]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/workqueue.c
workqueue: use new hashtable implementation
[mirror_ubuntu-zesty-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78
TH
45
46#include "workqueue_sched.h"
1da177e4 47
c8e55f36 48enum {
bc2ae0f5
TH
49 /*
50 * global_cwq flags
51 *
52 * A bound gcwq is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The gcwq behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
b2eb83d1 62 * assoc_mutex of all pools on the gcwq to avoid changing binding
bc2ae0f5
TH
63 * state while create_worker() is in progress.
64 */
11ebea50
TH
65 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
66 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
67
68 /* pool flags */
69 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 70 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
db7bccf4 71
c8e55f36
TH
72 /* worker flags */
73 WORKER_STARTED = 1 << 0, /* started */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 79
5f7dabfd 80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 81 WORKER_CPU_INTENSIVE,
db7bccf4 82
3270476a 83 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 84
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
8b03ae3c 113 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 114 *
e22bee78
TH
115 * X: During normal operation, modification requires gcwq->lock and
116 * should be done only from local cpu. Either disabling preemption
117 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 118 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
1da177e4 123 */
1da177e4 124
8b03ae3c 125struct global_cwq;
bd7bdd43 126struct worker_pool;
1da177e4 127
e22bee78
TH
128/*
129 * The poor guys doing the actual heavy lifting. All on-duty workers
130 * are either serving the manager role, on idle list or on busy hash.
131 */
c34056a3 132struct worker {
c8e55f36
TH
133 /* on idle list while idle, on busy hash table while busy */
134 union {
135 struct list_head entry; /* L: while idle */
136 struct hlist_node hentry; /* L: while busy */
137 };
1da177e4 138
c34056a3 139 struct work_struct *current_work; /* L: work being processed */
8cca0eea 140 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 141 struct list_head scheduled; /* L: scheduled works */
c34056a3 142 struct task_struct *task; /* I: worker task */
bd7bdd43 143 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
144 /* 64 bytes boundary on 64bit, 32 on 32bit */
145 unsigned long last_active; /* L: last active timestamp */
146 unsigned int flags; /* X: flags */
c34056a3 147 int id; /* I: worker id */
25511a47
TH
148
149 /* for rebinding worker to CPU */
25511a47 150 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
151};
152
bd7bdd43
TH
153struct worker_pool {
154 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 155 unsigned int flags; /* X: flags */
bd7bdd43
TH
156
157 struct list_head worklist; /* L: list of pending works */
158 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
159
160 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
161 int nr_idle; /* L: currently idle ones */
162
163 struct list_head idle_list; /* X: list of idle workers */
164 struct timer_list idle_timer; /* L: worker idle timeout */
165 struct timer_list mayday_timer; /* L: SOS timer for workers */
166
b2eb83d1 167 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */
bd7bdd43 168 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
169};
170
8b03ae3c 171/*
e22bee78
TH
172 * Global per-cpu workqueue. There's one and only one for each cpu
173 * and all works are queued and processed here regardless of their
174 * target workqueues.
8b03ae3c
TH
175 */
176struct global_cwq {
177 spinlock_t lock; /* the gcwq lock */
178 unsigned int cpu; /* I: the associated cpu */
db7bccf4 179 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 180
bd7bdd43 181 /* workers are chained either in busy_hash or pool idle_list */
42f8570f 182 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
c8e55f36
TH
183 /* L: hash of busy workers */
184
330dad5b
JK
185 struct worker_pool pools[NR_WORKER_POOLS];
186 /* normal and highpri pools */
8b03ae3c
TH
187} ____cacheline_aligned_in_smp;
188
1da177e4 189/*
502ca9d8 190 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
191 * work_struct->data are used for flags and thus cwqs need to be
192 * aligned at two's power of the number of flag bits.
1da177e4
LT
193 */
194struct cpu_workqueue_struct {
bd7bdd43 195 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 196 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
197 int work_color; /* L: current color */
198 int flush_color; /* L: flushing color */
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
0f900049 204};
1da177e4 205
73f53c4a
TH
206/*
207 * Structure used to wait for workqueue flush.
208 */
209struct wq_flusher {
210 struct list_head list; /* F: list of flushers */
211 int flush_color; /* F: flush color waiting for */
212 struct completion done; /* flush completion */
213};
214
f2e005aa
TH
215/*
216 * All cpumasks are assumed to be always set on UP and thus can't be
217 * used to determine whether there's something to be done.
218 */
219#ifdef CONFIG_SMP
220typedef cpumask_var_t mayday_mask_t;
221#define mayday_test_and_set_cpu(cpu, mask) \
222 cpumask_test_and_set_cpu((cpu), (mask))
223#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
224#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 225#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
226#define free_mayday_mask(mask) free_cpumask_var((mask))
227#else
228typedef unsigned long mayday_mask_t;
229#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
230#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
231#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
232#define alloc_mayday_mask(maskp, gfp) true
233#define free_mayday_mask(mask) do { } while (0)
234#endif
1da177e4
LT
235
236/*
237 * The externally visible workqueue abstraction is an array of
238 * per-CPU workqueues:
239 */
240struct workqueue_struct {
9c5a2ba7 241 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
242 union {
243 struct cpu_workqueue_struct __percpu *pcpu;
244 struct cpu_workqueue_struct *single;
245 unsigned long v;
246 } cpu_wq; /* I: cwq's */
4690c4ab 247 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
248
249 struct mutex flush_mutex; /* protects wq flushing */
250 int work_color; /* F: current work color */
251 int flush_color; /* F: current flush color */
252 atomic_t nr_cwqs_to_flush; /* flush in progress */
253 struct wq_flusher *first_flusher; /* F: first flusher */
254 struct list_head flusher_queue; /* F: flush waiters */
255 struct list_head flusher_overflow; /* F: flush overflow list */
256
f2e005aa 257 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
258 struct worker *rescuer; /* I: rescue worker */
259
9c5a2ba7 260 int nr_drainers; /* W: drain in progress */
dcd989cb 261 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 262#ifdef CONFIG_LOCKDEP
4690c4ab 263 struct lockdep_map lockdep_map;
4e6045f1 264#endif
b196be89 265 char name[]; /* I: workqueue name */
1da177e4
LT
266};
267
d320c038 268struct workqueue_struct *system_wq __read_mostly;
d320c038 269EXPORT_SYMBOL_GPL(system_wq);
044c782c 270struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 271EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 272struct workqueue_struct *system_long_wq __read_mostly;
d320c038 273EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 274struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 275EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 276struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 277EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 278
97bd2347
TH
279#define CREATE_TRACE_POINTS
280#include <trace/events/workqueue.h>
281
4ce62e9e 282#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
283 for ((pool) = &(gcwq)->pools[0]; \
284 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 285
db7bccf4 286#define for_each_busy_worker(worker, i, pos, gcwq) \
42f8570f 287 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
db7bccf4 288
f3421797
TH
289static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
290 unsigned int sw)
291{
292 if (cpu < nr_cpu_ids) {
293 if (sw & 1) {
294 cpu = cpumask_next(cpu, mask);
295 if (cpu < nr_cpu_ids)
296 return cpu;
297 }
298 if (sw & 2)
299 return WORK_CPU_UNBOUND;
300 }
301 return WORK_CPU_NONE;
302}
303
304static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
305 struct workqueue_struct *wq)
306{
307 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
308}
309
09884951
TH
310/*
311 * CPU iterators
312 *
313 * An extra gcwq is defined for an invalid cpu number
314 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
315 * specific CPU. The following iterators are similar to
316 * for_each_*_cpu() iterators but also considers the unbound gcwq.
317 *
318 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
319 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
320 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
321 * WORK_CPU_UNBOUND for unbound workqueues
322 */
f3421797
TH
323#define for_each_gcwq_cpu(cpu) \
324 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
325 (cpu) < WORK_CPU_NONE; \
326 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
327
328#define for_each_online_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
332
333#define for_each_cwq_cpu(cpu, wq) \
334 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
337
dc186ad7
TG
338#ifdef CONFIG_DEBUG_OBJECTS_WORK
339
340static struct debug_obj_descr work_debug_descr;
341
99777288
SG
342static void *work_debug_hint(void *addr)
343{
344 return ((struct work_struct *) addr)->func;
345}
346
dc186ad7
TG
347/*
348 * fixup_init is called when:
349 * - an active object is initialized
350 */
351static int work_fixup_init(void *addr, enum debug_obj_state state)
352{
353 struct work_struct *work = addr;
354
355 switch (state) {
356 case ODEBUG_STATE_ACTIVE:
357 cancel_work_sync(work);
358 debug_object_init(work, &work_debug_descr);
359 return 1;
360 default:
361 return 0;
362 }
363}
364
365/*
366 * fixup_activate is called when:
367 * - an active object is activated
368 * - an unknown object is activated (might be a statically initialized object)
369 */
370static int work_fixup_activate(void *addr, enum debug_obj_state state)
371{
372 struct work_struct *work = addr;
373
374 switch (state) {
375
376 case ODEBUG_STATE_NOTAVAILABLE:
377 /*
378 * This is not really a fixup. The work struct was
379 * statically initialized. We just make sure that it
380 * is tracked in the object tracker.
381 */
22df02bb 382 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
383 debug_object_init(work, &work_debug_descr);
384 debug_object_activate(work, &work_debug_descr);
385 return 0;
386 }
387 WARN_ON_ONCE(1);
388 return 0;
389
390 case ODEBUG_STATE_ACTIVE:
391 WARN_ON(1);
392
393 default:
394 return 0;
395 }
396}
397
398/*
399 * fixup_free is called when:
400 * - an active object is freed
401 */
402static int work_fixup_free(void *addr, enum debug_obj_state state)
403{
404 struct work_struct *work = addr;
405
406 switch (state) {
407 case ODEBUG_STATE_ACTIVE:
408 cancel_work_sync(work);
409 debug_object_free(work, &work_debug_descr);
410 return 1;
411 default:
412 return 0;
413 }
414}
415
416static struct debug_obj_descr work_debug_descr = {
417 .name = "work_struct",
99777288 418 .debug_hint = work_debug_hint,
dc186ad7
TG
419 .fixup_init = work_fixup_init,
420 .fixup_activate = work_fixup_activate,
421 .fixup_free = work_fixup_free,
422};
423
424static inline void debug_work_activate(struct work_struct *work)
425{
426 debug_object_activate(work, &work_debug_descr);
427}
428
429static inline void debug_work_deactivate(struct work_struct *work)
430{
431 debug_object_deactivate(work, &work_debug_descr);
432}
433
434void __init_work(struct work_struct *work, int onstack)
435{
436 if (onstack)
437 debug_object_init_on_stack(work, &work_debug_descr);
438 else
439 debug_object_init(work, &work_debug_descr);
440}
441EXPORT_SYMBOL_GPL(__init_work);
442
443void destroy_work_on_stack(struct work_struct *work)
444{
445 debug_object_free(work, &work_debug_descr);
446}
447EXPORT_SYMBOL_GPL(destroy_work_on_stack);
448
449#else
450static inline void debug_work_activate(struct work_struct *work) { }
451static inline void debug_work_deactivate(struct work_struct *work) { }
452#endif
453
95402b38
GS
454/* Serializes the accesses to the list of workqueues. */
455static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 456static LIST_HEAD(workqueues);
a0a1a5fd 457static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 458
e22bee78
TH
459/*
460 * The almighty global cpu workqueues. nr_running is the only field
461 * which is expected to be used frequently by other cpus via
462 * try_to_wake_up(). Put it in a separate cacheline.
463 */
8b03ae3c 464static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 465static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 466
f3421797
TH
467/*
468 * Global cpu workqueue and nr_running counter for unbound gcwq. The
469 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
470 * workers have WORKER_UNBOUND set.
471 */
472static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
473static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
474 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
475};
f3421797 476
c34056a3 477static int worker_thread(void *__worker);
1da177e4 478
3270476a
TH
479static int worker_pool_pri(struct worker_pool *pool)
480{
481 return pool - pool->gcwq->pools;
482}
483
8b03ae3c
TH
484static struct global_cwq *get_gcwq(unsigned int cpu)
485{
f3421797
TH
486 if (cpu != WORK_CPU_UNBOUND)
487 return &per_cpu(global_cwq, cpu);
488 else
489 return &unbound_global_cwq;
8b03ae3c
TH
490}
491
63d95a91 492static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 493{
63d95a91 494 int cpu = pool->gcwq->cpu;
3270476a 495 int idx = worker_pool_pri(pool);
63d95a91 496
f3421797 497 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 498 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 499 else
4ce62e9e 500 return &unbound_pool_nr_running[idx];
e22bee78
TH
501}
502
1537663f
TH
503static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
504 struct workqueue_struct *wq)
b1f4ec17 505{
f3421797 506 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 507 if (likely(cpu < nr_cpu_ids))
f3421797 508 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
509 } else if (likely(cpu == WORK_CPU_UNBOUND))
510 return wq->cpu_wq.single;
511 return NULL;
b1f4ec17
ON
512}
513
73f53c4a
TH
514static unsigned int work_color_to_flags(int color)
515{
516 return color << WORK_STRUCT_COLOR_SHIFT;
517}
518
519static int get_work_color(struct work_struct *work)
520{
521 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
522 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
523}
524
525static int work_next_color(int color)
526{
527 return (color + 1) % WORK_NR_COLORS;
528}
1da177e4 529
14441960 530/*
b5490077
TH
531 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
532 * contain the pointer to the queued cwq. Once execution starts, the flag
533 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 534 *
bbb68dfa
TH
535 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
536 * and clear_work_data() can be used to set the cwq, cpu or clear
537 * work->data. These functions should only be called while the work is
538 * owned - ie. while the PENDING bit is set.
7a22ad75 539 *
bbb68dfa
TH
540 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
541 * a work. gcwq is available once the work has been queued anywhere after
542 * initialization until it is sync canceled. cwq is available only while
543 * the work item is queued.
7a22ad75 544 *
bbb68dfa
TH
545 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
546 * canceled. While being canceled, a work item may have its PENDING set
547 * but stay off timer and worklist for arbitrarily long and nobody should
548 * try to steal the PENDING bit.
14441960 549 */
7a22ad75
TH
550static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
365970a1 552{
4594bf15 553 BUG_ON(!work_pending(work));
7a22ad75
TH
554 atomic_long_set(&work->data, data | flags | work_static(work));
555}
365970a1 556
7a22ad75
TH
557static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560{
561 set_work_data(work, (unsigned long)cwq,
e120153d 562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
563}
564
8930caba
TH
565static void set_work_cpu_and_clear_pending(struct work_struct *work,
566 unsigned int cpu)
7a22ad75 567{
23657bb1
TH
568 /*
569 * The following wmb is paired with the implied mb in
570 * test_and_set_bit(PENDING) and ensures all updates to @work made
571 * here are visible to and precede any updates by the next PENDING
572 * owner.
