]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/workqueue.c
workqueue: add workqueue_struct->pwqs list
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
112202d9
TH
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
1da177e4 161 */
112202d9 162struct pool_workqueue {
bd7bdd43 163 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 164 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
1e19ffc6 169 int nr_active; /* L: nr of active works */
a0a1a5fd 170 int max_active; /* L: max active works */
1e19ffc6 171 struct list_head delayed_works; /* L: delayed works */
30cdf249 172 struct list_head pwqs_node; /* I: node on wq->pwqs */
e904e6c2 173} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 174
73f53c4a
TH
175/*
176 * Structure used to wait for workqueue flush.
177 */
178struct wq_flusher {
179 struct list_head list; /* F: list of flushers */
180 int flush_color; /* F: flush color waiting for */
181 struct completion done; /* flush completion */
182};
183
f2e005aa
TH
184/*
185 * All cpumasks are assumed to be always set on UP and thus can't be
186 * used to determine whether there's something to be done.
187 */
188#ifdef CONFIG_SMP
189typedef cpumask_var_t mayday_mask_t;
190#define mayday_test_and_set_cpu(cpu, mask) \
191 cpumask_test_and_set_cpu((cpu), (mask))
192#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
193#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 194#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
195#define free_mayday_mask(mask) free_cpumask_var((mask))
196#else
197typedef unsigned long mayday_mask_t;
198#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
199#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
200#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
201#define alloc_mayday_mask(maskp, gfp) true
202#define free_mayday_mask(mask) do { } while (0)
203#endif
1da177e4
LT
204
205/*
206 * The externally visible workqueue abstraction is an array of
207 * per-CPU workqueues:
208 */
209struct workqueue_struct {
9c5a2ba7 210 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7 211 union {
112202d9
TH
212 struct pool_workqueue __percpu *pcpu;
213 struct pool_workqueue *single;
bdbc5dd7 214 unsigned long v;
112202d9 215 } pool_wq; /* I: pwq's */
30cdf249 216 struct list_head pwqs; /* I: all pwqs of this wq */
4690c4ab 217 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
218
219 struct mutex flush_mutex; /* protects wq flushing */
220 int work_color; /* F: current work color */
221 int flush_color; /* F: current flush color */
112202d9 222 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
223 struct wq_flusher *first_flusher; /* F: first flusher */
224 struct list_head flusher_queue; /* F: flush waiters */
225 struct list_head flusher_overflow; /* F: flush overflow list */
226
f2e005aa 227 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
228 struct worker *rescuer; /* I: rescue worker */
229
9c5a2ba7 230 int nr_drainers; /* W: drain in progress */
112202d9 231 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 232#ifdef CONFIG_LOCKDEP
4690c4ab 233 struct lockdep_map lockdep_map;
4e6045f1 234#endif
b196be89 235 char name[]; /* I: workqueue name */
1da177e4
LT
236};
237
e904e6c2
TH
238static struct kmem_cache *pwq_cache;
239
d320c038 240struct workqueue_struct *system_wq __read_mostly;
d320c038 241EXPORT_SYMBOL_GPL(system_wq);
044c782c 242struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 243EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 244struct workqueue_struct *system_long_wq __read_mostly;
d320c038 245EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 246struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 247EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 248struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 249EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 250
97bd2347
TH
251#define CREATE_TRACE_POINTS
252#include <trace/events/workqueue.h>
253
38db41d9 254#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
255 for ((pool) = &std_worker_pools(cpu)[0]; \
256 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 257
b67bfe0d
SL
258#define for_each_busy_worker(worker, i, pool) \
259 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 260
706026c2
TH
261static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
262 unsigned int sw)
f3421797
TH
263{
264 if (cpu < nr_cpu_ids) {
265 if (sw & 1) {
266 cpu = cpumask_next(cpu, mask);
267 if (cpu < nr_cpu_ids)
268 return cpu;
269 }
270 if (sw & 2)
271 return WORK_CPU_UNBOUND;
272 }
6be19588 273 return WORK_CPU_END;
f3421797
TH
274}
275
112202d9 276static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
706026c2 277 struct workqueue_struct *wq)
f3421797 278{
706026c2 279 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
280}
281
09884951
TH
282/*
283 * CPU iterators
284 *
706026c2 285 * An extra cpu number is defined using an invalid cpu number
09884951 286 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
287 * specific CPU. The following iterators are similar to for_each_*_cpu()
288 * iterators but also considers the unbound CPU.
09884951 289 *
706026c2
TH
290 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
291 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
112202d9 292 * for_each_pwq_cpu() : possible CPUs for bound workqueues,
09884951
TH
293 * WORK_CPU_UNBOUND for unbound workqueues
294 */
706026c2
TH
295#define for_each_wq_cpu(cpu) \
296 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 297 (cpu) < WORK_CPU_END; \
706026c2 298 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 299
706026c2
TH
300#define for_each_online_wq_cpu(cpu) \
301 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 302 (cpu) < WORK_CPU_END; \
706026c2 303 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 304
112202d9
TH
305#define for_each_pwq_cpu(cpu, wq) \
306 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 307 (cpu) < WORK_CPU_END; \
112202d9 308 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 309
dc186ad7
TG
310#ifdef CONFIG_DEBUG_OBJECTS_WORK
311
312static struct debug_obj_descr work_debug_descr;
313
99777288
SG
314static void *work_debug_hint(void *addr)
315{
316 return ((struct work_struct *) addr)->func;
317}
318
dc186ad7
TG
319/*
320 * fixup_init is called when:
321 * - an active object is initialized
322 */
323static int work_fixup_init(void *addr, enum debug_obj_state state)
324{
325 struct work_struct *work = addr;
326
327 switch (state) {
328 case ODEBUG_STATE_ACTIVE:
329 cancel_work_sync(work);
330 debug_object_init(work, &work_debug_descr);
331 return 1;
332 default:
333 return 0;
334 }
335}
336
337/*
338 * fixup_activate is called when:
339 * - an active object is activated
340 * - an unknown object is activated (might be a statically initialized object)
341 */
342static int work_fixup_activate(void *addr, enum debug_obj_state state)
343{
344 struct work_struct *work = addr;
345
346 switch (state) {
347
348 case ODEBUG_STATE_NOTAVAILABLE:
349 /*
350 * This is not really a fixup. The work struct was
351 * statically initialized. We just make sure that it
352 * is tracked in the object tracker.
353 */
22df02bb 354 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
355 debug_object_init(work, &work_debug_descr);
356 debug_object_activate(work, &work_debug_descr);
357 return 0;
358 }
359 WARN_ON_ONCE(1);
360 return 0;
361
362 case ODEBUG_STATE_ACTIVE:
363 WARN_ON(1);
364
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_free is called when:
372 * - an active object is freed
373 */
374static int work_fixup_free(void *addr, enum debug_obj_state state)
375{
376 struct work_struct *work = addr;
377
378 switch (state) {
379 case ODEBUG_STATE_ACTIVE:
380 cancel_work_sync(work);
381 debug_object_free(work, &work_debug_descr);
382 return 1;
383 default:
384 return 0;
385 }
386}
387
388static struct debug_obj_descr work_debug_descr = {
389 .name = "work_struct",
99777288 390 .debug_hint = work_debug_hint,
dc186ad7
TG
391 .fixup_init = work_fixup_init,
392 .fixup_activate = work_fixup_activate,
393 .fixup_free = work_fixup_free,
394};
395
396static inline void debug_work_activate(struct work_struct *work)
397{
398 debug_object_activate(work, &work_debug_descr);
399}
400
401static inline void debug_work_deactivate(struct work_struct *work)
402{
403 debug_object_deactivate(work, &work_debug_descr);
404}
405
406void __init_work(struct work_struct *work, int onstack)
407{
408 if (onstack)
409 debug_object_init_on_stack(work, &work_debug_descr);
410 else
411 debug_object_init(work, &work_debug_descr);
412}
413EXPORT_SYMBOL_GPL(__init_work);
414
415void destroy_work_on_stack(struct work_struct *work)
416{
417 debug_object_free(work, &work_debug_descr);
418}
419EXPORT_SYMBOL_GPL(destroy_work_on_stack);
420
421#else
422static inline void debug_work_activate(struct work_struct *work) { }
423static inline void debug_work_deactivate(struct work_struct *work) { }
424#endif
425
95402b38
GS
426/* Serializes the accesses to the list of workqueues. */
427static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 428static LIST_HEAD(workqueues);
a0a1a5fd 429static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 430
e22bee78 431/*
e19e397a
TH
432 * The CPU and unbound standard worker pools. The unbound ones have
433 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 434 */
e19e397a
TH
435static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
436 cpu_std_worker_pools);
a60dc39c 437static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 438
9daf9e67
TH
439/* idr of all pools */
440static DEFINE_MUTEX(worker_pool_idr_mutex);
441static DEFINE_IDR(worker_pool_idr);
442
c34056a3 443static int worker_thread(void *__worker);
1da177e4 444
a60dc39c 445static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 446{
f3421797 447 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 448 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 449 else
a60dc39c 450 return unbound_std_worker_pools;
8b03ae3c
TH
451}
452
4e8f0a60
TH
453static int std_worker_pool_pri(struct worker_pool *pool)
454{
a60dc39c 455 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
456}
457
9daf9e67
TH
458/* allocate ID and assign it to @pool */
459static int worker_pool_assign_id(struct worker_pool *pool)
460{
461 int ret;
462
463 mutex_lock(&worker_pool_idr_mutex);
464 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
465 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
466 mutex_unlock(&worker_pool_idr_mutex);
467
468 return ret;
469}
470
7c3eed5c
TH
471/*
472 * Lookup worker_pool by id. The idr currently is built during boot and
473 * never modified. Don't worry about locking for now.
474 */
475static struct worker_pool *worker_pool_by_id(int pool_id)
476{
477 return idr_find(&worker_pool_idr, pool_id);
478}
479
d565ed63
TH
480static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
481{
a60dc39c 482 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 483
a60dc39c 484 return &pools[highpri];
d565ed63
TH
485}
486
112202d9
TH
487static struct pool_workqueue *get_pwq(unsigned int cpu,
488 struct workqueue_struct *wq)
b1f4ec17 489{
f3421797 490 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 491 if (likely(cpu < nr_cpu_ids))
112202d9 492 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
f3421797 493 } else if (likely(cpu == WORK_CPU_UNBOUND))
112202d9 494 return wq->pool_wq.single;
f3421797 495 return NULL;
b1f4ec17
ON
496}
497
73f53c4a
TH
498static unsigned int work_color_to_flags(int color)
499{
500 return color << WORK_STRUCT_COLOR_SHIFT;
501}
502
503static int get_work_color(struct work_struct *work)
504{
505 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
506 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
507}
508
509static int work_next_color(int color)
510{
511 return (color + 1) % WORK_NR_COLORS;
512}
1da177e4 513
14441960 514/*
112202d9
TH
515 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
516 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 517 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 518 *
112202d9
TH
519 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
520 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
521 * work->data. These functions should only be called while the work is
522 * owned - ie. while the PENDING bit is set.
7a22ad75 523 *
112202d9 524 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 525 * corresponding to a work. Pool is available once the work has been
112202d9 526 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 527 * available only while the work item is queued.
7a22ad75 528 *
bbb68dfa
TH
529 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
530 * canceled. While being canceled, a work item may have its PENDING set
531 * but stay off timer and worklist for arbitrarily long and nobody should
532 * try to steal the PENDING bit.
14441960 533 */
7a22ad75
TH
534static inline void set_work_data(struct work_struct *work, unsigned long data,
535 unsigned long flags)
365970a1 536{
6183c009 537 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
538 atomic_long_set(&work->data, data | flags | work_static(work));
539}
365970a1 540
112202d9 541static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
542 unsigned long extra_flags)
543{
112202d9
TH
544 set_work_data(work, (unsigned long)pwq,
545 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
546}
547
4468a00f
LJ
548static void set_work_pool_and_keep_pending(struct work_struct *work,
549 int pool_id)
550{
551 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
552 WORK_STRUCT_PENDING);
553}
554
7c3eed5c
TH
555static void set_work_pool_and_clear_pending(struct work_struct *work,
556 int pool_id)
7a22ad75 557{
23657bb1
TH
558 /*
559 * The following wmb is paired with the implied mb in
560 * test_and_set_bit(PENDING) and ensures all updates to @work made
561 * here are visible to and precede any updates by the next PENDING
562 * owner.
563 */
564 smp_wmb();
7c3eed5c 565 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 566}
f756d5e2 567
7a22ad75 568static void clear_work_data(struct work_struct *work)
1da177e4 569{
7c3eed5c
TH
570 smp_wmb(); /* see set_work_pool_and_clear_pending() */
571 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
572}
573
112202d9 574static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 575{
e120153d 576 unsigned long data = atomic_long_read(&work->data);
7a22ad75 577
112202d9 578 if (data & WORK_STRUCT_PWQ)
e120153d
TH
579 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
580 else
581 return NULL;
4d707b9f
ON
582}
583
7c3eed5c
TH
584/**
585 * get_work_pool - return the worker_pool a given work was associated with
586 * @work: the work item of interest
587 *
588 * Return the worker_pool @work was last associated with. %NULL if none.
589 */
590static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 591{
e120153d 592 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
593 struct worker_pool *pool;
594 int pool_id;
7a22ad75 595
112202d9
TH
596 if (data & WORK_STRUCT_PWQ)
597 return ((struct pool_workqueue *)
7c3eed5c 598 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 599
7c3eed5c
TH
600 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
601 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
602 return NULL;
603
7c3eed5c
TH
604 pool = worker_pool_by_id(pool_id);
605 WARN_ON_ONCE(!pool);
606 return pool;
607}
608
609/**
610 * get_work_pool_id - return the worker pool ID a given work is associated with
611 * @work: the work item of interest
612 *
613 * Return the worker_pool ID @work was last associated with.
614 * %WORK_OFFQ_POOL_NONE if none.
615 */
616static int get_work_pool_id(struct work_struct *work)
617{
54d5b7d0
LJ
618 unsigned long data = atomic_long_read(&work->data);
619
112202d9
TH
620 if (data & WORK_STRUCT_PWQ)
621 return ((struct pool_workqueue *)
54d5b7d0 622 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 623
54d5b7d0 624 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
625}
626
bbb68dfa
TH
627static void mark_work_canceling(struct work_struct *work)
628{
7c3eed5c 629 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 630
7c3eed5c
TH
631 pool_id <<= WORK_OFFQ_POOL_SHIFT;
632 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
633}
634
635static bool work_is_canceling(struct work_struct *work)
636{
637 unsigned long data = atomic_long_read(&work->data);
638
112202d9 639 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
640}
641
e22bee78 642/*
3270476a
TH
643 * Policy functions. These define the policies on how the global worker
644 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 645 * they're being called with pool->lock held.
e22bee78
TH
646 */
647
63d95a91 648static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 649{
e19e397a 650 return !atomic_read(&pool->nr_running);
a848e3b6
ON
651}
652
4594bf15 653/*
e22bee78
TH
654 * Need to wake up a worker? Called from anything but currently
655 * running workers.
