]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/workqueue.c
workqueue: fix possible stall on try_to_grab_pending() of a delayed work item
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
b2eb83d1 61 * assoc_mutex of all pools on the gcwq to avoid changing binding
bc2ae0f5
TH
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
1da177e4 128
e22bee78
TH
129/*
130 * The poor guys doing the actual heavy lifting. All on-duty workers
131 * are either serving the manager role, on idle list or on busy hash.
132 */
c34056a3 133struct worker {
c8e55f36
TH
134 /* on idle list while idle, on busy hash table while busy */
135 union {
136 struct list_head entry; /* L: while idle */
137 struct hlist_node hentry; /* L: while busy */
138 };
1da177e4 139
c34056a3 140 struct work_struct *current_work; /* L: work being processed */
8cca0eea 141 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 142 struct list_head scheduled; /* L: scheduled works */
c34056a3 143 struct task_struct *task; /* I: worker task */
bd7bdd43 144 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
145 /* 64 bytes boundary on 64bit, 32 on 32bit */
146 unsigned long last_active; /* L: last active timestamp */
147 unsigned int flags; /* X: flags */
c34056a3 148 int id; /* I: worker id */
25511a47
TH
149
150 /* for rebinding worker to CPU */
25511a47 151 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
152};
153
bd7bdd43
TH
154struct worker_pool {
155 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 156 unsigned int flags; /* X: flags */
bd7bdd43
TH
157
158 struct list_head worklist; /* L: list of pending works */
159 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
160
161 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
b2eb83d1 168 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
8b03ae3c
TH
188} ____cacheline_aligned_in_smp;
189
1da177e4 190/*
502ca9d8 191 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
192 * work_struct->data are used for flags and thus cwqs need to be
193 * aligned at two's power of the number of flag bits.
1da177e4
LT
194 */
195struct cpu_workqueue_struct {
bd7bdd43 196 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 197 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
198 int work_color; /* L: current color */
199 int flush_color; /* L: flushing color */
200 int nr_in_flight[WORK_NR_COLORS];
201 /* L: nr of in_flight works */
1e19ffc6 202 int nr_active; /* L: nr of active works */
a0a1a5fd 203 int max_active; /* L: max active works */
1e19ffc6 204 struct list_head delayed_works; /* L: delayed works */
0f900049 205};
1da177e4 206
73f53c4a
TH
207/*
208 * Structure used to wait for workqueue flush.
209 */
210struct wq_flusher {
211 struct list_head list; /* F: list of flushers */
212 int flush_color; /* F: flush color waiting for */
213 struct completion done; /* flush completion */
214};
215
f2e005aa
TH
216/*
217 * All cpumasks are assumed to be always set on UP and thus can't be
218 * used to determine whether there's something to be done.
219 */
220#ifdef CONFIG_SMP
221typedef cpumask_var_t mayday_mask_t;
222#define mayday_test_and_set_cpu(cpu, mask) \
223 cpumask_test_and_set_cpu((cpu), (mask))
224#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
225#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 226#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
227#define free_mayday_mask(mask) free_cpumask_var((mask))
228#else
229typedef unsigned long mayday_mask_t;
230#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
231#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
232#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
233#define alloc_mayday_mask(maskp, gfp) true
234#define free_mayday_mask(mask) do { } while (0)
235#endif
1da177e4
LT
236
237/*
238 * The externally visible workqueue abstraction is an array of
239 * per-CPU workqueues:
240 */
241struct workqueue_struct {
9c5a2ba7 242 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
243 union {
244 struct cpu_workqueue_struct __percpu *pcpu;
245 struct cpu_workqueue_struct *single;
246 unsigned long v;
247 } cpu_wq; /* I: cwq's */
4690c4ab 248 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
249
250 struct mutex flush_mutex; /* protects wq flushing */
251 int work_color; /* F: current work color */
252 int flush_color; /* F: current flush color */
253 atomic_t nr_cwqs_to_flush; /* flush in progress */
254 struct wq_flusher *first_flusher; /* F: first flusher */
255 struct list_head flusher_queue; /* F: flush waiters */
256 struct list_head flusher_overflow; /* F: flush overflow list */
257
f2e005aa 258 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
259 struct worker *rescuer; /* I: rescue worker */
260
9c5a2ba7 261 int nr_drainers; /* W: drain in progress */
dcd989cb 262 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
b196be89 266 char name[]; /* I: workqueue name */
1da177e4
LT
267};
268
d320c038 269struct workqueue_struct *system_wq __read_mostly;
d320c038 270EXPORT_SYMBOL_GPL(system_wq);
044c782c 271struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 272EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 273struct workqueue_struct *system_long_wq __read_mostly;
d320c038 274EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 275struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 276EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 277struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 278EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 279
97bd2347
TH
280#define CREATE_TRACE_POINTS
281#include <trace/events/workqueue.h>
282
4ce62e9e 283#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
284 for ((pool) = &(gcwq)->pools[0]; \
285 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 286
db7bccf4
TH
287#define for_each_busy_worker(worker, i, pos, gcwq) \
288 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
289 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
290
f3421797
TH
291static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
292 unsigned int sw)
293{
294 if (cpu < nr_cpu_ids) {
295 if (sw & 1) {
296 cpu = cpumask_next(cpu, mask);
297 if (cpu < nr_cpu_ids)
298 return cpu;
299 }
300 if (sw & 2)
301 return WORK_CPU_UNBOUND;
302 }
303 return WORK_CPU_NONE;
304}
305
306static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
307 struct workqueue_struct *wq)
308{
309 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
310}
311
09884951
TH
312/*
313 * CPU iterators
314 *
315 * An extra gcwq is defined for an invalid cpu number
316 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
317 * specific CPU. The following iterators are similar to
318 * for_each_*_cpu() iterators but also considers the unbound gcwq.
319 *
320 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
321 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
322 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
323 * WORK_CPU_UNBOUND for unbound workqueues
324 */
f3421797
TH
325#define for_each_gcwq_cpu(cpu) \
326 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
327 (cpu) < WORK_CPU_NONE; \
328 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
329
330#define for_each_online_gcwq_cpu(cpu) \
331 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
332 (cpu) < WORK_CPU_NONE; \
333 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
334
335#define for_each_cwq_cpu(cpu, wq) \
336 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
337 (cpu) < WORK_CPU_NONE; \
338 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
339
dc186ad7
TG
340#ifdef CONFIG_DEBUG_OBJECTS_WORK
341
342static struct debug_obj_descr work_debug_descr;
343
99777288
SG
344static void *work_debug_hint(void *addr)
345{
346 return ((struct work_struct *) addr)->func;
347}
348
dc186ad7
TG
349/*
350 * fixup_init is called when:
351 * - an active object is initialized
352 */
353static int work_fixup_init(void *addr, enum debug_obj_state state)
354{
355 struct work_struct *work = addr;
356
357 switch (state) {
358 case ODEBUG_STATE_ACTIVE:
359 cancel_work_sync(work);
360 debug_object_init(work, &work_debug_descr);
361 return 1;
362 default:
363 return 0;
364 }
365}
366
367/*
368 * fixup_activate is called when:
369 * - an active object is activated
370 * - an unknown object is activated (might be a statically initialized object)
371 */
372static int work_fixup_activate(void *addr, enum debug_obj_state state)
373{
374 struct work_struct *work = addr;
375
376 switch (state) {
377
378 case ODEBUG_STATE_NOTAVAILABLE:
379 /*
380 * This is not really a fixup. The work struct was
381 * statically initialized. We just make sure that it
382 * is tracked in the object tracker.
383 */
22df02bb 384 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
385 debug_object_init(work, &work_debug_descr);
386 debug_object_activate(work, &work_debug_descr);
387 return 0;
388 }
389 WARN_ON_ONCE(1);
390 return 0;
391
392 case ODEBUG_STATE_ACTIVE:
393 WARN_ON(1);
394
395 default:
396 return 0;
397 }
398}
399
400/*
401 * fixup_free is called when:
402 * - an active object is freed
403 */
404static int work_fixup_free(void *addr, enum debug_obj_state state)
405{
406 struct work_struct *work = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 cancel_work_sync(work);
411 debug_object_free(work, &work_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416}
417
418static struct debug_obj_descr work_debug_descr = {
419 .name = "work_struct",
99777288 420 .debug_hint = work_debug_hint,
dc186ad7
TG
421 .fixup_init = work_fixup_init,
422 .fixup_activate = work_fixup_activate,
423 .fixup_free = work_fixup_free,
424};
425
426static inline void debug_work_activate(struct work_struct *work)
427{
428 debug_object_activate(work, &work_debug_descr);
429}
430
431static inline void debug_work_deactivate(struct work_struct *work)
432{
433 debug_object_deactivate(work, &work_debug_descr);
434}
435
436void __init_work(struct work_struct *work, int onstack)
437{
438 if (onstack)
439 debug_object_init_on_stack(work, &work_debug_descr);
440 else
441 debug_object_init(work, &work_debug_descr);
442}
443EXPORT_SYMBOL_GPL(__init_work);
444
445void destroy_work_on_stack(struct work_struct *work)
446{
447 debug_object_free(work, &work_debug_descr);
448}
449EXPORT_SYMBOL_GPL(destroy_work_on_stack);
450
451#else
452static inline void debug_work_activate(struct work_struct *work) { }
453static inline void debug_work_deactivate(struct work_struct *work) { }
454#endif
455
95402b38
GS
456/* Serializes the accesses to the list of workqueues. */
457static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 458static LIST_HEAD(workqueues);
a0a1a5fd 459static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 460
e22bee78
TH
461/*
462 * The almighty global cpu workqueues. nr_running is the only field
463 * which is expected to be used frequently by other cpus via
464 * try_to_wake_up(). Put it in a separate cacheline.
465 */
8b03ae3c 466static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 467static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 468
f3421797
TH
469/*
470 * Global cpu workqueue and nr_running counter for unbound gcwq. The
471 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
472 * workers have WORKER_UNBOUND set.
473 */
474static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
475static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
476 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
477};
f3421797 478
c34056a3 479static int worker_thread(void *__worker);
1da177e4 480
3270476a
TH
481static int worker_pool_pri(struct worker_pool *pool)
482{
483 return pool - pool->gcwq->pools;
484}
485
8b03ae3c
TH
486static struct global_cwq *get_gcwq(unsigned int cpu)
487{
f3421797
TH
488 if (cpu != WORK_CPU_UNBOUND)
489 return &per_cpu(global_cwq, cpu);
490 else
491 return &unbound_global_cwq;
8b03ae3c
TH
492}
493
63d95a91 494static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 495{
63d95a91 496 int cpu = pool->gcwq->cpu;
3270476a 497 int idx = worker_pool_pri(pool);
63d95a91 498
f3421797 499 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 500 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 501 else
4ce62e9e 502 return &unbound_pool_nr_running[idx];
e22bee78
TH
503}
504
1537663f
TH
505static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
506 struct workqueue_struct *wq)
b1f4ec17 507{
f3421797 508 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 509 if (likely(cpu < nr_cpu_ids))
f3421797 510 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
511 } else if (likely(cpu == WORK_CPU_UNBOUND))
512 return wq->cpu_wq.single;
513 return NULL;
b1f4ec17
ON
514}
515
73f53c4a
TH
516static unsigned int work_color_to_flags(int color)
517{
518 return color << WORK_STRUCT_COLOR_SHIFT;
519}
520
521static int get_work_color(struct work_struct *work)
522{
523 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
524 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
525}
526
527static int work_next_color(int color)
528{
529 return (color + 1) % WORK_NR_COLORS;
530}
1da177e4 531
14441960 532/*
b5490077
TH
533 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
534 * contain the pointer to the queued cwq. Once execution starts, the flag
535 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 536 *
bbb68dfa
TH
537 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
538 * and clear_work_data() can be used to set the cwq, cpu or clear
539 * work->data. These functions should only be called while the work is
540 * owned - ie. while the PENDING bit is set.
541 *
542 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
543 * a work. gcwq is available once the work has been queued anywhere after
544 * initialization until it is sync canceled. cwq is available only while
545 * the work item is queued.
546 *
547 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
548 * canceled. While being canceled, a work item may have its PENDING set
549 * but stay off timer and worklist for arbitrarily long and nobody should
550 * try to steal the PENDING bit.
14441960 551 */
7a22ad75
TH
552static inline void set_work_data(struct work_struct *work, unsigned long data,
553 unsigned long flags)
365970a1 554{
4594bf15 555 BUG_ON(!work_pending(work));
7a22ad75
TH
556 atomic_long_set(&work->data, data | flags | work_static(work));
557}
365970a1 558
7a22ad75
TH
559static void set_work_cwq(struct work_struct *work,
560 struct cpu_workqueue_struct *cwq,
561 unsigned long extra_flags)
562{
563 set_work_data(work, (unsigned long)cwq,
e120153d 564 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
565}
566
8930caba
TH
567static void set_work_cpu_and_clear_pending(struct work_struct *work,
568 unsigned int cpu)
7a22ad75 569{
23657bb1
TH
570 /*
571 * The following wmb is paired with the implied mb in
572 * test_and_set_bit(PENDING) and ensures all updates to @work made
573 * here are visible to and precede any updates by the next PENDING
574 * owner.
575 */
576 smp_wmb();
b5490077 577 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 578}
f756d5e2 579
7a22ad75 580static void clear_work_data(struct work_struct *work)
1da177e4 581{
23657bb1 582 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 583 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
584}
585
7a22ad75 586static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75 589
e120153d
TH
590 if (data & WORK_STRUCT_CWQ)
591 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 else
593 return NULL;
4d707b9f
ON
594}
595
7a22ad75 596static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 597{
e120153d 598 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
599 unsigned int cpu;
600
e120153d
TH
601 if (data & WORK_STRUCT_CWQ)
602 return ((struct cpu_workqueue_struct *)
bd7bdd43 603 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 604
b5490077 605 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 606 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
607 return NULL;
608
f3421797 609 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 610 return get_gcwq(cpu);
b1f4ec17
ON
611}
612
bbb68dfa
TH
613static void mark_work_canceling(struct work_struct *work)
614{
615 struct global_cwq *gcwq = get_work_gcwq(work);
616 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
617
618 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
619 WORK_STRUCT_PENDING);
620}
621
622static bool work_is_canceling(struct work_struct *work)
623{
624 unsigned long data = atomic_long_read(&work->data);
625
626 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
627}
628
e22bee78 629/*
3270476a
TH
630 * Policy functions. These define the policies on how the global worker
631 * pools are managed. Unless noted otherwise, these functions assume that
632 * they're being called with gcwq->lock held.
e22bee78
TH
633 */
634
63d95a91 635static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 636{
3270476a 637 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
638}
639
4594bf15 640/*
e22bee78
TH
641 * Need to wake up a worker? Called from anything but currently
642 * running workers.
974271c4
TH
643 *
644 * Note that, because unbound workers never contribute to nr_running, this
645 * function will always return %true for unbound gcwq as long as the
646 * worklist isn't empty.
