]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/workqueue.c
workqueue: replace for_each_pwq_cpu() with for_each_pwq()
[mirror_ubuntu-kernels.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
112202d9
TH
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
1da177e4 161 */
112202d9 162struct pool_workqueue {
bd7bdd43 163 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 164 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
1e19ffc6 169 int nr_active; /* L: nr of active works */
a0a1a5fd 170 int max_active; /* L: max active works */
1e19ffc6 171 struct list_head delayed_works; /* L: delayed works */
30cdf249 172 struct list_head pwqs_node; /* I: node on wq->pwqs */
e904e6c2 173} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 174
73f53c4a
TH
175/*
176 * Structure used to wait for workqueue flush.
177 */
178struct wq_flusher {
179 struct list_head list; /* F: list of flushers */
180 int flush_color; /* F: flush color waiting for */
181 struct completion done; /* flush completion */
182};
183
f2e005aa
TH
184/*
185 * All cpumasks are assumed to be always set on UP and thus can't be
186 * used to determine whether there's something to be done.
187 */
188#ifdef CONFIG_SMP
189typedef cpumask_var_t mayday_mask_t;
190#define mayday_test_and_set_cpu(cpu, mask) \
191 cpumask_test_and_set_cpu((cpu), (mask))
192#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
193#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 194#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
195#define free_mayday_mask(mask) free_cpumask_var((mask))
196#else
197typedef unsigned long mayday_mask_t;
198#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
199#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
200#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
201#define alloc_mayday_mask(maskp, gfp) true
202#define free_mayday_mask(mask) do { } while (0)
203#endif
1da177e4
LT
204
205/*
206 * The externally visible workqueue abstraction is an array of
207 * per-CPU workqueues:
208 */
209struct workqueue_struct {
9c5a2ba7 210 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7 211 union {
112202d9
TH
212 struct pool_workqueue __percpu *pcpu;
213 struct pool_workqueue *single;
bdbc5dd7 214 unsigned long v;
112202d9 215 } pool_wq; /* I: pwq's */
30cdf249 216 struct list_head pwqs; /* I: all pwqs of this wq */
4690c4ab 217 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
218
219 struct mutex flush_mutex; /* protects wq flushing */
220 int work_color; /* F: current work color */
221 int flush_color; /* F: current flush color */
112202d9 222 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
223 struct wq_flusher *first_flusher; /* F: first flusher */
224 struct list_head flusher_queue; /* F: flush waiters */
225 struct list_head flusher_overflow; /* F: flush overflow list */
226
f2e005aa 227 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
228 struct worker *rescuer; /* I: rescue worker */
229
9c5a2ba7 230 int nr_drainers; /* W: drain in progress */
112202d9 231 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 232#ifdef CONFIG_LOCKDEP
4690c4ab 233 struct lockdep_map lockdep_map;
4e6045f1 234#endif
b196be89 235 char name[]; /* I: workqueue name */
1da177e4
LT
236};
237
e904e6c2
TH
238static struct kmem_cache *pwq_cache;
239
d320c038 240struct workqueue_struct *system_wq __read_mostly;
d320c038 241EXPORT_SYMBOL_GPL(system_wq);
044c782c 242struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 243EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 244struct workqueue_struct *system_long_wq __read_mostly;
d320c038 245EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 246struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 247EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 248struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 249EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 250
97bd2347
TH
251#define CREATE_TRACE_POINTS
252#include <trace/events/workqueue.h>
253
38db41d9 254#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
255 for ((pool) = &std_worker_pools(cpu)[0]; \
256 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 257
b67bfe0d
SL
258#define for_each_busy_worker(worker, i, pool) \
259 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 260
706026c2
TH
261static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
262 unsigned int sw)
f3421797
TH
263{
264 if (cpu < nr_cpu_ids) {
265 if (sw & 1) {
266 cpu = cpumask_next(cpu, mask);
267 if (cpu < nr_cpu_ids)
268 return cpu;
269 }
270 if (sw & 2)
271 return WORK_CPU_UNBOUND;
272 }
6be19588 273 return WORK_CPU_END;
f3421797
TH
274}
275
09884951
TH
276/*
277 * CPU iterators
278 *
706026c2 279 * An extra cpu number is defined using an invalid cpu number
09884951 280 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
281 * specific CPU. The following iterators are similar to for_each_*_cpu()
282 * iterators but also considers the unbound CPU.
09884951 283 *
706026c2
TH
284 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
285 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951 286 */
706026c2
TH
287#define for_each_wq_cpu(cpu) \
288 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 289 (cpu) < WORK_CPU_END; \
706026c2 290 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 291
706026c2
TH
292#define for_each_online_wq_cpu(cpu) \
293 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 294 (cpu) < WORK_CPU_END; \
706026c2 295 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 296
49e3cf44
TH
297/**
298 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
299 * @pwq: iteration cursor
300 * @wq: the target workqueue
301 */
302#define for_each_pwq(pwq, wq) \
303 list_for_each_entry((pwq), &(wq)->pwqs, pwqs_node)
f3421797 304
dc186ad7
TG
305#ifdef CONFIG_DEBUG_OBJECTS_WORK
306
307static struct debug_obj_descr work_debug_descr;
308
99777288
SG
309static void *work_debug_hint(void *addr)
310{
311 return ((struct work_struct *) addr)->func;
312}
313
dc186ad7
TG
314/*
315 * fixup_init is called when:
316 * - an active object is initialized
317 */
318static int work_fixup_init(void *addr, enum debug_obj_state state)
319{
320 struct work_struct *work = addr;
321
322 switch (state) {
323 case ODEBUG_STATE_ACTIVE:
324 cancel_work_sync(work);
325 debug_object_init(work, &work_debug_descr);
326 return 1;
327 default:
328 return 0;
329 }
330}
331
332/*
333 * fixup_activate is called when:
334 * - an active object is activated
335 * - an unknown object is activated (might be a statically initialized object)
336 */
337static int work_fixup_activate(void *addr, enum debug_obj_state state)
338{
339 struct work_struct *work = addr;
340
341 switch (state) {
342
343 case ODEBUG_STATE_NOTAVAILABLE:
344 /*
345 * This is not really a fixup. The work struct was
346 * statically initialized. We just make sure that it
347 * is tracked in the object tracker.
348 */
22df02bb 349 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
350 debug_object_init(work, &work_debug_descr);
351 debug_object_activate(work, &work_debug_descr);
352 return 0;
353 }
354 WARN_ON_ONCE(1);
355 return 0;
356
357 case ODEBUG_STATE_ACTIVE:
358 WARN_ON(1);
359
360 default:
361 return 0;
362 }
363}
364
365/*
366 * fixup_free is called when:
367 * - an active object is freed
368 */
369static int work_fixup_free(void *addr, enum debug_obj_state state)
370{
371 struct work_struct *work = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 cancel_work_sync(work);
376 debug_object_free(work, &work_debug_descr);
377 return 1;
378 default:
379 return 0;
380 }
381}
382
383static struct debug_obj_descr work_debug_descr = {
384 .name = "work_struct",
99777288 385 .debug_hint = work_debug_hint,
dc186ad7
TG
386 .fixup_init = work_fixup_init,
387 .fixup_activate = work_fixup_activate,
388 .fixup_free = work_fixup_free,
389};
390
391static inline void debug_work_activate(struct work_struct *work)
392{
393 debug_object_activate(work, &work_debug_descr);
394}
395
396static inline void debug_work_deactivate(struct work_struct *work)
397{
398 debug_object_deactivate(work, &work_debug_descr);
399}
400
401void __init_work(struct work_struct *work, int onstack)
402{
403 if (onstack)
404 debug_object_init_on_stack(work, &work_debug_descr);
405 else
406 debug_object_init(work, &work_debug_descr);
407}
408EXPORT_SYMBOL_GPL(__init_work);
409
410void destroy_work_on_stack(struct work_struct *work)
411{
412 debug_object_free(work, &work_debug_descr);
413}
414EXPORT_SYMBOL_GPL(destroy_work_on_stack);
415
416#else
417static inline void debug_work_activate(struct work_struct *work) { }
418static inline void debug_work_deactivate(struct work_struct *work) { }
419#endif
420
95402b38
GS
421/* Serializes the accesses to the list of workqueues. */
422static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 423static LIST_HEAD(workqueues);
a0a1a5fd 424static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 425
e22bee78 426/*
e19e397a
TH
427 * The CPU and unbound standard worker pools. The unbound ones have
428 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 429 */
e19e397a
TH
430static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
431 cpu_std_worker_pools);
a60dc39c 432static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 433
9daf9e67
TH
434/* idr of all pools */
435static DEFINE_MUTEX(worker_pool_idr_mutex);
436static DEFINE_IDR(worker_pool_idr);
437
c34056a3 438static int worker_thread(void *__worker);
1da177e4 439
a60dc39c 440static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 441{
f3421797 442 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 443 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 444 else
a60dc39c 445 return unbound_std_worker_pools;
8b03ae3c
TH
446}
447
4e8f0a60
TH
448static int std_worker_pool_pri(struct worker_pool *pool)
449{
a60dc39c 450 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
451}
452
9daf9e67
TH
453/* allocate ID and assign it to @pool */
454static int worker_pool_assign_id(struct worker_pool *pool)
455{
456 int ret;
457
458 mutex_lock(&worker_pool_idr_mutex);
459 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
460 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
461 mutex_unlock(&worker_pool_idr_mutex);
462
463 return ret;
464}
465
7c3eed5c
TH
466/*
467 * Lookup worker_pool by id. The idr currently is built during boot and
468 * never modified. Don't worry about locking for now.
469 */
470static struct worker_pool *worker_pool_by_id(int pool_id)
471{
472 return idr_find(&worker_pool_idr, pool_id);
473}
474
d565ed63
TH
475static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
476{
a60dc39c 477 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 478
a60dc39c 479 return &pools[highpri];
d565ed63
TH
480}
481
112202d9
TH
482static struct pool_workqueue *get_pwq(unsigned int cpu,
483 struct workqueue_struct *wq)
b1f4ec17 484{
f3421797 485 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 486 if (likely(cpu < nr_cpu_ids))
112202d9 487 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
f3421797 488 } else if (likely(cpu == WORK_CPU_UNBOUND))
112202d9 489 return wq->pool_wq.single;
f3421797 490 return NULL;
b1f4ec17
ON
491}
492
73f53c4a
TH
493static unsigned int work_color_to_flags(int color)
494{
495 return color << WORK_STRUCT_COLOR_SHIFT;
496}
497
498static int get_work_color(struct work_struct *work)
499{
500 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
501 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
502}
503
504static int work_next_color(int color)
505{
506 return (color + 1) % WORK_NR_COLORS;
507}
1da177e4 508
14441960 509/*
112202d9
TH
510 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
511 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 512 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 513 *
112202d9
TH
514 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
515 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
516 * work->data. These functions should only be called while the work is
517 * owned - ie. while the PENDING bit is set.
7a22ad75 518 *
112202d9 519 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 520 * corresponding to a work. Pool is available once the work has been
112202d9 521 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 522 * available only while the work item is queued.
7a22ad75 523 *
bbb68dfa
TH
524 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
525 * canceled. While being canceled, a work item may have its PENDING set
526 * but stay off timer and worklist for arbitrarily long and nobody should
527 * try to steal the PENDING bit.
14441960 528 */
7a22ad75
TH
529static inline void set_work_data(struct work_struct *work, unsigned long data,
530 unsigned long flags)
365970a1 531{
6183c009 532 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
533 atomic_long_set(&work->data, data | flags | work_static(work));
534}
365970a1 535
112202d9 536static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
537 unsigned long extra_flags)
538{
112202d9
TH
539 set_work_data(work, (unsigned long)pwq,
540 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
541}
542
4468a00f
LJ
543static void set_work_pool_and_keep_pending(struct work_struct *work,
544 int pool_id)
545{
546 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
547 WORK_STRUCT_PENDING);
548}
549
7c3eed5c
TH
550static void set_work_pool_and_clear_pending(struct work_struct *work,
551 int pool_id)
7a22ad75 552{
23657bb1
TH
553 /*
554 * The following wmb is paired with the implied mb in
555 * test_and_set_bit(PENDING) and ensures all updates to @work made
556 * here are visible to and precede any updates by the next PENDING
557 * owner.
558 */
559 smp_wmb();
7c3eed5c 560 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 561}
f756d5e2 562
7a22ad75 563static void clear_work_data(struct work_struct *work)
1da177e4 564{
7c3eed5c
TH
565 smp_wmb(); /* see set_work_pool_and_clear_pending() */
566 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
567}
568
112202d9 569static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 570{
e120153d 571 unsigned long data = atomic_long_read(&work->data);
7a22ad75 572
112202d9 573 if (data & WORK_STRUCT_PWQ)
e120153d
TH
574 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
575 else
576 return NULL;
4d707b9f
ON
577}
578
7c3eed5c
TH
579/**
580 * get_work_pool - return the worker_pool a given work was associated with
581 * @work: the work item of interest
582 *
583 * Return the worker_pool @work was last associated with. %NULL if none.
584 */
585static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 586{
e120153d 587 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
588 struct worker_pool *pool;
589 int pool_id;
7a22ad75 590
112202d9
TH
591 if (data & WORK_STRUCT_PWQ)
592 return ((struct pool_workqueue *)
7c3eed5c 593 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 594
7c3eed5c
TH
595 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
596 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
597 return NULL;
598
7c3eed5c
TH
599 pool = worker_pool_by_id(pool_id);
600 WARN_ON_ONCE(!pool);
601 return pool;
602}
603
604/**
605 * get_work_pool_id - return the worker pool ID a given work is associated with
606 * @work: the work item of interest
607 *
608 * Return the worker_pool ID @work was last associated with.
609 * %WORK_OFFQ_POOL_NONE if none.
610 */
611static int get_work_pool_id(struct work_struct *work)
612{
54d5b7d0
LJ
613 unsigned long data = atomic_long_read(&work->data);
614
112202d9
TH
615 if (data & WORK_STRUCT_PWQ)
616 return ((struct pool_workqueue *)
54d5b7d0 617 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 618
54d5b7d0 619 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
620}
621
bbb68dfa
TH
622static void mark_work_canceling(struct work_struct *work)
623{
7c3eed5c 624 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 625
7c3eed5c
TH
626 pool_id <<= WORK_OFFQ_POOL_SHIFT;
627 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
628}
629
630static bool work_is_canceling(struct work_struct *work)
631{
632 unsigned long data = atomic_long_read(&work->data);
633
112202d9 634 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
635}
636
e22bee78 637/*
3270476a
TH
638 * Policy functions. These define the policies on how the global worker
639 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 640 * they're being called with pool->lock held.
e22bee78
TH
641 */
642
63d95a91 643static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 644{
e19e397a 645 return !atomic_read(&pool->nr_running);
a848e3b6
ON
646}
647
4594bf15 648/*
e22bee78
TH
649 * Need to wake up a worker? Called from anything but currently
650 * running workers.
974271c4
TH
651 *
652 * Note that, because unbound workers never contribute to nr_running, this
706026c2 653 * function will always return %true for unbound pools as long as the
974271c4 654 * worklist isn't empty.