974271c4
TH
656 *
657 * Note that, because unbound workers never contribute to nr_running, this
706026c2 658 * function will always return %true for unbound pools as long as the
974271c4 659 * worklist isn't empty.
4594bf15 660 */
63d95a91 661static bool need_more_worker(struct worker_pool *pool)
365970a1 662{
63d95a91 663 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 664}
4594bf15 665
e22bee78 666/* Can I start working? Called from busy but !running workers. */
63d95a91 667static bool may_start_working(struct worker_pool *pool)
e22bee78 668{
63d95a91 669 return pool->nr_idle;
e22bee78
TH
670}
671
672/* Do I need to keep working? Called from currently running workers. */
63d95a91 673static bool keep_working(struct worker_pool *pool)
e22bee78 674{
e19e397a
TH
675 return !list_empty(&pool->worklist) &&
676 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
677}
678
679/* Do we need a new worker? Called from manager. */
63d95a91 680static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 683}
365970a1 684
e22bee78 685/* Do I need to be the manager? */
63d95a91 686static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 687{
63d95a91 688 return need_to_create_worker(pool) ||
11ebea50 689 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
690}
691
692/* Do we have too many workers and should some go away? */
63d95a91 693static bool too_many_workers(struct worker_pool *pool)
e22bee78 694{
552a37e9 695 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
696 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
697 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 698
ea1abd61
LJ
699 /*
700 * nr_idle and idle_list may disagree if idle rebinding is in
701 * progress. Never return %true if idle_list is empty.
702 */
703 if (list_empty(&pool->idle_list))
704 return false;
705
e22bee78 706 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
707}
708
4d707b9f 709/*
e22bee78
TH
710 * Wake up functions.
711 */
712
7e11629d 713/* Return the first worker. Safe with preemption disabled */
63d95a91 714static struct worker *first_worker(struct worker_pool *pool)
7e11629d 715{
63d95a91 716 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
717 return NULL;
718
63d95a91 719 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
720}
721
722/**
723 * wake_up_worker - wake up an idle worker
63d95a91 724 * @pool: worker pool to wake worker from
7e11629d 725 *
63d95a91 726 * Wake up the first idle worker of @pool.
7e11629d
TH
727 *
728 * CONTEXT:
d565ed63 729 * spin_lock_irq(pool->lock).
7e11629d 730 */
63d95a91 731static void wake_up_worker(struct worker_pool *pool)
7e11629d 732{
63d95a91 733 struct worker *worker = first_worker(pool);
7e11629d
TH
734
735 if (likely(worker))
736 wake_up_process(worker->task);
737}
738
d302f017 739/**
e22bee78
TH
740 * wq_worker_waking_up - a worker is waking up
741 * @task: task waking up
742 * @cpu: CPU @task is waking up to
743 *
744 * This function is called during try_to_wake_up() when a worker is
745 * being awoken.
746 *
747 * CONTEXT:
748 * spin_lock_irq(rq->lock)
749 */
750void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
751{
752 struct worker *worker = kthread_data(task);
753
36576000 754 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 755 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 756 atomic_inc(&worker->pool->nr_running);
36576000 757 }
e22bee78
TH
758}
759
760/**
761 * wq_worker_sleeping - a worker is going to sleep
762 * @task: task going to sleep
763 * @cpu: CPU in question, must be the current CPU number
764 *
765 * This function is called during schedule() when a busy worker is
766 * going to sleep. Worker on the same cpu can be woken up by
767 * returning pointer to its task.
768 *
769 * CONTEXT:
770 * spin_lock_irq(rq->lock)
771 *
772 * RETURNS:
773 * Worker task on @cpu to wake up, %NULL if none.
774 */
775struct task_struct *wq_worker_sleeping(struct task_struct *task,
776 unsigned int cpu)
777{
778 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 779 struct worker_pool *pool;
e22bee78 780
111c225a
TH
781 /*
782 * Rescuers, which may not have all the fields set up like normal
783 * workers, also reach here, let's not access anything before
784 * checking NOT_RUNNING.
785 */
2d64672e 786 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
787 return NULL;
788
111c225a 789 pool = worker->pool;
111c225a 790
e22bee78 791 /* this can only happen on the local cpu */
6183c009
TH
792 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
793 return NULL;
e22bee78
TH
794
795 /*
796 * The counterpart of the following dec_and_test, implied mb,
797 * worklist not empty test sequence is in insert_work().
798 * Please read comment there.
799 *
628c78e7
TH
800 * NOT_RUNNING is clear. This means that we're bound to and
801 * running on the local cpu w/ rq lock held and preemption
802 * disabled, which in turn means that none else could be
d565ed63 803 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 804 * lock is safe.
e22bee78 805 */
e19e397a
TH
806 if (atomic_dec_and_test(&pool->nr_running) &&
807 !list_empty(&pool->worklist))
63d95a91 808 to_wakeup = first_worker(pool);
e22bee78
TH
809 return to_wakeup ? to_wakeup->task : NULL;
810}
811
812/**
813 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 814 * @worker: self
d302f017
TH
815 * @flags: flags to set
816 * @wakeup: wakeup an idle worker if necessary
817 *
e22bee78
TH
818 * Set @flags in @worker->flags and adjust nr_running accordingly. If
819 * nr_running becomes zero and @wakeup is %true, an idle worker is
820 * woken up.
d302f017 821 *
cb444766 822 * CONTEXT:
d565ed63 823 * spin_lock_irq(pool->lock)
d302f017
TH
824 */
825static inline void worker_set_flags(struct worker *worker, unsigned int flags,
826 bool wakeup)
827{
bd7bdd43 828 struct worker_pool *pool = worker->pool;
e22bee78 829
cb444766
TH
830 WARN_ON_ONCE(worker->task != current);
831
e22bee78
TH
832 /*
833 * If transitioning into NOT_RUNNING, adjust nr_running and
834 * wake up an idle worker as necessary if requested by
835 * @wakeup.
836 */
837 if ((flags & WORKER_NOT_RUNNING) &&
838 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 839 if (wakeup) {
e19e397a 840 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 841 !list_empty(&pool->worklist))
63d95a91 842 wake_up_worker(pool);
e22bee78 843 } else
e19e397a 844 atomic_dec(&pool->nr_running);
e22bee78
TH
845 }
846
d302f017
TH
847 worker->flags |= flags;
848}
849
850/**
e22bee78 851 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 852 * @worker: self
d302f017
TH
853 * @flags: flags to clear
854 *
e22bee78 855 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 856 *
cb444766 857 * CONTEXT:
d565ed63 858 * spin_lock_irq(pool->lock)
d302f017
TH
859 */
860static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
861{
63d95a91 862 struct worker_pool *pool = worker->pool;
e22bee78
TH
863 unsigned int oflags = worker->flags;
864
cb444766
TH
865 WARN_ON_ONCE(worker->task != current);
866
d302f017 867 worker->flags &= ~flags;
e22bee78 868
42c025f3
TH
869 /*
870 * If transitioning out of NOT_RUNNING, increment nr_running. Note
871 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
872 * of multiple flags, not a single flag.
873 */
e22bee78
TH
874 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
875 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 876 atomic_inc(&pool->nr_running);
d302f017
TH
877}
878
8cca0eea
TH
879/**
880 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 881 * @pool: pool of interest
8cca0eea
TH
882 * @work: work to find worker for
883 *
c9e7cf27
TH
884 * Find a worker which is executing @work on @pool by searching
885 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
886 * to match, its current execution should match the address of @work and
887 * its work function. This is to avoid unwanted dependency between
888 * unrelated work executions through a work item being recycled while still
889 * being executed.
890 *
891 * This is a bit tricky. A work item may be freed once its execution
892 * starts and nothing prevents the freed area from being recycled for
893 * another work item. If the same work item address ends up being reused
894 * before the original execution finishes, workqueue will identify the
895 * recycled work item as currently executing and make it wait until the
896 * current execution finishes, introducing an unwanted dependency.
897 *
898 * This function checks the work item address, work function and workqueue
899 * to avoid false positives. Note that this isn't complete as one may
900 * construct a work function which can introduce dependency onto itself
901 * through a recycled work item. Well, if somebody wants to shoot oneself
902 * in the foot that badly, there's only so much we can do, and if such
903 * deadlock actually occurs, it should be easy to locate the culprit work
904 * function.
8cca0eea
TH
905 *
906 * CONTEXT:
d565ed63 907 * spin_lock_irq(pool->lock).
8cca0eea
TH
908 *
909 * RETURNS:
910 * Pointer to worker which is executing @work if found, NULL
911 * otherwise.
4d707b9f 912 */
c9e7cf27 913static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 914 struct work_struct *work)
4d707b9f 915{
42f8570f 916 struct worker *worker;
42f8570f 917
b67bfe0d 918 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
919 (unsigned long)work)
920 if (worker->current_work == work &&
921 worker->current_func == work->func)
42f8570f
SL
922 return worker;
923
924 return NULL;
4d707b9f
ON
925}
926
bf4ede01
TH
927/**
928 * move_linked_works - move linked works to a list
929 * @work: start of series of works to be scheduled
930 * @head: target list to append @work to
931 * @nextp: out paramter for nested worklist walking
932 *
933 * Schedule linked works starting from @work to @head. Work series to
934 * be scheduled starts at @work and includes any consecutive work with
935 * WORK_STRUCT_LINKED set in its predecessor.
936 *
937 * If @nextp is not NULL, it's updated to point to the next work of
938 * the last scheduled work. This allows move_linked_works() to be
939 * nested inside outer list_for_each_entry_safe().
940 *
941 * CONTEXT:
d565ed63 942 * spin_lock_irq(pool->lock).
bf4ede01
TH
943 */
944static void move_linked_works(struct work_struct *work, struct list_head *head,
945 struct work_struct **nextp)
946{
947 struct work_struct *n;
948
949 /*
950 * Linked worklist will always end before the end of the list,
951 * use NULL for list head.
952 */
953 list_for_each_entry_safe_from(work, n, NULL, entry) {
954 list_move_tail(&work->entry, head);
955 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
956 break;
957 }
958
959 /*
960 * If we're already inside safe list traversal and have moved
961 * multiple works to the scheduled queue, the next position
962 * needs to be updated.
963 */
964 if (nextp)
965 *nextp = n;
966}
967
112202d9 968static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 969{
112202d9 970 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
971
972 trace_workqueue_activate_work(work);
112202d9 973 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 974 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 975 pwq->nr_active++;
bf4ede01
TH
976}
977
112202d9 978static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 979{
112202d9 980 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
981 struct work_struct, entry);
982
112202d9 983 pwq_activate_delayed_work(work);
3aa62497
LJ
984}
985
bf4ede01 986/**
112202d9
TH
987 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
988 * @pwq: pwq of interest
bf4ede01 989 * @color: color of work which left the queue
bf4ede01
TH
990 *
991 * A work either has completed or is removed from pending queue,
112202d9 992 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
993 *
994 * CONTEXT:
d565ed63 995 * spin_lock_irq(pool->lock).
bf4ede01 996 */
112202d9 997static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
998{
999 /* ignore uncolored works */
1000 if (color == WORK_NO_COLOR)
1001 return;
1002
112202d9 1003 pwq->nr_in_flight[color]--;
bf4ede01 1004
112202d9
TH
1005 pwq->nr_active--;
1006 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1007 /* one down, submit a delayed one */
112202d9
TH
1008 if (pwq->nr_active < pwq->max_active)
1009 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1010 }
1011
1012 /* is flush in progress and are we at the flushing tip? */
112202d9 1013 if (likely(pwq->flush_color != color))
bf4ede01
TH
1014 return;
1015
1016 /* are there still in-flight works? */
112202d9 1017 if (pwq->nr_in_flight[color])
bf4ede01
TH
1018 return;
1019
112202d9
TH
1020 /* this pwq is done, clear flush_color */
1021 pwq->flush_color = -1;
bf4ede01
TH
1022
1023 /*
112202d9 1024 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1025 * will handle the rest.
1026 */
112202d9
TH
1027 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1028 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1029}
1030
36e227d2 1031/**
bbb68dfa 1032 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1033 * @work: work item to steal
1034 * @is_dwork: @work is a delayed_work
bbb68dfa 1035 * @flags: place to store irq state
36e227d2
TH
1036 *
1037 * Try to grab PENDING bit of @work. This function can handle @work in any
1038 * stable state - idle, on timer or on worklist. Return values are
1039 *
1040 * 1 if @work was pending and we successfully stole PENDING
1041 * 0 if @work was idle and we claimed PENDING
1042 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1043 * -ENOENT if someone else is canceling @work, this state may persist
1044 * for arbitrarily long
36e227d2 1045 *
bbb68dfa 1046 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1047 * interrupted while holding PENDING and @work off queue, irq must be
1048 * disabled on entry. This, combined with delayed_work->timer being
1049 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1050 *
1051 * On successful return, >= 0, irq is disabled and the caller is
1052 * responsible for releasing it using local_irq_restore(*@flags).
1053 *
e0aecdd8 1054 * This function is safe to call from any context including IRQ handler.
bf4ede01 1055 */
bbb68dfa
TH
1056static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1057 unsigned long *flags)
bf4ede01 1058{
d565ed63 1059 struct worker_pool *pool;
112202d9 1060 struct pool_workqueue *pwq;
bf4ede01 1061
bbb68dfa
TH
1062 local_irq_save(*flags);
1063
36e227d2
TH
1064 /* try to steal the timer if it exists */
1065 if (is_dwork) {
1066 struct delayed_work *dwork = to_delayed_work(work);
1067
e0aecdd8
TH
1068 /*
1069 * dwork->timer is irqsafe. If del_timer() fails, it's
1070 * guaranteed that the timer is not queued anywhere and not
1071 * running on the local CPU.
1072 */
36e227d2
TH
1073 if (likely(del_timer(&dwork->timer)))
1074 return 1;
1075 }
1076
1077 /* try to claim PENDING the normal way */
bf4ede01
TH
1078 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1079 return 0;
1080
1081 /*
1082 * The queueing is in progress, or it is already queued. Try to
1083 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1084 */
d565ed63
TH
1085 pool = get_work_pool(work);
1086 if (!pool)
bbb68dfa 1087 goto fail;
bf4ede01 1088
d565ed63 1089 spin_lock(&pool->lock);
0b3dae68 1090 /*
112202d9
TH
1091 * work->data is guaranteed to point to pwq only while the work
1092 * item is queued on pwq->wq, and both updating work->data to point
1093 * to pwq on queueing and to pool on dequeueing are done under
1094 * pwq->pool->lock. This in turn guarantees that, if work->data
1095 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1096 * item is currently queued on that pool.
1097 */
112202d9
TH
1098 pwq = get_work_pwq(work);
1099 if (pwq && pwq->pool == pool) {
16062836
TH
1100 debug_work_deactivate(work);
1101
1102 /*
1103 * A delayed work item cannot be grabbed directly because
1104 * it might have linked NO_COLOR work items which, if left
112202d9 1105 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1106 * management later on and cause stall. Make sure the work
1107 * item is activated before grabbing.