4594bf15 647 */
63d95a91 648static bool need_more_worker(struct worker_pool *pool)
365970a1 649{
63d95a91 650 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 651}
4594bf15 652
e22bee78 653/* Can I start working? Called from busy but !running workers. */
63d95a91 654static bool may_start_working(struct worker_pool *pool)
e22bee78 655{
63d95a91 656 return pool->nr_idle;
e22bee78
TH
657}
658
659/* Do I need to keep working? Called from currently running workers. */
63d95a91 660static bool keep_working(struct worker_pool *pool)
e22bee78 661{
63d95a91 662 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 663
3270476a 664 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
665}
666
667/* Do we need a new worker? Called from manager. */
63d95a91 668static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 669{
63d95a91 670 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 671}
365970a1 672
e22bee78 673/* Do I need to be the manager? */
63d95a91 674static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_to_create_worker(pool) ||
11ebea50 677 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
678}
679
680/* Do we have too many workers and should some go away? */
63d95a91 681static bool too_many_workers(struct worker_pool *pool)
e22bee78 682{
552a37e9 683 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 686
ea1abd61
LJ
687 /*
688 * nr_idle and idle_list may disagree if idle rebinding is in
689 * progress. Never return %true if idle_list is empty.
690 */
691 if (list_empty(&pool->idle_list))
692 return false;
693
e22bee78 694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
695}
696
4d707b9f 697/*
e22bee78
TH
698 * Wake up functions.
699 */
700
7e11629d 701/* Return the first worker. Safe with preemption disabled */
63d95a91 702static struct worker *first_worker(struct worker_pool *pool)
7e11629d 703{
63d95a91 704 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
705 return NULL;
706
63d95a91 707 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
708}
709
710/**
711 * wake_up_worker - wake up an idle worker
63d95a91 712 * @pool: worker pool to wake worker from
7e11629d 713 *
63d95a91 714 * Wake up the first idle worker of @pool.
7e11629d
TH
715 *
716 * CONTEXT:
717 * spin_lock_irq(gcwq->lock).
718 */
63d95a91 719static void wake_up_worker(struct worker_pool *pool)
7e11629d 720{
63d95a91 721 struct worker *worker = first_worker(pool);
7e11629d
TH
722
723 if (likely(worker))
724 wake_up_process(worker->task);
725}
726
d302f017 727/**
e22bee78
TH
728 * wq_worker_waking_up - a worker is waking up
729 * @task: task waking up
730 * @cpu: CPU @task is waking up to
731 *
732 * This function is called during try_to_wake_up() when a worker is
733 * being awoken.
734 *
735 * CONTEXT:
736 * spin_lock_irq(rq->lock)
737 */
738void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
739{
740 struct worker *worker = kthread_data(task);
741
2d64672e 742 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 743 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
744}
745
746/**
747 * wq_worker_sleeping - a worker is going to sleep
748 * @task: task going to sleep
749 * @cpu: CPU in question, must be the current CPU number
750 *
751 * This function is called during schedule() when a busy worker is
752 * going to sleep. Worker on the same cpu can be woken up by
753 * returning pointer to its task.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 *
758 * RETURNS:
759 * Worker task on @cpu to wake up, %NULL if none.
760 */
761struct task_struct *wq_worker_sleeping(struct task_struct *task,
762 unsigned int cpu)
763{
764 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 765 struct worker_pool *pool = worker->pool;
63d95a91 766 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 767
2d64672e 768 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
769 return NULL;
770
771 /* this can only happen on the local cpu */
772 BUG_ON(cpu != raw_smp_processor_id());
773
774 /*
775 * The counterpart of the following dec_and_test, implied mb,
776 * worklist not empty test sequence is in insert_work().
777 * Please read comment there.
778 *
628c78e7
TH
779 * NOT_RUNNING is clear. This means that we're bound to and
780 * running on the local cpu w/ rq lock held and preemption
781 * disabled, which in turn means that none else could be
782 * manipulating idle_list, so dereferencing idle_list without gcwq
783 * lock is safe.
e22bee78 784 */
bd7bdd43 785 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 786 to_wakeup = first_worker(pool);
e22bee78
TH
787 return to_wakeup ? to_wakeup->task : NULL;
788}
789
790/**
791 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 792 * @worker: self
d302f017
TH
793 * @flags: flags to set
794 * @wakeup: wakeup an idle worker if necessary
795 *
e22bee78
TH
796 * Set @flags in @worker->flags and adjust nr_running accordingly. If
797 * nr_running becomes zero and @wakeup is %true, an idle worker is
798 * woken up.
d302f017 799 *
cb444766
TH
800 * CONTEXT:
801 * spin_lock_irq(gcwq->lock)
d302f017
TH
802 */
803static inline void worker_set_flags(struct worker *worker, unsigned int flags,
804 bool wakeup)
805{
bd7bdd43 806 struct worker_pool *pool = worker->pool;
e22bee78 807
cb444766
TH
808 WARN_ON_ONCE(worker->task != current);
809
e22bee78
TH
810 /*
811 * If transitioning into NOT_RUNNING, adjust nr_running and
812 * wake up an idle worker as necessary if requested by
813 * @wakeup.
814 */
815 if ((flags & WORKER_NOT_RUNNING) &&
816 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 817 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
818
819 if (wakeup) {
820 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 821 !list_empty(&pool->worklist))
63d95a91 822 wake_up_worker(pool);
e22bee78
TH
823 } else
824 atomic_dec(nr_running);
825 }
826
d302f017
TH
827 worker->flags |= flags;
828}
829
830/**
e22bee78 831 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 832 * @worker: self
d302f017
TH
833 * @flags: flags to clear
834 *
e22bee78 835 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 836 *
cb444766
TH
837 * CONTEXT:
838 * spin_lock_irq(gcwq->lock)
d302f017
TH
839 */
840static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
841{
63d95a91 842 struct worker_pool *pool = worker->pool;
e22bee78
TH
843 unsigned int oflags = worker->flags;
844
cb444766
TH
845 WARN_ON_ONCE(worker->task != current);
846
d302f017 847 worker->flags &= ~flags;
e22bee78 848
42c025f3
TH
849 /*
850 * If transitioning out of NOT_RUNNING, increment nr_running. Note
851 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
852 * of multiple flags, not a single flag.
853 */
e22bee78
TH
854 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
855 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 856 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
857}
858
c8e55f36
TH
859/**
860 * busy_worker_head - return the busy hash head for a work
861 * @gcwq: gcwq of interest
862 * @work: work to be hashed
863 *
864 * Return hash head of @gcwq for @work.
865 *
866 * CONTEXT:
867 * spin_lock_irq(gcwq->lock).
868 *
869 * RETURNS:
870 * Pointer to the hash head.
871 */
872static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
873 struct work_struct *work)
874{
875 const int base_shift = ilog2(sizeof(struct work_struct));
876 unsigned long v = (unsigned long)work;
877
878 /* simple shift and fold hash, do we need something better? */
879 v >>= base_shift;
880 v += v >> BUSY_WORKER_HASH_ORDER;
881 v &= BUSY_WORKER_HASH_MASK;
882
883 return &gcwq->busy_hash[v];
884}
885
8cca0eea
TH
886/**
887 * __find_worker_executing_work - find worker which is executing a work
888 * @gcwq: gcwq of interest
889 * @bwh: hash head as returned by busy_worker_head()
890 * @work: work to find worker for
891 *
892 * Find a worker which is executing @work on @gcwq. @bwh should be
893 * the hash head obtained by calling busy_worker_head() with the same
894 * work.
895 *
896 * CONTEXT:
897 * spin_lock_irq(gcwq->lock).
898 *
899 * RETURNS:
900 * Pointer to worker which is executing @work if found, NULL
901 * otherwise.
902 */
903static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
904 struct hlist_head *bwh,
905 struct work_struct *work)
906{
907 struct worker *worker;
908 struct hlist_node *tmp;
909
910 hlist_for_each_entry(worker, tmp, bwh, hentry)
911 if (worker->current_work == work)
912 return worker;
913 return NULL;
914}
915
916/**
917 * find_worker_executing_work - find worker which is executing a work
918 * @gcwq: gcwq of interest
919 * @work: work to find worker for
920 *
921 * Find a worker which is executing @work on @gcwq. This function is
922 * identical to __find_worker_executing_work() except that this
923 * function calculates @bwh itself.
924 *
925 * CONTEXT:
926 * spin_lock_irq(gcwq->lock).
927 *
928 * RETURNS:
929 * Pointer to worker which is executing @work if found, NULL
930 * otherwise.
4d707b9f 931 */
8cca0eea
TH
932static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
933 struct work_struct *work)
4d707b9f 934{
8cca0eea
TH
935 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
936 work);
4d707b9f
ON
937}
938
bf4ede01
TH
939/**
940 * move_linked_works - move linked works to a list
941 * @work: start of series of works to be scheduled
942 * @head: target list to append @work to
943 * @nextp: out paramter for nested worklist walking
944 *
945 * Schedule linked works starting from @work to @head. Work series to
946 * be scheduled starts at @work and includes any consecutive work with
947 * WORK_STRUCT_LINKED set in its predecessor.
948 *
949 * If @nextp is not NULL, it's updated to point to the next work of
950 * the last scheduled work. This allows move_linked_works() to be
951 * nested inside outer list_for_each_entry_safe().
952 *
953 * CONTEXT:
954 * spin_lock_irq(gcwq->lock).
955 */
956static void move_linked_works(struct work_struct *work, struct list_head *head,
957 struct work_struct **nextp)
958{
959 struct work_struct *n;
960
961 /*
962 * Linked worklist will always end before the end of the list,
963 * use NULL for list head.
964 */
965 list_for_each_entry_safe_from(work, n, NULL, entry) {
966 list_move_tail(&work->entry, head);
967 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
968 break;
969 }
970
971 /*
972 * If we're already inside safe list traversal and have moved
973 * multiple works to the scheduled queue, the next position
974 * needs to be updated.
975 */
976 if (nextp)
977 *nextp = n;
978}
979
3aa62497 980static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 981{
3aa62497 982 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988}
989
3aa62497
LJ
990static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
991{
992 struct work_struct *work = list_first_entry(&cwq->delayed_works,
993 struct work_struct, entry);
994
995 cwq_activate_delayed_work(work);
996}
997
bf4ede01
TH
998/**
999 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1000 * @cwq: cwq of interest
1001 * @color: color of work which left the queue
1002 * @delayed: for a delayed work
1003 *
1004 * A work either has completed or is removed from pending queue,
1005 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1006 *
1007 * CONTEXT:
1008 * spin_lock_irq(gcwq->lock).
1009 */
1010static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1011 bool delayed)
1012{
1013 /* ignore uncolored works */
1014 if (color == WORK_NO_COLOR)
1015 return;
1016
1017 cwq->nr_in_flight[color]--;
1018
1019 if (!delayed) {
1020 cwq->nr_active--;
1021 if (!list_empty(&cwq->delayed_works)) {
1022 /* one down, submit a delayed one */
1023 if (cwq->nr_active < cwq->max_active)
1024 cwq_activate_first_delayed(cwq);
1025 }
1026 }
1027
1028 /* is flush in progress and are we at the flushing tip? */
1029 if (likely(cwq->flush_color != color))
1030 return;
1031
1032 /* are there still in-flight works? */
1033 if (cwq->nr_in_flight[color])
1034 return;
1035
1036 /* this cwq is done, clear flush_color */
1037 cwq->flush_color = -1;
1038
1039 /*
1040 * If this was the last cwq, wake up the first flusher. It
1041 * will handle the rest.
1042 */
1043 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1044 complete(&cwq->wq->first_flusher->done);
1045}
1046
36e227d2 1047/**
bbb68dfa 1048 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1049 * @work: work item to steal
1050 * @is_dwork: @work is a delayed_work
bbb68dfa 1051 * @flags: place to store irq state
36e227d2
TH
1052 *
1053 * Try to grab PENDING bit of @work. This function can handle @work in any
1054 * stable state - idle, on timer or on worklist. Return values are
1055 *
1056 * 1 if @work was pending and we successfully stole PENDING
1057 * 0 if @work was idle and we claimed PENDING
1058 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1059 * -ENOENT if someone else is canceling @work, this state may persist
1060 * for arbitrarily long
36e227d2 1061 *
bbb68dfa 1062 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1063 * interrupted while holding PENDING and @work off queue, irq must be
1064 * disabled on entry. This, combined with delayed_work->timer being
1065 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1066 *
1067 * On successful return, >= 0, irq is disabled and the caller is
1068 * responsible for releasing it using local_irq_restore(*@flags).
1069 *
e0aecdd8 1070 * This function is safe to call from any context including IRQ handler.
bf4ede01 1071 */
bbb68dfa
TH
1072static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1073 unsigned long *flags)
bf4ede01
TH
1074{
1075 struct global_cwq *gcwq;
bf4ede01 1076
bbb68dfa
TH
1077 WARN_ON_ONCE(in_irq());
1078
1079 local_irq_save(*flags);
1080
36e227d2
TH
1081 /* try to steal the timer if it exists */
1082 if (is_dwork) {
1083 struct delayed_work *dwork = to_delayed_work(work);
1084
e0aecdd8
TH
1085 /*
1086 * dwork->timer is irqsafe. If del_timer() fails, it's
1087 * guaranteed that the timer is not queued anywhere and not
1088 * running on the local CPU.
1089 */
36e227d2
TH
1090 if (likely(del_timer(&dwork->timer)))
1091 return 1;
1092 }
1093
1094 /* try to claim PENDING the normal way */
bf4ede01
TH
1095 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1096 return 0;
1097
1098 /*
1099 * The queueing is in progress, or it is already queued. Try to
1100 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1101 */
1102 gcwq = get_work_gcwq(work);
1103 if (!gcwq)
bbb68dfa 1104 goto fail;
bf4ede01 1105
bbb68dfa 1106 spin_lock(&gcwq->lock);
bf4ede01
TH
1107 if (!list_empty(&work->entry)) {
1108 /*
1109 * This work is queued, but perhaps we locked the wrong gcwq.
1110 * In that case we must see the new value after rmb(), see
1111 * insert_work()->wmb().
1112 */
1113 smp_rmb();
1114 if (gcwq == get_work_gcwq(work)) {
1115 debug_work_deactivate(work);
3aa62497
LJ
1116
1117 /*
1118 * A delayed work item cannot be grabbed directly
1119 * because it might have linked NO_COLOR work items
1120 * which, if left on the delayed_list, will confuse
1121 * cwq->nr_active management later on and cause
1122 * stall. Make sure the work item is activated
1123 * before grabbing.
1124 */
1125 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1126 cwq_activate_delayed_work(work);
1127
bf4ede01
TH
1128 list_del_init(&work->entry);
1129 cwq_dec_nr_in_flight(get_work_cwq(work),
1130 get_work_color(work),
1131 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1132
bbb68dfa 1133 spin_unlock(&gcwq->lock);
36e227d2 1134 return 1;
bf4ede01
TH
1135 }
1136 }
bbb68dfa
TH
1137 spin_unlock(&gcwq->lock);
1138fail:
1139 local_irq_restore(*flags);
1140 if (work_is_canceling(work))
1141 return -ENOENT;
1142 cpu_relax();
36e227d2 1143 return -EAGAIN;
bf4ede01
TH
1144}
1145
4690c4ab 1146/**
7e11629d 1147 * insert_work - insert a work into gcwq
4690c4ab
TH
1148 * @cwq: cwq @work belongs to
1149 * @work: work to insert
1150 * @head: insertion point
1151 * @extra_flags: extra WORK_STRUCT_* flags to set
1152 *
7e11629d
TH
1153 * Insert @work which belongs to @cwq into @gcwq after @head.
