]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/workqueue.c
workqueue: separate out init_worker_pool() from init_workqueues()
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
76af4d93 45#include <linux/rculist.h>
e22bee78 46
ea138446 47#include "workqueue_internal.h"
1da177e4 48
c8e55f36 49enum {
24647570
TH
50 /*
51 * worker_pool flags
bc2ae0f5 52 *
24647570 53 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
54 * While associated (!DISASSOCIATED), all workers are bound to the
55 * CPU and none has %WORKER_UNBOUND set and concurrency management
56 * is in effect.
57 *
58 * While DISASSOCIATED, the cpu may be offline and all workers have
59 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 60 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
61 *
62 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
63 * assoc_mutex to avoid changing binding state while
64 * create_worker() is in progress.
bc2ae0f5 65 */
11ebea50 66 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
76af4d93
TH
121 *
122 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
1da177e4 123 */
1da177e4 124
2eaebdb3 125/* struct worker is defined in workqueue_internal.h */
c34056a3 126
bd7bdd43 127struct worker_pool {
d565ed63 128 spinlock_t lock; /* the pool lock */
d84ff051 129 int cpu; /* I: the associated cpu */
9daf9e67 130 int id; /* I: pool ID */
11ebea50 131 unsigned int flags; /* X: flags */
bd7bdd43
TH
132
133 struct list_head worklist; /* L: list of pending works */
134 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
135
136 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
137 int nr_idle; /* L: currently idle ones */
138
139 struct list_head idle_list; /* X: list of idle workers */
140 struct timer_list idle_timer; /* L: worker idle timeout */
141 struct timer_list mayday_timer; /* L: SOS timer for workers */
142
c9e7cf27
TH
143 /* workers are chained either in busy_hash or idle_list */
144 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
145 /* L: hash of busy workers */
146
34a06bd6 147 struct mutex manager_arb; /* manager arbitration */
24647570 148 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 149 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
150
151 /*
152 * The current concurrency level. As it's likely to be accessed
153 * from other CPUs during try_to_wake_up(), put it in a separate
154 * cacheline.
155 */
156 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
157} ____cacheline_aligned_in_smp;
158
1da177e4 159/*
112202d9
TH
160 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
161 * of work_struct->data are used for flags and the remaining high bits
162 * point to the pwq; thus, pwqs need to be aligned at two's power of the
163 * number of flag bits.
1da177e4 164 */
112202d9 165struct pool_workqueue {
bd7bdd43 166 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 167 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
168 int work_color; /* L: current color */
169 int flush_color; /* L: flushing color */
170 int nr_in_flight[WORK_NR_COLORS];
171 /* L: nr of in_flight works */
1e19ffc6 172 int nr_active; /* L: nr of active works */
a0a1a5fd 173 int max_active; /* L: max active works */
1e19ffc6 174 struct list_head delayed_works; /* L: delayed works */
76af4d93 175 struct list_head pwqs_node; /* R: node on wq->pwqs */
493a1724 176 struct list_head mayday_node; /* W: node on wq->maydays */
e904e6c2 177} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 178
73f53c4a
TH
179/*
180 * Structure used to wait for workqueue flush.
181 */
182struct wq_flusher {
183 struct list_head list; /* F: list of flushers */
184 int flush_color; /* F: flush color waiting for */
185 struct completion done; /* flush completion */
186};
187
1da177e4
LT
188/*
189 * The externally visible workqueue abstraction is an array of
190 * per-CPU workqueues:
191 */
192struct workqueue_struct {
9c5a2ba7 193 unsigned int flags; /* W: WQ_* flags */
420c0ddb 194 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
76af4d93 195 struct list_head pwqs; /* R: all pwqs of this wq */
4690c4ab 196 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
197
198 struct mutex flush_mutex; /* protects wq flushing */
199 int work_color; /* F: current work color */
200 int flush_color; /* F: current flush color */
112202d9 201 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
202 struct wq_flusher *first_flusher; /* F: first flusher */
203 struct list_head flusher_queue; /* F: flush waiters */
204 struct list_head flusher_overflow; /* F: flush overflow list */
205
493a1724 206 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
207 struct worker *rescuer; /* I: rescue worker */
208
9c5a2ba7 209 int nr_drainers; /* W: drain in progress */
112202d9 210 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 211#ifdef CONFIG_LOCKDEP
4690c4ab 212 struct lockdep_map lockdep_map;
4e6045f1 213#endif
b196be89 214 char name[]; /* I: workqueue name */
1da177e4
LT
215};
216
e904e6c2
TH
217static struct kmem_cache *pwq_cache;
218
d320c038 219struct workqueue_struct *system_wq __read_mostly;
d320c038 220EXPORT_SYMBOL_GPL(system_wq);
044c782c 221struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 222EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 223struct workqueue_struct *system_long_wq __read_mostly;
d320c038 224EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 225struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 226EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 227struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 228EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 229
97bd2347
TH
230#define CREATE_TRACE_POINTS
231#include <trace/events/workqueue.h>
232
76af4d93
TH
233#define assert_rcu_or_wq_lock() \
234 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
235 lockdep_is_held(&workqueue_lock), \
236 "sched RCU or workqueue lock should be held")
237
38db41d9 238#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
239 for ((pool) = &std_worker_pools(cpu)[0]; \
240 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 241
b67bfe0d
SL
242#define for_each_busy_worker(worker, i, pool) \
243 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 244
706026c2
TH
245static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
246 unsigned int sw)
f3421797
TH
247{
248 if (cpu < nr_cpu_ids) {
249 if (sw & 1) {
250 cpu = cpumask_next(cpu, mask);
251 if (cpu < nr_cpu_ids)
252 return cpu;
253 }
254 if (sw & 2)
255 return WORK_CPU_UNBOUND;
256 }
6be19588 257 return WORK_CPU_END;
f3421797
TH
258}
259
09884951
TH
260/*
261 * CPU iterators
262 *
706026c2 263 * An extra cpu number is defined using an invalid cpu number
09884951 264 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
265 * specific CPU. The following iterators are similar to for_each_*_cpu()
266 * iterators but also considers the unbound CPU.
09884951 267 *
706026c2
TH
268 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
269 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951 270 */
706026c2
TH
271#define for_each_wq_cpu(cpu) \
272 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 273 (cpu) < WORK_CPU_END; \
706026c2 274 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 275
706026c2
TH
276#define for_each_online_wq_cpu(cpu) \
277 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 278 (cpu) < WORK_CPU_END; \
706026c2 279 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 280
17116969
TH
281/**
282 * for_each_pool - iterate through all worker_pools in the system
283 * @pool: iteration cursor
284 * @id: integer used for iteration
fa1b54e6
TH
285 *
286 * This must be called either with workqueue_lock held or sched RCU read
287 * locked. If the pool needs to be used beyond the locking in effect, the
288 * caller is responsible for guaranteeing that the pool stays online.
289 *
290 * The if/else clause exists only for the lockdep assertion and can be
291 * ignored.
17116969
TH
292 */
293#define for_each_pool(pool, id) \
fa1b54e6
TH
294 idr_for_each_entry(&worker_pool_idr, pool, id) \
295 if (({ assert_rcu_or_wq_lock(); false; })) { } \
296 else
17116969 297
49e3cf44
TH
298/**
299 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
300 * @pwq: iteration cursor
301 * @wq: the target workqueue
76af4d93
TH
302 *
303 * This must be called either with workqueue_lock held or sched RCU read
304 * locked. If the pwq needs to be used beyond the locking in effect, the
305 * caller is responsible for guaranteeing that the pwq stays online.
306 *
307 * The if/else clause exists only for the lockdep assertion and can be
308 * ignored.
49e3cf44
TH
309 */
310#define for_each_pwq(pwq, wq) \
76af4d93
TH
311 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
312 if (({ assert_rcu_or_wq_lock(); false; })) { } \
313 else
f3421797 314
dc186ad7
TG
315#ifdef CONFIG_DEBUG_OBJECTS_WORK
316
317static struct debug_obj_descr work_debug_descr;
318
99777288
SG
319static void *work_debug_hint(void *addr)
320{
321 return ((struct work_struct *) addr)->func;
322}
323
dc186ad7
TG
324/*
325 * fixup_init is called when:
326 * - an active object is initialized
327 */
328static int work_fixup_init(void *addr, enum debug_obj_state state)
329{
330 struct work_struct *work = addr;
331
332 switch (state) {
333 case ODEBUG_STATE_ACTIVE:
334 cancel_work_sync(work);
335 debug_object_init(work, &work_debug_descr);
336 return 1;
337 default:
338 return 0;
339 }
340}
341
342/*
343 * fixup_activate is called when:
344 * - an active object is activated
345 * - an unknown object is activated (might be a statically initialized object)
346 */
347static int work_fixup_activate(void *addr, enum debug_obj_state state)
348{
349 struct work_struct *work = addr;
350
351 switch (state) {
352
353 case ODEBUG_STATE_NOTAVAILABLE:
354 /*
355 * This is not really a fixup. The work struct was
356 * statically initialized. We just make sure that it
357 * is tracked in the object tracker.
358 */
22df02bb 359 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
360 debug_object_init(work, &work_debug_descr);
361 debug_object_activate(work, &work_debug_descr);
362 return 0;
363 }
364 WARN_ON_ONCE(1);
365 return 0;
366
367 case ODEBUG_STATE_ACTIVE:
368 WARN_ON(1);
369
370 default:
371 return 0;
372 }
373}
374
375/*
376 * fixup_free is called when:
377 * - an active object is freed
378 */
379static int work_fixup_free(void *addr, enum debug_obj_state state)
380{
381 struct work_struct *work = addr;
382
383 switch (state) {
384 case ODEBUG_STATE_ACTIVE:
385 cancel_work_sync(work);
386 debug_object_free(work, &work_debug_descr);
387 return 1;
388 default:
389 return 0;
390 }
391}
392
393static struct debug_obj_descr work_debug_descr = {
394 .name = "work_struct",
99777288 395 .debug_hint = work_debug_hint,
dc186ad7
TG
396 .fixup_init = work_fixup_init,
397 .fixup_activate = work_fixup_activate,
398 .fixup_free = work_fixup_free,
399};
400
401static inline void debug_work_activate(struct work_struct *work)
402{
403 debug_object_activate(work, &work_debug_descr);
404}
405
406static inline void debug_work_deactivate(struct work_struct *work)
407{
408 debug_object_deactivate(work, &work_debug_descr);
409}
410
411void __init_work(struct work_struct *work, int onstack)
412{
413 if (onstack)
414 debug_object_init_on_stack(work, &work_debug_descr);
415 else
416 debug_object_init(work, &work_debug_descr);
417}
418EXPORT_SYMBOL_GPL(__init_work);
419
420void destroy_work_on_stack(struct work_struct *work)
421{
422 debug_object_free(work, &work_debug_descr);
423}
424EXPORT_SYMBOL_GPL(destroy_work_on_stack);
425
426#else
427static inline void debug_work_activate(struct work_struct *work) { }
428static inline void debug_work_deactivate(struct work_struct *work) { }
429#endif
430
95402b38
GS
431/* Serializes the accesses to the list of workqueues. */
432static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 433static LIST_HEAD(workqueues);
a0a1a5fd 434static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 435
e22bee78 436/*
e19e397a
TH
437 * The CPU and unbound standard worker pools. The unbound ones have
438 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 439 */
e19e397a
TH
440static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
441 cpu_std_worker_pools);
a60dc39c 442static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 443
fa1b54e6
TH
444/*
445 * idr of all pools. Modifications are protected by workqueue_lock. Read
446 * accesses are protected by sched-RCU protected.
447 */
9daf9e67
TH
448static DEFINE_IDR(worker_pool_idr);
449
c34056a3 450static int worker_thread(void *__worker);
1da177e4 451
a60dc39c 452static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 453{
f3421797 454 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 455 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 456 else
a60dc39c 457 return unbound_std_worker_pools;
8b03ae3c
TH
458}
459
4e8f0a60
TH
460static int std_worker_pool_pri(struct worker_pool *pool)
461{
a60dc39c 462 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
463}
464
9daf9e67
TH
465/* allocate ID and assign it to @pool */
466static int worker_pool_assign_id(struct worker_pool *pool)
467{
468 int ret;
469
fa1b54e6
TH
470 do {
471 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
472 return -ENOMEM;
9daf9e67 473
fa1b54e6
TH
474 spin_lock_irq(&workqueue_lock);
475 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
476 spin_unlock_irq(&workqueue_lock);
477 } while (ret == -EAGAIN);
9daf9e67 478
fa1b54e6 479 return ret;
7c3eed5c
TH
480}
481
d565ed63
TH
482static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
483{
a60dc39c 484 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 485
a60dc39c 486 return &pools[highpri];
d565ed63
TH
487}
488
76af4d93
TH
489/**
490 * first_pwq - return the first pool_workqueue of the specified workqueue
491 * @wq: the target workqueue
492 *
493 * This must be called either with workqueue_lock held or sched RCU read
494 * locked. If the pwq needs to be used beyond the locking in effect, the
495 * caller is responsible for guaranteeing that the pwq stays online.