4594bf15 655 */
63d95a91 656static bool need_more_worker(struct worker_pool *pool)
365970a1 657{
63d95a91 658 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 659}
4594bf15 660
e22bee78 661/* Can I start working? Called from busy but !running workers. */
63d95a91 662static bool may_start_working(struct worker_pool *pool)
e22bee78 663{
63d95a91 664 return pool->nr_idle;
e22bee78
TH
665}
666
667/* Do I need to keep working? Called from currently running workers. */
63d95a91 668static bool keep_working(struct worker_pool *pool)
e22bee78 669{
e19e397a
TH
670 return !list_empty(&pool->worklist) &&
671 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
672}
673
674/* Do we need a new worker? Called from manager. */
63d95a91 675static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 676{
63d95a91 677 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 678}
365970a1 679
e22bee78 680/* Do I need to be the manager? */
63d95a91 681static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 682{
63d95a91 683 return need_to_create_worker(pool) ||
11ebea50 684 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
685}
686
687/* Do we have too many workers and should some go away? */
63d95a91 688static bool too_many_workers(struct worker_pool *pool)
e22bee78 689{
552a37e9 690 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
691 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
692 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 693
ea1abd61
LJ
694 /*
695 * nr_idle and idle_list may disagree if idle rebinding is in
696 * progress. Never return %true if idle_list is empty.
697 */
698 if (list_empty(&pool->idle_list))
699 return false;
700
e22bee78 701 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
702}
703
4d707b9f 704/*
e22bee78
TH
705 * Wake up functions.
706 */
707
7e11629d 708/* Return the first worker. Safe with preemption disabled */
63d95a91 709static struct worker *first_worker(struct worker_pool *pool)
7e11629d 710{
63d95a91 711 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
712 return NULL;
713
63d95a91 714 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
715}
716
717/**
718 * wake_up_worker - wake up an idle worker
63d95a91 719 * @pool: worker pool to wake worker from
7e11629d 720 *
63d95a91 721 * Wake up the first idle worker of @pool.
7e11629d
TH
722 *
723 * CONTEXT:
d565ed63 724 * spin_lock_irq(pool->lock).
7e11629d 725 */
63d95a91 726static void wake_up_worker(struct worker_pool *pool)
7e11629d 727{
63d95a91 728 struct worker *worker = first_worker(pool);
7e11629d
TH
729
730 if (likely(worker))
731 wake_up_process(worker->task);
732}
733
d302f017 734/**
e22bee78
TH
735 * wq_worker_waking_up - a worker is waking up
736 * @task: task waking up
737 * @cpu: CPU @task is waking up to
738 *
739 * This function is called during try_to_wake_up() when a worker is
740 * being awoken.
741 *
742 * CONTEXT:
743 * spin_lock_irq(rq->lock)
744 */
745void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
746{
747 struct worker *worker = kthread_data(task);
748
36576000 749 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 750 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 751 atomic_inc(&worker->pool->nr_running);
36576000 752 }
e22bee78
TH
753}
754
755/**
756 * wq_worker_sleeping - a worker is going to sleep
757 * @task: task going to sleep
758 * @cpu: CPU in question, must be the current CPU number
759 *
760 * This function is called during schedule() when a busy worker is
761 * going to sleep. Worker on the same cpu can be woken up by
762 * returning pointer to its task.
763 *
764 * CONTEXT:
765 * spin_lock_irq(rq->lock)
766 *
767 * RETURNS:
768 * Worker task on @cpu to wake up, %NULL if none.
769 */
770struct task_struct *wq_worker_sleeping(struct task_struct *task,
771 unsigned int cpu)
772{
773 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 774 struct worker_pool *pool;
e22bee78 775
111c225a
TH
776 /*
777 * Rescuers, which may not have all the fields set up like normal
778 * workers, also reach here, let's not access anything before
779 * checking NOT_RUNNING.
780 */
2d64672e 781 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
782 return NULL;
783
111c225a 784 pool = worker->pool;
111c225a 785
e22bee78 786 /* this can only happen on the local cpu */
6183c009
TH
787 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
788 return NULL;
e22bee78
TH
789
790 /*
791 * The counterpart of the following dec_and_test, implied mb,
792 * worklist not empty test sequence is in insert_work().
793 * Please read comment there.
794 *
628c78e7
TH
795 * NOT_RUNNING is clear. This means that we're bound to and
796 * running on the local cpu w/ rq lock held and preemption
797 * disabled, which in turn means that none else could be
d565ed63 798 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 799 * lock is safe.
e22bee78 800 */
e19e397a
TH
801 if (atomic_dec_and_test(&pool->nr_running) &&
802 !list_empty(&pool->worklist))
63d95a91 803 to_wakeup = first_worker(pool);
e22bee78
TH
804 return to_wakeup ? to_wakeup->task : NULL;
805}
806
807/**
808 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 809 * @worker: self
d302f017
TH
810 * @flags: flags to set
811 * @wakeup: wakeup an idle worker if necessary
812 *
e22bee78
TH
813 * Set @flags in @worker->flags and adjust nr_running accordingly. If
814 * nr_running becomes zero and @wakeup is %true, an idle worker is
815 * woken up.
d302f017 816 *
cb444766 817 * CONTEXT:
d565ed63 818 * spin_lock_irq(pool->lock)
d302f017
TH
819 */
820static inline void worker_set_flags(struct worker *worker, unsigned int flags,
821 bool wakeup)
822{
bd7bdd43 823 struct worker_pool *pool = worker->pool;
e22bee78 824
cb444766
TH
825 WARN_ON_ONCE(worker->task != current);
826
e22bee78
TH
827 /*
828 * If transitioning into NOT_RUNNING, adjust nr_running and
829 * wake up an idle worker as necessary if requested by
830 * @wakeup.
831 */
832 if ((flags & WORKER_NOT_RUNNING) &&
833 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 834 if (wakeup) {
e19e397a 835 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 836 !list_empty(&pool->worklist))
63d95a91 837 wake_up_worker(pool);
e22bee78 838 } else
e19e397a 839 atomic_dec(&pool->nr_running);
e22bee78
TH
840 }
841
d302f017
TH
842 worker->flags |= flags;
843}
844
845/**
e22bee78 846 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 847 * @worker: self
d302f017
TH
848 * @flags: flags to clear
849 *
e22bee78 850 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 851 *
cb444766 852 * CONTEXT:
d565ed63 853 * spin_lock_irq(pool->lock)
d302f017
TH
854 */
855static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
856{
63d95a91 857 struct worker_pool *pool = worker->pool;
e22bee78
TH
858 unsigned int oflags = worker->flags;
859
cb444766
TH
860 WARN_ON_ONCE(worker->task != current);
861
d302f017 862 worker->flags &= ~flags;
e22bee78 863
42c025f3
TH
864 /*
865 * If transitioning out of NOT_RUNNING, increment nr_running. Note
866 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
867 * of multiple flags, not a single flag.
868 */
e22bee78
TH
869 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
870 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 871 atomic_inc(&pool->nr_running);
d302f017
TH
872}
873
8cca0eea
TH
874/**
875 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 876 * @pool: pool of interest
8cca0eea
TH
877 * @work: work to find worker for
878 *
c9e7cf27
TH
879 * Find a worker which is executing @work on @pool by searching
880 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
881 * to match, its current execution should match the address of @work and
882 * its work function. This is to avoid unwanted dependency between
883 * unrelated work executions through a work item being recycled while still
884 * being executed.
885 *
886 * This is a bit tricky. A work item may be freed once its execution
887 * starts and nothing prevents the freed area from being recycled for
888 * another work item. If the same work item address ends up being reused
889 * before the original execution finishes, workqueue will identify the
890 * recycled work item as currently executing and make it wait until the
891 * current execution finishes, introducing an unwanted dependency.
892 *
893 * This function checks the work item address, work function and workqueue
894 * to avoid false positives. Note that this isn't complete as one may
895 * construct a work function which can introduce dependency onto itself
896 * through a recycled work item. Well, if somebody wants to shoot oneself
897 * in the foot that badly, there's only so much we can do, and if such
898 * deadlock actually occurs, it should be easy to locate the culprit work
899 * function.
8cca0eea
TH
900 *
901 * CONTEXT:
d565ed63 902 * spin_lock_irq(pool->lock).
8cca0eea
TH
903 *
904 * RETURNS:
905 * Pointer to worker which is executing @work if found, NULL
906 * otherwise.
4d707b9f 907 */
c9e7cf27 908static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 909 struct work_struct *work)
4d707b9f 910{
42f8570f 911 struct worker *worker;
42f8570f 912
b67bfe0d 913 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
914 (unsigned long)work)
915 if (worker->current_work == work &&
916 worker->current_func == work->func)
42f8570f
SL
917 return worker;
918
919 return NULL;
4d707b9f
ON
920}
921
bf4ede01
TH
922/**
923 * move_linked_works - move linked works to a list
924 * @work: start of series of works to be scheduled
925 * @head: target list to append @work to
926 * @nextp: out paramter for nested worklist walking
927 *
928 * Schedule linked works starting from @work to @head. Work series to
929 * be scheduled starts at @work and includes any consecutive work with
930 * WORK_STRUCT_LINKED set in its predecessor.
931 *
932 * If @nextp is not NULL, it's updated to point to the next work of
933 * the last scheduled work. This allows move_linked_works() to be
934 * nested inside outer list_for_each_entry_safe().
935 *
936 * CONTEXT:
d565ed63 937 * spin_lock_irq(pool->lock).
bf4ede01
TH
938 */
939static void move_linked_works(struct work_struct *work, struct list_head *head,
940 struct work_struct **nextp)
941{
942 struct work_struct *n;
943
944 /*
945 * Linked worklist will always end before the end of the list,
946 * use NULL for list head.
947 */
948 list_for_each_entry_safe_from(work, n, NULL, entry) {
949 list_move_tail(&work->entry, head);
950 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
951 break;
952 }
953
954 /*
955 * If we're already inside safe list traversal and have moved
956 * multiple works to the scheduled queue, the next position
957 * needs to be updated.
958 */
959 if (nextp)
960 *nextp = n;
961}
962
112202d9 963static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 964{
112202d9 965 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
966
967 trace_workqueue_activate_work(work);
112202d9 968 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 969 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 970 pwq->nr_active++;
bf4ede01
TH
971}
972
112202d9 973static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 974{
112202d9 975 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
976 struct work_struct, entry);
977
112202d9 978 pwq_activate_delayed_work(work);
3aa62497
LJ
979}
980
bf4ede01 981/**
112202d9
TH
982 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
983 * @pwq: pwq of interest
bf4ede01 984 * @color: color of work which left the queue
bf4ede01
TH
985 *
986 * A work either has completed or is removed from pending queue,
112202d9 987 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
988 *
989 * CONTEXT:
d565ed63 990 * spin_lock_irq(pool->lock).
bf4ede01 991 */
112202d9 992static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
993{
994 /* ignore uncolored works */
995 if (color == WORK_NO_COLOR)
996 return;
997
112202d9 998 pwq->nr_in_flight[color]--;
bf4ede01 999
112202d9
TH
1000 pwq->nr_active--;
1001 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1002 /* one down, submit a delayed one */
112202d9
TH
1003 if (pwq->nr_active < pwq->max_active)
1004 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1005 }
1006
1007 /* is flush in progress and are we at the flushing tip? */
112202d9 1008 if (likely(pwq->flush_color != color))
bf4ede01
TH
1009 return;
1010
1011 /* are there still in-flight works? */
112202d9 1012 if (pwq->nr_in_flight[color])
bf4ede01
TH
1013 return;
1014
112202d9
TH
1015 /* this pwq is done, clear flush_color */
1016 pwq->flush_color = -1;
bf4ede01
TH
1017
1018 /*
112202d9 1019 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1020 * will handle the rest.
1021 */
112202d9
TH
1022 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1023 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1024}
1025
36e227d2 1026/**
bbb68dfa 1027 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1028 * @work: work item to steal
1029 * @is_dwork: @work is a delayed_work
bbb68dfa 1030 * @flags: place to store irq state
36e227d2
TH
1031 *
1032 * Try to grab PENDING bit of @work. This function can handle @work in any
1033 * stable state - idle, on timer or on worklist. Return values are
1034 *
1035 * 1 if @work was pending and we successfully stole PENDING
1036 * 0 if @work was idle and we claimed PENDING
1037 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1038 * -ENOENT if someone else is canceling @work, this state may persist
1039 * for arbitrarily long
36e227d2 1040 *
bbb68dfa 1041 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1042 * interrupted while holding PENDING and @work off queue, irq must be
1043 * disabled on entry. This, combined with delayed_work->timer being
1044 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1045 *
1046 * On successful return, >= 0, irq is disabled and the caller is
1047 * responsible for releasing it using local_irq_restore(*@flags).
1048 *
e0aecdd8 1049 * This function is safe to call from any context including IRQ handler.
bf4ede01 1050 */
bbb68dfa
TH
1051static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1052 unsigned long *flags)
bf4ede01 1053{
d565ed63 1054 struct worker_pool *pool;
112202d9 1055 struct pool_workqueue *pwq;
bf4ede01 1056
bbb68dfa
TH
1057 local_irq_save(*flags);
1058
36e227d2
TH
1059 /* try to steal the timer if it exists */
1060 if (is_dwork) {
1061 struct delayed_work *dwork = to_delayed_work(work);
1062
e0aecdd8
TH
1063 /*
1064 * dwork->timer is irqsafe. If del_timer() fails, it's
1065 * guaranteed that the timer is not queued anywhere and not
1066 * running on the local CPU.
1067 */
36e227d2
TH
1068 if (likely(del_timer(&dwork->timer)))
1069 return 1;
1070 }
1071
1072 /* try to claim PENDING the normal way */
bf4ede01
TH
1073 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1074 return 0;
1075
1076 /*
1077 * The queueing is in progress, or it is already queued. Try to
1078 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1079 */
d565ed63
TH
1080 pool = get_work_pool(work);
1081 if (!pool)
bbb68dfa 1082 goto fail;
bf4ede01 1083
d565ed63 1084 spin_lock(&pool->lock);
0b3dae68 1085 /*
112202d9
TH
1086 * work->data is guaranteed to point to pwq only while the work
1087 * item is queued on pwq->wq, and both updating work->data to point
1088 * to pwq on queueing and to pool on dequeueing are done under
1089 * pwq->pool->lock. This in turn guarantees that, if work->data
1090 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1091 * item is currently queued on that pool.
1092 */
112202d9
TH
1093 pwq = get_work_pwq(work);
1094 if (pwq && pwq->pool == pool) {
16062836
TH
1095 debug_work_deactivate(work);
1096
1097 /*
1098 * A delayed work item cannot be grabbed directly because
1099 * it might have linked NO_COLOR work items which, if left
112202d9 1100 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1101 * management later on and cause stall. Make sure the work
1102 * item is activated before grabbing.