1154 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1155 *
1156 * CONTEXT:
8b03ae3c 1157 * spin_lock_irq(gcwq->lock).
4690c4ab 1158 */
b89deed3 1159static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1160 struct work_struct *work, struct list_head *head,
1161 unsigned int extra_flags)
b89deed3 1162{
63d95a91 1163 struct worker_pool *pool = cwq->pool;
e22bee78 1164
4690c4ab 1165 /* we own @work, set data and link */
7a22ad75 1166 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1167
6e84d644
ON
1168 /*
1169 * Ensure that we get the right work->data if we see the
1170 * result of list_add() below, see try_to_grab_pending().
1171 */
1172 smp_wmb();
4690c4ab 1173
1a4d9b0a 1174 list_add_tail(&work->entry, head);
e22bee78
TH
1175
1176 /*
1177 * Ensure either worker_sched_deactivated() sees the above
1178 * list_add_tail() or we see zero nr_running to avoid workers
1179 * lying around lazily while there are works to be processed.
1180 */
1181 smp_mb();
1182
63d95a91
TH
1183 if (__need_more_worker(pool))
1184 wake_up_worker(pool);
b89deed3
ON
1185}
1186
c8efcc25
TH
1187/*
1188 * Test whether @work is being queued from another work executing on the
1189 * same workqueue. This is rather expensive and should only be used from
1190 * cold paths.
1191 */
1192static bool is_chained_work(struct workqueue_struct *wq)
1193{
1194 unsigned long flags;
1195 unsigned int cpu;
1196
1197 for_each_gcwq_cpu(cpu) {
1198 struct global_cwq *gcwq = get_gcwq(cpu);
1199 struct worker *worker;
1200 struct hlist_node *pos;
1201 int i;
1202
1203 spin_lock_irqsave(&gcwq->lock, flags);
1204 for_each_busy_worker(worker, i, pos, gcwq) {
1205 if (worker->task != current)
1206 continue;
1207 spin_unlock_irqrestore(&gcwq->lock, flags);
1208 /*
1209 * I'm @worker, no locking necessary. See if @work
1210 * is headed to the same workqueue.
1211 */
1212 return worker->current_cwq->wq == wq;
1213 }
1214 spin_unlock_irqrestore(&gcwq->lock, flags);
1215 }
1216 return false;
1217}
1218
4690c4ab 1219static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1220 struct work_struct *work)
1221{
502ca9d8
TH
1222 struct global_cwq *gcwq;
1223 struct cpu_workqueue_struct *cwq;
1e19ffc6 1224 struct list_head *worklist;
8a2e8e5d 1225 unsigned int work_flags;
b75cac93 1226 unsigned int req_cpu = cpu;
8930caba
TH
1227
1228 /*
1229 * While a work item is PENDING && off queue, a task trying to
1230 * steal the PENDING will busy-loop waiting for it to either get
1231 * queued or lose PENDING. Grabbing PENDING and queueing should
1232 * happen with IRQ disabled.
1233 */
1234 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1235
dc186ad7 1236 debug_work_activate(work);
1e19ffc6 1237
c8efcc25 1238 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1239 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1240 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1241 return;
1242
c7fc77f7
TH
1243 /* determine gcwq to use */
1244 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1245 struct global_cwq *last_gcwq;
1246
57469821 1247 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1248 cpu = raw_smp_processor_id();
1249
18aa9eff 1250 /*
dbf2576e
TH
1251 * It's multi cpu. If @work was previously on a different
1252 * cpu, it might still be running there, in which case the
1253 * work needs to be queued on that cpu to guarantee
1254 * non-reentrancy.
18aa9eff 1255 */
502ca9d8 1256 gcwq = get_gcwq(cpu);
dbf2576e
TH
1257 last_gcwq = get_work_gcwq(work);
1258
1259 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1260 struct worker *worker;
1261
8930caba 1262 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1263
1264 worker = find_worker_executing_work(last_gcwq, work);
1265
1266 if (worker && worker->current_cwq->wq == wq)
1267 gcwq = last_gcwq;
1268 else {
1269 /* meh... not running there, queue here */
8930caba
TH
1270 spin_unlock(&last_gcwq->lock);
1271 spin_lock(&gcwq->lock);
18aa9eff 1272 }
8930caba
TH
1273 } else {
1274 spin_lock(&gcwq->lock);
1275 }
f3421797
TH
1276 } else {
1277 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1278 spin_lock(&gcwq->lock);
502ca9d8
TH
1279 }
1280
1281 /* gcwq determined, get cwq and queue */
1282 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1283 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1284
f5b2552b 1285 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1286 spin_unlock(&gcwq->lock);
f5b2552b
DC
1287 return;
1288 }
1e19ffc6 1289
73f53c4a 1290 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1291 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1292
1293 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1294 trace_workqueue_activate_work(work);
1e19ffc6 1295 cwq->nr_active++;
3270476a 1296 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1297 } else {
1298 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1299 worklist = &cwq->delayed_works;
8a2e8e5d 1300 }
1e19ffc6 1301
8a2e8e5d 1302 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1303
8930caba 1304 spin_unlock(&gcwq->lock);
1da177e4
LT
1305}
1306
c1a220e7
ZR
1307/**
1308 * queue_work_on - queue work on specific cpu
1309 * @cpu: CPU number to execute work on
1310 * @wq: workqueue to use
1311 * @work: work to queue
1312 *
d4283e93 1313 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1314 *
1315 * We queue the work to a specific CPU, the caller must ensure it
1316 * can't go away.
1317 */
d4283e93
TH
1318bool queue_work_on(int cpu, struct workqueue_struct *wq,
1319 struct work_struct *work)
c1a220e7 1320{
d4283e93 1321 bool ret = false;
8930caba
TH
1322 unsigned long flags;
1323
1324 local_irq_save(flags);
c1a220e7 1325
22df02bb 1326 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1327 __queue_work(cpu, wq, work);
d4283e93 1328 ret = true;
c1a220e7 1329 }
8930caba
TH
1330
1331 local_irq_restore(flags);
c1a220e7
ZR
1332 return ret;
1333}
1334EXPORT_SYMBOL_GPL(queue_work_on);
1335
0fcb78c2 1336/**
0a13c00e 1337 * queue_work - queue work on a workqueue
0fcb78c2 1338 * @wq: workqueue to use
0a13c00e 1339 * @work: work to queue
0fcb78c2 1340 *
d4283e93 1341 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1342 *
1343 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1344 * it can be processed by another CPU.
0fcb78c2 1345 */
d4283e93 1346bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1347{
57469821 1348 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1349}
1350EXPORT_SYMBOL_GPL(queue_work);
1351
d8e794df 1352void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1353{
1354 struct delayed_work *dwork = (struct delayed_work *)__data;
1355 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1356
e0aecdd8 1357 /* should have been called from irqsafe timer with irq already off */
1265057f 1358 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1359}
d8e794df 1360EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1361
7beb2edf
TH
1362static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1363 struct delayed_work *dwork, unsigned long delay)
1364{
1365 struct timer_list *timer = &dwork->timer;
1366 struct work_struct *work = &dwork->work;
1367 unsigned int lcpu;
1368
1369 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1370 timer->data != (unsigned long)dwork);
1371 BUG_ON(timer_pending(timer));
1372 BUG_ON(!list_empty(&work->entry));
1373
1374 timer_stats_timer_set_start_info(&dwork->timer);
1375
1376 /*
1377 * This stores cwq for the moment, for the timer_fn. Note that the
1378 * work's gcwq is preserved to allow reentrance detection for
1379 * delayed works.
1380 */
1381 if (!(wq->flags & WQ_UNBOUND)) {
1382 struct global_cwq *gcwq = get_work_gcwq(work);
1383
e42986de
JK
1384 /*
1385 * If we cannot get the last gcwq from @work directly,
1386 * select the last CPU such that it avoids unnecessarily
1387 * triggering non-reentrancy check in __queue_work().
1388 */
1389 lcpu = cpu;
1390 if (gcwq)
7beb2edf 1391 lcpu = gcwq->cpu;
e42986de 1392 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1393 lcpu = raw_smp_processor_id();
1394 } else {
1395 lcpu = WORK_CPU_UNBOUND;
1396 }
1397
1398 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1399
1265057f 1400 dwork->cpu = cpu;
7beb2edf
TH
1401 timer->expires = jiffies + delay;
1402
1403 if (unlikely(cpu != WORK_CPU_UNBOUND))
1404 add_timer_on(timer, cpu);
1405 else
1406 add_timer(timer);
1407}
1408
0fcb78c2
REB
1409/**
1410 * queue_delayed_work_on - queue work on specific CPU after delay
1411 * @cpu: CPU number to execute work on
1412 * @wq: workqueue to use
af9997e4 1413 * @dwork: work to queue
0fcb78c2
REB
1414 * @delay: number of jiffies to wait before queueing
1415 *
715f1300
TH
1416 * Returns %false if @work was already on a queue, %true otherwise. If
1417 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1418 * execution.
0fcb78c2 1419 */
d4283e93
TH
1420bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1421 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1422{
52bad64d 1423 struct work_struct *work = &dwork->work;
d4283e93 1424 bool ret = false;
8930caba
TH
1425 unsigned long flags;
1426
715f1300
TH
1427 if (!delay)
1428 return queue_work_on(cpu, wq, &dwork->work);
1429
8930caba
TH
1430 /* read the comment in __queue_work() */
1431 local_irq_save(flags);
7a6bc1cd 1432
22df02bb 1433 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1434 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1435 ret = true;
7a6bc1cd 1436 }
8930caba
TH
1437
1438 local_irq_restore(flags);
7a6bc1cd
VP
1439 return ret;
1440}
ae90dd5d 1441EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1442
0a13c00e
TH
1443/**
1444 * queue_delayed_work - queue work on a workqueue after delay
1445 * @wq: workqueue to use
1446 * @dwork: delayable work to queue
1447 * @delay: number of jiffies to wait before queueing
1448 *
715f1300 1449 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1450 */
d4283e93 1451bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1452 struct delayed_work *dwork, unsigned long delay)
1453{
57469821 1454 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1455}
1456EXPORT_SYMBOL_GPL(queue_delayed_work);
1457
8376fe22
TH
1458/**
1459 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1460 * @cpu: CPU number to execute work on
1461 * @wq: workqueue to use
1462 * @dwork: work to queue
1463 * @delay: number of jiffies to wait before queueing
1464 *
1465 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1466 * modify @dwork's timer so that it expires after @delay. If @delay is
1467 * zero, @work is guaranteed to be scheduled immediately regardless of its
1468 * current state.
1469 *
1470 * Returns %false if @dwork was idle and queued, %true if @dwork was
1471 * pending and its timer was modified.
1472 *
e0aecdd8 1473 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1474 * See try_to_grab_pending() for details.
1475 */
1476bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1477 struct delayed_work *dwork, unsigned long delay)
1478{
1479 unsigned long flags;
1480 int ret;
1481
1482 do {
1483 ret = try_to_grab_pending(&dwork->work, true, &flags);
1484 } while (unlikely(ret == -EAGAIN));
1485
1486 if (likely(ret >= 0)) {
1487 __queue_delayed_work(cpu, wq, dwork, delay);
1488 local_irq_restore(flags);
1489 }
1490
1491 /* -ENOENT from try_to_grab_pending() becomes %true */
1492 return ret;
1493}
1494EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1495
1496/**
1497 * mod_delayed_work - modify delay of or queue a delayed work
1498 * @wq: workqueue to use
1499 * @dwork: work to queue
1500 * @delay: number of jiffies to wait before queueing
1501 *
1502 * mod_delayed_work_on() on local CPU.
1503 */
1504bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1505 unsigned long delay)
1506{
1507 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1508}
1509EXPORT_SYMBOL_GPL(mod_delayed_work);
1510
c8e55f36
TH
1511/**
1512 * worker_enter_idle - enter idle state
1513 * @worker: worker which is entering idle state
1514 *
1515 * @worker is entering idle state. Update stats and idle timer if
1516 * necessary.
1517 *
1518 * LOCKING:
1519 * spin_lock_irq(gcwq->lock).
1520 */
1521static void worker_enter_idle(struct worker *worker)
1da177e4 1522{
bd7bdd43
TH
1523 struct worker_pool *pool = worker->pool;
1524 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1525
1526 BUG_ON(worker->flags & WORKER_IDLE);
1527 BUG_ON(!list_empty(&worker->entry) &&
1528 (worker->hentry.next || worker->hentry.pprev));
1529
cb444766
TH
1530 /* can't use worker_set_flags(), also called from start_worker() */
1531 worker->flags |= WORKER_IDLE;
bd7bdd43 1532 pool->nr_idle++;
e22bee78 1533 worker->last_active = jiffies;
c8e55f36
TH
1534
1535 /* idle_list is LIFO */
bd7bdd43 1536 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1537
628c78e7
TH
1538 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1539 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1540
544ecf31 1541 /*
628c78e7
TH
1542 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1543 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1544 * nr_running, the warning may trigger spuriously. Check iff
1545 * unbind is not in progress.
544ecf31 1546 */
628c78e7 1547 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1548 pool->nr_workers == pool->nr_idle &&
63d95a91 1549 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1550}
1551
1552/**
1553 * worker_leave_idle - leave idle state
1554 * @worker: worker which is leaving idle state
1555 *
1556 * @worker is leaving idle state. Update stats.
1557 *
1558 * LOCKING:
1559 * spin_lock_irq(gcwq->lock).
1560 */
1561static void worker_leave_idle(struct worker *worker)
1562{
bd7bdd43 1563 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1564
1565 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1566 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1567 pool->nr_idle--;
c8e55f36
TH
1568 list_del_init(&worker->entry);
1569}
1570
e22bee78
TH
1571/**
1572 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1573 * @worker: self
1574 *
1575 * Works which are scheduled while the cpu is online must at least be
1576 * scheduled to a worker which is bound to the cpu so that if they are
1577 * flushed from cpu callbacks while cpu is going down, they are
1578 * guaranteed to execute on the cpu.
1579 *
1580 * This function is to be used by rogue workers and rescuers to bind
1581 * themselves to the target cpu and may race with cpu going down or
1582 * coming online. kthread_bind() can't be used because it may put the
1583 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1584 * verbatim as it's best effort and blocking and gcwq may be
1585 * [dis]associated in the meantime.
1586 *
f2d5a0ee
TH
1587 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1588 * binding against %GCWQ_DISASSOCIATED which is set during
1589 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1590 * enters idle state or fetches works without dropping lock, it can
1591 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1592 *
1593 * CONTEXT:
1594 * Might sleep. Called without any lock but returns with gcwq->lock
1595 * held.
1596 *
1597 * RETURNS:
1598 * %true if the associated gcwq is online (@worker is successfully
1599 * bound), %false if offline.
1600 */
1601static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1602__acquires(&gcwq->lock)
e22bee78 1603{
bd7bdd43 1604 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1605 struct task_struct *task = worker->task;
1606
1607 while (true) {
4e6045f1 1608 /*
e22bee78
TH
1609 * The following call may fail, succeed or succeed
1610 * without actually migrating the task to the cpu if
1611 * it races with cpu hotunplug operation. Verify
1612 * against GCWQ_DISASSOCIATED.