573 */
574 smp_wmb();
b5490077 575 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 576}
f756d5e2 577
7a22ad75 578static void clear_work_data(struct work_struct *work)
1da177e4 579{
23657bb1 580 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 581 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
582}
583
7a22ad75 584static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 585{
e120153d 586 unsigned long data = atomic_long_read(&work->data);
7a22ad75 587
e120153d
TH
588 if (data & WORK_STRUCT_CWQ)
589 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
590 else
591 return NULL;
4d707b9f
ON
592}
593
7a22ad75 594static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 595{
e120153d 596 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
597 unsigned int cpu;
598
e120153d
TH
599 if (data & WORK_STRUCT_CWQ)
600 return ((struct cpu_workqueue_struct *)
bd7bdd43 601 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 602
b5490077 603 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 604 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
605 return NULL;
606
f3421797 607 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 608 return get_gcwq(cpu);
b1f4ec17
ON
609}
610
bbb68dfa
TH
611static void mark_work_canceling(struct work_struct *work)
612{
613 struct global_cwq *gcwq = get_work_gcwq(work);
614 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
615
616 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
617 WORK_STRUCT_PENDING);
618}
619
620static bool work_is_canceling(struct work_struct *work)
621{
622 unsigned long data = atomic_long_read(&work->data);
623
624 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
625}
626
e22bee78 627/*
3270476a
TH
628 * Policy functions. These define the policies on how the global worker
629 * pools are managed. Unless noted otherwise, these functions assume that
630 * they're being called with gcwq->lock held.
e22bee78
TH
631 */
632
63d95a91 633static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 634{
3270476a 635 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
636}
637
4594bf15 638/*
e22bee78
TH
639 * Need to wake up a worker? Called from anything but currently
640 * running workers.
974271c4
TH
641 *
642 * Note that, because unbound workers never contribute to nr_running, this
643 * function will always return %true for unbound gcwq as long as the
644 * worklist isn't empty.
4594bf15 645 */
63d95a91 646static bool need_more_worker(struct worker_pool *pool)
365970a1 647{
63d95a91 648 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 649}
4594bf15 650
e22bee78 651/* Can I start working? Called from busy but !running workers. */
63d95a91 652static bool may_start_working(struct worker_pool *pool)
e22bee78 653{
63d95a91 654 return pool->nr_idle;
e22bee78
TH
655}
656
657/* Do I need to keep working? Called from currently running workers. */
63d95a91 658static bool keep_working(struct worker_pool *pool)
e22bee78 659{
63d95a91 660 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 661
3270476a 662 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
663}
664
665/* Do we need a new worker? Called from manager. */
63d95a91 666static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 667{
63d95a91 668 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 669}
365970a1 670
e22bee78 671/* Do I need to be the manager? */
63d95a91 672static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 673{
63d95a91 674 return need_to_create_worker(pool) ||
11ebea50 675 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
676}
677
678/* Do we have too many workers and should some go away? */
63d95a91 679static bool too_many_workers(struct worker_pool *pool)
e22bee78 680{
552a37e9 681 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
682 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
683 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 684
ea1abd61
LJ
685 /*
686 * nr_idle and idle_list may disagree if idle rebinding is in
687 * progress. Never return %true if idle_list is empty.
688 */
689 if (list_empty(&pool->idle_list))
690 return false;
691
e22bee78 692 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
693}
694
4d707b9f 695/*
e22bee78
TH
696 * Wake up functions.
697 */
698
7e11629d 699/* Return the first worker. Safe with preemption disabled */
63d95a91 700static struct worker *first_worker(struct worker_pool *pool)
7e11629d 701{
63d95a91 702 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
703 return NULL;
704
63d95a91 705 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
706}
707
708/**
709 * wake_up_worker - wake up an idle worker
63d95a91 710 * @pool: worker pool to wake worker from
7e11629d 711 *
63d95a91 712 * Wake up the first idle worker of @pool.
7e11629d
TH
713 *
714 * CONTEXT:
715 * spin_lock_irq(gcwq->lock).
716 */
63d95a91 717static void wake_up_worker(struct worker_pool *pool)
7e11629d 718{
63d95a91 719 struct worker *worker = first_worker(pool);
7e11629d
TH
720
721 if (likely(worker))
722 wake_up_process(worker->task);
723}
724
d302f017 725/**
e22bee78
TH
726 * wq_worker_waking_up - a worker is waking up
727 * @task: task waking up
728 * @cpu: CPU @task is waking up to
729 *
730 * This function is called during try_to_wake_up() when a worker is
731 * being awoken.
732 *
733 * CONTEXT:
734 * spin_lock_irq(rq->lock)
735 */
736void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
737{
738 struct worker *worker = kthread_data(task);
739
36576000
JK
740 if (!(worker->flags & WORKER_NOT_RUNNING)) {
741 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
63d95a91 742 atomic_inc(get_pool_nr_running(worker->pool));
36576000 743 }
e22bee78
TH
744}
745
746/**
747 * wq_worker_sleeping - a worker is going to sleep
748 * @task: task going to sleep
749 * @cpu: CPU in question, must be the current CPU number
750 *
751 * This function is called during schedule() when a busy worker is
752 * going to sleep. Worker on the same cpu can be woken up by
753 * returning pointer to its task.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 *
758 * RETURNS:
759 * Worker task on @cpu to wake up, %NULL if none.
760 */
761struct task_struct *wq_worker_sleeping(struct task_struct *task,
762 unsigned int cpu)
763{
764 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 765 struct worker_pool *pool = worker->pool;
63d95a91 766 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 767
2d64672e 768 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
769 return NULL;
770
771 /* this can only happen on the local cpu */
772 BUG_ON(cpu != raw_smp_processor_id());
773
774 /*
775 * The counterpart of the following dec_and_test, implied mb,
776 * worklist not empty test sequence is in insert_work().
777 * Please read comment there.
778 *
628c78e7
TH
779 * NOT_RUNNING is clear. This means that we're bound to and
780 * running on the local cpu w/ rq lock held and preemption
781 * disabled, which in turn means that none else could be
782 * manipulating idle_list, so dereferencing idle_list without gcwq
783 * lock is safe.
e22bee78 784 */
bd7bdd43 785 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 786 to_wakeup = first_worker(pool);
e22bee78
TH
787 return to_wakeup ? to_wakeup->task : NULL;
788}
789
790/**
791 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 792 * @worker: self
d302f017
TH
793 * @flags: flags to set
794 * @wakeup: wakeup an idle worker if necessary
795 *
e22bee78
TH
796 * Set @flags in @worker->flags and adjust nr_running accordingly. If
797 * nr_running becomes zero and @wakeup is %true, an idle worker is
798 * woken up.
d302f017 799 *
cb444766
TH
800 * CONTEXT:
801 * spin_lock_irq(gcwq->lock)
d302f017
TH
802 */
803static inline void worker_set_flags(struct worker *worker, unsigned int flags,
804 bool wakeup)
805{
bd7bdd43 806 struct worker_pool *pool = worker->pool;
e22bee78 807
cb444766
TH
808 WARN_ON_ONCE(worker->task != current);
809
e22bee78
TH
810 /*
811 * If transitioning into NOT_RUNNING, adjust nr_running and
812 * wake up an idle worker as necessary if requested by
813 * @wakeup.
814 */
815 if ((flags & WORKER_NOT_RUNNING) &&
816 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 817 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
818
819 if (wakeup) {
820 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 821 !list_empty(&pool->worklist))
63d95a91 822 wake_up_worker(pool);
e22bee78
TH
823 } else
824 atomic_dec(nr_running);
825 }
826
d302f017
TH
827 worker->flags |= flags;
828}
829
830/**
e22bee78 831 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 832 * @worker: self
d302f017
TH
833 * @flags: flags to clear
834 *
e22bee78 835 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 836 *
cb444766
TH
837 * CONTEXT:
838 * spin_lock_irq(gcwq->lock)
d302f017
TH
839 */
840static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
841{
63d95a91 842 struct worker_pool *pool = worker->pool;
e22bee78
TH
843 unsigned int oflags = worker->flags;
844
cb444766
TH
845 WARN_ON_ONCE(worker->task != current);
846
d302f017 847 worker->flags &= ~flags;
e22bee78 848
42c025f3
TH
849 /*
850 * If transitioning out of NOT_RUNNING, increment nr_running. Note
851 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
852 * of multiple flags, not a single flag.
853 */
e22bee78
TH
854 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
855 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 856 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
857}
858
8cca0eea
TH
859/**
860 * find_worker_executing_work - find worker which is executing a work
861 * @gcwq: gcwq of interest
862 * @work: work to find worker for
863 *
864 * Find a worker which is executing @work on @gcwq. This function is
865 * identical to __find_worker_executing_work() except that this
866 * function calculates @bwh itself.
867 *
868 * CONTEXT:
869 * spin_lock_irq(gcwq->lock).
870 *
871 * RETURNS:
872 * Pointer to worker which is executing @work if found, NULL
873 * otherwise.
4d707b9f 874 */
8cca0eea
TH
875static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
876 struct work_struct *work)
4d707b9f 877{
42f8570f
SL
878 struct worker *worker;
879 struct hlist_node *tmp;
880
881 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry, (unsigned long)work)
882 if (worker->current_work == work)
883 return worker;
884
885 return NULL;
4d707b9f
ON
886}
887
bf4ede01
TH
888/**
889 * move_linked_works - move linked works to a list
890 * @work: start of series of works to be scheduled
891 * @head: target list to append @work to
892 * @nextp: out paramter for nested worklist walking
893 *
894 * Schedule linked works starting from @work to @head. Work series to
895 * be scheduled starts at @work and includes any consecutive work with
896 * WORK_STRUCT_LINKED set in its predecessor.
897 *
898 * If @nextp is not NULL, it's updated to point to the next work of
899 * the last scheduled work. This allows move_linked_works() to be
900 * nested inside outer list_for_each_entry_safe().
901 *
902 * CONTEXT:
903 * spin_lock_irq(gcwq->lock).
904 */
905static void move_linked_works(struct work_struct *work, struct list_head *head,
906 struct work_struct **nextp)
907{
908 struct work_struct *n;
909
910 /*
911 * Linked worklist will always end before the end of the list,
912 * use NULL for list head.
913 */
914 list_for_each_entry_safe_from(work, n, NULL, entry) {
915 list_move_tail(&work->entry, head);
916 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
917 break;
918 }
919
920 /*
921 * If we're already inside safe list traversal and have moved
922 * multiple works to the scheduled queue, the next position
923 * needs to be updated.
924 */
925 if (nextp)
926 *nextp = n;
927}
928
3aa62497 929static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 930{
3aa62497 931 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
932
933 trace_workqueue_activate_work(work);
934 move_linked_works(work, &cwq->pool->worklist, NULL);
935 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
936 cwq->nr_active++;
937}
938
3aa62497
LJ
939static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
940{
941 struct work_struct *work = list_first_entry(&cwq->delayed_works,
942 struct work_struct, entry);
943
944 cwq_activate_delayed_work(work);
945}
946
bf4ede01
TH
947/**
948 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
949 * @cwq: cwq of interest
950 * @color: color of work which left the queue
bf4ede01
TH
951 *
952 * A work either has completed or is removed from pending queue,
953 * decrement nr_in_flight of its cwq and handle workqueue flushing.
954 *
955 * CONTEXT:
956 * spin_lock_irq(gcwq->lock).
957 */
b3f9f405 958static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
959{
960 /* ignore uncolored works */
961 if (color == WORK_NO_COLOR)
962 return;
963
964 cwq->nr_in_flight[color]--;
965
b3f9f405
LJ
966 cwq->nr_active--;
967 if (!list_empty(&cwq->delayed_works)) {
968 /* one down, submit a delayed one */
969 if (cwq->nr_active < cwq->max_active)
970 cwq_activate_first_delayed(cwq);
bf4ede01
TH
971 }
972
973 /* is flush in progress and are we at the flushing tip? */
974 if (likely(cwq->flush_color != color))
975 return;
976
977 /* are there still in-flight works? */
978 if (cwq->nr_in_flight[color])
979 return;
980
981 /* this cwq is done, clear flush_color */
982 cwq->flush_color = -1;
983
984 /*
985 * If this was the last cwq, wake up the first flusher. It
986 * will handle the rest.
987 */
988 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
989 complete(&cwq->wq->first_flusher->done);
990}
991
36e227d2 992/**
bbb68dfa 993 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
994 * @work: work item to steal
995 * @is_dwork: @work is a delayed_work
bbb68dfa 996 * @flags: place to store irq state
36e227d2
TH
997 *
998 * Try to grab PENDING bit of @work. This function can handle @work in any
999 * stable state - idle, on timer or on worklist. Return values are
1000 *
1001 * 1 if @work was pending and we successfully stole PENDING
1002 * 0 if @work was idle and we claimed PENDING
1003 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1004 * -ENOENT if someone else is canceling @work, this state may persist
1005 * for arbitrarily long
36e227d2 1006 *
bbb68dfa 1007 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1008 * interrupted while holding PENDING and @work off queue, irq must be
1009 * disabled on entry. This, combined with delayed_work->timer being
1010 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1011 *
1012 * On successful return, >= 0, irq is disabled and the caller is
1013 * responsible for releasing it using local_irq_restore(*@flags).
1014 *
e0aecdd8 1015 * This function is safe to call from any context including IRQ handler.
bf4ede01 1016 */
bbb68dfa
TH
1017static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1018 unsigned long *flags)
bf4ede01
TH
1019{
1020 struct global_cwq *gcwq;
bf4ede01 1021
bbb68dfa
TH
1022 local_irq_save(*flags);
1023
36e227d2
TH
1024 /* try to steal the timer if it exists */
1025 if (is_dwork) {
1026 struct delayed_work *dwork = to_delayed_work(work);
1027
e0aecdd8
TH
1028 /*
1029 * dwork->timer is irqsafe. If del_timer() fails, it's
1030 * guaranteed that the timer is not queued anywhere and not
1031 * running on the local CPU.
1032 */
36e227d2
TH
1033 if (likely(del_timer(&dwork->timer)))
1034 return 1;
1035 }
1036
1037 /* try to claim PENDING the normal way */
bf4ede01
TH
1038 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1039 return 0;
1040
1041 /*
1042 * The queueing is in progress, or it is already queued. Try to
1043 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1044 */
1045 gcwq = get_work_gcwq(work);
1046 if (!gcwq)
bbb68dfa 1047 goto fail;
bf4ede01 1048
bbb68dfa 1049 spin_lock(&gcwq->lock);
bf4ede01
TH
1050 if (!list_empty(&work->entry)) {
1051 /*
1052 * This work is queued, but perhaps we locked the wrong gcwq.
1053 * In that case we must see the new value after rmb(), see
1054 * insert_work()->wmb().
1055 */
1056 smp_rmb();
1057 if (gcwq == get_work_gcwq(work)) {
1058 debug_work_deactivate(work);
3aa62497
LJ
1059
1060 /*
1061 * A delayed work item cannot be grabbed directly
1062 * because it might have linked NO_COLOR work items
1063 * which, if left on the delayed_list, will confuse
1064 * cwq->nr_active management later on and cause
1065 * stall. Make sure the work item is activated
1066 * before grabbing.
1067 */
1068 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1069 cwq_activate_delayed_work(work);
1070
bf4ede01
TH
1071 list_del_init(&work->entry);
1072 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1073 get_work_color(work));
36e227d2 1074
bbb68dfa 1075 spin_unlock(&gcwq->lock);
36e227d2 1076 return 1;
bf4ede01
TH
1077 }
1078 }
bbb68dfa
TH
1079 spin_unlock(&gcwq->lock);
1080fail:
1081 local_irq_restore(*flags);
1082 if (work_is_canceling(work))
1083 return -ENOENT;
1084 cpu_relax();
36e227d2 1085 return -EAGAIN;
bf4ede01
TH
1086}
1087
4690c4ab 1088/**
7e11629d 1089 * insert_work - insert a work into gcwq
4690c4ab
TH
1090 * @cwq: cwq @work belongs to
1091 * @work: work to insert
1092 * @head: insertion point
1093 * @extra_flags: extra WORK_STRUCT_* flags to set
1094 *
7e11629d
TH
1095 * Insert @work which belongs to @cwq into @gcwq after @head.
1096 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1097 *
1098 * CONTEXT:
8b03ae3c 1099 * spin_lock_irq(gcwq->lock).