496 */
7fb98ea7 497static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 498{
76af4d93
TH
499 assert_rcu_or_wq_lock();
500 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
501 pwqs_node);
b1f4ec17
ON
502}
503
73f53c4a
TH
504static unsigned int work_color_to_flags(int color)
505{
506 return color << WORK_STRUCT_COLOR_SHIFT;
507}
508
509static int get_work_color(struct work_struct *work)
510{
511 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
512 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
513}
514
515static int work_next_color(int color)
516{
517 return (color + 1) % WORK_NR_COLORS;
518}
1da177e4 519
14441960 520/*
112202d9
TH
521 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
522 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 523 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 524 *
112202d9
TH
525 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
526 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
527 * work->data. These functions should only be called while the work is
528 * owned - ie. while the PENDING bit is set.
7a22ad75 529 *
112202d9 530 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 531 * corresponding to a work. Pool is available once the work has been
112202d9 532 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 533 * available only while the work item is queued.
7a22ad75 534 *
bbb68dfa
TH
535 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
536 * canceled. While being canceled, a work item may have its PENDING set
537 * but stay off timer and worklist for arbitrarily long and nobody should
538 * try to steal the PENDING bit.
14441960 539 */
7a22ad75
TH
540static inline void set_work_data(struct work_struct *work, unsigned long data,
541 unsigned long flags)
365970a1 542{
6183c009 543 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
544 atomic_long_set(&work->data, data | flags | work_static(work));
545}
365970a1 546
112202d9 547static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
548 unsigned long extra_flags)
549{
112202d9
TH
550 set_work_data(work, (unsigned long)pwq,
551 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
552}
553
4468a00f
LJ
554static void set_work_pool_and_keep_pending(struct work_struct *work,
555 int pool_id)
556{
557 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
558 WORK_STRUCT_PENDING);
559}
560
7c3eed5c
TH
561static void set_work_pool_and_clear_pending(struct work_struct *work,
562 int pool_id)
7a22ad75 563{
23657bb1
TH
564 /*
565 * The following wmb is paired with the implied mb in
566 * test_and_set_bit(PENDING) and ensures all updates to @work made
567 * here are visible to and precede any updates by the next PENDING
568 * owner.
569 */
570 smp_wmb();
7c3eed5c 571 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 572}
f756d5e2 573
7a22ad75 574static void clear_work_data(struct work_struct *work)
1da177e4 575{
7c3eed5c
TH
576 smp_wmb(); /* see set_work_pool_and_clear_pending() */
577 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
578}
579
112202d9 580static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 581{
e120153d 582 unsigned long data = atomic_long_read(&work->data);
7a22ad75 583
112202d9 584 if (data & WORK_STRUCT_PWQ)
e120153d
TH
585 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
586 else
587 return NULL;
4d707b9f
ON
588}
589
7c3eed5c
TH
590/**
591 * get_work_pool - return the worker_pool a given work was associated with
592 * @work: the work item of interest
593 *
594 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
595 *
596 * Pools are created and destroyed under workqueue_lock, and allows read
597 * access under sched-RCU read lock. As such, this function should be
598 * called under workqueue_lock or with preemption disabled.
599 *
600 * All fields of the returned pool are accessible as long as the above
601 * mentioned locking is in effect. If the returned pool needs to be used
602 * beyond the critical section, the caller is responsible for ensuring the
603 * returned pool is and stays online.
7c3eed5c
TH
604 */
605static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 606{
e120153d 607 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 608 int pool_id;
7a22ad75 609
fa1b54e6
TH
610 assert_rcu_or_wq_lock();
611
112202d9
TH
612 if (data & WORK_STRUCT_PWQ)
613 return ((struct pool_workqueue *)
7c3eed5c 614 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 615
7c3eed5c
TH
616 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
617 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
618 return NULL;
619
fa1b54e6 620 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
621}
622
623/**
624 * get_work_pool_id - return the worker pool ID a given work is associated with
625 * @work: the work item of interest
626 *
627 * Return the worker_pool ID @work was last associated with.
628 * %WORK_OFFQ_POOL_NONE if none.
629 */
630static int get_work_pool_id(struct work_struct *work)
631{
54d5b7d0
LJ
632 unsigned long data = atomic_long_read(&work->data);
633
112202d9
TH
634 if (data & WORK_STRUCT_PWQ)
635 return ((struct pool_workqueue *)
54d5b7d0 636 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 637
54d5b7d0 638 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
639}
640
bbb68dfa
TH
641static void mark_work_canceling(struct work_struct *work)
642{
7c3eed5c 643 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 644
7c3eed5c
TH
645 pool_id <<= WORK_OFFQ_POOL_SHIFT;
646 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
647}
648
649static bool work_is_canceling(struct work_struct *work)
650{
651 unsigned long data = atomic_long_read(&work->data);
652
112202d9 653 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
654}
655
e22bee78 656/*
3270476a
TH
657 * Policy functions. These define the policies on how the global worker
658 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 659 * they're being called with pool->lock held.
e22bee78
TH
660 */
661
63d95a91 662static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 663{
e19e397a 664 return !atomic_read(&pool->nr_running);
a848e3b6
ON
665}
666
4594bf15 667/*
e22bee78
TH
668 * Need to wake up a worker? Called from anything but currently
669 * running workers.
974271c4
TH
670 *
671 * Note that, because unbound workers never contribute to nr_running, this
706026c2 672 * function will always return %true for unbound pools as long as the
974271c4 673 * worklist isn't empty.
4594bf15 674 */
63d95a91 675static bool need_more_worker(struct worker_pool *pool)
365970a1 676{
63d95a91 677 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 678}
4594bf15 679
e22bee78 680/* Can I start working? Called from busy but !running workers. */
63d95a91 681static bool may_start_working(struct worker_pool *pool)
e22bee78 682{
63d95a91 683 return pool->nr_idle;
e22bee78
TH
684}
685
686/* Do I need to keep working? Called from currently running workers. */
63d95a91 687static bool keep_working(struct worker_pool *pool)
e22bee78 688{
e19e397a
TH
689 return !list_empty(&pool->worklist) &&
690 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
691}
692
693/* Do we need a new worker? Called from manager. */
63d95a91 694static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 695{
63d95a91 696 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 697}
365970a1 698
e22bee78 699/* Do I need to be the manager? */
63d95a91 700static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 701{
63d95a91 702 return need_to_create_worker(pool) ||
11ebea50 703 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
704}
705
706/* Do we have too many workers and should some go away? */
63d95a91 707static bool too_many_workers(struct worker_pool *pool)
e22bee78 708{
34a06bd6 709 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
710 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
711 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 712
ea1abd61
LJ
713 /*
714 * nr_idle and idle_list may disagree if idle rebinding is in
715 * progress. Never return %true if idle_list is empty.
716 */
717 if (list_empty(&pool->idle_list))
718 return false;
719
e22bee78 720 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
721}
722
4d707b9f 723/*
e22bee78
TH
724 * Wake up functions.
725 */
726
7e11629d 727/* Return the first worker. Safe with preemption disabled */
63d95a91 728static struct worker *first_worker(struct worker_pool *pool)
7e11629d 729{
63d95a91 730 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
731 return NULL;
732
63d95a91 733 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
734}
735
736/**
737 * wake_up_worker - wake up an idle worker
63d95a91 738 * @pool: worker pool to wake worker from
7e11629d 739 *
63d95a91 740 * Wake up the first idle worker of @pool.
7e11629d
TH
741 *
742 * CONTEXT:
d565ed63 743 * spin_lock_irq(pool->lock).
7e11629d 744 */
63d95a91 745static void wake_up_worker(struct worker_pool *pool)
7e11629d 746{
63d95a91 747 struct worker *worker = first_worker(pool);
7e11629d
TH
748
749 if (likely(worker))
750 wake_up_process(worker->task);
751}
752
d302f017 753/**
e22bee78
TH
754 * wq_worker_waking_up - a worker is waking up
755 * @task: task waking up
756 * @cpu: CPU @task is waking up to
757 *
758 * This function is called during try_to_wake_up() when a worker is
759 * being awoken.
760 *
761 * CONTEXT:
762 * spin_lock_irq(rq->lock)
763 */
d84ff051 764void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
765{
766 struct worker *worker = kthread_data(task);
767
36576000 768 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 769 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 770 atomic_inc(&worker->pool->nr_running);
36576000 771 }
e22bee78
TH
772}
773
774/**
775 * wq_worker_sleeping - a worker is going to sleep
776 * @task: task going to sleep
777 * @cpu: CPU in question, must be the current CPU number
778 *
779 * This function is called during schedule() when a busy worker is
780 * going to sleep. Worker on the same cpu can be woken up by
781 * returning pointer to its task.
782 *
783 * CONTEXT:
784 * spin_lock_irq(rq->lock)
785 *
786 * RETURNS:
787 * Worker task on @cpu to wake up, %NULL if none.
788 */
d84ff051 789struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
790{
791 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 792 struct worker_pool *pool;
e22bee78 793
111c225a
TH
794 /*
795 * Rescuers, which may not have all the fields set up like normal
796 * workers, also reach here, let's not access anything before
797 * checking NOT_RUNNING.
798 */
2d64672e 799 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
800 return NULL;
801
111c225a 802 pool = worker->pool;
111c225a 803
e22bee78 804 /* this can only happen on the local cpu */
6183c009
TH
805 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
806 return NULL;
e22bee78
TH
807
808 /*
809 * The counterpart of the following dec_and_test, implied mb,
810 * worklist not empty test sequence is in insert_work().
811 * Please read comment there.
812 *
628c78e7
TH
813 * NOT_RUNNING is clear. This means that we're bound to and
814 * running on the local cpu w/ rq lock held and preemption
815 * disabled, which in turn means that none else could be
d565ed63 816 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 817 * lock is safe.
e22bee78 818 */
e19e397a
TH
819 if (atomic_dec_and_test(&pool->nr_running) &&
820 !list_empty(&pool->worklist))
63d95a91 821 to_wakeup = first_worker(pool);
e22bee78
TH
822 return to_wakeup ? to_wakeup->task : NULL;
823}
824
825/**
826 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 827 * @worker: self
d302f017
TH
828 * @flags: flags to set
829 * @wakeup: wakeup an idle worker if necessary
830 *
e22bee78
TH
831 * Set @flags in @worker->flags and adjust nr_running accordingly. If
832 * nr_running becomes zero and @wakeup is %true, an idle worker is
833 * woken up.
d302f017 834 *
cb444766 835 * CONTEXT:
d565ed63 836 * spin_lock_irq(pool->lock)
d302f017
TH
837 */
838static inline void worker_set_flags(struct worker *worker, unsigned int flags,
839 bool wakeup)
840{
bd7bdd43 841 struct worker_pool *pool = worker->pool;
e22bee78 842
cb444766
TH
843 WARN_ON_ONCE(worker->task != current);
844
e22bee78
TH
845 /*
846 * If transitioning into NOT_RUNNING, adjust nr_running and
847 * wake up an idle worker as necessary if requested by
848 * @wakeup.
849 */
850 if ((flags & WORKER_NOT_RUNNING) &&
851 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 852 if (wakeup) {
e19e397a 853 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 854 !list_empty(&pool->worklist))
63d95a91 855 wake_up_worker(pool);
e22bee78 856 } else
e19e397a 857 atomic_dec(&pool->nr_running);
e22bee78
TH
858 }
859
d302f017
TH
860 worker->flags |= flags;
861}
862
863/**
e22bee78 864 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 865 * @worker: self
d302f017
TH
866 * @flags: flags to clear
867 *
e22bee78 868 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 869 *
cb444766 870 * CONTEXT:
d565ed63 871 * spin_lock_irq(pool->lock)
d302f017
TH
872 */
873static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
874{
63d95a91 875 struct worker_pool *pool = worker->pool;
e22bee78
TH
876 unsigned int oflags = worker->flags;
877
cb444766
TH
878 WARN_ON_ONCE(worker->task != current);
879
d302f017 880 worker->flags &= ~flags;
e22bee78 881
42c025f3
TH
882 /*
883 * If transitioning out of NOT_RUNNING, increment nr_running. Note
884 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
885 * of multiple flags, not a single flag.
886 */
e22bee78
TH
887 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
888 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 889 atomic_inc(&pool->nr_running);
d302f017
TH
890}
891
8cca0eea
TH
892/**
893 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 894 * @pool: pool of interest
8cca0eea
TH
895 * @work: work to find worker for
896 *
c9e7cf27
TH
897 * Find a worker which is executing @work on @pool by searching
898 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
899 * to match, its current execution should match the address of @work and
900 * its work function. This is to avoid unwanted dependency between
901 * unrelated work executions through a work item being recycled while still
902 * being executed.
903 *
904 * This is a bit tricky. A work item may be freed once its execution
905 * starts and nothing prevents the freed area from being recycled for
906 * another work item. If the same work item address ends up being reused
907 * before the original execution finishes, workqueue will identify the
908 * recycled work item as currently executing and make it wait until the
909 * current execution finishes, introducing an unwanted dependency.
910 *
911 * This function checks the work item address, work function and workqueue
912 * to avoid false positives. Note that this isn't complete as one may
913 * construct a work function which can introduce dependency onto itself
914 * through a recycled work item. Well, if somebody wants to shoot oneself
915 * in the foot that badly, there's only so much we can do, and if such
916 * deadlock actually occurs, it should be easy to locate the culprit work
917 * function.
8cca0eea
TH
918 *
919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock).