1108 */
1109 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1110 pwq_activate_delayed_work(work);
16062836
TH
1111
1112 list_del_init(&work->entry);
112202d9 1113 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1114
112202d9 1115 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1116 set_work_pool_and_keep_pending(work, pool->id);
1117
1118 spin_unlock(&pool->lock);
1119 return 1;
bf4ede01 1120 }
d565ed63 1121 spin_unlock(&pool->lock);
bbb68dfa
TH
1122fail:
1123 local_irq_restore(*flags);
1124 if (work_is_canceling(work))
1125 return -ENOENT;
1126 cpu_relax();
36e227d2 1127 return -EAGAIN;
bf4ede01
TH
1128}
1129
4690c4ab 1130/**
706026c2 1131 * insert_work - insert a work into a pool
112202d9 1132 * @pwq: pwq @work belongs to
4690c4ab
TH
1133 * @work: work to insert
1134 * @head: insertion point
1135 * @extra_flags: extra WORK_STRUCT_* flags to set
1136 *
112202d9 1137 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1138 * work_struct flags.
4690c4ab
TH
1139 *
1140 * CONTEXT:
d565ed63 1141 * spin_lock_irq(pool->lock).
4690c4ab 1142 */
112202d9
TH
1143static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1144 struct list_head *head, unsigned int extra_flags)
b89deed3 1145{
112202d9 1146 struct worker_pool *pool = pwq->pool;
e22bee78 1147
4690c4ab 1148 /* we own @work, set data and link */
112202d9 1149 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1150 list_add_tail(&work->entry, head);
e22bee78
TH
1151
1152 /*
1153 * Ensure either worker_sched_deactivated() sees the above
1154 * list_add_tail() or we see zero nr_running to avoid workers
1155 * lying around lazily while there are works to be processed.
1156 */
1157 smp_mb();
1158
63d95a91
TH
1159 if (__need_more_worker(pool))
1160 wake_up_worker(pool);
b89deed3
ON
1161}
1162
c8efcc25
TH
1163/*
1164 * Test whether @work is being queued from another work executing on the
8d03ecfe 1165 * same workqueue.
c8efcc25
TH
1166 */
1167static bool is_chained_work(struct workqueue_struct *wq)
1168{
8d03ecfe
TH
1169 struct worker *worker;
1170
1171 worker = current_wq_worker();
1172 /*
1173 * Return %true iff I'm a worker execuing a work item on @wq. If
1174 * I'm @worker, it's safe to dereference it without locking.
1175 */
112202d9 1176 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1177}
1178
4690c4ab 1179static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1180 struct work_struct *work)
1181{
112202d9 1182 struct pool_workqueue *pwq;
1e19ffc6 1183 struct list_head *worklist;
8a2e8e5d 1184 unsigned int work_flags;
b75cac93 1185 unsigned int req_cpu = cpu;
8930caba
TH
1186
1187 /*
1188 * While a work item is PENDING && off queue, a task trying to
1189 * steal the PENDING will busy-loop waiting for it to either get
1190 * queued or lose PENDING. Grabbing PENDING and queueing should
1191 * happen with IRQ disabled.
1192 */
1193 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1194
dc186ad7 1195 debug_work_activate(work);
1e19ffc6 1196
c8efcc25 1197 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1198 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1199 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1200 return;
1201
112202d9 1202 /* determine the pwq to use */
c7fc77f7 1203 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1204 struct worker_pool *last_pool;
18aa9eff 1205
57469821 1206 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1207 cpu = raw_smp_processor_id();
1208
18aa9eff 1209 /*
dbf2576e
TH
1210 * It's multi cpu. If @work was previously on a different
1211 * cpu, it might still be running there, in which case the
1212 * work needs to be queued on that cpu to guarantee
1213 * non-reentrancy.
18aa9eff 1214 */
112202d9 1215 pwq = get_pwq(cpu, wq);
c9e7cf27 1216 last_pool = get_work_pool(work);
dbf2576e 1217
112202d9 1218 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1219 struct worker *worker;
1220
d565ed63 1221 spin_lock(&last_pool->lock);
18aa9eff 1222
c9e7cf27 1223 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1224
112202d9
TH
1225 if (worker && worker->current_pwq->wq == wq) {
1226 pwq = get_pwq(last_pool->cpu, wq);
8594fade 1227 } else {
18aa9eff 1228 /* meh... not running there, queue here */
d565ed63 1229 spin_unlock(&last_pool->lock);
112202d9 1230 spin_lock(&pwq->pool->lock);
18aa9eff 1231 }
8930caba 1232 } else {
112202d9 1233 spin_lock(&pwq->pool->lock);
8930caba 1234 }
f3421797 1235 } else {
112202d9
TH
1236 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1237 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1238 }
1239
112202d9
TH
1240 /* pwq determined, queue */
1241 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1242
f5b2552b 1243 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1244 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1245 return;
1246 }
1e19ffc6 1247
112202d9
TH
1248 pwq->nr_in_flight[pwq->work_color]++;
1249 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1250
112202d9 1251 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1252 trace_workqueue_activate_work(work);
112202d9
TH
1253 pwq->nr_active++;
1254 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1255 } else {
1256 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1257 worklist = &pwq->delayed_works;
8a2e8e5d 1258 }
1e19ffc6 1259
112202d9 1260 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1261
112202d9 1262 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1263}
1264
0fcb78c2 1265/**
c1a220e7
ZR
1266 * queue_work_on - queue work on specific cpu
1267 * @cpu: CPU number to execute work on
0fcb78c2
REB
1268 * @wq: workqueue to use
1269 * @work: work to queue
1270 *
d4283e93 1271 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1272 *
c1a220e7
ZR
1273 * We queue the work to a specific CPU, the caller must ensure it
1274 * can't go away.
1da177e4 1275 */
d4283e93
TH
1276bool queue_work_on(int cpu, struct workqueue_struct *wq,
1277 struct work_struct *work)
1da177e4 1278{
d4283e93 1279 bool ret = false;
8930caba 1280 unsigned long flags;
ef1ca236 1281
8930caba 1282 local_irq_save(flags);
c1a220e7 1283
22df02bb 1284 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1285 __queue_work(cpu, wq, work);
d4283e93 1286 ret = true;
c1a220e7 1287 }
ef1ca236 1288
8930caba 1289 local_irq_restore(flags);
1da177e4
LT
1290 return ret;
1291}
c1a220e7 1292EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1293
c1a220e7 1294/**
0a13c00e 1295 * queue_work - queue work on a workqueue
c1a220e7
ZR
1296 * @wq: workqueue to use
1297 * @work: work to queue
1298 *
d4283e93 1299 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1300 *
0a13c00e
TH
1301 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1302 * it can be processed by another CPU.
c1a220e7 1303 */
d4283e93 1304bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1305{
57469821 1306 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1307}
0a13c00e 1308EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1309
d8e794df 1310void delayed_work_timer_fn(unsigned long __data)
1da177e4 1311{
52bad64d 1312 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1313
e0aecdd8 1314 /* should have been called from irqsafe timer with irq already off */
60c057bc 1315 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1316}
1438ade5 1317EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1318
7beb2edf
TH
1319static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1320 struct delayed_work *dwork, unsigned long delay)
1da177e4 1321{
7beb2edf
TH
1322 struct timer_list *timer = &dwork->timer;
1323 struct work_struct *work = &dwork->work;
7beb2edf
TH
1324
1325 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1326 timer->data != (unsigned long)dwork);
fc4b514f
TH
1327 WARN_ON_ONCE(timer_pending(timer));
1328 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1329
8852aac2
TH
1330 /*
1331 * If @delay is 0, queue @dwork->work immediately. This is for
1332 * both optimization and correctness. The earliest @timer can
1333 * expire is on the closest next tick and delayed_work users depend
1334 * on that there's no such delay when @delay is 0.
1335 */
1336 if (!delay) {
1337 __queue_work(cpu, wq, &dwork->work);
1338 return;
1339 }
1340
7beb2edf 1341 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1342
60c057bc 1343 dwork->wq = wq;
1265057f 1344 dwork->cpu = cpu;
7beb2edf
TH
1345 timer->expires = jiffies + delay;
1346
1347 if (unlikely(cpu != WORK_CPU_UNBOUND))
1348 add_timer_on(timer, cpu);
1349 else
1350 add_timer(timer);
1da177e4
LT
1351}
1352
0fcb78c2
REB
1353/**
1354 * queue_delayed_work_on - queue work on specific CPU after delay
1355 * @cpu: CPU number to execute work on
1356 * @wq: workqueue to use
af9997e4 1357 * @dwork: work to queue
0fcb78c2
REB
1358 * @delay: number of jiffies to wait before queueing
1359 *
715f1300
TH
1360 * Returns %false if @work was already on a queue, %true otherwise. If
1361 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1362 * execution.
0fcb78c2 1363 */
d4283e93
TH
1364bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1365 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1366{
52bad64d 1367 struct work_struct *work = &dwork->work;
d4283e93 1368 bool ret = false;
8930caba 1369 unsigned long flags;
7a6bc1cd 1370
8930caba
TH
1371 /* read the comment in __queue_work() */
1372 local_irq_save(flags);
7a6bc1cd 1373
22df02bb 1374 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1375 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1376 ret = true;
7a6bc1cd 1377 }
8a3e77cc 1378
8930caba 1379 local_irq_restore(flags);
7a6bc1cd
VP
1380 return ret;
1381}
ae90dd5d 1382EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1383
0a13c00e
TH
1384/**
1385 * queue_delayed_work - queue work on a workqueue after delay
1386 * @wq: workqueue to use
1387 * @dwork: delayable work to queue
1388 * @delay: number of jiffies to wait before queueing
1389 *
715f1300 1390 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1391 */
d4283e93 1392bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1393 struct delayed_work *dwork, unsigned long delay)
1394{
57469821 1395 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1396}
1397EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1398
8376fe22
TH
1399/**
1400 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1401 * @cpu: CPU number to execute work on
1402 * @wq: workqueue to use
1403 * @dwork: work to queue
1404 * @delay: number of jiffies to wait before queueing
1405 *
1406 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1407 * modify @dwork's timer so that it expires after @delay. If @delay is
1408 * zero, @work is guaranteed to be scheduled immediately regardless of its
1409 * current state.
1410 *
1411 * Returns %false if @dwork was idle and queued, %true if @dwork was
1412 * pending and its timer was modified.
1413 *
e0aecdd8 1414 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1415 * See try_to_grab_pending() for details.
1416 */
1417bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1418 struct delayed_work *dwork, unsigned long delay)
1419{
1420 unsigned long flags;
1421 int ret;
c7fc77f7 1422
8376fe22
TH
1423 do {
1424 ret = try_to_grab_pending(&dwork->work, true, &flags);
1425 } while (unlikely(ret == -EAGAIN));
63bc0362 1426
8376fe22
TH
1427 if (likely(ret >= 0)) {
1428 __queue_delayed_work(cpu, wq, dwork, delay);
1429 local_irq_restore(flags);
7a6bc1cd 1430 }
8376fe22
TH
1431
1432 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1433 return ret;
1434}
8376fe22
TH
1435EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1436
1437/**
1438 * mod_delayed_work - modify delay of or queue a delayed work
1439 * @wq: workqueue to use
1440 * @dwork: work to queue
1441 * @delay: number of jiffies to wait before queueing
1442 *
1443 * mod_delayed_work_on() on local CPU.
1444 */
1445bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1446 unsigned long delay)
1447{
1448 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1449}
1450EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1451
c8e55f36
TH
1452/**
1453 * worker_enter_idle - enter idle state
1454 * @worker: worker which is entering idle state
1455 *
1456 * @worker is entering idle state. Update stats and idle timer if
1457 * necessary.
1458 *
1459 * LOCKING:
d565ed63 1460 * spin_lock_irq(pool->lock).
c8e55f36
TH
1461 */
1462static void worker_enter_idle(struct worker *worker)
1da177e4 1463{
bd7bdd43 1464 struct worker_pool *pool = worker->pool;
c8e55f36 1465
6183c009
TH
1466 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1467 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1468 (worker->hentry.next || worker->hentry.pprev)))
1469 return;
c8e55f36 1470
cb444766
TH
1471 /* can't use worker_set_flags(), also called from start_worker() */
1472 worker->flags |= WORKER_IDLE;
bd7bdd43 1473 pool->nr_idle++;
e22bee78 1474 worker->last_active = jiffies;
c8e55f36
TH
1475
1476 /* idle_list is LIFO */
bd7bdd43 1477 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1478
628c78e7
TH
1479 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1480 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1481
544ecf31 1482 /*
706026c2 1483 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1484 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1485 * nr_running, the warning may trigger spuriously. Check iff
1486 * unbind is not in progress.
544ecf31 1487 */
24647570 1488 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1489 pool->nr_workers == pool->nr_idle &&
e19e397a 1490 atomic_read(&pool->nr_running));
c8e55f36
TH
1491}
1492
1493/**
1494 * worker_leave_idle - leave idle state
1495 * @worker: worker which is leaving idle state
1496 *
1497 * @worker is leaving idle state. Update stats.
1498 *
1499 * LOCKING:
d565ed63 1500 * spin_lock_irq(pool->lock).
c8e55f36
TH
1501 */
1502static void worker_leave_idle(struct worker *worker)
1503{
bd7bdd43 1504 struct worker_pool *pool = worker->pool;
c8e55f36 1505
6183c009
TH
1506 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1507 return;
d302f017 1508 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1509 pool->nr_idle--;
c8e55f36
TH
1510 list_del_init(&worker->entry);
1511}
1512
e22bee78 1513/**
f36dc67b
LJ
1514 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1515 * @pool: target worker_pool
1516 *
1517 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1518 *
1519 * Works which are scheduled while the cpu is online must at least be
1520 * scheduled to a worker which is bound to the cpu so that if they are
1521 * flushed from cpu callbacks while cpu is going down, they are
1522 * guaranteed to execute on the cpu.
1523 *
f5faa077 1524 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1525 * themselves to the target cpu and may race with cpu going down or
1526 * coming online. kthread_bind() can't be used because it may put the
1527 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1528 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1529 * [dis]associated in the meantime.
1530 *
706026c2 1531 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1532 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1533 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1534 * enters idle state or fetches works without dropping lock, it can
1535 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1536 *
1537 * CONTEXT:
d565ed63 1538 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1539 * held.
1540 *
1541 * RETURNS:
706026c2 1542 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1543 * bound), %false if offline.
1544 */
f36dc67b 1545static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1546__acquires(&pool->lock)
e22bee78 1547{
e22bee78 1548 while (true) {
4e6045f1 1549 /*
e22bee78
TH
1550 * The following call may fail, succeed or succeed
1551 * without actually migrating the task to the cpu if
1552 * it races with cpu hotunplug operation. Verify
24647570 1553 * against POOL_DISASSOCIATED.
4e6045f1 1554 */
24647570 1555 if (!(pool->flags & POOL_DISASSOCIATED))
f5faa077 1556 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
e22bee78 1557
d565ed63 1558 spin_lock_irq(&pool->lock);
24647570 1559 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1560 return false;
f5faa077 1561 if (task_cpu(current) == pool->cpu &&
e22bee78 1562 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1563 get_cpu_mask(pool->cpu)))
e22bee78 1564 return true;
d565ed63 1565 spin_unlock_irq(&pool->lock);
e22bee78 1566
5035b20f
TH
1567 /*
1568 * We've raced with CPU hot[un]plug. Give it a breather
1569 * and retry migration. cond_resched() is required here;
1570 * otherwise, we might deadlock against cpu_stop trying to
1571 * bring down the CPU on non-preemptive kernel.