4690c4ab 1100 */
b89deed3 1101static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1102 struct work_struct *work, struct list_head *head,
1103 unsigned int extra_flags)
b89deed3 1104{
63d95a91 1105 struct worker_pool *pool = cwq->pool;
e22bee78 1106
4690c4ab 1107 /* we own @work, set data and link */
7a22ad75 1108 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1109
6e84d644
ON
1110 /*
1111 * Ensure that we get the right work->data if we see the
1112 * result of list_add() below, see try_to_grab_pending().
1113 */
1114 smp_wmb();
4690c4ab 1115
1a4d9b0a 1116 list_add_tail(&work->entry, head);
e22bee78
TH
1117
1118 /*
1119 * Ensure either worker_sched_deactivated() sees the above
1120 * list_add_tail() or we see zero nr_running to avoid workers
1121 * lying around lazily while there are works to be processed.
1122 */
1123 smp_mb();
1124
63d95a91
TH
1125 if (__need_more_worker(pool))
1126 wake_up_worker(pool);
b89deed3
ON
1127}
1128
c8efcc25
TH
1129/*
1130 * Test whether @work is being queued from another work executing on the
1131 * same workqueue. This is rather expensive and should only be used from
1132 * cold paths.
1133 */
1134static bool is_chained_work(struct workqueue_struct *wq)
1135{
1136 unsigned long flags;
1137 unsigned int cpu;
1138
1139 for_each_gcwq_cpu(cpu) {
1140 struct global_cwq *gcwq = get_gcwq(cpu);
1141 struct worker *worker;
1142 struct hlist_node *pos;
1143 int i;
1144
1145 spin_lock_irqsave(&gcwq->lock, flags);
1146 for_each_busy_worker(worker, i, pos, gcwq) {
1147 if (worker->task != current)
1148 continue;
1149 spin_unlock_irqrestore(&gcwq->lock, flags);
1150 /*
1151 * I'm @worker, no locking necessary. See if @work
1152 * is headed to the same workqueue.
1153 */
1154 return worker->current_cwq->wq == wq;
1155 }
1156 spin_unlock_irqrestore(&gcwq->lock, flags);
1157 }
1158 return false;
1159}
1160
4690c4ab 1161static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1162 struct work_struct *work)
1163{
502ca9d8
TH
1164 struct global_cwq *gcwq;
1165 struct cpu_workqueue_struct *cwq;
1e19ffc6 1166 struct list_head *worklist;
8a2e8e5d 1167 unsigned int work_flags;
b75cac93 1168 unsigned int req_cpu = cpu;
8930caba
TH
1169
1170 /*
1171 * While a work item is PENDING && off queue, a task trying to
1172 * steal the PENDING will busy-loop waiting for it to either get
1173 * queued or lose PENDING. Grabbing PENDING and queueing should
1174 * happen with IRQ disabled.
1175 */
1176 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1177
dc186ad7 1178 debug_work_activate(work);
1e19ffc6 1179
c8efcc25 1180 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1181 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1182 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1183 return;
1184
c7fc77f7
TH
1185 /* determine gcwq to use */
1186 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1187 struct global_cwq *last_gcwq;
1188
57469821 1189 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1190 cpu = raw_smp_processor_id();
1191
18aa9eff 1192 /*
dbf2576e
TH
1193 * It's multi cpu. If @work was previously on a different
1194 * cpu, it might still be running there, in which case the
1195 * work needs to be queued on that cpu to guarantee
1196 * non-reentrancy.
18aa9eff 1197 */
502ca9d8 1198 gcwq = get_gcwq(cpu);
dbf2576e
TH
1199 last_gcwq = get_work_gcwq(work);
1200
1201 if (last_gcwq && last_gcwq != gcwq) {
18aa9eff
TH
1202 struct worker *worker;
1203
8930caba 1204 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1205
1206 worker = find_worker_executing_work(last_gcwq, work);
1207
1208 if (worker && worker->current_cwq->wq == wq)
1209 gcwq = last_gcwq;
1210 else {
1211 /* meh... not running there, queue here */
8930caba
TH
1212 spin_unlock(&last_gcwq->lock);
1213 spin_lock(&gcwq->lock);
18aa9eff 1214 }
8930caba
TH
1215 } else {
1216 spin_lock(&gcwq->lock);
1217 }
f3421797
TH
1218 } else {
1219 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1220 spin_lock(&gcwq->lock);
502ca9d8
TH
1221 }
1222
1223 /* gcwq determined, get cwq and queue */
1224 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1225 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1226
f5b2552b 1227 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1228 spin_unlock(&gcwq->lock);
f5b2552b
DC
1229 return;
1230 }
1e19ffc6 1231
73f53c4a 1232 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1233 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1234
1235 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1236 trace_workqueue_activate_work(work);
1e19ffc6 1237 cwq->nr_active++;
3270476a 1238 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1239 } else {
1240 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1241 worklist = &cwq->delayed_works;
8a2e8e5d 1242 }
1e19ffc6 1243
8a2e8e5d 1244 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1245
8930caba 1246 spin_unlock(&gcwq->lock);
1da177e4
LT
1247}
1248
0fcb78c2 1249/**
c1a220e7
ZR
1250 * queue_work_on - queue work on specific cpu
1251 * @cpu: CPU number to execute work on
0fcb78c2
REB
1252 * @wq: workqueue to use
1253 * @work: work to queue
1254 *
d4283e93 1255 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1256 *
c1a220e7
ZR
1257 * We queue the work to a specific CPU, the caller must ensure it
1258 * can't go away.
1da177e4 1259 */
d4283e93
TH
1260bool queue_work_on(int cpu, struct workqueue_struct *wq,
1261 struct work_struct *work)
1da177e4 1262{
d4283e93 1263 bool ret = false;
8930caba 1264 unsigned long flags;
ef1ca236 1265
8930caba 1266 local_irq_save(flags);
c1a220e7 1267
22df02bb 1268 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1269 __queue_work(cpu, wq, work);
d4283e93 1270 ret = true;
c1a220e7 1271 }
ef1ca236 1272
8930caba 1273 local_irq_restore(flags);
1da177e4
LT
1274 return ret;
1275}
c1a220e7 1276EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1277
c1a220e7 1278/**
0a13c00e 1279 * queue_work - queue work on a workqueue
c1a220e7
ZR
1280 * @wq: workqueue to use
1281 * @work: work to queue
1282 *
d4283e93 1283 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1284 *
0a13c00e
TH
1285 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1286 * it can be processed by another CPU.
c1a220e7 1287 */
d4283e93 1288bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1289{
57469821 1290 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1291}
0a13c00e 1292EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1293
d8e794df 1294void delayed_work_timer_fn(unsigned long __data)
1da177e4 1295{
52bad64d 1296 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1297 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1298
e0aecdd8 1299 /* should have been called from irqsafe timer with irq already off */
1265057f 1300 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1301}
d8e794df 1302EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1303
7beb2edf
TH
1304static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1305 struct delayed_work *dwork, unsigned long delay)
1da177e4 1306{
7beb2edf
TH
1307 struct timer_list *timer = &dwork->timer;
1308 struct work_struct *work = &dwork->work;
1309 unsigned int lcpu;
1310
1311 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1312 timer->data != (unsigned long)dwork);
fc4b514f
TH
1313 WARN_ON_ONCE(timer_pending(timer));
1314 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1315
8852aac2
TH
1316 /*
1317 * If @delay is 0, queue @dwork->work immediately. This is for
1318 * both optimization and correctness. The earliest @timer can
1319 * expire is on the closest next tick and delayed_work users depend
1320 * on that there's no such delay when @delay is 0.
1321 */
1322 if (!delay) {
1323 __queue_work(cpu, wq, &dwork->work);
1324 return;
1325 }
1326
7beb2edf 1327 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1328
7beb2edf
TH
1329 /*
1330 * This stores cwq for the moment, for the timer_fn. Note that the
1331 * work's gcwq is preserved to allow reentrance detection for
1332 * delayed works.
1333 */
1334 if (!(wq->flags & WQ_UNBOUND)) {
1335 struct global_cwq *gcwq = get_work_gcwq(work);
1336
e42986de
JK
1337 /*
1338 * If we cannot get the last gcwq from @work directly,
1339 * select the last CPU such that it avoids unnecessarily
1340 * triggering non-reentrancy check in __queue_work().
1341 */
1342 lcpu = cpu;
1343 if (gcwq)
7beb2edf 1344 lcpu = gcwq->cpu;
e42986de 1345 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1346 lcpu = raw_smp_processor_id();
1347 } else {
1348 lcpu = WORK_CPU_UNBOUND;
1349 }
1350
1351 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1352
1265057f 1353 dwork->cpu = cpu;
7beb2edf
TH
1354 timer->expires = jiffies + delay;
1355
1356 if (unlikely(cpu != WORK_CPU_UNBOUND))
1357 add_timer_on(timer, cpu);
1358 else
1359 add_timer(timer);
1da177e4
LT
1360}
1361
0fcb78c2
REB
1362/**
1363 * queue_delayed_work_on - queue work on specific CPU after delay
1364 * @cpu: CPU number to execute work on
1365 * @wq: workqueue to use
af9997e4 1366 * @dwork: work to queue
0fcb78c2
REB
1367 * @delay: number of jiffies to wait before queueing
1368 *
715f1300
TH
1369 * Returns %false if @work was already on a queue, %true otherwise. If
1370 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1371 * execution.
0fcb78c2 1372 */
d4283e93
TH
1373bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1374 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1375{
52bad64d 1376 struct work_struct *work = &dwork->work;
d4283e93 1377 bool ret = false;
8930caba 1378 unsigned long flags;
7a6bc1cd 1379
8930caba
TH
1380 /* read the comment in __queue_work() */
1381 local_irq_save(flags);
7a6bc1cd 1382
22df02bb 1383 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1384 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1385 ret = true;
7a6bc1cd 1386 }
8a3e77cc 1387
8930caba 1388 local_irq_restore(flags);
7a6bc1cd
VP
1389 return ret;
1390}
ae90dd5d 1391EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1392
0a13c00e
TH
1393/**
1394 * queue_delayed_work - queue work on a workqueue after delay
1395 * @wq: workqueue to use
1396 * @dwork: delayable work to queue
1397 * @delay: number of jiffies to wait before queueing
1398 *
715f1300 1399 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1400 */
d4283e93 1401bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1402 struct delayed_work *dwork, unsigned long delay)
1403{
57469821 1404 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1405}
1406EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1407
8376fe22
TH
1408/**
1409 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1410 * @cpu: CPU number to execute work on
1411 * @wq: workqueue to use
1412 * @dwork: work to queue
1413 * @delay: number of jiffies to wait before queueing
1414 *
1415 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1416 * modify @dwork's timer so that it expires after @delay. If @delay is
1417 * zero, @work is guaranteed to be scheduled immediately regardless of its
1418 * current state.
1419 *
1420 * Returns %false if @dwork was idle and queued, %true if @dwork was
1421 * pending and its timer was modified.
1422 *
e0aecdd8 1423 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1424 * See try_to_grab_pending() for details.
1425 */
1426bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1427 struct delayed_work *dwork, unsigned long delay)
1428{
1429 unsigned long flags;
1430 int ret;
c7fc77f7 1431
8376fe22
TH
1432 do {
1433 ret = try_to_grab_pending(&dwork->work, true, &flags);
1434 } while (unlikely(ret == -EAGAIN));
63bc0362 1435
8376fe22
TH
1436 if (likely(ret >= 0)) {
1437 __queue_delayed_work(cpu, wq, dwork, delay);
1438 local_irq_restore(flags);
7a6bc1cd 1439 }
8376fe22
TH
1440
1441 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1442 return ret;
1443}
8376fe22
TH
1444EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1445
1446/**
1447 * mod_delayed_work - modify delay of or queue a delayed work
1448 * @wq: workqueue to use
1449 * @dwork: work to queue
1450 * @delay: number of jiffies to wait before queueing
1451 *
1452 * mod_delayed_work_on() on local CPU.
1453 */
1454bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1455 unsigned long delay)
1456{
1457 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1458}
1459EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1460
c8e55f36
TH
1461/**
1462 * worker_enter_idle - enter idle state
1463 * @worker: worker which is entering idle state
1464 *
1465 * @worker is entering idle state. Update stats and idle timer if
1466 * necessary.
1467 *
1468 * LOCKING:
1469 * spin_lock_irq(gcwq->lock).
1470 */
1471static void worker_enter_idle(struct worker *worker)
1da177e4 1472{
bd7bdd43
TH
1473 struct worker_pool *pool = worker->pool;
1474 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1475
1476 BUG_ON(worker->flags & WORKER_IDLE);
1477 BUG_ON(!list_empty(&worker->entry) &&
1478 (worker->hentry.next || worker->hentry.pprev));
1479
cb444766
TH
1480 /* can't use worker_set_flags(), also called from start_worker() */
1481 worker->flags |= WORKER_IDLE;
bd7bdd43 1482 pool->nr_idle++;
e22bee78 1483 worker->last_active = jiffies;
c8e55f36
TH
1484
1485 /* idle_list is LIFO */
bd7bdd43 1486 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1487
628c78e7
TH
1488 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1489 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1490
544ecf31 1491 /*
628c78e7
TH
1492 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1493 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1494 * nr_running, the warning may trigger spuriously. Check iff
1495 * unbind is not in progress.
544ecf31 1496 */
628c78e7 1497 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1498 pool->nr_workers == pool->nr_idle &&
63d95a91 1499 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1500}
1501
1502/**
1503 * worker_leave_idle - leave idle state
1504 * @worker: worker which is leaving idle state
1505 *
1506 * @worker is leaving idle state. Update stats.
1507 *
1508 * LOCKING:
1509 * spin_lock_irq(gcwq->lock).
1510 */
1511static void worker_leave_idle(struct worker *worker)
1512{
bd7bdd43 1513 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1514
1515 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1516 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1517 pool->nr_idle--;
c8e55f36
TH
1518 list_del_init(&worker->entry);
1519}
1520
e22bee78
TH
1521/**
1522 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1523 * @worker: self
1524 *
1525 * Works which are scheduled while the cpu is online must at least be
1526 * scheduled to a worker which is bound to the cpu so that if they are
1527 * flushed from cpu callbacks while cpu is going down, they are
1528 * guaranteed to execute on the cpu.
1529 *
1530 * This function is to be used by rogue workers and rescuers to bind
1531 * themselves to the target cpu and may race with cpu going down or
1532 * coming online. kthread_bind() can't be used because it may put the
1533 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1534 * verbatim as it's best effort and blocking and gcwq may be
1535 * [dis]associated in the meantime.
1536 *
f2d5a0ee
TH
1537 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1538 * binding against %GCWQ_DISASSOCIATED which is set during
1539 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1540 * enters idle state or fetches works without dropping lock, it can
1541 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1542 *
1543 * CONTEXT:
1544 * Might sleep. Called without any lock but returns with gcwq->lock
1545 * held.
1546 *
1547 * RETURNS:
1548 * %true if the associated gcwq is online (@worker is successfully
1549 * bound), %false if offline.
1550 */
1551static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1552__acquires(&gcwq->lock)
e22bee78 1553{
bd7bdd43 1554 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1555 struct task_struct *task = worker->task;
1556
1557 while (true) {
4e6045f1 1558 /*
e22bee78
TH
1559 * The following call may fail, succeed or succeed
1560 * without actually migrating the task to the cpu if
1561 * it races with cpu hotunplug operation. Verify
1562 * against GCWQ_DISASSOCIATED.