8cca0eea
TH
921 *
922 * RETURNS:
923 * Pointer to worker which is executing @work if found, NULL
924 * otherwise.
4d707b9f 925 */
c9e7cf27 926static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 927 struct work_struct *work)
4d707b9f 928{
42f8570f 929 struct worker *worker;
42f8570f 930
b67bfe0d 931 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
932 (unsigned long)work)
933 if (worker->current_work == work &&
934 worker->current_func == work->func)
42f8570f
SL
935 return worker;
936
937 return NULL;
4d707b9f
ON
938}
939
bf4ede01
TH
940/**
941 * move_linked_works - move linked works to a list
942 * @work: start of series of works to be scheduled
943 * @head: target list to append @work to
944 * @nextp: out paramter for nested worklist walking
945 *
946 * Schedule linked works starting from @work to @head. Work series to
947 * be scheduled starts at @work and includes any consecutive work with
948 * WORK_STRUCT_LINKED set in its predecessor.
949 *
950 * If @nextp is not NULL, it's updated to point to the next work of
951 * the last scheduled work. This allows move_linked_works() to be
952 * nested inside outer list_for_each_entry_safe().
953 *
954 * CONTEXT:
d565ed63 955 * spin_lock_irq(pool->lock).
bf4ede01
TH
956 */
957static void move_linked_works(struct work_struct *work, struct list_head *head,
958 struct work_struct **nextp)
959{
960 struct work_struct *n;
961
962 /*
963 * Linked worklist will always end before the end of the list,
964 * use NULL for list head.
965 */
966 list_for_each_entry_safe_from(work, n, NULL, entry) {
967 list_move_tail(&work->entry, head);
968 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
969 break;
970 }
971
972 /*
973 * If we're already inside safe list traversal and have moved
974 * multiple works to the scheduled queue, the next position
975 * needs to be updated.
976 */
977 if (nextp)
978 *nextp = n;
979}
980
112202d9 981static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 982{
112202d9 983 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
984
985 trace_workqueue_activate_work(work);
112202d9 986 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 987 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 988 pwq->nr_active++;
bf4ede01
TH
989}
990
112202d9 991static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 992{
112202d9 993 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
994 struct work_struct, entry);
995
112202d9 996 pwq_activate_delayed_work(work);
3aa62497
LJ
997}
998
bf4ede01 999/**
112202d9
TH
1000 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1001 * @pwq: pwq of interest
bf4ede01 1002 * @color: color of work which left the queue
bf4ede01
TH
1003 *
1004 * A work either has completed or is removed from pending queue,
112202d9 1005 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1006 *
1007 * CONTEXT:
d565ed63 1008 * spin_lock_irq(pool->lock).
bf4ede01 1009 */
112202d9 1010static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
1011{
1012 /* ignore uncolored works */
1013 if (color == WORK_NO_COLOR)
1014 return;
1015
112202d9 1016 pwq->nr_in_flight[color]--;
bf4ede01 1017
112202d9
TH
1018 pwq->nr_active--;
1019 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1020 /* one down, submit a delayed one */
112202d9
TH
1021 if (pwq->nr_active < pwq->max_active)
1022 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1023 }
1024
1025 /* is flush in progress and are we at the flushing tip? */
112202d9 1026 if (likely(pwq->flush_color != color))
bf4ede01
TH
1027 return;
1028
1029 /* are there still in-flight works? */
112202d9 1030 if (pwq->nr_in_flight[color])
bf4ede01
TH
1031 return;
1032
112202d9
TH
1033 /* this pwq is done, clear flush_color */
1034 pwq->flush_color = -1;
bf4ede01
TH
1035
1036 /*
112202d9 1037 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1038 * will handle the rest.
1039 */
112202d9
TH
1040 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1041 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1042}
1043
36e227d2 1044/**
bbb68dfa 1045 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1046 * @work: work item to steal
1047 * @is_dwork: @work is a delayed_work
bbb68dfa 1048 * @flags: place to store irq state
36e227d2
TH
1049 *
1050 * Try to grab PENDING bit of @work. This function can handle @work in any
1051 * stable state - idle, on timer or on worklist. Return values are
1052 *
1053 * 1 if @work was pending and we successfully stole PENDING
1054 * 0 if @work was idle and we claimed PENDING
1055 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1056 * -ENOENT if someone else is canceling @work, this state may persist
1057 * for arbitrarily long
36e227d2 1058 *
bbb68dfa 1059 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1060 * interrupted while holding PENDING and @work off queue, irq must be
1061 * disabled on entry. This, combined with delayed_work->timer being
1062 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1063 *
1064 * On successful return, >= 0, irq is disabled and the caller is
1065 * responsible for releasing it using local_irq_restore(*@flags).
1066 *
e0aecdd8 1067 * This function is safe to call from any context including IRQ handler.
bf4ede01 1068 */
bbb68dfa
TH
1069static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1070 unsigned long *flags)
bf4ede01 1071{
d565ed63 1072 struct worker_pool *pool;
112202d9 1073 struct pool_workqueue *pwq;
bf4ede01 1074
bbb68dfa
TH
1075 local_irq_save(*flags);
1076
36e227d2
TH
1077 /* try to steal the timer if it exists */
1078 if (is_dwork) {
1079 struct delayed_work *dwork = to_delayed_work(work);
1080
e0aecdd8
TH
1081 /*
1082 * dwork->timer is irqsafe. If del_timer() fails, it's
1083 * guaranteed that the timer is not queued anywhere and not
1084 * running on the local CPU.
1085 */
36e227d2
TH
1086 if (likely(del_timer(&dwork->timer)))
1087 return 1;
1088 }
1089
1090 /* try to claim PENDING the normal way */
bf4ede01
TH
1091 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1092 return 0;
1093
1094 /*
1095 * The queueing is in progress, or it is already queued. Try to
1096 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1097 */
d565ed63
TH
1098 pool = get_work_pool(work);
1099 if (!pool)
bbb68dfa 1100 goto fail;
bf4ede01 1101
d565ed63 1102 spin_lock(&pool->lock);
0b3dae68 1103 /*
112202d9
TH
1104 * work->data is guaranteed to point to pwq only while the work
1105 * item is queued on pwq->wq, and both updating work->data to point
1106 * to pwq on queueing and to pool on dequeueing are done under
1107 * pwq->pool->lock. This in turn guarantees that, if work->data
1108 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1109 * item is currently queued on that pool.
1110 */
112202d9
TH
1111 pwq = get_work_pwq(work);
1112 if (pwq && pwq->pool == pool) {
16062836
TH
1113 debug_work_deactivate(work);
1114
1115 /*
1116 * A delayed work item cannot be grabbed directly because
1117 * it might have linked NO_COLOR work items which, if left
112202d9 1118 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1119 * management later on and cause stall. Make sure the work
1120 * item is activated before grabbing.
1121 */
1122 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1123 pwq_activate_delayed_work(work);
16062836
TH
1124
1125 list_del_init(&work->entry);
112202d9 1126 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1127
112202d9 1128 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1129 set_work_pool_and_keep_pending(work, pool->id);
1130
1131 spin_unlock(&pool->lock);
1132 return 1;
bf4ede01 1133 }
d565ed63 1134 spin_unlock(&pool->lock);
bbb68dfa
TH
1135fail:
1136 local_irq_restore(*flags);
1137 if (work_is_canceling(work))
1138 return -ENOENT;
1139 cpu_relax();
36e227d2 1140 return -EAGAIN;
bf4ede01
TH
1141}
1142
4690c4ab 1143/**
706026c2 1144 * insert_work - insert a work into a pool
112202d9 1145 * @pwq: pwq @work belongs to
4690c4ab
TH
1146 * @work: work to insert
1147 * @head: insertion point
1148 * @extra_flags: extra WORK_STRUCT_* flags to set
1149 *
112202d9 1150 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1151 * work_struct flags.
4690c4ab
TH
1152 *
1153 * CONTEXT:
d565ed63 1154 * spin_lock_irq(pool->lock).
4690c4ab 1155 */
112202d9
TH
1156static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1157 struct list_head *head, unsigned int extra_flags)
b89deed3 1158{
112202d9 1159 struct worker_pool *pool = pwq->pool;
e22bee78 1160
4690c4ab 1161 /* we own @work, set data and link */
112202d9 1162 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1163 list_add_tail(&work->entry, head);
e22bee78
TH
1164
1165 /*
1166 * Ensure either worker_sched_deactivated() sees the above
1167 * list_add_tail() or we see zero nr_running to avoid workers
1168 * lying around lazily while there are works to be processed.
1169 */
1170 smp_mb();
1171
63d95a91
TH
1172 if (__need_more_worker(pool))
1173 wake_up_worker(pool);
b89deed3
ON
1174}
1175
c8efcc25
TH
1176/*
1177 * Test whether @work is being queued from another work executing on the
8d03ecfe 1178 * same workqueue.
c8efcc25
TH
1179 */
1180static bool is_chained_work(struct workqueue_struct *wq)
1181{
8d03ecfe
TH
1182 struct worker *worker;
1183
1184 worker = current_wq_worker();
1185 /*
1186 * Return %true iff I'm a worker execuing a work item on @wq. If
1187 * I'm @worker, it's safe to dereference it without locking.
1188 */
112202d9 1189 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1190}
1191
d84ff051 1192static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1193 struct work_struct *work)
1194{
112202d9 1195 struct pool_workqueue *pwq;
1e19ffc6 1196 struct list_head *worklist;
8a2e8e5d 1197 unsigned int work_flags;
b75cac93 1198 unsigned int req_cpu = cpu;
8930caba
TH
1199
1200 /*
1201 * While a work item is PENDING && off queue, a task trying to
1202 * steal the PENDING will busy-loop waiting for it to either get
1203 * queued or lose PENDING. Grabbing PENDING and queueing should
1204 * happen with IRQ disabled.
1205 */
1206 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1207
dc186ad7 1208 debug_work_activate(work);
1e19ffc6 1209
c8efcc25 1210 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1211 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1212 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1213 return;
1214
112202d9 1215 /* determine the pwq to use */
c7fc77f7 1216 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1217 struct worker_pool *last_pool;
18aa9eff 1218
57469821 1219 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1220 cpu = raw_smp_processor_id();
1221
18aa9eff 1222 /*
dbf2576e
TH
1223 * It's multi cpu. If @work was previously on a different
1224 * cpu, it might still be running there, in which case the
1225 * work needs to be queued on that cpu to guarantee
1226 * non-reentrancy.
18aa9eff 1227 */
7fb98ea7 1228 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9e7cf27 1229 last_pool = get_work_pool(work);
dbf2576e 1230
112202d9 1231 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1232 struct worker *worker;
1233
d565ed63 1234 spin_lock(&last_pool->lock);
18aa9eff 1235
c9e7cf27 1236 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1237
112202d9 1238 if (worker && worker->current_pwq->wq == wq) {
7fb98ea7 1239 pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
8594fade 1240 } else {
18aa9eff 1241 /* meh... not running there, queue here */
d565ed63 1242 spin_unlock(&last_pool->lock);
112202d9 1243 spin_lock(&pwq->pool->lock);
18aa9eff 1244 }
8930caba 1245 } else {
112202d9 1246 spin_lock(&pwq->pool->lock);
8930caba 1247 }
f3421797 1248 } else {
7fb98ea7 1249 pwq = first_pwq(wq);
112202d9 1250 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1251 }
1252
112202d9
TH
1253 /* pwq determined, queue */
1254 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1255
f5b2552b 1256 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1257 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1258 return;
1259 }
1e19ffc6 1260
112202d9
TH
1261 pwq->nr_in_flight[pwq->work_color]++;
1262 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1263
112202d9 1264 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1265 trace_workqueue_activate_work(work);
112202d9
TH
1266 pwq->nr_active++;
1267 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1268 } else {
1269 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1270 worklist = &pwq->delayed_works;
8a2e8e5d 1271 }
1e19ffc6 1272
112202d9 1273 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1274
112202d9 1275 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1276}
1277
0fcb78c2 1278/**
c1a220e7
ZR
1279 * queue_work_on - queue work on specific cpu
1280 * @cpu: CPU number to execute work on
0fcb78c2
REB
1281 * @wq: workqueue to use
1282 * @work: work to queue
1283 *
d4283e93 1284 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1285 *
c1a220e7
ZR
1286 * We queue the work to a specific CPU, the caller must ensure it
1287 * can't go away.