1103 */
1104 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1105 pwq_activate_delayed_work(work);
16062836
TH
1106
1107 list_del_init(&work->entry);
112202d9 1108 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1109
112202d9 1110 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1111 set_work_pool_and_keep_pending(work, pool->id);
1112
1113 spin_unlock(&pool->lock);
1114 return 1;
bf4ede01 1115 }
d565ed63 1116 spin_unlock(&pool->lock);
bbb68dfa
TH
1117fail:
1118 local_irq_restore(*flags);
1119 if (work_is_canceling(work))
1120 return -ENOENT;
1121 cpu_relax();
36e227d2 1122 return -EAGAIN;
bf4ede01
TH
1123}
1124
4690c4ab 1125/**
706026c2 1126 * insert_work - insert a work into a pool
112202d9 1127 * @pwq: pwq @work belongs to
4690c4ab
TH
1128 * @work: work to insert
1129 * @head: insertion point
1130 * @extra_flags: extra WORK_STRUCT_* flags to set
1131 *
112202d9 1132 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1133 * work_struct flags.
4690c4ab
TH
1134 *
1135 * CONTEXT:
d565ed63 1136 * spin_lock_irq(pool->lock).
4690c4ab 1137 */
112202d9
TH
1138static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1139 struct list_head *head, unsigned int extra_flags)
b89deed3 1140{
112202d9 1141 struct worker_pool *pool = pwq->pool;
e22bee78 1142
4690c4ab 1143 /* we own @work, set data and link */
112202d9 1144 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1145 list_add_tail(&work->entry, head);
e22bee78
TH
1146
1147 /*
1148 * Ensure either worker_sched_deactivated() sees the above
1149 * list_add_tail() or we see zero nr_running to avoid workers
1150 * lying around lazily while there are works to be processed.
1151 */
1152 smp_mb();
1153
63d95a91
TH
1154 if (__need_more_worker(pool))
1155 wake_up_worker(pool);
b89deed3
ON
1156}
1157
c8efcc25
TH
1158/*
1159 * Test whether @work is being queued from another work executing on the
8d03ecfe 1160 * same workqueue.
c8efcc25
TH
1161 */
1162static bool is_chained_work(struct workqueue_struct *wq)
1163{
8d03ecfe
TH
1164 struct worker *worker;
1165
1166 worker = current_wq_worker();
1167 /*
1168 * Return %true iff I'm a worker execuing a work item on @wq. If
1169 * I'm @worker, it's safe to dereference it without locking.
1170 */
112202d9 1171 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1172}
1173
4690c4ab 1174static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1175 struct work_struct *work)
1176{
112202d9 1177 struct pool_workqueue *pwq;
1e19ffc6 1178 struct list_head *worklist;
8a2e8e5d 1179 unsigned int work_flags;
b75cac93 1180 unsigned int req_cpu = cpu;
8930caba
TH
1181
1182 /*
1183 * While a work item is PENDING && off queue, a task trying to
1184 * steal the PENDING will busy-loop waiting for it to either get
1185 * queued or lose PENDING. Grabbing PENDING and queueing should
1186 * happen with IRQ disabled.
1187 */
1188 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1189
dc186ad7 1190 debug_work_activate(work);
1e19ffc6 1191
c8efcc25 1192 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1193 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1194 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1195 return;
1196
112202d9 1197 /* determine the pwq to use */
c7fc77f7 1198 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1199 struct worker_pool *last_pool;
18aa9eff 1200
57469821 1201 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1202 cpu = raw_smp_processor_id();
1203
18aa9eff 1204 /*
dbf2576e
TH
1205 * It's multi cpu. If @work was previously on a different
1206 * cpu, it might still be running there, in which case the
1207 * work needs to be queued on that cpu to guarantee
1208 * non-reentrancy.
18aa9eff 1209 */
112202d9 1210 pwq = get_pwq(cpu, wq);
c9e7cf27 1211 last_pool = get_work_pool(work);
dbf2576e 1212
112202d9 1213 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1214 struct worker *worker;
1215
d565ed63 1216 spin_lock(&last_pool->lock);
18aa9eff 1217
c9e7cf27 1218 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1219
112202d9
TH
1220 if (worker && worker->current_pwq->wq == wq) {
1221 pwq = get_pwq(last_pool->cpu, wq);
8594fade 1222 } else {
18aa9eff 1223 /* meh... not running there, queue here */
d565ed63 1224 spin_unlock(&last_pool->lock);
112202d9 1225 spin_lock(&pwq->pool->lock);
18aa9eff 1226 }
8930caba 1227 } else {
112202d9 1228 spin_lock(&pwq->pool->lock);
8930caba 1229 }
f3421797 1230 } else {
112202d9
TH
1231 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1232 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1233 }
1234
112202d9
TH
1235 /* pwq determined, queue */
1236 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1237
f5b2552b 1238 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1239 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1240 return;
1241 }
1e19ffc6 1242
112202d9
TH
1243 pwq->nr_in_flight[pwq->work_color]++;
1244 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1245
112202d9 1246 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1247 trace_workqueue_activate_work(work);
112202d9
TH
1248 pwq->nr_active++;
1249 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1250 } else {
1251 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1252 worklist = &pwq->delayed_works;
8a2e8e5d 1253 }
1e19ffc6 1254
112202d9 1255 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1256
112202d9 1257 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1258}
1259
0fcb78c2 1260/**
c1a220e7
ZR
1261 * queue_work_on - queue work on specific cpu
1262 * @cpu: CPU number to execute work on
0fcb78c2
REB
1263 * @wq: workqueue to use
1264 * @work: work to queue
1265 *
d4283e93 1266 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1267 *
c1a220e7
ZR
1268 * We queue the work to a specific CPU, the caller must ensure it
1269 * can't go away.
1da177e4 1270 */
d4283e93
TH
1271bool queue_work_on(int cpu, struct workqueue_struct *wq,
1272 struct work_struct *work)
1da177e4 1273{
d4283e93 1274 bool ret = false;
8930caba 1275 unsigned long flags;
ef1ca236 1276
8930caba 1277 local_irq_save(flags);
c1a220e7 1278
22df02bb 1279 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1280 __queue_work(cpu, wq, work);
d4283e93 1281 ret = true;
c1a220e7 1282 }
ef1ca236 1283
8930caba 1284 local_irq_restore(flags);
1da177e4
LT
1285 return ret;
1286}
c1a220e7 1287EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1288
c1a220e7 1289/**
0a13c00e 1290 * queue_work - queue work on a workqueue
c1a220e7
ZR
1291 * @wq: workqueue to use
1292 * @work: work to queue
1293 *
d4283e93 1294 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1295 *
0a13c00e
TH
1296 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1297 * it can be processed by another CPU.
c1a220e7 1298 */
d4283e93 1299bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1300{
57469821 1301 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1302}
0a13c00e 1303EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1304
d8e794df 1305void delayed_work_timer_fn(unsigned long __data)
1da177e4 1306{
52bad64d 1307 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1308
e0aecdd8 1309 /* should have been called from irqsafe timer with irq already off */
60c057bc 1310 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1311}
1438ade5 1312EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1313
7beb2edf
TH
1314static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1315 struct delayed_work *dwork, unsigned long delay)
1da177e4 1316{
7beb2edf
TH
1317 struct timer_list *timer = &dwork->timer;
1318 struct work_struct *work = &dwork->work;
7beb2edf
TH
1319
1320 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1321 timer->data != (unsigned long)dwork);
fc4b514f
TH
1322 WARN_ON_ONCE(timer_pending(timer));
1323 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1324
8852aac2
TH
1325 /*
1326 * If @delay is 0, queue @dwork->work immediately. This is for
1327 * both optimization and correctness. The earliest @timer can
1328 * expire is on the closest next tick and delayed_work users depend
1329 * on that there's no such delay when @delay is 0.
1330 */
1331 if (!delay) {
1332 __queue_work(cpu, wq, &dwork->work);
1333 return;
1334 }
1335
7beb2edf 1336 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1337
60c057bc 1338 dwork->wq = wq;
1265057f 1339 dwork->cpu = cpu;
7beb2edf
TH
1340 timer->expires = jiffies + delay;
1341
1342 if (unlikely(cpu != WORK_CPU_UNBOUND))
1343 add_timer_on(timer, cpu);
1344 else
1345 add_timer(timer);
1da177e4
LT
1346}
1347
0fcb78c2
REB
1348/**
1349 * queue_delayed_work_on - queue work on specific CPU after delay
1350 * @cpu: CPU number to execute work on
1351 * @wq: workqueue to use
af9997e4 1352 * @dwork: work to queue
0fcb78c2
REB
1353 * @delay: number of jiffies to wait before queueing
1354 *
715f1300
TH
1355 * Returns %false if @work was already on a queue, %true otherwise. If
1356 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1357 * execution.
0fcb78c2 1358 */
d4283e93
TH
1359bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1360 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1361{
52bad64d 1362 struct work_struct *work = &dwork->work;
d4283e93 1363 bool ret = false;
8930caba 1364 unsigned long flags;
7a6bc1cd 1365
8930caba
TH
1366 /* read the comment in __queue_work() */
1367 local_irq_save(flags);
7a6bc1cd 1368
22df02bb 1369 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1370 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1371 ret = true;
7a6bc1cd 1372 }
8a3e77cc 1373
8930caba 1374 local_irq_restore(flags);
7a6bc1cd
VP
1375 return ret;
1376}
ae90dd5d 1377EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1378
0a13c00e
TH
1379/**
1380 * queue_delayed_work - queue work on a workqueue after delay
1381 * @wq: workqueue to use
1382 * @dwork: delayable work to queue
1383 * @delay: number of jiffies to wait before queueing
1384 *
715f1300 1385 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1386 */
d4283e93 1387bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1388 struct delayed_work *dwork, unsigned long delay)
1389{
57469821 1390 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1391}
1392EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1393
8376fe22
TH
1394/**
1395 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1396 * @cpu: CPU number to execute work on
1397 * @wq: workqueue to use
1398 * @dwork: work to queue
1399 * @delay: number of jiffies to wait before queueing
1400 *
1401 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1402 * modify @dwork's timer so that it expires after @delay. If @delay is
1403 * zero, @work is guaranteed to be scheduled immediately regardless of its
1404 * current state.
1405 *
1406 * Returns %false if @dwork was idle and queued, %true if @dwork was
1407 * pending and its timer was modified.
1408 *
e0aecdd8 1409 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1410 * See try_to_grab_pending() for details.
1411 */
1412bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1413 struct delayed_work *dwork, unsigned long delay)
1414{
1415 unsigned long flags;
1416 int ret;
c7fc77f7 1417
8376fe22
TH
1418 do {
1419 ret = try_to_grab_pending(&dwork->work, true, &flags);
1420 } while (unlikely(ret == -EAGAIN));
63bc0362 1421
8376fe22
TH
1422 if (likely(ret >= 0)) {
1423 __queue_delayed_work(cpu, wq, dwork, delay);
1424 local_irq_restore(flags);
7a6bc1cd 1425 }
8376fe22
TH
1426
1427 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1428 return ret;
1429}
8376fe22
TH
1430EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1431
1432/**
1433 * mod_delayed_work - modify delay of or queue a delayed work
1434 * @wq: workqueue to use
1435 * @dwork: work to queue
1436 * @delay: number of jiffies to wait before queueing
1437 *
1438 * mod_delayed_work_on() on local CPU.
1439 */
1440bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1441 unsigned long delay)
1442{
1443 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1444}
1445EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1446
c8e55f36
TH
1447/**
1448 * worker_enter_idle - enter idle state
1449 * @worker: worker which is entering idle state
1450 *
1451 * @worker is entering idle state. Update stats and idle timer if
1452 * necessary.
1453 *
1454 * LOCKING:
d565ed63 1455 * spin_lock_irq(pool->lock).
c8e55f36
TH
1456 */
1457static void worker_enter_idle(struct worker *worker)
1da177e4 1458{
bd7bdd43 1459 struct worker_pool *pool = worker->pool;
c8e55f36 1460
6183c009
TH
1461 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1462 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1463 (worker->hentry.next || worker->hentry.pprev)))
1464 return;
c8e55f36 1465
cb444766
TH
1466 /* can't use worker_set_flags(), also called from start_worker() */
1467 worker->flags |= WORKER_IDLE;
bd7bdd43 1468 pool->nr_idle++;
e22bee78 1469 worker->last_active = jiffies;
c8e55f36
TH
1470
1471 /* idle_list is LIFO */
bd7bdd43 1472 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1473
628c78e7
TH
1474 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1475 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1476
544ecf31 1477 /*
706026c2 1478 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1479 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1480 * nr_running, the warning may trigger spuriously. Check iff
1481 * unbind is not in progress.
544ecf31 1482 */
24647570 1483 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1484 pool->nr_workers == pool->nr_idle &&
e19e397a 1485 atomic_read(&pool->nr_running));
c8e55f36
TH
1486}
1487
1488/**
1489 * worker_leave_idle - leave idle state
1490 * @worker: worker which is leaving idle state
1491 *
1492 * @worker is leaving idle state. Update stats.
1493 *
1494 * LOCKING:
d565ed63 1495 * spin_lock_irq(pool->lock).
c8e55f36
TH
1496 */
1497static void worker_leave_idle(struct worker *worker)
1498{
bd7bdd43 1499 struct worker_pool *pool = worker->pool;
c8e55f36 1500
6183c009
TH
1501 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1502 return;
d302f017 1503 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1504 pool->nr_idle--;
c8e55f36
TH
1505 list_del_init(&worker->entry);
1506}
1507
e22bee78 1508/**
f36dc67b
LJ
1509 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1510 * @pool: target worker_pool
1511 *
1512 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1513 *
1514 * Works which are scheduled while the cpu is online must at least be
1515 * scheduled to a worker which is bound to the cpu so that if they are
1516 * flushed from cpu callbacks while cpu is going down, they are
1517 * guaranteed to execute on the cpu.
1518 *
f5faa077 1519 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1520 * themselves to the target cpu and may race with cpu going down or
1521 * coming online. kthread_bind() can't be used because it may put the
1522 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1523 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1524 * [dis]associated in the meantime.
1525 *
706026c2 1526 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1527 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1528 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1529 * enters idle state or fetches works without dropping lock, it can
1530 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1531 *
1532 * CONTEXT:
d565ed63 1533 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1534 * held.
1535 *
1536 * RETURNS:
706026c2 1537 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1538 * bound), %false if offline.
1539 */
f36dc67b 1540static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1541__acquires(&pool->lock)
e22bee78 1542{
e22bee78 1543 while (true) {
4e6045f1 1544 /*
e22bee78
TH
1545 * The following call may fail, succeed or succeed
1546 * without actually migrating the task to the cpu if
1547 * it races with cpu hotunplug operation. Verify
24647570 1548 * against POOL_DISASSOCIATED.
4e6045f1 1549 */
24647570 1550 if (!(pool->flags & POOL_DISASSOCIATED))
f5faa077 1551 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
e22bee78 1552
d565ed63 1553 spin_lock_irq(&pool->lock);
24647570 1554 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1555 return false;
f5faa077 1556 if (task_cpu(current) == pool->cpu &&
e22bee78 1557 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1558 get_cpu_mask(pool->cpu)))
e22bee78 1559 return true;
d565ed63 1560 spin_unlock_irq(&pool->lock);
e22bee78 1561
5035b20f
TH
1562 /*
1563 * We've raced with CPU hot[un]plug. Give it a breather
1564 * and retry migration. cond_resched() is required here;
1565 * otherwise, we might deadlock against cpu_stop trying to
1566 * bring down the CPU on non-preemptive kernel.