4e6045f1 1563 */
f3421797
TH
1564 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1565 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1566
1567 spin_lock_irq(&gcwq->lock);
1568 if (gcwq->flags & GCWQ_DISASSOCIATED)
1569 return false;
1570 if (task_cpu(task) == gcwq->cpu &&
1571 cpumask_equal(&current->cpus_allowed,
1572 get_cpu_mask(gcwq->cpu)))
1573 return true;
1574 spin_unlock_irq(&gcwq->lock);
1575
5035b20f
TH
1576 /*
1577 * We've raced with CPU hot[un]plug. Give it a breather
1578 * and retry migration. cond_resched() is required here;
1579 * otherwise, we might deadlock against cpu_stop trying to
1580 * bring down the CPU on non-preemptive kernel.
1581 */
e22bee78 1582 cpu_relax();
5035b20f 1583 cond_resched();
e22bee78
TH
1584 }
1585}
1586
25511a47 1587/*
ea1abd61 1588 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1589 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1590 */
1591static void idle_worker_rebind(struct worker *worker)
1592{
1593 struct global_cwq *gcwq = worker->pool->gcwq;
1594
5f7dabfd
LJ
1595 /* CPU may go down again inbetween, clear UNBOUND only on success */
1596 if (worker_maybe_bind_and_lock(worker))
1597 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1598
ea1abd61
LJ
1599 /* rebind complete, become available again */
1600 list_add(&worker->entry, &worker->pool->idle_list);
1601 spin_unlock_irq(&gcwq->lock);
25511a47
TH
1602}
1603
e22bee78 1604/*
25511a47 1605 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1606 * the associated cpu which is coming back online. This is scheduled by
1607 * cpu up but can race with other cpu hotplug operations and may be
1608 * executed twice without intervening cpu down.
e22bee78 1609 */
25511a47 1610static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1611{
1612 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1613 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78 1614
eab6d828
LJ
1615 if (worker_maybe_bind_and_lock(worker))
1616 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78
TH
1617
1618 spin_unlock_irq(&gcwq->lock);
1619}
1620
25511a47
TH
1621/**
1622 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1623 * @gcwq: gcwq of interest
1624 *
1625 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1626 * is different for idle and busy ones.
1627 *
ea1abd61
LJ
1628 * Idle ones will be removed from the idle_list and woken up. They will
1629 * add themselves back after completing rebind. This ensures that the
1630 * idle_list doesn't contain any unbound workers when re-bound busy workers
1631 * try to perform local wake-ups for concurrency management.
25511a47 1632 *
ea1abd61
LJ
1633 * Busy workers can rebind after they finish their current work items.
1634 * Queueing the rebind work item at the head of the scheduled list is
1635 * enough. Note that nr_running will be properly bumped as busy workers
1636 * rebind.
25511a47 1637 *
ea1abd61
LJ
1638 * On return, all non-manager workers are scheduled for rebind - see
1639 * manage_workers() for the manager special case. Any idle worker
1640 * including the manager will not appear on @idle_list until rebind is
1641 * complete, making local wake-ups safe.
25511a47
TH
1642 */
1643static void rebind_workers(struct global_cwq *gcwq)
25511a47 1644{
25511a47 1645 struct worker_pool *pool;
ea1abd61 1646 struct worker *worker, *n;
25511a47
TH
1647 struct hlist_node *pos;
1648 int i;
1649
1650 lockdep_assert_held(&gcwq->lock);
1651
1652 for_each_worker_pool(pool, gcwq)
b2eb83d1 1653 lockdep_assert_held(&pool->assoc_mutex);
25511a47 1654
5f7dabfd 1655 /* dequeue and kick idle ones */
25511a47 1656 for_each_worker_pool(pool, gcwq) {
ea1abd61 1657 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
ea1abd61
LJ
1658 /*
1659 * idle workers should be off @pool->idle_list
1660 * until rebind is complete to avoid receiving
1661 * premature local wake-ups.
1662 */
1663 list_del_init(&worker->entry);
25511a47 1664
5f7dabfd
LJ
1665 /*
1666 * worker_thread() will see the above dequeuing
1667 * and call idle_worker_rebind().
1668 */
25511a47
TH
1669 wake_up_process(worker->task);
1670 }
1671 }
1672
ea1abd61 1673 /* rebind busy workers */
25511a47
TH
1674 for_each_busy_worker(worker, i, pos, gcwq) {
1675 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1676 struct workqueue_struct *wq;
25511a47
TH
1677
1678 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1679 work_data_bits(rebind_work)))
1680 continue;
1681
25511a47 1682 debug_work_activate(rebind_work);
90beca5d 1683
e2b6a6d5
JK
1684 /*
1685 * wq doesn't really matter but let's keep @worker->pool
1686 * and @cwq->pool consistent for sanity.
1687 */
1688 if (worker_pool_pri(worker->pool))
1689 wq = system_highpri_wq;
1690 else
1691 wq = system_wq;
ec58815a 1692
e2b6a6d5
JK
1693 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1694 worker->scheduled.next,
1695 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1696 }
25511a47
TH
1697}
1698
c34056a3
TH
1699static struct worker *alloc_worker(void)
1700{
1701 struct worker *worker;
1702
1703 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1704 if (worker) {
1705 INIT_LIST_HEAD(&worker->entry);
affee4b2 1706 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1707 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1708 /* on creation a worker is in !idle && prep state */
1709 worker->flags = WORKER_PREP;
c8e55f36 1710 }
c34056a3
TH
1711 return worker;
1712}
1713
1714/**
1715 * create_worker - create a new workqueue worker
63d95a91 1716 * @pool: pool the new worker will belong to
c34056a3 1717 *
63d95a91 1718 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1719 * can be started by calling start_worker() or destroyed using
1720 * destroy_worker().
1721 *
1722 * CONTEXT:
1723 * Might sleep. Does GFP_KERNEL allocations.
1724 *
1725 * RETURNS:
1726 * Pointer to the newly created worker.
1727 */
bc2ae0f5 1728static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1729{
63d95a91 1730 struct global_cwq *gcwq = pool->gcwq;
3270476a 1731 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1732 struct worker *worker = NULL;
f3421797 1733 int id = -1;
c34056a3 1734
8b03ae3c 1735 spin_lock_irq(&gcwq->lock);
bd7bdd43 1736 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1737 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1738 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1739 goto fail;
8b03ae3c 1740 spin_lock_irq(&gcwq->lock);
c34056a3 1741 }
8b03ae3c 1742 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1743
1744 worker = alloc_worker();
1745 if (!worker)
1746 goto fail;
1747
bd7bdd43 1748 worker->pool = pool;
c34056a3
TH
1749 worker->id = id;
1750
bc2ae0f5 1751 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1752 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1753 worker, cpu_to_node(gcwq->cpu),
1754 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1755 else
1756 worker->task = kthread_create(worker_thread, worker,
3270476a 1757 "kworker/u:%d%s", id, pri);
c34056a3
TH
1758 if (IS_ERR(worker->task))
1759 goto fail;
1760
3270476a
TH
1761 if (worker_pool_pri(pool))
1762 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1763
db7bccf4 1764 /*
bc2ae0f5
TH
1765 * Determine CPU binding of the new worker depending on
1766 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1767 * flag remains stable across this function. See the comments
1768 * above the flag definition for details.
1769 *
1770 * As an unbound worker may later become a regular one if CPU comes
1771 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1772 */
bc2ae0f5 1773 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1774 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1775 } else {
db7bccf4 1776 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1777 worker->flags |= WORKER_UNBOUND;
f3421797 1778 }
c34056a3
TH
1779
1780 return worker;
1781fail:
1782 if (id >= 0) {
8b03ae3c 1783 spin_lock_irq(&gcwq->lock);
bd7bdd43 1784 ida_remove(&pool->worker_ida, id);
8b03ae3c 1785 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1786 }
1787 kfree(worker);
1788 return NULL;
1789}
1790
1791/**
1792 * start_worker - start a newly created worker
1793 * @worker: worker to start
1794 *
c8e55f36 1795 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1796 *
1797 * CONTEXT:
8b03ae3c 1798 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1799 */
1800static void start_worker(struct worker *worker)
1801{
cb444766 1802 worker->flags |= WORKER_STARTED;
bd7bdd43 1803 worker->pool->nr_workers++;
c8e55f36 1804 worker_enter_idle(worker);
c34056a3
TH
1805 wake_up_process(worker->task);
1806}
1807
1808/**
1809 * destroy_worker - destroy a workqueue worker
1810 * @worker: worker to be destroyed
1811 *
c8e55f36
TH
1812 * Destroy @worker and adjust @gcwq stats accordingly.
1813 *
1814 * CONTEXT:
1815 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1816 */
1817static void destroy_worker(struct worker *worker)
1818{
bd7bdd43
TH
1819 struct worker_pool *pool = worker->pool;
1820 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1821 int id = worker->id;
1822
1823 /* sanity check frenzy */
1824 BUG_ON(worker->current_work);
affee4b2 1825 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1826
c8e55f36 1827 if (worker->flags & WORKER_STARTED)
bd7bdd43 1828 pool->nr_workers--;
c8e55f36 1829 if (worker->flags & WORKER_IDLE)
bd7bdd43 1830 pool->nr_idle--;
c8e55f36
TH
1831
1832 list_del_init(&worker->entry);
cb444766 1833 worker->flags |= WORKER_DIE;
c8e55f36
TH
1834
1835 spin_unlock_irq(&gcwq->lock);
1836
c34056a3
TH
1837 kthread_stop(worker->task);
1838 kfree(worker);
1839
8b03ae3c 1840 spin_lock_irq(&gcwq->lock);
bd7bdd43 1841 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1842}
1843
63d95a91 1844static void idle_worker_timeout(unsigned long __pool)
e22bee78 1845{
63d95a91
TH
1846 struct worker_pool *pool = (void *)__pool;
1847 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1848
1849 spin_lock_irq(&gcwq->lock);
1850
63d95a91 1851 if (too_many_workers(pool)) {
e22bee78
TH
1852 struct worker *worker;
1853 unsigned long expires;
1854
1855 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1856 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1857 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1858
1859 if (time_before(jiffies, expires))
63d95a91 1860 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1861 else {
1862 /* it's been idle for too long, wake up manager */
11ebea50 1863 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1864 wake_up_worker(pool);
d5abe669 1865 }
e22bee78
TH
1866 }
1867
1868 spin_unlock_irq(&gcwq->lock);
1869}
d5abe669 1870
e22bee78
TH
1871static bool send_mayday(struct work_struct *work)
1872{
1873 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1874 struct workqueue_struct *wq = cwq->wq;
f3421797 1875 unsigned int cpu;
e22bee78
TH
1876
1877 if (!(wq->flags & WQ_RESCUER))
1878 return false;
1879
1880 /* mayday mayday mayday */
bd7bdd43 1881 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1882 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1883 if (cpu == WORK_CPU_UNBOUND)
1884 cpu = 0;
f2e005aa 1885 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1886 wake_up_process(wq->rescuer->task);
1887 return true;
1888}
1889
63d95a91 1890static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1891{
63d95a91
TH
1892 struct worker_pool *pool = (void *)__pool;
1893 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1894 struct work_struct *work;
1895
1896 spin_lock_irq(&gcwq->lock);
1897
63d95a91 1898 if (need_to_create_worker(pool)) {
e22bee78
TH
1899 /*
1900 * We've been trying to create a new worker but
1901 * haven't been successful. We might be hitting an
1902 * allocation deadlock. Send distress signals to
1903 * rescuers.
1904 */
63d95a91 1905 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1906 send_mayday(work);
1da177e4 1907 }
e22bee78
TH
1908
1909 spin_unlock_irq(&gcwq->lock);
1910
63d95a91 1911 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1912}
1913
e22bee78
TH
1914/**
1915 * maybe_create_worker - create a new worker if necessary
63d95a91 1916 * @pool: pool to create a new worker for
e22bee78 1917 *
63d95a91 1918 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1919 * have at least one idle worker on return from this function. If
1920 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1921 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1922 * possible allocation deadlock.
1923 *
1924 * On return, need_to_create_worker() is guaranteed to be false and
1925 * may_start_working() true.
1926 *
1927 * LOCKING:
1928 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1929 * multiple times. Does GFP_KERNEL allocations. Called only from
1930 * manager.
1931 *
1932 * RETURNS:
1933 * false if no action was taken and gcwq->lock stayed locked, true
1934 * otherwise.
1935 */
63d95a91 1936static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1937__releases(&gcwq->lock)
1938__acquires(&gcwq->lock)
1da177e4 1939{
63d95a91
TH
1940 struct global_cwq *gcwq = pool->gcwq;
1941
1942 if (!need_to_create_worker(pool))
e22bee78
TH
1943 return false;
1944restart:
9f9c2364
TH
1945 spin_unlock_irq(&gcwq->lock);
1946
e22bee78 1947 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1948 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1949
1950 while (true) {
1951 struct worker *worker;
1952
bc2ae0f5 1953 worker = create_worker(pool);
e22bee78 1954 if (worker) {
63d95a91 1955 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1956 spin_lock_irq(&gcwq->lock);
1957 start_worker(worker);
63d95a91 1958 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1959 return true;
1960 }
1961
63d95a91 1962 if (!need_to_create_worker(pool))
e22bee78 1963 break;
1da177e4 1964
e22bee78
TH
1965 __set_current_state(TASK_INTERRUPTIBLE);
1966 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1967
63d95a91 1968 if (!need_to_create_worker(pool))
e22bee78
TH
1969 break;
1970 }
1971
63d95a91 1972 del_timer_sync(&pool->mayday_timer);
e22bee78 1973 spin_lock_irq(&gcwq->lock);
63d95a91 1974 if (need_to_create_worker(pool))
e22bee78
TH
1975 goto restart;
1976 return true;
1977}
1978
1979/**
1980 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1981 * @pool: pool to destroy workers for
e22bee78 1982 *
63d95a91 1983 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1984 * IDLE_WORKER_TIMEOUT.
1985 *
1986 * LOCKING:
1987 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1988 * multiple times. Called only from manager.
1989 *
1990 * RETURNS:
1991 * false if no action was taken and gcwq->lock stayed locked, true
1992 * otherwise.
1993 */
63d95a91 1994static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1995{
1996 bool ret = false;
1da177e4 1997
63d95a91 1998 while (too_many_workers(pool)) {
e22bee78
TH
1999 struct worker *worker;
2000 unsigned long expires;
3af24433 2001
63d95a91 2002 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2003 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2004
e22bee78 2005 if (time_before(jiffies, expires)) {
63d95a91 2006 mod_timer(&pool->idle_timer, expires);
3af24433 2007 break;
e22bee78 2008 }
1da177e4 2009
e22bee78
TH
2010 destroy_worker(worker);
2011 ret = true;
1da177e4 2012 }
1e19ffc6 2013
e22bee78 2014 return ret;
1e19ffc6
TH
2015}
2016
73f53c4a 2017/**
e22bee78
TH
2018 * manage_workers - manage worker pool
2019 * @worker: self
73f53c4a 2020 *
e22bee78
TH
2021 * Assume the manager role and manage gcwq worker pool @worker belongs
2022 * to. At any given time, there can be only zero or one manager per
2023 * gcwq. The exclusion is handled automatically by this function.
2024 *
2025 * The caller can safely start processing works on false return. On
2026 * true return, it's guaranteed that need_to_create_worker() is false
2027 * and may_start_working() is true.
73f53c4a
TH
2028 *
2029 * CONTEXT:
e22bee78
TH
2030 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2031 * multiple times. Does GFP_KERNEL allocations.