1da177e4 1288 */
d4283e93
TH
1289bool queue_work_on(int cpu, struct workqueue_struct *wq,
1290 struct work_struct *work)
1da177e4 1291{
d4283e93 1292 bool ret = false;
8930caba 1293 unsigned long flags;
ef1ca236 1294
8930caba 1295 local_irq_save(flags);
c1a220e7 1296
22df02bb 1297 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1298 __queue_work(cpu, wq, work);
d4283e93 1299 ret = true;
c1a220e7 1300 }
ef1ca236 1301
8930caba 1302 local_irq_restore(flags);
1da177e4
LT
1303 return ret;
1304}
c1a220e7 1305EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1306
c1a220e7 1307/**
0a13c00e 1308 * queue_work - queue work on a workqueue
c1a220e7
ZR
1309 * @wq: workqueue to use
1310 * @work: work to queue
1311 *
d4283e93 1312 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1313 *
0a13c00e
TH
1314 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1315 * it can be processed by another CPU.
c1a220e7 1316 */
d4283e93 1317bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1318{
57469821 1319 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1320}
0a13c00e 1321EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1322
d8e794df 1323void delayed_work_timer_fn(unsigned long __data)
1da177e4 1324{
52bad64d 1325 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1326
e0aecdd8 1327 /* should have been called from irqsafe timer with irq already off */
60c057bc 1328 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1329}
1438ade5 1330EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1331
7beb2edf
TH
1332static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1333 struct delayed_work *dwork, unsigned long delay)
1da177e4 1334{
7beb2edf
TH
1335 struct timer_list *timer = &dwork->timer;
1336 struct work_struct *work = &dwork->work;
7beb2edf
TH
1337
1338 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1339 timer->data != (unsigned long)dwork);
fc4b514f
TH
1340 WARN_ON_ONCE(timer_pending(timer));
1341 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1342
8852aac2
TH
1343 /*
1344 * If @delay is 0, queue @dwork->work immediately. This is for
1345 * both optimization and correctness. The earliest @timer can
1346 * expire is on the closest next tick and delayed_work users depend
1347 * on that there's no such delay when @delay is 0.
1348 */
1349 if (!delay) {
1350 __queue_work(cpu, wq, &dwork->work);
1351 return;
1352 }
1353
7beb2edf 1354 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1355
60c057bc 1356 dwork->wq = wq;
1265057f 1357 dwork->cpu = cpu;
7beb2edf
TH
1358 timer->expires = jiffies + delay;
1359
1360 if (unlikely(cpu != WORK_CPU_UNBOUND))
1361 add_timer_on(timer, cpu);
1362 else
1363 add_timer(timer);
1da177e4
LT
1364}
1365
0fcb78c2
REB
1366/**
1367 * queue_delayed_work_on - queue work on specific CPU after delay
1368 * @cpu: CPU number to execute work on
1369 * @wq: workqueue to use
af9997e4 1370 * @dwork: work to queue
0fcb78c2
REB
1371 * @delay: number of jiffies to wait before queueing
1372 *
715f1300
TH
1373 * Returns %false if @work was already on a queue, %true otherwise. If
1374 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1375 * execution.
0fcb78c2 1376 */
d4283e93
TH
1377bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1378 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1379{
52bad64d 1380 struct work_struct *work = &dwork->work;
d4283e93 1381 bool ret = false;
8930caba 1382 unsigned long flags;
7a6bc1cd 1383
8930caba
TH
1384 /* read the comment in __queue_work() */
1385 local_irq_save(flags);
7a6bc1cd 1386
22df02bb 1387 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1388 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1389 ret = true;
7a6bc1cd 1390 }
8a3e77cc 1391
8930caba 1392 local_irq_restore(flags);
7a6bc1cd
VP
1393 return ret;
1394}
ae90dd5d 1395EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1396
0a13c00e
TH
1397/**
1398 * queue_delayed_work - queue work on a workqueue after delay
1399 * @wq: workqueue to use
1400 * @dwork: delayable work to queue
1401 * @delay: number of jiffies to wait before queueing
1402 *
715f1300 1403 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1404 */
d4283e93 1405bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1406 struct delayed_work *dwork, unsigned long delay)
1407{
57469821 1408 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1409}
1410EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1411
8376fe22
TH
1412/**
1413 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1414 * @cpu: CPU number to execute work on
1415 * @wq: workqueue to use
1416 * @dwork: work to queue
1417 * @delay: number of jiffies to wait before queueing
1418 *
1419 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1420 * modify @dwork's timer so that it expires after @delay. If @delay is
1421 * zero, @work is guaranteed to be scheduled immediately regardless of its
1422 * current state.
1423 *
1424 * Returns %false if @dwork was idle and queued, %true if @dwork was
1425 * pending and its timer was modified.
1426 *
e0aecdd8 1427 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1428 * See try_to_grab_pending() for details.
1429 */
1430bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1431 struct delayed_work *dwork, unsigned long delay)
1432{
1433 unsigned long flags;
1434 int ret;
c7fc77f7 1435
8376fe22
TH
1436 do {
1437 ret = try_to_grab_pending(&dwork->work, true, &flags);
1438 } while (unlikely(ret == -EAGAIN));
63bc0362 1439
8376fe22
TH
1440 if (likely(ret >= 0)) {
1441 __queue_delayed_work(cpu, wq, dwork, delay);
1442 local_irq_restore(flags);
7a6bc1cd 1443 }
8376fe22
TH
1444
1445 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1446 return ret;
1447}
8376fe22
TH
1448EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1449
1450/**
1451 * mod_delayed_work - modify delay of or queue a delayed work
1452 * @wq: workqueue to use
1453 * @dwork: work to queue
1454 * @delay: number of jiffies to wait before queueing
1455 *
1456 * mod_delayed_work_on() on local CPU.
1457 */
1458bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1459 unsigned long delay)
1460{
1461 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1462}
1463EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1464
c8e55f36
TH
1465/**
1466 * worker_enter_idle - enter idle state
1467 * @worker: worker which is entering idle state
1468 *
1469 * @worker is entering idle state. Update stats and idle timer if
1470 * necessary.
1471 *
1472 * LOCKING:
d565ed63 1473 * spin_lock_irq(pool->lock).
c8e55f36
TH
1474 */
1475static void worker_enter_idle(struct worker *worker)
1da177e4 1476{
bd7bdd43 1477 struct worker_pool *pool = worker->pool;
c8e55f36 1478
6183c009
TH
1479 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1480 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1481 (worker->hentry.next || worker->hentry.pprev)))
1482 return;
c8e55f36 1483
cb444766
TH
1484 /* can't use worker_set_flags(), also called from start_worker() */
1485 worker->flags |= WORKER_IDLE;
bd7bdd43 1486 pool->nr_idle++;
e22bee78 1487 worker->last_active = jiffies;
c8e55f36
TH
1488
1489 /* idle_list is LIFO */
bd7bdd43 1490 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1491
628c78e7
TH
1492 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1493 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1494
544ecf31 1495 /*
706026c2 1496 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1497 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1498 * nr_running, the warning may trigger spuriously. Check iff
1499 * unbind is not in progress.
544ecf31 1500 */
24647570 1501 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1502 pool->nr_workers == pool->nr_idle &&
e19e397a 1503 atomic_read(&pool->nr_running));
c8e55f36
TH
1504}
1505
1506/**
1507 * worker_leave_idle - leave idle state
1508 * @worker: worker which is leaving idle state
1509 *
1510 * @worker is leaving idle state. Update stats.
1511 *
1512 * LOCKING:
d565ed63 1513 * spin_lock_irq(pool->lock).
c8e55f36
TH
1514 */
1515static void worker_leave_idle(struct worker *worker)
1516{
bd7bdd43 1517 struct worker_pool *pool = worker->pool;
c8e55f36 1518
6183c009
TH
1519 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1520 return;
d302f017 1521 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1522 pool->nr_idle--;
c8e55f36
TH
1523 list_del_init(&worker->entry);
1524}
1525
e22bee78 1526/**
f36dc67b
LJ
1527 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1528 * @pool: target worker_pool
1529 *
1530 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1531 *
1532 * Works which are scheduled while the cpu is online must at least be
1533 * scheduled to a worker which is bound to the cpu so that if they are
1534 * flushed from cpu callbacks while cpu is going down, they are
1535 * guaranteed to execute on the cpu.
1536 *
f5faa077 1537 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1538 * themselves to the target cpu and may race with cpu going down or
1539 * coming online. kthread_bind() can't be used because it may put the
1540 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1541 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1542 * [dis]associated in the meantime.
1543 *
706026c2 1544 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1545 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1546 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1547 * enters idle state or fetches works without dropping lock, it can
1548 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1549 *
1550 * CONTEXT:
d565ed63 1551 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1552 * held.
1553 *
1554 * RETURNS:
706026c2 1555 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1556 * bound), %false if offline.
1557 */
f36dc67b 1558static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1559__acquires(&pool->lock)
e22bee78 1560{
e22bee78 1561 while (true) {
4e6045f1 1562 /*
e22bee78
TH
1563 * The following call may fail, succeed or succeed
1564 * without actually migrating the task to the cpu if
1565 * it races with cpu hotunplug operation. Verify
24647570 1566 * against POOL_DISASSOCIATED.
4e6045f1 1567 */
24647570 1568 if (!(pool->flags & POOL_DISASSOCIATED))
f5faa077 1569 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
e22bee78 1570
d565ed63 1571 spin_lock_irq(&pool->lock);
24647570 1572 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1573 return false;
f5faa077 1574 if (task_cpu(current) == pool->cpu &&
e22bee78 1575 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1576 get_cpu_mask(pool->cpu)))
e22bee78 1577 return true;
d565ed63 1578 spin_unlock_irq(&pool->lock);
e22bee78 1579
5035b20f
TH
1580 /*
1581 * We've raced with CPU hot[un]plug. Give it a breather
1582 * and retry migration. cond_resched() is required here;
1583 * otherwise, we might deadlock against cpu_stop trying to
1584 * bring down the CPU on non-preemptive kernel.
1585 */
e22bee78 1586 cpu_relax();
5035b20f 1587 cond_resched();
e22bee78
TH
1588 }
1589}
1590
25511a47 1591/*
ea1abd61 1592 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1593 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1594 */
1595static void idle_worker_rebind(struct worker *worker)
1596{
5f7dabfd 1597 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1598 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1599 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1600
ea1abd61
LJ
1601 /* rebind complete, become available again */
1602 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1603 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1604}
1605
e22bee78 1606/*
25511a47 1607 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1608 * the associated cpu which is coming back online. This is scheduled by
1609 * cpu up but can race with other cpu hotplug operations and may be
1610 * executed twice without intervening cpu down.
e22bee78 1611 */
25511a47 1612static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1613{
1614 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1615
f36dc67b 1616 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1617 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1618
d565ed63 1619 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1620}
1621
25511a47 1622/**
94cf58bb
TH
1623 * rebind_workers - rebind all workers of a pool to the associated CPU
1624 * @pool: pool of interest
25511a47 1625 *
94cf58bb 1626 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1627 * is different for idle and busy ones.
1628 *
ea1abd61
LJ
1629 * Idle ones will be removed from the idle_list and woken up. They will
1630 * add themselves back after completing rebind. This ensures that the
1631 * idle_list doesn't contain any unbound workers when re-bound busy workers
1632 * try to perform local wake-ups for concurrency management.
25511a47 1633 *
ea1abd61
LJ
1634 * Busy workers can rebind after they finish their current work items.
1635 * Queueing the rebind work item at the head of the scheduled list is
1636 * enough. Note that nr_running will be properly bumped as busy workers
1637 * rebind.
25511a47 1638 *
ea1abd61
LJ
1639 * On return, all non-manager workers are scheduled for rebind - see
1640 * manage_workers() for the manager special case. Any idle worker
1641 * including the manager will not appear on @idle_list until rebind is
1642 * complete, making local wake-ups safe.
25511a47 1643 */
94cf58bb 1644static void rebind_workers(struct worker_pool *pool)
25511a47 1645{
ea1abd61 1646 struct worker *worker, *n;
25511a47
TH
1647 int i;
1648
94cf58bb
TH
1649 lockdep_assert_held(&pool->assoc_mutex);
1650 lockdep_assert_held(&pool->lock);
25511a47 1651
5f7dabfd 1652 /* dequeue and kick idle ones */
94cf58bb
TH
1653 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1654 /*
1655 * idle workers should be off @pool->idle_list until rebind
1656 * is complete to avoid receiving premature local wake-ups.
1657 */
1658 list_del_init(&worker->entry);
25511a47 1659
94cf58bb
TH
1660 /*
1661 * worker_thread() will see the above dequeuing and call
1662 * idle_worker_rebind().
1663 */
1664 wake_up_process(worker->task);
1665 }
25511a47 1666
94cf58bb 1667 /* rebind busy workers */
b67bfe0d 1668 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1669 struct work_struct *rebind_work = &worker->rebind_work;
1670 struct workqueue_struct *wq;
25511a47 1671
94cf58bb
TH
1672 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1673 work_data_bits(rebind_work)))
1674 continue;
25511a47 1675
94cf58bb 1676 debug_work_activate(rebind_work);
90beca5d 1677
94cf58bb
TH
1678 /*
1679 * wq doesn't really matter but let's keep @worker->pool
112202d9 1680 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1681 */
1682 if (std_worker_pool_pri(worker->pool))
1683 wq = system_highpri_wq;
1684 else
1685 wq = system_wq;
1686
7fb98ea7 1687 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1688 worker->scheduled.next,
1689 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1690 }
25511a47
TH
1691}
1692
c34056a3
TH
1693static struct worker *alloc_worker(void)
1694{
1695 struct worker *worker;
1696
1697 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1698 if (worker) {
1699 INIT_LIST_HEAD(&worker->entry);
affee4b2 1700 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1701 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1702 /* on creation a worker is in !idle && prep state */
1703 worker->flags = WORKER_PREP;
c8e55f36 1704 }
c34056a3
TH
1705 return worker;
1706}
1707
1708/**
1709 * create_worker - create a new workqueue worker
63d95a91 1710 * @pool: pool the new worker will belong to
c34056a3 1711 *
63d95a91 1712 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1713 * can be started by calling start_worker() or destroyed using
1714 * destroy_worker().