1567 */
e22bee78 1568 cpu_relax();
5035b20f 1569 cond_resched();
e22bee78
TH
1570 }
1571}
1572
25511a47 1573/*
ea1abd61 1574 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1575 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1576 */
1577static void idle_worker_rebind(struct worker *worker)
1578{
5f7dabfd 1579 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1580 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1581 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1582
ea1abd61
LJ
1583 /* rebind complete, become available again */
1584 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1585 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1586}
1587
e22bee78 1588/*
25511a47 1589 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1590 * the associated cpu which is coming back online. This is scheduled by
1591 * cpu up but can race with other cpu hotplug operations and may be
1592 * executed twice without intervening cpu down.
e22bee78 1593 */
25511a47 1594static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1595{
1596 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1597
f36dc67b 1598 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1599 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1600
d565ed63 1601 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1602}
1603
25511a47 1604/**
94cf58bb
TH
1605 * rebind_workers - rebind all workers of a pool to the associated CPU
1606 * @pool: pool of interest
25511a47 1607 *
94cf58bb 1608 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1609 * is different for idle and busy ones.
1610 *
ea1abd61
LJ
1611 * Idle ones will be removed from the idle_list and woken up. They will
1612 * add themselves back after completing rebind. This ensures that the
1613 * idle_list doesn't contain any unbound workers when re-bound busy workers
1614 * try to perform local wake-ups for concurrency management.
25511a47 1615 *
ea1abd61
LJ
1616 * Busy workers can rebind after they finish their current work items.
1617 * Queueing the rebind work item at the head of the scheduled list is
1618 * enough. Note that nr_running will be properly bumped as busy workers
1619 * rebind.
25511a47 1620 *
ea1abd61
LJ
1621 * On return, all non-manager workers are scheduled for rebind - see
1622 * manage_workers() for the manager special case. Any idle worker
1623 * including the manager will not appear on @idle_list until rebind is
1624 * complete, making local wake-ups safe.
25511a47 1625 */
94cf58bb 1626static void rebind_workers(struct worker_pool *pool)
25511a47 1627{
ea1abd61 1628 struct worker *worker, *n;
25511a47
TH
1629 int i;
1630
94cf58bb
TH
1631 lockdep_assert_held(&pool->assoc_mutex);
1632 lockdep_assert_held(&pool->lock);
25511a47 1633
5f7dabfd 1634 /* dequeue and kick idle ones */
94cf58bb
TH
1635 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1636 /*
1637 * idle workers should be off @pool->idle_list until rebind
1638 * is complete to avoid receiving premature local wake-ups.
1639 */
1640 list_del_init(&worker->entry);
25511a47 1641
94cf58bb
TH
1642 /*
1643 * worker_thread() will see the above dequeuing and call
1644 * idle_worker_rebind().
1645 */
1646 wake_up_process(worker->task);
1647 }
25511a47 1648
94cf58bb 1649 /* rebind busy workers */
b67bfe0d 1650 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1651 struct work_struct *rebind_work = &worker->rebind_work;
1652 struct workqueue_struct *wq;
25511a47 1653
94cf58bb
TH
1654 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1655 work_data_bits(rebind_work)))
1656 continue;
25511a47 1657
94cf58bb 1658 debug_work_activate(rebind_work);
90beca5d 1659
94cf58bb
TH
1660 /*
1661 * wq doesn't really matter but let's keep @worker->pool
112202d9 1662 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1663 */
1664 if (std_worker_pool_pri(worker->pool))
1665 wq = system_highpri_wq;
1666 else
1667 wq = system_wq;
1668
112202d9 1669 insert_work(get_pwq(pool->cpu, wq), rebind_work,
94cf58bb
TH
1670 worker->scheduled.next,
1671 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1672 }
25511a47
TH
1673}
1674
c34056a3
TH
1675static struct worker *alloc_worker(void)
1676{
1677 struct worker *worker;
1678
1679 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1680 if (worker) {
1681 INIT_LIST_HEAD(&worker->entry);
affee4b2 1682 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1683 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1684 /* on creation a worker is in !idle && prep state */
1685 worker->flags = WORKER_PREP;
c8e55f36 1686 }
c34056a3
TH
1687 return worker;
1688}
1689
1690/**
1691 * create_worker - create a new workqueue worker
63d95a91 1692 * @pool: pool the new worker will belong to
c34056a3 1693 *
63d95a91 1694 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1695 * can be started by calling start_worker() or destroyed using
1696 * destroy_worker().
1697 *
1698 * CONTEXT:
1699 * Might sleep. Does GFP_KERNEL allocations.
1700 *
1701 * RETURNS:
1702 * Pointer to the newly created worker.
1703 */
bc2ae0f5 1704static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1705{
e34cdddb 1706 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1707 struct worker *worker = NULL;
f3421797 1708 int id = -1;
c34056a3 1709
d565ed63 1710 spin_lock_irq(&pool->lock);
bd7bdd43 1711 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1712 spin_unlock_irq(&pool->lock);
bd7bdd43 1713 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1714 goto fail;
d565ed63 1715 spin_lock_irq(&pool->lock);
c34056a3 1716 }
d565ed63 1717 spin_unlock_irq(&pool->lock);
c34056a3
TH
1718
1719 worker = alloc_worker();
1720 if (!worker)
1721 goto fail;
1722
bd7bdd43 1723 worker->pool = pool;
c34056a3
TH
1724 worker->id = id;
1725
ec22ca5e 1726 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1727 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1728 worker, cpu_to_node(pool->cpu),
1729 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1730 else
1731 worker->task = kthread_create(worker_thread, worker,
3270476a 1732 "kworker/u:%d%s", id, pri);
c34056a3
TH
1733 if (IS_ERR(worker->task))
1734 goto fail;
1735
e34cdddb 1736 if (std_worker_pool_pri(pool))
3270476a
TH
1737 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1738
db7bccf4 1739 /*
bc2ae0f5 1740 * Determine CPU binding of the new worker depending on
24647570 1741 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1742 * flag remains stable across this function. See the comments
1743 * above the flag definition for details.
1744 *
1745 * As an unbound worker may later become a regular one if CPU comes
1746 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1747 */
24647570 1748 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1749 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1750 } else {
db7bccf4 1751 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1752 worker->flags |= WORKER_UNBOUND;
f3421797 1753 }
c34056a3
TH
1754
1755 return worker;
1756fail:
1757 if (id >= 0) {
d565ed63 1758 spin_lock_irq(&pool->lock);
bd7bdd43 1759 ida_remove(&pool->worker_ida, id);
d565ed63 1760 spin_unlock_irq(&pool->lock);
c34056a3
TH
1761 }
1762 kfree(worker);
1763 return NULL;
1764}
1765
1766/**
1767 * start_worker - start a newly created worker
1768 * @worker: worker to start
1769 *
706026c2 1770 * Make the pool aware of @worker and start it.
c34056a3
TH
1771 *
1772 * CONTEXT:
d565ed63 1773 * spin_lock_irq(pool->lock).
c34056a3
TH
1774 */
1775static void start_worker(struct worker *worker)
1776{
cb444766 1777 worker->flags |= WORKER_STARTED;
bd7bdd43 1778 worker->pool->nr_workers++;
c8e55f36 1779 worker_enter_idle(worker);
c34056a3
TH
1780 wake_up_process(worker->task);
1781}
1782
1783/**
1784 * destroy_worker - destroy a workqueue worker
1785 * @worker: worker to be destroyed
1786 *
706026c2 1787 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1788 *
1789 * CONTEXT:
d565ed63 1790 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1791 */
1792static void destroy_worker(struct worker *worker)
1793{
bd7bdd43 1794 struct worker_pool *pool = worker->pool;
c34056a3
TH
1795 int id = worker->id;
1796
1797 /* sanity check frenzy */
6183c009
TH
1798 if (WARN_ON(worker->current_work) ||
1799 WARN_ON(!list_empty(&worker->scheduled)))
1800 return;
c34056a3 1801
c8e55f36 1802 if (worker->flags & WORKER_STARTED)
bd7bdd43 1803 pool->nr_workers--;
c8e55f36 1804 if (worker->flags & WORKER_IDLE)
bd7bdd43 1805 pool->nr_idle--;
c8e55f36
TH
1806
1807 list_del_init(&worker->entry);
cb444766 1808 worker->flags |= WORKER_DIE;
c8e55f36 1809
d565ed63 1810 spin_unlock_irq(&pool->lock);
c8e55f36 1811
c34056a3
TH
1812 kthread_stop(worker->task);
1813 kfree(worker);
1814
d565ed63 1815 spin_lock_irq(&pool->lock);
bd7bdd43 1816 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1817}
1818
63d95a91 1819static void idle_worker_timeout(unsigned long __pool)
e22bee78 1820{
63d95a91 1821 struct worker_pool *pool = (void *)__pool;
e22bee78 1822
d565ed63 1823 spin_lock_irq(&pool->lock);
e22bee78 1824
63d95a91 1825 if (too_many_workers(pool)) {
e22bee78
TH
1826 struct worker *worker;
1827 unsigned long expires;
1828
1829 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1830 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1831 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1832
1833 if (time_before(jiffies, expires))
63d95a91 1834 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1835 else {
1836 /* it's been idle for too long, wake up manager */
11ebea50 1837 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1838 wake_up_worker(pool);
d5abe669 1839 }
e22bee78
TH
1840 }
1841
d565ed63 1842 spin_unlock_irq(&pool->lock);
e22bee78 1843}
d5abe669 1844
e22bee78
TH
1845static bool send_mayday(struct work_struct *work)
1846{
112202d9
TH
1847 struct pool_workqueue *pwq = get_work_pwq(work);
1848 struct workqueue_struct *wq = pwq->wq;
f3421797 1849 unsigned int cpu;
e22bee78
TH
1850
1851 if (!(wq->flags & WQ_RESCUER))
1852 return false;
1853
1854 /* mayday mayday mayday */
112202d9 1855 cpu = pwq->pool->cpu;
f3421797
TH
1856 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1857 if (cpu == WORK_CPU_UNBOUND)
1858 cpu = 0;
f2e005aa 1859 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1860 wake_up_process(wq->rescuer->task);
1861 return true;
1862}
1863
706026c2 1864static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1865{
63d95a91 1866 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1867 struct work_struct *work;
1868
d565ed63 1869 spin_lock_irq(&pool->lock);
e22bee78 1870
63d95a91 1871 if (need_to_create_worker(pool)) {
e22bee78
TH
1872 /*
1873 * We've been trying to create a new worker but
1874 * haven't been successful. We might be hitting an
1875 * allocation deadlock. Send distress signals to
1876 * rescuers.
1877 */
63d95a91 1878 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1879 send_mayday(work);
1da177e4 1880 }
e22bee78 1881
d565ed63 1882 spin_unlock_irq(&pool->lock);
e22bee78 1883
63d95a91 1884 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1885}
1886
e22bee78
TH
1887/**
1888 * maybe_create_worker - create a new worker if necessary
63d95a91 1889 * @pool: pool to create a new worker for
e22bee78 1890 *
63d95a91 1891 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1892 * have at least one idle worker on return from this function. If
1893 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1894 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1895 * possible allocation deadlock.
1896 *
1897 * On return, need_to_create_worker() is guaranteed to be false and
1898 * may_start_working() true.
1899 *
1900 * LOCKING:
d565ed63 1901 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1902 * multiple times. Does GFP_KERNEL allocations. Called only from
1903 * manager.
1904 *
1905 * RETURNS:
d565ed63 1906 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1907 * otherwise.
1908 */
63d95a91 1909static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1910__releases(&pool->lock)
1911__acquires(&pool->lock)
1da177e4 1912{
63d95a91 1913 if (!need_to_create_worker(pool))
e22bee78
TH
1914 return false;
1915restart:
d565ed63 1916 spin_unlock_irq(&pool->lock);
9f9c2364 1917
e22bee78 1918 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1919 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1920
1921 while (true) {
1922 struct worker *worker;
1923
bc2ae0f5 1924 worker = create_worker(pool);
e22bee78 1925 if (worker) {
63d95a91 1926 del_timer_sync(&pool->mayday_timer);
d565ed63 1927 spin_lock_irq(&pool->lock);
e22bee78 1928 start_worker(worker);
6183c009
TH
1929 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1930 goto restart;
e22bee78
TH
1931 return true;
1932 }
1933
63d95a91 1934 if (!need_to_create_worker(pool))
e22bee78 1935 break;
1da177e4 1936
e22bee78
TH
1937 __set_current_state(TASK_INTERRUPTIBLE);
1938 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1939
63d95a91 1940 if (!need_to_create_worker(pool))
e22bee78
TH
1941 break;
1942 }
1943
63d95a91 1944 del_timer_sync(&pool->mayday_timer);
d565ed63 1945 spin_lock_irq(&pool->lock);
63d95a91 1946 if (need_to_create_worker(pool))
e22bee78
TH
1947 goto restart;
1948 return true;
1949}
1950
1951/**
1952 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1953 * @pool: pool to destroy workers for
e22bee78 1954 *
63d95a91 1955 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1956 * IDLE_WORKER_TIMEOUT.
1957 *
1958 * LOCKING:
d565ed63 1959 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1960 * multiple times. Called only from manager.
1961 *
1962 * RETURNS:
d565ed63 1963 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1964 * otherwise.
1965 */
63d95a91 1966static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1967{
1968 bool ret = false;
1da177e4 1969
63d95a91 1970 while (too_many_workers(pool)) {
e22bee78
TH
1971 struct worker *worker;
1972 unsigned long expires;
3af24433 1973
63d95a91 1974 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1975 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1976
e22bee78 1977 if (time_before(jiffies, expires)) {
63d95a91 1978 mod_timer(&pool->idle_timer, expires);
3af24433 1979 break;
e22bee78 1980 }
1da177e4 1981
e22bee78
TH
1982 destroy_worker(worker);
1983 ret = true;
1da177e4 1984 }
1e19ffc6 1985
e22bee78 1986 return ret;
1e19ffc6
TH
1987}
1988
73f53c4a 1989/**
e22bee78
TH
1990 * manage_workers - manage worker pool
1991 * @worker: self
73f53c4a 1992 *
706026c2 1993 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1994 * to. At any given time, there can be only zero or one manager per
706026c2 1995 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1996 *
1997 * The caller can safely start processing works on false return. On
1998 * true return, it's guaranteed that need_to_create_worker() is false
1999 * and may_start_working() is true.
73f53c4a
TH
2000 *
2001 * CONTEXT:
d565ed63 2002 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2003 * multiple times. Does GFP_KERNEL allocations.
2004 *
2005 * RETURNS:
d565ed63
TH
2006 * spin_lock_irq(pool->lock) which may be released and regrabbed
2007 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2008 */
e22bee78 2009static bool manage_workers(struct worker *worker)
73f53c4a 2010{
63d95a91 2011 struct worker_pool *pool = worker->pool;
e22bee78 2012 bool ret = false;
73f53c4a 2013
ee378aa4 2014 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2015 return ret;
1e19ffc6 2016
552a37e9 2017 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2018
ee378aa4
LJ
2019 /*
2020 * To simplify both worker management and CPU hotplug, hold off
2021 * management while hotplug is in progress. CPU hotplug path can't
2022 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2023 * lead to idle worker depletion (all become busy thinking someone
2024 * else is managing) which in turn can result in deadlock under
b2eb83d1 2025 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2026 * manager against CPU hotplug.
