]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/workqueue.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[mirror_ubuntu-kernels.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 70 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
1258fae7 127 * A: wq_pool_attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
24acfb71 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 136 * RCU for reads.
5b95e1af 137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
24acfb71 140 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
d565ed63 148 spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43 156 struct list_head worklist; /* L: list of pending works */
ea1abd61 157
5826cc8f
LJ
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4 170 struct list_head workers; /* A: attached workers */
60f5a4bc 171 struct completion *detach_completion; /* all workers detached */
e19e397a 172
7cda9aae 173 struct ida worker_ida; /* worker IDs for task name */
e19e397a 174
7a4e344c 175 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 178
e19e397a
TH
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
185
186 /*
24acfb71 187 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
8b03ae3c
TH
191} ____cacheline_aligned_in_smp;
192
1da177e4 193/*
112202d9
TH
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
1da177e4 198 */
112202d9 199struct pool_workqueue {
bd7bdd43 200 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 201 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
8864b4e5 204 int refcnt; /* L: reference count */
73f53c4a
TH
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
1e19ffc6 207 int nr_active; /* L: nr of active works */
a0a1a5fd 208 int max_active; /* L: max active works */
1e19ffc6 209 struct list_head delayed_works; /* L: delayed works */
3c25a55d 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 211 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 216 * itself is also RCU protected so that the first pwq can be
b09f4fd3 217 * determined without grabbing wq->mutex.
8864b4e5
TH
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
e904e6c2 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 222
73f53c4a
TH
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
3c25a55d
LJ
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
229 struct completion done; /* flush completion */
230};
231
226223ab
TH
232struct wq_device;
233
1da177e4 234/*
c5aa87bb
TH
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
237 */
238struct workqueue_struct {
3c25a55d 239 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 240 struct list_head list; /* PR: list of all workqueues */
73f53c4a 241
3c25a55d
LJ
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
112202d9 245 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 249
2e109a28 250 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 251 struct worker *rescuer; /* MD: rescue worker */
e22bee78 252
87fc741e 253 int nr_drainers; /* WQ: drain in progress */
a357fc03 254 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 255
5b95e1af
LJ
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 258
226223ab
TH
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
4e6045f1 262#ifdef CONFIG_LOCKDEP
669de8bd
BVA
263 char *lock_name;
264 struct lock_class_key key;
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad 269 /*
24acfb71
TG
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 305
e2dca7ad 306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 307static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 308
ef557180
MG
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 314
f303fccb
TH
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
7d19c5ce 327/* the per-cpu worker pools */
25528213 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 329
68e13a67 330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 331
68e13a67 332/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
c5aa87bb 335/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
8a2b7538
TH
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
d320c038 341struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 342EXPORT_SYMBOL(system_wq);
044c782c 343struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 344EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 345struct workqueue_struct *system_long_wq __read_mostly;
d320c038 346EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 347struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 348EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 349struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 350EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 355
7d19c5ce 356static int worker_thread(void *__worker);
6ba94429 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 358static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 359
97bd2347
TH
360#define CREATE_TRACE_POINTS
361#include <trace/events/workqueue.h>
362
68e13a67 363#define assert_rcu_or_pool_mutex() \
24acfb71 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 365 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 366 "RCU or wq_pool_mutex should be held")
5bcab335 367
5b95e1af 368#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 372 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 373
f02ae73a
TH
374#define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 377 (pool)++)
4ce62e9e 378
17116969
TH
379/**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
611c92a0 382 * @pi: integer used for iteration
fa1b54e6 383 *
24acfb71 384 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
17116969 390 */
611c92a0
TH
391#define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 394 else
17116969 395
822d8405
TH
396/**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
822d8405
TH
399 * @pool: worker_pool to iterate workers of
400 *
1258fae7 401 * This must be called with wq_pool_attach_mutex.
822d8405
TH
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
da028469
LJ
406#define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
409 else
410
49e3cf44
TH
411/**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
76af4d93 415 *
24acfb71 416 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
49e3cf44
TH
422 */
423#define for_each_pwq(pwq, wq) \
49e9d1a9 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 425 lockdep_is_held(&(wq->mutex)))
f3421797 426
dc186ad7
TG
427#ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429static struct debug_obj_descr work_debug_descr;
430
99777288
SG
431static void *work_debug_hint(void *addr)
432{
433 return ((struct work_struct *) addr)->func;
434}
435
b9fdac7f
DC
436static bool work_is_static_object(void *addr)
437{
438 struct work_struct *work = addr;
439
440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441}
442
dc186ad7
TG
443/*
444 * fixup_init is called when:
445 * - an active object is initialized
446 */
02a982a6 447static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
448{
449 struct work_struct *work = addr;
450
451 switch (state) {
452 case ODEBUG_STATE_ACTIVE:
453 cancel_work_sync(work);
454 debug_object_init(work, &work_debug_descr);
02a982a6 455 return true;
dc186ad7 456 default:
02a982a6 457 return false;
dc186ad7
TG
458 }
459}
460
dc186ad7
TG
461/*
462 * fixup_free is called when:
463 * - an active object is freed
464 */
02a982a6 465static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
466{
467 struct work_struct *work = addr;
468
469 switch (state) {
470 case ODEBUG_STATE_ACTIVE:
471 cancel_work_sync(work);
472 debug_object_free(work, &work_debug_descr);
02a982a6 473 return true;
dc186ad7 474 default:
02a982a6 475 return false;
dc186ad7
TG
476 }
477}
478
479static struct debug_obj_descr work_debug_descr = {
480 .name = "work_struct",
99777288 481 .debug_hint = work_debug_hint,
b9fdac7f 482 .is_static_object = work_is_static_object,
dc186ad7 483 .fixup_init = work_fixup_init,
dc186ad7
TG
484 .fixup_free = work_fixup_free,
485};
486
487static inline void debug_work_activate(struct work_struct *work)
488{
489 debug_object_activate(work, &work_debug_descr);
490}
491
492static inline void debug_work_deactivate(struct work_struct *work)
493{
494 debug_object_deactivate(work, &work_debug_descr);
495}
496
497void __init_work(struct work_struct *work, int onstack)
498{
499 if (onstack)
500 debug_object_init_on_stack(work, &work_debug_descr);
501 else
502 debug_object_init(work, &work_debug_descr);
503}
504EXPORT_SYMBOL_GPL(__init_work);
505
506void destroy_work_on_stack(struct work_struct *work)
507{
508 debug_object_free(work, &work_debug_descr);
509}
510EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511
ea2e64f2
TG
512void destroy_delayed_work_on_stack(struct delayed_work *work)
513{
514 destroy_timer_on_stack(&work->timer);
515 debug_object_free(&work->work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518
dc186ad7
TG
519#else
520static inline void debug_work_activate(struct work_struct *work) { }
521static inline void debug_work_deactivate(struct work_struct *work) { }
522#endif
523
4e8b22bd
LB
524/**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
9daf9e67
TH
531static int worker_pool_assign_id(struct worker_pool *pool)
532{
533 int ret;
534
68e13a67 535 lockdep_assert_held(&wq_pool_mutex);
5bcab335 536
4e8b22bd
LB
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
229641a6 539 if (ret >= 0) {
e68035fb 540 pool->id = ret;
229641a6
TH
541 return 0;
542 }
fa1b54e6 543 return ret;
7c3eed5c
TH
544}
545
df2d5ae4
TH
546/**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
24acfb71 551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 552 * read locked.
df2d5ae4
TH
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
555 *
556 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
557 */
558static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 int node)
560{
5b95e1af 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
562
563 /*
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
568 */
569 if (unlikely(node == NUMA_NO_NODE))
570 return wq->dfl_pwq;
571
df2d5ae4
TH
572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573}
574
73f53c4a
TH
575static unsigned int work_color_to_flags(int color)
576{
577 return color << WORK_STRUCT_COLOR_SHIFT;
578}
579
580static int get_work_color(struct work_struct *work)
581{
582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
584}
585
586static int work_next_color(int color)
587{
588 return (color + 1) % WORK_NR_COLORS;
589}
1da177e4 590
14441960 591/*
112202d9
TH
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 594 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 595 *
112202d9
TH
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
7a22ad75 600 *
112202d9 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 602 * corresponding to a work. Pool is available once the work has been
112202d9 603 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 604 * available only while the work item is queued.
7a22ad75 605 *
bbb68dfa
TH
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
14441960 610 */
7a22ad75
TH
611static inline void set_work_data(struct work_struct *work, unsigned long data,
612 unsigned long flags)
365970a1 613{
6183c009 614 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
615 atomic_long_set(&work->data, data | flags | work_static(work));
616}
365970a1 617
112202d9 618static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
619 unsigned long extra_flags)
620{
112202d9
TH
621 set_work_data(work, (unsigned long)pwq,
622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
623}
624
4468a00f
LJ
625static void set_work_pool_and_keep_pending(struct work_struct *work,
626 int pool_id)
627{
628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 WORK_STRUCT_PENDING);
630}
631
7c3eed5c
TH
632static void set_work_pool_and_clear_pending(struct work_struct *work,
633 int pool_id)
7a22ad75 634{
23657bb1
TH
635 /*
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
639 * owner.
640 */
641 smp_wmb();
7c3eed5c 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
643 /*
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
8bdc6201 647 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
648 * the same @work. E.g. consider this case:
649 *
650 * CPU#0 CPU#1
651 * ---------------------------- --------------------------------
652 *
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
658 * 6 smp_mb()
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
661 * }
662 *
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
670 */
671 smp_mb();
7a22ad75 672}
f756d5e2 673
7a22ad75 674static void clear_work_data(struct work_struct *work)
1da177e4 675{
7c3eed5c
TH
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
678}
679
112202d9 680static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 681{
e120153d 682 unsigned long data = atomic_long_read(&work->data);
7a22ad75 683
112202d9 684 if (data & WORK_STRUCT_PWQ)
e120153d
TH
685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 else
687 return NULL;
4d707b9f
ON
688}
689
7c3eed5c
TH
690/**
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
693 *
68e13a67 694 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
695 * access under RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
697 *
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
d185af30
YB
702 *
703 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
704 */
705static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 706{
e120153d 707 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 708 int pool_id;
7a22ad75 709
68e13a67 710 assert_rcu_or_pool_mutex();
fa1b54e6 711
112202d9
TH
712 if (data & WORK_STRUCT_PWQ)
713 return ((struct pool_workqueue *)
7c3eed5c 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 715
7c3eed5c
TH
716 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
718 return NULL;
719
fa1b54e6 720 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
721}
722
723/**
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
726 *
d185af30 727 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
728 * %WORK_OFFQ_POOL_NONE if none.
729 */
730static int get_work_pool_id(struct work_struct *work)
731{
54d5b7d0
LJ
732 unsigned long data = atomic_long_read(&work->data);
733
112202d9
TH
734 if (data & WORK_STRUCT_PWQ)
735 return ((struct pool_workqueue *)
54d5b7d0 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 737
54d5b7d0 738 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
739}
740
bbb68dfa
TH
741static void mark_work_canceling(struct work_struct *work)
742{
7c3eed5c 743 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 744
7c3eed5c
TH
745 pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
747}
748
749static bool work_is_canceling(struct work_struct *work)
750{
751 unsigned long data = atomic_long_read(&work->data);
752
112202d9 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
754}
755
e22bee78 756/*
3270476a
TH
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 759 * they're being called with pool->lock held.
e22bee78
TH
760 */
761
63d95a91 762static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 763{
e19e397a 764 return !atomic_read(&pool->nr_running);
a848e3b6
ON
765}
766
4594bf15 767/*
e22bee78
TH
768 * Need to wake up a worker? Called from anything but currently
769 * running workers.
974271c4
TH
770 *
771 * Note that, because unbound workers never contribute to nr_running, this
706026c2 772 * function will always return %true for unbound pools as long as the
974271c4 773 * worklist isn't empty.
4594bf15 774 */
63d95a91 775static bool need_more_worker(struct worker_pool *pool)
365970a1 776{
63d95a91 777 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 778}
4594bf15 779
e22bee78 780/* Can I start working? Called from busy but !running workers. */
63d95a91 781static bool may_start_working(struct worker_pool *pool)
e22bee78 782{
63d95a91 783 return pool->nr_idle;
e22bee78
TH
784}
785
786/* Do I need to keep working? Called from currently running workers. */
63d95a91 787static bool keep_working(struct worker_pool *pool)
e22bee78 788{
e19e397a
TH
789 return !list_empty(&pool->worklist) &&
790 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
791}
792
793/* Do we need a new worker? Called from manager. */
63d95a91 794static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 795{
63d95a91 796 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 797}
365970a1 798
e22bee78 799/* Do we have too many workers and should some go away? */
63d95a91 800static bool too_many_workers(struct worker_pool *pool)
e22bee78 801{
692b4825 802 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
805
806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
807}
808
4d707b9f 809/*
e22bee78
TH
810 * Wake up functions.
811 */
812
1037de36
LJ
813/* Return the first idle worker. Safe with preemption disabled */
814static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 815{
63d95a91 816 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
817 return NULL;
818
63d95a91 819 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
820}
821
822/**
823 * wake_up_worker - wake up an idle worker
63d95a91 824 * @pool: worker pool to wake worker from
7e11629d 825 *
63d95a91 826 * Wake up the first idle worker of @pool.
7e11629d
TH
827 *
828 * CONTEXT:
d565ed63 829 * spin_lock_irq(pool->lock).
7e11629d 830 */
63d95a91 831static void wake_up_worker(struct worker_pool *pool)
7e11629d 832{
1037de36 833 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
834
835 if (likely(worker))
836 wake_up_process(worker->task);
837}
838
d302f017 839/**
6d25be57 840 * wq_worker_running - a worker is running again
e22bee78 841 * @task: task waking up
e22bee78 842 *
6d25be57 843 * This function is called when a worker returns from schedule()
e22bee78 844 */
6d25be57 845void wq_worker_running(struct task_struct *task)
e22bee78
TH
846{
847 struct worker *worker = kthread_data(task);
848
6d25be57
TG
849 if (!worker->sleeping)
850 return;
851 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 852 atomic_inc(&worker->pool->nr_running);
6d25be57 853 worker->sleeping = 0;
e22bee78
TH
854}
855
856/**
857 * wq_worker_sleeping - a worker is going to sleep
858 * @task: task going to sleep
e22bee78 859 *
6d25be57 860 * This function is called from schedule() when a busy worker is
62849a96
SAS
861 * going to sleep. Preemption needs to be disabled to protect ->sleeping
862 * assignment.
e22bee78 863 */
6d25be57 864void wq_worker_sleeping(struct task_struct *task)
e22bee78 865{
6d25be57 866 struct worker *next, *worker = kthread_data(task);
111c225a 867 struct worker_pool *pool;
e22bee78 868
111c225a
TH
869 /*
870 * Rescuers, which may not have all the fields set up like normal
871 * workers, also reach here, let's not access anything before
872 * checking NOT_RUNNING.
873 */
2d64672e 874 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 875 return;
e22bee78 876
111c225a 877 pool = worker->pool;
111c225a 878
62849a96
SAS
879 /* Return if preempted before wq_worker_running() was reached */
880 if (worker->sleeping)
6d25be57
TG
881 return;
882
883 worker->sleeping = 1;
884 spin_lock_irq(&pool->lock);
e22bee78
TH
885
886 /*
887 * The counterpart of the following dec_and_test, implied mb,
888 * worklist not empty test sequence is in insert_work().
889 * Please read comment there.
890 *
628c78e7
TH
891 * NOT_RUNNING is clear. This means that we're bound to and
892 * running on the local cpu w/ rq lock held and preemption
893 * disabled, which in turn means that none else could be
d565ed63 894 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 895 * lock is safe.
e22bee78 896 */
e19e397a 897 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
898 !list_empty(&pool->worklist)) {
899 next = first_idle_worker(pool);
900 if (next)
901 wake_up_process(next->task);
902 }
903 spin_unlock_irq(&pool->lock);
e22bee78
TH
904}
905
1b69ac6b
JW
906/**
907 * wq_worker_last_func - retrieve worker's last work function
8194fe94 908 * @task: Task to retrieve last work function of.
1b69ac6b
JW
909 *
910 * Determine the last function a worker executed. This is called from
911 * the scheduler to get a worker's last known identity.
912 *
913 * CONTEXT:
914 * spin_lock_irq(rq->lock)
915 *
4b047002
JW
916 * This function is called during schedule() when a kworker is going
917 * to sleep. It's used by psi to identify aggregation workers during
918 * dequeuing, to allow periodic aggregation to shut-off when that
919 * worker is the last task in the system or cgroup to go to sleep.
920 *
921 * As this function doesn't involve any workqueue-related locking, it
922 * only returns stable values when called from inside the scheduler's
923 * queuing and dequeuing paths, when @task, which must be a kworker,
924 * is guaranteed to not be processing any works.
925 *
1b69ac6b
JW
926 * Return:
927 * The last work function %current executed as a worker, NULL if it
928 * hasn't executed any work yet.
929 */
930work_func_t wq_worker_last_func(struct task_struct *task)
931{
932 struct worker *worker = kthread_data(task);
933
934 return worker->last_func;
935}
936
e22bee78
TH
937/**
938 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 939 * @worker: self
d302f017 940 * @flags: flags to set
d302f017 941 *
228f1d00 942 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 943 *
cb444766 944 * CONTEXT:
d565ed63 945 * spin_lock_irq(pool->lock)
d302f017 946 */
228f1d00 947static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 948{
bd7bdd43 949 struct worker_pool *pool = worker->pool;
e22bee78 950
cb444766
TH
951 WARN_ON_ONCE(worker->task != current);
952
228f1d00 953 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
954 if ((flags & WORKER_NOT_RUNNING) &&
955 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 956 atomic_dec(&pool->nr_running);
e22bee78
TH
957 }
958
d302f017
TH
959 worker->flags |= flags;
960}
961
962/**
e22bee78 963 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 964 * @worker: self
d302f017
TH
965 * @flags: flags to clear
966 *
e22bee78 967 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 968 *
cb444766 969 * CONTEXT:
d565ed63 970 * spin_lock_irq(pool->lock)
d302f017
TH
971 */
972static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
973{
63d95a91 974 struct worker_pool *pool = worker->pool;
e22bee78
TH
975 unsigned int oflags = worker->flags;
976
cb444766
TH
977 WARN_ON_ONCE(worker->task != current);
978
d302f017 979 worker->flags &= ~flags;
e22bee78 980
42c025f3
TH
981 /*
982 * If transitioning out of NOT_RUNNING, increment nr_running. Note
983 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
984 * of multiple flags, not a single flag.
985 */
e22bee78
TH
986 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
987 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 988 atomic_inc(&pool->nr_running);
d302f017
TH
989}
990
8cca0eea
TH
991/**
992 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 993 * @pool: pool of interest
8cca0eea
TH
994 * @work: work to find worker for
995 *
c9e7cf27
TH
996 * Find a worker which is executing @work on @pool by searching
997 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
998 * to match, its current execution should match the address of @work and
999 * its work function. This is to avoid unwanted dependency between
1000 * unrelated work executions through a work item being recycled while still
1001 * being executed.
1002 *
1003 * This is a bit tricky. A work item may be freed once its execution
1004 * starts and nothing prevents the freed area from being recycled for
1005 * another work item. If the same work item address ends up being reused
1006 * before the original execution finishes, workqueue will identify the
1007 * recycled work item as currently executing and make it wait until the
1008 * current execution finishes, introducing an unwanted dependency.
1009 *
c5aa87bb
TH
1010 * This function checks the work item address and work function to avoid
1011 * false positives. Note that this isn't complete as one may construct a
1012 * work function which can introduce dependency onto itself through a
1013 * recycled work item. Well, if somebody wants to shoot oneself in the
1014 * foot that badly, there's only so much we can do, and if such deadlock
1015 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1016 *
1017 * CONTEXT:
d565ed63 1018 * spin_lock_irq(pool->lock).
8cca0eea 1019 *
d185af30
YB
1020 * Return:
1021 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1022 * otherwise.
4d707b9f 1023 */
c9e7cf27 1024static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1025 struct work_struct *work)
4d707b9f 1026{
42f8570f 1027 struct worker *worker;
42f8570f 1028
b67bfe0d 1029 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1030 (unsigned long)work)
1031 if (worker->current_work == work &&
1032 worker->current_func == work->func)
42f8570f
SL
1033 return worker;
1034
1035 return NULL;
4d707b9f
ON
1036}
1037
bf4ede01
TH
1038/**
1039 * move_linked_works - move linked works to a list
1040 * @work: start of series of works to be scheduled
1041 * @head: target list to append @work to
402dd89d 1042 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1043 *
1044 * Schedule linked works starting from @work to @head. Work series to
1045 * be scheduled starts at @work and includes any consecutive work with
1046 * WORK_STRUCT_LINKED set in its predecessor.
1047 *
1048 * If @nextp is not NULL, it's updated to point to the next work of
1049 * the last scheduled work. This allows move_linked_works() to be
1050 * nested inside outer list_for_each_entry_safe().
1051 *
1052 * CONTEXT:
d565ed63 1053 * spin_lock_irq(pool->lock).
bf4ede01
TH
1054 */
1055static void move_linked_works(struct work_struct *work, struct list_head *head,
1056 struct work_struct **nextp)
1057{
1058 struct work_struct *n;
1059
1060 /*
1061 * Linked worklist will always end before the end of the list,
1062 * use NULL for list head.
1063 */
1064 list_for_each_entry_safe_from(work, n, NULL, entry) {
1065 list_move_tail(&work->entry, head);
1066 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1067 break;
1068 }
1069
1070 /*
1071 * If we're already inside safe list traversal and have moved
1072 * multiple works to the scheduled queue, the next position
1073 * needs to be updated.
1074 */
1075 if (nextp)
1076 *nextp = n;
1077}
1078
8864b4e5
TH
1079/**
1080 * get_pwq - get an extra reference on the specified pool_workqueue
1081 * @pwq: pool_workqueue to get
1082 *
1083 * Obtain an extra reference on @pwq. The caller should guarantee that
1084 * @pwq has positive refcnt and be holding the matching pool->lock.
1085 */
1086static void get_pwq(struct pool_workqueue *pwq)
1087{
1088 lockdep_assert_held(&pwq->pool->lock);
1089 WARN_ON_ONCE(pwq->refcnt <= 0);
1090 pwq->refcnt++;
1091}
1092
1093/**
1094 * put_pwq - put a pool_workqueue reference
1095 * @pwq: pool_workqueue to put
1096 *
1097 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1098 * destruction. The caller should be holding the matching pool->lock.
1099 */
1100static void put_pwq(struct pool_workqueue *pwq)
1101{
1102 lockdep_assert_held(&pwq->pool->lock);
1103 if (likely(--pwq->refcnt))
1104 return;
1105 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1106 return;
1107 /*
1108 * @pwq can't be released under pool->lock, bounce to
1109 * pwq_unbound_release_workfn(). This never recurses on the same
1110 * pool->lock as this path is taken only for unbound workqueues and
1111 * the release work item is scheduled on a per-cpu workqueue. To
1112 * avoid lockdep warning, unbound pool->locks are given lockdep
1113 * subclass of 1 in get_unbound_pool().