2032 *
2033 * RETURNS:
2034 * false if no action was taken and gcwq->lock stayed locked, true if
2035 * some action was taken.
73f53c4a 2036 */
e22bee78 2037static bool manage_workers(struct worker *worker)
73f53c4a 2038{
63d95a91 2039 struct worker_pool *pool = worker->pool;
e22bee78 2040 bool ret = false;
73f53c4a 2041
ee378aa4 2042 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2043 return ret;
1e19ffc6 2044
552a37e9 2045 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2046
ee378aa4
LJ
2047 /*
2048 * To simplify both worker management and CPU hotplug, hold off
2049 * management while hotplug is in progress. CPU hotplug path can't
2050 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2051 * lead to idle worker depletion (all become busy thinking someone
2052 * else is managing) which in turn can result in deadlock under
b2eb83d1 2053 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2054 * manager against CPU hotplug.
2055 *
b2eb83d1 2056 * assoc_mutex would always be free unless CPU hotplug is in
ee378aa4
LJ
2057 * progress. trylock first without dropping @gcwq->lock.
2058 */
b2eb83d1 2059 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
ee378aa4 2060 spin_unlock_irq(&pool->gcwq->lock);
b2eb83d1 2061 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2062 /*
2063 * CPU hotplug could have happened while we were waiting
b2eb83d1 2064 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2065 * because manager isn't either on idle or busy list, and
2066 * @gcwq's state and ours could have deviated.
2067 *
b2eb83d1 2068 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2069 * simply try to bind. It will succeed or fail depending
2070 * on @gcwq's current state. Try it and adjust
2071 * %WORKER_UNBOUND accordingly.
2072 */
2073 if (worker_maybe_bind_and_lock(worker))
2074 worker->flags &= ~WORKER_UNBOUND;
2075 else
2076 worker->flags |= WORKER_UNBOUND;
73f53c4a 2077
ee378aa4
LJ
2078 ret = true;
2079 }
73f53c4a 2080
11ebea50 2081 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2082
2083 /*
e22bee78
TH
2084 * Destroy and then create so that may_start_working() is true
2085 * on return.
73f53c4a 2086 */
63d95a91
TH
2087 ret |= maybe_destroy_workers(pool);
2088 ret |= maybe_create_worker(pool);
e22bee78 2089
552a37e9 2090 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2091 mutex_unlock(&pool->assoc_mutex);
e22bee78 2092 return ret;
73f53c4a
TH
2093}
2094
a62428c0
TH
2095/**
2096 * process_one_work - process single work
c34056a3 2097 * @worker: self
a62428c0
TH
2098 * @work: work to process
2099 *
2100 * Process @work. This function contains all the logics necessary to
2101 * process a single work including synchronization against and
2102 * interaction with other workers on the same cpu, queueing and
2103 * flushing. As long as context requirement is met, any worker can
2104 * call this function to process a work.
2105 *
2106 * CONTEXT:
8b03ae3c 2107 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2108 */
c34056a3 2109static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2110__releases(&gcwq->lock)
2111__acquires(&gcwq->lock)
a62428c0 2112{
7e11629d 2113 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2114 struct worker_pool *pool = worker->pool;
2115 struct global_cwq *gcwq = pool->gcwq;
fb0e7beb 2116 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2117 work_func_t f = work->func;
73f53c4a 2118 int work_color;
7e11629d 2119 struct worker *collision;
a62428c0
TH
2120#ifdef CONFIG_LOCKDEP
2121 /*
2122 * It is permissible to free the struct work_struct from
2123 * inside the function that is called from it, this we need to
2124 * take into account for lockdep too. To avoid bogus "held
2125 * lock freed" warnings as well as problems when looking into
2126 * work->lockdep_map, make a copy and use that here.
2127 */
4d82a1de
PZ
2128 struct lockdep_map lockdep_map;
2129
2130 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2131#endif
6fec10a1
TH
2132 /*
2133 * Ensure we're on the correct CPU. DISASSOCIATED test is
2134 * necessary to avoid spurious warnings from rescuers servicing the
2135 * unbound or a disassociated gcwq.
2136 */
5f7dabfd 2137 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
6fec10a1 2138 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2139 raw_smp_processor_id() != gcwq->cpu);
2140
7e11629d
TH
2141 /*
2142 * A single work shouldn't be executed concurrently by
2143 * multiple workers on a single cpu. Check whether anyone is
2144 * already processing the work. If so, defer the work to the
2145 * currently executing one.
2146 */
42f8570f 2147 collision = find_worker_executing_work(gcwq, work);
7e11629d
TH
2148 if (unlikely(collision)) {
2149 move_linked_works(work, &collision->scheduled, NULL);
2150 return;
2151 }
2152
8930caba 2153 /* claim and dequeue */
a62428c0 2154 debug_work_deactivate(work);
42f8570f 2155 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)worker);
c34056a3 2156 worker->current_work = work;
8cca0eea 2157 worker->current_cwq = cwq;
73f53c4a 2158 work_color = get_work_color(work);
7a22ad75 2159
a62428c0
TH
2160 list_del_init(&work->entry);
2161
fb0e7beb
TH
2162 /*
2163 * CPU intensive works don't participate in concurrency
2164 * management. They're the scheduler's responsibility.
2165 */
2166 if (unlikely(cpu_intensive))
2167 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2168
974271c4
TH
2169 /*
2170 * Unbound gcwq isn't concurrency managed and work items should be
2171 * executed ASAP. Wake up another worker if necessary.
2172 */
63d95a91
TH
2173 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2174 wake_up_worker(pool);
974271c4 2175
8930caba 2176 /*
23657bb1
TH
2177 * Record the last CPU and clear PENDING which should be the last
2178 * update to @work. Also, do this inside @gcwq->lock so that
2179 * PENDING and queued state changes happen together while IRQ is
2180 * disabled.
8930caba 2181 */
8930caba 2182 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2183
8b03ae3c 2184 spin_unlock_irq(&gcwq->lock);
a62428c0 2185
e159489b 2186 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2187 lock_map_acquire(&lockdep_map);
e36c886a 2188 trace_workqueue_execute_start(work);
a62428c0 2189 f(work);
e36c886a
AV
2190 /*
2191 * While we must be careful to not use "work" after this, the trace
2192 * point will only record its address.
2193 */
2194 trace_workqueue_execute_end(work);
a62428c0
TH
2195 lock_map_release(&lockdep_map);
2196 lock_map_release(&cwq->wq->lockdep_map);
2197
2198 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2199 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2200 " last function: %pf\n",
2201 current->comm, preempt_count(), task_pid_nr(current), f);
a62428c0
TH
2202 debug_show_held_locks(current);
2203 dump_stack();
2204 }
2205
8b03ae3c 2206 spin_lock_irq(&gcwq->lock);
a62428c0 2207
fb0e7beb
TH
2208 /* clear cpu intensive status */
2209 if (unlikely(cpu_intensive))
2210 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2211
a62428c0 2212 /* we're done with it, release */
42f8570f 2213 hash_del(&worker->hentry);
c34056a3 2214 worker->current_work = NULL;
8cca0eea 2215 worker->current_cwq = NULL;
b3f9f405 2216 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2217}
2218
affee4b2
TH
2219/**
2220 * process_scheduled_works - process scheduled works
2221 * @worker: self
2222 *
2223 * Process all scheduled works. Please note that the scheduled list
2224 * may change while processing a work, so this function repeatedly
2225 * fetches a work from the top and executes it.
2226 *
2227 * CONTEXT:
8b03ae3c 2228 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2229 * multiple times.
2230 */
2231static void process_scheduled_works(struct worker *worker)
1da177e4 2232{
affee4b2
TH
2233 while (!list_empty(&worker->scheduled)) {
2234 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2235 struct work_struct, entry);
c34056a3 2236 process_one_work(worker, work);
1da177e4 2237 }
1da177e4
LT
2238}
2239
4690c4ab
TH
2240/**
2241 * worker_thread - the worker thread function
c34056a3 2242 * @__worker: self
4690c4ab 2243 *
e22bee78
TH
2244 * The gcwq worker thread function. There's a single dynamic pool of
2245 * these per each cpu. These workers process all works regardless of
2246 * their specific target workqueue. The only exception is works which
2247 * belong to workqueues with a rescuer which will be explained in
2248 * rescuer_thread().
4690c4ab 2249 */
c34056a3 2250static int worker_thread(void *__worker)
1da177e4 2251{
c34056a3 2252 struct worker *worker = __worker;
bd7bdd43
TH
2253 struct worker_pool *pool = worker->pool;
2254 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2255
e22bee78
TH
2256 /* tell the scheduler that this is a workqueue worker */
2257 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2258woke_up:
c8e55f36 2259 spin_lock_irq(&gcwq->lock);
1da177e4 2260
5f7dabfd
LJ
2261 /* we are off idle list if destruction or rebind is requested */
2262 if (unlikely(list_empty(&worker->entry))) {
c8e55f36 2263 spin_unlock_irq(&gcwq->lock);
25511a47 2264
5f7dabfd 2265 /* if DIE is set, destruction is requested */
25511a47
TH
2266 if (worker->flags & WORKER_DIE) {
2267 worker->task->flags &= ~PF_WQ_WORKER;
2268 return 0;
2269 }
2270
5f7dabfd 2271 /* otherwise, rebind */
25511a47
TH
2272 idle_worker_rebind(worker);
2273 goto woke_up;
c8e55f36 2274 }
affee4b2 2275
c8e55f36 2276 worker_leave_idle(worker);
db7bccf4 2277recheck:
e22bee78 2278 /* no more worker necessary? */
63d95a91 2279 if (!need_more_worker(pool))
e22bee78
TH
2280 goto sleep;
2281
2282 /* do we need to manage? */
63d95a91 2283 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2284 goto recheck;
2285
c8e55f36
TH
2286 /*
2287 * ->scheduled list can only be filled while a worker is
2288 * preparing to process a work or actually processing it.
2289 * Make sure nobody diddled with it while I was sleeping.
2290 */
2291 BUG_ON(!list_empty(&worker->scheduled));
2292
e22bee78
TH
2293 /*
2294 * When control reaches this point, we're guaranteed to have
2295 * at least one idle worker or that someone else has already
2296 * assumed the manager role.
2297 */
2298 worker_clr_flags(worker, WORKER_PREP);
2299
2300 do {
c8e55f36 2301 struct work_struct *work =
bd7bdd43 2302 list_first_entry(&pool->worklist,
c8e55f36
TH
2303 struct work_struct, entry);
2304
2305 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2306 /* optimization path, not strictly necessary */
2307 process_one_work(worker, work);
2308 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2309 process_scheduled_works(worker);
c8e55f36
TH
2310 } else {
2311 move_linked_works(work, &worker->scheduled, NULL);
2312 process_scheduled_works(worker);
affee4b2 2313 }
63d95a91 2314 } while (keep_working(pool));
e22bee78
TH
2315
2316 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2317sleep:
63d95a91 2318 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2319 goto recheck;
d313dd85 2320
c8e55f36 2321 /*
e22bee78
TH
2322 * gcwq->lock is held and there's no work to process and no
2323 * need to manage, sleep. Workers are woken up only while
2324 * holding gcwq->lock or from local cpu, so setting the
2325 * current state before releasing gcwq->lock is enough to
2326 * prevent losing any event.
c8e55f36
TH
2327 */
2328 worker_enter_idle(worker);
2329 __set_current_state(TASK_INTERRUPTIBLE);
2330 spin_unlock_irq(&gcwq->lock);
2331 schedule();
2332 goto woke_up;
1da177e4
LT
2333}
2334
e22bee78
TH
2335/**
2336 * rescuer_thread - the rescuer thread function
2337 * @__wq: the associated workqueue
2338 *
2339 * Workqueue rescuer thread function. There's one rescuer for each
2340 * workqueue which has WQ_RESCUER set.
2341 *
2342 * Regular work processing on a gcwq may block trying to create a new
2343 * worker which uses GFP_KERNEL allocation which has slight chance of
2344 * developing into deadlock if some works currently on the same queue
2345 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2346 * the problem rescuer solves.
2347 *
2348 * When such condition is possible, the gcwq summons rescuers of all
2349 * workqueues which have works queued on the gcwq and let them process
2350 * those works so that forward progress can be guaranteed.
2351 *
2352 * This should happen rarely.
2353 */
2354static int rescuer_thread(void *__wq)
2355{
2356 struct workqueue_struct *wq = __wq;
2357 struct worker *rescuer = wq->rescuer;
2358 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2359 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2360 unsigned int cpu;
2361
2362 set_user_nice(current, RESCUER_NICE_LEVEL);
2363repeat:
2364 set_current_state(TASK_INTERRUPTIBLE);
2365
412d32e6
MG
2366 if (kthread_should_stop()) {
2367 __set_current_state(TASK_RUNNING);
e22bee78 2368 return 0;
412d32e6 2369 }
e22bee78 2370
f3421797
TH
2371 /*
2372 * See whether any cpu is asking for help. Unbounded
2373 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2374 */
f2e005aa 2375 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2376 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2377 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2378 struct worker_pool *pool = cwq->pool;
2379 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2380 struct work_struct *work, *n;
2381
2382 __set_current_state(TASK_RUNNING);
f2e005aa 2383 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2384
2385 /* migrate to the target cpu if possible */
bd7bdd43 2386 rescuer->pool = pool;
e22bee78
TH
2387 worker_maybe_bind_and_lock(rescuer);
2388
2389 /*
2390 * Slurp in all works issued via this workqueue and
2391 * process'em.
2392 */
2393 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2394 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2395 if (get_work_cwq(work) == cwq)
2396 move_linked_works(work, scheduled, &n);
2397
2398 process_scheduled_works(rescuer);
7576958a
TH
2399
2400 /*
2401 * Leave this gcwq. If keep_working() is %true, notify a
2402 * regular worker; otherwise, we end up with 0 concurrency
2403 * and stalling the execution.
2404 */
63d95a91
TH
2405 if (keep_working(pool))
2406 wake_up_worker(pool);
7576958a 2407
e22bee78
TH
2408 spin_unlock_irq(&gcwq->lock);
2409 }
2410
2411 schedule();
2412 goto repeat;
1da177e4
LT
2413}
2414
fc2e4d70
ON
2415struct wq_barrier {
2416 struct work_struct work;
2417 struct completion done;
2418};
2419
2420static void wq_barrier_func(struct work_struct *work)
2421{
2422 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2423 complete(&barr->done);
2424}
2425
4690c4ab
TH
2426/**
2427 * insert_wq_barrier - insert a barrier work
2428 * @cwq: cwq to insert barrier into
2429 * @barr: wq_barrier to insert
affee4b2
TH
2430 * @target: target work to attach @barr to
2431 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2432 *
affee4b2
TH
2433 * @barr is linked to @target such that @barr is completed only after
2434 * @target finishes execution. Please note that the ordering
2435 * guarantee is observed only with respect to @target and on the local
2436 * cpu.
2437 *
2438 * Currently, a queued barrier can't be canceled. This is because
2439 * try_to_grab_pending() can't determine whether the work to be
2440 * grabbed is at the head of the queue and thus can't clear LINKED
2441 * flag of the previous work while there must be a valid next work
2442 * after a work with LINKED flag set.
2443 *
2444 * Note that when @worker is non-NULL, @target may be modified
2445 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2446 *
2447 * CONTEXT:
8b03ae3c 2448 * spin_lock_irq(gcwq->lock).
4690c4ab 2449 */
83c22520 2450static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2451 struct wq_barrier *barr,
2452 struct work_struct *target, struct worker *worker)
fc2e4d70 2453{
affee4b2
TH
2454 struct list_head *head;
2455 unsigned int linked = 0;
2456
dc186ad7 2457 /*
8b03ae3c 2458 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2459 * as we know for sure that this will not trigger any of the
2460 * checks and call back into the fixup functions where we
2461 * might deadlock.