2027 *
b2eb83d1 2028 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2029 * progress. trylock first without dropping @pool->lock.
ee378aa4 2030 */
b2eb83d1 2031 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2032 spin_unlock_irq(&pool->lock);
b2eb83d1 2033 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2034 /*
2035 * CPU hotplug could have happened while we were waiting
b2eb83d1 2036 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2037 * because manager isn't either on idle or busy list, and
706026c2 2038 * @pool's state and ours could have deviated.
ee378aa4 2039 *
b2eb83d1 2040 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2041 * simply try to bind. It will succeed or fail depending
706026c2 2042 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2043 * %WORKER_UNBOUND accordingly.
2044 */
f36dc67b 2045 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2046 worker->flags &= ~WORKER_UNBOUND;
2047 else
2048 worker->flags |= WORKER_UNBOUND;
73f53c4a 2049
ee378aa4
LJ
2050 ret = true;
2051 }
73f53c4a 2052
11ebea50 2053 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2054
2055 /*
e22bee78
TH
2056 * Destroy and then create so that may_start_working() is true
2057 * on return.
73f53c4a 2058 */
63d95a91
TH
2059 ret |= maybe_destroy_workers(pool);
2060 ret |= maybe_create_worker(pool);
e22bee78 2061
552a37e9 2062 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2063 mutex_unlock(&pool->assoc_mutex);
e22bee78 2064 return ret;
73f53c4a
TH
2065}
2066
a62428c0
TH
2067/**
2068 * process_one_work - process single work
c34056a3 2069 * @worker: self
a62428c0
TH
2070 * @work: work to process
2071 *
2072 * Process @work. This function contains all the logics necessary to
2073 * process a single work including synchronization against and
2074 * interaction with other workers on the same cpu, queueing and
2075 * flushing. As long as context requirement is met, any worker can
2076 * call this function to process a work.
2077 *
2078 * CONTEXT:
d565ed63 2079 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2080 */
c34056a3 2081static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2082__releases(&pool->lock)
2083__acquires(&pool->lock)
a62428c0 2084{
112202d9 2085 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2086 struct worker_pool *pool = worker->pool;
112202d9 2087 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2088 int work_color;
7e11629d 2089 struct worker *collision;
a62428c0
TH
2090#ifdef CONFIG_LOCKDEP
2091 /*
2092 * It is permissible to free the struct work_struct from
2093 * inside the function that is called from it, this we need to
2094 * take into account for lockdep too. To avoid bogus "held
2095 * lock freed" warnings as well as problems when looking into
2096 * work->lockdep_map, make a copy and use that here.
2097 */
4d82a1de
PZ
2098 struct lockdep_map lockdep_map;
2099
2100 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2101#endif
6fec10a1
TH
2102 /*
2103 * Ensure we're on the correct CPU. DISASSOCIATED test is
2104 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2105 * unbound or a disassociated pool.
6fec10a1 2106 */
5f7dabfd 2107 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2108 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2109 raw_smp_processor_id() != pool->cpu);
25511a47 2110
7e11629d
TH
2111 /*
2112 * A single work shouldn't be executed concurrently by
2113 * multiple workers on a single cpu. Check whether anyone is
2114 * already processing the work. If so, defer the work to the
2115 * currently executing one.
2116 */
c9e7cf27 2117 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2118 if (unlikely(collision)) {
2119 move_linked_works(work, &collision->scheduled, NULL);
2120 return;
2121 }
2122
8930caba 2123 /* claim and dequeue */
a62428c0 2124 debug_work_deactivate(work);
c9e7cf27 2125 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2126 worker->current_work = work;
a2c1c57b 2127 worker->current_func = work->func;
112202d9 2128 worker->current_pwq = pwq;
73f53c4a 2129 work_color = get_work_color(work);
7a22ad75 2130
a62428c0
TH
2131 list_del_init(&work->entry);
2132
fb0e7beb
TH
2133 /*
2134 * CPU intensive works don't participate in concurrency
2135 * management. They're the scheduler's responsibility.
2136 */
2137 if (unlikely(cpu_intensive))
2138 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2139
974271c4 2140 /*
d565ed63 2141 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2142 * executed ASAP. Wake up another worker if necessary.
2143 */
63d95a91
TH
2144 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2145 wake_up_worker(pool);
974271c4 2146
8930caba 2147 /*
7c3eed5c 2148 * Record the last pool and clear PENDING which should be the last
d565ed63 2149 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2150 * PENDING and queued state changes happen together while IRQ is
2151 * disabled.
8930caba 2152 */
7c3eed5c 2153 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2154
d565ed63 2155 spin_unlock_irq(&pool->lock);
a62428c0 2156
112202d9 2157 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2158 lock_map_acquire(&lockdep_map);
e36c886a 2159 trace_workqueue_execute_start(work);
a2c1c57b 2160 worker->current_func(work);
e36c886a
AV
2161 /*
2162 * While we must be careful to not use "work" after this, the trace
2163 * point will only record its address.
2164 */
2165 trace_workqueue_execute_end(work);
a62428c0 2166 lock_map_release(&lockdep_map);
112202d9 2167 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2168
2169 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2170 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2171 " last function: %pf\n",
a2c1c57b
TH
2172 current->comm, preempt_count(), task_pid_nr(current),
2173 worker->current_func);
a62428c0
TH
2174 debug_show_held_locks(current);
2175 dump_stack();
2176 }
2177
d565ed63 2178 spin_lock_irq(&pool->lock);
a62428c0 2179
fb0e7beb
TH
2180 /* clear cpu intensive status */
2181 if (unlikely(cpu_intensive))
2182 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2183
a62428c0 2184 /* we're done with it, release */
42f8570f 2185 hash_del(&worker->hentry);
c34056a3 2186 worker->current_work = NULL;
a2c1c57b 2187 worker->current_func = NULL;
112202d9
TH
2188 worker->current_pwq = NULL;
2189 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2190}
2191
affee4b2
TH
2192/**
2193 * process_scheduled_works - process scheduled works
2194 * @worker: self
2195 *
2196 * Process all scheduled works. Please note that the scheduled list
2197 * may change while processing a work, so this function repeatedly
2198 * fetches a work from the top and executes it.
2199 *
2200 * CONTEXT:
d565ed63 2201 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2202 * multiple times.
2203 */
2204static void process_scheduled_works(struct worker *worker)
1da177e4 2205{
affee4b2
TH
2206 while (!list_empty(&worker->scheduled)) {
2207 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2208 struct work_struct, entry);
c34056a3 2209 process_one_work(worker, work);
1da177e4 2210 }
1da177e4
LT
2211}
2212
4690c4ab
TH
2213/**
2214 * worker_thread - the worker thread function
c34056a3 2215 * @__worker: self
4690c4ab 2216 *
706026c2
TH
2217 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2218 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2219 * their specific target workqueue. The only exception is works which
2220 * belong to workqueues with a rescuer which will be explained in
2221 * rescuer_thread().
4690c4ab 2222 */
c34056a3 2223static int worker_thread(void *__worker)
1da177e4 2224{
c34056a3 2225 struct worker *worker = __worker;
bd7bdd43 2226 struct worker_pool *pool = worker->pool;
1da177e4 2227
e22bee78
TH
2228 /* tell the scheduler that this is a workqueue worker */
2229 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2230woke_up:
d565ed63 2231 spin_lock_irq(&pool->lock);
1da177e4 2232
5f7dabfd
LJ
2233 /* we are off idle list if destruction or rebind is requested */
2234 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2235 spin_unlock_irq(&pool->lock);
25511a47 2236
5f7dabfd 2237 /* if DIE is set, destruction is requested */
25511a47
TH
2238 if (worker->flags & WORKER_DIE) {
2239 worker->task->flags &= ~PF_WQ_WORKER;
2240 return 0;
2241 }
2242
5f7dabfd 2243 /* otherwise, rebind */
25511a47
TH
2244 idle_worker_rebind(worker);
2245 goto woke_up;
c8e55f36 2246 }
affee4b2 2247
c8e55f36 2248 worker_leave_idle(worker);
db7bccf4 2249recheck:
e22bee78 2250 /* no more worker necessary? */
63d95a91 2251 if (!need_more_worker(pool))
e22bee78
TH
2252 goto sleep;
2253
2254 /* do we need to manage? */
63d95a91 2255 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2256 goto recheck;
2257
c8e55f36
TH
2258 /*
2259 * ->scheduled list can only be filled while a worker is
2260 * preparing to process a work or actually processing it.
2261 * Make sure nobody diddled with it while I was sleeping.
2262 */
6183c009 2263 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2264
e22bee78
TH
2265 /*
2266 * When control reaches this point, we're guaranteed to have
2267 * at least one idle worker or that someone else has already
2268 * assumed the manager role.
2269 */
2270 worker_clr_flags(worker, WORKER_PREP);
2271
2272 do {
c8e55f36 2273 struct work_struct *work =
bd7bdd43 2274 list_first_entry(&pool->worklist,
c8e55f36
TH
2275 struct work_struct, entry);
2276
2277 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2278 /* optimization path, not strictly necessary */
2279 process_one_work(worker, work);
2280 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2281 process_scheduled_works(worker);
c8e55f36
TH
2282 } else {
2283 move_linked_works(work, &worker->scheduled, NULL);
2284 process_scheduled_works(worker);
affee4b2 2285 }
63d95a91 2286 } while (keep_working(pool));
e22bee78
TH
2287
2288 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2289sleep:
63d95a91 2290 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2291 goto recheck;
d313dd85 2292
c8e55f36 2293 /*
d565ed63
TH
2294 * pool->lock is held and there's no work to process and no need to
2295 * manage, sleep. Workers are woken up only while holding
2296 * pool->lock or from local cpu, so setting the current state
2297 * before releasing pool->lock is enough to prevent losing any
2298 * event.
c8e55f36
TH
2299 */
2300 worker_enter_idle(worker);
2301 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2302 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2303 schedule();
2304 goto woke_up;
1da177e4
LT
2305}
2306
e22bee78
TH
2307/**
2308 * rescuer_thread - the rescuer thread function
111c225a 2309 * @__rescuer: self
e22bee78
TH
2310 *
2311 * Workqueue rescuer thread function. There's one rescuer for each
2312 * workqueue which has WQ_RESCUER set.
2313 *
706026c2 2314 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2315 * worker which uses GFP_KERNEL allocation which has slight chance of
2316 * developing into deadlock if some works currently on the same queue
2317 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2318 * the problem rescuer solves.
2319 *
706026c2
TH
2320 * When such condition is possible, the pool summons rescuers of all
2321 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2322 * those works so that forward progress can be guaranteed.
2323 *
2324 * This should happen rarely.
2325 */
111c225a 2326static int rescuer_thread(void *__rescuer)
e22bee78 2327{
111c225a
TH
2328 struct worker *rescuer = __rescuer;
2329 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2330 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2331 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2332 unsigned int cpu;
2333
2334 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2335
2336 /*
2337 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2338 * doesn't participate in concurrency management.
2339 */
2340 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2341repeat:
2342 set_current_state(TASK_INTERRUPTIBLE);
2343
412d32e6
MG
2344 if (kthread_should_stop()) {
2345 __set_current_state(TASK_RUNNING);
111c225a 2346 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2347 return 0;
412d32e6 2348 }
e22bee78 2349
f3421797
TH
2350 /*
2351 * See whether any cpu is asking for help. Unbounded
2352 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2353 */
f2e005aa 2354 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797 2355 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
112202d9
TH
2356 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2357 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2358 struct work_struct *work, *n;
2359
2360 __set_current_state(TASK_RUNNING);
f2e005aa 2361 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2362
2363 /* migrate to the target cpu if possible */
f36dc67b 2364 worker_maybe_bind_and_lock(pool);
b3104104 2365 rescuer->pool = pool;
e22bee78
TH
2366
2367 /*
2368 * Slurp in all works issued via this workqueue and
2369 * process'em.
2370 */
6183c009 2371 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2372 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2373 if (get_work_pwq(work) == pwq)
e22bee78
TH
2374 move_linked_works(work, scheduled, &n);
2375
2376 process_scheduled_works(rescuer);
7576958a
TH
2377
2378 /*
d565ed63 2379 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2380 * regular worker; otherwise, we end up with 0 concurrency
2381 * and stalling the execution.
2382 */
63d95a91
TH
2383 if (keep_working(pool))
2384 wake_up_worker(pool);
7576958a 2385
b3104104 2386 rescuer->pool = NULL;
d565ed63 2387 spin_unlock_irq(&pool->lock);
e22bee78
TH
2388 }
2389
111c225a
TH
2390 /* rescuers should never participate in concurrency management */
2391 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2392 schedule();
2393 goto repeat;
1da177e4
LT
2394}
2395
fc2e4d70
ON
2396struct wq_barrier {
2397 struct work_struct work;
2398 struct completion done;
2399};
2400
2401static void wq_barrier_func(struct work_struct *work)
2402{
2403 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2404 complete(&barr->done);
2405}
2406
4690c4ab
TH
2407/**
2408 * insert_wq_barrier - insert a barrier work
112202d9 2409 * @pwq: pwq to insert barrier into
4690c4ab 2410 * @barr: wq_barrier to insert
affee4b2
TH
2411 * @target: target work to attach @barr to
2412 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2413 *
affee4b2
TH
2414 * @barr is linked to @target such that @barr is completed only after
2415 * @target finishes execution. Please note that the ordering
2416 * guarantee is observed only with respect to @target and on the local
2417 * cpu.
2418 *
2419 * Currently, a queued barrier can't be canceled. This is because
2420 * try_to_grab_pending() can't determine whether the work to be
2421 * grabbed is at the head of the queue and thus can't clear LINKED
2422 * flag of the previous work while there must be a valid next work
2423 * after a work with LINKED flag set.
2424 *
2425 * Note that when @worker is non-NULL, @target may be modified
112202d9 2426 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2427 *
2428 * CONTEXT:
d565ed63 2429 * spin_lock_irq(pool->lock).
4690c4ab 2430 */
112202d9 2431static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2432 struct wq_barrier *barr,
2433 struct work_struct *target, struct worker *worker)
fc2e4d70 2434{
affee4b2
TH
2435 struct list_head *head;
2436 unsigned int linked = 0;
2437
dc186ad7 2438 /*
d565ed63 2439 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2440 * as we know for sure that this will not trigger any of the
2441 * checks and call back into the fixup functions where we
2442 * might deadlock.
2443 */
ca1cab37 2444 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2445 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2446 init_completion(&barr->done);
83c22520 2447
affee4b2
TH
2448 /*
2449 * If @target is currently being executed, schedule the
2450 * barrier to the worker; otherwise, put it after @target.