1572 */
e22bee78 1573 cpu_relax();
5035b20f 1574 cond_resched();
e22bee78
TH
1575 }
1576}
1577
25511a47 1578/*
ea1abd61 1579 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1580 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1581 */
1582static void idle_worker_rebind(struct worker *worker)
1583{
5f7dabfd 1584 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1585 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1586 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1587
ea1abd61
LJ
1588 /* rebind complete, become available again */
1589 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1590 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1591}
1592
e22bee78 1593/*
25511a47 1594 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1595 * the associated cpu which is coming back online. This is scheduled by
1596 * cpu up but can race with other cpu hotplug operations and may be
1597 * executed twice without intervening cpu down.
e22bee78 1598 */
25511a47 1599static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1600{
1601 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1602
f36dc67b 1603 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1604 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1605
d565ed63 1606 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1607}
1608
25511a47 1609/**
94cf58bb
TH
1610 * rebind_workers - rebind all workers of a pool to the associated CPU
1611 * @pool: pool of interest
25511a47 1612 *
94cf58bb 1613 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1614 * is different for idle and busy ones.
1615 *
ea1abd61
LJ
1616 * Idle ones will be removed from the idle_list and woken up. They will
1617 * add themselves back after completing rebind. This ensures that the
1618 * idle_list doesn't contain any unbound workers when re-bound busy workers
1619 * try to perform local wake-ups for concurrency management.
25511a47 1620 *
ea1abd61
LJ
1621 * Busy workers can rebind after they finish their current work items.
1622 * Queueing the rebind work item at the head of the scheduled list is
1623 * enough. Note that nr_running will be properly bumped as busy workers
1624 * rebind.
25511a47 1625 *
ea1abd61
LJ
1626 * On return, all non-manager workers are scheduled for rebind - see
1627 * manage_workers() for the manager special case. Any idle worker
1628 * including the manager will not appear on @idle_list until rebind is
1629 * complete, making local wake-ups safe.
25511a47 1630 */
94cf58bb 1631static void rebind_workers(struct worker_pool *pool)
25511a47 1632{
ea1abd61 1633 struct worker *worker, *n;
25511a47
TH
1634 int i;
1635
94cf58bb
TH
1636 lockdep_assert_held(&pool->assoc_mutex);
1637 lockdep_assert_held(&pool->lock);
25511a47 1638
5f7dabfd 1639 /* dequeue and kick idle ones */
94cf58bb
TH
1640 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1641 /*
1642 * idle workers should be off @pool->idle_list until rebind
1643 * is complete to avoid receiving premature local wake-ups.
1644 */
1645 list_del_init(&worker->entry);
25511a47 1646
94cf58bb
TH
1647 /*
1648 * worker_thread() will see the above dequeuing and call
1649 * idle_worker_rebind().
1650 */
1651 wake_up_process(worker->task);
1652 }
25511a47 1653
94cf58bb 1654 /* rebind busy workers */
b67bfe0d 1655 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1656 struct work_struct *rebind_work = &worker->rebind_work;
1657 struct workqueue_struct *wq;
25511a47 1658
94cf58bb
TH
1659 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1660 work_data_bits(rebind_work)))
1661 continue;
25511a47 1662
94cf58bb 1663 debug_work_activate(rebind_work);
90beca5d 1664
94cf58bb
TH
1665 /*
1666 * wq doesn't really matter but let's keep @worker->pool
112202d9 1667 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1668 */
1669 if (std_worker_pool_pri(worker->pool))
1670 wq = system_highpri_wq;
1671 else
1672 wq = system_wq;
1673
112202d9 1674 insert_work(get_pwq(pool->cpu, wq), rebind_work,
94cf58bb
TH
1675 worker->scheduled.next,
1676 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1677 }
25511a47
TH
1678}
1679
c34056a3
TH
1680static struct worker *alloc_worker(void)
1681{
1682 struct worker *worker;
1683
1684 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1685 if (worker) {
1686 INIT_LIST_HEAD(&worker->entry);
affee4b2 1687 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1688 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1689 /* on creation a worker is in !idle && prep state */
1690 worker->flags = WORKER_PREP;
c8e55f36 1691 }
c34056a3
TH
1692 return worker;
1693}
1694
1695/**
1696 * create_worker - create a new workqueue worker
63d95a91 1697 * @pool: pool the new worker will belong to
c34056a3 1698 *
63d95a91 1699 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1700 * can be started by calling start_worker() or destroyed using
1701 * destroy_worker().
1702 *
1703 * CONTEXT:
1704 * Might sleep. Does GFP_KERNEL allocations.
1705 *
1706 * RETURNS:
1707 * Pointer to the newly created worker.
1708 */
bc2ae0f5 1709static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1710{
e34cdddb 1711 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1712 struct worker *worker = NULL;
f3421797 1713 int id = -1;
c34056a3 1714
d565ed63 1715 spin_lock_irq(&pool->lock);
bd7bdd43 1716 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1717 spin_unlock_irq(&pool->lock);
bd7bdd43 1718 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1719 goto fail;
d565ed63 1720 spin_lock_irq(&pool->lock);
c34056a3 1721 }
d565ed63 1722 spin_unlock_irq(&pool->lock);
c34056a3
TH
1723
1724 worker = alloc_worker();
1725 if (!worker)
1726 goto fail;
1727
bd7bdd43 1728 worker->pool = pool;
c34056a3
TH
1729 worker->id = id;
1730
ec22ca5e 1731 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1732 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1733 worker, cpu_to_node(pool->cpu),
1734 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1735 else
1736 worker->task = kthread_create(worker_thread, worker,
3270476a 1737 "kworker/u:%d%s", id, pri);
c34056a3
TH
1738 if (IS_ERR(worker->task))
1739 goto fail;
1740
e34cdddb 1741 if (std_worker_pool_pri(pool))
3270476a
TH
1742 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1743
db7bccf4 1744 /*
bc2ae0f5 1745 * Determine CPU binding of the new worker depending on
24647570 1746 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1747 * flag remains stable across this function. See the comments
1748 * above the flag definition for details.
1749 *
1750 * As an unbound worker may later become a regular one if CPU comes
1751 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1752 */
24647570 1753 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1754 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1755 } else {
db7bccf4 1756 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1757 worker->flags |= WORKER_UNBOUND;
f3421797 1758 }
c34056a3
TH
1759
1760 return worker;
1761fail:
1762 if (id >= 0) {
d565ed63 1763 spin_lock_irq(&pool->lock);
bd7bdd43 1764 ida_remove(&pool->worker_ida, id);
d565ed63 1765 spin_unlock_irq(&pool->lock);
c34056a3
TH
1766 }
1767 kfree(worker);
1768 return NULL;
1769}
1770
1771/**
1772 * start_worker - start a newly created worker
1773 * @worker: worker to start
1774 *
706026c2 1775 * Make the pool aware of @worker and start it.
c34056a3
TH
1776 *
1777 * CONTEXT:
d565ed63 1778 * spin_lock_irq(pool->lock).
c34056a3
TH
1779 */
1780static void start_worker(struct worker *worker)
1781{
cb444766 1782 worker->flags |= WORKER_STARTED;
bd7bdd43 1783 worker->pool->nr_workers++;
c8e55f36 1784 worker_enter_idle(worker);
c34056a3
TH
1785 wake_up_process(worker->task);
1786}
1787
1788/**
1789 * destroy_worker - destroy a workqueue worker
1790 * @worker: worker to be destroyed
1791 *
706026c2 1792 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1793 *
1794 * CONTEXT:
d565ed63 1795 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1796 */
1797static void destroy_worker(struct worker *worker)
1798{
bd7bdd43 1799 struct worker_pool *pool = worker->pool;
c34056a3
TH
1800 int id = worker->id;
1801
1802 /* sanity check frenzy */
6183c009
TH
1803 if (WARN_ON(worker->current_work) ||
1804 WARN_ON(!list_empty(&worker->scheduled)))
1805 return;
c34056a3 1806
c8e55f36 1807 if (worker->flags & WORKER_STARTED)
bd7bdd43 1808 pool->nr_workers--;
c8e55f36 1809 if (worker->flags & WORKER_IDLE)
bd7bdd43 1810 pool->nr_idle--;
c8e55f36
TH
1811
1812 list_del_init(&worker->entry);
cb444766 1813 worker->flags |= WORKER_DIE;
c8e55f36 1814
d565ed63 1815 spin_unlock_irq(&pool->lock);
c8e55f36 1816
c34056a3
TH
1817 kthread_stop(worker->task);
1818 kfree(worker);
1819
d565ed63 1820 spin_lock_irq(&pool->lock);
bd7bdd43 1821 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1822}
1823
63d95a91 1824static void idle_worker_timeout(unsigned long __pool)
e22bee78 1825{
63d95a91 1826 struct worker_pool *pool = (void *)__pool;
e22bee78 1827
d565ed63 1828 spin_lock_irq(&pool->lock);
e22bee78 1829
63d95a91 1830 if (too_many_workers(pool)) {
e22bee78
TH
1831 struct worker *worker;
1832 unsigned long expires;
1833
1834 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1835 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1836 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1837
1838 if (time_before(jiffies, expires))
63d95a91 1839 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1840 else {
1841 /* it's been idle for too long, wake up manager */
11ebea50 1842 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1843 wake_up_worker(pool);
d5abe669 1844 }
e22bee78
TH
1845 }
1846
d565ed63 1847 spin_unlock_irq(&pool->lock);
e22bee78 1848}
d5abe669 1849
e22bee78
TH
1850static bool send_mayday(struct work_struct *work)
1851{
112202d9
TH
1852 struct pool_workqueue *pwq = get_work_pwq(work);
1853 struct workqueue_struct *wq = pwq->wq;
f3421797 1854 unsigned int cpu;
e22bee78
TH
1855
1856 if (!(wq->flags & WQ_RESCUER))
1857 return false;
1858
1859 /* mayday mayday mayday */
112202d9 1860 cpu = pwq->pool->cpu;
f3421797
TH
1861 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1862 if (cpu == WORK_CPU_UNBOUND)
1863 cpu = 0;
f2e005aa 1864 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1865 wake_up_process(wq->rescuer->task);
1866 return true;
1867}
1868
706026c2 1869static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1870{
63d95a91 1871 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1872 struct work_struct *work;
1873
d565ed63 1874 spin_lock_irq(&pool->lock);
e22bee78 1875
63d95a91 1876 if (need_to_create_worker(pool)) {
e22bee78
TH
1877 /*
1878 * We've been trying to create a new worker but
1879 * haven't been successful. We might be hitting an
1880 * allocation deadlock. Send distress signals to
1881 * rescuers.
1882 */
63d95a91 1883 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1884 send_mayday(work);
1da177e4 1885 }
e22bee78 1886
d565ed63 1887 spin_unlock_irq(&pool->lock);
e22bee78 1888
63d95a91 1889 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1890}
1891
e22bee78
TH
1892/**
1893 * maybe_create_worker - create a new worker if necessary
63d95a91 1894 * @pool: pool to create a new worker for
e22bee78 1895 *
63d95a91 1896 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1897 * have at least one idle worker on return from this function. If
1898 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1899 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1900 * possible allocation deadlock.
1901 *
1902 * On return, need_to_create_worker() is guaranteed to be false and
1903 * may_start_working() true.
1904 *
1905 * LOCKING:
d565ed63 1906 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1907 * multiple times. Does GFP_KERNEL allocations. Called only from
1908 * manager.
1909 *
1910 * RETURNS:
d565ed63 1911 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1912 * otherwise.
1913 */
63d95a91 1914static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1915__releases(&pool->lock)
1916__acquires(&pool->lock)
1da177e4 1917{
63d95a91 1918 if (!need_to_create_worker(pool))
e22bee78
TH
1919 return false;
1920restart:
d565ed63 1921 spin_unlock_irq(&pool->lock);
9f9c2364 1922
e22bee78 1923 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1924 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1925
1926 while (true) {
1927 struct worker *worker;
1928
bc2ae0f5 1929 worker = create_worker(pool);
e22bee78 1930 if (worker) {
63d95a91 1931 del_timer_sync(&pool->mayday_timer);
d565ed63 1932 spin_lock_irq(&pool->lock);
e22bee78 1933 start_worker(worker);
6183c009
TH
1934 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1935 goto restart;
e22bee78
TH
1936 return true;
1937 }
1938
63d95a91 1939 if (!need_to_create_worker(pool))
e22bee78 1940 break;
1da177e4 1941
e22bee78
TH
1942 __set_current_state(TASK_INTERRUPTIBLE);
1943 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1944
63d95a91 1945 if (!need_to_create_worker(pool))
e22bee78
TH
1946 break;
1947 }
1948
63d95a91 1949 del_timer_sync(&pool->mayday_timer);
d565ed63 1950 spin_lock_irq(&pool->lock);
63d95a91 1951 if (need_to_create_worker(pool))
e22bee78
TH
1952 goto restart;
1953 return true;
1954}
1955
1956/**
1957 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1958 * @pool: pool to destroy workers for
e22bee78 1959 *
63d95a91 1960 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1961 * IDLE_WORKER_TIMEOUT.
1962 *
1963 * LOCKING:
d565ed63 1964 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1965 * multiple times. Called only from manager.
1966 *
1967 * RETURNS:
d565ed63 1968 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1969 * otherwise.
1970 */
63d95a91 1971static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1972{
1973 bool ret = false;
1da177e4 1974
63d95a91 1975 while (too_many_workers(pool)) {
e22bee78
TH
1976 struct worker *worker;
1977 unsigned long expires;
3af24433 1978
63d95a91 1979 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1980 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1981
e22bee78 1982 if (time_before(jiffies, expires)) {
63d95a91 1983 mod_timer(&pool->idle_timer, expires);
3af24433 1984 break;
e22bee78 1985 }
1da177e4 1986
e22bee78
TH
1987 destroy_worker(worker);
1988 ret = true;
1da177e4 1989 }
1e19ffc6 1990
e22bee78 1991 return ret;
1e19ffc6
TH
1992}
1993
73f53c4a 1994/**
e22bee78
TH
1995 * manage_workers - manage worker pool
1996 * @worker: self
73f53c4a 1997 *
706026c2 1998 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1999 * to. At any given time, there can be only zero or one manager per
706026c2 2000 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2001 *
2002 * The caller can safely start processing works on false return. On
2003 * true return, it's guaranteed that need_to_create_worker() is false
2004 * and may_start_working() is true.
73f53c4a
TH
2005 *
2006 * CONTEXT:
d565ed63 2007 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2008 * multiple times. Does GFP_KERNEL allocations.