2462 */
ca1cab37 2463 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2464 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2465 init_completion(&barr->done);
83c22520 2466
affee4b2
TH
2467 /*
2468 * If @target is currently being executed, schedule the
2469 * barrier to the worker; otherwise, put it after @target.
2470 */
2471 if (worker)
2472 head = worker->scheduled.next;
2473 else {
2474 unsigned long *bits = work_data_bits(target);
2475
2476 head = target->entry.next;
2477 /* there can already be other linked works, inherit and set */
2478 linked = *bits & WORK_STRUCT_LINKED;
2479 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2480 }
2481
dc186ad7 2482 debug_work_activate(&barr->work);
affee4b2
TH
2483 insert_work(cwq, &barr->work, head,
2484 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2485}
2486
73f53c4a
TH
2487/**
2488 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2489 * @wq: workqueue being flushed
2490 * @flush_color: new flush color, < 0 for no-op
2491 * @work_color: new work color, < 0 for no-op
2492 *
2493 * Prepare cwqs for workqueue flushing.
2494 *
2495 * If @flush_color is non-negative, flush_color on all cwqs should be
2496 * -1. If no cwq has in-flight commands at the specified color, all
2497 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2498 * has in flight commands, its cwq->flush_color is set to
2499 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2500 * wakeup logic is armed and %true is returned.
2501 *
2502 * The caller should have initialized @wq->first_flusher prior to
2503 * calling this function with non-negative @flush_color. If
2504 * @flush_color is negative, no flush color update is done and %false
2505 * is returned.
2506 *
2507 * If @work_color is non-negative, all cwqs should have the same
2508 * work_color which is previous to @work_color and all will be
2509 * advanced to @work_color.
2510 *
2511 * CONTEXT:
2512 * mutex_lock(wq->flush_mutex).
2513 *
2514 * RETURNS:
2515 * %true if @flush_color >= 0 and there's something to flush. %false
2516 * otherwise.
2517 */
2518static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2519 int flush_color, int work_color)
1da177e4 2520{
73f53c4a
TH
2521 bool wait = false;
2522 unsigned int cpu;
1da177e4 2523
73f53c4a
TH
2524 if (flush_color >= 0) {
2525 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2526 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2527 }
2355b70f 2528
f3421797 2529 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2530 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2531 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2532
8b03ae3c 2533 spin_lock_irq(&gcwq->lock);
83c22520 2534
73f53c4a
TH
2535 if (flush_color >= 0) {
2536 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2537
73f53c4a
TH
2538 if (cwq->nr_in_flight[flush_color]) {
2539 cwq->flush_color = flush_color;
2540 atomic_inc(&wq->nr_cwqs_to_flush);
2541 wait = true;
2542 }
2543 }
1da177e4 2544
73f53c4a
TH
2545 if (work_color >= 0) {
2546 BUG_ON(work_color != work_next_color(cwq->work_color));
2547 cwq->work_color = work_color;
2548 }
1da177e4 2549
8b03ae3c 2550 spin_unlock_irq(&gcwq->lock);
1da177e4 2551 }
2355b70f 2552
73f53c4a
TH
2553 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2554 complete(&wq->first_flusher->done);
14441960 2555
73f53c4a 2556 return wait;
1da177e4
LT
2557}
2558
0fcb78c2 2559/**
1da177e4 2560 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2561 * @wq: workqueue to flush
1da177e4
LT
2562 *
2563 * Forces execution of the workqueue and blocks until its completion.
2564 * This is typically used in driver shutdown handlers.
2565 *
fc2e4d70
ON
2566 * We sleep until all works which were queued on entry have been handled,
2567 * but we are not livelocked by new incoming ones.
1da177e4 2568 */
7ad5b3a5 2569void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2570{
73f53c4a
TH
2571 struct wq_flusher this_flusher = {
2572 .list = LIST_HEAD_INIT(this_flusher.list),
2573 .flush_color = -1,
2574 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2575 };
2576 int next_color;
1da177e4 2577
3295f0ef
IM
2578 lock_map_acquire(&wq->lockdep_map);
2579 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2580
2581 mutex_lock(&wq->flush_mutex);
2582
2583 /*
2584 * Start-to-wait phase
2585 */
2586 next_color = work_next_color(wq->work_color);
2587
2588 if (next_color != wq->flush_color) {
2589 /*
2590 * Color space is not full. The current work_color
2591 * becomes our flush_color and work_color is advanced
2592 * by one.
2593 */
2594 BUG_ON(!list_empty(&wq->flusher_overflow));
2595 this_flusher.flush_color = wq->work_color;
2596 wq->work_color = next_color;
2597
2598 if (!wq->first_flusher) {
2599 /* no flush in progress, become the first flusher */
2600 BUG_ON(wq->flush_color != this_flusher.flush_color);
2601
2602 wq->first_flusher = &this_flusher;
2603
2604 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2605 wq->work_color)) {
2606 /* nothing to flush, done */
2607 wq->flush_color = next_color;
2608 wq->first_flusher = NULL;
2609 goto out_unlock;
2610 }
2611 } else {
2612 /* wait in queue */
2613 BUG_ON(wq->flush_color == this_flusher.flush_color);
2614 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2615 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2616 }
2617 } else {
2618 /*
2619 * Oops, color space is full, wait on overflow queue.
2620 * The next flush completion will assign us
2621 * flush_color and transfer to flusher_queue.
2622 */
2623 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2624 }
2625
2626 mutex_unlock(&wq->flush_mutex);
2627
2628 wait_for_completion(&this_flusher.done);
2629
2630 /*
2631 * Wake-up-and-cascade phase
2632 *
2633 * First flushers are responsible for cascading flushes and
2634 * handling overflow. Non-first flushers can simply return.
2635 */
2636 if (wq->first_flusher != &this_flusher)
2637 return;
2638
2639 mutex_lock(&wq->flush_mutex);
2640
4ce48b37
TH
2641 /* we might have raced, check again with mutex held */
2642 if (wq->first_flusher != &this_flusher)
2643 goto out_unlock;
2644
73f53c4a
TH
2645 wq->first_flusher = NULL;
2646
2647 BUG_ON(!list_empty(&this_flusher.list));
2648 BUG_ON(wq->flush_color != this_flusher.flush_color);
2649
2650 while (true) {
2651 struct wq_flusher *next, *tmp;
2652
2653 /* complete all the flushers sharing the current flush color */
2654 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2655 if (next->flush_color != wq->flush_color)
2656 break;
2657 list_del_init(&next->list);
2658 complete(&next->done);
2659 }
2660
2661 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2662 wq->flush_color != work_next_color(wq->work_color));
2663
2664 /* this flush_color is finished, advance by one */
2665 wq->flush_color = work_next_color(wq->flush_color);
2666
2667 /* one color has been freed, handle overflow queue */
2668 if (!list_empty(&wq->flusher_overflow)) {
2669 /*
2670 * Assign the same color to all overflowed
2671 * flushers, advance work_color and append to
2672 * flusher_queue. This is the start-to-wait
2673 * phase for these overflowed flushers.
2674 */
2675 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2676 tmp->flush_color = wq->work_color;
2677
2678 wq->work_color = work_next_color(wq->work_color);
2679
2680 list_splice_tail_init(&wq->flusher_overflow,
2681 &wq->flusher_queue);
2682 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2683 }
2684
2685 if (list_empty(&wq->flusher_queue)) {
2686 BUG_ON(wq->flush_color != wq->work_color);
2687 break;
2688 }
2689
2690 /*
2691 * Need to flush more colors. Make the next flusher
2692 * the new first flusher and arm cwqs.
2693 */
2694 BUG_ON(wq->flush_color == wq->work_color);
2695 BUG_ON(wq->flush_color != next->flush_color);
2696
2697 list_del_init(&next->list);
2698 wq->first_flusher = next;
2699
2700 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2701 break;
2702
2703 /*
2704 * Meh... this color is already done, clear first
2705 * flusher and repeat cascading.
2706 */
2707 wq->first_flusher = NULL;
2708 }
2709
2710out_unlock:
2711 mutex_unlock(&wq->flush_mutex);
1da177e4 2712}
ae90dd5d 2713EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2714
9c5a2ba7
TH
2715/**
2716 * drain_workqueue - drain a workqueue
2717 * @wq: workqueue to drain
2718 *
2719 * Wait until the workqueue becomes empty. While draining is in progress,
2720 * only chain queueing is allowed. IOW, only currently pending or running
2721 * work items on @wq can queue further work items on it. @wq is flushed
2722 * repeatedly until it becomes empty. The number of flushing is detemined
2723 * by the depth of chaining and should be relatively short. Whine if it
2724 * takes too long.
2725 */
2726void drain_workqueue(struct workqueue_struct *wq)
2727{
2728 unsigned int flush_cnt = 0;
2729 unsigned int cpu;
2730
2731 /*
2732 * __queue_work() needs to test whether there are drainers, is much
2733 * hotter than drain_workqueue() and already looks at @wq->flags.
2734 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2735 */
2736 spin_lock(&workqueue_lock);
2737 if (!wq->nr_drainers++)
2738 wq->flags |= WQ_DRAINING;
2739 spin_unlock(&workqueue_lock);
2740reflush:
2741 flush_workqueue(wq);
2742
2743 for_each_cwq_cpu(cpu, wq) {
2744 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2745 bool drained;
9c5a2ba7 2746
bd7bdd43 2747 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2748 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2749 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2750
2751 if (drained)
9c5a2ba7
TH
2752 continue;
2753
2754 if (++flush_cnt == 10 ||
2755 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2756 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2757 wq->name, flush_cnt);
9c5a2ba7
TH
2758 goto reflush;
2759 }
2760
2761 spin_lock(&workqueue_lock);
2762 if (!--wq->nr_drainers)
2763 wq->flags &= ~WQ_DRAINING;
2764 spin_unlock(&workqueue_lock);
2765}
2766EXPORT_SYMBOL_GPL(drain_workqueue);
2767
606a5020 2768static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2769{
affee4b2 2770 struct worker *worker = NULL;
8b03ae3c 2771 struct global_cwq *gcwq;
db700897 2772 struct cpu_workqueue_struct *cwq;
db700897
ON
2773
2774 might_sleep();
7a22ad75
TH
2775 gcwq = get_work_gcwq(work);
2776 if (!gcwq)
baf59022 2777 return false;
db700897 2778
8b03ae3c 2779 spin_lock_irq(&gcwq->lock);
db700897
ON
2780 if (!list_empty(&work->entry)) {
2781 /*
2782 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2783 * If it was re-queued to a different gcwq under us, we
2784 * are not going to wait.
db700897
ON
2785 */
2786 smp_rmb();
7a22ad75 2787 cwq = get_work_cwq(work);
bd7bdd43 2788 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2789 goto already_gone;
606a5020 2790 } else {
7a22ad75 2791 worker = find_worker_executing_work(gcwq, work);
affee4b2 2792 if (!worker)
4690c4ab 2793 goto already_gone;
7a22ad75 2794 cwq = worker->current_cwq;
606a5020 2795 }
db700897 2796
baf59022 2797 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2798 spin_unlock_irq(&gcwq->lock);
7a22ad75 2799
e159489b
TH
2800 /*
2801 * If @max_active is 1 or rescuer is in use, flushing another work
2802 * item on the same workqueue may lead to deadlock. Make sure the
2803 * flusher is not running on the same workqueue by verifying write
2804 * access.
2805 */
2806 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2807 lock_map_acquire(&cwq->wq->lockdep_map);
2808 else
2809 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2810 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2811
401a8d04 2812 return true;
4690c4ab 2813already_gone:
8b03ae3c 2814 spin_unlock_irq(&gcwq->lock);
401a8d04 2815 return false;
db700897 2816}
baf59022
TH
2817
2818/**
2819 * flush_work - wait for a work to finish executing the last queueing instance
2820 * @work: the work to flush
2821 *
606a5020
TH
2822 * Wait until @work has finished execution. @work is guaranteed to be idle
2823 * on return if it hasn't been requeued since flush started.
baf59022
TH
2824 *
2825 * RETURNS:
2826 * %true if flush_work() waited for the work to finish execution,
2827 * %false if it was already idle.
2828 */
2829bool flush_work(struct work_struct *work)
2830{
2831 struct wq_barrier barr;
2832
0976dfc1
SB
2833 lock_map_acquire(&work->lockdep_map);
2834 lock_map_release(&work->lockdep_map);
2835
606a5020 2836 if (start_flush_work(work, &barr)) {
401a8d04
TH
2837 wait_for_completion(&barr.done);
2838 destroy_work_on_stack(&barr.work);
2839 return true;
606a5020 2840 } else {
401a8d04 2841 return false;
6e84d644 2842 }
6e84d644 2843}
606a5020 2844EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2845
36e227d2 2846static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2847{
bbb68dfa 2848 unsigned long flags;
1f1f642e
ON
2849 int ret;
2850
2851 do {
bbb68dfa
TH
2852 ret = try_to_grab_pending(work, is_dwork, &flags);
2853 /*
2854 * If someone else is canceling, wait for the same event it
2855 * would be waiting for before retrying.
2856 */
2857 if (unlikely(ret == -ENOENT))
606a5020 2858 flush_work(work);
1f1f642e
ON
2859 } while (unlikely(ret < 0));
2860
bbb68dfa
TH
2861 /* tell other tasks trying to grab @work to back off */
2862 mark_work_canceling(work);
2863 local_irq_restore(flags);
2864
606a5020 2865 flush_work(work);
7a22ad75 2866 clear_work_data(work);
1f1f642e
ON
2867 return ret;
2868}
2869
6e84d644 2870/**
401a8d04
TH
2871 * cancel_work_sync - cancel a work and wait for it to finish
2872 * @work: the work to cancel
6e84d644 2873 *
401a8d04
TH
2874 * Cancel @work and wait for its execution to finish. This function
2875 * can be used even if the work re-queues itself or migrates to
2876 * another workqueue. On return from this function, @work is
2877 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2878 *
401a8d04
TH
2879 * cancel_work_sync(&delayed_work->work) must not be used for
2880 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2881 *
401a8d04 2882 * The caller must ensure that the workqueue on which @work was last
6e84d644 2883 * queued can't be destroyed before this function returns.
401a8d04
TH
2884 *
2885 * RETURNS:
2886 * %true if @work was pending, %false otherwise.
6e84d644 2887 */
401a8d04 2888bool cancel_work_sync(struct work_struct *work)
6e84d644 2889{
36e227d2 2890 return __cancel_work_timer(work, false);
b89deed3 2891}
28e53bdd 2892EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2893
6e84d644 2894/**
401a8d04
TH
2895 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2896 * @dwork: the delayed work to flush
6e84d644 2897 *
401a8d04
TH
2898 * Delayed timer is cancelled and the pending work is queued for
2899 * immediate execution. Like flush_work(), this function only
2900 * considers the last queueing instance of @dwork.
1f1f642e 2901 *
401a8d04
TH
2902 * RETURNS:
2903 * %true if flush_work() waited for the work to finish execution,
2904 * %false if it was already idle.