1114 */
1115 schedule_work(&pwq->unbound_release_work);
1116}
1117
dce90d47
TH
1118/**
1119 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1120 * @pwq: pool_workqueue to put (can be %NULL)
1121 *
1122 * put_pwq() with locking. This function also allows %NULL @pwq.
1123 */
1124static void put_pwq_unlocked(struct pool_workqueue *pwq)
1125{
1126 if (pwq) {
1127 /*
24acfb71 1128 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1129 * following lock operations are safe.
1130 */
1131 spin_lock_irq(&pwq->pool->lock);
1132 put_pwq(pwq);
1133 spin_unlock_irq(&pwq->pool->lock);
1134 }
1135}
1136
112202d9 1137static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1138{
112202d9 1139 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1140
1141 trace_workqueue_activate_work(work);
82607adc
TH
1142 if (list_empty(&pwq->pool->worklist))
1143 pwq->pool->watchdog_ts = jiffies;
112202d9 1144 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1145 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1146 pwq->nr_active++;
bf4ede01
TH
1147}
1148
112202d9 1149static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1150{
112202d9 1151 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1152 struct work_struct, entry);
1153
112202d9 1154 pwq_activate_delayed_work(work);
3aa62497
LJ
1155}
1156
bf4ede01 1157/**
112202d9
TH
1158 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1159 * @pwq: pwq of interest
bf4ede01 1160 * @color: color of work which left the queue
bf4ede01
TH
1161 *
1162 * A work either has completed or is removed from pending queue,
112202d9 1163 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1164 *
1165 * CONTEXT:
d565ed63 1166 * spin_lock_irq(pool->lock).
bf4ede01 1167 */
112202d9 1168static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1169{
8864b4e5 1170 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1171 if (color == WORK_NO_COLOR)
8864b4e5 1172 goto out_put;
bf4ede01 1173
112202d9 1174 pwq->nr_in_flight[color]--;
bf4ede01 1175
112202d9
TH
1176 pwq->nr_active--;
1177 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1178 /* one down, submit a delayed one */
112202d9
TH
1179 if (pwq->nr_active < pwq->max_active)
1180 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1181 }
1182
1183 /* is flush in progress and are we at the flushing tip? */
112202d9 1184 if (likely(pwq->flush_color != color))
8864b4e5 1185 goto out_put;
bf4ede01
TH
1186
1187 /* are there still in-flight works? */
112202d9 1188 if (pwq->nr_in_flight[color])
8864b4e5 1189 goto out_put;
bf4ede01 1190
112202d9
TH
1191 /* this pwq is done, clear flush_color */
1192 pwq->flush_color = -1;
bf4ede01
TH
1193
1194 /*
112202d9 1195 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1196 * will handle the rest.
1197 */
112202d9
TH
1198 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1199 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1200out_put:
1201 put_pwq(pwq);
bf4ede01
TH
1202}
1203
36e227d2 1204/**
bbb68dfa 1205 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1206 * @work: work item to steal
1207 * @is_dwork: @work is a delayed_work
bbb68dfa 1208 * @flags: place to store irq state
36e227d2
TH
1209 *
1210 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1211 * stable state - idle, on timer or on worklist.
36e227d2 1212 *
d185af30 1213 * Return:
36e227d2
TH
1214 * 1 if @work was pending and we successfully stole PENDING
1215 * 0 if @work was idle and we claimed PENDING
1216 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1217 * -ENOENT if someone else is canceling @work, this state may persist
1218 * for arbitrarily long
36e227d2 1219 *
d185af30 1220 * Note:
bbb68dfa 1221 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1222 * interrupted while holding PENDING and @work off queue, irq must be
1223 * disabled on entry. This, combined with delayed_work->timer being
1224 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1225 *
1226 * On successful return, >= 0, irq is disabled and the caller is
1227 * responsible for releasing it using local_irq_restore(*@flags).
1228 *
e0aecdd8 1229 * This function is safe to call from any context including IRQ handler.
bf4ede01 1230 */
bbb68dfa
TH
1231static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1232 unsigned long *flags)
bf4ede01 1233{
d565ed63 1234 struct worker_pool *pool;
112202d9 1235 struct pool_workqueue *pwq;
bf4ede01 1236
bbb68dfa
TH
1237 local_irq_save(*flags);
1238
36e227d2
TH
1239 /* try to steal the timer if it exists */
1240 if (is_dwork) {
1241 struct delayed_work *dwork = to_delayed_work(work);
1242
e0aecdd8
TH
1243 /*
1244 * dwork->timer is irqsafe. If del_timer() fails, it's
1245 * guaranteed that the timer is not queued anywhere and not
1246 * running on the local CPU.
1247 */
36e227d2
TH
1248 if (likely(del_timer(&dwork->timer)))
1249 return 1;
1250 }
1251
1252 /* try to claim PENDING the normal way */
bf4ede01
TH
1253 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1254 return 0;
1255
24acfb71 1256 rcu_read_lock();
bf4ede01
TH
1257 /*
1258 * The queueing is in progress, or it is already queued. Try to
1259 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1260 */
d565ed63
TH
1261 pool = get_work_pool(work);
1262 if (!pool)
bbb68dfa 1263 goto fail;
bf4ede01 1264
d565ed63 1265 spin_lock(&pool->lock);
0b3dae68 1266 /*
112202d9
TH
1267 * work->data is guaranteed to point to pwq only while the work
1268 * item is queued on pwq->wq, and both updating work->data to point
1269 * to pwq on queueing and to pool on dequeueing are done under
1270 * pwq->pool->lock. This in turn guarantees that, if work->data
1271 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1272 * item is currently queued on that pool.
1273 */
112202d9
TH
1274 pwq = get_work_pwq(work);
1275 if (pwq && pwq->pool == pool) {
16062836
TH
1276 debug_work_deactivate(work);
1277
1278 /*
1279 * A delayed work item cannot be grabbed directly because
1280 * it might have linked NO_COLOR work items which, if left
112202d9 1281 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1282 * management later on and cause stall. Make sure the work
1283 * item is activated before grabbing.
1284 */
1285 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1286 pwq_activate_delayed_work(work);
16062836
TH
1287
1288 list_del_init(&work->entry);
9c34a704 1289 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1290
112202d9 1291 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1292 set_work_pool_and_keep_pending(work, pool->id);
1293
1294 spin_unlock(&pool->lock);
24acfb71 1295 rcu_read_unlock();
16062836 1296 return 1;
bf4ede01 1297 }
d565ed63 1298 spin_unlock(&pool->lock);
bbb68dfa 1299fail:
24acfb71 1300 rcu_read_unlock();
bbb68dfa
TH
1301 local_irq_restore(*flags);
1302 if (work_is_canceling(work))
1303 return -ENOENT;
1304 cpu_relax();
36e227d2 1305 return -EAGAIN;
bf4ede01
TH
1306}
1307
4690c4ab 1308/**
706026c2 1309 * insert_work - insert a work into a pool
112202d9 1310 * @pwq: pwq @work belongs to
4690c4ab
TH
1311 * @work: work to insert
1312 * @head: insertion point
1313 * @extra_flags: extra WORK_STRUCT_* flags to set
1314 *
112202d9 1315 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1316 * work_struct flags.
4690c4ab
TH
1317 *
1318 * CONTEXT:
d565ed63 1319 * spin_lock_irq(pool->lock).
4690c4ab 1320 */
112202d9
TH
1321static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1322 struct list_head *head, unsigned int extra_flags)
b89deed3 1323{
112202d9 1324 struct worker_pool *pool = pwq->pool;
e22bee78 1325
4690c4ab 1326 /* we own @work, set data and link */
112202d9 1327 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1328 list_add_tail(&work->entry, head);
8864b4e5 1329 get_pwq(pwq);
e22bee78
TH
1330
1331 /*
c5aa87bb
TH
1332 * Ensure either wq_worker_sleeping() sees the above
1333 * list_add_tail() or we see zero nr_running to avoid workers lying
1334 * around lazily while there are works to be processed.
e22bee78
TH
1335 */
1336 smp_mb();
1337
63d95a91
TH
1338 if (__need_more_worker(pool))
1339 wake_up_worker(pool);
b89deed3
ON
1340}
1341
c8efcc25
TH
1342/*
1343 * Test whether @work is being queued from another work executing on the
8d03ecfe 1344 * same workqueue.
c8efcc25
TH
1345 */
1346static bool is_chained_work(struct workqueue_struct *wq)
1347{
8d03ecfe
TH
1348 struct worker *worker;
1349
1350 worker = current_wq_worker();
1351 /*
bf393fd4 1352 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1353 * I'm @worker, it's safe to dereference it without locking.
1354 */
112202d9 1355 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1356}
1357
ef557180
MG
1358/*
1359 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1360 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1361 * avoid perturbing sensitive tasks.
1362 */
1363static int wq_select_unbound_cpu(int cpu)
1364{
f303fccb 1365 static bool printed_dbg_warning;
ef557180
MG
1366 int new_cpu;
1367
f303fccb
TH
1368 if (likely(!wq_debug_force_rr_cpu)) {
1369 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1370 return cpu;
1371 } else if (!printed_dbg_warning) {
1372 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1373 printed_dbg_warning = true;
1374 }
1375
ef557180
MG
1376 if (cpumask_empty(wq_unbound_cpumask))
1377 return cpu;
1378
1379 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1380 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1381 if (unlikely(new_cpu >= nr_cpu_ids)) {
1382 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1383 if (unlikely(new_cpu >= nr_cpu_ids))
1384 return cpu;
1385 }
1386 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1387
1388 return new_cpu;
1389}
1390
d84ff051 1391static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1392 struct work_struct *work)
1393{
112202d9 1394 struct pool_workqueue *pwq;
c9178087 1395 struct worker_pool *last_pool;
1e19ffc6 1396 struct list_head *worklist;
8a2e8e5d 1397 unsigned int work_flags;
b75cac93 1398 unsigned int req_cpu = cpu;
8930caba
TH
1399
1400 /*
1401 * While a work item is PENDING && off queue, a task trying to
1402 * steal the PENDING will busy-loop waiting for it to either get
1403 * queued or lose PENDING. Grabbing PENDING and queueing should
1404 * happen with IRQ disabled.
1405 */
8e8eb730 1406 lockdep_assert_irqs_disabled();
1da177e4 1407
dc186ad7 1408 debug_work_activate(work);
1e19ffc6 1409
9ef28a73 1410 /* if draining, only works from the same workqueue are allowed */
618b01eb 1411 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1412 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1413 return;
24acfb71 1414 rcu_read_lock();
9e8cd2f5 1415retry:
c9178087 1416 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1417 if (wq->flags & WQ_UNBOUND) {
1418 if (req_cpu == WORK_CPU_UNBOUND)
1419 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1420 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1421 } else {
1422 if (req_cpu == WORK_CPU_UNBOUND)
1423 cpu = raw_smp_processor_id();
1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425 }
dbf2576e 1426
c9178087
TH
1427 /*
1428 * If @work was previously on a different pool, it might still be
1429 * running there, in which case the work needs to be queued on that
1430 * pool to guarantee non-reentrancy.
1431 */
1432 last_pool = get_work_pool(work);
1433 if (last_pool && last_pool != pwq->pool) {
1434 struct worker *worker;
18aa9eff 1435
c9178087 1436 spin_lock(&last_pool->lock);
18aa9eff 1437
c9178087 1438 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1439
c9178087
TH
1440 if (worker && worker->current_pwq->wq == wq) {
1441 pwq = worker->current_pwq;
8930caba 1442 } else {
c9178087
TH
1443 /* meh... not running there, queue here */
1444 spin_unlock(&last_pool->lock);
112202d9 1445 spin_lock(&pwq->pool->lock);
8930caba 1446 }
f3421797 1447 } else {
112202d9 1448 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1449 }
1450
9e8cd2f5
TH
1451 /*
1452 * pwq is determined and locked. For unbound pools, we could have
1453 * raced with pwq release and it could already be dead. If its
1454 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1455 * without another pwq replacing it in the numa_pwq_tbl or while
1456 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1457 * make forward-progress.
1458 */
1459 if (unlikely(!pwq->refcnt)) {
1460 if (wq->flags & WQ_UNBOUND) {
1461 spin_unlock(&pwq->pool->lock);
1462 cpu_relax();
1463 goto retry;
1464 }
1465 /* oops */
1466 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1467 wq->name, cpu);
1468 }
1469
112202d9
TH
1470 /* pwq determined, queue */
1471 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1472
24acfb71
TG
1473 if (WARN_ON(!list_empty(&work->entry)))
1474 goto out;
1e19ffc6 1475
112202d9
TH
1476 pwq->nr_in_flight[pwq->work_color]++;
1477 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1478
112202d9 1479 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1480 trace_workqueue_activate_work(work);
112202d9
TH
1481 pwq->nr_active++;
1482 worklist = &pwq->pool->worklist;
82607adc
TH
1483 if (list_empty(worklist))
1484 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1485 } else {
1486 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1487 worklist = &pwq->delayed_works;
8a2e8e5d 1488 }
1e19ffc6 1489
112202d9 1490 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1491
24acfb71 1492out:
112202d9 1493 spin_unlock(&pwq->pool->lock);
24acfb71 1494 rcu_read_unlock();
1da177e4
LT
1495}
1496
0fcb78c2 1497/**
c1a220e7
ZR
1498 * queue_work_on - queue work on specific cpu
1499 * @cpu: CPU number to execute work on
0fcb78c2
REB
1500 * @wq: workqueue to use
1501 * @work: work to queue
1502 *
c1a220e7
ZR
1503 * We queue the work to a specific CPU, the caller must ensure it
1504 * can't go away.
d185af30
YB
1505 *
1506 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1507 */
d4283e93
TH
1508bool queue_work_on(int cpu, struct workqueue_struct *wq,
1509 struct work_struct *work)
1da177e4 1510{
d4283e93 1511 bool ret = false;
8930caba 1512 unsigned long flags;
ef1ca236 1513
8930caba 1514 local_irq_save(flags);
c1a220e7 1515
22df02bb 1516 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1517 __queue_work(cpu, wq, work);
d4283e93 1518 ret = true;
c1a220e7 1519 }
ef1ca236 1520
8930caba 1521 local_irq_restore(flags);
1da177e4
LT
1522 return ret;
1523}
ad7b1f84 1524EXPORT_SYMBOL(queue_work_on);
1da177e4 1525
8204e0c1
AD
1526/**
1527 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1528 * @node: NUMA node ID that we want to select a CPU from
1529 *
1530 * This function will attempt to find a "random" cpu available on a given
1531 * node. If there are no CPUs available on the given node it will return
1532 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1533 * available CPU if we need to schedule this work.
1534 */
1535static int workqueue_select_cpu_near(int node)
1536{
1537 int cpu;
1538
1539 /* No point in doing this if NUMA isn't enabled for workqueues */
1540 if (!wq_numa_enabled)
1541 return WORK_CPU_UNBOUND;
1542
1543 /* Delay binding to CPU if node is not valid or online */
1544 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1545 return WORK_CPU_UNBOUND;
1546
1547 /* Use local node/cpu if we are already there */
1548 cpu = raw_smp_processor_id();
1549 if (node == cpu_to_node(cpu))
1550 return cpu;
1551
1552 /* Use "random" otherwise know as "first" online CPU of node */
1553 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1554
1555 /* If CPU is valid return that, otherwise just defer */
1556 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1557}
1558
1559/**
1560 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1561 * @node: NUMA node that we are targeting the work for
1562 * @wq: workqueue to use
1563 * @work: work to queue
1564 *
1565 * We queue the work to a "random" CPU within a given NUMA node. The basic
1566 * idea here is to provide a way to somehow associate work with a given
1567 * NUMA node.
1568 *
1569 * This function will only make a best effort attempt at getting this onto
1570 * the right NUMA node. If no node is requested or the requested node is
1571 * offline then we just fall back to standard queue_work behavior.
1572 *
1573 * Currently the "random" CPU ends up being the first available CPU in the
1574 * intersection of cpu_online_mask and the cpumask of the node, unless we
1575 * are running on the node. In that case we just use the current CPU.
1576 *
1577 * Return: %false if @work was already on a queue, %true otherwise.
1578 */
1579bool queue_work_node(int node, struct workqueue_struct *wq,
1580 struct work_struct *work)
1581{
1582 unsigned long flags;
1583 bool ret = false;
1584
1585 /*
1586 * This current implementation is specific to unbound workqueues.
1587 * Specifically we only return the first available CPU for a given
1588 * node instead of cycling through individual CPUs within the node.
1589 *
1590 * If this is used with a per-cpu workqueue then the logic in
1591 * workqueue_select_cpu_near would need to be updated to allow for
1592 * some round robin type logic.
1593 */
1594 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1595
1596 local_irq_save(flags);
1597
1598 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1599 int cpu = workqueue_select_cpu_near(node);
1600
1601 __queue_work(cpu, wq, work);
1602 ret = true;
1603 }
1604
1605 local_irq_restore(flags);
1606 return ret;
1607}
1608EXPORT_SYMBOL_GPL(queue_work_node);
1609
8c20feb6 1610void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1611{
8c20feb6 1612 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1613
e0aecdd8 1614 /* should have been called from irqsafe timer with irq already off */
60c057bc 1615 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1616}
1438ade5 1617EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1618
7beb2edf
TH
1619static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1620 struct delayed_work *dwork, unsigned long delay)
1da177e4 1621{
7beb2edf
TH
1622 struct timer_list *timer = &dwork->timer;
1623 struct work_struct *work = &dwork->work;
7beb2edf 1624
637fdbae 1625 WARN_ON_ONCE(!wq);
841b86f3 1626 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1627 WARN_ON_ONCE(timer_pending(timer));
1628 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1629
8852aac2
TH
1630 /*
1631 * If @delay is 0, queue @dwork->work immediately. This is for
1632 * both optimization and correctness. The earliest @timer can
1633 * expire is on the closest next tick and delayed_work users depend
1634 * on that there's no such delay when @delay is 0.
1635 */
1636 if (!delay) {
1637 __queue_work(cpu, wq, &dwork->work);
1638 return;
1639 }
1640
60c057bc 1641 dwork->wq = wq;
1265057f 1642 dwork->cpu = cpu;
7beb2edf
TH
1643 timer->expires = jiffies + delay;
1644
041bd12e
TH
1645 if (unlikely(cpu != WORK_CPU_UNBOUND))
1646 add_timer_on(timer, cpu);
1647 else
1648 add_timer(timer);
1da177e4
LT
1649}
1650
0fcb78c2
REB
1651/**
1652 * queue_delayed_work_on - queue work on specific CPU after delay
1653 * @cpu: CPU number to execute work on
1654 * @wq: workqueue to use
af9997e4 1655 * @dwork: work to queue
0fcb78c2
REB
1656 * @delay: number of jiffies to wait before queueing
1657 *
d185af30 1658 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1659 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1660 * execution.
0fcb78c2 1661 */
d4283e93
TH
1662bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1663 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1664{
52bad64d 1665 struct work_struct *work = &dwork->work;
d4283e93 1666 bool ret = false;
8930caba 1667 unsigned long flags;
7a6bc1cd 1668
8930caba
TH
1669 /* read the comment in __queue_work() */
1670 local_irq_save(flags);
7a6bc1cd 1671
22df02bb 1672 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1673 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1674 ret = true;
7a6bc1cd 1675 }
8a3e77cc 1676
8930caba 1677 local_irq_restore(flags);
7a6bc1cd
VP
1678 return ret;
1679}
ad7b1f84 1680EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1681
8376fe22
TH
1682/**
1683 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1684 * @cpu: CPU number to execute work on
1685 * @wq: workqueue to use
1686 * @dwork: work to queue
1687 * @delay: number of jiffies to wait before queueing
1688 *
1689 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1690 * modify @dwork's timer so that it expires after @delay. If @delay is
1691 * zero, @work is guaranteed to be scheduled immediately regardless of its
1692 * current state.
1693 *
d185af30 1694 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1695 * pending and its timer was modified.
1696 *
e0aecdd8 1697 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1698 * See try_to_grab_pending() for details.
1699 */
1700bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 struct delayed_work *dwork, unsigned long delay)
1702{
1703 unsigned long flags;
1704 int ret;
c7fc77f7 1705
8376fe22
TH
1706 do {
1707 ret = try_to_grab_pending(&dwork->work, true, &flags);
1708 } while (unlikely(ret == -EAGAIN));
63bc0362 1709
8376fe22
TH
1710 if (likely(ret >= 0)) {
1711 __queue_delayed_work(cpu, wq, dwork, delay);
1712 local_irq_restore(flags);
7a6bc1cd 1713 }
8376fe22
TH
1714
1715 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1716 return ret;
1717}
8376fe22
TH
1718EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1719
05f0fe6b
TH
1720static void rcu_work_rcufn(struct rcu_head *rcu)
1721{
1722 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1723
1724 /* read the comment in __queue_work() */
1725 local_irq_disable();
1726 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1727 local_irq_enable();
1728}
1729
1730/**
1731 * queue_rcu_work - queue work after a RCU grace period
1732 * @wq: workqueue to use
1733 * @rwork: work to queue
1734 *
1735 * Return: %false if @rwork was already pending, %true otherwise. Note
1736 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1737 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1738 * execution may happen before a full RCU grace period has passed.
1739 */
1740bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1741{
1742 struct work_struct *work = &rwork->work;
1743
1744 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1745 rwork->wq = wq;
1746 call_rcu(&rwork->rcu, rcu_work_rcufn);
1747 return true;
1748 }
1749
1750 return false;
1751}
1752EXPORT_SYMBOL(queue_rcu_work);
1753
c8e55f36
TH
1754/**
1755 * worker_enter_idle - enter idle state
1756 * @worker: worker which is entering idle state
1757 *
1758 * @worker is entering idle state. Update stats and idle timer if
1759 * necessary.
1760 *
1761 * LOCKING:
d565ed63 1762 * spin_lock_irq(pool->lock).
c8e55f36
TH
1763 */
1764static void worker_enter_idle(struct worker *worker)
1da177e4 1765{
bd7bdd43 1766 struct worker_pool *pool = worker->pool;
c8e55f36 1767
6183c009
TH
1768 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1769 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1770 (worker->hentry.next || worker->hentry.pprev)))
1771 return;
c8e55f36 1772
051e1850 1773 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1774 worker->flags |= WORKER_IDLE;
bd7bdd43 1775 pool->nr_idle++;
e22bee78 1776 worker->last_active = jiffies;
c8e55f36
TH
1777
1778 /* idle_list is LIFO */
bd7bdd43 1779 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1780
628c78e7
TH
1781 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1782 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1783
544ecf31 1784 /*
e8b3f8db 1785 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1786 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1787 * nr_running, the warning may trigger spuriously. Check iff
1788 * unbind is not in progress.
544ecf31 1789 */
24647570 1790 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1791 pool->nr_workers == pool->nr_idle &&
e19e397a 1792 atomic_read(&pool->nr_running));
c8e55f36
TH
1793}
1794
1795/**
1796 * worker_leave_idle - leave idle state
1797 * @worker: worker which is leaving idle state
1798 *
1799 * @worker is leaving idle state. Update stats.