4e6045f1 1613 */
f3421797
TH
1614 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1615 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1616
1617 spin_lock_irq(&gcwq->lock);
1618 if (gcwq->flags & GCWQ_DISASSOCIATED)
1619 return false;
1620 if (task_cpu(task) == gcwq->cpu &&
1621 cpumask_equal(&current->cpus_allowed,
1622 get_cpu_mask(gcwq->cpu)))
1623 return true;
1624 spin_unlock_irq(&gcwq->lock);
1625
5035b20f
TH
1626 /*
1627 * We've raced with CPU hot[un]plug. Give it a breather
1628 * and retry migration. cond_resched() is required here;
1629 * otherwise, we might deadlock against cpu_stop trying to
1630 * bring down the CPU on non-preemptive kernel.
1631 */
e22bee78 1632 cpu_relax();
5035b20f 1633 cond_resched();
e22bee78
TH
1634 }
1635}
1636
25511a47 1637/*
ea1abd61 1638 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1639 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1640 */
1641static void idle_worker_rebind(struct worker *worker)
1642{
1643 struct global_cwq *gcwq = worker->pool->gcwq;
1644
5f7dabfd
LJ
1645 /* CPU may go down again inbetween, clear UNBOUND only on success */
1646 if (worker_maybe_bind_and_lock(worker))
1647 worker_clr_flags(worker, WORKER_UNBOUND);
ea1abd61
LJ
1648
1649 /* rebind complete, become available again */
1650 list_add(&worker->entry, &worker->pool->idle_list);
1651 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1652}
1653
e22bee78 1654/*
25511a47 1655 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1656 * the associated cpu which is coming back online. This is scheduled by
1657 * cpu up but can race with other cpu hotplug operations and may be
1658 * executed twice without intervening cpu down.
e22bee78 1659 */
25511a47 1660static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1661{
1662 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1663 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1664
eab6d828
LJ
1665 if (worker_maybe_bind_and_lock(worker))
1666 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1667
1668 spin_unlock_irq(&gcwq->lock);
1669}
1670
25511a47
TH
1671/**
1672 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1673 * @gcwq: gcwq of interest
1674 *
1675 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1676 * is different for idle and busy ones.
1677 *
ea1abd61
LJ
1678 * Idle ones will be removed from the idle_list and woken up. They will
1679 * add themselves back after completing rebind. This ensures that the
1680 * idle_list doesn't contain any unbound workers when re-bound busy workers
1681 * try to perform local wake-ups for concurrency management.
25511a47 1682 *
ea1abd61
LJ
1683 * Busy workers can rebind after they finish their current work items.
1684 * Queueing the rebind work item at the head of the scheduled list is
1685 * enough. Note that nr_running will be properly bumped as busy workers
1686 * rebind.
25511a47 1687 *
ea1abd61
LJ
1688 * On return, all non-manager workers are scheduled for rebind - see
1689 * manage_workers() for the manager special case. Any idle worker
1690 * including the manager will not appear on @idle_list until rebind is
1691 * complete, making local wake-ups safe.
25511a47
TH
1692 */
1693static void rebind_workers(struct global_cwq *gcwq)
25511a47 1694{
25511a47 1695 struct worker_pool *pool;
ea1abd61 1696 struct worker *worker, *n;
25511a47
TH
1697 struct hlist_node *pos;
1698 int i;
1699
1700 lockdep_assert_held(&gcwq->lock);
1701
1702 for_each_worker_pool(pool, gcwq)
b2eb83d1 1703 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1704
5f7dabfd 1705 /* dequeue and kick idle ones */
25511a47 1706 for_each_worker_pool(pool, gcwq) {
ea1abd61 1707 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1708 /*
1709 * idle workers should be off @pool->idle_list
1710 * until rebind is complete to avoid receiving
1711 * premature local wake-ups.
1712 */
1713 list_del_init(&worker->entry);
25511a47 1714
5f7dabfd
LJ
1715 /*
1716 * worker_thread() will see the above dequeuing
1717 * and call idle_worker_rebind().
1718 */
25511a47
TH
1719 wake_up_process(worker->task);
1720 }
1721 }
1722
ea1abd61 1723 /* rebind busy workers */
25511a47
TH
1724 for_each_busy_worker(worker, i, pos, gcwq) {
1725 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1726 struct workqueue_struct *wq;
25511a47 1727
25511a47
TH
1728 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1729 work_data_bits(rebind_work)))
1730 continue;
1731
25511a47 1732 debug_work_activate(rebind_work);
e2b6a6d5
JK
1733
1734 /*
1735 * wq doesn't really matter but let's keep @worker->pool
1736 * and @cwq->pool consistent for sanity.
1737 */
1738 if (worker_pool_pri(worker->pool))
1739 wq = system_highpri_wq;
1740 else
1741 wq = system_wq;
1742
1743 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1744 worker->scheduled.next,
1745 work_color_to_flags(WORK_NO_COLOR));
25511a47
TH
1746 }
1747}
1748
c34056a3
TH
1749static struct worker *alloc_worker(void)
1750{
1751 struct worker *worker;
1752
1753 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1754 if (worker) {
1755 INIT_LIST_HEAD(&worker->entry);
affee4b2 1756 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1757 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1758 /* on creation a worker is in !idle && prep state */
1759 worker->flags = WORKER_PREP;
c8e55f36 1760 }
c34056a3
TH
1761 return worker;
1762}
1763
1764/**
1765 * create_worker - create a new workqueue worker
63d95a91 1766 * @pool: pool the new worker will belong to
c34056a3 1767 *
63d95a91 1768 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1769 * can be started by calling start_worker() or destroyed using
1770 * destroy_worker().
1771 *
1772 * CONTEXT:
1773 * Might sleep. Does GFP_KERNEL allocations.
1774 *
1775 * RETURNS:
1776 * Pointer to the newly created worker.
1777 */
bc2ae0f5 1778static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1779{
63d95a91 1780 struct global_cwq *gcwq = pool->gcwq;
3270476a 1781 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1782 struct worker *worker = NULL;
f3421797 1783 int id = -1;
c34056a3 1784
8b03ae3c 1785 spin_lock_irq(&gcwq->lock);
bd7bdd43 1786 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1787 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1788 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1789 goto fail;
8b03ae3c 1790 spin_lock_irq(&gcwq->lock);
c34056a3 1791 }
8b03ae3c 1792 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1793
1794 worker = alloc_worker();
1795 if (!worker)
1796 goto fail;
1797
bd7bdd43 1798 worker->pool = pool;
c34056a3
TH
1799 worker->id = id;
1800
bc2ae0f5 1801 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1802 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1803 worker, cpu_to_node(gcwq->cpu),
1804 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1805 else
1806 worker->task = kthread_create(worker_thread, worker,
3270476a 1807 "kworker/u:%d%s", id, pri);
c34056a3
TH
1808 if (IS_ERR(worker->task))
1809 goto fail;
1810
3270476a
TH
1811 if (worker_pool_pri(pool))
1812 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1813
db7bccf4 1814 /*
bc2ae0f5
TH
1815 * Determine CPU binding of the new worker depending on
1816 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1817 * flag remains stable across this function. See the comments
1818 * above the flag definition for details.
1819 *
1820 * As an unbound worker may later become a regular one if CPU comes
1821 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1822 */
bc2ae0f5 1823 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1824 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1825 } else {
db7bccf4 1826 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1827 worker->flags |= WORKER_UNBOUND;
f3421797 1828 }
c34056a3
TH
1829
1830 return worker;
1831fail:
1832 if (id >= 0) {
8b03ae3c 1833 spin_lock_irq(&gcwq->lock);
bd7bdd43 1834 ida_remove(&pool->worker_ida, id);
8b03ae3c 1835 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1836 }
1837 kfree(worker);
1838 return NULL;
1839}
1840
1841/**
1842 * start_worker - start a newly created worker
1843 * @worker: worker to start
1844 *
c8e55f36 1845 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1846 *
1847 * CONTEXT:
8b03ae3c 1848 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1849 */
1850static void start_worker(struct worker *worker)
1851{
cb444766 1852 worker->flags |= WORKER_STARTED;
bd7bdd43 1853 worker->pool->nr_workers++;
c8e55f36 1854 worker_enter_idle(worker);
c34056a3
TH
1855 wake_up_process(worker->task);
1856}
1857
1858/**
1859 * destroy_worker - destroy a workqueue worker
1860 * @worker: worker to be destroyed
1861 *
c8e55f36
TH
1862 * Destroy @worker and adjust @gcwq stats accordingly.
1863 *
1864 * CONTEXT:
1865 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1866 */
1867static void destroy_worker(struct worker *worker)
1868{
bd7bdd43
TH
1869 struct worker_pool *pool = worker->pool;
1870 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1871 int id = worker->id;
1872
1873 /* sanity check frenzy */
1874 BUG_ON(worker->current_work);
affee4b2 1875 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1876
c8e55f36 1877 if (worker->flags & WORKER_STARTED)
bd7bdd43 1878 pool->nr_workers--;
c8e55f36 1879 if (worker->flags & WORKER_IDLE)
bd7bdd43 1880 pool->nr_idle--;
c8e55f36
TH
1881
1882 list_del_init(&worker->entry);
cb444766 1883 worker->flags |= WORKER_DIE;
c8e55f36
TH
1884
1885 spin_unlock_irq(&gcwq->lock);
1886
c34056a3
TH
1887 kthread_stop(worker->task);
1888 kfree(worker);
1889
8b03ae3c 1890 spin_lock_irq(&gcwq->lock);
bd7bdd43 1891 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1892}
1893
63d95a91 1894static void idle_worker_timeout(unsigned long __pool)
e22bee78 1895{
63d95a91
TH
1896 struct worker_pool *pool = (void *)__pool;
1897 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1898
1899 spin_lock_irq(&gcwq->lock);
1900
63d95a91 1901 if (too_many_workers(pool)) {
e22bee78
TH
1902 struct worker *worker;
1903 unsigned long expires;
1904
1905 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1906 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1907 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1908
1909 if (time_before(jiffies, expires))
63d95a91 1910 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1911 else {
1912 /* it's been idle for too long, wake up manager */
11ebea50 1913 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1914 wake_up_worker(pool);
d5abe669 1915 }
e22bee78
TH
1916 }
1917
1918 spin_unlock_irq(&gcwq->lock);
1919}
d5abe669 1920
e22bee78
TH
1921static bool send_mayday(struct work_struct *work)
1922{
1923 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1924 struct workqueue_struct *wq = cwq->wq;
f3421797 1925 unsigned int cpu;
e22bee78
TH
1926
1927 if (!(wq->flags & WQ_RESCUER))
1928 return false;
1929
1930 /* mayday mayday mayday */
bd7bdd43 1931 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1932 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1933 if (cpu == WORK_CPU_UNBOUND)
1934 cpu = 0;
f2e005aa 1935 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1936 wake_up_process(wq->rescuer->task);
1937 return true;
1938}
1939
63d95a91 1940static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1941{
63d95a91
TH
1942 struct worker_pool *pool = (void *)__pool;
1943 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1944 struct work_struct *work;
1945
1946 spin_lock_irq(&gcwq->lock);
1947
63d95a91 1948 if (need_to_create_worker(pool)) {
e22bee78
TH
1949 /*
1950 * We've been trying to create a new worker but
1951 * haven't been successful. We might be hitting an
1952 * allocation deadlock. Send distress signals to
1953 * rescuers.
1954 */
63d95a91 1955 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1956 send_mayday(work);
1da177e4 1957 }
e22bee78
TH
1958
1959 spin_unlock_irq(&gcwq->lock);
1960
63d95a91 1961 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1962}
1963
e22bee78
TH
1964/**
1965 * maybe_create_worker - create a new worker if necessary
63d95a91 1966 * @pool: pool to create a new worker for
e22bee78 1967 *
63d95a91 1968 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1969 * have at least one idle worker on return from this function. If
1970 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1971 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1972 * possible allocation deadlock.
1973 *
1974 * On return, need_to_create_worker() is guaranteed to be false and
1975 * may_start_working() true.
1976 *
1977 * LOCKING:
1978 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1979 * multiple times. Does GFP_KERNEL allocations. Called only from
1980 * manager.
1981 *
1982 * RETURNS:
1983 * false if no action was taken and gcwq->lock stayed locked, true
1984 * otherwise.
1985 */
63d95a91 1986static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1987__releases(&gcwq->lock)
1988__acquires(&gcwq->lock)
1da177e4 1989{
63d95a91
TH
1990 struct global_cwq *gcwq = pool->gcwq;
1991
1992 if (!need_to_create_worker(pool))
e22bee78
TH
1993 return false;
1994restart:
9f9c2364
TH
1995 spin_unlock_irq(&gcwq->lock);
1996
e22bee78 1997 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1998 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1999
2000 while (true) {
2001 struct worker *worker;
2002
bc2ae0f5 2003 worker = create_worker(pool);
e22bee78 2004 if (worker) {
63d95a91 2005 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2006 spin_lock_irq(&gcwq->lock);
2007 start_worker(worker);
63d95a91 2008 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2009 return true;
2010 }
2011
63d95a91 2012 if (!need_to_create_worker(pool))
e22bee78 2013 break;
1da177e4 2014
e22bee78
TH
2015 __set_current_state(TASK_INTERRUPTIBLE);
2016 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2017
63d95a91 2018 if (!need_to_create_worker(pool))
e22bee78
TH
2019 break;
2020 }
2021
63d95a91 2022 del_timer_sync(&pool->mayday_timer);
e22bee78 2023 spin_lock_irq(&gcwq->lock);
63d95a91 2024 if (need_to_create_worker(pool))
e22bee78
TH
2025 goto restart;
2026 return true;
2027}
2028
2029/**
2030 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2031 * @pool: pool to destroy workers for
e22bee78 2032 *
63d95a91 2033 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2034 * IDLE_WORKER_TIMEOUT.
2035 *
2036 * LOCKING:
2037 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2038 * multiple times. Called only from manager.
2039 *
2040 * RETURNS:
2041 * false if no action was taken and gcwq->lock stayed locked, true
2042 * otherwise.
2043 */
63d95a91 2044static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2045{
2046 bool ret = false;
1da177e4 2047
63d95a91 2048 while (too_many_workers(pool)) {
e22bee78
TH
2049 struct worker *worker;
2050 unsigned long expires;
3af24433 2051
63d95a91 2052 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2053 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2054
e22bee78 2055 if (time_before(jiffies, expires)) {
63d95a91 2056 mod_timer(&pool->idle_timer, expires);
3af24433 2057 break;
e22bee78 2058 }
1da177e4 2059
e22bee78
TH
2060 destroy_worker(worker);
2061 ret = true;
1da177e4 2062 }
3af24433 2063
e22bee78
TH
2064 return ret;
2065}
2066
2067/**
2068 * manage_workers - manage worker pool
2069 * @worker: self
2070 *
2071 * Assume the manager role and manage gcwq worker pool @worker belongs
2072 * to. At any given time, there can be only zero or one manager per
2073 * gcwq. The exclusion is handled automatically by this function.
2074 *
2075 * The caller can safely start processing works on false return. On
2076 * true return, it's guaranteed that need_to_create_worker() is false
2077 * and may_start_working() is true.
2078 *
2079 * CONTEXT:
2080 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2081 * multiple times. Does GFP_KERNEL allocations.
