_struct *wq)
3306{
c8e55f36 3307 unsigned int cpu;
3af24433 3308
9c5a2ba7
TH
3309 /* drain it before proceeding with destruction */
3310 drain_workqueue(wq);
c8efcc25 3311
a0a1a5fd
TH
3312 /*
3313 * wq list is used to freeze wq, remove from list after
3314 * flushing is complete in case freeze races us.
3315 */
95402b38 3316 spin_lock(&workqueue_lock);
b1f4ec17 3317 list_del(&wq->list);
95402b38 3318 spin_unlock(&workqueue_lock);
3af24433 3319
e22bee78 3320 /* sanity check */
f3421797 3321 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3322 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3323 int i;
3324
73f53c4a
TH
3325 for (i = 0; i < WORK_NR_COLORS; i++)
3326 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3327 BUG_ON(cwq->nr_active);
3328 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3329 }
9b41ea72 3330
e22bee78
TH
3331 if (wq->flags & WQ_RESCUER) {
3332 kthread_stop(wq->rescuer->task);
f2e005aa 3333 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3334 kfree(wq->rescuer);
e22bee78
TH
3335 }
3336
bdbc5dd7 3337 free_cwqs(wq);
3af24433
ON
3338 kfree(wq);
3339}
3340EXPORT_SYMBOL_GPL(destroy_workqueue);
3341
9f4bd4cd
LJ
3342/**
3343 * cwq_set_max_active - adjust max_active of a cwq
3344 * @cwq: target cpu_workqueue_struct
3345 * @max_active: new max_active value.
3346 *
3347 * Set @cwq->max_active to @max_active and activate delayed works if
3348 * increased.
3349 *
3350 * CONTEXT:
3351 * spin_lock_irq(gcwq->lock).
3352 */
3353static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3354{
3355 cwq->max_active = max_active;
3356
3357 while (!list_empty(&cwq->delayed_works) &&
3358 cwq->nr_active < cwq->max_active)
3359 cwq_activate_first_delayed(cwq);
3360}
3361
dcd989cb
TH
3362/**
3363 * workqueue_set_max_active - adjust max_active of a workqueue
3364 * @wq: target workqueue
3365 * @max_active: new max_active value.
3366 *
3367 * Set max_active of @wq to @max_active.
3368 *
3369 * CONTEXT:
3370 * Don't call from IRQ context.
3371 */
3372void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3373{
3374 unsigned int cpu;
3375
f3421797 3376 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3377
3378 spin_lock(&workqueue_lock);
3379
3380 wq->saved_max_active = max_active;
3381
f3421797 3382 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3383 struct global_cwq *gcwq = get_gcwq(cpu);
3384
3385 spin_lock_irq(&gcwq->lock);
3386
58a69cb4 3387 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb 3388 !(gcwq->flags & GCWQ_FREEZING))
70369b11 3389 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
9bfb1839 3390
dcd989cb 3391 spin_unlock_irq(&gcwq->lock);
65a64464 3392 }
93981800 3393
dcd989cb 3394 spin_unlock(&workqueue_lock);
15316ba8 3395}
dcd989cb 3396EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3397
eef6a7d5 3398/**
dcd989cb
TH
3399 * workqueue_congested - test whether a workqueue is congested
3400 * @cpu: CPU in question
3401 * @wq: target workqueue
eef6a7d5 3402 *
dcd989cb
TH
3403 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3404 * no synchronization around this function and the test result is
3405 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3406 *
dcd989cb
TH
3407 * RETURNS:
3408 * %true if congested, %false otherwise.
eef6a7d5 3409 */
dcd989cb 3410bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3411{
dcd989cb
TH
3412 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3413
3414 return !list_empty(&cwq->delayed_works);
1da177e4 3415}
dcd989cb 3416EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3417
1fa44eca 3418/**
dcd989cb
TH
3419 * work_cpu - return the last known associated cpu for @work
3420 * @work: the work of interest
1fa44eca 3421 *
dcd989cb 3422 * RETURNS:
bdbc5dd7 3423 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3424 */
e2905b29 3425static unsigned int work_cpu(struct work_struct *work)
1fa44eca 3426{
dcd989cb 3427 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3428
bdbc5dd7 3429 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3430}
1fa44eca 3431
dcd989cb
TH
3432/**
3433 * work_busy - test whether a work is currently pending or running
3434 * @work: the work to be tested
3435 *
3436 * Test whether @work is currently pending or running. There is no
3437 * synchronization around this function and the test result is
3438 * unreliable and only useful as advisory hints or for debugging.
3439 * Especially for reentrant wqs, the pending state might hide the
3440 * running state.
3441 *
3442 * RETURNS:
3443 * OR'd bitmask of WORK_BUSY_* bits.