1800 *
1801 * LOCKING:
d565ed63 1802 * spin_lock_irq(pool->lock).
c8e55f36
TH
1803 */
1804static void worker_leave_idle(struct worker *worker)
1805{
bd7bdd43 1806 struct worker_pool *pool = worker->pool;
c8e55f36 1807
6183c009
TH
1808 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1809 return;
d302f017 1810 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1811 pool->nr_idle--;
c8e55f36
TH
1812 list_del_init(&worker->entry);
1813}
1814
f7537df5 1815static struct worker *alloc_worker(int node)
c34056a3
TH
1816{
1817 struct worker *worker;
1818
f7537df5 1819 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1820 if (worker) {
1821 INIT_LIST_HEAD(&worker->entry);
affee4b2 1822 INIT_LIST_HEAD(&worker->scheduled);
da028469 1823 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1824 /* on creation a worker is in !idle && prep state */
1825 worker->flags = WORKER_PREP;
c8e55f36 1826 }
c34056a3
TH
1827 return worker;
1828}
1829
4736cbf7
LJ
1830/**
1831 * worker_attach_to_pool() - attach a worker to a pool
1832 * @worker: worker to be attached
1833 * @pool: the target pool
1834 *
1835 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1836 * cpu-binding of @worker are kept coordinated with the pool across
1837 * cpu-[un]hotplugs.
1838 */
1839static void worker_attach_to_pool(struct worker *worker,
1840 struct worker_pool *pool)
1841{
1258fae7 1842 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1843
1844 /*
1845 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1846 * online CPUs. It'll be re-applied when any of the CPUs come up.
1847 */
1848 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1849
1850 /*
1258fae7
TH
1851 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1852 * stable across this function. See the comments above the flag
1853 * definition for details.
4736cbf7
LJ
1854 */
1855 if (pool->flags & POOL_DISASSOCIATED)
1856 worker->flags |= WORKER_UNBOUND;
1857
1858 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1859 worker->pool = pool;
4736cbf7 1860
1258fae7 1861 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1862}
1863
60f5a4bc
LJ
1864/**
1865 * worker_detach_from_pool() - detach a worker from its pool
1866 * @worker: worker which is attached to its pool
60f5a4bc 1867 *
4736cbf7
LJ
1868 * Undo the attaching which had been done in worker_attach_to_pool(). The
1869 * caller worker shouldn't access to the pool after detached except it has
1870 * other reference to the pool.
60f5a4bc 1871 */
a2d812a2 1872static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1873{
a2d812a2 1874 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1875 struct completion *detach_completion = NULL;
1876
1258fae7 1877 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1878
da028469 1879 list_del(&worker->node);
a2d812a2
TH
1880 worker->pool = NULL;
1881
da028469 1882 if (list_empty(&pool->workers))
60f5a4bc 1883 detach_completion = pool->detach_completion;
1258fae7 1884 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1885
b62c0751
LJ
1886 /* clear leftover flags without pool->lock after it is detached */
1887 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1888
60f5a4bc
LJ
1889 if (detach_completion)
1890 complete(detach_completion);
1891}
1892
c34056a3
TH
1893/**
1894 * create_worker - create a new workqueue worker
63d95a91 1895 * @pool: pool the new worker will belong to
c34056a3 1896 *
051e1850 1897 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1898 *
1899 * CONTEXT:
1900 * Might sleep. Does GFP_KERNEL allocations.
1901 *
d185af30 1902 * Return:
c34056a3
TH
1903 * Pointer to the newly created worker.
1904 */
bc2ae0f5 1905static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1906{
c34056a3 1907 struct worker *worker = NULL;
f3421797 1908 int id = -1;
e3c916a4 1909 char id_buf[16];
c34056a3 1910
7cda9aae
LJ
1911 /* ID is needed to determine kthread name */
1912 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1913 if (id < 0)
1914 goto fail;
c34056a3 1915
f7537df5 1916 worker = alloc_worker(pool->node);
c34056a3
TH
1917 if (!worker)
1918 goto fail;
1919
c34056a3
TH
1920 worker->id = id;
1921
29c91e99 1922 if (pool->cpu >= 0)
e3c916a4
TH
1923 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1924 pool->attrs->nice < 0 ? "H" : "");
f3421797 1925 else
e3c916a4
TH
1926 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1927
f3f90ad4 1928 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1929 "kworker/%s", id_buf);
c34056a3
TH
1930 if (IS_ERR(worker->task))
1931 goto fail;
1932
91151228 1933 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1934 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1935
da028469 1936 /* successful, attach the worker to the pool */
4736cbf7 1937 worker_attach_to_pool(worker, pool);
822d8405 1938
051e1850
LJ
1939 /* start the newly created worker */
1940 spin_lock_irq(&pool->lock);
1941 worker->pool->nr_workers++;
1942 worker_enter_idle(worker);
1943 wake_up_process(worker->task);
1944 spin_unlock_irq(&pool->lock);
1945
c34056a3 1946 return worker;
822d8405 1947
c34056a3 1948fail:
9625ab17 1949 if (id >= 0)
7cda9aae 1950 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1951 kfree(worker);
1952 return NULL;
1953}
1954
c34056a3
TH
1955/**
1956 * destroy_worker - destroy a workqueue worker
1957 * @worker: worker to be destroyed
1958 *
73eb7fe7
LJ
1959 * Destroy @worker and adjust @pool stats accordingly. The worker should
1960 * be idle.
c8e55f36
TH
1961 *
1962 * CONTEXT:
60f5a4bc 1963 * spin_lock_irq(pool->lock).
c34056a3
TH
1964 */
1965static void destroy_worker(struct worker *worker)
1966{
bd7bdd43 1967 struct worker_pool *pool = worker->pool;
c34056a3 1968
cd549687
TH
1969 lockdep_assert_held(&pool->lock);
1970
c34056a3 1971 /* sanity check frenzy */
6183c009 1972 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1973 WARN_ON(!list_empty(&worker->scheduled)) ||
1974 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1975 return;
c34056a3 1976
73eb7fe7
LJ
1977 pool->nr_workers--;
1978 pool->nr_idle--;
5bdfff96 1979
c8e55f36 1980 list_del_init(&worker->entry);
cb444766 1981 worker->flags |= WORKER_DIE;
60f5a4bc 1982 wake_up_process(worker->task);
c34056a3
TH
1983}
1984
32a6c723 1985static void idle_worker_timeout(struct timer_list *t)
e22bee78 1986{
32a6c723 1987 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1988
d565ed63 1989 spin_lock_irq(&pool->lock);
e22bee78 1990
3347fc9f 1991 while (too_many_workers(pool)) {
e22bee78
TH
1992 struct worker *worker;
1993 unsigned long expires;
1994
1995 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1996 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1997 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1998
3347fc9f 1999 if (time_before(jiffies, expires)) {
63d95a91 2000 mod_timer(&pool->idle_timer, expires);
3347fc9f 2001 break;
d5abe669 2002 }
3347fc9f
LJ
2003
2004 destroy_worker(worker);
e22bee78
TH
2005 }
2006
d565ed63 2007 spin_unlock_irq(&pool->lock);
e22bee78 2008}
d5abe669 2009
493a1724 2010static void send_mayday(struct work_struct *work)
e22bee78 2011{
112202d9
TH
2012 struct pool_workqueue *pwq = get_work_pwq(work);
2013 struct workqueue_struct *wq = pwq->wq;
493a1724 2014
2e109a28 2015 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2016
493008a8 2017 if (!wq->rescuer)
493a1724 2018 return;
e22bee78
TH
2019
2020 /* mayday mayday mayday */
493a1724 2021 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2022 /*
2023 * If @pwq is for an unbound wq, its base ref may be put at
2024 * any time due to an attribute change. Pin @pwq until the
2025 * rescuer is done with it.
2026 */
2027 get_pwq(pwq);
493a1724 2028 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2029 wake_up_process(wq->rescuer->task);
493a1724 2030 }
e22bee78
TH
2031}
2032
32a6c723 2033static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2034{
32a6c723 2035 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2036 struct work_struct *work;
2037
b2d82909
TH
2038 spin_lock_irq(&pool->lock);
2039 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2040
63d95a91 2041 if (need_to_create_worker(pool)) {
e22bee78
TH
2042 /*
2043 * We've been trying to create a new worker but
2044 * haven't been successful. We might be hitting an
2045 * allocation deadlock. Send distress signals to
2046 * rescuers.
2047 */
63d95a91 2048 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2049 send_mayday(work);
1da177e4 2050 }
e22bee78 2051
b2d82909
TH
2052 spin_unlock(&wq_mayday_lock);
2053 spin_unlock_irq(&pool->lock);
e22bee78 2054
63d95a91 2055 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2056}
2057
e22bee78
TH
2058/**
2059 * maybe_create_worker - create a new worker if necessary
63d95a91 2060 * @pool: pool to create a new worker for
e22bee78 2061 *
63d95a91 2062 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2063 * have at least one idle worker on return from this function. If
2064 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2065 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2066 * possible allocation deadlock.
2067 *
c5aa87bb
TH
2068 * On return, need_to_create_worker() is guaranteed to be %false and
2069 * may_start_working() %true.
e22bee78
TH
2070 *
2071 * LOCKING:
d565ed63 2072 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2073 * multiple times. Does GFP_KERNEL allocations. Called only from
2074 * manager.
e22bee78 2075 */
29187a9e 2076static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2077__releases(&pool->lock)
2078__acquires(&pool->lock)
1da177e4 2079{
e22bee78 2080restart:
d565ed63 2081 spin_unlock_irq(&pool->lock);
9f9c2364 2082
e22bee78 2083 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2084 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2085
2086 while (true) {
051e1850 2087 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2088 break;
1da177e4 2089
e212f361 2090 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2091
63d95a91 2092 if (!need_to_create_worker(pool))
e22bee78
TH
2093 break;
2094 }
2095
63d95a91 2096 del_timer_sync(&pool->mayday_timer);
d565ed63 2097 spin_lock_irq(&pool->lock);
051e1850
LJ
2098 /*
2099 * This is necessary even after a new worker was just successfully
2100 * created as @pool->lock was dropped and the new worker might have
2101 * already become busy.
2102 */
63d95a91 2103 if (need_to_create_worker(pool))
e22bee78 2104 goto restart;
e22bee78
TH
2105}
2106
73f53c4a 2107/**
e22bee78
TH
2108 * manage_workers - manage worker pool
2109 * @worker: self
73f53c4a 2110 *
706026c2 2111 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2112 * to. At any given time, there can be only zero or one manager per
706026c2 2113 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2114 *
2115 * The caller can safely start processing works on false return. On
2116 * true return, it's guaranteed that need_to_create_worker() is false
2117 * and may_start_working() is true.
73f53c4a
TH
2118 *
2119 * CONTEXT:
d565ed63 2120 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2121 * multiple times. Does GFP_KERNEL allocations.
2122 *
d185af30 2123 * Return:
29187a9e
TH
2124 * %false if the pool doesn't need management and the caller can safely
2125 * start processing works, %true if management function was performed and
2126 * the conditions that the caller verified before calling the function may
2127 * no longer be true.
73f53c4a 2128 */
e22bee78 2129static bool manage_workers(struct worker *worker)
73f53c4a 2130{
63d95a91 2131 struct worker_pool *pool = worker->pool;
73f53c4a 2132
692b4825 2133 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2134 return false;
692b4825
TH
2135
2136 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2137 pool->manager = worker;
1e19ffc6 2138
29187a9e 2139 maybe_create_worker(pool);
e22bee78 2140
2607d7a6 2141 pool->manager = NULL;
692b4825
TH
2142 pool->flags &= ~POOL_MANAGER_ACTIVE;
2143 wake_up(&wq_manager_wait);
29187a9e 2144 return true;
73f53c4a
TH
2145}
2146
a62428c0
TH
2147/**
2148 * process_one_work - process single work
c34056a3 2149 * @worker: self
a62428c0
TH
2150 * @work: work to process
2151 *
2152 * Process @work. This function contains all the logics necessary to
2153 * process a single work including synchronization against and
2154 * interaction with other workers on the same cpu, queueing and
2155 * flushing. As long as context requirement is met, any worker can
2156 * call this function to process a work.
2157 *
2158 * CONTEXT:
d565ed63 2159 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2160 */
c34056a3 2161static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2162__releases(&pool->lock)
2163__acquires(&pool->lock)
a62428c0 2164{
112202d9 2165 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2166 struct worker_pool *pool = worker->pool;
112202d9 2167 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2168 int work_color;
7e11629d 2169 struct worker *collision;
a62428c0
TH
2170#ifdef CONFIG_LOCKDEP
2171 /*
2172 * It is permissible to free the struct work_struct from
2173 * inside the function that is called from it, this we need to
2174 * take into account for lockdep too. To avoid bogus "held
2175 * lock freed" warnings as well as problems when looking into
2176 * work->lockdep_map, make a copy and use that here.
2177 */
4d82a1de
PZ
2178 struct lockdep_map lockdep_map;
2179
2180 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2181#endif
807407c0 2182 /* ensure we're on the correct CPU */
85327af6 2183 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2184 raw_smp_processor_id() != pool->cpu);
25511a47 2185
7e11629d
TH
2186 /*
2187 * A single work shouldn't be executed concurrently by
2188 * multiple workers on a single cpu. Check whether anyone is
2189 * already processing the work. If so, defer the work to the
2190 * currently executing one.
2191 */
c9e7cf27 2192 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2193 if (unlikely(collision)) {
2194 move_linked_works(work, &collision->scheduled, NULL);
2195 return;
2196 }
2197
8930caba 2198 /* claim and dequeue */
a62428c0 2199 debug_work_deactivate(work);
c9e7cf27 2200 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2201 worker->current_work = work;
a2c1c57b 2202 worker->current_func = work->func;
112202d9 2203 worker->current_pwq = pwq;
73f53c4a 2204 work_color = get_work_color(work);
7a22ad75 2205
8bf89593
TH
2206 /*
2207 * Record wq name for cmdline and debug reporting, may get
2208 * overridden through set_worker_desc().
2209 */
2210 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2211
a62428c0
TH
2212 list_del_init(&work->entry);
2213
fb0e7beb 2214 /*
228f1d00
LJ
2215 * CPU intensive works don't participate in concurrency management.
2216 * They're the scheduler's responsibility. This takes @worker out
2217 * of concurrency management and the next code block will chain
2218 * execution of the pending work items.
fb0e7beb
TH
2219 */
2220 if (unlikely(cpu_intensive))
228f1d00 2221 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2222
974271c4 2223 /*
a489a03e
LJ
2224 * Wake up another worker if necessary. The condition is always
2225 * false for normal per-cpu workers since nr_running would always
2226 * be >= 1 at this point. This is used to chain execution of the
2227 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2228 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2229 */
a489a03e 2230 if (need_more_worker(pool))
63d95a91 2231 wake_up_worker(pool);
974271c4 2232
8930caba 2233 /*
7c3eed5c 2234 * Record the last pool and clear PENDING which should be the last
d565ed63 2235 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2236 * PENDING and queued state changes happen together while IRQ is
2237 * disabled.
8930caba 2238 */
7c3eed5c 2239 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2240
d565ed63 2241 spin_unlock_irq(&pool->lock);
a62428c0 2242
a1d14934 2243 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2244 lock_map_acquire(&lockdep_map);
e6f3faa7 2245 /*
f52be570
PZ
2246 * Strictly speaking we should mark the invariant state without holding
2247 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2248 *
2249 * However, that would result in:
2250 *
2251 * A(W1)
2252 * WFC(C)
2253 * A(W1)
2254 * C(C)
2255 *
2256 * Which would create W1->C->W1 dependencies, even though there is no
2257 * actual deadlock possible. There are two solutions, using a
2258 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2259 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2260 * these locks.
2261 *
2262 * AFAICT there is no possible deadlock scenario between the
2263 * flush_work() and complete() primitives (except for single-threaded
2264 * workqueues), so hiding them isn't a problem.
2265 */
f52be570 2266 lockdep_invariant_state(true);
e36c886a 2267 trace_workqueue_execute_start(work);
a2c1c57b 2268 worker->current_func(work);
e36c886a
AV
2269 /*
2270 * While we must be careful to not use "work" after this, the trace
2271 * point will only record its address.
2272 */
1c5da0ec 2273 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2274 lock_map_release(&lockdep_map);
112202d9 2275 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2276
2277 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2278 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2279 " last function: %ps\n",
a2c1c57b
TH
2280 current->comm, preempt_count(), task_pid_nr(current),
2281 worker->current_func);
a62428c0
TH
2282 debug_show_held_locks(current);
2283 dump_stack();
2284 }
2285
b22ce278 2286 /*
025f50f3 2287 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2288 * kernels, where a requeueing work item waiting for something to
2289 * happen could deadlock with stop_machine as such work item could
2290 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2291 * stop_machine. At the same time, report a quiescent RCU state so
2292 * the same condition doesn't freeze RCU.
b22ce278 2293 */
a7e6425e 2294 cond_resched();
b22ce278 2295
d565ed63 2296 spin_lock_irq(&pool->lock);
a62428c0 2297
fb0e7beb
TH
2298 /* clear cpu intensive status */
2299 if (unlikely(cpu_intensive))
2300 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2301
1b69ac6b
JW
2302 /* tag the worker for identification in schedule() */
2303 worker->last_func = worker->current_func;
2304
a62428c0 2305 /* we're done with it, release */
42f8570f 2306 hash_del(&worker->hentry);
c34056a3 2307 worker->current_work = NULL;
a2c1c57b 2308 worker->current_func = NULL;
112202d9
TH
2309 worker->current_pwq = NULL;
2310 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2311}
2312
affee4b2
TH
2313/**
2314 * process_scheduled_works - process scheduled works
2315 * @worker: self
2316 *
2317 * Process all scheduled works. Please note that the scheduled list
2318 * may change while processing a work, so this function repeatedly
2319 * fetches a work from the top and executes it.
2320 *
2321 * CONTEXT:
d565ed63 2322 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2323 * multiple times.
2324 */
2325static void process_scheduled_works(struct worker *worker)
1da177e4 2326{
affee4b2
TH
2327 while (!list_empty(&worker->scheduled)) {
2328 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2329 struct work_struct, entry);
c34056a3 2330 process_one_work(worker, work);
1da177e4 2331 }
1da177e4
LT
2332}
2333
197f6acc
TH
2334static void set_pf_worker(bool val)
2335{
2336 mutex_lock(&wq_pool_attach_mutex);
2337 if (val)
2338 current->flags |= PF_WQ_WORKER;
2339 else
2340 current->flags &= ~PF_WQ_WORKER;
2341 mutex_unlock(&wq_pool_attach_mutex);
2342}
2343
4690c4ab
TH
2344/**
2345 * worker_thread - the worker thread function
c34056a3 2346 * @__worker: self
4690c4ab 2347 *
c5aa87bb
TH
2348 * The worker thread function. All workers belong to a worker_pool -
2349 * either a per-cpu one or dynamic unbound one. These workers process all
2350 * work items regardless of their specific target workqueue. The only
2351 * exception is work items which belong to workqueues with a rescuer which
2352 * will be explained in rescuer_thread().
d185af30
YB
2353 *
2354 * Return: 0
4690c4ab 2355 */
c34056a3 2356static int worker_thread(void *__worker)
1da177e4 2357{
c34056a3 2358 struct worker *worker = __worker;
bd7bdd43 2359 struct worker_pool *pool = worker->pool;
1da177e4 2360
e22bee78 2361 /* tell the scheduler that this is a workqueue worker */
197f6acc 2362 set_pf_worker(true);
c8e55f36 2363woke_up:
d565ed63 2364 spin_lock_irq(&pool->lock);
1da177e4 2365
a9ab775b
TH
2366 /* am I supposed to die? */
2367 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2368 spin_unlock_irq(&pool->lock);
a9ab775b 2369 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2370 set_pf_worker(false);
60f5a4bc
LJ
2371
2372 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2373 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2374 worker_detach_from_pool(worker);
60f5a4bc 2375 kfree(worker);
a9ab775b 2376 return 0;
c8e55f36 2377 }
affee4b2 2378
c8e55f36 2379 worker_leave_idle(worker);
db7bccf4 2380recheck:
e22bee78 2381 /* no more worker necessary? */
63d95a91 2382 if (!need_more_worker(pool))
e22bee78
TH
2383 goto sleep;
2384
2385 /* do we need to manage? */
63d95a91 2386 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2387 goto recheck;
2388
c8e55f36
TH
2389 /*
2390 * ->scheduled list can only be filled while a worker is
2391 * preparing to process a work or actually processing it.
2392 * Make sure nobody diddled with it while I was sleeping.
2393 */
6183c009 2394 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2395
e22bee78 2396 /*
a9ab775b
TH
2397 * Finish PREP stage. We're guaranteed to have at least one idle
2398 * worker or that someone else has already assumed the manager
2399 * role. This is where @worker starts participating in concurrency
2400 * management if applicable and concurrency management is restored
2401 * after being rebound. See rebind_workers() for details.
e22bee78 2402 */
a9ab775b 2403 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2404
2405 do {
c8e55f36 2406 struct work_struct *work =
bd7bdd43 2407 list_first_entry(&pool->worklist,
c8e55f36
TH
2408 struct work_struct, entry);
2409
82607adc
TH
2410 pool->watchdog_ts = jiffies;
2411
c8e55f36
TH
2412 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2413 /* optimization path, not strictly necessary */
2414 process_one_work(worker, work);
2415 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2416 process_scheduled_works(worker);
c8e55f36
TH
2417 } else {
2418 move_linked_works(work, &worker->scheduled, NULL);
2419 process_scheduled_works(worker);
affee4b2 2420 }
63d95a91 2421 } while (keep_working(pool));
e22bee78 2422
228f1d00 2423 worker_set_flags(worker, WORKER_PREP);
d313dd85 2424sleep:
c8e55f36 2425 /*
d565ed63
TH
2426 * pool->lock is held and there's no work to process and no need to
2427 * manage, sleep. Workers are woken up only while holding
2428 * pool->lock or from local cpu, so setting the current state
2429 * before releasing pool->lock is enough to prevent losing any
2430 * event.
c8e55f36
TH
2431 */
2432 worker_enter_idle(worker);
c5a94a61 2433 __set_current_state(TASK_IDLE);
d565ed63 2434 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2435 schedule();
2436 goto woke_up;
1da177e4
LT
2437}
2438
e22bee78
TH
2439/**
2440 * rescuer_thread - the rescuer thread function
111c225a 2441 * @__rescuer: self
e22bee78
TH
2442 *
2443 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2444 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2445 *
706026c2 2446 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2447 * worker which uses GFP_KERNEL allocation which has slight chance of
2448 * developing into deadlock if some works currently on the same queue
2449 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2450 * the problem rescuer solves.
2451 *
706026c2
TH
2452 * When such condition is possible, the pool summons rescuers of all
2453 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2454 * those works so that forward progress can be guaranteed.