1715 *
1716 * CONTEXT:
1717 * Might sleep. Does GFP_KERNEL allocations.
1718 *
1719 * RETURNS:
1720 * Pointer to the newly created worker.
1721 */
bc2ae0f5 1722static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1723{
e34cdddb 1724 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1725 struct worker *worker = NULL;
f3421797 1726 int id = -1;
c34056a3 1727
d565ed63 1728 spin_lock_irq(&pool->lock);
bd7bdd43 1729 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1730 spin_unlock_irq(&pool->lock);
bd7bdd43 1731 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1732 goto fail;
d565ed63 1733 spin_lock_irq(&pool->lock);
c34056a3 1734 }
d565ed63 1735 spin_unlock_irq(&pool->lock);
c34056a3
TH
1736
1737 worker = alloc_worker();
1738 if (!worker)
1739 goto fail;
1740
bd7bdd43 1741 worker->pool = pool;
c34056a3
TH
1742 worker->id = id;
1743
ec22ca5e 1744 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1745 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1746 worker, cpu_to_node(pool->cpu),
d84ff051 1747 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1748 else
1749 worker->task = kthread_create(worker_thread, worker,
3270476a 1750 "kworker/u:%d%s", id, pri);
c34056a3
TH
1751 if (IS_ERR(worker->task))
1752 goto fail;
1753
e34cdddb 1754 if (std_worker_pool_pri(pool))
3270476a
TH
1755 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1756
db7bccf4 1757 /*
bc2ae0f5 1758 * Determine CPU binding of the new worker depending on
24647570 1759 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1760 * flag remains stable across this function. See the comments
1761 * above the flag definition for details.
1762 *
1763 * As an unbound worker may later become a regular one if CPU comes
1764 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1765 */
24647570 1766 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1767 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1768 } else {
db7bccf4 1769 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1770 worker->flags |= WORKER_UNBOUND;
f3421797 1771 }
c34056a3
TH
1772
1773 return worker;
1774fail:
1775 if (id >= 0) {
d565ed63 1776 spin_lock_irq(&pool->lock);
bd7bdd43 1777 ida_remove(&pool->worker_ida, id);
d565ed63 1778 spin_unlock_irq(&pool->lock);
c34056a3
TH
1779 }
1780 kfree(worker);
1781 return NULL;
1782}
1783
1784/**
1785 * start_worker - start a newly created worker
1786 * @worker: worker to start
1787 *
706026c2 1788 * Make the pool aware of @worker and start it.
c34056a3
TH
1789 *
1790 * CONTEXT:
d565ed63 1791 * spin_lock_irq(pool->lock).
c34056a3
TH
1792 */
1793static void start_worker(struct worker *worker)
1794{
cb444766 1795 worker->flags |= WORKER_STARTED;
bd7bdd43 1796 worker->pool->nr_workers++;
c8e55f36 1797 worker_enter_idle(worker);
c34056a3
TH
1798 wake_up_process(worker->task);
1799}
1800
1801/**
1802 * destroy_worker - destroy a workqueue worker
1803 * @worker: worker to be destroyed
1804 *
706026c2 1805 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1806 *
1807 * CONTEXT:
d565ed63 1808 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1809 */
1810static void destroy_worker(struct worker *worker)
1811{
bd7bdd43 1812 struct worker_pool *pool = worker->pool;
c34056a3
TH
1813 int id = worker->id;
1814
1815 /* sanity check frenzy */
6183c009
TH
1816 if (WARN_ON(worker->current_work) ||
1817 WARN_ON(!list_empty(&worker->scheduled)))
1818 return;
c34056a3 1819
c8e55f36 1820 if (worker->flags & WORKER_STARTED)
bd7bdd43 1821 pool->nr_workers--;
c8e55f36 1822 if (worker->flags & WORKER_IDLE)
bd7bdd43 1823 pool->nr_idle--;
c8e55f36
TH
1824
1825 list_del_init(&worker->entry);
cb444766 1826 worker->flags |= WORKER_DIE;
c8e55f36 1827
d565ed63 1828 spin_unlock_irq(&pool->lock);
c8e55f36 1829
c34056a3
TH
1830 kthread_stop(worker->task);
1831 kfree(worker);
1832
d565ed63 1833 spin_lock_irq(&pool->lock);
bd7bdd43 1834 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1835}
1836
63d95a91 1837static void idle_worker_timeout(unsigned long __pool)
e22bee78 1838{
63d95a91 1839 struct worker_pool *pool = (void *)__pool;
e22bee78 1840
d565ed63 1841 spin_lock_irq(&pool->lock);
e22bee78 1842
63d95a91 1843 if (too_many_workers(pool)) {
e22bee78
TH
1844 struct worker *worker;
1845 unsigned long expires;
1846
1847 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1848 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1849 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1850
1851 if (time_before(jiffies, expires))
63d95a91 1852 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1853 else {
1854 /* it's been idle for too long, wake up manager */
11ebea50 1855 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1856 wake_up_worker(pool);
d5abe669 1857 }
e22bee78
TH
1858 }
1859
d565ed63 1860 spin_unlock_irq(&pool->lock);
e22bee78 1861}
d5abe669 1862
493a1724 1863static void send_mayday(struct work_struct *work)
e22bee78 1864{
112202d9
TH
1865 struct pool_workqueue *pwq = get_work_pwq(work);
1866 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1867
1868 lockdep_assert_held(&workqueue_lock);
e22bee78
TH
1869
1870 if (!(wq->flags & WQ_RESCUER))
493a1724 1871 return;
e22bee78
TH
1872
1873 /* mayday mayday mayday */
493a1724
TH
1874 if (list_empty(&pwq->mayday_node)) {
1875 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1876 wake_up_process(wq->rescuer->task);
493a1724 1877 }
e22bee78
TH
1878}
1879
706026c2 1880static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1881{
63d95a91 1882 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1883 struct work_struct *work;
1884
493a1724
TH
1885 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1886 spin_lock(&pool->lock);
e22bee78 1887
63d95a91 1888 if (need_to_create_worker(pool)) {
e22bee78
TH
1889 /*
1890 * We've been trying to create a new worker but
1891 * haven't been successful. We might be hitting an
1892 * allocation deadlock. Send distress signals to
1893 * rescuers.
1894 */
63d95a91 1895 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1896 send_mayday(work);
1da177e4 1897 }
e22bee78 1898
493a1724
TH
1899 spin_unlock(&pool->lock);
1900 spin_unlock_irq(&workqueue_lock);
e22bee78 1901
63d95a91 1902 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1903}
1904
e22bee78
TH
1905/**
1906 * maybe_create_worker - create a new worker if necessary
63d95a91 1907 * @pool: pool to create a new worker for
e22bee78 1908 *
63d95a91 1909 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1910 * have at least one idle worker on return from this function. If
1911 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1912 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1913 * possible allocation deadlock.
1914 *
1915 * On return, need_to_create_worker() is guaranteed to be false and
1916 * may_start_working() true.
1917 *
1918 * LOCKING:
d565ed63 1919 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1920 * multiple times. Does GFP_KERNEL allocations. Called only from
1921 * manager.
1922 *
1923 * RETURNS:
d565ed63 1924 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1925 * otherwise.
1926 */
63d95a91 1927static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1da177e4 1930{
63d95a91 1931 if (!need_to_create_worker(pool))
e22bee78
TH
1932 return false;
1933restart:
d565ed63 1934 spin_unlock_irq(&pool->lock);
9f9c2364 1935
e22bee78 1936 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1937 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1938
1939 while (true) {
1940 struct worker *worker;
1941
bc2ae0f5 1942 worker = create_worker(pool);
e22bee78 1943 if (worker) {
63d95a91 1944 del_timer_sync(&pool->mayday_timer);
d565ed63 1945 spin_lock_irq(&pool->lock);
e22bee78 1946 start_worker(worker);
6183c009
TH
1947 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1948 goto restart;
e22bee78
TH
1949 return true;
1950 }
1951
63d95a91 1952 if (!need_to_create_worker(pool))
e22bee78 1953 break;
1da177e4 1954
e22bee78
TH
1955 __set_current_state(TASK_INTERRUPTIBLE);
1956 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1957
63d95a91 1958 if (!need_to_create_worker(pool))
e22bee78
TH
1959 break;
1960 }
1961
63d95a91 1962 del_timer_sync(&pool->mayday_timer);
d565ed63 1963 spin_lock_irq(&pool->lock);
63d95a91 1964 if (need_to_create_worker(pool))
e22bee78
TH
1965 goto restart;
1966 return true;
1967}
1968
1969/**
1970 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1971 * @pool: pool to destroy workers for
e22bee78 1972 *
63d95a91 1973 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1974 * IDLE_WORKER_TIMEOUT.
1975 *
1976 * LOCKING:
d565ed63 1977 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1978 * multiple times. Called only from manager.
1979 *
1980 * RETURNS:
d565ed63 1981 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1982 * otherwise.
1983 */
63d95a91 1984static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1985{
1986 bool ret = false;
1da177e4 1987
63d95a91 1988 while (too_many_workers(pool)) {
e22bee78
TH
1989 struct worker *worker;
1990 unsigned long expires;
3af24433 1991
63d95a91 1992 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1993 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1994
e22bee78 1995 if (time_before(jiffies, expires)) {
63d95a91 1996 mod_timer(&pool->idle_timer, expires);
3af24433 1997 break;
e22bee78 1998 }
1da177e4 1999
e22bee78
TH
2000 destroy_worker(worker);
2001 ret = true;
1da177e4 2002 }
1e19ffc6 2003
e22bee78 2004 return ret;
1e19ffc6
TH
2005}
2006
73f53c4a 2007/**
e22bee78
TH
2008 * manage_workers - manage worker pool
2009 * @worker: self
73f53c4a 2010 *
706026c2 2011 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2012 * to. At any given time, there can be only zero or one manager per
706026c2 2013 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2014 *
2015 * The caller can safely start processing works on false return. On
2016 * true return, it's guaranteed that need_to_create_worker() is false
2017 * and may_start_working() is true.
73f53c4a
TH
2018 *
2019 * CONTEXT:
d565ed63 2020 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2021 * multiple times. Does GFP_KERNEL allocations.
2022 *
2023 * RETURNS:
d565ed63
TH
2024 * spin_lock_irq(pool->lock) which may be released and regrabbed
2025 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2026 */
e22bee78 2027static bool manage_workers(struct worker *worker)
73f53c4a 2028{
63d95a91 2029 struct worker_pool *pool = worker->pool;
e22bee78 2030 bool ret = false;
73f53c4a 2031
34a06bd6 2032 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2033 return ret;
1e19ffc6 2034
ee378aa4
LJ
2035 /*
2036 * To simplify both worker management and CPU hotplug, hold off
2037 * management while hotplug is in progress. CPU hotplug path can't
34a06bd6
TH
2038 * grab @pool->manager_arb to achieve this because that can lead to
2039 * idle worker depletion (all become busy thinking someone else is
2040 * managing) which in turn can result in deadlock under extreme
2041 * circumstances. Use @pool->assoc_mutex to synchronize manager
2042 * against CPU hotplug.
ee378aa4 2043 *
b2eb83d1 2044 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2045 * progress. trylock first without dropping @pool->lock.
ee378aa4 2046 */
b2eb83d1 2047 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2048 spin_unlock_irq(&pool->lock);
b2eb83d1 2049 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2050 /*
2051 * CPU hotplug could have happened while we were waiting
b2eb83d1 2052 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2053 * because manager isn't either on idle or busy list, and
706026c2 2054 * @pool's state and ours could have deviated.
ee378aa4 2055 *
b2eb83d1 2056 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2057 * simply try to bind. It will succeed or fail depending
706026c2 2058 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2059 * %WORKER_UNBOUND accordingly.
2060 */
f36dc67b 2061 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2062 worker->flags &= ~WORKER_UNBOUND;
2063 else
2064 worker->flags |= WORKER_UNBOUND;
73f53c4a 2065
ee378aa4
LJ
2066 ret = true;
2067 }
73f53c4a 2068
11ebea50 2069 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2070
2071 /*
e22bee78
TH
2072 * Destroy and then create so that may_start_working() is true
2073 * on return.
73f53c4a 2074 */
63d95a91
TH
2075 ret |= maybe_destroy_workers(pool);
2076 ret |= maybe_create_worker(pool);
e22bee78 2077
b2eb83d1 2078 mutex_unlock(&pool->assoc_mutex);
34a06bd6 2079 mutex_unlock(&pool->manager_arb);
e22bee78 2080 return ret;
73f53c4a
TH
2081}
2082
a62428c0
TH
2083/**
2084 * process_one_work - process single work
c34056a3 2085 * @worker: self
a62428c0
TH
2086 * @work: work to process
2087 *
2088 * Process @work. This function contains all the logics necessary to
2089 * process a single work including synchronization against and
2090 * interaction with other workers on the same cpu, queueing and
2091 * flushing. As long as context requirement is met, any worker can
2092 * call this function to process a work.
2093 *
2094 * CONTEXT:
d565ed63 2095 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2096 */
c34056a3 2097static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2098__releases(&pool->lock)
2099__acquires(&pool->lock)
a62428c0 2100{
112202d9 2101 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2102 struct worker_pool *pool = worker->pool;
112202d9 2103 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2104 int work_color;
7e11629d 2105 struct worker *collision;
a62428c0
TH
2106#ifdef CONFIG_LOCKDEP
2107 /*
2108 * It is permissible to free the struct work_struct from
2109 * inside the function that is called from it, this we need to
2110 * take into account for lockdep too. To avoid bogus "held
2111 * lock freed" warnings as well as problems when looking into
2112 * work->lockdep_map, make a copy and use that here.