3444 */
3445unsigned int work_busy(struct work_struct *work)
1da177e4 3446{
dcd989cb
TH
3447 struct global_cwq *gcwq = get_work_gcwq(work);
3448 unsigned long flags;
3449 unsigned int ret = 0;
1da177e4 3450
dcd989cb 3451 if (!gcwq)
999767be 3452 return 0;
1da177e4 3453
dcd989cb 3454 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3455
dcd989cb
TH
3456 if (work_pending(work))
3457 ret |= WORK_BUSY_PENDING;
3458 if (find_worker_executing_work(gcwq, work))
3459 ret |= WORK_BUSY_RUNNING;
1da177e4 3460
dcd989cb 3461 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3462
dcd989cb 3463 return ret;
1da177e4 3464}
dcd989cb 3465EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3466
db7bccf4
TH
3467/*
3468 * CPU hotplug.
3469 *
e22bee78
TH
3470 * There are two challenges in supporting CPU hotplug. Firstly, there
3471 * are a lot of assumptions on strong associations among work, cwq and
3472 * gcwq which make migrating pending and scheduled works very
3473 * difficult to implement without impacting hot paths. Secondly,
3474 * gcwqs serve mix of short, long and very long running works making
3475 * blocked draining impractical.
3476 *
24647570 3477 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3478 * running as an unbound one and allowing it to be reattached later if the
3479 * cpu comes back online.
db7bccf4 3480 */
1da177e4 3481
60373152 3482/* claim manager positions of all pools */
b2eb83d1 3483static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3484{
3485 struct worker_pool *pool;
3486
3487 for_each_worker_pool(pool, gcwq)
b2eb83d1 3488 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3489 spin_lock_irq(&gcwq->lock);
60373152
TH
3490}
3491
3492/* release manager positions */
b2eb83d1 3493static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3494{
3495 struct worker_pool *pool;
3496
8db25e78 3497 spin_unlock_irq(&gcwq->lock);
60373152 3498 for_each_worker_pool(pool, gcwq)
b2eb83d1 3499 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3500}
3501
628c78e7 3502static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3503{
628c78e7 3504 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3505 struct worker_pool *pool;
db7bccf4
TH
3506 struct worker *worker;
3507 struct hlist_node *pos;
3508 int i;
3af24433 3509
db7bccf4
TH
3510 BUG_ON(gcwq->cpu != smp_processor_id());
3511
b2eb83d1 3512 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3513
f2d5a0ee
TH
3514 /*
3515 * We've claimed all manager positions. Make all workers unbound
3516 * and set DISASSOCIATED. Before this, all workers except for the
3517 * ones which are still executing works from before the last CPU
3518 * down must be on the cpu. After this, they may become diasporas.
3519 */
60373152 3520 for_each_worker_pool(pool, gcwq)
4ce62e9e 3521 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3522 worker->flags |= WORKER_UNBOUND;
3af24433 3523
db7bccf4 3524 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3525 worker->flags |= WORKER_UNBOUND;
06ba38a9 3526
24647570
TH
3527 for_each_worker_pool(pool, gcwq)
3528 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3529
b2eb83d1 3530 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3531
e22bee78 3532 /*
403c821d 3533 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3534 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3535 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3536 */
e22bee78 3537 schedule();
06ba38a9 3538
e22bee78 3539 /*
628c78e7
TH
3540 * Sched callbacks are disabled now. Zap nr_running. After this,
3541 * nr_running stays zero and need_more_worker() and keep_working()
3542 * are always true as long as the worklist is not empty. @gcwq now
3543 * behaves as unbound (in terms of concurrency management) gcwq
3544 * which is served by workers tied to the CPU.
3545 *
3546 * On return from this function, the current worker would trigger
3547 * unbound chain execution of pending work items if other workers
3548 * didn't already.
e22bee78 3549 */
4ce62e9e
TH
3550 for_each_worker_pool(pool, gcwq)
3551 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3552}
3af24433 3553
8db25e78
TH
3554/*
3555 * Workqueues should be brought up before normal priority CPU notifiers.
3556 * This will be registered high priority CPU notifier.