2455 *
2456 * This should happen rarely.
d185af30
YB
2457 *
2458 * Return: 0
e22bee78 2459 */
111c225a 2460static int rescuer_thread(void *__rescuer)
e22bee78 2461{
111c225a
TH
2462 struct worker *rescuer = __rescuer;
2463 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2464 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2465 bool should_stop;
e22bee78
TH
2466
2467 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2468
2469 /*
2470 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2471 * doesn't participate in concurrency management.
2472 */
197f6acc 2473 set_pf_worker(true);
e22bee78 2474repeat:
c5a94a61 2475 set_current_state(TASK_IDLE);
e22bee78 2476
4d595b86
LJ
2477 /*
2478 * By the time the rescuer is requested to stop, the workqueue
2479 * shouldn't have any work pending, but @wq->maydays may still have
2480 * pwq(s) queued. This can happen by non-rescuer workers consuming
2481 * all the work items before the rescuer got to them. Go through
2482 * @wq->maydays processing before acting on should_stop so that the
2483 * list is always empty on exit.
2484 */
2485 should_stop = kthread_should_stop();
e22bee78 2486
493a1724 2487 /* see whether any pwq is asking for help */
2e109a28 2488 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2489
2490 while (!list_empty(&wq->maydays)) {
2491 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2492 struct pool_workqueue, mayday_node);
112202d9 2493 struct worker_pool *pool = pwq->pool;
e22bee78 2494 struct work_struct *work, *n;
82607adc 2495 bool first = true;
e22bee78
TH
2496
2497 __set_current_state(TASK_RUNNING);
493a1724
TH
2498 list_del_init(&pwq->mayday_node);
2499
2e109a28 2500 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2501
51697d39
LJ
2502 worker_attach_to_pool(rescuer, pool);
2503
2504 spin_lock_irq(&pool->lock);
e22bee78
TH
2505
2506 /*
2507 * Slurp in all works issued via this workqueue and
2508 * process'em.
2509 */
0479c8c5 2510 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2511 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2512 if (get_work_pwq(work) == pwq) {
2513 if (first)
2514 pool->watchdog_ts = jiffies;
e22bee78 2515 move_linked_works(work, scheduled, &n);
82607adc
TH
2516 }
2517 first = false;
2518 }
e22bee78 2519
008847f6
N
2520 if (!list_empty(scheduled)) {
2521 process_scheduled_works(rescuer);
2522
2523 /*
2524 * The above execution of rescued work items could
2525 * have created more to rescue through
2526 * pwq_activate_first_delayed() or chained
2527 * queueing. Let's put @pwq back on mayday list so
2528 * that such back-to-back work items, which may be
2529 * being used to relieve memory pressure, don't
2530 * incur MAYDAY_INTERVAL delay inbetween.
2531 */
2532 if (need_to_create_worker(pool)) {
2533 spin_lock(&wq_mayday_lock);
e66b39af
TH
2534 /*
2535 * Queue iff we aren't racing destruction
2536 * and somebody else hasn't queued it already.
2537 */
2538 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2539 get_pwq(pwq);
2540 list_add_tail(&pwq->mayday_node, &wq->maydays);
2541 }
008847f6
N
2542 spin_unlock(&wq_mayday_lock);
2543 }
2544 }
7576958a 2545
77668c8b
LJ
2546 /*
2547 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2548 * go away while we're still attached to it.
77668c8b
LJ
2549 */
2550 put_pwq(pwq);
2551
7576958a 2552 /*
d8ca83e6 2553 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2554 * regular worker; otherwise, we end up with 0 concurrency
2555 * and stalling the execution.
2556 */
d8ca83e6 2557 if (need_more_worker(pool))
63d95a91 2558 wake_up_worker(pool);
7576958a 2559
13b1d625
LJ
2560 spin_unlock_irq(&pool->lock);
2561
a2d812a2 2562 worker_detach_from_pool(rescuer);
13b1d625
LJ
2563
2564 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2565 }
2566
2e109a28 2567 spin_unlock_irq(&wq_mayday_lock);
493a1724 2568
4d595b86
LJ
2569 if (should_stop) {
2570 __set_current_state(TASK_RUNNING);
197f6acc 2571 set_pf_worker(false);
4d595b86
LJ
2572 return 0;
2573 }
2574
111c225a
TH
2575 /* rescuers should never participate in concurrency management */
2576 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2577 schedule();
2578 goto repeat;
1da177e4
LT
2579}
2580
fca839c0
TH
2581/**
2582 * check_flush_dependency - check for flush dependency sanity
2583 * @target_wq: workqueue being flushed
2584 * @target_work: work item being flushed (NULL for workqueue flushes)
2585 *
2586 * %current is trying to flush the whole @target_wq or @target_work on it.
2587 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2588 * reclaiming memory or running on a workqueue which doesn't have
2589 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2590 * a deadlock.
2591 */
2592static void check_flush_dependency(struct workqueue_struct *target_wq,
2593 struct work_struct *target_work)
2594{
2595 work_func_t target_func = target_work ? target_work->func : NULL;
2596 struct worker *worker;
2597
2598 if (target_wq->flags & WQ_MEM_RECLAIM)
2599 return;
2600
2601 worker = current_wq_worker();
2602
2603 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2604 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2605 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2606 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2607 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2608 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2609 worker->current_pwq->wq->name, worker->current_func,
2610 target_wq->name, target_func);
2611}
2612
fc2e4d70
ON
2613struct wq_barrier {
2614 struct work_struct work;
2615 struct completion done;
2607d7a6 2616 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2617};
2618
2619static void wq_barrier_func(struct work_struct *work)
2620{
2621 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2622 complete(&barr->done);
2623}
2624
4690c4ab
TH
2625/**
2626 * insert_wq_barrier - insert a barrier work
112202d9 2627 * @pwq: pwq to insert barrier into
4690c4ab 2628 * @barr: wq_barrier to insert
affee4b2
TH
2629 * @target: target work to attach @barr to
2630 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2631 *
affee4b2
TH
2632 * @barr is linked to @target such that @barr is completed only after
2633 * @target finishes execution. Please note that the ordering
2634 * guarantee is observed only with respect to @target and on the local
2635 * cpu.
2636 *
2637 * Currently, a queued barrier can't be canceled. This is because
2638 * try_to_grab_pending() can't determine whether the work to be
2639 * grabbed is at the head of the queue and thus can't clear LINKED
2640 * flag of the previous work while there must be a valid next work
2641 * after a work with LINKED flag set.
2642 *
2643 * Note that when @worker is non-NULL, @target may be modified
112202d9 2644 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2645 *
2646 * CONTEXT:
d565ed63 2647 * spin_lock_irq(pool->lock).
4690c4ab 2648 */
112202d9 2649static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2650 struct wq_barrier *barr,
2651 struct work_struct *target, struct worker *worker)
fc2e4d70 2652{
affee4b2
TH
2653 struct list_head *head;
2654 unsigned int linked = 0;
2655
dc186ad7 2656 /*
d565ed63 2657 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2658 * as we know for sure that this will not trigger any of the
2659 * checks and call back into the fixup functions where we
2660 * might deadlock.
2661 */
ca1cab37 2662 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2663 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2664
fd1a5b04
BP
2665 init_completion_map(&barr->done, &target->lockdep_map);
2666
2607d7a6 2667 barr->task = current;
83c22520 2668
affee4b2
TH
2669 /*
2670 * If @target is currently being executed, schedule the
2671 * barrier to the worker; otherwise, put it after @target.
2672 */
2673 if (worker)
2674 head = worker->scheduled.next;
2675 else {
2676 unsigned long *bits = work_data_bits(target);
2677
2678 head = target->entry.next;
2679 /* there can already be other linked works, inherit and set */
2680 linked = *bits & WORK_STRUCT_LINKED;
2681 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2682 }
2683
dc186ad7 2684 debug_work_activate(&barr->work);
112202d9 2685 insert_work(pwq, &barr->work, head,
affee4b2 2686 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2687}
2688
73f53c4a 2689/**
112202d9 2690 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2691 * @wq: workqueue being flushed
2692 * @flush_color: new flush color, < 0 for no-op
2693 * @work_color: new work color, < 0 for no-op
2694 *
112202d9 2695 * Prepare pwqs for workqueue flushing.
73f53c4a 2696 *
112202d9
TH
2697 * If @flush_color is non-negative, flush_color on all pwqs should be
2698 * -1. If no pwq has in-flight commands at the specified color, all
2699 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2700 * has in flight commands, its pwq->flush_color is set to
2701 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2702 * wakeup logic is armed and %true is returned.
2703 *
2704 * The caller should have initialized @wq->first_flusher prior to
2705 * calling this function with non-negative @flush_color. If
2706 * @flush_color is negative, no flush color update is done and %false
2707 * is returned.
2708 *
112202d9 2709 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2710 * work_color which is previous to @work_color and all will be
2711 * advanced to @work_color.
2712 *
2713 * CONTEXT:
3c25a55d 2714 * mutex_lock(wq->mutex).
73f53c4a 2715 *
d185af30 2716 * Return:
73f53c4a
TH
2717 * %true if @flush_color >= 0 and there's something to flush. %false
2718 * otherwise.
2719 */
112202d9 2720static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2721 int flush_color, int work_color)
1da177e4 2722{
73f53c4a 2723 bool wait = false;
49e3cf44 2724 struct pool_workqueue *pwq;
1da177e4 2725
73f53c4a 2726 if (flush_color >= 0) {
6183c009 2727 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2728 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2729 }
2355b70f 2730
49e3cf44 2731 for_each_pwq(pwq, wq) {
112202d9 2732 struct worker_pool *pool = pwq->pool;
fc2e4d70 2733
b09f4fd3 2734 spin_lock_irq(&pool->lock);
83c22520 2735
73f53c4a 2736 if (flush_color >= 0) {
6183c009 2737 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2738
112202d9
TH
2739 if (pwq->nr_in_flight[flush_color]) {
2740 pwq->flush_color = flush_color;
2741 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2742 wait = true;
2743 }
2744 }
1da177e4 2745
73f53c4a 2746 if (work_color >= 0) {
6183c009 2747 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2748 pwq->work_color = work_color;
73f53c4a 2749 }
1da177e4 2750
b09f4fd3 2751 spin_unlock_irq(&pool->lock);
1da177e4 2752 }
2355b70f 2753
112202d9 2754 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2755 complete(&wq->first_flusher->done);
14441960 2756
73f53c4a 2757 return wait;
1da177e4
LT
2758}
2759
0fcb78c2 2760/**
1da177e4 2761 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2762 * @wq: workqueue to flush
1da177e4 2763 *
c5aa87bb
TH
2764 * This function sleeps until all work items which were queued on entry
2765 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2766 */
7ad5b3a5 2767void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2768{
73f53c4a
TH
2769 struct wq_flusher this_flusher = {
2770 .list = LIST_HEAD_INIT(this_flusher.list),
2771 .flush_color = -1,
fd1a5b04 2772 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2773 };
2774 int next_color;
1da177e4 2775
3347fa09
TH
2776 if (WARN_ON(!wq_online))
2777 return;
2778
87915adc
JB
2779 lock_map_acquire(&wq->lockdep_map);
2780 lock_map_release(&wq->lockdep_map);
2781
3c25a55d 2782 mutex_lock(&wq->mutex);
73f53c4a
TH
2783
2784 /*
2785 * Start-to-wait phase
2786 */
2787 next_color = work_next_color(wq->work_color);
2788
2789 if (next_color != wq->flush_color) {
2790 /*
2791 * Color space is not full. The current work_color
2792 * becomes our flush_color and work_color is advanced
2793 * by one.
2794 */
6183c009 2795 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2796 this_flusher.flush_color = wq->work_color;
2797 wq->work_color = next_color;
2798
2799 if (!wq->first_flusher) {
2800 /* no flush in progress, become the first flusher */
6183c009 2801 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2802
2803 wq->first_flusher = &this_flusher;
2804
112202d9 2805 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2806 wq->work_color)) {
2807 /* nothing to flush, done */
2808 wq->flush_color = next_color;
2809 wq->first_flusher = NULL;
2810 goto out_unlock;
2811 }
2812 } else {
2813 /* wait in queue */
6183c009 2814 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2815 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2816 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2817 }
2818 } else {
2819 /*
2820 * Oops, color space is full, wait on overflow queue.
2821 * The next flush completion will assign us
2822 * flush_color and transfer to flusher_queue.
2823 */
2824 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2825 }
2826
fca839c0
TH
2827 check_flush_dependency(wq, NULL);
2828
3c25a55d 2829 mutex_unlock(&wq->mutex);
73f53c4a
TH
2830
2831 wait_for_completion(&this_flusher.done);
2832
2833 /*
2834 * Wake-up-and-cascade phase
2835 *
2836 * First flushers are responsible for cascading flushes and
2837 * handling overflow. Non-first flushers can simply return.
2838 */
00d5d15b 2839 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2840 return;
2841
3c25a55d 2842 mutex_lock(&wq->mutex);
73f53c4a 2843
4ce48b37
TH
2844 /* we might have raced, check again with mutex held */
2845 if (wq->first_flusher != &this_flusher)
2846 goto out_unlock;
2847
00d5d15b 2848 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2849
6183c009
TH
2850 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2851 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2852
2853 while (true) {
2854 struct wq_flusher *next, *tmp;
2855
2856 /* complete all the flushers sharing the current flush color */
2857 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2858 if (next->flush_color != wq->flush_color)
2859 break;
2860 list_del_init(&next->list);
2861 complete(&next->done);
2862 }
2863
6183c009
TH
2864 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2865 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2866
2867 /* this flush_color is finished, advance by one */
2868 wq->flush_color = work_next_color(wq->flush_color);
2869
2870 /* one color has been freed, handle overflow queue */
2871 if (!list_empty(&wq->flusher_overflow)) {
2872 /*
2873 * Assign the same color to all overflowed
2874 * flushers, advance work_color and append to
2875 * flusher_queue. This is the start-to-wait
2876 * phase for these overflowed flushers.
2877 */
2878 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2879 tmp->flush_color = wq->work_color;
2880
2881 wq->work_color = work_next_color(wq->work_color);
2882
2883 list_splice_tail_init(&wq->flusher_overflow,
2884 &wq->flusher_queue);
112202d9 2885 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2886 }
2887
2888 if (list_empty(&wq->flusher_queue)) {
6183c009 2889 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2890 break;
2891 }
2892
2893 /*
2894 * Need to flush more colors. Make the next flusher
112202d9 2895 * the new first flusher and arm pwqs.
73f53c4a 2896 */
6183c009
TH
2897 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2898 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2899
2900 list_del_init(&next->list);
2901 wq->first_flusher = next;
2902
112202d9 2903 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2904 break;
2905
2906 /*
2907 * Meh... this color is already done, clear first
2908 * flusher and repeat cascading.
2909 */
2910 wq->first_flusher = NULL;
2911 }
2912
2913out_unlock:
3c25a55d 2914 mutex_unlock(&wq->mutex);
1da177e4 2915}
1dadafa8 2916EXPORT_SYMBOL(flush_workqueue);
1da177e4 2917
9c5a2ba7
TH
2918/**
2919 * drain_workqueue - drain a workqueue
2920 * @wq: workqueue to drain
2921 *
2922 * Wait until the workqueue becomes empty. While draining is in progress,
2923 * only chain queueing is allowed. IOW, only currently pending or running
2924 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2925 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2926 * by the depth of chaining and should be relatively short. Whine if it
2927 * takes too long.
2928 */
2929void drain_workqueue(struct workqueue_struct *wq)
2930{
2931 unsigned int flush_cnt = 0;
49e3cf44 2932 struct pool_workqueue *pwq;
9c5a2ba7
TH
2933
2934 /*
2935 * __queue_work() needs to test whether there are drainers, is much
2936 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2937 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2938 */
87fc741e 2939 mutex_lock(&wq->mutex);
9c5a2ba7 2940 if (!wq->nr_drainers++)
618b01eb 2941 wq->flags |= __WQ_DRAINING;
87fc741e 2942 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2943reflush:
2944 flush_workqueue(wq);
2945
b09f4fd3 2946 mutex_lock(&wq->mutex);
76af4d93 2947
49e3cf44 2948 for_each_pwq(pwq, wq) {
fa2563e4 2949 bool drained;
9c5a2ba7 2950
b09f4fd3 2951 spin_lock_irq(&pwq->pool->lock);
112202d9 2952 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2953 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2954
2955 if (drained)
9c5a2ba7
TH
2956 continue;
2957
2958 if (++flush_cnt == 10 ||
2959 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2960 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2961 wq->name, flush_cnt);
76af4d93 2962
b09f4fd3 2963 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2964 goto reflush;
2965 }
2966
9c5a2ba7 2967 if (!--wq->nr_drainers)
618b01eb 2968 wq->flags &= ~__WQ_DRAINING;
87fc741e 2969 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2970}
2971EXPORT_SYMBOL_GPL(drain_workqueue);
2972
d6e89786
JB
2973static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2974 bool from_cancel)
db700897 2975{
affee4b2 2976 struct worker *worker = NULL;
c9e7cf27 2977 struct worker_pool *pool;
112202d9 2978 struct pool_workqueue *pwq;
db700897
ON
2979
2980 might_sleep();
fa1b54e6 2981
24acfb71 2982 rcu_read_lock();
c9e7cf27 2983 pool = get_work_pool(work);
fa1b54e6 2984 if (!pool) {
24acfb71 2985 rcu_read_unlock();
baf59022 2986 return false;
fa1b54e6 2987 }
db700897 2988
24acfb71 2989 spin_lock_irq(&pool->lock);
0b3dae68 2990 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2991 pwq = get_work_pwq(work);
2992 if (pwq) {
2993 if (unlikely(pwq->pool != pool))
4690c4ab 2994 goto already_gone;
606a5020 2995 } else {
c9e7cf27 2996 worker = find_worker_executing_work(pool, work);
affee4b2 2997 if (!worker)
4690c4ab 2998 goto already_gone;
112202d9 2999 pwq = worker->current_pwq;
606a5020 3000 }
db700897 3001
fca839c0
TH
3002 check_flush_dependency(pwq->wq, work);
3003
112202d9 3004 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3005 spin_unlock_irq(&pool->lock);
7a22ad75 3006
e159489b 3007 /*
a1d14934
PZ
3008 * Force a lock recursion deadlock when using flush_work() inside a
3009 * single-threaded or rescuer equipped workqueue.
3010 *
3011 * For single threaded workqueues the deadlock happens when the work
3012 * is after the work issuing the flush_work(). For rescuer equipped
3013 * workqueues the deadlock happens when the rescuer stalls, blocking
3014 * forward progress.
e159489b 3015 */
d6e89786
JB
3016 if (!from_cancel &&
3017 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3018 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3019 lock_map_release(&pwq->wq->lockdep_map);
3020 }
24acfb71 3021 rcu_read_unlock();
401a8d04 3022 return true;
4690c4ab 3023already_gone:
d565ed63 3024 spin_unlock_irq(&pool->lock);
24acfb71 3025 rcu_read_unlock();
401a8d04 3026 return false;
db700897 3027}
baf59022 3028
d6e89786
JB
3029static bool __flush_work(struct work_struct *work, bool from_cancel)
3030{
3031 struct wq_barrier barr;
3032
3033 if (WARN_ON(!wq_online))
3034 return false;
3035
4d43d395
TH
3036 if (WARN_ON(!work->func))
3037 return false;
3038
87915adc
JB
3039 if (!from_cancel) {
3040 lock_map_acquire(&work->lockdep_map);
3041 lock_map_release(&work->lockdep_map);
3042 }
3043
d6e89786
JB
3044 if (start_flush_work(work, &barr, from_cancel)) {
3045 wait_for_completion(&barr.done);
3046 destroy_work_on_stack(&barr.work);
3047 return true;
3048 } else {
3049 return false;
3050 }
3051}
3052
baf59022
TH
3053/**
3054 * flush_work - wait for a work to finish executing the last queueing instance
3055 * @work: the work to flush
3056 *
606a5020
TH
3057 * Wait until @work has finished execution. @work is guaranteed to be idle
3058 * on return if it hasn't been requeued since flush started.
baf59022 3059 *
d185af30 3060 * Return:
baf59022
TH
3061 * %true if flush_work() waited for the work to finish execution,
3062 * %false if it was already idle.
3063 */
3064bool flush_work(struct work_struct *work)
3065{
d6e89786 3066 return __flush_work(work, false);
6e84d644 3067}
606a5020 3068EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3069
8603e1b3 3070struct cwt_wait {
ac6424b9 3071 wait_queue_entry_t wait;
8603e1b3
TH
3072 struct work_struct *work;
3073};
3074
ac6424b9 3075static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3076{
3077 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3078
3079 if (cwait->work != key)
3080 return 0;
3081 return autoremove_wake_function(wait, mode, sync, key);
3082}
3083
36e227d2 3084static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3085{
8603e1b3 3086 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3087 unsigned long flags;
1f1f642e
ON
3088 int ret;
3089
3090 do {
bbb68dfa
TH
3091 ret = try_to_grab_pending(work, is_dwork, &flags);
3092 /*
8603e1b3
TH
3093 * If someone else is already canceling, wait for it to
3094 * finish. flush_work() doesn't work for PREEMPT_NONE
3095 * because we may get scheduled between @work's completion
3096 * and the other canceling task resuming and clearing
3097 * CANCELING - flush_work() will return false immediately
3098 * as @work is no longer busy, try_to_grab_pending() will
3099 * return -ENOENT as @work is still being canceled and the
3100 * other canceling task won't be able to clear CANCELING as
3101 * we're hogging the CPU.
3102 *
3103 * Let's wait for completion using a waitqueue. As this
3104 * may lead to the thundering herd problem, use a custom
3105 * wake function which matches @work along with exclusive
3106 * wait and wakeup.
bbb68dfa 3107 */
8603e1b3
TH
3108 if (unlikely(ret == -ENOENT)) {
3109 struct cwt_wait cwait;
3110
3111 init_wait(&cwait.wait);
3112 cwait.wait.func = cwt_wakefn;
3113 cwait.work = work;
3114
3115 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3116 TASK_UNINTERRUPTIBLE);
3117 if (work_is_canceling(work))
3118 schedule();
3119 finish_wait(&cancel_waitq, &cwait.wait);
3120 }
1f1f642e
ON
3121 } while (unlikely(ret < 0));
3122
bbb68dfa
TH
3123 /* tell other tasks trying to grab @work to back off */
3124 mark_work_canceling(work);
3125 local_irq_restore(flags);
3126
3347fa09
TH
3127 /*
3128 * This allows canceling during early boot. We know that @work
3129 * isn't executing.
3130 */
3131 if (wq_online)
d6e89786 3132 __flush_work(work, true);
3347fa09 3133
7a22ad75 3134 clear_work_data(work);
8603e1b3
TH
3135
3136 /*
3137 * Paired with prepare_to_wait() above so that either
3138 * waitqueue_active() is visible here or !work_is_canceling() is
3139 * visible there.