2113 */
4d82a1de
PZ
2114 struct lockdep_map lockdep_map;
2115
2116 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2117#endif
6fec10a1
TH
2118 /*
2119 * Ensure we're on the correct CPU. DISASSOCIATED test is
2120 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2121 * unbound or a disassociated pool.
6fec10a1 2122 */
5f7dabfd 2123 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2124 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2125 raw_smp_processor_id() != pool->cpu);
25511a47 2126
7e11629d
TH
2127 /*
2128 * A single work shouldn't be executed concurrently by
2129 * multiple workers on a single cpu. Check whether anyone is
2130 * already processing the work. If so, defer the work to the
2131 * currently executing one.
2132 */
c9e7cf27 2133 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2134 if (unlikely(collision)) {
2135 move_linked_works(work, &collision->scheduled, NULL);
2136 return;
2137 }
2138
8930caba 2139 /* claim and dequeue */
a62428c0 2140 debug_work_deactivate(work);
c9e7cf27 2141 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2142 worker->current_work = work;
a2c1c57b 2143 worker->current_func = work->func;
112202d9 2144 worker->current_pwq = pwq;
73f53c4a 2145 work_color = get_work_color(work);
7a22ad75 2146
a62428c0
TH
2147 list_del_init(&work->entry);
2148
fb0e7beb
TH
2149 /*
2150 * CPU intensive works don't participate in concurrency
2151 * management. They're the scheduler's responsibility.
2152 */
2153 if (unlikely(cpu_intensive))
2154 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2155
974271c4 2156 /*
d565ed63 2157 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2158 * executed ASAP. Wake up another worker if necessary.
2159 */
63d95a91
TH
2160 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2161 wake_up_worker(pool);
974271c4 2162
8930caba 2163 /*
7c3eed5c 2164 * Record the last pool and clear PENDING which should be the last
d565ed63 2165 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2166 * PENDING and queued state changes happen together while IRQ is
2167 * disabled.
8930caba 2168 */
7c3eed5c 2169 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2170
d565ed63 2171 spin_unlock_irq(&pool->lock);
a62428c0 2172
112202d9 2173 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2174 lock_map_acquire(&lockdep_map);
e36c886a 2175 trace_workqueue_execute_start(work);
a2c1c57b 2176 worker->current_func(work);
e36c886a
AV
2177 /*
2178 * While we must be careful to not use "work" after this, the trace
2179 * point will only record its address.
2180 */
2181 trace_workqueue_execute_end(work);
a62428c0 2182 lock_map_release(&lockdep_map);
112202d9 2183 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2184
2185 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2186 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2187 " last function: %pf\n",
a2c1c57b
TH
2188 current->comm, preempt_count(), task_pid_nr(current),
2189 worker->current_func);
a62428c0
TH
2190 debug_show_held_locks(current);
2191 dump_stack();
2192 }
2193
d565ed63 2194 spin_lock_irq(&pool->lock);
a62428c0 2195
fb0e7beb
TH
2196 /* clear cpu intensive status */
2197 if (unlikely(cpu_intensive))
2198 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2199
a62428c0 2200 /* we're done with it, release */
42f8570f 2201 hash_del(&worker->hentry);
c34056a3 2202 worker->current_work = NULL;
a2c1c57b 2203 worker->current_func = NULL;
112202d9
TH
2204 worker->current_pwq = NULL;
2205 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2206}
2207
affee4b2
TH
2208/**
2209 * process_scheduled_works - process scheduled works
2210 * @worker: self
2211 *
2212 * Process all scheduled works. Please note that the scheduled list
2213 * may change while processing a work, so this function repeatedly
2214 * fetches a work from the top and executes it.
2215 *
2216 * CONTEXT:
d565ed63 2217 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2218 * multiple times.
2219 */
2220static void process_scheduled_works(struct worker *worker)
1da177e4 2221{
affee4b2
TH
2222 while (!list_empty(&worker->scheduled)) {
2223 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2224 struct work_struct, entry);
c34056a3 2225 process_one_work(worker, work);
1da177e4 2226 }
1da177e4
LT
2227}
2228
4690c4ab
TH
2229/**
2230 * worker_thread - the worker thread function
c34056a3 2231 * @__worker: self
4690c4ab 2232 *
706026c2
TH
2233 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2234 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2235 * their specific target workqueue. The only exception is works which
2236 * belong to workqueues with a rescuer which will be explained in
2237 * rescuer_thread().
4690c4ab 2238 */
c34056a3 2239static int worker_thread(void *__worker)
1da177e4 2240{
c34056a3 2241 struct worker *worker = __worker;
bd7bdd43 2242 struct worker_pool *pool = worker->pool;
1da177e4 2243
e22bee78
TH
2244 /* tell the scheduler that this is a workqueue worker */
2245 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2246woke_up:
d565ed63 2247 spin_lock_irq(&pool->lock);
1da177e4 2248
5f7dabfd
LJ
2249 /* we are off idle list if destruction or rebind is requested */
2250 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2251 spin_unlock_irq(&pool->lock);
25511a47 2252
5f7dabfd 2253 /* if DIE is set, destruction is requested */
25511a47
TH
2254 if (worker->flags & WORKER_DIE) {
2255 worker->task->flags &= ~PF_WQ_WORKER;
2256 return 0;
2257 }
2258
5f7dabfd 2259 /* otherwise, rebind */
25511a47
TH
2260 idle_worker_rebind(worker);
2261 goto woke_up;
c8e55f36 2262 }
affee4b2 2263
c8e55f36 2264 worker_leave_idle(worker);
db7bccf4 2265recheck:
e22bee78 2266 /* no more worker necessary? */
63d95a91 2267 if (!need_more_worker(pool))
e22bee78
TH
2268 goto sleep;
2269
2270 /* do we need to manage? */
63d95a91 2271 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2272 goto recheck;
2273
c8e55f36
TH
2274 /*
2275 * ->scheduled list can only be filled while a worker is
2276 * preparing to process a work or actually processing it.
2277 * Make sure nobody diddled with it while I was sleeping.
2278 */
6183c009 2279 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2280
e22bee78
TH
2281 /*
2282 * When control reaches this point, we're guaranteed to have
2283 * at least one idle worker or that someone else has already
2284 * assumed the manager role.
2285 */
2286 worker_clr_flags(worker, WORKER_PREP);
2287
2288 do {
c8e55f36 2289 struct work_struct *work =
bd7bdd43 2290 list_first_entry(&pool->worklist,
c8e55f36
TH
2291 struct work_struct, entry);
2292
2293 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2294 /* optimization path, not strictly necessary */
2295 process_one_work(worker, work);
2296 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2297 process_scheduled_works(worker);
c8e55f36
TH
2298 } else {
2299 move_linked_works(work, &worker->scheduled, NULL);
2300 process_scheduled_works(worker);
affee4b2 2301 }
63d95a91 2302 } while (keep_working(pool));
e22bee78
TH
2303
2304 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2305sleep:
63d95a91 2306 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2307 goto recheck;
d313dd85 2308
c8e55f36 2309 /*
d565ed63
TH
2310 * pool->lock is held and there's no work to process and no need to
2311 * manage, sleep. Workers are woken up only while holding
2312 * pool->lock or from local cpu, so setting the current state
2313 * before releasing pool->lock is enough to prevent losing any
2314 * event.
c8e55f36
TH
2315 */
2316 worker_enter_idle(worker);
2317 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2318 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2319 schedule();
2320 goto woke_up;
1da177e4
LT
2321}
2322
e22bee78
TH
2323/**
2324 * rescuer_thread - the rescuer thread function
111c225a 2325 * @__rescuer: self
e22bee78
TH
2326 *
2327 * Workqueue rescuer thread function. There's one rescuer for each
2328 * workqueue which has WQ_RESCUER set.
2329 *
706026c2 2330 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2331 * worker which uses GFP_KERNEL allocation which has slight chance of
2332 * developing into deadlock if some works currently on the same queue
2333 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2334 * the problem rescuer solves.
2335 *
706026c2
TH
2336 * When such condition is possible, the pool summons rescuers of all
2337 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2338 * those works so that forward progress can be guaranteed.
2339 *
2340 * This should happen rarely.
2341 */
111c225a 2342static int rescuer_thread(void *__rescuer)
e22bee78 2343{
111c225a
TH
2344 struct worker *rescuer = __rescuer;
2345 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2346 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2347
2348 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2349
2350 /*
2351 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2352 * doesn't participate in concurrency management.
2353 */
2354 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2355repeat:
2356 set_current_state(TASK_INTERRUPTIBLE);
2357
412d32e6
MG
2358 if (kthread_should_stop()) {
2359 __set_current_state(TASK_RUNNING);
111c225a 2360 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2361 return 0;
412d32e6 2362 }
e22bee78 2363
493a1724
TH
2364 /* see whether any pwq is asking for help */
2365 spin_lock_irq(&workqueue_lock);
2366
2367 while (!list_empty(&wq->maydays)) {
2368 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2369 struct pool_workqueue, mayday_node);
112202d9 2370 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2371 struct work_struct *work, *n;
2372
2373 __set_current_state(TASK_RUNNING);
493a1724
TH
2374 list_del_init(&pwq->mayday_node);
2375
2376 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2377
2378 /* migrate to the target cpu if possible */
f36dc67b 2379 worker_maybe_bind_and_lock(pool);
b3104104 2380 rescuer->pool = pool;
e22bee78
TH
2381
2382 /*
2383 * Slurp in all works issued via this workqueue and
2384 * process'em.
2385 */
6183c009 2386 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2387 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2388 if (get_work_pwq(work) == pwq)
e22bee78
TH
2389 move_linked_works(work, scheduled, &n);
2390
2391 process_scheduled_works(rescuer);
7576958a
TH
2392
2393 /*
d565ed63 2394 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2395 * regular worker; otherwise, we end up with 0 concurrency
2396 * and stalling the execution.
2397 */
63d95a91
TH
2398 if (keep_working(pool))
2399 wake_up_worker(pool);
7576958a 2400
b3104104 2401 rescuer->pool = NULL;
493a1724
TH
2402 spin_unlock(&pool->lock);
2403 spin_lock(&workqueue_lock);
e22bee78
TH
2404 }
2405
493a1724
TH
2406 spin_unlock_irq(&workqueue_lock);
2407
111c225a
TH
2408 /* rescuers should never participate in concurrency management */
2409 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2410 schedule();
2411 goto repeat;
1da177e4
LT
2412}
2413
fc2e4d70
ON
2414struct wq_barrier {
2415 struct work_struct work;
2416 struct completion done;
2417};
2418
2419static void wq_barrier_func(struct work_struct *work)
2420{
2421 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2422 complete(&barr->done);
2423}
2424
4690c4ab
TH
2425/**
2426 * insert_wq_barrier - insert a barrier work
112202d9 2427 * @pwq: pwq to insert barrier into
4690c4ab 2428 * @barr: wq_barrier to insert
affee4b2
TH
2429 * @target: target work to attach @barr to
2430 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2431 *
affee4b2
TH
2432 * @barr is linked to @target such that @barr is completed only after
2433 * @target finishes execution. Please note that the ordering
2434 * guarantee is observed only with respect to @target and on the local
2435 * cpu.
2436 *
2437 * Currently, a queued barrier can't be canceled. This is because
2438 * try_to_grab_pending() can't determine whether the work to be
2439 * grabbed is at the head of the queue and thus can't clear LINKED
2440 * flag of the previous work while there must be a valid next work
2441 * after a work with LINKED flag set.
2442 *
2443 * Note that when @worker is non-NULL, @target may be modified
112202d9 2444 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2445 *
2446 * CONTEXT:
d565ed63 2447 * spin_lock_irq(pool->lock).
4690c4ab 2448 */
112202d9 2449static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2450 struct wq_barrier *barr,
2451 struct work_struct *target, struct worker *worker)
fc2e4d70 2452{
affee4b2
TH
2453 struct list_head *head;
2454 unsigned int linked = 0;
2455
dc186ad7 2456 /*
d565ed63 2457 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2458 * as we know for sure that this will not trigger any of the
2459 * checks and call back into the fixup functions where we
2460 * might deadlock.
2461 */
ca1cab37 2462 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2463 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2464 init_completion(&barr->done);
83c22520 2465
affee4b2
TH
2466 /*
2467 * If @target is currently being executed, schedule the
2468 * barrier to the worker; otherwise, put it after @target.
2469 */
2470 if (worker)
2471 head = worker->scheduled.next;
2472 else {
2473 unsigned long *bits = work_data_bits(target);
2474
2475 head = target->entry.next;
2476 /* there can already be other linked works, inherit and set */
2477 linked = *bits & WORK_STRUCT_LINKED;
2478 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2479 }
2480
dc186ad7 2481 debug_work_activate(&barr->work);
112202d9 2482 insert_work(pwq, &barr->work, head,
affee4b2 2483 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2484}
2485
73f53c4a 2486/**
112202d9 2487 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2488 * @wq: workqueue being flushed
2489 * @flush_color: new flush color, < 0 for no-op
2490 * @work_color: new work color, < 0 for no-op
2491 *
112202d9 2492 * Prepare pwqs for workqueue flushing.