2082 *
2083 * RETURNS:
2084 * false if no action was taken and gcwq->lock stayed locked, true if
2085 * some action was taken.
2086 */
2087static bool manage_workers(struct worker *worker)
2088{
63d95a91 2089 struct worker_pool *pool = worker->pool;
e22bee78
TH
2090 bool ret = false;
2091
ee378aa4 2092 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78
TH
2093 return ret;
2094
552a37e9 2095 pool->flags |= POOL_MANAGING_WORKERS;
ee378aa4
LJ
2096
2097 /*
2098 * To simplify both worker management and CPU hotplug, hold off
2099 * management while hotplug is in progress. CPU hotplug path can't
2100 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2101 * lead to idle worker depletion (all become busy thinking someone
2102 * else is managing) which in turn can result in deadlock under
b2eb83d1 2103 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2104 * manager against CPU hotplug.
2105 *
b2eb83d1 2106 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2107 * progress. trylock first without dropping @gcwq->lock.
2108 */
b2eb83d1 2109 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2110 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2111 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2112 /*
2113 * CPU hotplug could have happened while we were waiting
b2eb83d1 2114 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2115 * because manager isn't either on idle or busy list, and
2116 * @gcwq's state and ours could have deviated.
2117 *
b2eb83d1 2118 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2119 * simply try to bind. It will succeed or fail depending
2120 * on @gcwq's current state. Try it and adjust
2121 * %WORKER_UNBOUND accordingly.
2122 */
2123 if (worker_maybe_bind_and_lock(worker))
2124 worker->flags &= ~WORKER_UNBOUND;
2125 else
2126 worker->flags |= WORKER_UNBOUND;
2127
2128 ret = true;
2129 }
2130
11ebea50 2131 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2132
2133 /*
2134 * Destroy and then create so that may_start_working() is true
2135 * on return.
2136 */
63d95a91
TH
2137 ret |= maybe_destroy_workers(pool);
2138 ret |= maybe_create_worker(pool);
e22bee78 2139
552a37e9 2140 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2141 mutex_unlock(&pool->assoc_mutex);
e22bee78
TH
2142 return ret;
2143}
2144
a62428c0
TH
2145/**
2146 * process_one_work - process single work
c34056a3 2147 * @worker: self
a62428c0
TH
2148 * @work: work to process
2149 *
2150 * Process @work. This function contains all the logics necessary to
2151 * process a single work including synchronization against and
2152 * interaction with other workers on the same cpu, queueing and
2153 * flushing. As long as context requirement is met, any worker can
2154 * call this function to process a work.
2155 *
2156 * CONTEXT:
8b03ae3c 2157 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2158 */
c34056a3 2159static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2160__releases(&gcwq->lock)
2161__acquires(&gcwq->lock)
a62428c0 2162{
7e11629d 2163 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2164 struct worker_pool *pool = worker->pool;
2165 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2166 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2167 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2168 work_func_t f = work->func;
73f53c4a 2169 int work_color;
7e11629d 2170 struct worker *collision;
a62428c0
TH
2171#ifdef CONFIG_LOCKDEP
2172 /*
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2178 */
4d82a1de
PZ
2179 struct lockdep_map lockdep_map;
2180
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2182#endif
6fec10a1
TH
2183 /*
2184 * Ensure we're on the correct CPU. DISASSOCIATED test is
2185 * necessary to avoid spurious warnings from rescuers servicing the
2186 * unbound or a disassociated gcwq.
2187 */
5f7dabfd 2188 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
6fec10a1 2189 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2190 raw_smp_processor_id() != gcwq->cpu);
2191
7e11629d
TH
2192 /*
2193 * A single work shouldn't be executed concurrently by
2194 * multiple workers on a single cpu. Check whether anyone is
2195 * already processing the work. If so, defer the work to the
2196 * currently executing one.
2197 */
2198 collision = __find_worker_executing_work(gcwq, bwh, work);
2199 if (unlikely(collision)) {
2200 move_linked_works(work, &collision->scheduled, NULL);
2201 return;
2202 }
2203
8930caba 2204 /* claim and dequeue */
a62428c0 2205 debug_work_deactivate(work);
c8e55f36 2206 hlist_add_head(&worker->hentry, bwh);
c34056a3 2207 worker->current_work = work;
8cca0eea 2208 worker->current_cwq = cwq;
73f53c4a 2209 work_color = get_work_color(work);
7a22ad75 2210
a62428c0
TH
2211 list_del_init(&work->entry);
2212
fb0e7beb
TH
2213 /*
2214 * CPU intensive works don't participate in concurrency
2215 * management. They're the scheduler's responsibility.
2216 */
2217 if (unlikely(cpu_intensive))
2218 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2219
974271c4
TH
2220 /*
2221 * Unbound gcwq isn't concurrency managed and work items should be
2222 * executed ASAP. Wake up another worker if necessary.
2223 */
63d95a91
TH
2224 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2225 wake_up_worker(pool);
974271c4 2226
8930caba 2227 /*
23657bb1
TH
2228 * Record the last CPU and clear PENDING which should be the last
2229 * update to @work. Also, do this inside @gcwq->lock so that
2230 * PENDING and queued state changes happen together while IRQ is
2231 * disabled.
8930caba 2232 */
8930caba 2233 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2234
8930caba 2235 spin_unlock_irq(&gcwq->lock);
959d1af8 2236
e159489b 2237 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2238 lock_map_acquire(&lockdep_map);
e36c886a 2239 trace_workqueue_execute_start(work);
a62428c0 2240 f(work);
e36c886a
AV
2241 /*
2242 * While we must be careful to not use "work" after this, the trace
2243 * point will only record its address.
2244 */
2245 trace_workqueue_execute_end(work);
a62428c0
TH
2246 lock_map_release(&lockdep_map);
2247 lock_map_release(&cwq->wq->lockdep_map);
2248
2249 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2250 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2251 " last function: %pf\n",
2252 current->comm, preempt_count(), task_pid_nr(current), f);
a62428c0
TH
2253 debug_show_held_locks(current);
2254 dump_stack();
2255 }
2256
8b03ae3c 2257 spin_lock_irq(&gcwq->lock);
a62428c0 2258
fb0e7beb
TH
2259 /* clear cpu intensive status */
2260 if (unlikely(cpu_intensive))
2261 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2262
a62428c0 2263 /* we're done with it, release */
c8e55f36 2264 hlist_del_init(&worker->hentry);
c34056a3 2265 worker->current_work = NULL;
8cca0eea 2266 worker->current_cwq = NULL;
8a2e8e5d 2267 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2268}
2269
affee4b2
TH
2270/**
2271 * process_scheduled_works - process scheduled works
2272 * @worker: self
2273 *
2274 * Process all scheduled works. Please note that the scheduled list
2275 * may change while processing a work, so this function repeatedly
2276 * fetches a work from the top and executes it.
2277 *
2278 * CONTEXT:
8b03ae3c 2279 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2280 * multiple times.
2281 */
2282static void process_scheduled_works(struct worker *worker)
1da177e4 2283{
affee4b2
TH
2284 while (!list_empty(&worker->scheduled)) {
2285 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2286 struct work_struct, entry);
c34056a3 2287 process_one_work(worker, work);
1da177e4 2288 }
1da177e4
LT
2289}
2290
4690c4ab
TH
2291/**
2292 * worker_thread - the worker thread function
c34056a3 2293 * @__worker: self
4690c4ab 2294 *
e22bee78
TH
2295 * The gcwq worker thread function. There's a single dynamic pool of
2296 * these per each cpu. These workers process all works regardless of
2297 * their specific target workqueue. The only exception is works which
2298 * belong to workqueues with a rescuer which will be explained in
2299 * rescuer_thread().
4690c4ab 2300 */
c34056a3 2301static int worker_thread(void *__worker)
1da177e4 2302{
c34056a3 2303 struct worker *worker = __worker;
bd7bdd43
TH
2304 struct worker_pool *pool = worker->pool;
2305 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2306
e22bee78
TH
2307 /* tell the scheduler that this is a workqueue worker */
2308 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2309woke_up:
c8e55f36 2310 spin_lock_irq(&gcwq->lock);
1da177e4 2311
5f7dabfd
LJ
2312 /* we are off idle list if destruction or rebind is requested */
2313 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2314 spin_unlock_irq(&gcwq->lock);
25511a47 2315
5f7dabfd 2316 /* if DIE is set, destruction is requested */
25511a47
TH
2317 if (worker->flags & WORKER_DIE) {
2318 worker->task->flags &= ~PF_WQ_WORKER;
2319 return 0;
2320 }
2321
5f7dabfd 2322 /* otherwise, rebind */
25511a47
TH
2323 idle_worker_rebind(worker);
2324 goto woke_up;
c8e55f36 2325 }
affee4b2 2326
c8e55f36 2327 worker_leave_idle(worker);
db7bccf4 2328recheck:
e22bee78 2329 /* no more worker necessary? */
63d95a91 2330 if (!need_more_worker(pool))
e22bee78
TH
2331 goto sleep;
2332
2333 /* do we need to manage? */
63d95a91 2334 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2335 goto recheck;
2336
c8e55f36
TH
2337 /*
2338 * ->scheduled list can only be filled while a worker is
2339 * preparing to process a work or actually processing it.
2340 * Make sure nobody diddled with it while I was sleeping.
2341 */
2342 BUG_ON(!list_empty(&worker->scheduled));
2343
e22bee78
TH
2344 /*
2345 * When control reaches this point, we're guaranteed to have
2346 * at least one idle worker or that someone else has already
2347 * assumed the manager role.
2348 */
2349 worker_clr_flags(worker, WORKER_PREP);
2350
2351 do {
c8e55f36 2352 struct work_struct *work =
bd7bdd43 2353 list_first_entry(&pool->worklist,
c8e55f36
TH
2354 struct work_struct, entry);
2355
2356 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2357 /* optimization path, not strictly necessary */
2358 process_one_work(worker, work);
2359 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2360 process_scheduled_works(worker);
c8e55f36
TH
2361 } else {
2362 move_linked_works(work, &worker->scheduled, NULL);
2363 process_scheduled_works(worker);
affee4b2 2364 }
63d95a91 2365 } while (keep_working(pool));
e22bee78
TH
2366
2367 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2368sleep:
63d95a91 2369 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2370 goto recheck;
d313dd85 2371
c8e55f36 2372 /*
e22bee78
TH
2373 * gcwq->lock is held and there's no work to process and no
2374 * need to manage, sleep. Workers are woken up only while
2375 * holding gcwq->lock or from local cpu, so setting the
2376 * current state before releasing gcwq->lock is enough to
2377 * prevent losing any event.
c8e55f36
TH
2378 */
2379 worker_enter_idle(worker);
2380 __set_current_state(TASK_INTERRUPTIBLE);
2381 spin_unlock_irq(&gcwq->lock);
2382 schedule();
2383 goto woke_up;
1da177e4
LT
2384}
2385
e22bee78
TH
2386/**
2387 * rescuer_thread - the rescuer thread function
2388 * @__wq: the associated workqueue
2389 *
2390 * Workqueue rescuer thread function. There's one rescuer for each
2391 * workqueue which has WQ_RESCUER set.
2392 *
2393 * Regular work processing on a gcwq may block trying to create a new
2394 * worker which uses GFP_KERNEL allocation which has slight chance of
2395 * developing into deadlock if some works currently on the same queue
2396 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2397 * the problem rescuer solves.
2398 *
2399 * When such condition is possible, the gcwq summons rescuers of all
2400 * workqueues which have works queued on the gcwq and let them process
2401 * those works so that forward progress can be guaranteed.
2402 *
2403 * This should happen rarely.
2404 */
2405static int rescuer_thread(void *__wq)
2406{
2407 struct workqueue_struct *wq = __wq;
2408 struct worker *rescuer = wq->rescuer;
2409 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2410 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2411 unsigned int cpu;
2412
2413 set_user_nice(current, RESCUER_NICE_LEVEL);
2414repeat:
2415 set_current_state(TASK_INTERRUPTIBLE);
2416
2417 if (kthread_should_stop())
2418 return 0;
2419
f3421797
TH
2420 /*
2421 * See whether any cpu is asking for help. Unbounded
2422 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2423 */
f2e005aa 2424 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2425 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2426 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2427 struct worker_pool *pool = cwq->pool;
2428 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2429 struct work_struct *work, *n;
2430
2431 __set_current_state(TASK_RUNNING);
f2e005aa 2432 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2433
2434 /* migrate to the target cpu if possible */
bd7bdd43 2435 rescuer->pool = pool;
e22bee78
TH
2436 worker_maybe_bind_and_lock(rescuer);
2437
2438 /*
2439 * Slurp in all works issued via this workqueue and
2440 * process'em.
2441 */
2442 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2443 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2444 if (get_work_cwq(work) == cwq)
2445 move_linked_works(work, scheduled, &n);
2446
2447 process_scheduled_works(rescuer);
7576958a
TH
2448
2449 /*
2450 * Leave this gcwq. If keep_working() is %true, notify a
2451 * regular worker; otherwise, we end up with 0 concurrency
2452 * and stalling the execution.
2453 */
63d95a91
TH
2454 if (keep_working(pool))
2455 wake_up_worker(pool);
7576958a 2456
e22bee78
TH
2457 spin_unlock_irq(&gcwq->lock);
2458 }
2459
2460 schedule();
2461 goto repeat;
1da177e4
LT
2462}
2463
fc2e4d70
ON
2464struct wq_barrier {
2465 struct work_struct work;
2466 struct completion done;
2467};
2468
2469static void wq_barrier_func(struct work_struct *work)
2470{
2471 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2472 complete(&barr->done);
2473}
2474
4690c4ab
TH
2475/**
2476 * insert_wq_barrier - insert a barrier work
2477 * @cwq: cwq to insert barrier into
2478 * @barr: wq_barrier to insert
affee4b2
TH
2479 * @target: target work to attach @barr to
2480 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2481 *
affee4b2
TH
2482 * @barr is linked to @target such that @barr is completed only after
2483 * @target finishes execution. Please note that the ordering
2484 * guarantee is observed only with respect to @target and on the local
2485 * cpu.
2486 *
2487 * Currently, a queued barrier can't be canceled. This is because
2488 * try_to_grab_pending() can't determine whether the work to be
2489 * grabbed is at the head of the queue and thus can't clear LINKED
2490 * flag of the previous work while there must be a valid next work
2491 * after a work with LINKED flag set.
2492 *
2493 * Note that when @worker is non-NULL, @target may be modified
2494 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2495 *
2496 * CONTEXT:
8b03ae3c 2497 * spin_lock_irq(gcwq->lock).
4690c4ab 2498 */
83c22520 2499static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2500 struct wq_barrier *barr,
2501 struct work_struct *target, struct worker *worker)
fc2e4d70 2502{
affee4b2
TH
2503 struct list_head *head;
2504 unsigned int linked = 0;
2505
dc186ad7 2506 /*
8b03ae3c 2507 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2508 * as we know for sure that this will not trigger any of the
2509 * checks and call back into the fixup functions where we
2510 * might deadlock.
2511 */
ca1cab37 2512 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2513 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2514 init_completion(&barr->done);
83c22520 2515
affee4b2
TH
2516 /*
2517 * If @target is currently being executed, schedule the
2518 * barrier to the worker; otherwise, put it after @target.