3140 */
3141 smp_mb();
3142 if (waitqueue_active(&cancel_waitq))
3143 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3144
1f1f642e
ON
3145 return ret;
3146}
3147
6e84d644 3148/**
401a8d04
TH
3149 * cancel_work_sync - cancel a work and wait for it to finish
3150 * @work: the work to cancel
6e84d644 3151 *
401a8d04
TH
3152 * Cancel @work and wait for its execution to finish. This function
3153 * can be used even if the work re-queues itself or migrates to
3154 * another workqueue. On return from this function, @work is
3155 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3156 *
401a8d04
TH
3157 * cancel_work_sync(&delayed_work->work) must not be used for
3158 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3159 *
401a8d04 3160 * The caller must ensure that the workqueue on which @work was last
6e84d644 3161 * queued can't be destroyed before this function returns.
401a8d04 3162 *
d185af30 3163 * Return:
401a8d04 3164 * %true if @work was pending, %false otherwise.
6e84d644 3165 */
401a8d04 3166bool cancel_work_sync(struct work_struct *work)
6e84d644 3167{
36e227d2 3168 return __cancel_work_timer(work, false);
b89deed3 3169}
28e53bdd 3170EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3171
6e84d644 3172/**
401a8d04
TH
3173 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3174 * @dwork: the delayed work to flush
6e84d644 3175 *
401a8d04
TH
3176 * Delayed timer is cancelled and the pending work is queued for
3177 * immediate execution. Like flush_work(), this function only
3178 * considers the last queueing instance of @dwork.
1f1f642e 3179 *
d185af30 3180 * Return:
401a8d04
TH
3181 * %true if flush_work() waited for the work to finish execution,
3182 * %false if it was already idle.
6e84d644 3183 */
401a8d04
TH
3184bool flush_delayed_work(struct delayed_work *dwork)
3185{
8930caba 3186 local_irq_disable();
401a8d04 3187 if (del_timer_sync(&dwork->timer))
60c057bc 3188 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3189 local_irq_enable();
401a8d04
TH
3190 return flush_work(&dwork->work);
3191}
3192EXPORT_SYMBOL(flush_delayed_work);
3193
05f0fe6b
TH
3194/**
3195 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3196 * @rwork: the rcu work to flush
3197 *
3198 * Return:
3199 * %true if flush_rcu_work() waited for the work to finish execution,
3200 * %false if it was already idle.
3201 */
3202bool flush_rcu_work(struct rcu_work *rwork)
3203{
3204 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3205 rcu_barrier();
3206 flush_work(&rwork->work);
3207 return true;
3208 } else {
3209 return flush_work(&rwork->work);
3210 }
3211}
3212EXPORT_SYMBOL(flush_rcu_work);
3213
f72b8792
JA
3214static bool __cancel_work(struct work_struct *work, bool is_dwork)
3215{
3216 unsigned long flags;
3217 int ret;
3218
3219 do {
3220 ret = try_to_grab_pending(work, is_dwork, &flags);
3221 } while (unlikely(ret == -EAGAIN));
3222
3223 if (unlikely(ret < 0))
3224 return false;
3225
3226 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3227 local_irq_restore(flags);
3228 return ret;
3229}
3230
09383498 3231/**
57b30ae7
TH
3232 * cancel_delayed_work - cancel a delayed work
3233 * @dwork: delayed_work to cancel
09383498 3234 *
d185af30
YB
3235 * Kill off a pending delayed_work.
3236 *
3237 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3238 * pending.
3239 *
3240 * Note:
3241 * The work callback function may still be running on return, unless
3242 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3243 * use cancel_delayed_work_sync() to wait on it.
09383498 3244 *
57b30ae7 3245 * This function is safe to call from any context including IRQ handler.
09383498 3246 */
57b30ae7 3247bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3248{
f72b8792 3249 return __cancel_work(&dwork->work, true);
09383498 3250}
57b30ae7 3251EXPORT_SYMBOL(cancel_delayed_work);
09383498 3252
401a8d04
TH
3253/**
3254 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3255 * @dwork: the delayed work cancel
3256 *
3257 * This is cancel_work_sync() for delayed works.
3258 *
d185af30 3259 * Return:
401a8d04
TH
3260 * %true if @dwork was pending, %false otherwise.
3261 */
3262bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3263{
36e227d2 3264 return __cancel_work_timer(&dwork->work, true);
6e84d644 3265}
f5a421a4 3266EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3267
b6136773 3268/**
31ddd871 3269 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3270 * @func: the function to call
b6136773 3271 *
31ddd871
TH
3272 * schedule_on_each_cpu() executes @func on each online CPU using the
3273 * system workqueue and blocks until all CPUs have completed.
b6136773 3274 * schedule_on_each_cpu() is very slow.
31ddd871 3275 *
d185af30 3276 * Return:
31ddd871 3277 * 0 on success, -errno on failure.
b6136773 3278 */
65f27f38 3279int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3280{
3281 int cpu;
38f51568 3282 struct work_struct __percpu *works;
15316ba8 3283
b6136773
AM
3284 works = alloc_percpu(struct work_struct);
3285 if (!works)
15316ba8 3286 return -ENOMEM;
b6136773 3287
93981800
TH
3288 get_online_cpus();
3289
15316ba8 3290 for_each_online_cpu(cpu) {
9bfb1839
IM
3291 struct work_struct *work = per_cpu_ptr(works, cpu);
3292
3293 INIT_WORK(work, func);
b71ab8c2 3294 schedule_work_on(cpu, work);
65a64464 3295 }
93981800
TH
3296
3297 for_each_online_cpu(cpu)
3298 flush_work(per_cpu_ptr(works, cpu));
3299
95402b38 3300 put_online_cpus();
b6136773 3301 free_percpu(works);
15316ba8
CL
3302 return 0;
3303}
3304
1fa44eca
JB
3305/**
3306 * execute_in_process_context - reliably execute the routine with user context
3307 * @fn: the function to execute
1fa44eca
JB
3308 * @ew: guaranteed storage for the execute work structure (must
3309 * be available when the work executes)
3310 *
3311 * Executes the function immediately if process context is available,
3312 * otherwise schedules the function for delayed execution.
3313 *
d185af30 3314 * Return: 0 - function was executed
1fa44eca
JB
3315 * 1 - function was scheduled for execution
3316 */
65f27f38 3317int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3318{
3319 if (!in_interrupt()) {
65f27f38 3320 fn(&ew->work);
1fa44eca
JB
3321 return 0;
3322 }
3323
65f27f38 3324 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3325 schedule_work(&ew->work);
3326
3327 return 1;
3328}
3329EXPORT_SYMBOL_GPL(execute_in_process_context);
3330
6ba94429
FW
3331/**
3332 * free_workqueue_attrs - free a workqueue_attrs
3333 * @attrs: workqueue_attrs to free
226223ab 3334 *
6ba94429 3335 * Undo alloc_workqueue_attrs().
226223ab 3336 */
513c98d0 3337void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3338{
6ba94429
FW
3339 if (attrs) {
3340 free_cpumask_var(attrs->cpumask);
3341 kfree(attrs);
3342 }
226223ab
TH
3343}
3344
6ba94429
FW
3345/**
3346 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3347 *
3348 * Allocate a new workqueue_attrs, initialize with default settings and
3349 * return it.
3350 *
3351 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3352 */
513c98d0 3353struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3354{
6ba94429 3355 struct workqueue_attrs *attrs;
226223ab 3356
be69d00d 3357 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3358 if (!attrs)
3359 goto fail;
be69d00d 3360 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3361 goto fail;
3362
3363 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3364 return attrs;
3365fail:
3366 free_workqueue_attrs(attrs);
3367 return NULL;
226223ab
TH
3368}
3369
6ba94429
FW
3370static void copy_workqueue_attrs(struct workqueue_attrs *to,
3371 const struct workqueue_attrs *from)
226223ab 3372{
6ba94429
FW
3373 to->nice = from->nice;
3374 cpumask_copy(to->cpumask, from->cpumask);
3375 /*
3376 * Unlike hash and equality test, this function doesn't ignore
3377 * ->no_numa as it is used for both pool and wq attrs. Instead,
3378 * get_unbound_pool() explicitly clears ->no_numa after copying.
3379 */
3380 to->no_numa = from->no_numa;
226223ab
TH
3381}
3382
6ba94429
FW
3383/* hash value of the content of @attr */
3384static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3385{
6ba94429 3386 u32 hash = 0;
226223ab 3387
6ba94429
FW
3388 hash = jhash_1word(attrs->nice, hash);
3389 hash = jhash(cpumask_bits(attrs->cpumask),
3390 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3391 return hash;
226223ab 3392}
226223ab 3393
6ba94429
FW
3394/* content equality test */
3395static bool wqattrs_equal(const struct workqueue_attrs *a,
3396 const struct workqueue_attrs *b)
226223ab 3397{
6ba94429
FW
3398 if (a->nice != b->nice)
3399 return false;
3400 if (!cpumask_equal(a->cpumask, b->cpumask))
3401 return false;
3402 return true;
226223ab
TH
3403}
3404
6ba94429
FW
3405/**
3406 * init_worker_pool - initialize a newly zalloc'd worker_pool
3407 * @pool: worker_pool to initialize
3408 *
402dd89d 3409 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3410 *
3411 * Return: 0 on success, -errno on failure. Even on failure, all fields
3412 * inside @pool proper are initialized and put_unbound_pool() can be called
3413 * on @pool safely to release it.
3414 */
3415static int init_worker_pool(struct worker_pool *pool)
226223ab 3416{
6ba94429
FW
3417 spin_lock_init(&pool->lock);
3418 pool->id = -1;
3419 pool->cpu = -1;
3420 pool->node = NUMA_NO_NODE;
3421 pool->flags |= POOL_DISASSOCIATED;
82607adc 3422 pool->watchdog_ts = jiffies;
6ba94429
FW
3423 INIT_LIST_HEAD(&pool->worklist);
3424 INIT_LIST_HEAD(&pool->idle_list);
3425 hash_init(pool->busy_hash);
226223ab 3426
32a6c723 3427 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3428
32a6c723 3429 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3430
6ba94429 3431 INIT_LIST_HEAD(&pool->workers);
226223ab 3432
6ba94429
FW
3433 ida_init(&pool->worker_ida);
3434 INIT_HLIST_NODE(&pool->hash_node);
3435 pool->refcnt = 1;
226223ab 3436
6ba94429 3437 /* shouldn't fail above this point */
be69d00d 3438 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3439 if (!pool->attrs)
3440 return -ENOMEM;
3441 return 0;
226223ab
TH
3442}
3443
669de8bd
BVA
3444#ifdef CONFIG_LOCKDEP
3445static void wq_init_lockdep(struct workqueue_struct *wq)
3446{
3447 char *lock_name;
3448
3449 lockdep_register_key(&wq->key);
3450 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3451 if (!lock_name)
3452 lock_name = wq->name;
69a106c0
QC
3453
3454 wq->lock_name = lock_name;
669de8bd
BVA
3455 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3456}
3457
3458static void wq_unregister_lockdep(struct workqueue_struct *wq)
3459{
3460 lockdep_unregister_key(&wq->key);
3461}
3462
3463static void wq_free_lockdep(struct workqueue_struct *wq)
3464{
3465 if (wq->lock_name != wq->name)
3466 kfree(wq->lock_name);
3467}
3468#else
3469static void wq_init_lockdep(struct workqueue_struct *wq)
3470{
3471}
3472
3473static void wq_unregister_lockdep(struct workqueue_struct *wq)
3474{
3475}
3476
3477static void wq_free_lockdep(struct workqueue_struct *wq)
3478{
3479}
3480#endif
3481
6ba94429 3482static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3483{
6ba94429
FW
3484 struct workqueue_struct *wq =
3485 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3486
669de8bd
BVA
3487 wq_free_lockdep(wq);
3488
6ba94429
FW
3489 if (!(wq->flags & WQ_UNBOUND))
3490 free_percpu(wq->cpu_pwqs);
226223ab 3491 else
6ba94429 3492 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3493
6ba94429
FW
3494 kfree(wq->rescuer);
3495 kfree(wq);
226223ab
TH
3496}
3497
6ba94429 3498static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3499{
6ba94429 3500 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3501
6ba94429
FW
3502 ida_destroy(&pool->worker_ida);
3503 free_workqueue_attrs(pool->attrs);
3504 kfree(pool);
226223ab
TH
3505}
3506
6ba94429
FW
3507/**
3508 * put_unbound_pool - put a worker_pool
3509 * @pool: worker_pool to put
3510 *
24acfb71 3511 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3512 * safe manner. get_unbound_pool() calls this function on its failure path
3513 * and this function should be able to release pools which went through,
3514 * successfully or not, init_worker_pool().
3515 *
3516 * Should be called with wq_pool_mutex held.
3517 */
3518static void put_unbound_pool(struct worker_pool *pool)
226223ab 3519{
6ba94429
FW
3520 DECLARE_COMPLETION_ONSTACK(detach_completion);
3521 struct worker *worker;
226223ab 3522
6ba94429 3523 lockdep_assert_held(&wq_pool_mutex);
226223ab 3524
6ba94429
FW
3525 if (--pool->refcnt)
3526 return;
226223ab 3527
6ba94429
FW
3528 /* sanity checks */
3529 if (WARN_ON(!(pool->cpu < 0)) ||
3530 WARN_ON(!list_empty(&pool->worklist)))
3531 return;
226223ab 3532
6ba94429
FW
3533 /* release id and unhash */
3534 if (pool->id >= 0)
3535 idr_remove(&worker_pool_idr, pool->id);
3536 hash_del(&pool->hash_node);
d55262c4 3537
6ba94429 3538 /*
692b4825
TH
3539 * Become the manager and destroy all workers. This prevents
3540 * @pool's workers from blocking on attach_mutex. We're the last
3541 * manager and @pool gets freed with the flag set.
6ba94429 3542 */
6ba94429 3543 spin_lock_irq(&pool->lock);
692b4825
TH
3544 wait_event_lock_irq(wq_manager_wait,
3545 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3546 pool->flags |= POOL_MANAGER_ACTIVE;
3547
6ba94429
FW
3548 while ((worker = first_idle_worker(pool)))
3549 destroy_worker(worker);
3550 WARN_ON(pool->nr_workers || pool->nr_idle);
3551 spin_unlock_irq(&pool->lock);
d55262c4 3552
1258fae7 3553 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3554 if (!list_empty(&pool->workers))
3555 pool->detach_completion = &detach_completion;
1258fae7 3556 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3557
6ba94429
FW
3558 if (pool->detach_completion)
3559 wait_for_completion(pool->detach_completion);
226223ab 3560
6ba94429
FW
3561 /* shut down the timers */
3562 del_timer_sync(&pool->idle_timer);
3563 del_timer_sync(&pool->mayday_timer);
226223ab 3564
24acfb71 3565 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3566 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3567}
3568
3569/**
6ba94429
FW
3570 * get_unbound_pool - get a worker_pool with the specified attributes
3571 * @attrs: the attributes of the worker_pool to get
226223ab 3572 *
6ba94429
FW
3573 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3574 * reference count and return it. If there already is a matching
3575 * worker_pool, it will be used; otherwise, this function attempts to
3576 * create a new one.
226223ab 3577 *
6ba94429 3578 * Should be called with wq_pool_mutex held.
226223ab 3579 *
6ba94429
FW
3580 * Return: On success, a worker_pool with the same attributes as @attrs.
3581 * On failure, %NULL.
226223ab 3582 */
6ba94429 3583static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3584{
6ba94429
FW
3585 u32 hash = wqattrs_hash(attrs);
3586 struct worker_pool *pool;
3587 int node;
e2273584 3588 int target_node = NUMA_NO_NODE;
226223ab 3589
6ba94429 3590 lockdep_assert_held(&wq_pool_mutex);
226223ab 3591
6ba94429
FW
3592 /* do we already have a matching pool? */
3593 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3594 if (wqattrs_equal(pool->attrs, attrs)) {
3595 pool->refcnt++;
3596 return pool;
3597 }
3598 }
226223ab 3599
e2273584
XP
3600 /* if cpumask is contained inside a NUMA node, we belong to that node */
3601 if (wq_numa_enabled) {
3602 for_each_node(node) {
3603 if (cpumask_subset(attrs->cpumask,
3604 wq_numa_possible_cpumask[node])) {
3605 target_node = node;
3606 break;
3607 }
3608 }
3609 }
3610
6ba94429 3611 /* nope, create a new one */
e2273584 3612 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3613 if (!pool || init_worker_pool(pool) < 0)
3614 goto fail;
3615
3616 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3617 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3618 pool->node = target_node;
226223ab
TH
3619
3620 /*
6ba94429
FW
3621 * no_numa isn't a worker_pool attribute, always clear it. See
3622 * 'struct workqueue_attrs' comments for detail.
226223ab 3623 */
6ba94429 3624 pool->attrs->no_numa = false;
226223ab 3625
6ba94429
FW
3626 if (worker_pool_assign_id(pool) < 0)
3627 goto fail;
226223ab 3628
6ba94429 3629 /* create and start the initial worker */
3347fa09 3630 if (wq_online && !create_worker(pool))
6ba94429 3631 goto fail;
226223ab 3632
6ba94429
FW
3633 /* install */
3634 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3635
6ba94429
FW
3636 return pool;
3637fail:
3638 if (pool)
3639 put_unbound_pool(pool);
3640 return NULL;
226223ab 3641}
226223ab 3642
6ba94429 3643static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3644{
6ba94429
FW
3645 kmem_cache_free(pwq_cache,
3646 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3647}
3648
6ba94429
FW
3649/*
3650 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3651 * and needs to be destroyed.
7a4e344c 3652 */
6ba94429 3653static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3654{
6ba94429
FW
3655 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3656 unbound_release_work);
3657 struct workqueue_struct *wq = pwq->wq;
3658 struct worker_pool *pool = pwq->pool;
3659 bool is_last;
7a4e344c 3660
6ba94429
FW
3661 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3662 return;
7a4e344c 3663
6ba94429
FW
3664 mutex_lock(&wq->mutex);
3665 list_del_rcu(&pwq->pwqs_node);
3666 is_last = list_empty(&wq->pwqs);
3667 mutex_unlock(&wq->mutex);
3668
3669 mutex_lock(&wq_pool_mutex);
3670 put_unbound_pool(pool);
3671 mutex_unlock(&wq_pool_mutex);
3672
25b00775 3673 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3674
2865a8fb 3675 /*
6ba94429
FW
3676 * If we're the last pwq going away, @wq is already dead and no one
3677 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3678 */
669de8bd
BVA
3679 if (is_last) {
3680 wq_unregister_lockdep(wq);
25b00775 3681 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3682 }
29c91e99
TH
3683}
3684
7a4e344c 3685/**
6ba94429
FW
3686 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3687 * @pwq: target pool_workqueue
d185af30 3688 *
6ba94429
FW
3689 * If @pwq isn't freezing, set @pwq->max_active to the associated
3690 * workqueue's saved_max_active and activate delayed work items
3691 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3692 */
6ba94429 3693static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3694{
6ba94429
FW
3695 struct workqueue_struct *wq = pwq->wq;
3696 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3697 unsigned long flags;
4e1a1f9a 3698
6ba94429
FW
3699 /* for @wq->saved_max_active */
3700 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3701
6ba94429
FW
3702 /* fast exit for non-freezable wqs */
3703 if (!freezable && pwq->max_active == wq->saved_max_active)
3704 return;
7a4e344c 3705
3347fa09
TH
3706 /* this function can be called during early boot w/ irq disabled */
3707 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3708
6ba94429
FW
3709 /*
3710 * During [un]freezing, the caller is responsible for ensuring that
3711 * this function is called at least once after @workqueue_freezing
3712 * is updated and visible.
3713 */
3714 if (!freezable || !workqueue_freezing) {
3715 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3716
6ba94429
FW
3717 while (!list_empty(&pwq->delayed_works) &&
3718 pwq->nr_active < pwq->max_active)
3719 pwq_activate_first_delayed(pwq);
e2dca7ad 3720
6ba94429
FW
3721 /*
3722 * Need to kick a worker after thawed or an unbound wq's
3723 * max_active is bumped. It's a slow path. Do it always.
3724 */
3725 wake_up_worker(pwq->pool);
3726 } else {
3727 pwq->max_active = 0;
3728 }
e2dca7ad 3729
3347fa09 3730 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3731}
3732
6ba94429
FW
3733/* initialize newly alloced @pwq which is associated with @wq and @pool */
3734static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3735 struct worker_pool *pool)
29c91e99 3736{
6ba94429 3737 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3738
6ba94429
FW
3739 memset(pwq, 0, sizeof(*pwq));
3740
3741 pwq->pool = pool;
3742 pwq->wq = wq;
3743 pwq->flush_color = -1;
3744 pwq->refcnt = 1;
3745 INIT_LIST_HEAD(&pwq->delayed_works);
3746 INIT_LIST_HEAD(&pwq->pwqs_node);
3747 INIT_LIST_HEAD(&pwq->mayday_node);
3748 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3749}
3750
6ba94429
FW
3751/* sync @pwq with the current state of its associated wq and link it */
3752static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3753{
6ba94429 3754 struct workqueue_struct *wq = pwq->wq;
29c91e99 3755
6ba94429 3756 lockdep_assert_held(&wq->mutex);
a892cacc 3757
6ba94429
FW
3758 /* may be called multiple times, ignore if already linked */
3759 if (!list_empty(&pwq->pwqs_node))
29c91e99 3760 return;
29c91e99 3761
6ba94429
FW
3762 /* set the matching work_color */
3763 pwq->work_color = wq->work_color;
29c91e99 3764
6ba94429
FW
3765 /* sync max_active to the current setting */
3766 pwq_adjust_max_active(pwq);
29c91e99 3767
6ba94429
FW
3768 /* link in @pwq */
3769 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3770}
29c91e99 3771
6ba94429
FW
3772/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3773static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3774 const struct workqueue_attrs *attrs)
3775{
3776 struct worker_pool *pool;
3777 struct pool_workqueue *pwq;
60f5a4bc 3778
6ba94429 3779 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3780
6ba94429
FW
3781 pool = get_unbound_pool(attrs);
3782 if (!pool)
3783 return NULL;
60f5a4bc 3784
6ba94429
FW
3785 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3786 if (!pwq) {
3787 put_unbound_pool(pool);
3788 return NULL;
3789 }
29c91e99 3790
6ba94429
FW
3791 init_pwq(pwq, wq, pool);
3792 return pwq;
3793}
29c91e99 3794
29c91e99 3795/**
30186c6f 3796 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3797 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3798 * @node: the target NUMA node
3799 * @cpu_going_down: if >= 0, the CPU to consider as offline
3800 * @cpumask: outarg, the resulting cpumask
29c91e99 3801 *
6ba94429
FW
3802 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3803 * @cpu_going_down is >= 0, that cpu is considered offline during
3804 * calculation. The result is stored in @cpumask.
a892cacc 3805 *
6ba94429
FW
3806 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3807 * enabled and @node has online CPUs requested by @attrs, the returned
3808 * cpumask is the intersection of the possible CPUs of @node and
3809 * @attrs->cpumask.
d185af30 3810 *
6ba94429
FW
3811 * The caller is responsible for ensuring that the cpumask of @node stays
3812 * stable.
3813 *
3814 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3815 * %false if equal.