73f53c4a 2493 *
112202d9
TH
2494 * If @flush_color is non-negative, flush_color on all pwqs should be
2495 * -1. If no pwq has in-flight commands at the specified color, all
2496 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2497 * has in flight commands, its pwq->flush_color is set to
2498 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2499 * wakeup logic is armed and %true is returned.
2500 *
2501 * The caller should have initialized @wq->first_flusher prior to
2502 * calling this function with non-negative @flush_color. If
2503 * @flush_color is negative, no flush color update is done and %false
2504 * is returned.
2505 *
112202d9 2506 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2507 * work_color which is previous to @work_color and all will be
2508 * advanced to @work_color.
2509 *
2510 * CONTEXT:
2511 * mutex_lock(wq->flush_mutex).
2512 *
2513 * RETURNS:
2514 * %true if @flush_color >= 0 and there's something to flush. %false
2515 * otherwise.
2516 */
112202d9 2517static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2518 int flush_color, int work_color)
1da177e4 2519{
73f53c4a 2520 bool wait = false;
49e3cf44 2521 struct pool_workqueue *pwq;
1da177e4 2522
73f53c4a 2523 if (flush_color >= 0) {
6183c009 2524 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2525 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2526 }
2355b70f 2527
76af4d93
TH
2528 local_irq_disable();
2529
49e3cf44 2530 for_each_pwq(pwq, wq) {
112202d9 2531 struct worker_pool *pool = pwq->pool;
fc2e4d70 2532
76af4d93 2533 spin_lock(&pool->lock);
83c22520 2534
73f53c4a 2535 if (flush_color >= 0) {
6183c009 2536 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2537
112202d9
TH
2538 if (pwq->nr_in_flight[flush_color]) {
2539 pwq->flush_color = flush_color;
2540 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2541 wait = true;
2542 }
2543 }
1da177e4 2544
73f53c4a 2545 if (work_color >= 0) {
6183c009 2546 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2547 pwq->work_color = work_color;
73f53c4a 2548 }
1da177e4 2549
76af4d93 2550 spin_unlock(&pool->lock);
1da177e4 2551 }
2355b70f 2552
76af4d93
TH
2553 local_irq_enable();
2554
112202d9 2555 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2556 complete(&wq->first_flusher->done);
14441960 2557
73f53c4a 2558 return wait;
1da177e4
LT
2559}
2560
0fcb78c2 2561/**
1da177e4 2562 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2563 * @wq: workqueue to flush
1da177e4
LT
2564 *
2565 * Forces execution of the workqueue and blocks until its completion.
2566 * This is typically used in driver shutdown handlers.
2567 *
fc2e4d70
ON
2568 * We sleep until all works which were queued on entry have been handled,
2569 * but we are not livelocked by new incoming ones.
1da177e4 2570 */
7ad5b3a5 2571void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2572{
73f53c4a
TH
2573 struct wq_flusher this_flusher = {
2574 .list = LIST_HEAD_INIT(this_flusher.list),
2575 .flush_color = -1,
2576 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2577 };
2578 int next_color;
1da177e4 2579
3295f0ef
IM
2580 lock_map_acquire(&wq->lockdep_map);
2581 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2582
2583 mutex_lock(&wq->flush_mutex);
2584
2585 /*
2586 * Start-to-wait phase
2587 */
2588 next_color = work_next_color(wq->work_color);
2589
2590 if (next_color != wq->flush_color) {
2591 /*
2592 * Color space is not full. The current work_color
2593 * becomes our flush_color and work_color is advanced
2594 * by one.
2595 */
6183c009 2596 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2597 this_flusher.flush_color = wq->work_color;
2598 wq->work_color = next_color;
2599
2600 if (!wq->first_flusher) {
2601 /* no flush in progress, become the first flusher */
6183c009 2602 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2603
2604 wq->first_flusher = &this_flusher;
2605
112202d9 2606 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2607 wq->work_color)) {
2608 /* nothing to flush, done */
2609 wq->flush_color = next_color;
2610 wq->first_flusher = NULL;
2611 goto out_unlock;
2612 }
2613 } else {
2614 /* wait in queue */
6183c009 2615 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2616 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2617 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2618 }
2619 } else {
2620 /*
2621 * Oops, color space is full, wait on overflow queue.
2622 * The next flush completion will assign us
2623 * flush_color and transfer to flusher_queue.
2624 */
2625 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2626 }
2627
2628 mutex_unlock(&wq->flush_mutex);
2629
2630 wait_for_completion(&this_flusher.done);
2631
2632 /*
2633 * Wake-up-and-cascade phase
2634 *
2635 * First flushers are responsible for cascading flushes and
2636 * handling overflow. Non-first flushers can simply return.
2637 */
2638 if (wq->first_flusher != &this_flusher)
2639 return;
2640
2641 mutex_lock(&wq->flush_mutex);
2642
4ce48b37
TH
2643 /* we might have raced, check again with mutex held */
2644 if (wq->first_flusher != &this_flusher)
2645 goto out_unlock;
2646
73f53c4a
TH
2647 wq->first_flusher = NULL;
2648
6183c009
TH
2649 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2650 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2651
2652 while (true) {
2653 struct wq_flusher *next, *tmp;
2654
2655 /* complete all the flushers sharing the current flush color */
2656 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2657 if (next->flush_color != wq->flush_color)
2658 break;
2659 list_del_init(&next->list);
2660 complete(&next->done);
2661 }
2662
6183c009
TH
2663 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2664 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2665
2666 /* this flush_color is finished, advance by one */
2667 wq->flush_color = work_next_color(wq->flush_color);
2668
2669 /* one color has been freed, handle overflow queue */
2670 if (!list_empty(&wq->flusher_overflow)) {
2671 /*
2672 * Assign the same color to all overflowed
2673 * flushers, advance work_color and append to
2674 * flusher_queue. This is the start-to-wait
2675 * phase for these overflowed flushers.
2676 */
2677 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2678 tmp->flush_color = wq->work_color;
2679
2680 wq->work_color = work_next_color(wq->work_color);
2681
2682 list_splice_tail_init(&wq->flusher_overflow,
2683 &wq->flusher_queue);
112202d9 2684 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2685 }
2686
2687 if (list_empty(&wq->flusher_queue)) {
6183c009 2688 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2689 break;
2690 }
2691
2692 /*
2693 * Need to flush more colors. Make the next flusher
112202d9 2694 * the new first flusher and arm pwqs.
73f53c4a 2695 */
6183c009
TH
2696 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2697 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2698
2699 list_del_init(&next->list);
2700 wq->first_flusher = next;
2701
112202d9 2702 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2703 break;
2704
2705 /*
2706 * Meh... this color is already done, clear first
2707 * flusher and repeat cascading.
2708 */
2709 wq->first_flusher = NULL;
2710 }
2711
2712out_unlock:
2713 mutex_unlock(&wq->flush_mutex);
1da177e4 2714}
ae90dd5d 2715EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2716
9c5a2ba7
TH
2717/**
2718 * drain_workqueue - drain a workqueue
2719 * @wq: workqueue to drain
2720 *
2721 * Wait until the workqueue becomes empty. While draining is in progress,
2722 * only chain queueing is allowed. IOW, only currently pending or running
2723 * work items on @wq can queue further work items on it. @wq is flushed
2724 * repeatedly until it becomes empty. The number of flushing is detemined
2725 * by the depth of chaining and should be relatively short. Whine if it
2726 * takes too long.
2727 */
2728void drain_workqueue(struct workqueue_struct *wq)
2729{
2730 unsigned int flush_cnt = 0;
49e3cf44 2731 struct pool_workqueue *pwq;
9c5a2ba7
TH
2732
2733 /*
2734 * __queue_work() needs to test whether there are drainers, is much
2735 * hotter than drain_workqueue() and already looks at @wq->flags.
2736 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2737 */
e98d5b16 2738 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2739 if (!wq->nr_drainers++)
2740 wq->flags |= WQ_DRAINING;
e98d5b16 2741 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2742reflush:
2743 flush_workqueue(wq);
2744
76af4d93
TH
2745 local_irq_disable();
2746
49e3cf44 2747 for_each_pwq(pwq, wq) {
fa2563e4 2748 bool drained;
9c5a2ba7 2749
76af4d93 2750 spin_lock(&pwq->pool->lock);
112202d9 2751 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2752 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2753
2754 if (drained)
9c5a2ba7
TH
2755 continue;
2756
2757 if (++flush_cnt == 10 ||
2758 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2759 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2760 wq->name, flush_cnt);
76af4d93
TH
2761
2762 local_irq_enable();
9c5a2ba7
TH
2763 goto reflush;
2764 }
2765
76af4d93 2766 spin_lock(&workqueue_lock);
9c5a2ba7
TH
2767 if (!--wq->nr_drainers)
2768 wq->flags &= ~WQ_DRAINING;
76af4d93
TH
2769 spin_unlock(&workqueue_lock);
2770
2771 local_irq_enable();
9c5a2ba7
TH
2772}
2773EXPORT_SYMBOL_GPL(drain_workqueue);
2774
606a5020 2775static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2776{
affee4b2 2777 struct worker *worker = NULL;
c9e7cf27 2778 struct worker_pool *pool;
112202d9 2779 struct pool_workqueue *pwq;
db700897
ON
2780
2781 might_sleep();
fa1b54e6
TH
2782
2783 local_irq_disable();
c9e7cf27 2784 pool = get_work_pool(work);
fa1b54e6
TH
2785 if (!pool) {
2786 local_irq_enable();
baf59022 2787 return false;
fa1b54e6 2788 }
db700897 2789
fa1b54e6 2790 spin_lock(&pool->lock);
0b3dae68 2791 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2792 pwq = get_work_pwq(work);
2793 if (pwq) {
2794 if (unlikely(pwq->pool != pool))
4690c4ab 2795 goto already_gone;
606a5020 2796 } else {
c9e7cf27 2797 worker = find_worker_executing_work(pool, work);
affee4b2 2798 if (!worker)
4690c4ab 2799 goto already_gone;
112202d9 2800 pwq = worker->current_pwq;
606a5020 2801 }
db700897 2802
112202d9 2803 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2804 spin_unlock_irq(&pool->lock);
7a22ad75 2805
e159489b
TH
2806 /*
2807 * If @max_active is 1 or rescuer is in use, flushing another work
2808 * item on the same workqueue may lead to deadlock. Make sure the
2809 * flusher is not running on the same workqueue by verifying write
2810 * access.
2811 */
112202d9
TH
2812 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2813 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2814 else
112202d9
TH
2815 lock_map_acquire_read(&pwq->wq->lockdep_map);
2816 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2817
401a8d04 2818 return true;
4690c4ab 2819already_gone:
d565ed63 2820 spin_unlock_irq(&pool->lock);
401a8d04 2821 return false;
db700897 2822}
baf59022
TH
2823
2824/**
2825 * flush_work - wait for a work to finish executing the last queueing instance
2826 * @work: the work to flush
2827 *
606a5020
TH
2828 * Wait until @work has finished execution. @work is guaranteed to be idle
2829 * on return if it hasn't been requeued since flush started.
baf59022
TH
2830 *
2831 * RETURNS:
2832 * %true if flush_work() waited for the work to finish execution,
2833 * %false if it was already idle.
2834 */
2835bool flush_work(struct work_struct *work)
2836{
2837 struct wq_barrier barr;
2838
0976dfc1
SB
2839 lock_map_acquire(&work->lockdep_map);
2840 lock_map_release(&work->lockdep_map);
2841
606a5020 2842 if (start_flush_work(work, &barr)) {
401a8d04
TH
2843 wait_for_completion(&barr.done);
2844 destroy_work_on_stack(&barr.work);
2845 return true;
606a5020 2846 } else {
401a8d04 2847 return false;
6e84d644 2848 }
6e84d644 2849}
606a5020 2850EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2851
36e227d2 2852static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2853{
bbb68dfa 2854 unsigned long flags;
1f1f642e
ON
2855 int ret;
2856
2857 do {
bbb68dfa
TH
2858 ret = try_to_grab_pending(work, is_dwork, &flags);
2859 /*
2860 * If someone else is canceling, wait for the same event it
2861 * would be waiting for before retrying.
2862 */
2863 if (unlikely(ret == -ENOENT))
606a5020 2864 flush_work(work);
1f1f642e
ON
2865 } while (unlikely(ret < 0));
2866
bbb68dfa
TH
2867 /* tell other tasks trying to grab @work to back off */
2868 mark_work_canceling(work);
2869 local_irq_restore(flags);
2870
606a5020 2871 flush_work(work);
7a22ad75 2872 clear_work_data(work);
1f1f642e
ON
2873 return ret;
2874}
2875
6e84d644 2876/**
401a8d04
TH
2877 * cancel_work_sync - cancel a work and wait for it to finish
2878 * @work: the work to cancel
6e84d644 2879 *
401a8d04
TH
2880 * Cancel @work and wait for its execution to finish. This function
2881 * can be used even if the work re-queues itself or migrates to
2882 * another workqueue. On return from this function, @work is
2883 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2884 *
401a8d04
TH
2885 * cancel_work_sync(&delayed_work->work) must not be used for
2886 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2887 *
401a8d04 2888 * The caller must ensure that the workqueue on which @work was last
6e84d644 2889 * queued can't be destroyed before this function returns.