2451 */
2452 if (worker)
2453 head = worker->scheduled.next;
2454 else {
2455 unsigned long *bits = work_data_bits(target);
2456
2457 head = target->entry.next;
2458 /* there can already be other linked works, inherit and set */
2459 linked = *bits & WORK_STRUCT_LINKED;
2460 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2461 }
2462
dc186ad7 2463 debug_work_activate(&barr->work);
112202d9 2464 insert_work(pwq, &barr->work, head,
affee4b2 2465 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2466}
2467
73f53c4a 2468/**
112202d9 2469 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2470 * @wq: workqueue being flushed
2471 * @flush_color: new flush color, < 0 for no-op
2472 * @work_color: new work color, < 0 for no-op
2473 *
112202d9 2474 * Prepare pwqs for workqueue flushing.
73f53c4a 2475 *
112202d9
TH
2476 * If @flush_color is non-negative, flush_color on all pwqs should be
2477 * -1. If no pwq has in-flight commands at the specified color, all
2478 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2479 * has in flight commands, its pwq->flush_color is set to
2480 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2481 * wakeup logic is armed and %true is returned.
2482 *
2483 * The caller should have initialized @wq->first_flusher prior to
2484 * calling this function with non-negative @flush_color. If
2485 * @flush_color is negative, no flush color update is done and %false
2486 * is returned.
2487 *
112202d9 2488 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2489 * work_color which is previous to @work_color and all will be
2490 * advanced to @work_color.
2491 *
2492 * CONTEXT:
2493 * mutex_lock(wq->flush_mutex).
2494 *
2495 * RETURNS:
2496 * %true if @flush_color >= 0 and there's something to flush. %false
2497 * otherwise.
2498 */
112202d9 2499static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2500 int flush_color, int work_color)
1da177e4 2501{
73f53c4a 2502 bool wait = false;
49e3cf44 2503 struct pool_workqueue *pwq;
1da177e4 2504
73f53c4a 2505 if (flush_color >= 0) {
6183c009 2506 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2507 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2508 }
2355b70f 2509
49e3cf44 2510 for_each_pwq(pwq, wq) {
112202d9 2511 struct worker_pool *pool = pwq->pool;
fc2e4d70 2512
d565ed63 2513 spin_lock_irq(&pool->lock);
83c22520 2514
73f53c4a 2515 if (flush_color >= 0) {
6183c009 2516 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2517
112202d9
TH
2518 if (pwq->nr_in_flight[flush_color]) {
2519 pwq->flush_color = flush_color;
2520 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2521 wait = true;
2522 }
2523 }
1da177e4 2524
73f53c4a 2525 if (work_color >= 0) {
6183c009 2526 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2527 pwq->work_color = work_color;
73f53c4a 2528 }
1da177e4 2529
d565ed63 2530 spin_unlock_irq(&pool->lock);
1da177e4 2531 }
2355b70f 2532
112202d9 2533 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2534 complete(&wq->first_flusher->done);
14441960 2535
73f53c4a 2536 return wait;
1da177e4
LT
2537}
2538
0fcb78c2 2539/**
1da177e4 2540 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2541 * @wq: workqueue to flush
1da177e4
LT
2542 *
2543 * Forces execution of the workqueue and blocks until its completion.
2544 * This is typically used in driver shutdown handlers.
2545 *
fc2e4d70
ON
2546 * We sleep until all works which were queued on entry have been handled,
2547 * but we are not livelocked by new incoming ones.
1da177e4 2548 */
7ad5b3a5 2549void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2550{
73f53c4a
TH
2551 struct wq_flusher this_flusher = {
2552 .list = LIST_HEAD_INIT(this_flusher.list),
2553 .flush_color = -1,
2554 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2555 };
2556 int next_color;
1da177e4 2557
3295f0ef
IM
2558 lock_map_acquire(&wq->lockdep_map);
2559 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2560
2561 mutex_lock(&wq->flush_mutex);
2562
2563 /*
2564 * Start-to-wait phase
2565 */
2566 next_color = work_next_color(wq->work_color);
2567
2568 if (next_color != wq->flush_color) {
2569 /*
2570 * Color space is not full. The current work_color
2571 * becomes our flush_color and work_color is advanced
2572 * by one.
2573 */
6183c009 2574 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2575 this_flusher.flush_color = wq->work_color;
2576 wq->work_color = next_color;
2577
2578 if (!wq->first_flusher) {
2579 /* no flush in progress, become the first flusher */
6183c009 2580 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2581
2582 wq->first_flusher = &this_flusher;
2583
112202d9 2584 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2585 wq->work_color)) {
2586 /* nothing to flush, done */
2587 wq->flush_color = next_color;
2588 wq->first_flusher = NULL;
2589 goto out_unlock;
2590 }
2591 } else {
2592 /* wait in queue */
6183c009 2593 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2594 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2595 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2596 }
2597 } else {
2598 /*
2599 * Oops, color space is full, wait on overflow queue.
2600 * The next flush completion will assign us
2601 * flush_color and transfer to flusher_queue.
2602 */
2603 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2604 }
2605
2606 mutex_unlock(&wq->flush_mutex);
2607
2608 wait_for_completion(&this_flusher.done);
2609
2610 /*
2611 * Wake-up-and-cascade phase
2612 *
2613 * First flushers are responsible for cascading flushes and
2614 * handling overflow. Non-first flushers can simply return.
2615 */
2616 if (wq->first_flusher != &this_flusher)
2617 return;
2618
2619 mutex_lock(&wq->flush_mutex);
2620
4ce48b37
TH
2621 /* we might have raced, check again with mutex held */
2622 if (wq->first_flusher != &this_flusher)
2623 goto out_unlock;
2624
73f53c4a
TH
2625 wq->first_flusher = NULL;
2626
6183c009
TH
2627 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2628 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2629
2630 while (true) {
2631 struct wq_flusher *next, *tmp;
2632
2633 /* complete all the flushers sharing the current flush color */
2634 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2635 if (next->flush_color != wq->flush_color)
2636 break;
2637 list_del_init(&next->list);
2638 complete(&next->done);
2639 }
2640
6183c009
TH
2641 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2642 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2643
2644 /* this flush_color is finished, advance by one */
2645 wq->flush_color = work_next_color(wq->flush_color);
2646
2647 /* one color has been freed, handle overflow queue */
2648 if (!list_empty(&wq->flusher_overflow)) {
2649 /*
2650 * Assign the same color to all overflowed
2651 * flushers, advance work_color and append to
2652 * flusher_queue. This is the start-to-wait
2653 * phase for these overflowed flushers.
2654 */
2655 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2656 tmp->flush_color = wq->work_color;
2657
2658 wq->work_color = work_next_color(wq->work_color);
2659
2660 list_splice_tail_init(&wq->flusher_overflow,
2661 &wq->flusher_queue);
112202d9 2662 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2663 }
2664
2665 if (list_empty(&wq->flusher_queue)) {
6183c009 2666 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2667 break;
2668 }
2669
2670 /*
2671 * Need to flush more colors. Make the next flusher
112202d9 2672 * the new first flusher and arm pwqs.
73f53c4a 2673 */
6183c009
TH
2674 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2675 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2676
2677 list_del_init(&next->list);
2678 wq->first_flusher = next;
2679
112202d9 2680 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2681 break;
2682
2683 /*
2684 * Meh... this color is already done, clear first
2685 * flusher and repeat cascading.
2686 */
2687 wq->first_flusher = NULL;
2688 }
2689
2690out_unlock:
2691 mutex_unlock(&wq->flush_mutex);
1da177e4 2692}
ae90dd5d 2693EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2694
9c5a2ba7
TH
2695/**
2696 * drain_workqueue - drain a workqueue
2697 * @wq: workqueue to drain
2698 *
2699 * Wait until the workqueue becomes empty. While draining is in progress,
2700 * only chain queueing is allowed. IOW, only currently pending or running
2701 * work items on @wq can queue further work items on it. @wq is flushed
2702 * repeatedly until it becomes empty. The number of flushing is detemined
2703 * by the depth of chaining and should be relatively short. Whine if it
2704 * takes too long.
2705 */
2706void drain_workqueue(struct workqueue_struct *wq)
2707{
2708 unsigned int flush_cnt = 0;
49e3cf44 2709 struct pool_workqueue *pwq;
9c5a2ba7
TH
2710
2711 /*
2712 * __queue_work() needs to test whether there are drainers, is much
2713 * hotter than drain_workqueue() and already looks at @wq->flags.
2714 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2715 */
e98d5b16 2716 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2717 if (!wq->nr_drainers++)
2718 wq->flags |= WQ_DRAINING;
e98d5b16 2719 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2720reflush:
2721 flush_workqueue(wq);
2722
49e3cf44 2723 for_each_pwq(pwq, wq) {
fa2563e4 2724 bool drained;
9c5a2ba7 2725
112202d9
TH
2726 spin_lock_irq(&pwq->pool->lock);
2727 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2728 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2729
2730 if (drained)
9c5a2ba7
TH
2731 continue;
2732
2733 if (++flush_cnt == 10 ||
2734 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2735 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2736 wq->name, flush_cnt);
9c5a2ba7
TH
2737 goto reflush;
2738 }
2739
e98d5b16 2740 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2741 if (!--wq->nr_drainers)
2742 wq->flags &= ~WQ_DRAINING;
e98d5b16 2743 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2744}
2745EXPORT_SYMBOL_GPL(drain_workqueue);
2746
606a5020 2747static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2748{
affee4b2 2749 struct worker *worker = NULL;
c9e7cf27 2750 struct worker_pool *pool;
112202d9 2751 struct pool_workqueue *pwq;
db700897
ON
2752
2753 might_sleep();
c9e7cf27
TH
2754 pool = get_work_pool(work);
2755 if (!pool)
baf59022 2756 return false;
db700897 2757
d565ed63 2758 spin_lock_irq(&pool->lock);
0b3dae68 2759 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2760 pwq = get_work_pwq(work);
2761 if (pwq) {
2762 if (unlikely(pwq->pool != pool))
4690c4ab 2763 goto already_gone;
606a5020 2764 } else {
c9e7cf27 2765 worker = find_worker_executing_work(pool, work);
affee4b2 2766 if (!worker)
4690c4ab 2767 goto already_gone;
112202d9 2768 pwq = worker->current_pwq;
606a5020 2769 }
db700897 2770
112202d9 2771 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2772 spin_unlock_irq(&pool->lock);
7a22ad75 2773
e159489b
TH
2774 /*
2775 * If @max_active is 1 or rescuer is in use, flushing another work
2776 * item on the same workqueue may lead to deadlock. Make sure the
2777 * flusher is not running on the same workqueue by verifying write
2778 * access.
2779 */
112202d9
TH
2780 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2781 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2782 else
112202d9
TH
2783 lock_map_acquire_read(&pwq->wq->lockdep_map);
2784 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2785
401a8d04 2786 return true;
4690c4ab 2787already_gone:
d565ed63 2788 spin_unlock_irq(&pool->lock);
401a8d04 2789 return false;
db700897 2790}
baf59022
TH
2791
2792/**
2793 * flush_work - wait for a work to finish executing the last queueing instance
2794 * @work: the work to flush
2795 *
606a5020
TH
2796 * Wait until @work has finished execution. @work is guaranteed to be idle
2797 * on return if it hasn't been requeued since flush started.
baf59022
TH
2798 *
2799 * RETURNS:
2800 * %true if flush_work() waited for the work to finish execution,
2801 * %false if it was already idle.
2802 */
2803bool flush_work(struct work_struct *work)
2804{
2805 struct wq_barrier barr;
2806
0976dfc1
SB
2807 lock_map_acquire(&work->lockdep_map);
2808 lock_map_release(&work->lockdep_map);
2809
606a5020 2810 if (start_flush_work(work, &barr)) {
401a8d04
TH
2811 wait_for_completion(&barr.done);
2812 destroy_work_on_stack(&barr.work);
2813 return true;
606a5020 2814 } else {
401a8d04 2815 return false;
6e84d644 2816 }
6e84d644 2817}
606a5020 2818EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2819
36e227d2 2820static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2821{
bbb68dfa 2822 unsigned long flags;
1f1f642e
ON
2823 int ret;
2824
2825 do {
bbb68dfa
TH
2826 ret = try_to_grab_pending(work, is_dwork, &flags);
2827 /*
2828 * If someone else is canceling, wait for the same event it
2829 * would be waiting for before retrying.
2830 */
2831 if (unlikely(ret == -ENOENT))
606a5020 2832 flush_work(work);
1f1f642e
ON
2833 } while (unlikely(ret < 0));
2834
bbb68dfa
TH
2835 /* tell other tasks trying to grab @work to back off */
2836 mark_work_canceling(work);
2837 local_irq_restore(flags);
2838
606a5020 2839 flush_work(work);
7a22ad75 2840 clear_work_data(work);
1f1f642e
ON
2841 return ret;
2842}
2843
6e84d644 2844/**
401a8d04
TH
2845 * cancel_work_sync - cancel a work and wait for it to finish
2846 * @work: the work to cancel
6e84d644 2847 *
401a8d04
TH
2848 * Cancel @work and wait for its execution to finish. This function
2849 * can be used even if the work re-queues itself or migrates to
2850 * another workqueue. On return from this function, @work is
2851 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2852 *
401a8d04
TH
2853 * cancel_work_sync(&delayed_work->work) must not be used for
2854 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2855 *
401a8d04 2856 * The caller must ensure that the workqueue on which @work was last
6e84d644 2857 * queued can't be destroyed before this function returns.
401a8d04
TH
2858 *
2859 * RETURNS:
2860 * %true if @work was pending, %false otherwise.
6e84d644 2861 */
401a8d04 2862bool cancel_work_sync(struct work_struct *work)
6e84d644 2863{
36e227d2 2864 return __cancel_work_timer(work, false);
b89deed3 2865}
28e53bdd 2866EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2867
6e84d644 2868/**
401a8d04
TH
2869 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2870 * @dwork: the delayed work to flush
6e84d644 2871 *
401a8d04
TH
2872 * Delayed timer is cancelled and the pending work is queued for
2873 * immediate execution. Like flush_work(), this function only
2874 * considers the last queueing instance of @dwork.
1f1f642e 2875 *
401a8d04
TH
2876 * RETURNS:
2877 * %true if flush_work() waited for the work to finish execution,
2878 * %false if it was already idle.
6e84d644 2879 */
401a8d04
TH
2880bool flush_delayed_work(struct delayed_work *dwork)
2881{
8930caba 2882 local_irq_disable();
401a8d04 2883 if (del_timer_sync(&dwork->timer))
60c057bc 2884 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2885 local_irq_enable();
401a8d04
TH
2886 return flush_work(&dwork->work);
2887}
2888EXPORT_SYMBOL(flush_delayed_work);
2889
09383498 2890/**
57b30ae7
TH
2891 * cancel_delayed_work - cancel a delayed work
2892 * @dwork: delayed_work to cancel
09383498 2893 *
57b30ae7
TH
2894 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2895 * and canceled; %false if wasn't pending. Note that the work callback
2896 * function may still be running on return, unless it returns %true and the
2897 * work doesn't re-arm itself. Explicitly flush or use
2898 * cancel_delayed_work_sync() to wait on it.
09383498 2899 *
57b30ae7 2900 * This function is safe to call from any context including IRQ handler.