2519 */
2520 if (worker)
2521 head = worker->scheduled.next;
2522 else {
2523 unsigned long *bits = work_data_bits(target);
2524
2525 head = target->entry.next;
2526 /* there can already be other linked works, inherit and set */
2527 linked = *bits & WORK_STRUCT_LINKED;
2528 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2529 }
2530
dc186ad7 2531 debug_work_activate(&barr->work);
affee4b2
TH
2532 insert_work(cwq, &barr->work, head,
2533 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2534}
2535
73f53c4a
TH
2536/**
2537 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2538 * @wq: workqueue being flushed
2539 * @flush_color: new flush color, < 0 for no-op
2540 * @work_color: new work color, < 0 for no-op
2541 *
2542 * Prepare cwqs for workqueue flushing.
2543 *
2544 * If @flush_color is non-negative, flush_color on all cwqs should be
2545 * -1. If no cwq has in-flight commands at the specified color, all
2546 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2547 * has in flight commands, its cwq->flush_color is set to
2548 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2549 * wakeup logic is armed and %true is returned.
2550 *
2551 * The caller should have initialized @wq->first_flusher prior to
2552 * calling this function with non-negative @flush_color. If
2553 * @flush_color is negative, no flush color update is done and %false
2554 * is returned.
2555 *
2556 * If @work_color is non-negative, all cwqs should have the same
2557 * work_color which is previous to @work_color and all will be
2558 * advanced to @work_color.
2559 *
2560 * CONTEXT:
2561 * mutex_lock(wq->flush_mutex).
2562 *
2563 * RETURNS:
2564 * %true if @flush_color >= 0 and there's something to flush. %false
2565 * otherwise.
2566 */
2567static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2568 int flush_color, int work_color)
1da177e4 2569{
73f53c4a
TH
2570 bool wait = false;
2571 unsigned int cpu;
1da177e4 2572
73f53c4a
TH
2573 if (flush_color >= 0) {
2574 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2575 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2576 }
2355b70f 2577
f3421797 2578 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2579 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2580 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2581
8b03ae3c 2582 spin_lock_irq(&gcwq->lock);
83c22520 2583
73f53c4a
TH
2584 if (flush_color >= 0) {
2585 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2586
73f53c4a
TH
2587 if (cwq->nr_in_flight[flush_color]) {
2588 cwq->flush_color = flush_color;
2589 atomic_inc(&wq->nr_cwqs_to_flush);
2590 wait = true;
2591 }
2592 }
1da177e4 2593
73f53c4a
TH
2594 if (work_color >= 0) {
2595 BUG_ON(work_color != work_next_color(cwq->work_color));
2596 cwq->work_color = work_color;
2597 }
1da177e4 2598
8b03ae3c 2599 spin_unlock_irq(&gcwq->lock);
1da177e4 2600 }
2355b70f 2601
73f53c4a
TH
2602 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2603 complete(&wq->first_flusher->done);
14441960 2604
73f53c4a 2605 return wait;
1da177e4
LT
2606}
2607
0fcb78c2 2608/**
1da177e4 2609 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2610 * @wq: workqueue to flush
1da177e4
LT
2611 *
2612 * Forces execution of the workqueue and blocks until its completion.
2613 * This is typically used in driver shutdown handlers.
2614 *
fc2e4d70
ON
2615 * We sleep until all works which were queued on entry have been handled,
2616 * but we are not livelocked by new incoming ones.
1da177e4 2617 */
7ad5b3a5 2618void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2619{
73f53c4a
TH
2620 struct wq_flusher this_flusher = {
2621 .list = LIST_HEAD_INIT(this_flusher.list),
2622 .flush_color = -1,
2623 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2624 };
2625 int next_color;
1da177e4 2626
3295f0ef
IM
2627 lock_map_acquire(&wq->lockdep_map);
2628 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2629
2630 mutex_lock(&wq->flush_mutex);
2631
2632 /*
2633 * Start-to-wait phase
2634 */
2635 next_color = work_next_color(wq->work_color);
2636
2637 if (next_color != wq->flush_color) {
2638 /*
2639 * Color space is not full. The current work_color
2640 * becomes our flush_color and work_color is advanced
2641 * by one.
2642 */
2643 BUG_ON(!list_empty(&wq->flusher_overflow));
2644 this_flusher.flush_color = wq->work_color;
2645 wq->work_color = next_color;
2646
2647 if (!wq->first_flusher) {
2648 /* no flush in progress, become the first flusher */
2649 BUG_ON(wq->flush_color != this_flusher.flush_color);
2650
2651 wq->first_flusher = &this_flusher;
2652
2653 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2654 wq->work_color)) {
2655 /* nothing to flush, done */
2656 wq->flush_color = next_color;
2657 wq->first_flusher = NULL;
2658 goto out_unlock;
2659 }
2660 } else {
2661 /* wait in queue */
2662 BUG_ON(wq->flush_color == this_flusher.flush_color);
2663 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2664 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2665 }
2666 } else {
2667 /*
2668 * Oops, color space is full, wait on overflow queue.
2669 * The next flush completion will assign us
2670 * flush_color and transfer to flusher_queue.
2671 */
2672 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2673 }
2674
2675 mutex_unlock(&wq->flush_mutex);
2676
2677 wait_for_completion(&this_flusher.done);
2678
2679 /*
2680 * Wake-up-and-cascade phase
2681 *
2682 * First flushers are responsible for cascading flushes and
2683 * handling overflow. Non-first flushers can simply return.
2684 */
2685 if (wq->first_flusher != &this_flusher)
2686 return;
2687
2688 mutex_lock(&wq->flush_mutex);
2689
4ce48b37
TH
2690 /* we might have raced, check again with mutex held */
2691 if (wq->first_flusher != &this_flusher)
2692 goto out_unlock;
2693
73f53c4a
TH
2694 wq->first_flusher = NULL;
2695
2696 BUG_ON(!list_empty(&this_flusher.list));
2697 BUG_ON(wq->flush_color != this_flusher.flush_color);
2698
2699 while (true) {
2700 struct wq_flusher *next, *tmp;
2701
2702 /* complete all the flushers sharing the current flush color */
2703 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2704 if (next->flush_color != wq->flush_color)
2705 break;
2706 list_del_init(&next->list);
2707 complete(&next->done);
2708 }
2709
2710 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2711 wq->flush_color != work_next_color(wq->work_color));
2712
2713 /* this flush_color is finished, advance by one */
2714 wq->flush_color = work_next_color(wq->flush_color);
2715
2716 /* one color has been freed, handle overflow queue */
2717 if (!list_empty(&wq->flusher_overflow)) {
2718 /*
2719 * Assign the same color to all overflowed
2720 * flushers, advance work_color and append to
2721 * flusher_queue. This is the start-to-wait
2722 * phase for these overflowed flushers.
2723 */
2724 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2725 tmp->flush_color = wq->work_color;
2726
2727 wq->work_color = work_next_color(wq->work_color);
2728
2729 list_splice_tail_init(&wq->flusher_overflow,
2730 &wq->flusher_queue);
2731 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2732 }
2733
2734 if (list_empty(&wq->flusher_queue)) {
2735 BUG_ON(wq->flush_color != wq->work_color);
2736 break;
2737 }
2738
2739 /*
2740 * Need to flush more colors. Make the next flusher
2741 * the new first flusher and arm cwqs.
2742 */
2743 BUG_ON(wq->flush_color == wq->work_color);
2744 BUG_ON(wq->flush_color != next->flush_color);
2745
2746 list_del_init(&next->list);
2747 wq->first_flusher = next;
2748
2749 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2750 break;
2751
2752 /*
2753 * Meh... this color is already done, clear first
2754 * flusher and repeat cascading.
2755 */
2756 wq->first_flusher = NULL;
2757 }
2758
2759out_unlock:
2760 mutex_unlock(&wq->flush_mutex);
1da177e4 2761}
ae90dd5d 2762EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2763
9c5a2ba7
TH
2764/**
2765 * drain_workqueue - drain a workqueue
2766 * @wq: workqueue to drain
2767 *
2768 * Wait until the workqueue becomes empty. While draining is in progress,
2769 * only chain queueing is allowed. IOW, only currently pending or running
2770 * work items on @wq can queue further work items on it. @wq is flushed
2771 * repeatedly until it becomes empty. The number of flushing is detemined
2772 * by the depth of chaining and should be relatively short. Whine if it
2773 * takes too long.
2774 */
2775void drain_workqueue(struct workqueue_struct *wq)
2776{
2777 unsigned int flush_cnt = 0;
2778 unsigned int cpu;
2779
2780 /*
2781 * __queue_work() needs to test whether there are drainers, is much
2782 * hotter than drain_workqueue() and already looks at @wq->flags.
2783 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2784 */
2785 spin_lock(&workqueue_lock);
2786 if (!wq->nr_drainers++)
2787 wq->flags |= WQ_DRAINING;
2788 spin_unlock(&workqueue_lock);
2789reflush:
2790 flush_workqueue(wq);
2791
2792 for_each_cwq_cpu(cpu, wq) {
2793 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2794 bool drained;
9c5a2ba7 2795
bd7bdd43 2796 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2797 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2798 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2799
2800 if (drained)
9c5a2ba7
TH
2801 continue;
2802
2803 if (++flush_cnt == 10 ||
2804 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2805 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2806 wq->name, flush_cnt);
9c5a2ba7
TH
2807 goto reflush;
2808 }
2809
2810 spin_lock(&workqueue_lock);
2811 if (!--wq->nr_drainers)
2812 wq->flags &= ~WQ_DRAINING;
2813 spin_unlock(&workqueue_lock);
2814}
2815EXPORT_SYMBOL_GPL(drain_workqueue);
2816
606a5020 2817static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2818{
affee4b2 2819 struct worker *worker = NULL;
8b03ae3c 2820 struct global_cwq *gcwq;
db700897 2821 struct cpu_workqueue_struct *cwq;
db700897
ON
2822
2823 might_sleep();
7a22ad75
TH
2824 gcwq = get_work_gcwq(work);
2825 if (!gcwq)
baf59022 2826 return false;
db700897 2827
8b03ae3c 2828 spin_lock_irq(&gcwq->lock);
db700897
ON
2829 if (!list_empty(&work->entry)) {
2830 /*
2831 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2832 * If it was re-queued to a different gcwq under us, we
2833 * are not going to wait.
db700897
ON
2834 */
2835 smp_rmb();
7a22ad75 2836 cwq = get_work_cwq(work);
bd7bdd43 2837 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2838 goto already_gone;
606a5020 2839 } else {
7a22ad75 2840 worker = find_worker_executing_work(gcwq, work);
affee4b2 2841 if (!worker)
4690c4ab 2842 goto already_gone;
7a22ad75 2843 cwq = worker->current_cwq;
606a5020 2844 }
db700897 2845
baf59022 2846 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2847 spin_unlock_irq(&gcwq->lock);
7a22ad75 2848
e159489b
TH
2849 /*
2850 * If @max_active is 1 or rescuer is in use, flushing another work
2851 * item on the same workqueue may lead to deadlock. Make sure the
2852 * flusher is not running on the same workqueue by verifying write
2853 * access.
2854 */
2855 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2856 lock_map_acquire(&cwq->wq->lockdep_map);
2857 else
2858 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2859 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2860
401a8d04 2861 return true;
4690c4ab 2862already_gone:
8b03ae3c 2863 spin_unlock_irq(&gcwq->lock);
401a8d04 2864 return false;
db700897 2865}
baf59022
TH
2866
2867/**
2868 * flush_work - wait for a work to finish executing the last queueing instance
2869 * @work: the work to flush
2870 *
606a5020
TH
2871 * Wait until @work has finished execution. @work is guaranteed to be idle
2872 * on return if it hasn't been requeued since flush started.
baf59022
TH
2873 *
2874 * RETURNS:
2875 * %true if flush_work() waited for the work to finish execution,
2876 * %false if it was already idle.
2877 */
2878bool flush_work(struct work_struct *work)
2879{
2880 struct wq_barrier barr;
2881
0976dfc1
SB
2882 lock_map_acquire(&work->lockdep_map);
2883 lock_map_release(&work->lockdep_map);
2884
606a5020 2885 if (start_flush_work(work, &barr)) {
baf59022
TH
2886 wait_for_completion(&barr.done);
2887 destroy_work_on_stack(&barr.work);
2888 return true;
606a5020 2889 } else {
401a8d04 2890 return false;
09383498 2891 }
09383498 2892}
606a5020 2893EXPORT_SYMBOL_GPL(flush_work);
09383498 2894
36e227d2 2895static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2896{
bbb68dfa 2897 unsigned long flags;
1f1f642e
ON
2898 int ret;
2899
2900 do {
bbb68dfa
TH
2901 ret = try_to_grab_pending(work, is_dwork, &flags);
2902 /*
2903 * If someone else is canceling, wait for the same event it
2904 * would be waiting for before retrying.
2905 */
2906 if (unlikely(ret == -ENOENT))
606a5020 2907 flush_work(work);
1f1f642e
ON
2908 } while (unlikely(ret < 0));
2909
bbb68dfa
TH
2910 /* tell other tasks trying to grab @work to back off */
2911 mark_work_canceling(work);
2912 local_irq_restore(flags);
2913
606a5020 2914 flush_work(work);
7a22ad75 2915 clear_work_data(work);
1f1f642e
ON
2916 return ret;
2917}
2918
6e84d644 2919/**
401a8d04
TH
2920 * cancel_work_sync - cancel a work and wait for it to finish
2921 * @work: the work to cancel
6e84d644 2922 *
401a8d04
TH
2923 * Cancel @work and wait for its execution to finish. This function
2924 * can be used even if the work re-queues itself or migrates to
2925 * another workqueue. On return from this function, @work is
2926 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2927 *
401a8d04
TH
2928 * cancel_work_sync(&delayed_work->work) must not be used for
2929 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2930 *
401a8d04 2931 * The caller must ensure that the workqueue on which @work was last
6e84d644 2932 * queued can't be destroyed before this function returns.
401a8d04
TH
2933 *
2934 * RETURNS:
2935 * %true if @work was pending, %false otherwise.
6e84d644 2936 */
401a8d04 2937bool cancel_work_sync(struct work_struct *work)
6e84d644 2938{
36e227d2 2939 return __cancel_work_timer(work, false);
b89deed3 2940}
28e53bdd 2941EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2942
6e84d644 2943/**
401a8d04
TH
2944 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2945 * @dwork: the delayed work to flush
6e84d644 2946 *
401a8d04
TH
2947 * Delayed timer is cancelled and the pending work is queued for
2948 * immediate execution. Like flush_work(), this function only
2949 * considers the last queueing instance of @dwork.
1f1f642e 2950 *
401a8d04
TH
2951 * RETURNS:
2952 * %true if flush_work() waited for the work to finish execution,
2953 * %false if it was already idle.