3557 */
9fdf9b73 3558static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3559 unsigned long action,
3560 void *hcpu)
3af24433
ON
3561{
3562 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3563 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3564 struct worker_pool *pool;
3ce63377 3565
8db25e78 3566 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3567 case CPU_UP_PREPARE:
4ce62e9e 3568 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3569 struct worker *worker;
3570
3571 if (pool->nr_workers)
3572 continue;
3573
3574 worker = create_worker(pool);
3575 if (!worker)
3576 return NOTIFY_BAD;
3577
3578 spin_lock_irq(&gcwq->lock);
3579 start_worker(worker);
3580 spin_unlock_irq(&gcwq->lock);
3af24433 3581 }
8db25e78 3582 break;
3af24433 3583
db7bccf4
TH
3584 case CPU_DOWN_FAILED:
3585 case CPU_ONLINE:
b2eb83d1 3586 gcwq_claim_assoc_and_lock(gcwq);
24647570
TH
3587 for_each_worker_pool(pool, gcwq)
3588 pool->flags &= ~POOL_DISASSOCIATED;
25511a47 3589 rebind_workers(gcwq);
b2eb83d1 3590 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3591 break;
00dfcaf7 3592 }
65758202
TH
3593 return NOTIFY_OK;
3594}
3595
3596/*
3597 * Workqueues should be brought down after normal priority CPU notifiers.
3598 * This will be registered as low priority CPU notifier.
3599 */
9fdf9b73 3600static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3601 unsigned long action,
3602 void *hcpu)
3603{
8db25e78
TH
3604 unsigned int cpu = (unsigned long)hcpu;
3605 struct work_struct unbind_work;
3606
65758202
TH
3607 switch (action & ~CPU_TASKS_FROZEN) {
3608 case CPU_DOWN_PREPARE:
8db25e78
TH
3609 /* unbinding should happen on the local CPU */
3610 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3611 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3612 flush_work(&unbind_work);
3613 break;
65758202
TH
3614 }
3615 return NOTIFY_OK;
3616}
3617
2d3854a3 3618#ifdef CONFIG_SMP
8ccad40d 3619
2d3854a3 3620struct work_for_cpu {
ed48ece2 3621 struct work_struct work;
2d3854a3
RR
3622 long (*fn)(void *);
3623 void *arg;
3624 long ret;
3625};
3626
ed48ece2 3627static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3628{
ed48ece2
TH
3629 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3630
2d3854a3
RR
3631 wfc->ret = wfc->fn(wfc->arg);
3632}
3633
3634/**
3635 * work_on_cpu - run a function in user context on a particular cpu
3636 * @cpu: the cpu to run on
3637 * @fn: the function to run
3638 * @arg: the function arg
3639 *
31ad9081
RR
3640 * This will return the value @fn returns.
3641 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3642 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3643 */
3644long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3645{
ed48ece2 3646 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3647
ed48ece2
TH
3648 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3649 schedule_work_on(cpu, &wfc.work);
3650 flush_work(&wfc.work);
2d3854a3
RR
3651 return wfc.ret;
3652}
3653EXPORT_SYMBOL_GPL(work_on_cpu);
3654#endif /* CONFIG_SMP */
3655
a0a1a5fd
TH
3656#ifdef CONFIG_FREEZER
3657
3658/**
3659 * freeze_workqueues_begin - begin freezing workqueues
3660 *
58a69cb4
TH
3661 * Start freezing workqueues. After this function returns, all freezable
3662 * workqueues will queue new works to their frozen_works list instead of
3663 * gcwq->worklist.
a0a1a5fd
TH
3664 *
3665 * CONTEXT:
8b03ae3c 3666 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3667 */
3668void freeze_workqueues_begin(void)
3669{
a0a1a5fd
TH
3670 unsigned int cpu;
3671
3672 spin_lock(&workqueue_lock);
3673
3674 BUG_ON(workqueue_freezing);
3675 workqueue_freezing = true;
3676
f3421797 3677 for_each_gcwq_cpu(cpu) {
8b03ae3c 3678 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3679 struct workqueue_struct *wq;
8b03ae3c
TH
3680
3681 spin_lock_irq(&gcwq->lock);
3682
db7bccf4
TH
3683 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3684 gcwq->flags |= GCWQ_FREEZING;
3685
a0a1a5fd
TH
3686 list_for_each_entry(wq, &workqueues, list) {
3687 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3688
58a69cb4 3689 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3690 cwq->max_active = 0;
a0a1a5fd 3691 }
8b03ae3c
TH
3692
3693 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3694 }
3695
3696 spin_unlock(&workqueue_lock);
3697}
3698
3699/**
58a69cb4 3700 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3701 *
3702 * Check whether freezing is complete. This function must be called
3703 * between freeze_workqueues_begin() and thaw_workqueues().
3704 *
3705 * CONTEXT:
3706 * Grabs and releases workqueue_lock.
3707 *
3708 * RETURNS:
58a69cb4
TH
3709 * %true if some freezable workqueues are still busy. %false if freezing
3710 * is complete.
a0a1a5fd
TH
3711 */
3712bool freeze_workqueues_busy(void)
3713{
a0a1a5fd
TH
3714 unsigned int cpu;
3715 bool busy = false;
3716
3717 spin_lock(&workqueue_lock);
3718
3719 BUG_ON(!workqueue_freezing);
3720
f3421797 3721 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3722 struct workqueue_struct *wq;
a0a1a5fd
TH
3723 /*
3724 * nr_active is monotonically decreasing. It's safe
3725 * to peek without lock.