09383498 2901 */
57b30ae7 2902bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2903{
57b30ae7
TH
2904 unsigned long flags;
2905 int ret;
2906
2907 do {
2908 ret = try_to_grab_pending(&dwork->work, true, &flags);
2909 } while (unlikely(ret == -EAGAIN));
2910
2911 if (unlikely(ret < 0))
2912 return false;
2913
7c3eed5c
TH
2914 set_work_pool_and_clear_pending(&dwork->work,
2915 get_work_pool_id(&dwork->work));
57b30ae7 2916 local_irq_restore(flags);
c0158ca6 2917 return ret;
09383498 2918}
57b30ae7 2919EXPORT_SYMBOL(cancel_delayed_work);
09383498 2920
401a8d04
TH
2921/**
2922 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2923 * @dwork: the delayed work cancel
2924 *
2925 * This is cancel_work_sync() for delayed works.
2926 *
2927 * RETURNS:
2928 * %true if @dwork was pending, %false otherwise.
2929 */
2930bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2931{
36e227d2 2932 return __cancel_work_timer(&dwork->work, true);
6e84d644 2933}
f5a421a4 2934EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2935
0fcb78c2 2936/**
c1a220e7
ZR
2937 * schedule_work_on - put work task on a specific cpu
2938 * @cpu: cpu to put the work task on
2939 * @work: job to be done
2940 *
2941 * This puts a job on a specific cpu
2942 */
d4283e93 2943bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2944{
d320c038 2945 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2946}
2947EXPORT_SYMBOL(schedule_work_on);
2948
0fcb78c2 2949/**
0fcb78c2
REB
2950 * schedule_work - put work task in global workqueue
2951 * @work: job to be done
0fcb78c2 2952 *
d4283e93
TH
2953 * Returns %false if @work was already on the kernel-global workqueue and
2954 * %true otherwise.
5b0f437d
BVA
2955 *
2956 * This puts a job in the kernel-global workqueue if it was not already
2957 * queued and leaves it in the same position on the kernel-global
2958 * workqueue otherwise.
0fcb78c2 2959 */
d4283e93 2960bool schedule_work(struct work_struct *work)
1da177e4 2961{
d320c038 2962 return queue_work(system_wq, work);
1da177e4 2963}
ae90dd5d 2964EXPORT_SYMBOL(schedule_work);
1da177e4 2965
0fcb78c2
REB
2966/**
2967 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2968 * @cpu: cpu to use
52bad64d 2969 * @dwork: job to be done
0fcb78c2
REB
2970 * @delay: number of jiffies to wait
2971 *
2972 * After waiting for a given time this puts a job in the kernel-global
2973 * workqueue on the specified CPU.
2974 */
d4283e93
TH
2975bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2976 unsigned long delay)
1da177e4 2977{
d320c038 2978 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2979}
ae90dd5d 2980EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2981
0fcb78c2
REB
2982/**
2983 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2984 * @dwork: job to be done
2985 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2986 *
2987 * After waiting for a given time this puts a job in the kernel-global
2988 * workqueue.
2989 */
d4283e93 2990bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2991{
d320c038 2992 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2993}
ae90dd5d 2994EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2995
b6136773 2996/**
31ddd871 2997 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2998 * @func: the function to call
b6136773 2999 *
31ddd871
TH
3000 * schedule_on_each_cpu() executes @func on each online CPU using the
3001 * system workqueue and blocks until all CPUs have completed.
b6136773 3002 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3003 *
3004 * RETURNS:
3005 * 0 on success, -errno on failure.
b6136773 3006 */
65f27f38 3007int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3008{
3009 int cpu;
38f51568 3010 struct work_struct __percpu *works;
15316ba8 3011
b6136773
AM
3012 works = alloc_percpu(struct work_struct);
3013 if (!works)
15316ba8 3014 return -ENOMEM;
b6136773 3015
93981800
TH
3016 get_online_cpus();
3017
15316ba8 3018 for_each_online_cpu(cpu) {
9bfb1839
IM
3019 struct work_struct *work = per_cpu_ptr(works, cpu);
3020
3021 INIT_WORK(work, func);
b71ab8c2 3022 schedule_work_on(cpu, work);
65a64464 3023 }
93981800
TH
3024
3025 for_each_online_cpu(cpu)
3026 flush_work(per_cpu_ptr(works, cpu));
3027
95402b38 3028 put_online_cpus();
b6136773 3029 free_percpu(works);
15316ba8
CL
3030 return 0;
3031}
3032
eef6a7d5
AS
3033/**
3034 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3035 *
3036 * Forces execution of the kernel-global workqueue and blocks until its
3037 * completion.
3038 *
3039 * Think twice before calling this function! It's very easy to get into
3040 * trouble if you don't take great care. Either of the following situations
3041 * will lead to deadlock:
3042 *
3043 * One of the work items currently on the workqueue needs to acquire
3044 * a lock held by your code or its caller.
3045 *
3046 * Your code is running in the context of a work routine.
3047 *
3048 * They will be detected by lockdep when they occur, but the first might not
3049 * occur very often. It depends on what work items are on the workqueue and
3050 * what locks they need, which you have no control over.
3051 *
3052 * In most situations flushing the entire workqueue is overkill; you merely
3053 * need to know that a particular work item isn't queued and isn't running.
3054 * In such cases you should use cancel_delayed_work_sync() or
3055 * cancel_work_sync() instead.
3056 */
1da177e4
LT
3057void flush_scheduled_work(void)
3058{
d320c038 3059 flush_workqueue(system_wq);
1da177e4 3060}
ae90dd5d 3061EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3062
1fa44eca
JB
3063/**
3064 * execute_in_process_context - reliably execute the routine with user context
3065 * @fn: the function to execute
1fa44eca
JB
3066 * @ew: guaranteed storage for the execute work structure (must
3067 * be available when the work executes)
3068 *
3069 * Executes the function immediately if process context is available,
3070 * otherwise schedules the function for delayed execution.
3071 *
3072 * Returns: 0 - function was executed
3073 * 1 - function was scheduled for execution
3074 */
65f27f38 3075int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3076{
3077 if (!in_interrupt()) {
65f27f38 3078 fn(&ew->work);
1fa44eca
JB
3079 return 0;
3080 }
3081
65f27f38 3082 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3083 schedule_work(&ew->work);
3084
3085 return 1;
3086}
3087EXPORT_SYMBOL_GPL(execute_in_process_context);
3088
1da177e4
LT
3089int keventd_up(void)
3090{
d320c038 3091 return system_wq != NULL;
1da177e4
LT
3092}
3093
30cdf249 3094static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3095{
49e3cf44 3096 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3097 int cpu;
3098
3099 if (!(wq->flags & WQ_UNBOUND)) {
e904e6c2 3100 wq->pool_wq.pcpu = alloc_percpu(struct pool_workqueue);
30cdf249
TH
3101 if (!wq->pool_wq.pcpu)
3102 return -ENOMEM;
3103
3104 for_each_possible_cpu(cpu) {
3105 struct pool_workqueue *pwq = get_pwq(cpu, wq);
f3421797 3106
49e3cf44 3107 pwq->pool = get_std_worker_pool(cpu, highpri);
30cdf249
TH
3108 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3109 }
3110 } else {
3111 struct pool_workqueue *pwq;
3112
3113 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3114 if (!pwq)
3115 return -ENOMEM;
3116
3117 wq->pool_wq.single = pwq;
49e3cf44 3118 pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
30cdf249
TH
3119 list_add_tail(&pwq->pwqs_node, &wq->pwqs);
3120 }
3121
3122 return 0;
0f900049
TH
3123}
3124
112202d9 3125static void free_pwqs(struct workqueue_struct *wq)
0f900049 3126{
e06ffa1e 3127 if (!(wq->flags & WQ_UNBOUND))
112202d9 3128 free_percpu(wq->pool_wq.pcpu);
e904e6c2
TH
3129 else
3130 kmem_cache_free(pwq_cache, wq->pool_wq.single);
0f900049
TH
3131}
3132
f3421797
TH
3133static int wq_clamp_max_active(int max_active, unsigned int flags,
3134 const char *name)
b71ab8c2 3135{
f3421797
TH
3136 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3137
3138 if (max_active < 1 || max_active > lim)
044c782c
VI
3139 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3140 max_active, name, 1, lim);
b71ab8c2 3141
f3421797 3142 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3143}
3144
b196be89 3145struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3146 unsigned int flags,
3147 int max_active,
3148 struct lock_class_key *key,
b196be89 3149 const char *lock_name, ...)
1da177e4 3150{
b196be89 3151 va_list args, args1;
1da177e4 3152 struct workqueue_struct *wq;
49e3cf44 3153 struct pool_workqueue *pwq;
b196be89
TH
3154 size_t namelen;
3155
3156 /* determine namelen, allocate wq and format name */
3157 va_start(args, lock_name);
3158 va_copy(args1, args);
3159 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3160
3161 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3162 if (!wq)
3163 goto err;
3164
3165 vsnprintf(wq->name, namelen, fmt, args1);
3166 va_end(args);
3167 va_end(args1);
1da177e4 3168
6370a6ad
TH
3169 /*
3170 * Workqueues which may be used during memory reclaim should
3171 * have a rescuer to guarantee forward progress.
3172 */
3173 if (flags & WQ_MEM_RECLAIM)
3174 flags |= WQ_RESCUER;
3175
d320c038 3176 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3177 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3178
b196be89 3179 /* init wq */
97e37d7b 3180 wq->flags = flags;
a0a1a5fd 3181 wq->saved_max_active = max_active;
73f53c4a 3182 mutex_init(&wq->flush_mutex);
112202d9 3183 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3184 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3185 INIT_LIST_HEAD(&wq->flusher_queue);
3186 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3187
eb13ba87 3188 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3189 INIT_LIST_HEAD(&wq->list);
3af24433 3190
30cdf249 3191 if (alloc_and_link_pwqs(wq) < 0)
bdbc5dd7
TH
3192 goto err;
3193
49e3cf44 3194 for_each_pwq(pwq, wq) {
112202d9 3195 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
112202d9
TH
3196 pwq->wq = wq;
3197 pwq->flush_color = -1;
3198 pwq->max_active = max_active;
3199 INIT_LIST_HEAD(&pwq->delayed_works);
e22bee78 3200 }
1537663f 3201
e22bee78
TH
3202 if (flags & WQ_RESCUER) {
3203 struct worker *rescuer;
3204
f2e005aa 3205 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3206 goto err;
3207
3208 wq->rescuer = rescuer = alloc_worker();
3209 if (!rescuer)
3210 goto err;
3211
111c225a
TH
3212 rescuer->rescue_wq = wq;
3213 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3214 wq->name);
e22bee78
TH
3215 if (IS_ERR(rescuer->task))
3216 goto err;
3217
e22bee78
TH
3218 rescuer->task->flags |= PF_THREAD_BOUND;
3219 wake_up_process(rescuer->task);
3af24433
ON
3220 }
3221
a0a1a5fd
TH
3222 /*
3223 * workqueue_lock protects global freeze state and workqueues
3224 * list. Grab it, set max_active accordingly and add the new
3225 * workqueue to workqueues list.
3226 */
e98d5b16 3227 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3228
58a69cb4 3229 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
49e3cf44
TH
3230 for_each_pwq(pwq, wq)
3231 pwq->max_active = 0;
a0a1a5fd 3232
1537663f 3233 list_add(&wq->list, &workqueues);
a0a1a5fd 3234
e98d5b16 3235 spin_unlock_irq(&workqueue_lock);
1537663f 3236
3af24433 3237 return wq;
4690c4ab
TH
3238err:
3239 if (wq) {
112202d9 3240 free_pwqs(wq);
f2e005aa 3241 free_mayday_mask(wq->mayday_mask);
e22bee78 3242 kfree(wq->rescuer);
4690c4ab
TH
3243 kfree(wq);
3244 }
3245 return NULL;
3af24433 3246}
d320c038 3247EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3248
3af24433
ON
3249/**
3250 * destroy_workqueue - safely terminate a workqueue
3251 * @wq: target workqueue
3252 *
3253 * Safely destroy a workqueue. All work currently pending will be done first.
3254 */
3255void destroy_workqueue(struct workqueue_struct *wq)
3256{
49e3cf44 3257 struct pool_workqueue *pwq;
3af24433 3258
9c5a2ba7
TH
3259 /* drain it before proceeding with destruction */
3260 drain_workqueue(wq);
c8efcc25 3261
6183c009 3262 /* sanity checks */
49e3cf44 3263 for_each_pwq(pwq, wq) {
6183c009
TH
3264 int i;
3265
3266 for (i = 0; i < WORK_NR_COLORS; i++)
3267 if (WARN_ON(pwq->nr_in_flight[i]))
3268 return;
3269 if (WARN_ON(pwq->nr_active) ||
3270 WARN_ON(!list_empty(&pwq->delayed_works)))
3271 return;
3272 }
3273
a0a1a5fd
TH
3274 /*
3275 * wq list is used to freeze wq, remove from list after
3276 * flushing is complete in case freeze races us.
3277 */
e98d5b16 3278 spin_lock_irq(&workqueue_lock);
b1f4ec17 3279 list_del(&wq->list);
e98d5b16 3280 spin_unlock_irq(&workqueue_lock);
3af24433 3281
e22bee78
TH
3282 if (wq->flags & WQ_RESCUER) {
3283 kthread_stop(wq->rescuer->task);
f2e005aa 3284 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3285 kfree(wq->rescuer);
e22bee78
TH
3286 }
3287
112202d9 3288 free_pwqs(wq);
3af24433
ON
3289 kfree(wq);
3290}
3291EXPORT_SYMBOL_GPL(destroy_workqueue);
3292
9f4bd4cd 3293/**
112202d9
TH
3294 * pwq_set_max_active - adjust max_active of a pwq
3295 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3296 * @max_active: new max_active value.
3297 *
112202d9 3298 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3299 * increased.
3300 *
3301 * CONTEXT:
d565ed63 3302 * spin_lock_irq(pool->lock).
9f4bd4cd 3303 */
112202d9 3304static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3305{
112202d9 3306 pwq->max_active = max_active;
9f4bd4cd 3307
112202d9
TH
3308 while (!list_empty(&pwq->delayed_works) &&
3309 pwq->nr_active < pwq->max_active)
3310 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3311}
3312
dcd989cb
TH
3313/**
3314 * workqueue_set_max_active - adjust max_active of a workqueue
3315 * @wq: target workqueue
3316 * @max_active: new max_active value.
3317 *
3318 * Set max_active of @wq to @max_active.
3319 *
3320 * CONTEXT:
3321 * Don't call from IRQ context.