29c91e99 3816 */
6ba94429
FW
3817static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3818 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3819{
6ba94429
FW
3820 if (!wq_numa_enabled || attrs->no_numa)
3821 goto use_dfl;
29c91e99 3822
6ba94429
FW
3823 /* does @node have any online CPUs @attrs wants? */
3824 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3825 if (cpu_going_down >= 0)
3826 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3827
6ba94429
FW
3828 if (cpumask_empty(cpumask))
3829 goto use_dfl;
4c16bd32
TH
3830
3831 /* yeap, return possible CPUs in @node that @attrs wants */
3832 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3833
3834 if (cpumask_empty(cpumask)) {
3835 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3836 "possible intersect\n");
3837 return false;
3838 }
3839
4c16bd32
TH
3840 return !cpumask_equal(cpumask, attrs->cpumask);
3841
3842use_dfl:
3843 cpumask_copy(cpumask, attrs->cpumask);
3844 return false;
3845}
3846
1befcf30
TH
3847/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3848static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3849 int node,
3850 struct pool_workqueue *pwq)
3851{
3852 struct pool_workqueue *old_pwq;
3853
5b95e1af 3854 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3855 lockdep_assert_held(&wq->mutex);
3856
3857 /* link_pwq() can handle duplicate calls */
3858 link_pwq(pwq);
3859
3860 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3861 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3862 return old_pwq;
3863}
3864
2d5f0764
LJ
3865/* context to store the prepared attrs & pwqs before applying */
3866struct apply_wqattrs_ctx {
3867 struct workqueue_struct *wq; /* target workqueue */
3868 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3869 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3870 struct pool_workqueue *dfl_pwq;
3871 struct pool_workqueue *pwq_tbl[];
3872};
3873
3874/* free the resources after success or abort */
3875static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3876{
3877 if (ctx) {
3878 int node;
3879
3880 for_each_node(node)
3881 put_pwq_unlocked(ctx->pwq_tbl[node]);
3882 put_pwq_unlocked(ctx->dfl_pwq);
3883
3884 free_workqueue_attrs(ctx->attrs);
3885
3886 kfree(ctx);
3887 }
3888}
3889
3890/* allocate the attrs and pwqs for later installation */
3891static struct apply_wqattrs_ctx *
3892apply_wqattrs_prepare(struct workqueue_struct *wq,
3893 const struct workqueue_attrs *attrs)
9e8cd2f5 3894{
2d5f0764 3895 struct apply_wqattrs_ctx *ctx;
4c16bd32 3896 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3897 int node;
9e8cd2f5 3898
2d5f0764 3899 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3900
acafe7e3 3901 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3902
be69d00d
TG
3903 new_attrs = alloc_workqueue_attrs();
3904 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3905 if (!ctx || !new_attrs || !tmp_attrs)
3906 goto out_free;
13e2e556 3907
042f7df1
LJ
3908 /*
3909 * Calculate the attrs of the default pwq.
3910 * If the user configured cpumask doesn't overlap with the
3911 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3912 */
13e2e556 3913 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3914 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3915 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3916 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3917
4c16bd32
TH
3918 /*
3919 * We may create multiple pwqs with differing cpumasks. Make a
3920 * copy of @new_attrs which will be modified and used to obtain
3921 * pools.
3922 */
3923 copy_workqueue_attrs(tmp_attrs, new_attrs);
3924
4c16bd32
TH
3925 /*
3926 * If something goes wrong during CPU up/down, we'll fall back to
3927 * the default pwq covering whole @attrs->cpumask. Always create
3928 * it even if we don't use it immediately.
3929 */
2d5f0764
LJ
3930 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3931 if (!ctx->dfl_pwq)
3932 goto out_free;
4c16bd32
TH
3933
3934 for_each_node(node) {
042f7df1 3935 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3936 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3937 if (!ctx->pwq_tbl[node])
3938 goto out_free;
4c16bd32 3939 } else {
2d5f0764
LJ
3940 ctx->dfl_pwq->refcnt++;
3941 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3942 }
3943 }
3944
042f7df1
LJ
3945 /* save the user configured attrs and sanitize it. */
3946 copy_workqueue_attrs(new_attrs, attrs);
3947 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3948 ctx->attrs = new_attrs;
042f7df1 3949
2d5f0764
LJ
3950 ctx->wq = wq;
3951 free_workqueue_attrs(tmp_attrs);
3952 return ctx;
3953
3954out_free:
3955 free_workqueue_attrs(tmp_attrs);
3956 free_workqueue_attrs(new_attrs);
3957 apply_wqattrs_cleanup(ctx);
3958 return NULL;
3959}
3960
3961/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3962static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3963{
3964 int node;
9e8cd2f5 3965
4c16bd32 3966 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3967 mutex_lock(&ctx->wq->mutex);
a892cacc 3968
2d5f0764 3969 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3970
3971 /* save the previous pwq and install the new one */
f147f29e 3972 for_each_node(node)
2d5f0764
LJ
3973 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3974 ctx->pwq_tbl[node]);
4c16bd32
TH
3975
3976 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3977 link_pwq(ctx->dfl_pwq);
3978 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3979
2d5f0764
LJ
3980 mutex_unlock(&ctx->wq->mutex);
3981}
9e8cd2f5 3982
a0111cf6
LJ
3983static void apply_wqattrs_lock(void)
3984{
3985 /* CPUs should stay stable across pwq creations and installations */
3986 get_online_cpus();
3987 mutex_lock(&wq_pool_mutex);
3988}
3989
3990static void apply_wqattrs_unlock(void)
3991{
3992 mutex_unlock(&wq_pool_mutex);
3993 put_online_cpus();
3994}
3995
3996static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3997 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3998{
3999 struct apply_wqattrs_ctx *ctx;
4c16bd32 4000
2d5f0764
LJ
4001 /* only unbound workqueues can change attributes */
4002 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4003 return -EINVAL;
13e2e556 4004
2d5f0764 4005 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4006 if (!list_empty(&wq->pwqs)) {
4007 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4008 return -EINVAL;
4009
4010 wq->flags &= ~__WQ_ORDERED;
4011 }
2d5f0764 4012
2d5f0764 4013 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4014 if (!ctx)
4015 return -ENOMEM;
2d5f0764
LJ
4016
4017 /* the ctx has been prepared successfully, let's commit it */
6201171e 4018 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4019 apply_wqattrs_cleanup(ctx);
4020
6201171e 4021 return 0;
9e8cd2f5
TH
4022}
4023
a0111cf6
LJ
4024/**
4025 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4026 * @wq: the target workqueue
4027 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4028 *
4029 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4030 * machines, this function maps a separate pwq to each NUMA node with
4031 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4032 * NUMA node it was issued on. Older pwqs are released as in-flight work
4033 * items finish. Note that a work item which repeatedly requeues itself
4034 * back-to-back will stay on its current pwq.
4035 *
4036 * Performs GFP_KERNEL allocations.
4037 *
509b3204
DJ
4038 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4039 *
a0111cf6
LJ
4040 * Return: 0 on success and -errno on failure.
4041 */
513c98d0 4042int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4043 const struct workqueue_attrs *attrs)
4044{
4045 int ret;
4046
509b3204
DJ
4047 lockdep_assert_cpus_held();
4048
4049 mutex_lock(&wq_pool_mutex);
a0111cf6 4050 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4051 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4052
4053 return ret;
4054}
4055
4c16bd32
TH
4056/**
4057 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4058 * @wq: the target workqueue
4059 * @cpu: the CPU coming up or going down
4060 * @online: whether @cpu is coming up or going down
4061 *
4062 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4063 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4064 * @wq accordingly.
4065 *
4066 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4067 * falls back to @wq->dfl_pwq which may not be optimal but is always
4068 * correct.
4069 *
4070 * Note that when the last allowed CPU of a NUMA node goes offline for a
4071 * workqueue with a cpumask spanning multiple nodes, the workers which were
4072 * already executing the work items for the workqueue will lose their CPU
4073 * affinity and may execute on any CPU. This is similar to how per-cpu
4074 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4075 * affinity, it's the user's responsibility to flush the work item from
4076 * CPU_DOWN_PREPARE.
4077 */
4078static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4079 bool online)
4080{
4081 int node = cpu_to_node(cpu);
4082 int cpu_off = online ? -1 : cpu;
4083 struct pool_workqueue *old_pwq = NULL, *pwq;
4084 struct workqueue_attrs *target_attrs;
4085 cpumask_t *cpumask;
4086
4087 lockdep_assert_held(&wq_pool_mutex);
4088
f7142ed4
LJ
4089 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4090 wq->unbound_attrs->no_numa)
4c16bd32
TH
4091 return;
4092
4093 /*
4094 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4095 * Let's use a preallocated one. The following buf is protected by
4096 * CPU hotplug exclusion.
4097 */
4098 target_attrs = wq_update_unbound_numa_attrs_buf;
4099 cpumask = target_attrs->cpumask;
4100
4c16bd32
TH
4101 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4102 pwq = unbound_pwq_by_node(wq, node);
4103
4104 /*
4105 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4106 * different from the default pwq's, we need to compare it to @pwq's
4107 * and create a new one if they don't match. If the target cpumask
4108 * equals the default pwq's, the default pwq should be used.
4c16bd32 4109 */
042f7df1 4110 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4111 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4112 return;
4c16bd32 4113 } else {
534a3fbb 4114 goto use_dfl_pwq;
4c16bd32
TH
4115 }
4116
4c16bd32
TH
4117 /* create a new pwq */
4118 pwq = alloc_unbound_pwq(wq, target_attrs);
4119 if (!pwq) {
2d916033
FF
4120 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4121 wq->name);
77f300b1 4122 goto use_dfl_pwq;
4c16bd32
TH
4123 }
4124
f7142ed4 4125 /* Install the new pwq. */
4c16bd32
TH
4126 mutex_lock(&wq->mutex);
4127 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4128 goto out_unlock;
4129
4130use_dfl_pwq:
f7142ed4 4131 mutex_lock(&wq->mutex);
4c16bd32
TH
4132 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4133 get_pwq(wq->dfl_pwq);
4134 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4135 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4136out_unlock:
4137 mutex_unlock(&wq->mutex);
4138 put_pwq_unlocked(old_pwq);
4139}
4140
30cdf249 4141static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4142{
49e3cf44 4143 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4144 int cpu, ret;
30cdf249
TH
4145
4146 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4147 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4148 if (!wq->cpu_pwqs)
30cdf249
TH
4149 return -ENOMEM;
4150
4151 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4152 struct pool_workqueue *pwq =
4153 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4154 struct worker_pool *cpu_pools =
f02ae73a 4155 per_cpu(cpu_worker_pools, cpu);
f3421797 4156
f147f29e
TH
4157 init_pwq(pwq, wq, &cpu_pools[highpri]);
4158
4159 mutex_lock(&wq->mutex);
1befcf30 4160 link_pwq(pwq);
f147f29e 4161 mutex_unlock(&wq->mutex);
30cdf249 4162 }
9e8cd2f5 4163 return 0;
509b3204
DJ
4164 }
4165
4166 get_online_cpus();
4167 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4168 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4169 /* there should only be single pwq for ordering guarantee */
4170 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4171 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4172 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4173 } else {
509b3204 4174 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4175 }
509b3204
DJ
4176 put_online_cpus();
4177
4178 return ret;
0f900049
TH
4179}
4180
f3421797
TH
4181static int wq_clamp_max_active(int max_active, unsigned int flags,
4182 const char *name)
b71ab8c2 4183{
f3421797
TH
4184 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4185
4186 if (max_active < 1 || max_active > lim)
044c782c
VI
4187 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4188 max_active, name, 1, lim);
b71ab8c2 4189
f3421797 4190 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4191}
4192
983c7515
TH
4193/*
4194 * Workqueues which may be used during memory reclaim should have a rescuer
4195 * to guarantee forward progress.
4196 */
4197static int init_rescuer(struct workqueue_struct *wq)
4198{
4199 struct worker *rescuer;
4200 int ret;
4201
4202 if (!(wq->flags & WQ_MEM_RECLAIM))
4203 return 0;
4204
4205 rescuer = alloc_worker(NUMA_NO_NODE);
4206 if (!rescuer)
4207 return -ENOMEM;
4208
4209 rescuer->rescue_wq = wq;
4210 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4211 ret = PTR_ERR_OR_ZERO(rescuer->task);
4212 if (ret) {
4213 kfree(rescuer);
4214 return ret;
4215 }
4216
4217 wq->rescuer = rescuer;
4218 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4219 wake_up_process(rescuer->task);
4220
4221 return 0;
4222}
4223
a2775bbc 4224__printf(1, 4)
669de8bd
BVA
4225struct workqueue_struct *alloc_workqueue(const char *fmt,
4226 unsigned int flags,
4227 int max_active, ...)
1da177e4 4228{
df2d5ae4 4229 size_t tbl_size = 0;
ecf6881f 4230 va_list args;
1da177e4 4231 struct workqueue_struct *wq;
49e3cf44 4232 struct pool_workqueue *pwq;
b196be89 4233
5c0338c6
TH
4234 /*
4235 * Unbound && max_active == 1 used to imply ordered, which is no
4236 * longer the case on NUMA machines due to per-node pools. While
4237 * alloc_ordered_workqueue() is the right way to create an ordered
4238 * workqueue, keep the previous behavior to avoid subtle breakages
4239 * on NUMA.
4240 */
4241 if ((flags & WQ_UNBOUND) && max_active == 1)
4242 flags |= __WQ_ORDERED;
4243
cee22a15
VK
4244 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4245 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4246 flags |= WQ_UNBOUND;
4247
ecf6881f 4248 /* allocate wq and format name */
df2d5ae4 4249 if (flags & WQ_UNBOUND)
ddcb57e2 4250 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4251
4252 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4253 if (!wq)
d2c1d404 4254 return NULL;
b196be89 4255
6029a918 4256 if (flags & WQ_UNBOUND) {
be69d00d 4257 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4258 if (!wq->unbound_attrs)
4259 goto err_free_wq;
4260 }
4261
669de8bd 4262 va_start(args, max_active);
ecf6881f 4263 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4264 va_end(args);
1da177e4 4265
d320c038 4266 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4267 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4268
b196be89 4269 /* init wq */
97e37d7b 4270 wq->flags = flags;
a0a1a5fd 4271 wq->saved_max_active = max_active;
3c25a55d 4272 mutex_init(&wq->mutex);
112202d9 4273 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4274 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4275 INIT_LIST_HEAD(&wq->flusher_queue);
4276 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4277 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4278
669de8bd 4279 wq_init_lockdep(wq);
cce1a165 4280 INIT_LIST_HEAD(&wq->list);
3af24433 4281
30cdf249 4282 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4283 goto err_unreg_lockdep;
1537663f 4284
40c17f75 4285 if (wq_online && init_rescuer(wq) < 0)
983c7515 4286 goto err_destroy;
3af24433 4287
226223ab
TH
4288 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4289 goto err_destroy;
4290
a0a1a5fd 4291 /*
68e13a67
LJ
4292 * wq_pool_mutex protects global freeze state and workqueues list.
4293 * Grab it, adjust max_active and add the new @wq to workqueues
4294 * list.
a0a1a5fd 4295 */
68e13a67 4296 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4297
a357fc03 4298 mutex_lock(&wq->mutex);
699ce097
TH
4299 for_each_pwq(pwq, wq)
4300 pwq_adjust_max_active(pwq);
a357fc03 4301 mutex_unlock(&wq->mutex);
a0a1a5fd 4302
e2dca7ad 4303 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4304
68e13a67 4305 mutex_unlock(&wq_pool_mutex);
1537663f 4306
3af24433 4307 return wq;
d2c1d404 4308
82efcab3 4309err_unreg_lockdep:
009bb421
BVA
4310 wq_unregister_lockdep(wq);
4311 wq_free_lockdep(wq);
82efcab3 4312err_free_wq:
6029a918 4313 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4314 kfree(wq);
4315 return NULL;
4316err_destroy:
4317 destroy_workqueue(wq);
4690c4ab 4318 return NULL;
3af24433 4319}
669de8bd 4320EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4321
c29eb853
TH
4322static bool pwq_busy(struct pool_workqueue *pwq)
4323{
4324 int i;
4325
4326 for (i = 0; i < WORK_NR_COLORS; i++)
4327 if (pwq->nr_in_flight[i])
4328 return true;
4329
4330 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4331 return true;
4332 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4333 return true;
4334
4335 return false;
4336}
4337
3af24433
ON
4338/**
4339 * destroy_workqueue - safely terminate a workqueue
4340 * @wq: target workqueue
4341 *
4342 * Safely destroy a workqueue. All work currently pending will be done first.
4343 */
4344void destroy_workqueue(struct workqueue_struct *wq)
4345{
49e3cf44 4346 struct pool_workqueue *pwq;
4c16bd32 4347 int node;
3af24433 4348
def98c84
TH
4349 /*
4350 * Remove it from sysfs first so that sanity check failure doesn't
4351 * lead to sysfs name conflicts.
4352 */
4353 workqueue_sysfs_unregister(wq);
4354
9c5a2ba7
TH
4355 /* drain it before proceeding with destruction */
4356 drain_workqueue(wq);
c8efcc25 4357
def98c84
TH
4358 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4359 if (wq->rescuer) {
4360 struct worker *rescuer = wq->rescuer;
4361
4362 /* this prevents new queueing */
4363 spin_lock_irq(&wq_mayday_lock);
4364 wq->rescuer = NULL;
4365 spin_unlock_irq(&wq_mayday_lock);
4366
4367 /* rescuer will empty maydays list before exiting */
4368 kthread_stop(rescuer->task);
8efe1223 4369 kfree(rescuer);
def98c84
TH
4370 }
4371
c29eb853
TH
4372 /*
4373 * Sanity checks - grab all the locks so that we wait for all
4374 * in-flight operations which may do put_pwq().
4375 */
4376 mutex_lock(&wq_pool_mutex);
b09f4fd3 4377 mutex_lock(&wq->mutex);
49e3cf44 4378 for_each_pwq(pwq, wq) {
c29eb853
TH
4379 spin_lock_irq(&pwq->pool->lock);
4380 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4381 pr_warn("%s: %s has the following busy pwq\n",
4382 __func__, wq->name);
c29eb853
TH
4383 show_pwq(pwq);
4384 spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4385 mutex_unlock(&wq->mutex);
c29eb853 4386 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4387 show_workqueue_state();
6183c009 4388 return;
76af4d93 4389 }
c29eb853 4390 spin_unlock_irq(&pwq->pool->lock);
6183c009 4391 }
b09f4fd3 4392 mutex_unlock(&wq->mutex);
c29eb853 4393 mutex_unlock(&wq_pool_mutex);
6183c009 4394
a0a1a5fd
TH
4395 /*
4396 * wq list is used to freeze wq, remove from list after
4397 * flushing is complete in case freeze races us.
4398 */
68e13a67 4399 mutex_lock(&wq_pool_mutex);
e2dca7ad 4400 list_del_rcu(&wq->list);
68e13a67 4401 mutex_unlock(&wq_pool_mutex);
3af24433 4402
8864b4e5 4403 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4404 wq_unregister_lockdep(wq);
8864b4e5
TH
4405 /*
4406 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4407 * schedule RCU free.
8864b4e5 4408 */
25b00775 4409 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4410 } else {
4411 /*
4412 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4413 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4414 * @wq will be freed when the last pwq is released.
8864b4e5 4415 */
4c16bd32
TH
4416 for_each_node(node) {
4417 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4418 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4419 put_pwq_unlocked(pwq);
4420 }
4421
4422 /*
4423 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4424 * put. Don't access it afterwards.
4425 */
4426 pwq = wq->dfl_pwq;
4427 wq->dfl_pwq = NULL;
dce90d47 4428 put_pwq_unlocked(pwq);
29c91e99 4429 }
3af24433
ON
4430}
4431EXPORT_SYMBOL_GPL(destroy_workqueue);
4432
dcd989cb
TH
4433/**
4434 * workqueue_set_max_active - adjust max_active of a workqueue
4435 * @wq: target workqueue
4436 * @max_active: new max_active value.
4437 *
4438 * Set max_active of @wq to @max_active.
4439 *
4440 * CONTEXT:
4441 * Don't call from IRQ context.
4442 */
4443void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4444{
49e3cf44 4445 struct pool_workqueue *pwq;
dcd989cb 4446
8719dcea 4447 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4448 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4449 return;
4450
f3421797 4451 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4452
a357fc03 4453 mutex_lock(&wq->mutex);
dcd989cb 4454
0a94efb5 4455 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4456 wq->saved_max_active = max_active;
4457
699ce097
TH
4458 for_each_pwq(pwq, wq)
4459 pwq_adjust_max_active(pwq);
93981800 4460
a357fc03 4461 mutex_unlock(&wq->mutex);
15316ba8 4462}
dcd989cb 4463EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4464
27d4ee03
LW
4465/**
4466 * current_work - retrieve %current task's work struct
4467 *
4468 * Determine if %current task is a workqueue worker and what it's working on.
4469 * Useful to find out the context that the %current task is running in.
4470 *
4471 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4472 */
4473struct work_struct *current_work(void)
4474{
4475 struct worker *worker = current_wq_worker();
4476
4477 return worker ? worker->current_work : NULL;
4478}
4479EXPORT_SYMBOL(current_work);
4480
e6267616
TH
4481/**
4482 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4483 *
4484 * Determine whether %current is a workqueue rescuer. Can be used from
4485 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4486 *
4487 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4488 */
4489bool current_is_workqueue_rescuer(void)
4490{
4491 struct worker *worker = current_wq_worker();
4492
6a092dfd 4493 return worker && worker->rescue_wq;
e6267616
TH
4494}
4495
eef6a7d5 4496/**
dcd989cb
TH
4497 * workqueue_congested - test whether a workqueue is congested
4498 * @cpu: CPU in question
4499 * @wq: target workqueue
eef6a7d5 4500 *
dcd989cb
TH
4501 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4502 * no synchronization around this function and the test result is
4503 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4504 *
d3251859
TH
4505 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4506 * Note that both per-cpu and unbound workqueues may be associated with
4507 * multiple pool_workqueues which have separate congested states. A
4508 * workqueue being congested on one CPU doesn't mean the workqueue is also
4509 * contested on other CPUs / NUMA nodes.
4510 *
d185af30 4511 * Return:
dcd989cb 4512 * %true if congested, %false otherwise.
eef6a7d5 4513 */
d84ff051 4514bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4515{
7fb98ea7 4516 struct pool_workqueue *pwq;
76af4d93
TH
4517 bool ret;
4518
24acfb71
TG
4519 rcu_read_lock();
4520 preempt_disable();
7fb98ea7 4521
d3251859
TH
4522 if (cpu == WORK_CPU_UNBOUND)
4523 cpu = smp_processor_id();
4524
7fb98ea7
TH
4525 if (!(wq->flags & WQ_UNBOUND))
4526 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4527 else
df2d5ae4 4528 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4529
76af4d93 4530 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4531 preempt_enable();
4532 rcu_read_unlock();
76af4d93
TH
4533
4534 return ret;
1da177e4 4535}
dcd989cb 4536EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4537
dcd989cb
TH
4538/**
4539 * work_busy - test whether a work is currently pending or running
4540 * @work: the work to be tested
4541 *
4542 * Test whether @work is currently pending or running. There is no
4543 * synchronization around this function and the test result is
4544 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4545 *
d185af30 4546 * Return:
dcd989cb
TH
4547 * OR'd bitmask of WORK_BUSY_* bits.