2009 *
2010 * RETURNS:
d565ed63
TH
2011 * spin_lock_irq(pool->lock) which may be released and regrabbed
2012 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2013 */
e22bee78 2014static bool manage_workers(struct worker *worker)
73f53c4a 2015{
63d95a91 2016 struct worker_pool *pool = worker->pool;
e22bee78 2017 bool ret = false;
73f53c4a 2018
ee378aa4 2019 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2020 return ret;
1e19ffc6 2021
552a37e9 2022 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2023
ee378aa4
LJ
2024 /*
2025 * To simplify both worker management and CPU hotplug, hold off
2026 * management while hotplug is in progress. CPU hotplug path can't
2027 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2028 * lead to idle worker depletion (all become busy thinking someone
2029 * else is managing) which in turn can result in deadlock under
b2eb83d1 2030 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2031 * manager against CPU hotplug.
2032 *
b2eb83d1 2033 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2034 * progress. trylock first without dropping @pool->lock.
ee378aa4 2035 */
b2eb83d1 2036 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2037 spin_unlock_irq(&pool->lock);
b2eb83d1 2038 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2039 /*
2040 * CPU hotplug could have happened while we were waiting
b2eb83d1 2041 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2042 * because manager isn't either on idle or busy list, and
706026c2 2043 * @pool's state and ours could have deviated.
ee378aa4 2044 *
b2eb83d1 2045 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2046 * simply try to bind. It will succeed or fail depending
706026c2 2047 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2048 * %WORKER_UNBOUND accordingly.
2049 */
f36dc67b 2050 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2051 worker->flags &= ~WORKER_UNBOUND;
2052 else
2053 worker->flags |= WORKER_UNBOUND;
73f53c4a 2054
ee378aa4
LJ
2055 ret = true;
2056 }
73f53c4a 2057
11ebea50 2058 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2059
2060 /*
e22bee78
TH
2061 * Destroy and then create so that may_start_working() is true
2062 * on return.
73f53c4a 2063 */
63d95a91
TH
2064 ret |= maybe_destroy_workers(pool);
2065 ret |= maybe_create_worker(pool);
e22bee78 2066
552a37e9 2067 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2068 mutex_unlock(&pool->assoc_mutex);
e22bee78 2069 return ret;
73f53c4a
TH
2070}
2071
a62428c0
TH
2072/**
2073 * process_one_work - process single work
c34056a3 2074 * @worker: self
a62428c0
TH
2075 * @work: work to process
2076 *
2077 * Process @work. This function contains all the logics necessary to
2078 * process a single work including synchronization against and
2079 * interaction with other workers on the same cpu, queueing and
2080 * flushing. As long as context requirement is met, any worker can
2081 * call this function to process a work.
2082 *
2083 * CONTEXT:
d565ed63 2084 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2085 */
c34056a3 2086static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2087__releases(&pool->lock)
2088__acquires(&pool->lock)
a62428c0 2089{
112202d9 2090 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2091 struct worker_pool *pool = worker->pool;
112202d9 2092 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2093 int work_color;
7e11629d 2094 struct worker *collision;
a62428c0
TH
2095#ifdef CONFIG_LOCKDEP
2096 /*
2097 * It is permissible to free the struct work_struct from
2098 * inside the function that is called from it, this we need to
2099 * take into account for lockdep too. To avoid bogus "held
2100 * lock freed" warnings as well as problems when looking into
2101 * work->lockdep_map, make a copy and use that here.
2102 */
4d82a1de
PZ
2103 struct lockdep_map lockdep_map;
2104
2105 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2106#endif
6fec10a1
TH
2107 /*
2108 * Ensure we're on the correct CPU. DISASSOCIATED test is
2109 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2110 * unbound or a disassociated pool.
6fec10a1 2111 */
5f7dabfd 2112 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2113 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2114 raw_smp_processor_id() != pool->cpu);
25511a47 2115
7e11629d
TH
2116 /*
2117 * A single work shouldn't be executed concurrently by
2118 * multiple workers on a single cpu. Check whether anyone is
2119 * already processing the work. If so, defer the work to the
2120 * currently executing one.
2121 */
c9e7cf27 2122 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2123 if (unlikely(collision)) {
2124 move_linked_works(work, &collision->scheduled, NULL);
2125 return;
2126 }
2127
8930caba 2128 /* claim and dequeue */
a62428c0 2129 debug_work_deactivate(work);
c9e7cf27 2130 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2131 worker->current_work = work;
a2c1c57b 2132 worker->current_func = work->func;
112202d9 2133 worker->current_pwq = pwq;
73f53c4a 2134 work_color = get_work_color(work);
7a22ad75 2135
a62428c0
TH
2136 list_del_init(&work->entry);
2137
fb0e7beb
TH
2138 /*
2139 * CPU intensive works don't participate in concurrency
2140 * management. They're the scheduler's responsibility.
2141 */
2142 if (unlikely(cpu_intensive))
2143 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2144
974271c4 2145 /*
d565ed63 2146 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2147 * executed ASAP. Wake up another worker if necessary.
2148 */
63d95a91
TH
2149 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2150 wake_up_worker(pool);
974271c4 2151
8930caba 2152 /*
7c3eed5c 2153 * Record the last pool and clear PENDING which should be the last
d565ed63 2154 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2155 * PENDING and queued state changes happen together while IRQ is
2156 * disabled.
8930caba 2157 */
7c3eed5c 2158 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2159
d565ed63 2160 spin_unlock_irq(&pool->lock);
a62428c0 2161
112202d9 2162 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2163 lock_map_acquire(&lockdep_map);
e36c886a 2164 trace_workqueue_execute_start(work);
a2c1c57b 2165 worker->current_func(work);
e36c886a
AV
2166 /*
2167 * While we must be careful to not use "work" after this, the trace
2168 * point will only record its address.
2169 */
2170 trace_workqueue_execute_end(work);
a62428c0 2171 lock_map_release(&lockdep_map);
112202d9 2172 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2173
2174 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2175 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2176 " last function: %pf\n",
a2c1c57b
TH
2177 current->comm, preempt_count(), task_pid_nr(current),
2178 worker->current_func);
a62428c0
TH
2179 debug_show_held_locks(current);
2180 dump_stack();
2181 }
2182
d565ed63 2183 spin_lock_irq(&pool->lock);
a62428c0 2184
fb0e7beb
TH
2185 /* clear cpu intensive status */
2186 if (unlikely(cpu_intensive))
2187 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2188
a62428c0 2189 /* we're done with it, release */
42f8570f 2190 hash_del(&worker->hentry);
c34056a3 2191 worker->current_work = NULL;
a2c1c57b 2192 worker->current_func = NULL;
112202d9
TH
2193 worker->current_pwq = NULL;
2194 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2195}
2196
affee4b2
TH
2197/**
2198 * process_scheduled_works - process scheduled works
2199 * @worker: self
2200 *
2201 * Process all scheduled works. Please note that the scheduled list
2202 * may change while processing a work, so this function repeatedly
2203 * fetches a work from the top and executes it.
2204 *
2205 * CONTEXT:
d565ed63 2206 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2207 * multiple times.
2208 */
2209static void process_scheduled_works(struct worker *worker)
1da177e4 2210{
affee4b2
TH
2211 while (!list_empty(&worker->scheduled)) {
2212 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2213 struct work_struct, entry);
c34056a3 2214 process_one_work(worker, work);
1da177e4 2215 }
1da177e4
LT
2216}
2217
4690c4ab
TH
2218/**
2219 * worker_thread - the worker thread function
c34056a3 2220 * @__worker: self
4690c4ab 2221 *
706026c2
TH
2222 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2223 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2224 * their specific target workqueue. The only exception is works which
2225 * belong to workqueues with a rescuer which will be explained in
2226 * rescuer_thread().
4690c4ab 2227 */
c34056a3 2228static int worker_thread(void *__worker)
1da177e4 2229{
c34056a3 2230 struct worker *worker = __worker;
bd7bdd43 2231 struct worker_pool *pool = worker->pool;
1da177e4 2232
e22bee78
TH
2233 /* tell the scheduler that this is a workqueue worker */
2234 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2235woke_up:
d565ed63 2236 spin_lock_irq(&pool->lock);
1da177e4 2237
5f7dabfd
LJ
2238 /* we are off idle list if destruction or rebind is requested */
2239 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2240 spin_unlock_irq(&pool->lock);
25511a47 2241
5f7dabfd 2242 /* if DIE is set, destruction is requested */
25511a47
TH
2243 if (worker->flags & WORKER_DIE) {
2244 worker->task->flags &= ~PF_WQ_WORKER;
2245 return 0;
2246 }
2247
5f7dabfd 2248 /* otherwise, rebind */
25511a47
TH
2249 idle_worker_rebind(worker);
2250 goto woke_up;
c8e55f36 2251 }
affee4b2 2252
c8e55f36 2253 worker_leave_idle(worker);
db7bccf4 2254recheck:
e22bee78 2255 /* no more worker necessary? */
63d95a91 2256 if (!need_more_worker(pool))
e22bee78
TH
2257 goto sleep;
2258
2259 /* do we need to manage? */
63d95a91 2260 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2261 goto recheck;
2262
c8e55f36
TH
2263 /*
2264 * ->scheduled list can only be filled while a worker is
2265 * preparing to process a work or actually processing it.
2266 * Make sure nobody diddled with it while I was sleeping.
2267 */
6183c009 2268 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2269
e22bee78
TH
2270 /*
2271 * When control reaches this point, we're guaranteed to have
2272 * at least one idle worker or that someone else has already
2273 * assumed the manager role.
2274 */
2275 worker_clr_flags(worker, WORKER_PREP);
2276
2277 do {
c8e55f36 2278 struct work_struct *work =
bd7bdd43 2279 list_first_entry(&pool->worklist,
c8e55f36
TH
2280 struct work_struct, entry);
2281
2282 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2283 /* optimization path, not strictly necessary */
2284 process_one_work(worker, work);
2285 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2286 process_scheduled_works(worker);
c8e55f36
TH
2287 } else {
2288 move_linked_works(work, &worker->scheduled, NULL);
2289 process_scheduled_works(worker);
affee4b2 2290 }
63d95a91 2291 } while (keep_working(pool));
e22bee78
TH
2292
2293 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2294sleep:
63d95a91 2295 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2296 goto recheck;
d313dd85 2297
c8e55f36 2298 /*
d565ed63
TH
2299 * pool->lock is held and there's no work to process and no need to
2300 * manage, sleep. Workers are woken up only while holding
2301 * pool->lock or from local cpu, so setting the current state
2302 * before releasing pool->lock is enough to prevent losing any
2303 * event.
c8e55f36
TH
2304 */
2305 worker_enter_idle(worker);
2306 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2307 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2308 schedule();
2309 goto woke_up;
1da177e4
LT
2310}
2311
e22bee78
TH
2312/**
2313 * rescuer_thread - the rescuer thread function
111c225a 2314 * @__rescuer: self
e22bee78
TH
2315 *
2316 * Workqueue rescuer thread function. There's one rescuer for each
2317 * workqueue which has WQ_RESCUER set.
2318 *
706026c2 2319 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2320 * worker which uses GFP_KERNEL allocation which has slight chance of
2321 * developing into deadlock if some works currently on the same queue
2322 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2323 * the problem rescuer solves.
2324 *
706026c2
TH
2325 * When such condition is possible, the pool summons rescuers of all
2326 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2327 * those works so that forward progress can be guaranteed.
2328 *
2329 * This should happen rarely.
2330 */
111c225a 2331static int rescuer_thread(void *__rescuer)
e22bee78 2332{
111c225a
TH
2333 struct worker *rescuer = __rescuer;
2334 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2335 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2336 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2337 unsigned int cpu;
2338
2339 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2340
2341 /*
2342 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2343 * doesn't participate in concurrency management.
2344 */
2345 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2346repeat:
2347 set_current_state(TASK_INTERRUPTIBLE);
2348
412d32e6
MG
2349 if (kthread_should_stop()) {
2350 __set_current_state(TASK_RUNNING);
111c225a 2351 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2352 return 0;
412d32e6 2353 }
e22bee78 2354
f3421797
TH
2355 /*
2356 * See whether any cpu is asking for help. Unbounded
2357 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2358 */
f2e005aa 2359 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797 2360 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
112202d9
TH
2361 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2362 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2363 struct work_struct *work, *n;
2364
2365 __set_current_state(TASK_RUNNING);
f2e005aa 2366 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2367
2368 /* migrate to the target cpu if possible */
f36dc67b 2369 worker_maybe_bind_and_lock(pool);
b3104104 2370 rescuer->pool = pool;
e22bee78
TH
2371
2372 /*
2373 * Slurp in all works issued via this workqueue and
2374 * process'em.
2375 */
6183c009 2376 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2377 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2378 if (get_work_pwq(work) == pwq)
e22bee78
TH
2379 move_linked_works(work, scheduled, &n);
2380
2381 process_scheduled_works(rescuer);
7576958a
TH
2382
2383 /*
d565ed63 2384 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2385 * regular worker; otherwise, we end up with 0 concurrency
2386 * and stalling the execution.
2387 */
63d95a91
TH
2388 if (keep_working(pool))
2389 wake_up_worker(pool);
7576958a 2390
b3104104 2391 rescuer->pool = NULL;
d565ed63 2392 spin_unlock_irq(&pool->lock);
e22bee78
TH
2393 }
2394
111c225a
TH
2395 /* rescuers should never participate in concurrency management */
2396 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2397 schedule();
2398 goto repeat;
1da177e4
LT
2399}
2400
fc2e4d70
ON
2401struct wq_barrier {
2402 struct work_struct work;
2403 struct completion done;
2404};
2405
2406static void wq_barrier_func(struct work_struct *work)
2407{
2408 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2409 complete(&barr->done);
2410}
2411
4690c4ab
TH
2412/**
2413 * insert_wq_barrier - insert a barrier work
112202d9 2414 * @pwq: pwq to insert barrier into
4690c4ab 2415 * @barr: wq_barrier to insert
affee4b2
TH
2416 * @target: target work to attach @barr to
2417 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2418 *
affee4b2
TH
2419 * @barr is linked to @target such that @barr is completed only after
2420 * @target finishes execution. Please note that the ordering
2421 * guarantee is observed only with respect to @target and on the local
2422 * cpu.
2423 *
2424 * Currently, a queued barrier can't be canceled. This is because
2425 * try_to_grab_pending() can't determine whether the work to be
2426 * grabbed is at the head of the queue and thus can't clear LINKED
2427 * flag of the previous work while there must be a valid next work
2428 * after a work with LINKED flag set.
2429 *
2430 * Note that when @worker is non-NULL, @target may be modified
112202d9 2431 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2432 *
2433 * CONTEXT:
d565ed63 2434 * spin_lock_irq(pool->lock).
4690c4ab 2435 */
112202d9 2436static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2437 struct wq_barrier *barr,
2438 struct work_struct *target, struct worker *worker)
fc2e4d70 2439{
affee4b2
TH
2440 struct list_head *head;
2441 unsigned int linked = 0;
2442
dc186ad7 2443 /*
d565ed63 2444 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2445 * as we know for sure that this will not trigger any of the
2446 * checks and call back into the fixup functions where we
2447 * might deadlock.
2448 */
ca1cab37 2449 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2450 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2451 init_completion(&barr->done);
83c22520 2452
affee4b2
TH
2453 /*
2454 * If @target is currently being executed, schedule the
2455 * barrier to the worker; otherwise, put it after @target.