6e84d644 2954 */
401a8d04
TH
2955bool flush_delayed_work(struct delayed_work *dwork)
2956{
8930caba 2957 local_irq_disable();
401a8d04 2958 if (del_timer_sync(&dwork->timer))
1265057f 2959 __queue_work(dwork->cpu,
401a8d04 2960 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2961 local_irq_enable();
401a8d04
TH
2962 return flush_work(&dwork->work);
2963}
2964EXPORT_SYMBOL(flush_delayed_work);
2965
57b30ae7
TH
2966/**
2967 * cancel_delayed_work - cancel a delayed work
2968 * @dwork: delayed_work to cancel
2969 *
2970 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2971 * and canceled; %false if wasn't pending. Note that the work callback
2972 * function may still be running on return, unless it returns %true and the
2973 * work doesn't re-arm itself. Explicitly flush or use
2974 * cancel_delayed_work_sync() to wait on it.
2975 *
2976 * This function is safe to call from any context including IRQ handler.
2977 */
2978bool cancel_delayed_work(struct delayed_work *dwork)
2979{
2980 unsigned long flags;
2981 int ret;
2982
2983 do {
2984 ret = try_to_grab_pending(&dwork->work, true, &flags);
2985 } while (unlikely(ret == -EAGAIN));
2986
2987 if (unlikely(ret < 0))
2988 return false;
2989
2990 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2991 local_irq_restore(flags);
2992 return true;
2993}
2994EXPORT_SYMBOL(cancel_delayed_work);
2995
401a8d04
TH
2996/**
2997 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2998 * @dwork: the delayed work cancel
2999 *
3000 * This is cancel_work_sync() for delayed works.
3001 *
3002 * RETURNS:
3003 * %true if @dwork was pending, %false otherwise.
3004 */
3005bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3006{
36e227d2 3007 return __cancel_work_timer(&dwork->work, true);
6e84d644 3008}
f5a421a4 3009EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3010
d4283e93 3011/**
0a13c00e
TH
3012 * schedule_work_on - put work task on a specific cpu
3013 * @cpu: cpu to put the work task on
3014 * @work: job to be done
3015 *
3016 * This puts a job on a specific cpu
3017 */
d4283e93 3018bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3019{
3020 return queue_work_on(cpu, system_wq, work);
3021}
3022EXPORT_SYMBOL(schedule_work_on);
3023
0fcb78c2
REB
3024/**
3025 * schedule_work - put work task in global workqueue
3026 * @work: job to be done
3027 *
d4283e93
TH
3028 * Returns %false if @work was already on the kernel-global workqueue and
3029 * %true otherwise.
5b0f437d
BVA
3030 *
3031 * This puts a job in the kernel-global workqueue if it was not already
3032 * queued and leaves it in the same position on the kernel-global
3033 * workqueue otherwise.
0fcb78c2 3034 */
d4283e93 3035bool schedule_work(struct work_struct *work)
1da177e4 3036{
d320c038 3037 return queue_work(system_wq, work);
1da177e4 3038}
ae90dd5d 3039EXPORT_SYMBOL(schedule_work);
1da177e4 3040
0a13c00e
TH
3041/**
3042 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3043 * @cpu: cpu to use
3044 * @dwork: job to be done
3045 * @delay: number of jiffies to wait
c1a220e7 3046 *
0a13c00e
TH
3047 * After waiting for a given time this puts a job in the kernel-global
3048 * workqueue on the specified CPU.
c1a220e7 3049 */
d4283e93
TH
3050bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3051 unsigned long delay)
c1a220e7 3052{
0a13c00e 3053 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3054}
0a13c00e 3055EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3056
0fcb78c2
REB
3057/**
3058 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3059 * @dwork: job to be done
3060 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3061 *
3062 * After waiting for a given time this puts a job in the kernel-global
3063 * workqueue.
3064 */
d4283e93 3065bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3066{
d320c038 3067 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3068}
ae90dd5d 3069EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3070
b6136773 3071/**
31ddd871 3072 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3073 * @func: the function to call
b6136773 3074 *
31ddd871
TH
3075 * schedule_on_each_cpu() executes @func on each online CPU using the
3076 * system workqueue and blocks until all CPUs have completed.
b6136773 3077 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3078 *
3079 * RETURNS:
3080 * 0 on success, -errno on failure.
b6136773 3081 */
65f27f38 3082int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3083{
3084 int cpu;
38f51568 3085 struct work_struct __percpu *works;
15316ba8 3086
b6136773
AM
3087 works = alloc_percpu(struct work_struct);
3088 if (!works)
15316ba8 3089 return -ENOMEM;
b6136773 3090
93981800
TH
3091 get_online_cpus();
3092
15316ba8 3093 for_each_online_cpu(cpu) {
9bfb1839
IM
3094 struct work_struct *work = per_cpu_ptr(works, cpu);
3095
3096 INIT_WORK(work, func);
b71ab8c2 3097 schedule_work_on(cpu, work);
65a64464 3098 }
93981800
TH
3099
3100 for_each_online_cpu(cpu)
3101 flush_work(per_cpu_ptr(works, cpu));
3102
95402b38 3103 put_online_cpus();
b6136773 3104 free_percpu(works);
15316ba8
CL
3105 return 0;
3106}
3107
eef6a7d5
AS
3108/**
3109 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3110 *
3111 * Forces execution of the kernel-global workqueue and blocks until its
3112 * completion.
3113 *
3114 * Think twice before calling this function! It's very easy to get into
3115 * trouble if you don't take great care. Either of the following situations
3116 * will lead to deadlock:
3117 *
3118 * One of the work items currently on the workqueue needs to acquire
3119 * a lock held by your code or its caller.
3120 *
3121 * Your code is running in the context of a work routine.
3122 *
3123 * They will be detected by lockdep when they occur, but the first might not
3124 * occur very often. It depends on what work items are on the workqueue and
3125 * what locks they need, which you have no control over.
3126 *
3127 * In most situations flushing the entire workqueue is overkill; you merely
3128 * need to know that a particular work item isn't queued and isn't running.
3129 * In such cases you should use cancel_delayed_work_sync() or
3130 * cancel_work_sync() instead.
3131 */
1da177e4
LT
3132void flush_scheduled_work(void)
3133{
d320c038 3134 flush_workqueue(system_wq);
1da177e4 3135}
ae90dd5d 3136EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3137
1fa44eca
JB
3138/**
3139 * execute_in_process_context - reliably execute the routine with user context
3140 * @fn: the function to execute
1fa44eca
JB
3141 * @ew: guaranteed storage for the execute work structure (must
3142 * be available when the work executes)
3143 *
3144 * Executes the function immediately if process context is available,
3145 * otherwise schedules the function for delayed execution.
3146 *
3147 * Returns: 0 - function was executed
3148 * 1 - function was scheduled for execution
3149 */
65f27f38 3150int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3151{
3152 if (!in_interrupt()) {
65f27f38 3153 fn(&ew->work);
1fa44eca
JB
3154 return 0;
3155 }
3156
65f27f38 3157 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3158 schedule_work(&ew->work);
3159
3160 return 1;
3161}
3162EXPORT_SYMBOL_GPL(execute_in_process_context);
3163
1da177e4
LT
3164int keventd_up(void)
3165{
d320c038 3166 return system_wq != NULL;
1da177e4
LT
3167}
3168
bdbc5dd7 3169static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3170{
65a64464 3171 /*
0f900049
TH
3172 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3173 * Make sure that the alignment isn't lower than that of
3174 * unsigned long long.
65a64464 3175 */
0f900049
TH
3176 const size_t size = sizeof(struct cpu_workqueue_struct);
3177 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3178 __alignof__(unsigned long long));
65a64464 3179
e06ffa1e 3180 if (!(wq->flags & WQ_UNBOUND))
f3421797 3181 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3182 else {
f3421797
TH
3183 void *ptr;
3184
3185 /*
3186 * Allocate enough room to align cwq and put an extra
3187 * pointer at the end pointing back to the originally
3188 * allocated pointer which will be used for free.
3189 */
3190 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3191 if (ptr) {
3192 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3193 *(void **)(wq->cpu_wq.single + 1) = ptr;
3194 }
bdbc5dd7 3195 }
f3421797 3196
0415b00d 3197 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3198 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3199 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3200}
3201
bdbc5dd7 3202static void free_cwqs(struct workqueue_struct *wq)
0f900049 3203{
e06ffa1e 3204 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3205 free_percpu(wq->cpu_wq.pcpu);
3206 else if (wq->cpu_wq.single) {
3207 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3208 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3209 }
0f900049
TH
3210}
3211
f3421797
TH
3212static int wq_clamp_max_active(int max_active, unsigned int flags,
3213 const char *name)
b71ab8c2 3214{
f3421797
TH
3215 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3216
3217 if (max_active < 1 || max_active > lim)
044c782c
VI
3218 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3219 max_active, name, 1, lim);
b71ab8c2 3220
f3421797 3221 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3222}
3223
b196be89 3224struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3225 unsigned int flags,
3226 int max_active,
3227 struct lock_class_key *key,
b196be89 3228 const char *lock_name, ...)
1da177e4 3229{
b196be89 3230 va_list args, args1;
1da177e4 3231 struct workqueue_struct *wq;
c34056a3 3232 unsigned int cpu;
b196be89
TH
3233 size_t namelen;
3234
3235 /* determine namelen, allocate wq and format name */
3236 va_start(args, lock_name);
3237 va_copy(args1, args);
3238 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3239
3240 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3241 if (!wq)
3242 goto err;
3243
3244 vsnprintf(wq->name, namelen, fmt, args1);
3245 va_end(args);
3246 va_end(args1);
1da177e4 3247
6370a6ad
TH
3248 /*
3249 * Workqueues which may be used during memory reclaim should
3250 * have a rescuer to guarantee forward progress.
3251 */
3252 if (flags & WQ_MEM_RECLAIM)
3253 flags |= WQ_RESCUER;
3254
d320c038 3255 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3256 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3257
b196be89 3258 /* init wq */
97e37d7b 3259 wq->flags = flags;
a0a1a5fd 3260 wq->saved_max_active = max_active;
73f53c4a
TH
3261 mutex_init(&wq->flush_mutex);
3262 atomic_set(&wq->nr_cwqs_to_flush, 0);
3263 INIT_LIST_HEAD(&wq->flusher_queue);
3264 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3265
eb13ba87 3266 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3267 INIT_LIST_HEAD(&wq->list);
3af24433 3268
bdbc5dd7
TH
3269 if (alloc_cwqs(wq) < 0)
3270 goto err;
3271
f3421797 3272 for_each_cwq_cpu(cpu, wq) {
1537663f 3273 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3274 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3275 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3276
0f900049 3277 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3278 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3279 cwq->wq = wq;
73f53c4a 3280 cwq->flush_color = -1;
1e19ffc6 3281 cwq->max_active = max_active;
1e19ffc6 3282 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3283 }
1537663f 3284
e22bee78
TH
3285 if (flags & WQ_RESCUER) {
3286 struct worker *rescuer;
3287
f2e005aa 3288 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3289 goto err;
3290
3291 wq->rescuer = rescuer = alloc_worker();
3292 if (!rescuer)
3293 goto err;
3294
b196be89
TH
3295 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3296 wq->name);
e22bee78
TH
3297 if (IS_ERR(rescuer->task))
3298 goto err;
3299
e22bee78
TH
3300 rescuer->task->flags |= PF_THREAD_BOUND;
3301 wake_up_process(rescuer->task);
3af24433
ON
3302 }
3303
a0a1a5fd
TH
3304 /*
3305 * workqueue_lock protects global freeze state and workqueues
3306 * list. Grab it, set max_active accordingly and add the new
3307 * workqueue to workqueues list.
3308 */
1537663f 3309 spin_lock(&workqueue_lock);
a0a1a5fd 3310
58a69cb4 3311 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3312 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3313 get_cwq(cpu, wq)->max_active = 0;
3314
1537663f 3315 list_add(&wq->list, &workqueues);
a0a1a5fd 3316
1537663f
TH
3317 spin_unlock(&workqueue_lock);
3318
3af24433 3319 return wq;
4690c4ab
TH
3320err:
3321 if (wq) {
bdbc5dd7 3322 free_cwqs(wq);
f2e005aa 3323 free_mayday_mask(wq->mayday_mask);
e22bee78 3324 kfree(wq->rescuer);
4690c4ab
TH
3325 kfree(wq);
3326 }
3327 return NULL;
3af24433 3328}
d320c038 3329EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3330
3af24433
ON
3331/**
3332 * destroy_workqueue - safely terminate a workqueue
3333 * @wq: target workqueue
3334 *
3335 * Safely destroy a workqueue. All work currently pending will be done first.
3336 */
3337void destroy_workqueue(struct workqueue_struct *wq)
3338{
c8e55f36 3339 unsigned int cpu;
3af24433 3340
9c5a2ba7
TH
3341 /* drain it before proceeding with destruction */
3342 drain_workqueue(wq);
c8efcc25 3343
a0a1a5fd
TH
3344 /*
3345 * wq list is used to freeze wq, remove from list after
3346 * flushing is complete in case freeze races us.
3347 */
95402b38 3348 spin_lock(&workqueue_lock);
b1f4ec17 3349 list_del(&wq->list);
95402b38 3350 spin_unlock(&workqueue_lock);
3af24433 3351
e22bee78 3352 /* sanity check */
f3421797 3353 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3354 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3355 int i;
3356
73f53c4a
TH
3357 for (i = 0; i < WORK_NR_COLORS; i++)
3358 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3359 BUG_ON(cwq->nr_active);
3360 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3361 }
9b41ea72 3362
e22bee78
TH
3363 if (wq->flags & WQ_RESCUER) {
3364 kthread_stop(wq->rescuer->task);
f2e005aa 3365 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3366 kfree(wq->rescuer);
e22bee78
TH
3367 }
3368
bdbc5dd7 3369 free_cwqs(wq);
3af24433
ON
3370 kfree(wq);
3371}
3372EXPORT_SYMBOL_GPL(destroy_workqueue);
3373
dcd989cb
TH
3374/**
3375 * workqueue_set_max_active - adjust max_active of a workqueue
3376 * @wq: target workqueue
3377 * @max_active: new max_active value.
3378 *
3379 * Set max_active of @wq to @max_active.
3380 *
3381 * CONTEXT:
3382 * Don't call from IRQ context.
3383 */
3384void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3385{
3386 unsigned int cpu;
3387
f3421797 3388 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3389
3390 spin_lock(&workqueue_lock);
3391
3392 wq->saved_max_active = max_active;
3393
f3421797 3394 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3395 struct global_cwq *gcwq = get_gcwq(cpu);
3396
3397 spin_lock_irq(&gcwq->lock);
3398
58a69cb4 3399 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3400 !(gcwq->flags & GCWQ_FREEZING))
3401 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3402
dcd989cb 3403 spin_unlock_irq(&gcwq->lock);
65a64464 3404 }
93981800 3405
dcd989cb 3406 spin_unlock(&workqueue_lock);
15316ba8 3407}
dcd989cb 3408EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3409
eef6a7d5 3410/**
dcd989cb
TH
3411 * workqueue_congested - test whether a workqueue is congested
3412 * @cpu: CPU in question
3413 * @wq: target workqueue
eef6a7d5 3414 *
dcd989cb
TH
3415 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3416 * no synchronization around this function and the test result is
3417 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3418 *
dcd989cb
TH
3419 * RETURNS:
3420 * %true if congested, %false otherwise.
eef6a7d5 3421 */
dcd989cb 3422bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3423{
dcd989cb
TH
3424 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3425
3426 return !list_empty(&cwq->delayed_works);
1da177e4 3427}
dcd989cb 3428EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3429
1fa44eca 3430/**
dcd989cb
TH
3431 * work_cpu - return the last known associated cpu for @work
3432 * @work: the work of interest
1fa44eca 3433 *
dcd989cb 3434 * RETURNS:
bdbc5dd7 3435 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3436 */
dcd989cb 3437unsigned int work_cpu(struct work_struct *work)
1fa44eca 3438{
dcd989cb 3439 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3440
bdbc5dd7 3441 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3442}
dcd989cb 3443EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3444
dcd989cb
TH
3445/**
3446 * work_busy - test whether a work is currently pending or running
3447 * @work: the work to be tested
3448 *
3449 * Test whether @work is currently pending or running. There is no
3450 * synchronization around this function and the test result is
3451 * unreliable and only useful as advisory hints or for debugging.