6e84d644 2905 */
401a8d04
TH
2906bool flush_delayed_work(struct delayed_work *dwork)
2907{
8930caba 2908 local_irq_disable();
401a8d04 2909 if (del_timer_sync(&dwork->timer))
1265057f 2910 __queue_work(dwork->cpu,
401a8d04 2911 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2912 local_irq_enable();
401a8d04
TH
2913 return flush_work(&dwork->work);
2914}
2915EXPORT_SYMBOL(flush_delayed_work);
2916
09383498 2917/**
57b30ae7
TH
2918 * cancel_delayed_work - cancel a delayed work
2919 * @dwork: delayed_work to cancel
09383498 2920 *
57b30ae7
TH
2921 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2922 * and canceled; %false if wasn't pending. Note that the work callback
2923 * function may still be running on return, unless it returns %true and the
2924 * work doesn't re-arm itself. Explicitly flush or use
2925 * cancel_delayed_work_sync() to wait on it.
09383498 2926 *
57b30ae7 2927 * This function is safe to call from any context including IRQ handler.
09383498 2928 */
57b30ae7 2929bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2930{
57b30ae7
TH
2931 unsigned long flags;
2932 int ret;
2933
2934 do {
2935 ret = try_to_grab_pending(&dwork->work, true, &flags);
2936 } while (unlikely(ret == -EAGAIN));
2937
2938 if (unlikely(ret < 0))
2939 return false;
2940
2941 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2942 local_irq_restore(flags);
c0158ca6 2943 return ret;
09383498 2944}
57b30ae7 2945EXPORT_SYMBOL(cancel_delayed_work);
09383498 2946
401a8d04
TH
2947/**
2948 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2949 * @dwork: the delayed work cancel
2950 *
2951 * This is cancel_work_sync() for delayed works.
2952 *
2953 * RETURNS:
2954 * %true if @dwork was pending, %false otherwise.
2955 */
2956bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2957{
36e227d2 2958 return __cancel_work_timer(&dwork->work, true);
6e84d644 2959}
f5a421a4 2960EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2961
0fcb78c2 2962/**
c1a220e7
ZR
2963 * schedule_work_on - put work task on a specific cpu
2964 * @cpu: cpu to put the work task on
2965 * @work: job to be done
2966 *
2967 * This puts a job on a specific cpu
2968 */
d4283e93 2969bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2970{
d320c038 2971 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2972}
2973EXPORT_SYMBOL(schedule_work_on);
2974
0fcb78c2 2975/**
0fcb78c2
REB
2976 * schedule_work - put work task in global workqueue
2977 * @work: job to be done
0fcb78c2 2978 *
d4283e93
TH
2979 * Returns %false if @work was already on the kernel-global workqueue and
2980 * %true otherwise.
5b0f437d
BVA
2981 *
2982 * This puts a job in the kernel-global workqueue if it was not already
2983 * queued and leaves it in the same position on the kernel-global
2984 * workqueue otherwise.
0fcb78c2 2985 */
d4283e93 2986bool schedule_work(struct work_struct *work)
1da177e4 2987{
d320c038 2988 return queue_work(system_wq, work);
1da177e4 2989}
ae90dd5d 2990EXPORT_SYMBOL(schedule_work);
1da177e4 2991
0fcb78c2
REB
2992/**
2993 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2994 * @cpu: cpu to use
52bad64d 2995 * @dwork: job to be done
0fcb78c2
REB
2996 * @delay: number of jiffies to wait
2997 *
2998 * After waiting for a given time this puts a job in the kernel-global
2999 * workqueue on the specified CPU.
3000 */
d4283e93
TH
3001bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3002 unsigned long delay)
1da177e4 3003{
d320c038 3004 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3005}
ae90dd5d 3006EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3007
0fcb78c2
REB
3008/**
3009 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3010 * @dwork: job to be done
3011 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3012 *
3013 * After waiting for a given time this puts a job in the kernel-global
3014 * workqueue.
3015 */
d4283e93 3016bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3017{
d320c038 3018 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3019}
ae90dd5d 3020EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3021
b6136773 3022/**
31ddd871 3023 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3024 * @func: the function to call
b6136773 3025 *
31ddd871
TH
3026 * schedule_on_each_cpu() executes @func on each online CPU using the
3027 * system workqueue and blocks until all CPUs have completed.
b6136773 3028 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3029 *
3030 * RETURNS:
3031 * 0 on success, -errno on failure.
b6136773 3032 */
65f27f38 3033int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3034{
3035 int cpu;
38f51568 3036 struct work_struct __percpu *works;
15316ba8 3037
b6136773
AM
3038 works = alloc_percpu(struct work_struct);
3039 if (!works)
15316ba8 3040 return -ENOMEM;
b6136773 3041
93981800
TH
3042 get_online_cpus();
3043
15316ba8 3044 for_each_online_cpu(cpu) {
9bfb1839
IM
3045 struct work_struct *work = per_cpu_ptr(works, cpu);
3046
3047 INIT_WORK(work, func);
b71ab8c2 3048 schedule_work_on(cpu, work);
65a64464 3049 }
93981800
TH
3050
3051 for_each_online_cpu(cpu)
3052 flush_work(per_cpu_ptr(works, cpu));
3053
95402b38 3054 put_online_cpus();
b6136773 3055 free_percpu(works);
15316ba8
CL
3056 return 0;
3057}
3058
eef6a7d5
AS
3059/**
3060 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3061 *
3062 * Forces execution of the kernel-global workqueue and blocks until its
3063 * completion.
3064 *
3065 * Think twice before calling this function! It's very easy to get into
3066 * trouble if you don't take great care. Either of the following situations
3067 * will lead to deadlock:
3068 *
3069 * One of the work items currently on the workqueue needs to acquire
3070 * a lock held by your code or its caller.
3071 *
3072 * Your code is running in the context of a work routine.
3073 *
3074 * They will be detected by lockdep when they occur, but the first might not
3075 * occur very often. It depends on what work items are on the workqueue and
3076 * what locks they need, which you have no control over.
3077 *
3078 * In most situations flushing the entire workqueue is overkill; you merely
3079 * need to know that a particular work item isn't queued and isn't running.
3080 * In such cases you should use cancel_delayed_work_sync() or
3081 * cancel_work_sync() instead.
3082 */
1da177e4
LT
3083void flush_scheduled_work(void)
3084{
d320c038 3085 flush_workqueue(system_wq);
1da177e4 3086}
ae90dd5d 3087EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3088
1fa44eca
JB
3089/**
3090 * execute_in_process_context - reliably execute the routine with user context
3091 * @fn: the function to execute
1fa44eca
JB
3092 * @ew: guaranteed storage for the execute work structure (must
3093 * be available when the work executes)
3094 *
3095 * Executes the function immediately if process context is available,
3096 * otherwise schedules the function for delayed execution.
3097 *
3098 * Returns: 0 - function was executed
3099 * 1 - function was scheduled for execution
3100 */
65f27f38 3101int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3102{
3103 if (!in_interrupt()) {
65f27f38 3104 fn(&ew->work);
1fa44eca
JB
3105 return 0;
3106 }
3107
65f27f38 3108 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3109 schedule_work(&ew->work);
3110
3111 return 1;
3112}
3113EXPORT_SYMBOL_GPL(execute_in_process_context);
3114
1da177e4
LT
3115int keventd_up(void)
3116{
d320c038 3117 return system_wq != NULL;
1da177e4
LT
3118}
3119
bdbc5dd7 3120static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3121{
65a64464 3122 /*
0f900049
TH
3123 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3124 * Make sure that the alignment isn't lower than that of
3125 * unsigned long long.
65a64464 3126 */
0f900049
TH
3127 const size_t size = sizeof(struct cpu_workqueue_struct);
3128 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3129 __alignof__(unsigned long long));
65a64464 3130
e06ffa1e 3131 if (!(wq->flags & WQ_UNBOUND))
f3421797 3132 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3133 else {
f3421797
TH
3134 void *ptr;
3135
3136 /*
3137 * Allocate enough room to align cwq and put an extra
3138 * pointer at the end pointing back to the originally
3139 * allocated pointer which will be used for free.
3140 */
3141 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3142 if (ptr) {
3143 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3144 *(void **)(wq->cpu_wq.single + 1) = ptr;
3145 }
bdbc5dd7 3146 }
f3421797 3147
0415b00d 3148 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3149 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3150 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3151}
3152
bdbc5dd7 3153static void free_cwqs(struct workqueue_struct *wq)
0f900049 3154{
e06ffa1e 3155 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3156 free_percpu(wq->cpu_wq.pcpu);
3157 else if (wq->cpu_wq.single) {
3158 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3159 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3160 }
0f900049
TH
3161}
3162
f3421797
TH
3163static int wq_clamp_max_active(int max_active, unsigned int flags,
3164 const char *name)
b71ab8c2 3165{
f3421797
TH
3166 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3167
3168 if (max_active < 1 || max_active > lim)
044c782c
VI
3169 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3170 max_active, name, 1, lim);
b71ab8c2 3171
f3421797 3172 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3173}
3174
b196be89 3175struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3176 unsigned int flags,
3177 int max_active,
3178 struct lock_class_key *key,
b196be89 3179 const char *lock_name, ...)
1da177e4 3180{
b196be89 3181 va_list args, args1;
1da177e4 3182 struct workqueue_struct *wq;
c34056a3 3183 unsigned int cpu;
b196be89
TH
3184 size_t namelen;
3185
3186 /* determine namelen, allocate wq and format name */
3187 va_start(args, lock_name);
3188 va_copy(args1, args);
3189 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3190
3191 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3192 if (!wq)
3193 goto err;
3194
3195 vsnprintf(wq->name, namelen, fmt, args1);
3196 va_end(args);
3197 va_end(args1);
1da177e4 3198
6370a6ad
TH
3199 /*
3200 * Workqueues which may be used during memory reclaim should
3201 * have a rescuer to guarantee forward progress.
3202 */
3203 if (flags & WQ_MEM_RECLAIM)
3204 flags |= WQ_RESCUER;
3205
d320c038 3206 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3207 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3208
b196be89 3209 /* init wq */
97e37d7b 3210 wq->flags = flags;
a0a1a5fd 3211 wq->saved_max_active = max_active;
73f53c4a
TH
3212 mutex_init(&wq->flush_mutex);
3213 atomic_set(&wq->nr_cwqs_to_flush, 0);
3214 INIT_LIST_HEAD(&wq->flusher_queue);
3215 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3216
eb13ba87 3217 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3218 INIT_LIST_HEAD(&wq->list);
3af24433 3219
bdbc5dd7
TH
3220 if (alloc_cwqs(wq) < 0)
3221 goto err;
3222
f3421797 3223 for_each_cwq_cpu(cpu, wq) {
1537663f 3224 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3225 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3226 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3227
0f900049 3228 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3229 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3230 cwq->wq = wq;
73f53c4a 3231 cwq->flush_color = -1;
1e19ffc6 3232 cwq->max_active = max_active;
1e19ffc6 3233 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3234 }
1537663f 3235
e22bee78
TH
3236 if (flags & WQ_RESCUER) {
3237 struct worker *rescuer;
3238
f2e005aa 3239 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3240 goto err;
3241
3242 wq->rescuer = rescuer = alloc_worker();
3243 if (!rescuer)
3244 goto err;
3245
b196be89
TH
3246 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3247 wq->name);
e22bee78
TH
3248 if (IS_ERR(rescuer->task))
3249 goto err;
3250
e22bee78
TH
3251 rescuer->task->flags |= PF_THREAD_BOUND;
3252 wake_up_process(rescuer->task);
3af24433
ON
3253 }
3254
a0a1a5fd
TH
3255 /*
3256 * workqueue_lock protects global freeze state and workqueues
3257 * list. Grab it, set max_active accordingly and add the new
3258 * workqueue to workqueues list.
3259 */
1537663f 3260 spin_lock(&workqueue_lock);
a0a1a5fd 3261
58a69cb4 3262 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3263 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3264 get_cwq(cpu, wq)->max_active = 0;
3265
1537663f 3266 list_add(&wq->list, &workqueues);
a0a1a5fd 3267
1537663f
TH
3268 spin_unlock(&workqueue_lock);
3269
3af24433 3270 return wq;
4690c4ab
TH
3271err:
3272 if (wq) {
bdbc5dd7 3273 free_cwqs(wq);
f2e005aa 3274 free_mayday_mask(wq->mayday_mask);
e22bee78 3275 kfree(wq->rescuer);
4690c4ab
TH
3276 kfree(wq);
3277 }
3278 return NULL;
3af24433 3279}
d320c038 3280EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3281
3af24433
ON
3282/**
3283 * destroy_workqueue - safely terminate a workqueue
3284 * @wq: target workqueue
3285 *
3286 * Safely destroy a workqueue. All work currently pending will be done first.
3287 */
3288void destroy_workqueue(struct workqueue_struct *wq)
3289{
c8e55f36 3290 unsigned int cpu;
3af24433 3291
9c5a2ba7
TH
3292 /* drain it before proceeding with destruction */
3293 drain_workqueue(wq);
c8efcc25 3294
a0a1a5fd
TH
3295 /*
3296 * wq list is used to freeze wq, remove from list after
3297 * flushing is complete in case freeze races us.
3298 */
95402b38 3299 spin_lock(&workqueue_lock);
b1f4ec17 3300 list_del(&wq->list);
95402b38 3301 spin_unlock(&workqueue_lock);
3af24433 3302
e22bee78 3303 /* sanity check */
f3421797 3304 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3305 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3306 int i;
3307
73f53c4a
TH
3308 for (i = 0; i < WORK_NR_COLORS; i++)
3309 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3310 BUG_ON(cwq->nr_active);
3311 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3312 }
9b41ea72 3313
e22bee78
TH
3314 if (wq->flags & WQ_RESCUER) {
3315 kthread_stop(wq->rescuer->task);
f2e005aa 3316 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3317 kfree(wq->rescuer);
e22bee78
TH
3318 }
3319
bdbc5dd7 3320 free_cwqs(wq);
3af24433
ON
3321 kfree(wq);
3322}
3323EXPORT_SYMBOL_GPL(destroy_workqueue);
3324
9f4bd4cd
LJ
3325/**
3326 * cwq_set_max_active - adjust max_active of a cwq
3327 * @cwq: target cpu_workqueue_struct
3328 * @max_active: new max_active value.
3329 *
3330 * Set @cwq->max_active to @max_active and activate delayed works if
3331 * increased.
3332 *
3333 * CONTEXT:
3334 * spin_lock_irq(gcwq->lock).
3335 */
3336static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3337{
3338 cwq->max_active = max_active;
3339
3340 while (!list_empty(&cwq->delayed_works) &&
3341 cwq->nr_active < cwq->max_active)
3342 cwq_activate_first_delayed(cwq);
3343}
3344
dcd989cb
TH
3345/**
3346 * workqueue_set_max_active - adjust max_active of a workqueue
3347 * @wq: target workqueue
3348 * @max_active: new max_active value.
3349 *
3350 * Set max_active of @wq to @max_active.
3351 *
3352 * CONTEXT:
3353 * Don't call from IRQ context.