2456 */
2457 if (worker)
2458 head = worker->scheduled.next;
2459 else {
2460 unsigned long *bits = work_data_bits(target);
2461
2462 head = target->entry.next;
2463 /* there can already be other linked works, inherit and set */
2464 linked = *bits & WORK_STRUCT_LINKED;
2465 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2466 }
2467
dc186ad7 2468 debug_work_activate(&barr->work);
112202d9 2469 insert_work(pwq, &barr->work, head,
affee4b2 2470 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2471}
2472
73f53c4a 2473/**
112202d9 2474 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2475 * @wq: workqueue being flushed
2476 * @flush_color: new flush color, < 0 for no-op
2477 * @work_color: new work color, < 0 for no-op
2478 *
112202d9 2479 * Prepare pwqs for workqueue flushing.
73f53c4a 2480 *
112202d9
TH
2481 * If @flush_color is non-negative, flush_color on all pwqs should be
2482 * -1. If no pwq has in-flight commands at the specified color, all
2483 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2484 * has in flight commands, its pwq->flush_color is set to
2485 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2486 * wakeup logic is armed and %true is returned.
2487 *
2488 * The caller should have initialized @wq->first_flusher prior to
2489 * calling this function with non-negative @flush_color. If
2490 * @flush_color is negative, no flush color update is done and %false
2491 * is returned.
2492 *
112202d9 2493 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2494 * work_color which is previous to @work_color and all will be
2495 * advanced to @work_color.
2496 *
2497 * CONTEXT:
2498 * mutex_lock(wq->flush_mutex).
2499 *
2500 * RETURNS:
2501 * %true if @flush_color >= 0 and there's something to flush. %false
2502 * otherwise.
2503 */
112202d9 2504static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2505 int flush_color, int work_color)
1da177e4 2506{
73f53c4a
TH
2507 bool wait = false;
2508 unsigned int cpu;
1da177e4 2509
73f53c4a 2510 if (flush_color >= 0) {
6183c009 2511 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2512 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2513 }
2355b70f 2514
112202d9
TH
2515 for_each_pwq_cpu(cpu, wq) {
2516 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2517 struct worker_pool *pool = pwq->pool;
fc2e4d70 2518
d565ed63 2519 spin_lock_irq(&pool->lock);
83c22520 2520
73f53c4a 2521 if (flush_color >= 0) {
6183c009 2522 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2523
112202d9
TH
2524 if (pwq->nr_in_flight[flush_color]) {
2525 pwq->flush_color = flush_color;
2526 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2527 wait = true;
2528 }
2529 }
1da177e4 2530
73f53c4a 2531 if (work_color >= 0) {
6183c009 2532 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2533 pwq->work_color = work_color;
73f53c4a 2534 }
1da177e4 2535
d565ed63 2536 spin_unlock_irq(&pool->lock);
1da177e4 2537 }
2355b70f 2538
112202d9 2539 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2540 complete(&wq->first_flusher->done);
14441960 2541
73f53c4a 2542 return wait;
1da177e4
LT
2543}
2544
0fcb78c2 2545/**
1da177e4 2546 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2547 * @wq: workqueue to flush
1da177e4
LT
2548 *
2549 * Forces execution of the workqueue and blocks until its completion.
2550 * This is typically used in driver shutdown handlers.
2551 *
fc2e4d70
ON
2552 * We sleep until all works which were queued on entry have been handled,
2553 * but we are not livelocked by new incoming ones.
1da177e4 2554 */
7ad5b3a5 2555void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2556{
73f53c4a
TH
2557 struct wq_flusher this_flusher = {
2558 .list = LIST_HEAD_INIT(this_flusher.list),
2559 .flush_color = -1,
2560 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2561 };
2562 int next_color;
1da177e4 2563
3295f0ef
IM
2564 lock_map_acquire(&wq->lockdep_map);
2565 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2566
2567 mutex_lock(&wq->flush_mutex);
2568
2569 /*
2570 * Start-to-wait phase
2571 */
2572 next_color = work_next_color(wq->work_color);
2573
2574 if (next_color != wq->flush_color) {
2575 /*
2576 * Color space is not full. The current work_color
2577 * becomes our flush_color and work_color is advanced
2578 * by one.
2579 */
6183c009 2580 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2581 this_flusher.flush_color = wq->work_color;
2582 wq->work_color = next_color;
2583
2584 if (!wq->first_flusher) {
2585 /* no flush in progress, become the first flusher */
6183c009 2586 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2587
2588 wq->first_flusher = &this_flusher;
2589
112202d9 2590 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2591 wq->work_color)) {
2592 /* nothing to flush, done */
2593 wq->flush_color = next_color;
2594 wq->first_flusher = NULL;
2595 goto out_unlock;
2596 }
2597 } else {
2598 /* wait in queue */
6183c009 2599 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2600 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2601 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2602 }
2603 } else {
2604 /*
2605 * Oops, color space is full, wait on overflow queue.
2606 * The next flush completion will assign us
2607 * flush_color and transfer to flusher_queue.
2608 */
2609 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2610 }
2611
2612 mutex_unlock(&wq->flush_mutex);
2613
2614 wait_for_completion(&this_flusher.done);
2615
2616 /*
2617 * Wake-up-and-cascade phase
2618 *
2619 * First flushers are responsible for cascading flushes and
2620 * handling overflow. Non-first flushers can simply return.
2621 */
2622 if (wq->first_flusher != &this_flusher)
2623 return;
2624
2625 mutex_lock(&wq->flush_mutex);
2626
4ce48b37
TH
2627 /* we might have raced, check again with mutex held */
2628 if (wq->first_flusher != &this_flusher)
2629 goto out_unlock;
2630
73f53c4a
TH
2631 wq->first_flusher = NULL;
2632
6183c009
TH
2633 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2634 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2635
2636 while (true) {
2637 struct wq_flusher *next, *tmp;
2638
2639 /* complete all the flushers sharing the current flush color */
2640 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2641 if (next->flush_color != wq->flush_color)
2642 break;
2643 list_del_init(&next->list);
2644 complete(&next->done);
2645 }
2646
6183c009
TH
2647 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2648 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2649
2650 /* this flush_color is finished, advance by one */
2651 wq->flush_color = work_next_color(wq->flush_color);
2652
2653 /* one color has been freed, handle overflow queue */
2654 if (!list_empty(&wq->flusher_overflow)) {
2655 /*
2656 * Assign the same color to all overflowed
2657 * flushers, advance work_color and append to
2658 * flusher_queue. This is the start-to-wait
2659 * phase for these overflowed flushers.
2660 */
2661 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2662 tmp->flush_color = wq->work_color;
2663
2664 wq->work_color = work_next_color(wq->work_color);
2665
2666 list_splice_tail_init(&wq->flusher_overflow,
2667 &wq->flusher_queue);
112202d9 2668 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2669 }
2670
2671 if (list_empty(&wq->flusher_queue)) {
6183c009 2672 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2673 break;
2674 }
2675
2676 /*
2677 * Need to flush more colors. Make the next flusher
112202d9 2678 * the new first flusher and arm pwqs.
73f53c4a 2679 */
6183c009
TH
2680 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2681 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2682
2683 list_del_init(&next->list);
2684 wq->first_flusher = next;
2685
112202d9 2686 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2687 break;
2688
2689 /*
2690 * Meh... this color is already done, clear first
2691 * flusher and repeat cascading.
2692 */
2693 wq->first_flusher = NULL;
2694 }
2695
2696out_unlock:
2697 mutex_unlock(&wq->flush_mutex);
1da177e4 2698}
ae90dd5d 2699EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2700
9c5a2ba7
TH
2701/**
2702 * drain_workqueue - drain a workqueue
2703 * @wq: workqueue to drain
2704 *
2705 * Wait until the workqueue becomes empty. While draining is in progress,
2706 * only chain queueing is allowed. IOW, only currently pending or running
2707 * work items on @wq can queue further work items on it. @wq is flushed
2708 * repeatedly until it becomes empty. The number of flushing is detemined
2709 * by the depth of chaining and should be relatively short. Whine if it
2710 * takes too long.
2711 */
2712void drain_workqueue(struct workqueue_struct *wq)
2713{
2714 unsigned int flush_cnt = 0;
2715 unsigned int cpu;
2716
2717 /*
2718 * __queue_work() needs to test whether there are drainers, is much
2719 * hotter than drain_workqueue() and already looks at @wq->flags.
2720 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2721 */
e98d5b16 2722 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2723 if (!wq->nr_drainers++)
2724 wq->flags |= WQ_DRAINING;
e98d5b16 2725 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2726reflush:
2727 flush_workqueue(wq);
2728
112202d9
TH
2729 for_each_pwq_cpu(cpu, wq) {
2730 struct pool_workqueue *pwq = get_pwq(cpu, wq);
fa2563e4 2731 bool drained;
9c5a2ba7 2732
112202d9
TH
2733 spin_lock_irq(&pwq->pool->lock);
2734 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2735 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2736
2737 if (drained)
9c5a2ba7
TH
2738 continue;
2739
2740 if (++flush_cnt == 10 ||
2741 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2742 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2743 wq->name, flush_cnt);
9c5a2ba7
TH
2744 goto reflush;
2745 }
2746
e98d5b16 2747 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2748 if (!--wq->nr_drainers)
2749 wq->flags &= ~WQ_DRAINING;
e98d5b16 2750 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2751}
2752EXPORT_SYMBOL_GPL(drain_workqueue);
2753
606a5020 2754static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2755{
affee4b2 2756 struct worker *worker = NULL;
c9e7cf27 2757 struct worker_pool *pool;
112202d9 2758 struct pool_workqueue *pwq;
db700897
ON
2759
2760 might_sleep();
c9e7cf27
TH
2761 pool = get_work_pool(work);
2762 if (!pool)
baf59022 2763 return false;
db700897 2764
d565ed63 2765 spin_lock_irq(&pool->lock);
0b3dae68 2766 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2767 pwq = get_work_pwq(work);
2768 if (pwq) {
2769 if (unlikely(pwq->pool != pool))
4690c4ab 2770 goto already_gone;
606a5020 2771 } else {
c9e7cf27 2772 worker = find_worker_executing_work(pool, work);
affee4b2 2773 if (!worker)
4690c4ab 2774 goto already_gone;
112202d9 2775 pwq = worker->current_pwq;
606a5020 2776 }
db700897 2777
112202d9 2778 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2779 spin_unlock_irq(&pool->lock);
7a22ad75 2780
e159489b
TH
2781 /*
2782 * If @max_active is 1 or rescuer is in use, flushing another work
2783 * item on the same workqueue may lead to deadlock. Make sure the
2784 * flusher is not running on the same workqueue by verifying write
2785 * access.
2786 */
112202d9
TH
2787 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2788 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2789 else
112202d9
TH
2790 lock_map_acquire_read(&pwq->wq->lockdep_map);
2791 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2792
401a8d04 2793 return true;
4690c4ab 2794already_gone:
d565ed63 2795 spin_unlock_irq(&pool->lock);
401a8d04 2796 return false;
db700897 2797}
baf59022
TH
2798
2799/**
2800 * flush_work - wait for a work to finish executing the last queueing instance
2801 * @work: the work to flush
2802 *
606a5020
TH
2803 * Wait until @work has finished execution. @work is guaranteed to be idle
2804 * on return if it hasn't been requeued since flush started.
baf59022
TH
2805 *
2806 * RETURNS:
2807 * %true if flush_work() waited for the work to finish execution,
2808 * %false if it was already idle.
2809 */
2810bool flush_work(struct work_struct *work)
2811{
2812 struct wq_barrier barr;
2813
0976dfc1
SB
2814 lock_map_acquire(&work->lockdep_map);
2815 lock_map_release(&work->lockdep_map);
2816
606a5020 2817 if (start_flush_work(work, &barr)) {
401a8d04
TH
2818 wait_for_completion(&barr.done);
2819 destroy_work_on_stack(&barr.work);
2820 return true;
606a5020 2821 } else {
401a8d04 2822 return false;
6e84d644 2823 }
6e84d644 2824}
606a5020 2825EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2826
36e227d2 2827static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2828{
bbb68dfa 2829 unsigned long flags;
1f1f642e
ON
2830 int ret;
2831
2832 do {
bbb68dfa
TH
2833 ret = try_to_grab_pending(work, is_dwork, &flags);
2834 /*
2835 * If someone else is canceling, wait for the same event it
2836 * would be waiting for before retrying.
2837 */
2838 if (unlikely(ret == -ENOENT))
606a5020 2839 flush_work(work);
1f1f642e
ON
2840 } while (unlikely(ret < 0));
2841
bbb68dfa
TH
2842 /* tell other tasks trying to grab @work to back off */
2843 mark_work_canceling(work);
2844 local_irq_restore(flags);
2845
606a5020 2846 flush_work(work);
7a22ad75 2847 clear_work_data(work);
1f1f642e
ON
2848 return ret;
2849}
2850
6e84d644 2851/**
401a8d04
TH
2852 * cancel_work_sync - cancel a work and wait for it to finish
2853 * @work: the work to cancel
6e84d644 2854 *
401a8d04
TH
2855 * Cancel @work and wait for its execution to finish. This function
2856 * can be used even if the work re-queues itself or migrates to
2857 * another workqueue. On return from this function, @work is
2858 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2859 *
401a8d04
TH
2860 * cancel_work_sync(&delayed_work->work) must not be used for
2861 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2862 *
401a8d04 2863 * The caller must ensure that the workqueue on which @work was last
6e84d644 2864 * queued can't be destroyed before this function returns.
401a8d04
TH
2865 *
2866 * RETURNS:
2867 * %true if @work was pending, %false otherwise.
6e84d644 2868 */
401a8d04 2869bool cancel_work_sync(struct work_struct *work)
6e84d644 2870{
36e227d2 2871 return __cancel_work_timer(work, false);
b89deed3 2872}
28e53bdd 2873EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2874
6e84d644 2875/**
401a8d04
TH
2876 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2877 * @dwork: the delayed work to flush
6e84d644 2878 *
401a8d04
TH
2879 * Delayed timer is cancelled and the pending work is queued for
2880 * immediate execution. Like flush_work(), this function only
2881 * considers the last queueing instance of @dwork.
1f1f642e 2882 *
401a8d04
TH
2883 * RETURNS:
2884 * %true if flush_work() waited for the work to finish execution,
2885 * %false if it was already idle.
6e84d644 2886 */
401a8d04
TH
2887bool flush_delayed_work(struct delayed_work *dwork)
2888{
8930caba 2889 local_irq_disable();
401a8d04 2890 if (del_timer_sync(&dwork->timer))
60c057bc 2891 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2892 local_irq_enable();
401a8d04
TH
2893 return flush_work(&dwork->work);
2894}
2895EXPORT_SYMBOL(flush_delayed_work);
2896
09383498 2897/**
57b30ae7
TH
2898 * cancel_delayed_work - cancel a delayed work
2899 * @dwork: delayed_work to cancel
09383498 2900 *
57b30ae7
TH
2901 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2902 * and canceled; %false if wasn't pending. Note that the work callback
2903 * function may still be running on return, unless it returns %true and the
2904 * work doesn't re-arm itself. Explicitly flush or use
2905 * cancel_delayed_work_sync() to wait on it.