3322 */
3323void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3324{
49e3cf44 3325 struct pool_workqueue *pwq;
dcd989cb 3326
f3421797 3327 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3328
e98d5b16 3329 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3330
3331 wq->saved_max_active = max_active;
3332
49e3cf44 3333 for_each_pwq(pwq, wq) {
112202d9 3334 struct worker_pool *pool = pwq->pool;
dcd989cb 3335
e98d5b16 3336 spin_lock(&pool->lock);
dcd989cb 3337
58a69cb4 3338 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3339 !(pool->flags & POOL_FREEZING))
112202d9 3340 pwq_set_max_active(pwq, max_active);
9bfb1839 3341
e98d5b16 3342 spin_unlock(&pool->lock);
65a64464 3343 }
93981800 3344
e98d5b16 3345 spin_unlock_irq(&workqueue_lock);
15316ba8 3346}
dcd989cb 3347EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3348
eef6a7d5 3349/**
dcd989cb
TH
3350 * workqueue_congested - test whether a workqueue is congested
3351 * @cpu: CPU in question
3352 * @wq: target workqueue
eef6a7d5 3353 *
dcd989cb
TH
3354 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3355 * no synchronization around this function and the test result is
3356 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3357 *
dcd989cb
TH
3358 * RETURNS:
3359 * %true if congested, %false otherwise.
eef6a7d5 3360 */
dcd989cb 3361bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3362{
112202d9 3363 struct pool_workqueue *pwq = get_pwq(cpu, wq);
dcd989cb 3364
112202d9 3365 return !list_empty(&pwq->delayed_works);
1da177e4 3366}
dcd989cb 3367EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3368
dcd989cb
TH
3369/**
3370 * work_busy - test whether a work is currently pending or running
3371 * @work: the work to be tested
3372 *
3373 * Test whether @work is currently pending or running. There is no
3374 * synchronization around this function and the test result is
3375 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3376 *
3377 * RETURNS:
3378 * OR'd bitmask of WORK_BUSY_* bits.
3379 */
3380unsigned int work_busy(struct work_struct *work)
1da177e4 3381{
c9e7cf27 3382 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3383 unsigned long flags;
3384 unsigned int ret = 0;
1da177e4 3385
dcd989cb
TH
3386 if (work_pending(work))
3387 ret |= WORK_BUSY_PENDING;
1da177e4 3388
038366c5
LJ
3389 if (pool) {
3390 spin_lock_irqsave(&pool->lock, flags);
3391 if (find_worker_executing_work(pool, work))
3392 ret |= WORK_BUSY_RUNNING;
3393 spin_unlock_irqrestore(&pool->lock, flags);
3394 }
1da177e4 3395
dcd989cb 3396 return ret;
1da177e4 3397}
dcd989cb 3398EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3399
db7bccf4
TH
3400/*
3401 * CPU hotplug.
3402 *
e22bee78 3403 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3404 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3405 * pool which make migrating pending and scheduled works very
e22bee78 3406 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3407 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3408 * blocked draining impractical.
3409 *
24647570 3410 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3411 * running as an unbound one and allowing it to be reattached later if the
3412 * cpu comes back online.
db7bccf4 3413 */
1da177e4 3414
706026c2 3415static void wq_unbind_fn(struct work_struct *work)
3af24433 3416{
38db41d9 3417 int cpu = smp_processor_id();
4ce62e9e 3418 struct worker_pool *pool;
db7bccf4 3419 struct worker *worker;
db7bccf4 3420 int i;
3af24433 3421
38db41d9 3422 for_each_std_worker_pool(pool, cpu) {
6183c009 3423 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3424
94cf58bb
TH
3425 mutex_lock(&pool->assoc_mutex);
3426 spin_lock_irq(&pool->lock);
3af24433 3427
94cf58bb
TH
3428 /*
3429 * We've claimed all manager positions. Make all workers
3430 * unbound and set DISASSOCIATED. Before this, all workers
3431 * except for the ones which are still executing works from
3432 * before the last CPU down must be on the cpu. After
3433 * this, they may become diasporas.
3434 */
4ce62e9e 3435 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3436 worker->flags |= WORKER_UNBOUND;
3af24433 3437
b67bfe0d 3438 for_each_busy_worker(worker, i, pool)
c9e7cf27 3439 worker->flags |= WORKER_UNBOUND;
06ba38a9 3440
24647570 3441 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3442
94cf58bb
TH
3443 spin_unlock_irq(&pool->lock);
3444 mutex_unlock(&pool->assoc_mutex);
3445 }
628c78e7 3446
e22bee78 3447 /*
403c821d 3448 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3449 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3450 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3451 */
e22bee78 3452 schedule();
06ba38a9 3453
e22bee78 3454 /*
628c78e7
TH
3455 * Sched callbacks are disabled now. Zap nr_running. After this,
3456 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3457 * are always true as long as the worklist is not empty. Pools on
3458 * @cpu now behave as unbound (in terms of concurrency management)
3459 * pools which are served by workers tied to the CPU.
628c78e7
TH
3460 *
3461 * On return from this function, the current worker would trigger
3462 * unbound chain execution of pending work items if other workers
3463 * didn't already.
e22bee78 3464 */
38db41d9 3465 for_each_std_worker_pool(pool, cpu)
e19e397a 3466 atomic_set(&pool->nr_running, 0);
3af24433 3467}
3af24433 3468
8db25e78
TH
3469/*
3470 * Workqueues should be brought up before normal priority CPU notifiers.
3471 * This will be registered high priority CPU notifier.
3472 */
9fdf9b73 3473static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3474 unsigned long action,
3475 void *hcpu)
3af24433
ON
3476{
3477 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3478 struct worker_pool *pool;
3ce63377 3479
8db25e78 3480 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3481 case CPU_UP_PREPARE:
38db41d9 3482 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3483 struct worker *worker;
3484
3485 if (pool->nr_workers)
3486 continue;
3487
3488 worker = create_worker(pool);
3489 if (!worker)
3490 return NOTIFY_BAD;
3491
d565ed63 3492 spin_lock_irq(&pool->lock);
3ce63377 3493 start_worker(worker);
d565ed63 3494 spin_unlock_irq(&pool->lock);
3af24433 3495 }
8db25e78 3496 break;
3af24433 3497
db7bccf4
TH
3498 case CPU_DOWN_FAILED:
3499 case CPU_ONLINE:
38db41d9 3500 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3501 mutex_lock(&pool->assoc_mutex);
3502 spin_lock_irq(&pool->lock);
3503
24647570 3504 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3505 rebind_workers(pool);
3506
3507 spin_unlock_irq(&pool->lock);
3508 mutex_unlock(&pool->assoc_mutex);
3509 }
db7bccf4 3510 break;
00dfcaf7 3511 }
65758202
TH
3512 return NOTIFY_OK;
3513}
3514
3515/*
3516 * Workqueues should be brought down after normal priority CPU notifiers.
3517 * This will be registered as low priority CPU notifier.
3518 */
9fdf9b73 3519static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3520 unsigned long action,
3521 void *hcpu)
3522{
8db25e78
TH
3523 unsigned int cpu = (unsigned long)hcpu;
3524 struct work_struct unbind_work;
3525
65758202
TH
3526 switch (action & ~CPU_TASKS_FROZEN) {
3527 case CPU_DOWN_PREPARE:
8db25e78 3528 /* unbinding should happen on the local CPU */
706026c2 3529 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3530 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3531 flush_work(&unbind_work);
3532 break;
65758202
TH
3533 }
3534 return NOTIFY_OK;
3535}
3536
2d3854a3 3537#ifdef CONFIG_SMP
8ccad40d 3538
2d3854a3 3539struct work_for_cpu {
ed48ece2 3540 struct work_struct work;
2d3854a3
RR
3541 long (*fn)(void *);
3542 void *arg;
3543 long ret;
3544};
3545
ed48ece2 3546static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3547{
ed48ece2
TH
3548 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3549
2d3854a3
RR
3550 wfc->ret = wfc->fn(wfc->arg);
3551}
3552
3553/**
3554 * work_on_cpu - run a function in user context on a particular cpu
3555 * @cpu: the cpu to run on
3556 * @fn: the function to run
3557 * @arg: the function arg
3558 *
31ad9081
RR
3559 * This will return the value @fn returns.
3560 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3561 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3562 */
3563long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3564{
ed48ece2 3565 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3566
ed48ece2
TH
3567 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3568 schedule_work_on(cpu, &wfc.work);
3569 flush_work(&wfc.work);
2d3854a3
RR
3570 return wfc.ret;
3571}
3572EXPORT_SYMBOL_GPL(work_on_cpu);
3573#endif /* CONFIG_SMP */
3574
a0a1a5fd
TH
3575#ifdef CONFIG_FREEZER
3576
3577/**
3578 * freeze_workqueues_begin - begin freezing workqueues
3579 *
58a69cb4
TH
3580 * Start freezing workqueues. After this function returns, all freezable
3581 * workqueues will queue new works to their frozen_works list instead of
706026c2 3582 * pool->worklist.
a0a1a5fd
TH
3583 *
3584 * CONTEXT:
d565ed63 3585 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3586 */
3587void freeze_workqueues_begin(void)
3588{
a0a1a5fd
TH
3589 unsigned int cpu;
3590
e98d5b16 3591 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3592
6183c009 3593 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
3594 workqueue_freezing = true;
3595
706026c2 3596 for_each_wq_cpu(cpu) {
35b6bb63 3597 struct worker_pool *pool;
bdbc5dd7 3598 struct workqueue_struct *wq;
8b03ae3c 3599
38db41d9 3600 for_each_std_worker_pool(pool, cpu) {
e98d5b16 3601 spin_lock(&pool->lock);
d565ed63 3602
35b6bb63
TH
3603 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3604 pool->flags |= POOL_FREEZING;
db7bccf4 3605
a1056305 3606 list_for_each_entry(wq, &workqueues, list) {
112202d9 3607 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3608
112202d9 3609 if (pwq && pwq->pool == pool &&
a1056305 3610 (wq->flags & WQ_FREEZABLE))
112202d9 3611 pwq->max_active = 0;
a1056305 3612 }
8b03ae3c 3613
e98d5b16 3614 spin_unlock(&pool->lock);
a1056305 3615 }
a0a1a5fd
TH
3616 }
3617
e98d5b16 3618 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3619}
3620
3621/**
58a69cb4 3622 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3623 *
3624 * Check whether freezing is complete. This function must be called
3625 * between freeze_workqueues_begin() and thaw_workqueues().
3626 *
3627 * CONTEXT:
3628 * Grabs and releases workqueue_lock.
3629 *
3630 * RETURNS:
58a69cb4
TH
3631 * %true if some freezable workqueues are still busy. %false if freezing
3632 * is complete.
a0a1a5fd
TH
3633 */
3634bool freeze_workqueues_busy(void)
3635{
a0a1a5fd
TH
3636 unsigned int cpu;
3637 bool busy = false;
3638
e98d5b16 3639 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3640
6183c009 3641 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 3642
706026c2 3643 for_each_wq_cpu(cpu) {
bdbc5dd7 3644 struct workqueue_struct *wq;
a0a1a5fd
TH
3645 /*
3646 * nr_active is monotonically decreasing. It's safe
3647 * to peek without lock.
3648 */
3649 list_for_each_entry(wq, &workqueues, list) {
112202d9 3650 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3651
112202d9 3652 if (!pwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3653 continue;
3654
6183c009 3655 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 3656 if (pwq->nr_active) {
a0a1a5fd
TH
3657 busy = true;
3658 goto out_unlock;
3659 }
3660 }
3661 }
3662out_unlock:
e98d5b16 3663 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3664 return busy;
3665}
3666
3667/**
3668 * thaw_workqueues - thaw workqueues
3669 *
3670 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3671 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3672 *
3673 * CONTEXT:
d565ed63 3674 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3675 */
3676void thaw_workqueues(void)
3677{
a0a1a5fd
TH
3678 unsigned int cpu;
3679
e98d5b16 3680 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
3681
3682 if (!workqueue_freezing)
3683 goto out_unlock;
3684
706026c2 3685 for_each_wq_cpu(cpu) {
4ce62e9e 3686 struct worker_pool *pool;
bdbc5dd7 3687 struct workqueue_struct *wq;
8b03ae3c 3688
38db41d9 3689 for_each_std_worker_pool(pool, cpu) {
e98d5b16 3690 spin_lock(&pool->lock);
d565ed63 3691
35b6bb63
TH
3692 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3693 pool->flags &= ~POOL_FREEZING;
db7bccf4 3694
a1056305 3695 list_for_each_entry(wq, &workqueues, list) {
112202d9 3696 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3697
112202d9 3698 if (!pwq || pwq->pool != pool ||
a1056305
TH
3699 !(wq->flags & WQ_FREEZABLE))
3700 continue;
a0a1a5fd 3701
a1056305 3702 /* restore max_active and repopulate worklist */
112202d9 3703 pwq_set_max_active(pwq, wq->saved_max_active);
a1056305 3704 }
8b03ae3c 3705
4ce62e9e 3706 wake_up_worker(pool);
a1056305 3707
e98d5b16 3708 spin_unlock(&pool->lock);
d565ed63 3709 }
a0a1a5fd
TH
3710 }
3711
3712 workqueue_freezing = false;
3713out_unlock:
e98d5b16 3714 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3715}
3716#endif /* CONFIG_FREEZER */
3717
6ee0578b 3718static int __init init_workqueues(void)
1da177e4 3719{
c34056a3
TH
3720 unsigned int cpu;
3721
7c3eed5c
TH
3722 /* make sure we have enough bits for OFFQ pool ID */
3723 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3724 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3725
e904e6c2
TH
3726 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
3727
3728 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
3729
65758202 3730 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3731 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3732
706026c2
TH
3733 /* initialize CPU pools */
3734 for_each_wq_cpu(cpu) {
4ce62e9e 3735 struct worker_pool *pool;
8b03ae3c 3736
38db41d9 3737 for_each_std_worker_pool(pool, cpu) {
d565ed63 3738 spin_lock_init(&pool->lock);
ec22ca5e 3739 pool->cpu = cpu;
24647570 3740 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3741 INIT_LIST_HEAD(&pool->worklist);
3742 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3743 hash_init(pool->busy_hash);
e7577c50 3744
4ce62e9e
TH
3745 init_timer_deferrable(&pool->idle_timer);
3746 pool->idle_timer.function = idle_worker_timeout;
3747 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3748
706026c2 3749 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3750 (unsigned long)pool);
3751
b2eb83d1 3752 mutex_init(&pool->assoc_mutex);
4ce62e9e 3753 ida_init(&pool->worker_ida);
9daf9e67
TH
3754
3755 /* alloc pool ID */
3756 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3757 }
8b03ae3c
TH
3758 }
3759
e22bee78 3760 /* create the initial worker */
706026c2 3761 for_each_online_wq_cpu(cpu) {
4ce62e9e 3762 struct worker_pool *pool;
e22bee78 3763
38db41d9 3764 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3765 struct worker *worker;
3766
24647570
TH
3767 if (cpu != WORK_CPU_UNBOUND)
3768 pool->flags &= ~POOL_DISASSOCIATED;
3769
bc2ae0f5 3770 worker = create_worker(pool);
4ce62e9e 3771 BUG_ON(!worker);
d565ed63 3772 spin_lock_irq(&pool->lock);
4ce62e9e 3773 start_worker(worker);
d565ed63 3774 spin_unlock_irq(&pool->lock);
4ce62e9e 3775 }
e22bee78
TH
3776 }
3777
d320c038 3778 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3779 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3780 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3781 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3782 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3783 system_freezable_wq = alloc_workqueue("events_freezable",
3784 WQ_FREEZABLE, 0);
1aabe902 3785 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3786 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3787 return 0;
1da177e4 3788}
6ee0578b 3789early_initcall(init_workqueues);