3452 * Especially for reentrant wqs, the pending state might hide the
3453 * running state.
3454 *
3455 * RETURNS:
3456 * OR'd bitmask of WORK_BUSY_* bits.
3457 */
3458unsigned int work_busy(struct work_struct *work)
1da177e4 3459{
dcd989cb
TH
3460 struct global_cwq *gcwq = get_work_gcwq(work);
3461 unsigned long flags;
3462 unsigned int ret = 0;
1da177e4 3463
dcd989cb
TH
3464 if (!gcwq)
3465 return false;
1da177e4 3466
dcd989cb 3467 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3468
dcd989cb
TH
3469 if (work_pending(work))
3470 ret |= WORK_BUSY_PENDING;
3471 if (find_worker_executing_work(gcwq, work))
3472 ret |= WORK_BUSY_RUNNING;
1da177e4 3473
dcd989cb 3474 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3475
dcd989cb 3476 return ret;
1da177e4 3477}
dcd989cb 3478EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3479
db7bccf4
TH
3480/*
3481 * CPU hotplug.
3482 *
e22bee78
TH
3483 * There are two challenges in supporting CPU hotplug. Firstly, there
3484 * are a lot of assumptions on strong associations among work, cwq and
3485 * gcwq which make migrating pending and scheduled works very
3486 * difficult to implement without impacting hot paths. Secondly,
3487 * gcwqs serve mix of short, long and very long running works making
3488 * blocked draining impractical.
3489 *
628c78e7
TH
3490 * This is solved by allowing a gcwq to be disassociated from the CPU
3491 * running as an unbound one and allowing it to be reattached later if the
3492 * cpu comes back online.
db7bccf4 3493 */
1da177e4 3494
60373152 3495/* claim manager positions of all pools */
b2eb83d1 3496static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3497{
3498 struct worker_pool *pool;
3499
3500 for_each_worker_pool(pool, gcwq)
b2eb83d1 3501 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3502 spin_lock_irq(&gcwq->lock);
60373152
TH
3503}
3504
3505/* release manager positions */
b2eb83d1 3506static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3507{
3508 struct worker_pool *pool;
3509
8db25e78 3510 spin_unlock_irq(&gcwq->lock);
60373152 3511 for_each_worker_pool(pool, gcwq)
b2eb83d1 3512 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3513}
3514
628c78e7 3515static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3516{
628c78e7 3517 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3518 struct worker_pool *pool;
db7bccf4
TH
3519 struct worker *worker;
3520 struct hlist_node *pos;
3521 int i;
3af24433 3522
db7bccf4
TH
3523 BUG_ON(gcwq->cpu != smp_processor_id());
3524
b2eb83d1 3525 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3526
f2d5a0ee
TH
3527 /*
3528 * We've claimed all manager positions. Make all workers unbound
3529 * and set DISASSOCIATED. Before this, all workers except for the
3530 * ones which are still executing works from before the last CPU
3531 * down must be on the cpu. After this, they may become diasporas.
3532 */
60373152 3533 for_each_worker_pool(pool, gcwq)
4ce62e9e 3534 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3535 worker->flags |= WORKER_UNBOUND;
3af24433 3536
db7bccf4 3537 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3538 worker->flags |= WORKER_UNBOUND;
06ba38a9 3539
f2d5a0ee
TH
3540 gcwq->flags |= GCWQ_DISASSOCIATED;
3541
b2eb83d1 3542 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3543
e22bee78 3544 /*
403c821d 3545 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3546 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3547 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3548 */
e22bee78 3549 schedule();
06ba38a9 3550
e22bee78 3551 /*
628c78e7
TH
3552 * Sched callbacks are disabled now. Zap nr_running. After this,
3553 * nr_running stays zero and need_more_worker() and keep_working()
3554 * are always true as long as the worklist is not empty. @gcwq now
3555 * behaves as unbound (in terms of concurrency management) gcwq
3556 * which is served by workers tied to the CPU.
3557 *
3558 * On return from this function, the current worker would trigger
3559 * unbound chain execution of pending work items if other workers
3560 * didn't already.
e22bee78 3561 */
4ce62e9e
TH
3562 for_each_worker_pool(pool, gcwq)
3563 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3564}
3af24433 3565
8db25e78
TH
3566/*
3567 * Workqueues should be brought up before normal priority CPU notifiers.
3568 * This will be registered high priority CPU notifier.
3569 */
9fdf9b73 3570static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3571 unsigned long action,
3572 void *hcpu)
3af24433
ON
3573{
3574 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3575 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3576 struct worker_pool *pool;
3ce63377 3577
8db25e78 3578 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3579 case CPU_UP_PREPARE:
4ce62e9e 3580 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3581 struct worker *worker;
3582
3583 if (pool->nr_workers)
3584 continue;
3585
3586 worker = create_worker(pool);
3587 if (!worker)
3588 return NOTIFY_BAD;
3589
3590 spin_lock_irq(&gcwq->lock);
3591 start_worker(worker);
3592 spin_unlock_irq(&gcwq->lock);
3af24433 3593 }
8db25e78 3594 break;
3af24433 3595
db7bccf4
TH
3596 case CPU_DOWN_FAILED:
3597 case CPU_ONLINE:
b2eb83d1 3598 gcwq_claim_assoc_and_lock(gcwq);
bc2ae0f5 3599 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3600 rebind_workers(gcwq);
b2eb83d1 3601 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3602 break;
00dfcaf7 3603 }
65758202
TH
3604 return NOTIFY_OK;
3605}
3606
3607/*
3608 * Workqueues should be brought down after normal priority CPU notifiers.
3609 * This will be registered as low priority CPU notifier.
3610 */
9fdf9b73 3611static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3612 unsigned long action,
3613 void *hcpu)
3614{
8db25e78
TH
3615 unsigned int cpu = (unsigned long)hcpu;
3616 struct work_struct unbind_work;
3617
65758202
TH
3618 switch (action & ~CPU_TASKS_FROZEN) {
3619 case CPU_DOWN_PREPARE:
8db25e78
TH
3620 /* unbinding should happen on the local CPU */
3621 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3622 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3623 flush_work(&unbind_work);
3624 break;
65758202
TH
3625 }
3626 return NOTIFY_OK;
3627}
3628
2d3854a3 3629#ifdef CONFIG_SMP
8ccad40d 3630
2d3854a3 3631struct work_for_cpu {
6b44003e 3632 struct completion completion;
2d3854a3
RR
3633 long (*fn)(void *);
3634 void *arg;
3635 long ret;
3636};
3637
6b44003e 3638static int do_work_for_cpu(void *_wfc)
2d3854a3 3639{
6b44003e 3640 struct work_for_cpu *wfc = _wfc;
2d3854a3 3641 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3642 complete(&wfc->completion);
3643 return 0;
2d3854a3
RR
3644}
3645
3646/**
3647 * work_on_cpu - run a function in user context on a particular cpu
3648 * @cpu: the cpu to run on
3649 * @fn: the function to run
3650 * @arg: the function arg
3651 *
31ad9081
RR
3652 * This will return the value @fn returns.
3653 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3654 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3655 */
3656long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3657{
6b44003e
AM
3658 struct task_struct *sub_thread;
3659 struct work_for_cpu wfc = {
3660 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3661 .fn = fn,
3662 .arg = arg,
3663 };
3664
3665 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3666 if (IS_ERR(sub_thread))
3667 return PTR_ERR(sub_thread);
3668 kthread_bind(sub_thread, cpu);
3669 wake_up_process(sub_thread);
3670 wait_for_completion(&wfc.completion);
2d3854a3
RR
3671 return wfc.ret;
3672}
3673EXPORT_SYMBOL_GPL(work_on_cpu);
3674#endif /* CONFIG_SMP */
3675
a0a1a5fd
TH
3676#ifdef CONFIG_FREEZER
3677
3678/**
3679 * freeze_workqueues_begin - begin freezing workqueues
3680 *
58a69cb4
TH
3681 * Start freezing workqueues. After this function returns, all freezable
3682 * workqueues will queue new works to their frozen_works list instead of
3683 * gcwq->worklist.
a0a1a5fd
TH
3684 *
3685 * CONTEXT:
8b03ae3c 3686 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3687 */
3688void freeze_workqueues_begin(void)
3689{
a0a1a5fd
TH
3690 unsigned int cpu;
3691
3692 spin_lock(&workqueue_lock);
3693
3694 BUG_ON(workqueue_freezing);
3695 workqueue_freezing = true;
3696
f3421797 3697 for_each_gcwq_cpu(cpu) {
8b03ae3c 3698 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3699 struct workqueue_struct *wq;
8b03ae3c
TH
3700
3701 spin_lock_irq(&gcwq->lock);
3702
db7bccf4
TH
3703 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3704 gcwq->flags |= GCWQ_FREEZING;
3705
a0a1a5fd
TH
3706 list_for_each_entry(wq, &workqueues, list) {
3707 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3708
58a69cb4 3709 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3710 cwq->max_active = 0;
a0a1a5fd 3711 }
8b03ae3c
TH
3712
3713 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3714 }
3715
3716 spin_unlock(&workqueue_lock);
3717}
3718
3719/**
58a69cb4 3720 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3721 *
3722 * Check whether freezing is complete. This function must be called
3723 * between freeze_workqueues_begin() and thaw_workqueues().
3724 *
3725 * CONTEXT:
3726 * Grabs and releases workqueue_lock.
3727 *
3728 * RETURNS:
58a69cb4
TH
3729 * %true if some freezable workqueues are still busy. %false if freezing
3730 * is complete.
a0a1a5fd
TH
3731 */
3732bool freeze_workqueues_busy(void)
3733{
a0a1a5fd
TH
3734 unsigned int cpu;
3735 bool busy = false;
3736
3737 spin_lock(&workqueue_lock);
3738
3739 BUG_ON(!workqueue_freezing);
3740
f3421797 3741 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3742 struct workqueue_struct *wq;
a0a1a5fd
TH
3743 /*
3744 * nr_active is monotonically decreasing. It's safe
3745 * to peek without lock.
3746 */
3747 list_for_each_entry(wq, &workqueues, list) {
3748 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3749
58a69cb4 3750 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3751 continue;
3752
3753 BUG_ON(cwq->nr_active < 0);
3754 if (cwq->nr_active) {
3755 busy = true;
3756 goto out_unlock;
3757 }
3758 }
3759 }
3760out_unlock:
3761 spin_unlock(&workqueue_lock);
3762 return busy;
3763}
3764
3765/**
3766 * thaw_workqueues - thaw workqueues
3767 *
3768 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3769 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3770 *
3771 * CONTEXT:
8b03ae3c 3772 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3773 */
3774void thaw_workqueues(void)
3775{
a0a1a5fd
TH
3776 unsigned int cpu;
3777
3778 spin_lock(&workqueue_lock);
3779
3780 if (!workqueue_freezing)
3781 goto out_unlock;
3782
f3421797 3783 for_each_gcwq_cpu(cpu) {
8b03ae3c 3784 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3785 struct worker_pool *pool;
bdbc5dd7 3786 struct workqueue_struct *wq;
8b03ae3c
TH
3787
3788 spin_lock_irq(&gcwq->lock);
3789
db7bccf4
TH
3790 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3791 gcwq->flags &= ~GCWQ_FREEZING;
3792
a0a1a5fd
TH
3793 list_for_each_entry(wq, &workqueues, list) {
3794 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3795
58a69cb4 3796 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3797 continue;
3798
a0a1a5fd
TH
3799 /* restore max_active and repopulate worklist */
3800 cwq->max_active = wq->saved_max_active;
3801
3802 while (!list_empty(&cwq->delayed_works) &&
3803 cwq->nr_active < cwq->max_active)
3804 cwq_activate_first_delayed(cwq);
a0a1a5fd 3805 }
8b03ae3c 3806
4ce62e9e
TH
3807 for_each_worker_pool(pool, gcwq)
3808 wake_up_worker(pool);
e22bee78 3809
8b03ae3c 3810 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3811 }
3812
3813 workqueue_freezing = false;
3814out_unlock:
3815 spin_unlock(&workqueue_lock);
3816}
3817#endif /* CONFIG_FREEZER */
3818
6ee0578b 3819static int __init init_workqueues(void)
1da177e4 3820{
c34056a3 3821 unsigned int cpu;
c8e55f36 3822 int i;
c34056a3 3823
b5490077
TH
3824 /* make sure we have enough bits for OFFQ CPU number */
3825 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3826 WORK_CPU_LAST);
3827
65758202 3828 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3829 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3830
3831 /* initialize gcwqs */
f3421797 3832 for_each_gcwq_cpu(cpu) {
8b03ae3c 3833 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3834 struct worker_pool *pool;
8b03ae3c
TH
3835
3836 spin_lock_init(&gcwq->lock);
3837 gcwq->cpu = cpu;
477a3c33 3838 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3839
c8e55f36
TH
3840 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3841 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3842
4ce62e9e
TH
3843 for_each_worker_pool(pool, gcwq) {
3844 pool->gcwq = gcwq;
3845 INIT_LIST_HEAD(&pool->worklist);
3846 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3847
4ce62e9e
TH
3848 init_timer_deferrable(&pool->idle_timer);
3849 pool->idle_timer.function = idle_worker_timeout;
3850 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3851
4ce62e9e
TH
3852 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3853 (unsigned long)pool);
3854
b2eb83d1 3855 mutex_init(&pool->assoc_mutex);
4ce62e9e
TH
3856 ida_init(&pool->worker_ida);
3857 }
8b03ae3c
TH
3858 }
3859
e22bee78 3860 /* create the initial worker */
f3421797 3861 for_each_online_gcwq_cpu(cpu) {
e22bee78 3862 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3863 struct worker_pool *pool;
e22bee78 3864
477a3c33
TH
3865 if (cpu != WORK_CPU_UNBOUND)
3866 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3867
3868 for_each_worker_pool(pool, gcwq) {
3869 struct worker *worker;
3870
bc2ae0f5 3871 worker = create_worker(pool);
4ce62e9e
TH
3872 BUG_ON(!worker);
3873 spin_lock_irq(&gcwq->lock);
3874 start_worker(worker);
3875 spin_unlock_irq(&gcwq->lock);
3876 }
e22bee78
TH
3877 }
3878
d320c038 3879 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3880 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3881 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3882 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3883 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3884 system_freezable_wq = alloc_workqueue("events_freezable",
3885 WQ_FREEZABLE, 0);
1aabe902 3886 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3887 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3888 return 0;
1da177e4 3889}
6ee0578b 3890early_initcall(init_workqueues);