3726 */
3727 list_for_each_entry(wq, &workqueues, list) {
3728 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3729
58a69cb4 3730 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3731 continue;
3732
3733 BUG_ON(cwq->nr_active < 0);
3734 if (cwq->nr_active) {
3735 busy = true;
3736 goto out_unlock;
3737 }
3738 }
3739 }
3740out_unlock:
3741 spin_unlock(&workqueue_lock);
3742 return busy;
3743}
3744
3745/**
3746 * thaw_workqueues - thaw workqueues
3747 *
3748 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3749 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3750 *
3751 * CONTEXT:
8b03ae3c 3752 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3753 */
3754void thaw_workqueues(void)
3755{
a0a1a5fd
TH
3756 unsigned int cpu;
3757
3758 spin_lock(&workqueue_lock);
3759
3760 if (!workqueue_freezing)
3761 goto out_unlock;
3762
f3421797 3763 for_each_gcwq_cpu(cpu) {
8b03ae3c 3764 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3765 struct worker_pool *pool;
bdbc5dd7 3766 struct workqueue_struct *wq;
8b03ae3c
TH
3767
3768 spin_lock_irq(&gcwq->lock);
3769
db7bccf4
TH
3770 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3771 gcwq->flags &= ~GCWQ_FREEZING;
3772
a0a1a5fd
TH
3773 list_for_each_entry(wq, &workqueues, list) {
3774 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3775
58a69cb4 3776 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3777 continue;
3778
a0a1a5fd 3779 /* restore max_active and repopulate worklist */
9f4bd4cd 3780 cwq_set_max_active(cwq, wq->saved_max_active);
a0a1a5fd 3781 }
8b03ae3c 3782
4ce62e9e
TH
3783 for_each_worker_pool(pool, gcwq)
3784 wake_up_worker(pool);
e22bee78 3785
8b03ae3c 3786 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3787 }
3788
3789 workqueue_freezing = false;
3790out_unlock:
3791 spin_unlock(&workqueue_lock);
3792}
3793#endif /* CONFIG_FREEZER */
3794
6ee0578b 3795static int __init init_workqueues(void)
1da177e4 3796{
c34056a3
TH
3797 unsigned int cpu;
3798
b5490077
TH
3799 /* make sure we have enough bits for OFFQ CPU number */
3800 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3801 WORK_CPU_LAST);
3802
65758202 3803 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3804 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3805
3806 /* initialize gcwqs */
f3421797 3807 for_each_gcwq_cpu(cpu) {
8b03ae3c 3808 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3809 struct worker_pool *pool;
8b03ae3c
TH
3810
3811 spin_lock_init(&gcwq->lock);
3812 gcwq->cpu = cpu;
3813
42f8570f 3814 hash_init(gcwq->busy_hash);
c8e55f36 3815
4ce62e9e
TH
3816 for_each_worker_pool(pool, gcwq) {
3817 pool->gcwq = gcwq;
24647570 3818 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3819 INIT_LIST_HEAD(&pool->worklist);
3820 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3821
4ce62e9e
TH
3822 init_timer_deferrable(&pool->idle_timer);
3823 pool->idle_timer.function = idle_worker_timeout;
3824 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3825
4ce62e9e
TH
3826 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3827 (unsigned long)pool);
3828
b2eb83d1 3829 mutex_init(&pool->assoc_mutex);
4ce62e9e
TH
3830 ida_init(&pool->worker_ida);
3831 }
8b03ae3c
TH
3832 }
3833
e22bee78 3834 /* create the initial worker */
f3421797 3835 for_each_online_gcwq_cpu(cpu) {
e22bee78 3836 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3837 struct worker_pool *pool;
e22bee78 3838
4ce62e9e
TH
3839 for_each_worker_pool(pool, gcwq) {
3840 struct worker *worker;
3841
24647570
TH
3842 if (cpu != WORK_CPU_UNBOUND)
3843 pool->flags &= ~POOL_DISASSOCIATED;
3844
bc2ae0f5 3845 worker = create_worker(pool);
4ce62e9e
TH
3846 BUG_ON(!worker);
3847 spin_lock_irq(&gcwq->lock);
3848 start_worker(worker);
3849 spin_unlock_irq(&gcwq->lock);
3850 }
e22bee78
TH
3851 }
3852
d320c038 3853 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3854 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3855 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3856 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3857 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3858 system_freezable_wq = alloc_workqueue("events_freezable",
3859 WQ_FREEZABLE, 0);
1aabe902 3860 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3861 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3862 return 0;
1da177e4 3863}
6ee0578b 3864early_initcall(init_workqueues);