4548 */
4549unsigned int work_busy(struct work_struct *work)
1da177e4 4550{
fa1b54e6 4551 struct worker_pool *pool;
dcd989cb
TH
4552 unsigned long flags;
4553 unsigned int ret = 0;
1da177e4 4554
dcd989cb
TH
4555 if (work_pending(work))
4556 ret |= WORK_BUSY_PENDING;
1da177e4 4557
24acfb71 4558 rcu_read_lock();
fa1b54e6 4559 pool = get_work_pool(work);
038366c5 4560 if (pool) {
24acfb71 4561 spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4562 if (find_worker_executing_work(pool, work))
4563 ret |= WORK_BUSY_RUNNING;
24acfb71 4564 spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4565 }
24acfb71 4566 rcu_read_unlock();
1da177e4 4567
dcd989cb 4568 return ret;
1da177e4 4569}
dcd989cb 4570EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4571
3d1cb205
TH
4572/**
4573 * set_worker_desc - set description for the current work item
4574 * @fmt: printf-style format string
4575 * @...: arguments for the format string
4576 *
4577 * This function can be called by a running work function to describe what
4578 * the work item is about. If the worker task gets dumped, this
4579 * information will be printed out together to help debugging. The
4580 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4581 */
4582void set_worker_desc(const char *fmt, ...)
4583{
4584 struct worker *worker = current_wq_worker();
4585 va_list args;
4586
4587 if (worker) {
4588 va_start(args, fmt);
4589 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4590 va_end(args);
3d1cb205
TH
4591 }
4592}
5c750d58 4593EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4594
4595/**
4596 * print_worker_info - print out worker information and description
4597 * @log_lvl: the log level to use when printing
4598 * @task: target task
4599 *
4600 * If @task is a worker and currently executing a work item, print out the
4601 * name of the workqueue being serviced and worker description set with
4602 * set_worker_desc() by the currently executing work item.
4603 *
4604 * This function can be safely called on any task as long as the
4605 * task_struct itself is accessible. While safe, this function isn't
4606 * synchronized and may print out mixups or garbages of limited length.
4607 */
4608void print_worker_info(const char *log_lvl, struct task_struct *task)
4609{
4610 work_func_t *fn = NULL;
4611 char name[WQ_NAME_LEN] = { };
4612 char desc[WORKER_DESC_LEN] = { };
4613 struct pool_workqueue *pwq = NULL;
4614 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4615 struct worker *worker;
4616
4617 if (!(task->flags & PF_WQ_WORKER))
4618 return;
4619
4620 /*
4621 * This function is called without any synchronization and @task
4622 * could be in any state. Be careful with dereferences.
4623 */
e700591a 4624 worker = kthread_probe_data(task);
3d1cb205
TH
4625
4626 /*
8bf89593
TH
4627 * Carefully copy the associated workqueue's workfn, name and desc.
4628 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4629 */
4630 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4631 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4632 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4633 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4634 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4635
4636 if (fn || name[0] || desc[0]) {
d75f773c 4637 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4638 if (strcmp(name, desc))
3d1cb205
TH
4639 pr_cont(" (%s)", desc);
4640 pr_cont("\n");
4641 }
4642}
4643
3494fc30
TH
4644static void pr_cont_pool_info(struct worker_pool *pool)
4645{
4646 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4647 if (pool->node != NUMA_NO_NODE)
4648 pr_cont(" node=%d", pool->node);
4649 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4650}
4651
4652static void pr_cont_work(bool comma, struct work_struct *work)
4653{
4654 if (work->func == wq_barrier_func) {
4655 struct wq_barrier *barr;
4656
4657 barr = container_of(work, struct wq_barrier, work);
4658
4659 pr_cont("%s BAR(%d)", comma ? "," : "",
4660 task_pid_nr(barr->task));
4661 } else {
d75f773c 4662 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4663 }
4664}
4665
4666static void show_pwq(struct pool_workqueue *pwq)
4667{
4668 struct worker_pool *pool = pwq->pool;
4669 struct work_struct *work;
4670 struct worker *worker;
4671 bool has_in_flight = false, has_pending = false;
4672 int bkt;
4673
4674 pr_info(" pwq %d:", pool->id);
4675 pr_cont_pool_info(pool);
4676
e66b39af
TH
4677 pr_cont(" active=%d/%d refcnt=%d%s\n",
4678 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4679 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4680
4681 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4682 if (worker->current_pwq == pwq) {
4683 has_in_flight = true;
4684 break;
4685 }
4686 }
4687 if (has_in_flight) {
4688 bool comma = false;
4689
4690 pr_info(" in-flight:");
4691 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4692 if (worker->current_pwq != pwq)
4693 continue;
4694
d75f773c 4695 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4696 task_pid_nr(worker->task),
30ae2fc0 4697 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4698 worker->current_func);
4699 list_for_each_entry(work, &worker->scheduled, entry)
4700 pr_cont_work(false, work);
4701 comma = true;
4702 }
4703 pr_cont("\n");
4704 }
4705
4706 list_for_each_entry(work, &pool->worklist, entry) {
4707 if (get_work_pwq(work) == pwq) {
4708 has_pending = true;
4709 break;
4710 }
4711 }
4712 if (has_pending) {
4713 bool comma = false;
4714
4715 pr_info(" pending:");
4716 list_for_each_entry(work, &pool->worklist, entry) {
4717 if (get_work_pwq(work) != pwq)
4718 continue;
4719
4720 pr_cont_work(comma, work);
4721 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4722 }
4723 pr_cont("\n");
4724 }
4725
4726 if (!list_empty(&pwq->delayed_works)) {
4727 bool comma = false;
4728
4729 pr_info(" delayed:");
4730 list_for_each_entry(work, &pwq->delayed_works, entry) {
4731 pr_cont_work(comma, work);
4732 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4733 }
4734 pr_cont("\n");
4735 }
4736}
4737
4738/**
4739 * show_workqueue_state - dump workqueue state
4740 *
7b776af6
RL
4741 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4742 * all busy workqueues and pools.
3494fc30
TH
4743 */
4744void show_workqueue_state(void)
4745{
4746 struct workqueue_struct *wq;
4747 struct worker_pool *pool;
4748 unsigned long flags;
4749 int pi;
4750
24acfb71 4751 rcu_read_lock();
3494fc30
TH
4752
4753 pr_info("Showing busy workqueues and worker pools:\n");
4754
4755 list_for_each_entry_rcu(wq, &workqueues, list) {
4756 struct pool_workqueue *pwq;
4757 bool idle = true;
4758
4759 for_each_pwq(pwq, wq) {
4760 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4761 idle = false;
4762 break;
4763 }
4764 }
4765 if (idle)
4766 continue;
4767
4768 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4769
4770 for_each_pwq(pwq, wq) {
4771 spin_lock_irqsave(&pwq->pool->lock, flags);
4772 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4773 show_pwq(pwq);
4774 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4775 /*
4776 * We could be printing a lot from atomic context, e.g.
4777 * sysrq-t -> show_workqueue_state(). Avoid triggering
4778 * hard lockup.
4779 */
4780 touch_nmi_watchdog();
3494fc30
TH
4781 }
4782 }
4783
4784 for_each_pool(pool, pi) {
4785 struct worker *worker;
4786 bool first = true;
4787
4788 spin_lock_irqsave(&pool->lock, flags);
4789 if (pool->nr_workers == pool->nr_idle)
4790 goto next_pool;
4791
4792 pr_info("pool %d:", pool->id);
4793 pr_cont_pool_info(pool);
82607adc
TH
4794 pr_cont(" hung=%us workers=%d",
4795 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4796 pool->nr_workers);
3494fc30
TH
4797 if (pool->manager)
4798 pr_cont(" manager: %d",
4799 task_pid_nr(pool->manager->task));
4800 list_for_each_entry(worker, &pool->idle_list, entry) {
4801 pr_cont(" %s%d", first ? "idle: " : "",
4802 task_pid_nr(worker->task));
4803 first = false;
4804 }
4805 pr_cont("\n");
4806 next_pool:
4807 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4808 /*
4809 * We could be printing a lot from atomic context, e.g.
4810 * sysrq-t -> show_workqueue_state(). Avoid triggering
4811 * hard lockup.
4812 */
4813 touch_nmi_watchdog();
3494fc30
TH
4814 }
4815
24acfb71 4816 rcu_read_unlock();
3494fc30
TH
4817}
4818
6b59808b
TH
4819/* used to show worker information through /proc/PID/{comm,stat,status} */
4820void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4821{
6b59808b
TH
4822 int off;
4823
4824 /* always show the actual comm */
4825 off = strscpy(buf, task->comm, size);
4826 if (off < 0)
4827 return;
4828
197f6acc 4829 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4830 mutex_lock(&wq_pool_attach_mutex);
4831
197f6acc
TH
4832 if (task->flags & PF_WQ_WORKER) {
4833 struct worker *worker = kthread_data(task);
4834 struct worker_pool *pool = worker->pool;
6b59808b 4835
197f6acc
TH
4836 if (pool) {
4837 spin_lock_irq(&pool->lock);
4838 /*
4839 * ->desc tracks information (wq name or
4840 * set_worker_desc()) for the latest execution. If
4841 * current, prepend '+', otherwise '-'.
4842 */
4843 if (worker->desc[0] != '\0') {
4844 if (worker->current_work)
4845 scnprintf(buf + off, size - off, "+%s",
4846 worker->desc);
4847 else
4848 scnprintf(buf + off, size - off, "-%s",
4849 worker->desc);
4850 }
4851 spin_unlock_irq(&pool->lock);
6b59808b 4852 }
6b59808b
TH
4853 }
4854
4855 mutex_unlock(&wq_pool_attach_mutex);
4856}
4857
66448bc2
MM
4858#ifdef CONFIG_SMP
4859
db7bccf4
TH
4860/*
4861 * CPU hotplug.
4862 *
e22bee78 4863 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4864 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4865 * pool which make migrating pending and scheduled works very
e22bee78 4866 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4867 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4868 * blocked draining impractical.
4869 *
24647570 4870 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4871 * running as an unbound one and allowing it to be reattached later if the
4872 * cpu comes back online.
db7bccf4 4873 */
1da177e4 4874
e8b3f8db 4875static void unbind_workers(int cpu)
3af24433 4876{
4ce62e9e 4877 struct worker_pool *pool;
db7bccf4 4878 struct worker *worker;
3af24433 4879
f02ae73a 4880 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4881 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4882 spin_lock_irq(&pool->lock);
3af24433 4883
94cf58bb 4884 /*
92f9c5c4 4885 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4886 * unbound and set DISASSOCIATED. Before this, all workers
4887 * except for the ones which are still executing works from
4888 * before the last CPU down must be on the cpu. After
4889 * this, they may become diasporas.
4890 */
da028469 4891 for_each_pool_worker(worker, pool)
c9e7cf27 4892 worker->flags |= WORKER_UNBOUND;
06ba38a9 4893
24647570 4894 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4895
94cf58bb 4896 spin_unlock_irq(&pool->lock);
1258fae7 4897 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4898
eb283428
LJ
4899 /*
4900 * Call schedule() so that we cross rq->lock and thus can
4901 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4902 * This is necessary as scheduler callbacks may be invoked
4903 * from other cpus.
4904 */
4905 schedule();
06ba38a9 4906
eb283428
LJ
4907 /*
4908 * Sched callbacks are disabled now. Zap nr_running.
4909 * After this, nr_running stays zero and need_more_worker()
4910 * and keep_working() are always true as long as the
4911 * worklist is not empty. This pool now behaves as an
4912 * unbound (in terms of concurrency management) pool which
4913 * are served by workers tied to the pool.
4914 */
e19e397a 4915 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4916
4917 /*
4918 * With concurrency management just turned off, a busy
4919 * worker blocking could lead to lengthy stalls. Kick off
4920 * unbound chain execution of currently pending work items.
4921 */
4922 spin_lock_irq(&pool->lock);
4923 wake_up_worker(pool);
4924 spin_unlock_irq(&pool->lock);
4925 }
3af24433 4926}
3af24433 4927
bd7c089e
TH
4928/**
4929 * rebind_workers - rebind all workers of a pool to the associated CPU
4930 * @pool: pool of interest
4931 *
a9ab775b 4932 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4933 */
4934static void rebind_workers(struct worker_pool *pool)
4935{
a9ab775b 4936 struct worker *worker;
bd7c089e 4937
1258fae7 4938 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4939
a9ab775b
TH
4940 /*
4941 * Restore CPU affinity of all workers. As all idle workers should
4942 * be on the run-queue of the associated CPU before any local
402dd89d 4943 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4944 * of all workers first and then clear UNBOUND. As we're called
4945 * from CPU_ONLINE, the following shouldn't fail.
4946 */
da028469 4947 for_each_pool_worker(worker, pool)
a9ab775b
TH
4948 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4949 pool->attrs->cpumask) < 0);
bd7c089e 4950
a9ab775b 4951 spin_lock_irq(&pool->lock);
f7c17d26 4952
3de5e884 4953 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4954
da028469 4955 for_each_pool_worker(worker, pool) {
a9ab775b 4956 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4957
4958 /*
a9ab775b
TH
4959 * A bound idle worker should actually be on the runqueue
4960 * of the associated CPU for local wake-ups targeting it to
4961 * work. Kick all idle workers so that they migrate to the
4962 * associated CPU. Doing this in the same loop as
4963 * replacing UNBOUND with REBOUND is safe as no worker will
4964 * be bound before @pool->lock is released.
bd7c089e 4965 */
a9ab775b
TH
4966 if (worker_flags & WORKER_IDLE)
4967 wake_up_process(worker->task);
bd7c089e 4968
a9ab775b
TH
4969 /*
4970 * We want to clear UNBOUND but can't directly call
4971 * worker_clr_flags() or adjust nr_running. Atomically
4972 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4973 * @worker will clear REBOUND using worker_clr_flags() when
4974 * it initiates the next execution cycle thus restoring
4975 * concurrency management. Note that when or whether
4976 * @worker clears REBOUND doesn't affect correctness.
4977 *
c95491ed 4978 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 4979 * tested without holding any lock in
6d25be57 4980 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
4981 * fail incorrectly leading to premature concurrency
4982 * management operations.
4983 */
4984 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4985 worker_flags |= WORKER_REBOUND;
4986 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4987 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4988 }
a9ab775b
TH
4989
4990 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4991}
4992
7dbc725e
TH
4993/**
4994 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4995 * @pool: unbound pool of interest
4996 * @cpu: the CPU which is coming up
4997 *
4998 * An unbound pool may end up with a cpumask which doesn't have any online
4999 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5000 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5001 * online CPU before, cpus_allowed of all its workers should be restored.
5002 */
5003static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5004{
5005 static cpumask_t cpumask;
5006 struct worker *worker;
7dbc725e 5007
1258fae7 5008 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5009
5010 /* is @cpu allowed for @pool? */
5011 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5012 return;
5013
7dbc725e 5014 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5015
5016 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5017 for_each_pool_worker(worker, pool)
d945b5e9 5018 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5019}
5020
7ee681b2
TG
5021int workqueue_prepare_cpu(unsigned int cpu)
5022{
5023 struct worker_pool *pool;
5024
5025 for_each_cpu_worker_pool(pool, cpu) {
5026 if (pool->nr_workers)
5027 continue;
5028 if (!create_worker(pool))
5029 return -ENOMEM;
5030 }
5031 return 0;
5032}
5033
5034int workqueue_online_cpu(unsigned int cpu)
3af24433 5035{
4ce62e9e 5036 struct worker_pool *pool;
4c16bd32 5037 struct workqueue_struct *wq;
7dbc725e 5038 int pi;
3ce63377 5039
7ee681b2 5040 mutex_lock(&wq_pool_mutex);
7dbc725e 5041
7ee681b2 5042 for_each_pool(pool, pi) {
1258fae7 5043 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5044
7ee681b2
TG
5045 if (pool->cpu == cpu)
5046 rebind_workers(pool);
5047 else if (pool->cpu < 0)
5048 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5049
1258fae7 5050 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5051 }
6ba94429 5052
7ee681b2
TG
5053 /* update NUMA affinity of unbound workqueues */
5054 list_for_each_entry(wq, &workqueues, list)
5055 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5056
7ee681b2
TG
5057 mutex_unlock(&wq_pool_mutex);
5058 return 0;
6ba94429
FW
5059}
5060
7ee681b2 5061int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5062{
6ba94429
FW
5063 struct workqueue_struct *wq;
5064
7ee681b2 5065 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5066 if (WARN_ON(cpu != smp_processor_id()))
5067 return -1;
5068
5069 unbind_workers(cpu);
7ee681b2
TG
5070
5071 /* update NUMA affinity of unbound workqueues */
5072 mutex_lock(&wq_pool_mutex);
5073 list_for_each_entry(wq, &workqueues, list)
5074 wq_update_unbound_numa(wq, cpu, false);
5075 mutex_unlock(&wq_pool_mutex);
5076
7ee681b2 5077 return 0;
6ba94429
FW
5078}
5079
6ba94429
FW
5080struct work_for_cpu {
5081 struct work_struct work;
5082 long (*fn)(void *);
5083 void *arg;
5084 long ret;
5085};
5086
5087static void work_for_cpu_fn(struct work_struct *work)
5088{
5089 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5090
5091 wfc->ret = wfc->fn(wfc->arg);
5092}
5093
5094/**
22aceb31 5095 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5096 * @cpu: the cpu to run on
5097 * @fn: the function to run
5098 * @arg: the function arg
5099 *
5100 * It is up to the caller to ensure that the cpu doesn't go offline.
5101 * The caller must not hold any locks which would prevent @fn from completing.
5102 *
5103 * Return: The value @fn returns.
5104 */
5105long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5106{
5107 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5108
5109 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5110 schedule_work_on(cpu, &wfc.work);
5111 flush_work(&wfc.work);
5112 destroy_work_on_stack(&wfc.work);
5113 return wfc.ret;
5114}
5115EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5116
5117/**
5118 * work_on_cpu_safe - run a function in thread context on a particular cpu
5119 * @cpu: the cpu to run on
5120 * @fn: the function to run
5121 * @arg: the function argument
5122 *
5123 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5124 * any locks which would prevent @fn from completing.
5125 *
5126 * Return: The value @fn returns.
5127 */
5128long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5129{
5130 long ret = -ENODEV;
5131
5132 get_online_cpus();
5133 if (cpu_online(cpu))
5134 ret = work_on_cpu(cpu, fn, arg);
5135 put_online_cpus();
5136 return ret;
5137}
5138EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5139#endif /* CONFIG_SMP */
5140
5141#ifdef CONFIG_FREEZER
5142
5143/**
5144 * freeze_workqueues_begin - begin freezing workqueues
5145 *
5146 * Start freezing workqueues. After this function returns, all freezable
5147 * workqueues will queue new works to their delayed_works list instead of
5148 * pool->worklist.
5149 *
5150 * CONTEXT:
5151 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5152 */
5153void freeze_workqueues_begin(void)
5154{
5155 struct workqueue_struct *wq;
5156 struct pool_workqueue *pwq;
5157
5158 mutex_lock(&wq_pool_mutex);
5159
5160 WARN_ON_ONCE(workqueue_freezing);
5161 workqueue_freezing = true;
5162
5163 list_for_each_entry(wq, &workqueues, list) {
5164 mutex_lock(&wq->mutex);
5165 for_each_pwq(pwq, wq)
5166 pwq_adjust_max_active(pwq);
5167 mutex_unlock(&wq->mutex);
5168 }
5169
5170 mutex_unlock(&wq_pool_mutex);
5171}
5172
5173/**
5174 * freeze_workqueues_busy - are freezable workqueues still busy?
5175 *
5176 * Check whether freezing is complete. This function must be called
5177 * between freeze_workqueues_begin() and thaw_workqueues().
5178 *
5179 * CONTEXT:
5180 * Grabs and releases wq_pool_mutex.
5181 *
5182 * Return:
5183 * %true if some freezable workqueues are still busy. %false if freezing
5184 * is complete.
5185 */
5186bool freeze_workqueues_busy(void)
5187{
5188 bool busy = false;
5189 struct workqueue_struct *wq;
5190 struct pool_workqueue *pwq;
5191
5192 mutex_lock(&wq_pool_mutex);
5193
5194 WARN_ON_ONCE(!workqueue_freezing);
5195
5196 list_for_each_entry(wq, &workqueues, list) {
5197 if (!(wq->flags & WQ_FREEZABLE))
5198 continue;
5199 /*
5200 * nr_active is monotonically decreasing. It's safe
5201 * to peek without lock.
5202 */
24acfb71 5203 rcu_read_lock();
6ba94429
FW
5204 for_each_pwq(pwq, wq) {
5205 WARN_ON_ONCE(pwq->nr_active < 0);
5206 if (pwq->nr_active) {
5207 busy = true;
24acfb71 5208 rcu_read_unlock();
6ba94429
FW
5209 goto out_unlock;
5210 }
5211 }
24acfb71 5212 rcu_read_unlock();
6ba94429
FW
5213 }
5214out_unlock:
5215 mutex_unlock(&wq_pool_mutex);
5216 return busy;
5217}
5218
5219/**
5220 * thaw_workqueues - thaw workqueues
5221 *
5222 * Thaw workqueues. Normal queueing is restored and all collected
5223 * frozen works are transferred to their respective pool worklists.
5224 *
5225 * CONTEXT:
5226 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5227 */
5228void thaw_workqueues(void)
5229{
5230 struct workqueue_struct *wq;
5231 struct pool_workqueue *pwq;
5232
5233 mutex_lock(&wq_pool_mutex);
5234
5235 if (!workqueue_freezing)
5236 goto out_unlock;
5237
5238 workqueue_freezing = false;
5239
5240 /* restore max_active and repopulate worklist */
5241 list_for_each_entry(wq, &workqueues, list) {
5242 mutex_lock(&wq->mutex);
5243 for_each_pwq(pwq, wq)
5244 pwq_adjust_max_active(pwq);
5245 mutex_unlock(&wq->mutex);
5246 }
5247
5248out_unlock:
5249 mutex_unlock(&wq_pool_mutex);
5250}
5251#endif /* CONFIG_FREEZER */
5252
042f7df1
LJ
5253static int workqueue_apply_unbound_cpumask(void)
5254{
5255 LIST_HEAD(ctxs);
5256 int ret = 0;
5257 struct workqueue_struct *wq;
5258 struct apply_wqattrs_ctx *ctx, *n;
5259
5260 lockdep_assert_held(&wq_pool_mutex);
5261
5262 list_for_each_entry(wq, &workqueues, list) {
5263 if (!(wq->flags & WQ_UNBOUND))
5264 continue;
5265 /* creating multiple pwqs breaks ordering guarantee */
5266 if (wq->flags & __WQ_ORDERED)
5267 continue;
5268
5269 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5270 if (!ctx) {
5271 ret = -ENOMEM;
5272 break;
5273 }
5274
5275 list_add_tail(&ctx->list, &ctxs);
5276 }
5277
5278 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5279 if (!ret)
5280 apply_wqattrs_commit(ctx);
5281 apply_wqattrs_cleanup(ctx);
5282 }
5283
5284 return ret;
5285}
5286
5287/**
5288 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5289 * @cpumask: the cpumask to set
5290 *
5291 * The low-level workqueues cpumask is a global cpumask that limits
5292 * the affinity of all unbound workqueues. This function check the @cpumask
5293 * and apply it to all unbound workqueues and updates all pwqs of them.