3354 */
3355void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3356{
3357 unsigned int cpu;
3358
f3421797 3359 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3360
3361 spin_lock(&workqueue_lock);
3362
3363 wq->saved_max_active = max_active;
3364
f3421797 3365 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3366 struct global_cwq *gcwq = get_gcwq(cpu);
3367
3368 spin_lock_irq(&gcwq->lock);
3369
58a69cb4 3370 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb 3371 !(gcwq->flags & GCWQ_FREEZING))
70369b11 3372 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
9bfb1839 3373
dcd989cb 3374 spin_unlock_irq(&gcwq->lock);
65a64464 3375 }
93981800 3376
dcd989cb 3377 spin_unlock(&workqueue_lock);
15316ba8 3378}
dcd989cb 3379EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3380
eef6a7d5 3381/**
dcd989cb
TH
3382 * workqueue_congested - test whether a workqueue is congested
3383 * @cpu: CPU in question
3384 * @wq: target workqueue
eef6a7d5 3385 *
dcd989cb
TH
3386 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3387 * no synchronization around this function and the test result is
3388 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3389 *
dcd989cb
TH
3390 * RETURNS:
3391 * %true if congested, %false otherwise.
eef6a7d5 3392 */
dcd989cb 3393bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3394{
dcd989cb
TH
3395 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3396
3397 return !list_empty(&cwq->delayed_works);
1da177e4 3398}
dcd989cb 3399EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3400
1fa44eca 3401/**
dcd989cb
TH
3402 * work_cpu - return the last known associated cpu for @work
3403 * @work: the work of interest
1fa44eca 3404 *
dcd989cb 3405 * RETURNS:
bdbc5dd7 3406 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3407 */
dcd989cb 3408unsigned int work_cpu(struct work_struct *work)
1fa44eca 3409{
dcd989cb 3410 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3411
bdbc5dd7 3412 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3413}
dcd989cb 3414EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3415
dcd989cb
TH
3416/**
3417 * work_busy - test whether a work is currently pending or running
3418 * @work: the work to be tested
3419 *
3420 * Test whether @work is currently pending or running. There is no
3421 * synchronization around this function and the test result is
3422 * unreliable and only useful as advisory hints or for debugging.
3423 * Especially for reentrant wqs, the pending state might hide the
3424 * running state.
3425 *
3426 * RETURNS:
3427 * OR'd bitmask of WORK_BUSY_* bits.
3428 */
3429unsigned int work_busy(struct work_struct *work)
1da177e4 3430{
dcd989cb
TH
3431 struct global_cwq *gcwq = get_work_gcwq(work);
3432 unsigned long flags;
3433 unsigned int ret = 0;
1da177e4 3434
dcd989cb 3435 if (!gcwq)
999767be 3436 return 0;
1da177e4 3437
dcd989cb 3438 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3439
dcd989cb
TH
3440 if (work_pending(work))
3441 ret |= WORK_BUSY_PENDING;
3442 if (find_worker_executing_work(gcwq, work))
3443 ret |= WORK_BUSY_RUNNING;
1da177e4 3444
dcd989cb 3445 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3446
dcd989cb 3447 return ret;
1da177e4 3448}
dcd989cb 3449EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3450
db7bccf4
TH
3451/*
3452 * CPU hotplug.
3453 *
e22bee78
TH
3454 * There are two challenges in supporting CPU hotplug. Firstly, there
3455 * are a lot of assumptions on strong associations among work, cwq and
3456 * gcwq which make migrating pending and scheduled works very
3457 * difficult to implement without impacting hot paths. Secondly,
3458 * gcwqs serve mix of short, long and very long running works making
3459 * blocked draining impractical.
3460 *
628c78e7
TH
3461 * This is solved by allowing a gcwq to be disassociated from the CPU
3462 * running as an unbound one and allowing it to be reattached later if the
3463 * cpu comes back online.
db7bccf4 3464 */
1da177e4 3465
60373152 3466/* claim manager positions of all pools */
b2eb83d1 3467static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
60373152
TH
3468{
3469 struct worker_pool *pool;
3470
3471 for_each_worker_pool(pool, gcwq)
b2eb83d1 3472 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
8db25e78 3473 spin_lock_irq(&gcwq->lock);
60373152
TH
3474}
3475
3476/* release manager positions */
b2eb83d1 3477static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
60373152
TH
3478{
3479 struct worker_pool *pool;
3480
8db25e78 3481 spin_unlock_irq(&gcwq->lock);
60373152 3482 for_each_worker_pool(pool, gcwq)
b2eb83d1 3483 mutex_unlock(&pool->assoc_mutex);
60373152
TH
3484}
3485
628c78e7 3486static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3487{
628c78e7 3488 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3489 struct worker_pool *pool;
db7bccf4
TH
3490 struct worker *worker;
3491 struct hlist_node *pos;
3492 int i;
3af24433 3493
db7bccf4
TH
3494 BUG_ON(gcwq->cpu != smp_processor_id());
3495
b2eb83d1 3496 gcwq_claim_assoc_and_lock(gcwq);
3af24433 3497
f2d5a0ee
TH
3498 /*
3499 * We've claimed all manager positions. Make all workers unbound
3500 * and set DISASSOCIATED. Before this, all workers except for the
3501 * ones which are still executing works from before the last CPU
3502 * down must be on the cpu. After this, they may become diasporas.
3503 */
60373152 3504 for_each_worker_pool(pool, gcwq)
4ce62e9e 3505 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3506 worker->flags |= WORKER_UNBOUND;
3af24433 3507
db7bccf4 3508 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3509 worker->flags |= WORKER_UNBOUND;
06ba38a9 3510
f2d5a0ee
TH
3511 gcwq->flags |= GCWQ_DISASSOCIATED;
3512
b2eb83d1 3513 gcwq_release_assoc_and_unlock(gcwq);
628c78e7 3514
e22bee78 3515 /*
403c821d 3516 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3517 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3518 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3519 */
e22bee78 3520 schedule();
06ba38a9 3521
e22bee78 3522 /*
628c78e7
TH
3523 * Sched callbacks are disabled now. Zap nr_running. After this,
3524 * nr_running stays zero and need_more_worker() and keep_working()
3525 * are always true as long as the worklist is not empty. @gcwq now
3526 * behaves as unbound (in terms of concurrency management) gcwq
3527 * which is served by workers tied to the CPU.
3528 *
3529 * On return from this function, the current worker would trigger
3530 * unbound chain execution of pending work items if other workers
3531 * didn't already.
e22bee78 3532 */
4ce62e9e
TH
3533 for_each_worker_pool(pool, gcwq)
3534 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3535}
3af24433 3536
8db25e78
TH
3537/*
3538 * Workqueues should be brought up before normal priority CPU notifiers.
3539 * This will be registered high priority CPU notifier.
3540 */
9fdf9b73 3541static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3542 unsigned long action,
3543 void *hcpu)
3af24433
ON
3544{
3545 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3546 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3547 struct worker_pool *pool;
3ce63377 3548
8db25e78 3549 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3550 case CPU_UP_PREPARE:
4ce62e9e 3551 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3552 struct worker *worker;
3553
3554 if (pool->nr_workers)
3555 continue;
3556
3557 worker = create_worker(pool);
3558 if (!worker)
3559 return NOTIFY_BAD;
3560
3561 spin_lock_irq(&gcwq->lock);
3562 start_worker(worker);
3563 spin_unlock_irq(&gcwq->lock);
3af24433 3564 }
8db25e78 3565 break;
3af24433 3566
db7bccf4
TH
3567 case CPU_DOWN_FAILED:
3568 case CPU_ONLINE:
b2eb83d1 3569 gcwq_claim_assoc_and_lock(gcwq);
bc2ae0f5 3570 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3571 rebind_workers(gcwq);
b2eb83d1 3572 gcwq_release_assoc_and_unlock(gcwq);
db7bccf4 3573 break;
00dfcaf7 3574 }
65758202
TH
3575 return NOTIFY_OK;
3576}
3577
3578/*
3579 * Workqueues should be brought down after normal priority CPU notifiers.
3580 * This will be registered as low priority CPU notifier.
3581 */
9fdf9b73 3582static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3583 unsigned long action,
3584 void *hcpu)
3585{
8db25e78
TH
3586 unsigned int cpu = (unsigned long)hcpu;
3587 struct work_struct unbind_work;
3588
65758202
TH
3589 switch (action & ~CPU_TASKS_FROZEN) {
3590 case CPU_DOWN_PREPARE:
8db25e78
TH
3591 /* unbinding should happen on the local CPU */
3592 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3593 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3594 flush_work(&unbind_work);
3595 break;
65758202
TH
3596 }
3597 return NOTIFY_OK;
3598}
3599
2d3854a3 3600#ifdef CONFIG_SMP
8ccad40d 3601
2d3854a3 3602struct work_for_cpu {
ed48ece2 3603 struct work_struct work;
2d3854a3
RR
3604 long (*fn)(void *);
3605 void *arg;
3606 long ret;
3607};
3608
ed48ece2 3609static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3610{
ed48ece2
TH
3611 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3612
2d3854a3
RR
3613 wfc->ret = wfc->fn(wfc->arg);
3614}
3615
3616/**
3617 * work_on_cpu - run a function in user context on a particular cpu
3618 * @cpu: the cpu to run on
3619 * @fn: the function to run
3620 * @arg: the function arg
3621 *
31ad9081
RR
3622 * This will return the value @fn returns.
3623 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3624 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3625 */
3626long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3627{
ed48ece2 3628 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3629
ed48ece2
TH
3630 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3631 schedule_work_on(cpu, &wfc.work);
3632 flush_work(&wfc.work);
2d3854a3
RR
3633 return wfc.ret;
3634}
3635EXPORT_SYMBOL_GPL(work_on_cpu);
3636#endif /* CONFIG_SMP */
3637
a0a1a5fd
TH
3638#ifdef CONFIG_FREEZER
3639
3640/**
3641 * freeze_workqueues_begin - begin freezing workqueues
3642 *
58a69cb4
TH
3643 * Start freezing workqueues. After this function returns, all freezable
3644 * workqueues will queue new works to their frozen_works list instead of
3645 * gcwq->worklist.
a0a1a5fd
TH
3646 *
3647 * CONTEXT:
8b03ae3c 3648 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3649 */
3650void freeze_workqueues_begin(void)
3651{
a0a1a5fd
TH
3652 unsigned int cpu;
3653
3654 spin_lock(&workqueue_lock);
3655
3656 BUG_ON(workqueue_freezing);
3657 workqueue_freezing = true;
3658
f3421797 3659 for_each_gcwq_cpu(cpu) {
8b03ae3c 3660 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3661 struct workqueue_struct *wq;
8b03ae3c
TH
3662
3663 spin_lock_irq(&gcwq->lock);
3664
db7bccf4
TH
3665 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3666 gcwq->flags |= GCWQ_FREEZING;
3667
a0a1a5fd
TH
3668 list_for_each_entry(wq, &workqueues, list) {
3669 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3670
58a69cb4 3671 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3672 cwq->max_active = 0;
a0a1a5fd 3673 }
8b03ae3c
TH
3674
3675 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3676 }
3677
3678 spin_unlock(&workqueue_lock);
3679}
3680
3681/**
58a69cb4 3682 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3683 *
3684 * Check whether freezing is complete. This function must be called
3685 * between freeze_workqueues_begin() and thaw_workqueues().
3686 *
3687 * CONTEXT:
3688 * Grabs and releases workqueue_lock.
3689 *
3690 * RETURNS:
58a69cb4
TH
3691 * %true if some freezable workqueues are still busy. %false if freezing
3692 * is complete.
a0a1a5fd
TH
3693 */
3694bool freeze_workqueues_busy(void)
3695{
a0a1a5fd
TH
3696 unsigned int cpu;
3697 bool busy = false;
3698
3699 spin_lock(&workqueue_lock);
3700
3701 BUG_ON(!workqueue_freezing);
3702
f3421797 3703 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3704 struct workqueue_struct *wq;
a0a1a5fd
TH
3705 /*
3706 * nr_active is monotonically decreasing. It's safe
3707 * to peek without lock.
3708 */
3709 list_for_each_entry(wq, &workqueues, list) {
3710 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3711
58a69cb4 3712 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3713 continue;
3714
3715 BUG_ON(cwq->nr_active < 0);
3716 if (cwq->nr_active) {
3717 busy = true;
3718 goto out_unlock;
3719 }
3720 }
3721 }
3722out_unlock:
3723 spin_unlock(&workqueue_lock);
3724 return busy;
3725}
3726
3727/**
3728 * thaw_workqueues - thaw workqueues
3729 *
3730 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3731 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3732 *
3733 * CONTEXT:
8b03ae3c 3734 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3735 */
3736void thaw_workqueues(void)
3737{
a0a1a5fd
TH
3738 unsigned int cpu;
3739
3740 spin_lock(&workqueue_lock);
3741
3742 if (!workqueue_freezing)
3743 goto out_unlock;
3744
f3421797 3745 for_each_gcwq_cpu(cpu) {
8b03ae3c 3746 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3747 struct worker_pool *pool;
bdbc5dd7 3748 struct workqueue_struct *wq;
8b03ae3c
TH
3749
3750 spin_lock_irq(&gcwq->lock);
3751
db7bccf4
TH
3752 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3753 gcwq->flags &= ~GCWQ_FREEZING;
3754
a0a1a5fd
TH
3755 list_for_each_entry(wq, &workqueues, list) {
3756 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3757
58a69cb4 3758 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3759 continue;
3760
a0a1a5fd 3761 /* restore max_active and repopulate worklist */
9f4bd4cd 3762 cwq_set_max_active(cwq, wq->saved_max_active);
a0a1a5fd 3763 }
8b03ae3c 3764
4ce62e9e
TH
3765 for_each_worker_pool(pool, gcwq)
3766 wake_up_worker(pool);
e22bee78 3767
8b03ae3c 3768 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3769 }
3770
3771 workqueue_freezing = false;
3772out_unlock:
3773 spin_unlock(&workqueue_lock);
3774}
3775#endif /* CONFIG_FREEZER */
3776
6ee0578b 3777static int __init init_workqueues(void)
1da177e4 3778{
c34056a3
TH
3779 unsigned int cpu;
3780
b5490077
TH
3781 /* make sure we have enough bits for OFFQ CPU number */
3782 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3783 WORK_CPU_LAST);
3784
65758202 3785 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3786 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3787
3788 /* initialize gcwqs */
f3421797 3789 for_each_gcwq_cpu(cpu) {
8b03ae3c 3790 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3791 struct worker_pool *pool;
8b03ae3c
TH
3792
3793 spin_lock_init(&gcwq->lock);
3794 gcwq->cpu = cpu;
477a3c33 3795 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3796
42f8570f 3797 hash_init(gcwq->busy_hash);
c8e55f36 3798
4ce62e9e
TH
3799 for_each_worker_pool(pool, gcwq) {
3800 pool->gcwq = gcwq;
3801 INIT_LIST_HEAD(&pool->worklist);
3802 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3803
4ce62e9e
TH
3804 init_timer_deferrable(&pool->idle_timer);
3805 pool->idle_timer.function = idle_worker_timeout;
3806 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3807
4ce62e9e
TH
3808 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3809 (unsigned long)pool);
3810
b2eb83d1 3811 mutex_init(&pool->assoc_mutex);
4ce62e9e
TH
3812 ida_init(&pool->worker_ida);
3813 }
8b03ae3c
TH
3814 }
3815
e22bee78 3816 /* create the initial worker */
f3421797 3817 for_each_online_gcwq_cpu(cpu) {
e22bee78 3818 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3819 struct worker_pool *pool;
e22bee78 3820
477a3c33
TH
3821 if (cpu != WORK_CPU_UNBOUND)
3822 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3823
3824 for_each_worker_pool(pool, gcwq) {
3825 struct worker *worker;
3826
bc2ae0f5 3827 worker = create_worker(pool);
4ce62e9e
TH
3828 BUG_ON(!worker);
3829 spin_lock_irq(&gcwq->lock);
3830 start_worker(worker);
3831 spin_unlock_irq(&gcwq->lock);
3832 }
e22bee78
TH
3833 }
3834
d320c038 3835 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3836 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3837 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3838 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3839 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3840 system_freezable_wq = alloc_workqueue("events_freezable",
3841 WQ_FREEZABLE, 0);
1aabe902 3842 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3843 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3844 return 0;
1da177e4 3845}
6ee0578b 3846early_initcall(init_workqueues);