09383498 2906 *
57b30ae7 2907 * This function is safe to call from any context including IRQ handler.
09383498 2908 */
57b30ae7 2909bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2910{
57b30ae7
TH
2911 unsigned long flags;
2912 int ret;
2913
2914 do {
2915 ret = try_to_grab_pending(&dwork->work, true, &flags);
2916 } while (unlikely(ret == -EAGAIN));
2917
2918 if (unlikely(ret < 0))
2919 return false;
2920
7c3eed5c
TH
2921 set_work_pool_and_clear_pending(&dwork->work,
2922 get_work_pool_id(&dwork->work));
57b30ae7 2923 local_irq_restore(flags);
c0158ca6 2924 return ret;
09383498 2925}
57b30ae7 2926EXPORT_SYMBOL(cancel_delayed_work);
09383498 2927
401a8d04
TH
2928/**
2929 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2930 * @dwork: the delayed work cancel
2931 *
2932 * This is cancel_work_sync() for delayed works.
2933 *
2934 * RETURNS:
2935 * %true if @dwork was pending, %false otherwise.
2936 */
2937bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2938{
36e227d2 2939 return __cancel_work_timer(&dwork->work, true);
6e84d644 2940}
f5a421a4 2941EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2942
0fcb78c2 2943/**
c1a220e7
ZR
2944 * schedule_work_on - put work task on a specific cpu
2945 * @cpu: cpu to put the work task on
2946 * @work: job to be done
2947 *
2948 * This puts a job on a specific cpu
2949 */
d4283e93 2950bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2951{
d320c038 2952 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2953}
2954EXPORT_SYMBOL(schedule_work_on);
2955
0fcb78c2 2956/**
0fcb78c2
REB
2957 * schedule_work - put work task in global workqueue
2958 * @work: job to be done
0fcb78c2 2959 *
d4283e93
TH
2960 * Returns %false if @work was already on the kernel-global workqueue and
2961 * %true otherwise.
5b0f437d
BVA
2962 *
2963 * This puts a job in the kernel-global workqueue if it was not already
2964 * queued and leaves it in the same position on the kernel-global
2965 * workqueue otherwise.
0fcb78c2 2966 */
d4283e93 2967bool schedule_work(struct work_struct *work)
1da177e4 2968{
d320c038 2969 return queue_work(system_wq, work);
1da177e4 2970}
ae90dd5d 2971EXPORT_SYMBOL(schedule_work);
1da177e4 2972
0fcb78c2
REB
2973/**
2974 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2975 * @cpu: cpu to use
52bad64d 2976 * @dwork: job to be done
0fcb78c2
REB
2977 * @delay: number of jiffies to wait
2978 *
2979 * After waiting for a given time this puts a job in the kernel-global
2980 * workqueue on the specified CPU.
2981 */
d4283e93
TH
2982bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2983 unsigned long delay)
1da177e4 2984{
d320c038 2985 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2986}
ae90dd5d 2987EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2988
0fcb78c2
REB
2989/**
2990 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2991 * @dwork: job to be done
2992 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2993 *
2994 * After waiting for a given time this puts a job in the kernel-global
2995 * workqueue.
2996 */
d4283e93 2997bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2998{
d320c038 2999 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3000}
ae90dd5d 3001EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3002
b6136773 3003/**
31ddd871 3004 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3005 * @func: the function to call
b6136773 3006 *
31ddd871
TH
3007 * schedule_on_each_cpu() executes @func on each online CPU using the
3008 * system workqueue and blocks until all CPUs have completed.
b6136773 3009 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3010 *
3011 * RETURNS:
3012 * 0 on success, -errno on failure.
b6136773 3013 */
65f27f38 3014int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3015{
3016 int cpu;
38f51568 3017 struct work_struct __percpu *works;
15316ba8 3018
b6136773
AM
3019 works = alloc_percpu(struct work_struct);
3020 if (!works)
15316ba8 3021 return -ENOMEM;
b6136773 3022
93981800
TH
3023 get_online_cpus();
3024
15316ba8 3025 for_each_online_cpu(cpu) {
9bfb1839
IM
3026 struct work_struct *work = per_cpu_ptr(works, cpu);
3027
3028 INIT_WORK(work, func);
b71ab8c2 3029 schedule_work_on(cpu, work);
65a64464 3030 }
93981800
TH
3031
3032 for_each_online_cpu(cpu)
3033 flush_work(per_cpu_ptr(works, cpu));
3034
95402b38 3035 put_online_cpus();
b6136773 3036 free_percpu(works);
15316ba8
CL
3037 return 0;
3038}
3039
eef6a7d5
AS
3040/**
3041 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3042 *
3043 * Forces execution of the kernel-global workqueue and blocks until its
3044 * completion.
3045 *
3046 * Think twice before calling this function! It's very easy to get into
3047 * trouble if you don't take great care. Either of the following situations
3048 * will lead to deadlock:
3049 *
3050 * One of the work items currently on the workqueue needs to acquire
3051 * a lock held by your code or its caller.
3052 *
3053 * Your code is running in the context of a work routine.
3054 *
3055 * They will be detected by lockdep when they occur, but the first might not
3056 * occur very often. It depends on what work items are on the workqueue and
3057 * what locks they need, which you have no control over.
3058 *
3059 * In most situations flushing the entire workqueue is overkill; you merely
3060 * need to know that a particular work item isn't queued and isn't running.
3061 * In such cases you should use cancel_delayed_work_sync() or
3062 * cancel_work_sync() instead.
3063 */
1da177e4
LT
3064void flush_scheduled_work(void)
3065{
d320c038 3066 flush_workqueue(system_wq);
1da177e4 3067}
ae90dd5d 3068EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3069
1fa44eca
JB
3070/**
3071 * execute_in_process_context - reliably execute the routine with user context
3072 * @fn: the function to execute
1fa44eca
JB
3073 * @ew: guaranteed storage for the execute work structure (must
3074 * be available when the work executes)
3075 *
3076 * Executes the function immediately if process context is available,
3077 * otherwise schedules the function for delayed execution.
3078 *
3079 * Returns: 0 - function was executed
3080 * 1 - function was scheduled for execution
3081 */
65f27f38 3082int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3083{
3084 if (!in_interrupt()) {
65f27f38 3085 fn(&ew->work);
1fa44eca
JB
3086 return 0;
3087 }
3088
65f27f38 3089 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3090 schedule_work(&ew->work);
3091
3092 return 1;
3093}
3094EXPORT_SYMBOL_GPL(execute_in_process_context);
3095
1da177e4
LT
3096int keventd_up(void)
3097{
d320c038 3098 return system_wq != NULL;
1da177e4
LT
3099}
3100
30cdf249 3101static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3102{
30cdf249
TH
3103 int cpu;
3104
3105 if (!(wq->flags & WQ_UNBOUND)) {
e904e6c2 3106 wq->pool_wq.pcpu = alloc_percpu(struct pool_workqueue);
30cdf249
TH
3107 if (!wq->pool_wq.pcpu)
3108 return -ENOMEM;
3109
3110 for_each_possible_cpu(cpu) {
3111 struct pool_workqueue *pwq = get_pwq(cpu, wq);
f3421797 3112
30cdf249
TH
3113 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3114 }
3115 } else {
3116 struct pool_workqueue *pwq;
3117
3118 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3119 if (!pwq)
3120 return -ENOMEM;
3121
3122 wq->pool_wq.single = pwq;
3123 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3124 }
3125
3126 return 0;
0f900049
TH
3127}
3128
112202d9 3129static void free_pwqs(struct workqueue_struct *wq)
0f900049 3130{
e06ffa1e 3131 if (!(wq->flags & WQ_UNBOUND))
112202d9 3132 free_percpu(wq->pool_wq.pcpu);
e904e6c2
TH
3133 else
3134 kmem_cache_free(pwq_cache, wq->pool_wq.single);
0f900049
TH
3135}
3136
f3421797
TH
3137static int wq_clamp_max_active(int max_active, unsigned int flags,
3138 const char *name)
b71ab8c2 3139{
f3421797
TH
3140 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3141
3142 if (max_active < 1 || max_active > lim)
044c782c
VI
3143 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3144 max_active, name, 1, lim);
b71ab8c2 3145
f3421797 3146 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3147}
3148
b196be89 3149struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3150 unsigned int flags,
3151 int max_active,
3152 struct lock_class_key *key,
b196be89 3153 const char *lock_name, ...)
1da177e4 3154{
b196be89 3155 va_list args, args1;
1da177e4 3156 struct workqueue_struct *wq;
c34056a3 3157 unsigned int cpu;
b196be89
TH
3158 size_t namelen;
3159
3160 /* determine namelen, allocate wq and format name */
3161 va_start(args, lock_name);
3162 va_copy(args1, args);
3163 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3164
3165 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3166 if (!wq)
3167 goto err;
3168
3169 vsnprintf(wq->name, namelen, fmt, args1);
3170 va_end(args);
3171 va_end(args1);
1da177e4 3172
6370a6ad
TH
3173 /*
3174 * Workqueues which may be used during memory reclaim should
3175 * have a rescuer to guarantee forward progress.
3176 */
3177 if (flags & WQ_MEM_RECLAIM)
3178 flags |= WQ_RESCUER;
3179
d320c038 3180 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3181 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3182
b196be89 3183 /* init wq */
97e37d7b 3184 wq->flags = flags;
a0a1a5fd 3185 wq->saved_max_active = max_active;
73f53c4a 3186 mutex_init(&wq->flush_mutex);
112202d9 3187 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3188 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3189 INIT_LIST_HEAD(&wq->flusher_queue);
3190 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3191
eb13ba87 3192 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3193 INIT_LIST_HEAD(&wq->list);
3af24433 3194
30cdf249 3195 if (alloc_and_link_pwqs(wq) < 0)
bdbc5dd7
TH
3196 goto err;
3197
112202d9
TH
3198 for_each_pwq_cpu(cpu, wq) {
3199 struct pool_workqueue *pwq = get_pwq(cpu, wq);
1537663f 3200
112202d9
TH
3201 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3202 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3203 pwq->wq = wq;
3204 pwq->flush_color = -1;
3205 pwq->max_active = max_active;
3206 INIT_LIST_HEAD(&pwq->delayed_works);
e22bee78 3207 }
1537663f 3208
e22bee78
TH
3209 if (flags & WQ_RESCUER) {
3210 struct worker *rescuer;
3211
f2e005aa 3212 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3213 goto err;
3214
3215 wq->rescuer = rescuer = alloc_worker();
3216 if (!rescuer)
3217 goto err;
3218
111c225a
TH
3219 rescuer->rescue_wq = wq;
3220 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3221 wq->name);
e22bee78
TH
3222 if (IS_ERR(rescuer->task))
3223 goto err;
3224
e22bee78
TH
3225 rescuer->task->flags |= PF_THREAD_BOUND;
3226 wake_up_process(rescuer->task);
3af24433
ON
3227 }
3228
a0a1a5fd
TH
3229 /*
3230 * workqueue_lock protects global freeze state and workqueues
3231 * list. Grab it, set max_active accordingly and add the new
3232 * workqueue to workqueues list.
3233 */
e98d5b16 3234 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3235
58a69cb4 3236 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
112202d9
TH
3237 for_each_pwq_cpu(cpu, wq)
3238 get_pwq(cpu, wq)->max_active = 0;
a0a1a5fd 3239
1537663f 3240 list_add(&wq->list, &workqueues);
a0a1a5fd 3241
e98d5b16 3242 spin_unlock_irq(&workqueue_lock);
1537663f 3243
3af24433 3244 return wq;
4690c4ab
TH
3245err:
3246 if (wq) {
112202d9 3247 free_pwqs(wq);
f2e005aa 3248 free_mayday_mask(wq->mayday_mask);
e22bee78 3249 kfree(wq->rescuer);
4690c4ab
TH
3250 kfree(wq);
3251 }
3252 return NULL;
3af24433 3253}
d320c038 3254EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3255
3af24433
ON
3256/**
3257 * destroy_workqueue - safely terminate a workqueue
3258 * @wq: target workqueue
3259 *
3260 * Safely destroy a workqueue. All work currently pending will be done first.
3261 */
3262void destroy_workqueue(struct workqueue_struct *wq)
3263{
c8e55f36 3264 unsigned int cpu;
3af24433 3265
9c5a2ba7
TH
3266 /* drain it before proceeding with destruction */
3267 drain_workqueue(wq);
c8efcc25 3268
6183c009
TH
3269 /* sanity checks */
3270 for_each_pwq_cpu(cpu, wq) {
3271 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3272 int i;
3273
3274 for (i = 0; i < WORK_NR_COLORS; i++)
3275 if (WARN_ON(pwq->nr_in_flight[i]))
3276 return;
3277 if (WARN_ON(pwq->nr_active) ||
3278 WARN_ON(!list_empty(&pwq->delayed_works)))
3279 return;
3280 }
3281
a0a1a5fd
TH
3282 /*
3283 * wq list is used to freeze wq, remove from list after
3284 * flushing is complete in case freeze races us.
3285 */
e98d5b16 3286 spin_lock_irq(&workqueue_lock);
b1f4ec17 3287 list_del(&wq->list);
e98d5b16 3288 spin_unlock_irq(&workqueue_lock);
3af24433 3289
e22bee78
TH
3290 if (wq->flags & WQ_RESCUER) {
3291 kthread_stop(wq->rescuer->task);
f2e005aa 3292 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3293 kfree(wq->rescuer);
e22bee78
TH
3294 }
3295
112202d9 3296 free_pwqs(wq);
3af24433
ON
3297 kfree(wq);
3298}
3299EXPORT_SYMBOL_GPL(destroy_workqueue);
3300
9f4bd4cd 3301/**
112202d9
TH
3302 * pwq_set_max_active - adjust max_active of a pwq
3303 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3304 * @max_active: new max_active value.
3305 *
112202d9 3306 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3307 * increased.
3308 *
3309 * CONTEXT:
d565ed63 3310 * spin_lock_irq(pool->lock).
9f4bd4cd 3311 */
112202d9 3312static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3313{
112202d9 3314 pwq->max_active = max_active;
9f4bd4cd 3315
112202d9
TH
3316 while (!list_empty(&pwq->delayed_works) &&
3317 pwq->nr_active < pwq->max_active)
3318 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3319}
3320
dcd989cb
TH
3321/**
3322 * workqueue_set_max_active - adjust max_active of a workqueue
3323 * @wq: target workqueue
3324 * @max_active: new max_active value.
3325 *
3326 * Set max_active of @wq to @max_active.
3327 *
3328 * CONTEXT:
3329 * Don't call from IRQ context.