5294 *
5295 * Retun: 0 - Success
5296 * -EINVAL - Invalid @cpumask
5297 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5298 */
5299int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5300{
5301 int ret = -EINVAL;
5302 cpumask_var_t saved_cpumask;
5303
5304 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5305 return -ENOMEM;
5306
c98a9805
TS
5307 /*
5308 * Not excluding isolated cpus on purpose.
5309 * If the user wishes to include them, we allow that.
5310 */
042f7df1
LJ
5311 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5312 if (!cpumask_empty(cpumask)) {
a0111cf6 5313 apply_wqattrs_lock();
042f7df1
LJ
5314
5315 /* save the old wq_unbound_cpumask. */
5316 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5317
5318 /* update wq_unbound_cpumask at first and apply it to wqs. */
5319 cpumask_copy(wq_unbound_cpumask, cpumask);
5320 ret = workqueue_apply_unbound_cpumask();
5321
5322 /* restore the wq_unbound_cpumask when failed. */
5323 if (ret < 0)
5324 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5325
a0111cf6 5326 apply_wqattrs_unlock();
042f7df1 5327 }
042f7df1
LJ
5328
5329 free_cpumask_var(saved_cpumask);
5330 return ret;
5331}
5332
6ba94429
FW
5333#ifdef CONFIG_SYSFS
5334/*
5335 * Workqueues with WQ_SYSFS flag set is visible to userland via
5336 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5337 * following attributes.
5338 *
5339 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5340 * max_active RW int : maximum number of in-flight work items
5341 *
5342 * Unbound workqueues have the following extra attributes.
5343 *
9a19b463 5344 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5345 * nice RW int : nice value of the workers
5346 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5347 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5348 */
5349struct wq_device {
5350 struct workqueue_struct *wq;
5351 struct device dev;
5352};
5353
5354static struct workqueue_struct *dev_to_wq(struct device *dev)
5355{
5356 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5357
5358 return wq_dev->wq;
5359}
5360
5361static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5362 char *buf)
5363{
5364 struct workqueue_struct *wq = dev_to_wq(dev);
5365
5366 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5367}
5368static DEVICE_ATTR_RO(per_cpu);
5369
5370static ssize_t max_active_show(struct device *dev,
5371 struct device_attribute *attr, char *buf)
5372{
5373 struct workqueue_struct *wq = dev_to_wq(dev);
5374
5375 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5376}
5377
5378static ssize_t max_active_store(struct device *dev,
5379 struct device_attribute *attr, const char *buf,
5380 size_t count)
5381{
5382 struct workqueue_struct *wq = dev_to_wq(dev);
5383 int val;
5384
5385 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5386 return -EINVAL;
5387
5388 workqueue_set_max_active(wq, val);
5389 return count;
5390}
5391static DEVICE_ATTR_RW(max_active);
5392
5393static struct attribute *wq_sysfs_attrs[] = {
5394 &dev_attr_per_cpu.attr,
5395 &dev_attr_max_active.attr,
5396 NULL,
5397};
5398ATTRIBUTE_GROUPS(wq_sysfs);
5399
5400static ssize_t wq_pool_ids_show(struct device *dev,
5401 struct device_attribute *attr, char *buf)
5402{
5403 struct workqueue_struct *wq = dev_to_wq(dev);
5404 const char *delim = "";
5405 int node, written = 0;
5406
24acfb71
TG
5407 get_online_cpus();
5408 rcu_read_lock();
6ba94429
FW
5409 for_each_node(node) {
5410 written += scnprintf(buf + written, PAGE_SIZE - written,
5411 "%s%d:%d", delim, node,
5412 unbound_pwq_by_node(wq, node)->pool->id);
5413 delim = " ";
5414 }
5415 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5416 rcu_read_unlock();
5417 put_online_cpus();
6ba94429
FW
5418
5419 return written;
5420}
5421
5422static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5423 char *buf)
5424{
5425 struct workqueue_struct *wq = dev_to_wq(dev);
5426 int written;
5427
5428 mutex_lock(&wq->mutex);
5429 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5430 mutex_unlock(&wq->mutex);
5431
5432 return written;
5433}
5434
5435/* prepare workqueue_attrs for sysfs store operations */
5436static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5437{
5438 struct workqueue_attrs *attrs;
5439
899a94fe
LJ
5440 lockdep_assert_held(&wq_pool_mutex);
5441
be69d00d 5442 attrs = alloc_workqueue_attrs();
6ba94429
FW
5443 if (!attrs)
5444 return NULL;
5445
6ba94429 5446 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5447 return attrs;
5448}
5449
5450static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5451 const char *buf, size_t count)
5452{
5453 struct workqueue_struct *wq = dev_to_wq(dev);
5454 struct workqueue_attrs *attrs;
d4d3e257
LJ
5455 int ret = -ENOMEM;
5456
5457 apply_wqattrs_lock();
6ba94429
FW
5458
5459 attrs = wq_sysfs_prep_attrs(wq);
5460 if (!attrs)
d4d3e257 5461 goto out_unlock;
6ba94429
FW
5462
5463 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5464 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5465 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5466 else
5467 ret = -EINVAL;
5468
d4d3e257
LJ
5469out_unlock:
5470 apply_wqattrs_unlock();
6ba94429
FW
5471 free_workqueue_attrs(attrs);
5472 return ret ?: count;
5473}
5474
5475static ssize_t wq_cpumask_show(struct device *dev,
5476 struct device_attribute *attr, char *buf)
5477{
5478 struct workqueue_struct *wq = dev_to_wq(dev);
5479 int written;
5480
5481 mutex_lock(&wq->mutex);
5482 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5483 cpumask_pr_args(wq->unbound_attrs->cpumask));
5484 mutex_unlock(&wq->mutex);
5485 return written;
5486}
5487
5488static ssize_t wq_cpumask_store(struct device *dev,
5489 struct device_attribute *attr,
5490 const char *buf, size_t count)
5491{
5492 struct workqueue_struct *wq = dev_to_wq(dev);
5493 struct workqueue_attrs *attrs;
d4d3e257
LJ
5494 int ret = -ENOMEM;
5495
5496 apply_wqattrs_lock();
6ba94429
FW
5497
5498 attrs = wq_sysfs_prep_attrs(wq);
5499 if (!attrs)
d4d3e257 5500 goto out_unlock;
6ba94429
FW
5501
5502 ret = cpumask_parse(buf, attrs->cpumask);
5503 if (!ret)
d4d3e257 5504 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5505
d4d3e257
LJ
5506out_unlock:
5507 apply_wqattrs_unlock();
6ba94429
FW
5508 free_workqueue_attrs(attrs);
5509 return ret ?: count;
5510}
5511
5512static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5513 char *buf)
5514{
5515 struct workqueue_struct *wq = dev_to_wq(dev);
5516 int written;
7dbc725e 5517
6ba94429
FW
5518 mutex_lock(&wq->mutex);
5519 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5520 !wq->unbound_attrs->no_numa);
5521 mutex_unlock(&wq->mutex);
4c16bd32 5522
6ba94429 5523 return written;
65758202
TH
5524}
5525
6ba94429
FW
5526static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5527 const char *buf, size_t count)
65758202 5528{
6ba94429
FW
5529 struct workqueue_struct *wq = dev_to_wq(dev);
5530 struct workqueue_attrs *attrs;
d4d3e257
LJ
5531 int v, ret = -ENOMEM;
5532
5533 apply_wqattrs_lock();
4c16bd32 5534
6ba94429
FW
5535 attrs = wq_sysfs_prep_attrs(wq);
5536 if (!attrs)
d4d3e257 5537 goto out_unlock;
4c16bd32 5538
6ba94429
FW
5539 ret = -EINVAL;
5540 if (sscanf(buf, "%d", &v) == 1) {
5541 attrs->no_numa = !v;
d4d3e257 5542 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5543 }
6ba94429 5544
d4d3e257
LJ
5545out_unlock:
5546 apply_wqattrs_unlock();
6ba94429
FW
5547 free_workqueue_attrs(attrs);
5548 return ret ?: count;
65758202
TH
5549}
5550
6ba94429
FW
5551static struct device_attribute wq_sysfs_unbound_attrs[] = {
5552 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5553 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5554 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5555 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5556 __ATTR_NULL,
5557};
8ccad40d 5558
6ba94429
FW
5559static struct bus_type wq_subsys = {
5560 .name = "workqueue",
5561 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5562};
5563
b05a7928
FW
5564static ssize_t wq_unbound_cpumask_show(struct device *dev,
5565 struct device_attribute *attr, char *buf)
5566{
5567 int written;
5568
042f7df1 5569 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5570 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5571 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5572 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5573
5574 return written;
5575}
5576
042f7df1
LJ
5577static ssize_t wq_unbound_cpumask_store(struct device *dev,
5578 struct device_attribute *attr, const char *buf, size_t count)
5579{
5580 cpumask_var_t cpumask;
5581 int ret;
5582
5583 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5584 return -ENOMEM;
5585
5586 ret = cpumask_parse(buf, cpumask);
5587 if (!ret)
5588 ret = workqueue_set_unbound_cpumask(cpumask);
5589
5590 free_cpumask_var(cpumask);
5591 return ret ? ret : count;
5592}
5593
b05a7928 5594static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5595 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5596 wq_unbound_cpumask_store);
b05a7928 5597
6ba94429 5598static int __init wq_sysfs_init(void)
2d3854a3 5599{
b05a7928
FW
5600 int err;
5601
5602 err = subsys_virtual_register(&wq_subsys, NULL);
5603 if (err)
5604 return err;
5605
5606 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5607}
6ba94429 5608core_initcall(wq_sysfs_init);
2d3854a3 5609
6ba94429 5610static void wq_device_release(struct device *dev)
2d3854a3 5611{
6ba94429 5612 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5613
6ba94429 5614 kfree(wq_dev);
2d3854a3 5615}
a0a1a5fd
TH
5616
5617/**
6ba94429
FW
5618 * workqueue_sysfs_register - make a workqueue visible in sysfs
5619 * @wq: the workqueue to register
a0a1a5fd 5620 *
6ba94429
FW
5621 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5622 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5623 * which is the preferred method.
a0a1a5fd 5624 *
6ba94429
FW
5625 * Workqueue user should use this function directly iff it wants to apply
5626 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5627 * apply_workqueue_attrs() may race against userland updating the
5628 * attributes.
5629 *
5630 * Return: 0 on success, -errno on failure.
a0a1a5fd 5631 */
6ba94429 5632int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5633{
6ba94429
FW
5634 struct wq_device *wq_dev;
5635 int ret;
a0a1a5fd 5636
6ba94429 5637 /*
402dd89d 5638 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5639 * attributes breaks ordering guarantee. Disallow exposing ordered
5640 * workqueues.
5641 */
0a94efb5 5642 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5643 return -EINVAL;
a0a1a5fd 5644
6ba94429
FW
5645 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5646 if (!wq_dev)
5647 return -ENOMEM;
5bcab335 5648
6ba94429
FW
5649 wq_dev->wq = wq;
5650 wq_dev->dev.bus = &wq_subsys;
6ba94429 5651 wq_dev->dev.release = wq_device_release;
23217b44 5652 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5653
6ba94429
FW
5654 /*
5655 * unbound_attrs are created separately. Suppress uevent until
5656 * everything is ready.
5657 */
5658 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5659
6ba94429
FW
5660 ret = device_register(&wq_dev->dev);
5661 if (ret) {
537f4146 5662 put_device(&wq_dev->dev);
6ba94429
FW
5663 wq->wq_dev = NULL;
5664 return ret;
5665 }
a0a1a5fd 5666
6ba94429
FW
5667 if (wq->flags & WQ_UNBOUND) {
5668 struct device_attribute *attr;
a0a1a5fd 5669
6ba94429
FW
5670 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5671 ret = device_create_file(&wq_dev->dev, attr);
5672 if (ret) {
5673 device_unregister(&wq_dev->dev);
5674 wq->wq_dev = NULL;
5675 return ret;
a0a1a5fd
TH
5676 }
5677 }
5678 }
6ba94429
FW
5679
5680 dev_set_uevent_suppress(&wq_dev->dev, false);
5681 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5682 return 0;
a0a1a5fd
TH
5683}
5684
5685/**
6ba94429
FW
5686 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5687 * @wq: the workqueue to unregister
a0a1a5fd 5688 *
6ba94429 5689 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5690 */
6ba94429 5691static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5692{
6ba94429 5693 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5694
6ba94429
FW
5695 if (!wq->wq_dev)
5696 return;
a0a1a5fd 5697
6ba94429
FW
5698 wq->wq_dev = NULL;
5699 device_unregister(&wq_dev->dev);
a0a1a5fd 5700}
6ba94429
FW
5701#else /* CONFIG_SYSFS */
5702static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5703#endif /* CONFIG_SYSFS */
a0a1a5fd 5704
82607adc
TH
5705/*
5706 * Workqueue watchdog.
5707 *
5708 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5709 * flush dependency, a concurrency managed work item which stays RUNNING
5710 * indefinitely. Workqueue stalls can be very difficult to debug as the
5711 * usual warning mechanisms don't trigger and internal workqueue state is
5712 * largely opaque.
5713 *
5714 * Workqueue watchdog monitors all worker pools periodically and dumps
5715 * state if some pools failed to make forward progress for a while where
5716 * forward progress is defined as the first item on ->worklist changing.
5717 *
5718 * This mechanism is controlled through the kernel parameter
5719 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5720 * corresponding sysfs parameter file.
5721 */
5722#ifdef CONFIG_WQ_WATCHDOG
5723
82607adc 5724static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5725static struct timer_list wq_watchdog_timer;
82607adc
TH
5726
5727static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5728static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5729
5730static void wq_watchdog_reset_touched(void)
5731{
5732 int cpu;
5733
5734 wq_watchdog_touched = jiffies;
5735 for_each_possible_cpu(cpu)
5736 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5737}
5738
5cd79d6a 5739static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5740{
5741 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5742 bool lockup_detected = false;
5743 struct worker_pool *pool;
5744 int pi;
5745
5746 if (!thresh)
5747 return;
5748
5749 rcu_read_lock();
5750
5751 for_each_pool(pool, pi) {
5752 unsigned long pool_ts, touched, ts;
5753
5754 if (list_empty(&pool->worklist))
5755 continue;
5756
5757 /* get the latest of pool and touched timestamps */
5758 pool_ts = READ_ONCE(pool->watchdog_ts);
5759 touched = READ_ONCE(wq_watchdog_touched);
5760
5761 if (time_after(pool_ts, touched))
5762 ts = pool_ts;
5763 else
5764 ts = touched;
5765
5766 if (pool->cpu >= 0) {
5767 unsigned long cpu_touched =
5768 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5769 pool->cpu));
5770 if (time_after(cpu_touched, ts))
5771 ts = cpu_touched;
5772 }
5773
5774 /* did we stall? */
5775 if (time_after(jiffies, ts + thresh)) {
5776 lockup_detected = true;
5777 pr_emerg("BUG: workqueue lockup - pool");
5778 pr_cont_pool_info(pool);
5779 pr_cont(" stuck for %us!\n",
5780 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5781 }
5782 }
5783
5784 rcu_read_unlock();
5785
5786 if (lockup_detected)
5787 show_workqueue_state();
5788
5789 wq_watchdog_reset_touched();
5790 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5791}
5792
cb9d7fd5 5793notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5794{
5795 if (cpu >= 0)
5796 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5797 else
5798 wq_watchdog_touched = jiffies;
5799}
5800
5801static void wq_watchdog_set_thresh(unsigned long thresh)
5802{
5803 wq_watchdog_thresh = 0;
5804 del_timer_sync(&wq_watchdog_timer);
5805
5806 if (thresh) {
5807 wq_watchdog_thresh = thresh;
5808 wq_watchdog_reset_touched();
5809 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5810 }
5811}
5812
5813static int wq_watchdog_param_set_thresh(const char *val,
5814 const struct kernel_param *kp)
5815{
5816 unsigned long thresh;
5817 int ret;
5818
5819 ret = kstrtoul(val, 0, &thresh);
5820 if (ret)
5821 return ret;
5822
5823 if (system_wq)
5824 wq_watchdog_set_thresh(thresh);
5825 else
5826 wq_watchdog_thresh = thresh;
5827
5828 return 0;
5829}
5830
5831static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5832 .set = wq_watchdog_param_set_thresh,
5833 .get = param_get_ulong,
5834};
5835
5836module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5837 0644);
5838
5839static void wq_watchdog_init(void)
5840{
5cd79d6a 5841 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5842 wq_watchdog_set_thresh(wq_watchdog_thresh);
5843}
5844
5845#else /* CONFIG_WQ_WATCHDOG */
5846
5847static inline void wq_watchdog_init(void) { }
5848
5849#endif /* CONFIG_WQ_WATCHDOG */
5850
bce90380
TH
5851static void __init wq_numa_init(void)
5852{
5853 cpumask_var_t *tbl;
5854 int node, cpu;
5855
bce90380
TH
5856 if (num_possible_nodes() <= 1)
5857 return;
5858
d55262c4
TH
5859 if (wq_disable_numa) {
5860 pr_info("workqueue: NUMA affinity support disabled\n");
5861 return;
5862 }
5863
be69d00d 5864 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5865 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5866
bce90380
TH
5867 /*
5868 * We want masks of possible CPUs of each node which isn't readily
5869 * available. Build one from cpu_to_node() which should have been
5870 * fully initialized by now.
5871 */
6396bb22 5872 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5873 BUG_ON(!tbl);
5874
5875 for_each_node(node)
5a6024f1 5876 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5877 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5878
5879 for_each_possible_cpu(cpu) {
5880 node = cpu_to_node(cpu);
5881 if (WARN_ON(node == NUMA_NO_NODE)) {
5882 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5883 /* happens iff arch is bonkers, let's just proceed */
5884 return;
5885 }
5886 cpumask_set_cpu(cpu, tbl[node]);
5887 }
5888
5889 wq_numa_possible_cpumask = tbl;
5890 wq_numa_enabled = true;
5891}
5892
3347fa09
TH
5893/**
5894 * workqueue_init_early - early init for workqueue subsystem
5895 *
5896 * This is the first half of two-staged workqueue subsystem initialization
5897 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5898 * idr are up. It sets up all the data structures and system workqueues
5899 * and allows early boot code to create workqueues and queue/cancel work
5900 * items. Actual work item execution starts only after kthreads can be
5901 * created and scheduled right before early initcalls.
5902 */
2333e829 5903void __init workqueue_init_early(void)
1da177e4 5904{
7a4e344c 5905 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5906 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5907 int i, cpu;
c34056a3 5908
e904e6c2
TH
5909 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5910
b05a7928 5911 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5912 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5913
e904e6c2
TH
5914 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5915
706026c2 5916 /* initialize CPU pools */
29c91e99 5917 for_each_possible_cpu(cpu) {
4ce62e9e 5918 struct worker_pool *pool;
8b03ae3c 5919
7a4e344c 5920 i = 0;
f02ae73a 5921 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5922 BUG_ON(init_worker_pool(pool));
ec22ca5e 5923 pool->cpu = cpu;
29c91e99 5924 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5925 pool->attrs->nice = std_nice[i++];
f3f90ad4 5926 pool->node = cpu_to_node(cpu);
7a4e344c 5927
9daf9e67 5928 /* alloc pool ID */
68e13a67 5929 mutex_lock(&wq_pool_mutex);
9daf9e67 5930 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5931 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5932 }
8b03ae3c
TH
5933 }
5934
8a2b7538 5935 /* create default unbound and ordered wq attrs */
29c91e99
TH
5936 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5937 struct workqueue_attrs *attrs;
5938
be69d00d 5939 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 5940 attrs->nice = std_nice[i];
29c91e99 5941 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5942
5943 /*
5944 * An ordered wq should have only one pwq as ordering is
5945 * guaranteed by max_active which is enforced by pwqs.
5946 * Turn off NUMA so that dfl_pwq is used for all nodes.
5947 */
be69d00d 5948 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
5949 attrs->nice = std_nice[i];
5950 attrs->no_numa = true;
5951 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5952 }
5953
d320c038 5954 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5955 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5956 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5957 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5958 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5959 system_freezable_wq = alloc_workqueue("events_freezable",
5960 WQ_FREEZABLE, 0);
0668106c
VK
5961 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5962 WQ_POWER_EFFICIENT, 0);
5963 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5964 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5965 0);
1aabe902 5966 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5967 !system_unbound_wq || !system_freezable_wq ||
5968 !system_power_efficient_wq ||
5969 !system_freezable_power_efficient_wq);
3347fa09
TH
5970}
5971
5972/**
5973 * workqueue_init - bring workqueue subsystem fully online
5974 *
5975 * This is the latter half of two-staged workqueue subsystem initialization
5976 * and invoked as soon as kthreads can be created and scheduled.
5977 * Workqueues have been created and work items queued on them, but there
5978 * are no kworkers executing the work items yet. Populate the worker pools
5979 * with the initial workers and enable future kworker creations.
5980 */
2333e829 5981void __init workqueue_init(void)
3347fa09 5982{
2186d9f9 5983 struct workqueue_struct *wq;
3347fa09
TH
5984 struct worker_pool *pool;
5985 int cpu, bkt;
5986
2186d9f9
TH
5987 /*
5988 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5989 * CPU to node mapping may not be available that early on some
5990 * archs such as power and arm64. As per-cpu pools created
5991 * previously could be missing node hint and unbound pools NUMA
5992 * affinity, fix them up.
40c17f75
TH
5993 *
5994 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5995 */
5996 wq_numa_init();
5997
5998 mutex_lock(&wq_pool_mutex);
5999
6000 for_each_possible_cpu(cpu) {
6001 for_each_cpu_worker_pool(pool, cpu) {
6002 pool->node = cpu_to_node(cpu);
6003 }
6004 }
6005
40c17f75 6006 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6007 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6008 WARN(init_rescuer(wq),
6009 "workqueue: failed to create early rescuer for %s",
6010 wq->name);
6011 }
2186d9f9
TH
6012
6013 mutex_unlock(&wq_pool_mutex);
6014
3347fa09
TH
6015 /* create the initial workers */
6016 for_each_online_cpu(cpu) {
6017 for_each_cpu_worker_pool(pool, cpu) {
6018 pool->flags &= ~POOL_DISASSOCIATED;
6019 BUG_ON(!create_worker(pool));
6020 }
6021 }
6022
6023 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6024 BUG_ON(!create_worker(pool));
6025
6026 wq_online = true;
82607adc 6027 wq_watchdog_init();
1da177e4 6028}