3330 */
3331void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3332{
3333 unsigned int cpu;
3334
f3421797 3335 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3336
e98d5b16 3337 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3338
3339 wq->saved_max_active = max_active;
3340
112202d9
TH
3341 for_each_pwq_cpu(cpu, wq) {
3342 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3343 struct worker_pool *pool = pwq->pool;
dcd989cb 3344
e98d5b16 3345 spin_lock(&pool->lock);
dcd989cb 3346
58a69cb4 3347 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3348 !(pool->flags & POOL_FREEZING))
112202d9 3349 pwq_set_max_active(pwq, max_active);
9bfb1839 3350
e98d5b16 3351 spin_unlock(&pool->lock);
65a64464 3352 }
93981800 3353
e98d5b16 3354 spin_unlock_irq(&workqueue_lock);
15316ba8 3355}
dcd989cb 3356EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3357
eef6a7d5 3358/**
dcd989cb
TH
3359 * workqueue_congested - test whether a workqueue is congested
3360 * @cpu: CPU in question
3361 * @wq: target workqueue
eef6a7d5 3362 *
dcd989cb
TH
3363 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3364 * no synchronization around this function and the test result is
3365 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3366 *
dcd989cb
TH
3367 * RETURNS:
3368 * %true if congested, %false otherwise.
eef6a7d5 3369 */
dcd989cb 3370bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3371{
112202d9 3372 struct pool_workqueue *pwq = get_pwq(cpu, wq);
dcd989cb 3373
112202d9 3374 return !list_empty(&pwq->delayed_works);
1da177e4 3375}
dcd989cb 3376EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3377
dcd989cb
TH
3378/**
3379 * work_busy - test whether a work is currently pending or running
3380 * @work: the work to be tested
3381 *
3382 * Test whether @work is currently pending or running. There is no
3383 * synchronization around this function and the test result is
3384 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3385 *
3386 * RETURNS:
3387 * OR'd bitmask of WORK_BUSY_* bits.
3388 */
3389unsigned int work_busy(struct work_struct *work)
1da177e4 3390{
c9e7cf27 3391 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3392 unsigned long flags;
3393 unsigned int ret = 0;
1da177e4 3394
dcd989cb
TH
3395 if (work_pending(work))
3396 ret |= WORK_BUSY_PENDING;
1da177e4 3397
038366c5
LJ
3398 if (pool) {
3399 spin_lock_irqsave(&pool->lock, flags);
3400 if (find_worker_executing_work(pool, work))
3401 ret |= WORK_BUSY_RUNNING;
3402 spin_unlock_irqrestore(&pool->lock, flags);
3403 }
1da177e4 3404
dcd989cb 3405 return ret;
1da177e4 3406}
dcd989cb 3407EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3408
db7bccf4
TH
3409/*
3410 * CPU hotplug.
3411 *
e22bee78 3412 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3413 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3414 * pool which make migrating pending and scheduled works very
e22bee78 3415 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3416 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3417 * blocked draining impractical.
3418 *
24647570 3419 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3420 * running as an unbound one and allowing it to be reattached later if the
3421 * cpu comes back online.
db7bccf4 3422 */
1da177e4 3423
706026c2 3424static void wq_unbind_fn(struct work_struct *work)
3af24433 3425{
38db41d9 3426 int cpu = smp_processor_id();
4ce62e9e 3427 struct worker_pool *pool;
db7bccf4 3428 struct worker *worker;
db7bccf4 3429 int i;
3af24433 3430
38db41d9 3431 for_each_std_worker_pool(pool, cpu) {
6183c009 3432 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3433
94cf58bb
TH
3434 mutex_lock(&pool->assoc_mutex);
3435 spin_lock_irq(&pool->lock);
3af24433 3436
94cf58bb
TH
3437 /*
3438 * We've claimed all manager positions. Make all workers
3439 * unbound and set DISASSOCIATED. Before this, all workers
3440 * except for the ones which are still executing works from
3441 * before the last CPU down must be on the cpu. After
3442 * this, they may become diasporas.
3443 */
4ce62e9e 3444 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3445 worker->flags |= WORKER_UNBOUND;
3af24433 3446
b67bfe0d 3447 for_each_busy_worker(worker, i, pool)
c9e7cf27 3448 worker->flags |= WORKER_UNBOUND;
06ba38a9 3449
24647570 3450 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3451
94cf58bb
TH
3452 spin_unlock_irq(&pool->lock);
3453 mutex_unlock(&pool->assoc_mutex);
3454 }
628c78e7 3455
e22bee78 3456 /*
403c821d 3457 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3458 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3459 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3460 */
e22bee78 3461 schedule();
06ba38a9 3462
e22bee78 3463 /*
628c78e7
TH
3464 * Sched callbacks are disabled now. Zap nr_running. After this,
3465 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3466 * are always true as long as the worklist is not empty. Pools on
3467 * @cpu now behave as unbound (in terms of concurrency management)
3468 * pools which are served by workers tied to the CPU.
628c78e7
TH
3469 *
3470 * On return from this function, the current worker would trigger
3471 * unbound chain execution of pending work items if other workers
3472 * didn't already.
e22bee78 3473 */
38db41d9 3474 for_each_std_worker_pool(pool, cpu)
e19e397a 3475 atomic_set(&pool->nr_running, 0);
3af24433 3476}
3af24433 3477
8db25e78
TH
3478/*
3479 * Workqueues should be brought up before normal priority CPU notifiers.
3480 * This will be registered high priority CPU notifier.
3481 */
9fdf9b73 3482static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3483 unsigned long action,
3484 void *hcpu)
3af24433
ON
3485{
3486 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3487 struct worker_pool *pool;
3ce63377 3488
8db25e78 3489 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3490 case CPU_UP_PREPARE:
38db41d9 3491 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3492 struct worker *worker;
3493
3494 if (pool->nr_workers)
3495 continue;
3496
3497 worker = create_worker(pool);
3498 if (!worker)
3499 return NOTIFY_BAD;
3500
d565ed63 3501 spin_lock_irq(&pool->lock);
3ce63377 3502 start_worker(worker);
d565ed63 3503 spin_unlock_irq(&pool->lock);
3af24433 3504 }
8db25e78 3505 break;
3af24433 3506
db7bccf4
TH
3507 case CPU_DOWN_FAILED:
3508 case CPU_ONLINE:
38db41d9 3509 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3510 mutex_lock(&pool->assoc_mutex);
3511 spin_lock_irq(&pool->lock);
3512
24647570 3513 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3514 rebind_workers(pool);
3515
3516 spin_unlock_irq(&pool->lock);
3517 mutex_unlock(&pool->assoc_mutex);
3518 }
db7bccf4 3519 break;
00dfcaf7 3520 }
65758202
TH
3521 return NOTIFY_OK;
3522}
3523
3524/*
3525 * Workqueues should be brought down after normal priority CPU notifiers.
3526 * This will be registered as low priority CPU notifier.
3527 */
9fdf9b73 3528static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3529 unsigned long action,
3530 void *hcpu)
3531{
8db25e78
TH
3532 unsigned int cpu = (unsigned long)hcpu;
3533 struct work_struct unbind_work;
3534
65758202
TH
3535 switch (action & ~CPU_TASKS_FROZEN) {
3536 case CPU_DOWN_PREPARE:
8db25e78 3537 /* unbinding should happen on the local CPU */
706026c2 3538 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3539 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3540 flush_work(&unbind_work);
3541 break;
65758202
TH
3542 }
3543 return NOTIFY_OK;
3544}
3545
2d3854a3 3546#ifdef CONFIG_SMP
8ccad40d 3547
2d3854a3 3548struct work_for_cpu {
ed48ece2 3549 struct work_struct work;
2d3854a3
RR
3550 long (*fn)(void *);
3551 void *arg;
3552 long ret;
3553};
3554
ed48ece2 3555static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3556{
ed48ece2
TH
3557 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3558
2d3854a3
RR
3559 wfc->ret = wfc->fn(wfc->arg);
3560}
3561
3562/**
3563 * work_on_cpu - run a function in user context on a particular cpu
3564 * @cpu: the cpu to run on
3565 * @fn: the function to run
3566 * @arg: the function arg
3567 *
31ad9081
RR
3568 * This will return the value @fn returns.
3569 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3570 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3571 */
3572long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3573{
ed48ece2 3574 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3575
ed48ece2
TH
3576 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3577 schedule_work_on(cpu, &wfc.work);
3578 flush_work(&wfc.work);
2d3854a3
RR
3579 return wfc.ret;
3580}
3581EXPORT_SYMBOL_GPL(work_on_cpu);
3582#endif /* CONFIG_SMP */
3583
a0a1a5fd
TH
3584#ifdef CONFIG_FREEZER
3585
3586/**
3587 * freeze_workqueues_begin - begin freezing workqueues
3588 *
58a69cb4
TH
3589 * Start freezing workqueues. After this function returns, all freezable
3590 * workqueues will queue new works to their frozen_works list instead of
706026c2 3591 * pool->worklist.
a0a1a5fd
TH
3592 *
3593 * CONTEXT:
d565ed63 3594 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3595 */
3596void freeze_workqueues_begin(void)
3597{
a0a1a5fd
TH
3598 unsigned int cpu;
3599
e98d5b16 3600 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3601
6183c009 3602 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
3603 workqueue_freezing = true;
3604
706026c2 3605 for_each_wq_cpu(cpu) {
35b6bb63 3606 struct worker_pool *pool;
bdbc5dd7 3607 struct workqueue_struct *wq;
8b03ae3c 3608
38db41d9 3609 for_each_std_worker_pool(pool, cpu) {
e98d5b16 3610 spin_lock(&pool->lock);
d565ed63 3611
35b6bb63
TH
3612 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3613 pool->flags |= POOL_FREEZING;
db7bccf4 3614
a1056305 3615 list_for_each_entry(wq, &workqueues, list) {
112202d9 3616 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3617
112202d9 3618 if (pwq && pwq->pool == pool &&
a1056305 3619 (wq->flags & WQ_FREEZABLE))
112202d9 3620 pwq->max_active = 0;
a1056305 3621 }
8b03ae3c 3622
e98d5b16 3623 spin_unlock(&pool->lock);
a1056305 3624 }
a0a1a5fd
TH
3625 }
3626
e98d5b16 3627 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3628}
3629
3630/**
58a69cb4 3631 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3632 *
3633 * Check whether freezing is complete. This function must be called
3634 * between freeze_workqueues_begin() and thaw_workqueues().
3635 *
3636 * CONTEXT:
3637 * Grabs and releases workqueue_lock.
3638 *
3639 * RETURNS:
58a69cb4
TH
3640 * %true if some freezable workqueues are still busy. %false if freezing
3641 * is complete.
a0a1a5fd
TH
3642 */
3643bool freeze_workqueues_busy(void)
3644{
a0a1a5fd
TH
3645 unsigned int cpu;
3646 bool busy = false;
3647
e98d5b16 3648 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3649
6183c009 3650 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 3651
706026c2 3652 for_each_wq_cpu(cpu) {
bdbc5dd7 3653 struct workqueue_struct *wq;
a0a1a5fd
TH
3654 /*
3655 * nr_active is monotonically decreasing. It's safe
3656 * to peek without lock.
3657 */
3658 list_for_each_entry(wq, &workqueues, list) {
112202d9 3659 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3660
112202d9 3661 if (!pwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3662 continue;
3663
6183c009 3664 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 3665 if (pwq->nr_active) {
a0a1a5fd
TH
3666 busy = true;
3667 goto out_unlock;
3668 }
3669 }
3670 }
3671out_unlock:
e98d5b16 3672 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3673 return busy;
3674}
3675
3676/**
3677 * thaw_workqueues - thaw workqueues
3678 *
3679 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3680 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3681 *
3682 * CONTEXT:
d565ed63 3683 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3684 */
3685void thaw_workqueues(void)
3686{
a0a1a5fd
TH
3687 unsigned int cpu;
3688
e98d5b16 3689 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
3690
3691 if (!workqueue_freezing)
3692 goto out_unlock;
3693
706026c2 3694 for_each_wq_cpu(cpu) {
4ce62e9e 3695 struct worker_pool *pool;
bdbc5dd7 3696 struct workqueue_struct *wq;
8b03ae3c 3697
38db41d9 3698 for_each_std_worker_pool(pool, cpu) {
e98d5b16 3699 spin_lock(&pool->lock);
d565ed63 3700
35b6bb63
TH
3701 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3702 pool->flags &= ~POOL_FREEZING;
db7bccf4 3703
a1056305 3704 list_for_each_entry(wq, &workqueues, list) {
112202d9 3705 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3706
112202d9 3707 if (!pwq || pwq->pool != pool ||
a1056305
TH
3708 !(wq->flags & WQ_FREEZABLE))
3709 continue;
a0a1a5fd 3710
a1056305 3711 /* restore max_active and repopulate worklist */
112202d9 3712 pwq_set_max_active(pwq, wq->saved_max_active);
a1056305 3713 }
8b03ae3c 3714
4ce62e9e 3715 wake_up_worker(pool);
a1056305 3716
e98d5b16 3717 spin_unlock(&pool->lock);
d565ed63 3718 }
a0a1a5fd
TH
3719 }
3720
3721 workqueue_freezing = false;
3722out_unlock:
e98d5b16 3723 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3724}
3725#endif /* CONFIG_FREEZER */
3726
6ee0578b 3727static int __init init_workqueues(void)
1da177e4 3728{
c34056a3
TH
3729 unsigned int cpu;
3730
7c3eed5c
TH
3731 /* make sure we have enough bits for OFFQ pool ID */
3732 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3733 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3734
e904e6c2
TH
3735 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
3736
3737 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
3738
65758202 3739 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3740 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3741
706026c2
TH
3742 /* initialize CPU pools */
3743 for_each_wq_cpu(cpu) {
4ce62e9e 3744 struct worker_pool *pool;
8b03ae3c 3745
38db41d9 3746 for_each_std_worker_pool(pool, cpu) {
d565ed63 3747 spin_lock_init(&pool->lock);
ec22ca5e 3748 pool->cpu = cpu;
24647570 3749 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3750 INIT_LIST_HEAD(&pool->worklist);
3751 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3752 hash_init(pool->busy_hash);
e7577c50 3753
4ce62e9e
TH
3754 init_timer_deferrable(&pool->idle_timer);
3755 pool->idle_timer.function = idle_worker_timeout;
3756 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3757
706026c2 3758 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3759 (unsigned long)pool);
3760
b2eb83d1 3761 mutex_init(&pool->assoc_mutex);
4ce62e9e 3762 ida_init(&pool->worker_ida);
9daf9e67
TH
3763
3764 /* alloc pool ID */
3765 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3766 }
8b03ae3c
TH
3767 }
3768
e22bee78 3769 /* create the initial worker */
706026c2 3770 for_each_online_wq_cpu(cpu) {
4ce62e9e 3771 struct worker_pool *pool;
e22bee78 3772
38db41d9 3773 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3774 struct worker *worker;
3775
24647570
TH
3776 if (cpu != WORK_CPU_UNBOUND)
3777 pool->flags &= ~POOL_DISASSOCIATED;
3778
bc2ae0f5 3779 worker = create_worker(pool);
4ce62e9e 3780 BUG_ON(!worker);
d565ed63 3781 spin_lock_irq(&pool->lock);
4ce62e9e 3782 start_worker(worker);
d565ed63 3783 spin_unlock_irq(&pool->lock);
4ce62e9e 3784 }
e22bee78
TH
3785 }
3786
d320c038 3787 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3788 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3789 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3790 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3791 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3792 system_freezable_wq = alloc_workqueue("events_freezable",
3793 WQ_FREEZABLE, 0);
1aabe902 3794 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3795 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3796 return 0;
1da177e4 3797}
6ee0578b 3798early_initcall(init_workqueues);