401a8d04
TH
2890 *
2891 * RETURNS:
2892 * %true if @work was pending, %false otherwise.
6e84d644 2893 */
401a8d04 2894bool cancel_work_sync(struct work_struct *work)
6e84d644 2895{
36e227d2 2896 return __cancel_work_timer(work, false);
b89deed3 2897}
28e53bdd 2898EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2899
6e84d644 2900/**
401a8d04
TH
2901 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2902 * @dwork: the delayed work to flush
6e84d644 2903 *
401a8d04
TH
2904 * Delayed timer is cancelled and the pending work is queued for
2905 * immediate execution. Like flush_work(), this function only
2906 * considers the last queueing instance of @dwork.
1f1f642e 2907 *
401a8d04
TH
2908 * RETURNS:
2909 * %true if flush_work() waited for the work to finish execution,
2910 * %false if it was already idle.
6e84d644 2911 */
401a8d04
TH
2912bool flush_delayed_work(struct delayed_work *dwork)
2913{
8930caba 2914 local_irq_disable();
401a8d04 2915 if (del_timer_sync(&dwork->timer))
60c057bc 2916 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2917 local_irq_enable();
401a8d04
TH
2918 return flush_work(&dwork->work);
2919}
2920EXPORT_SYMBOL(flush_delayed_work);
2921
09383498 2922/**
57b30ae7
TH
2923 * cancel_delayed_work - cancel a delayed work
2924 * @dwork: delayed_work to cancel
09383498 2925 *
57b30ae7
TH
2926 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2927 * and canceled; %false if wasn't pending. Note that the work callback
2928 * function may still be running on return, unless it returns %true and the
2929 * work doesn't re-arm itself. Explicitly flush or use
2930 * cancel_delayed_work_sync() to wait on it.
09383498 2931 *
57b30ae7 2932 * This function is safe to call from any context including IRQ handler.
09383498 2933 */
57b30ae7 2934bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2935{
57b30ae7
TH
2936 unsigned long flags;
2937 int ret;
2938
2939 do {
2940 ret = try_to_grab_pending(&dwork->work, true, &flags);
2941 } while (unlikely(ret == -EAGAIN));
2942
2943 if (unlikely(ret < 0))
2944 return false;
2945
7c3eed5c
TH
2946 set_work_pool_and_clear_pending(&dwork->work,
2947 get_work_pool_id(&dwork->work));
57b30ae7 2948 local_irq_restore(flags);
c0158ca6 2949 return ret;
09383498 2950}
57b30ae7 2951EXPORT_SYMBOL(cancel_delayed_work);
09383498 2952
401a8d04
TH
2953/**
2954 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2955 * @dwork: the delayed work cancel
2956 *
2957 * This is cancel_work_sync() for delayed works.
2958 *
2959 * RETURNS:
2960 * %true if @dwork was pending, %false otherwise.
2961 */
2962bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2963{
36e227d2 2964 return __cancel_work_timer(&dwork->work, true);
6e84d644 2965}
f5a421a4 2966EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2967
0fcb78c2 2968/**
c1a220e7
ZR
2969 * schedule_work_on - put work task on a specific cpu
2970 * @cpu: cpu to put the work task on
2971 * @work: job to be done
2972 *
2973 * This puts a job on a specific cpu
2974 */
d4283e93 2975bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2976{
d320c038 2977 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2978}
2979EXPORT_SYMBOL(schedule_work_on);
2980
0fcb78c2 2981/**
0fcb78c2
REB
2982 * schedule_work - put work task in global workqueue
2983 * @work: job to be done
0fcb78c2 2984 *
d4283e93
TH
2985 * Returns %false if @work was already on the kernel-global workqueue and
2986 * %true otherwise.
5b0f437d
BVA
2987 *
2988 * This puts a job in the kernel-global workqueue if it was not already
2989 * queued and leaves it in the same position on the kernel-global
2990 * workqueue otherwise.
0fcb78c2 2991 */
d4283e93 2992bool schedule_work(struct work_struct *work)
1da177e4 2993{
d320c038 2994 return queue_work(system_wq, work);
1da177e4 2995}
ae90dd5d 2996EXPORT_SYMBOL(schedule_work);
1da177e4 2997
0fcb78c2
REB
2998/**
2999 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3000 * @cpu: cpu to use
52bad64d 3001 * @dwork: job to be done
0fcb78c2
REB
3002 * @delay: number of jiffies to wait
3003 *
3004 * After waiting for a given time this puts a job in the kernel-global
3005 * workqueue on the specified CPU.
3006 */
d4283e93
TH
3007bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3008 unsigned long delay)
1da177e4 3009{
d320c038 3010 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3011}
ae90dd5d 3012EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3013
0fcb78c2
REB
3014/**
3015 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3016 * @dwork: job to be done
3017 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3018 *
3019 * After waiting for a given time this puts a job in the kernel-global
3020 * workqueue.
3021 */
d4283e93 3022bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3023{
d320c038 3024 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3025}
ae90dd5d 3026EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3027
b6136773 3028/**
31ddd871 3029 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3030 * @func: the function to call
b6136773 3031 *
31ddd871
TH
3032 * schedule_on_each_cpu() executes @func on each online CPU using the
3033 * system workqueue and blocks until all CPUs have completed.
b6136773 3034 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3035 *
3036 * RETURNS:
3037 * 0 on success, -errno on failure.
b6136773 3038 */
65f27f38 3039int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3040{
3041 int cpu;
38f51568 3042 struct work_struct __percpu *works;
15316ba8 3043
b6136773
AM
3044 works = alloc_percpu(struct work_struct);
3045 if (!works)
15316ba8 3046 return -ENOMEM;
b6136773 3047
93981800
TH
3048 get_online_cpus();
3049
15316ba8 3050 for_each_online_cpu(cpu) {
9bfb1839
IM
3051 struct work_struct *work = per_cpu_ptr(works, cpu);
3052
3053 INIT_WORK(work, func);
b71ab8c2 3054 schedule_work_on(cpu, work);
65a64464 3055 }
93981800
TH
3056
3057 for_each_online_cpu(cpu)
3058 flush_work(per_cpu_ptr(works, cpu));
3059
95402b38 3060 put_online_cpus();
b6136773 3061 free_percpu(works);
15316ba8
CL
3062 return 0;
3063}
3064
eef6a7d5
AS
3065/**
3066 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3067 *
3068 * Forces execution of the kernel-global workqueue and blocks until its
3069 * completion.
3070 *
3071 * Think twice before calling this function! It's very easy to get into
3072 * trouble if you don't take great care. Either of the following situations
3073 * will lead to deadlock:
3074 *
3075 * One of the work items currently on the workqueue needs to acquire
3076 * a lock held by your code or its caller.
3077 *
3078 * Your code is running in the context of a work routine.
3079 *
3080 * They will be detected by lockdep when they occur, but the first might not
3081 * occur very often. It depends on what work items are on the workqueue and
3082 * what locks they need, which you have no control over.
3083 *
3084 * In most situations flushing the entire workqueue is overkill; you merely
3085 * need to know that a particular work item isn't queued and isn't running.
3086 * In such cases you should use cancel_delayed_work_sync() or
3087 * cancel_work_sync() instead.
3088 */
1da177e4
LT
3089void flush_scheduled_work(void)
3090{
d320c038 3091 flush_workqueue(system_wq);
1da177e4 3092}
ae90dd5d 3093EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3094
1fa44eca
JB
3095/**
3096 * execute_in_process_context - reliably execute the routine with user context
3097 * @fn: the function to execute
1fa44eca
JB
3098 * @ew: guaranteed storage for the execute work structure (must
3099 * be available when the work executes)
3100 *
3101 * Executes the function immediately if process context is available,
3102 * otherwise schedules the function for delayed execution.
3103 *
3104 * Returns: 0 - function was executed
3105 * 1 - function was scheduled for execution
3106 */
65f27f38 3107int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3108{
3109 if (!in_interrupt()) {
65f27f38 3110 fn(&ew->work);
1fa44eca
JB
3111 return 0;
3112 }
3113
65f27f38 3114 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3115 schedule_work(&ew->work);
3116
3117 return 1;
3118}
3119EXPORT_SYMBOL_GPL(execute_in_process_context);
3120
1da177e4
LT
3121int keventd_up(void)
3122{
d320c038 3123 return system_wq != NULL;
1da177e4
LT
3124}
3125
4e1a1f9a
TH
3126static void init_worker_pool(struct worker_pool *pool)
3127{
3128 spin_lock_init(&pool->lock);
3129 pool->flags |= POOL_DISASSOCIATED;
3130 INIT_LIST_HEAD(&pool->worklist);
3131 INIT_LIST_HEAD(&pool->idle_list);
3132 hash_init(pool->busy_hash);
3133
3134 init_timer_deferrable(&pool->idle_timer);
3135 pool->idle_timer.function = idle_worker_timeout;
3136 pool->idle_timer.data = (unsigned long)pool;
3137
3138 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3139 (unsigned long)pool);
3140
3141 mutex_init(&pool->manager_arb);
3142 mutex_init(&pool->assoc_mutex);
3143 ida_init(&pool->worker_ida);
3144}
3145
30cdf249 3146static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3147{
49e3cf44 3148 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3149 int cpu;
3150
3151 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3152 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3153 if (!wq->cpu_pwqs)
30cdf249
TH
3154 return -ENOMEM;
3155
3156 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3157 struct pool_workqueue *pwq =
3158 per_cpu_ptr(wq->cpu_pwqs, cpu);
f3421797 3159
49e3cf44 3160 pwq->pool = get_std_worker_pool(cpu, highpri);
76af4d93 3161 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
30cdf249
TH
3162 }
3163 } else {
3164 struct pool_workqueue *pwq;
3165
3166 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3167 if (!pwq)
3168 return -ENOMEM;
3169
49e3cf44 3170 pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
76af4d93 3171 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
30cdf249
TH
3172 }
3173
3174 return 0;
0f900049
TH
3175}
3176
112202d9 3177static void free_pwqs(struct workqueue_struct *wq)
0f900049 3178{
e06ffa1e 3179 if (!(wq->flags & WQ_UNBOUND))
420c0ddb
TH
3180 free_percpu(wq->cpu_pwqs);
3181 else if (!list_empty(&wq->pwqs))
3182 kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
3183 struct pool_workqueue, pwqs_node));
0f900049
TH
3184}
3185
f3421797
TH
3186static int wq_clamp_max_active(int max_active, unsigned int flags,
3187 const char *name)
b71ab8c2 3188{
f3421797
TH
3189 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3190
3191 if (max_active < 1 || max_active > lim)
044c782c
VI
3192 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3193 max_active, name, 1, lim);
b71ab8c2 3194
f3421797 3195 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3196}
3197
b196be89 3198struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3199 unsigned int flags,
3200 int max_active,
3201 struct lock_class_key *key,
b196be89 3202 const char *lock_name, ...)
1da177e4 3203{
b196be89 3204 va_list args, args1;
1da177e4 3205 struct workqueue_struct *wq;
49e3cf44 3206 struct pool_workqueue *pwq;
b196be89
TH
3207 size_t namelen;
3208
3209 /* determine namelen, allocate wq and format name */
3210 va_start(args, lock_name);
3211 va_copy(args1, args);
3212 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3213
3214 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3215 if (!wq)
3216 goto err;
3217
3218 vsnprintf(wq->name, namelen, fmt, args1);
3219 va_end(args);
3220 va_end(args1);
1da177e4 3221
6370a6ad
TH
3222 /*
3223 * Workqueues which may be used during memory reclaim should
3224 * have a rescuer to guarantee forward progress.
3225 */
3226 if (flags & WQ_MEM_RECLAIM)
3227 flags |= WQ_RESCUER;
3228
d320c038 3229 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3230 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3231
b196be89 3232 /* init wq */
97e37d7b 3233 wq->flags = flags;
a0a1a5fd 3234 wq->saved_max_active = max_active;
73f53c4a 3235 mutex_init(&wq->flush_mutex);
112202d9 3236 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3237 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3238 INIT_LIST_HEAD(&wq->flusher_queue);
3239 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3240 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3241
eb13ba87 3242 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3243 INIT_LIST_HEAD(&wq->list);
3af24433 3244
30cdf249 3245 if (alloc_and_link_pwqs(wq) < 0)
bdbc5dd7
TH
3246 goto err;
3247
76af4d93 3248 local_irq_disable();
49e3cf44 3249 for_each_pwq(pwq, wq) {
112202d9 3250 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
112202d9
TH
3251 pwq->wq = wq;
3252 pwq->flush_color = -1;
3253 pwq->max_active = max_active;
3254 INIT_LIST_HEAD(&pwq->delayed_works);
493a1724 3255 INIT_LIST_HEAD(&pwq->mayday_node);
e22bee78 3256 }
76af4d93 3257 local_irq_enable();
1537663f 3258
e22bee78
TH
3259 if (flags & WQ_RESCUER) {
3260 struct worker *rescuer;
3261
e22bee78
TH
3262 wq->rescuer = rescuer = alloc_worker();
3263 if (!rescuer)
3264 goto err;
3265
111c225a
TH
3266 rescuer->rescue_wq = wq;
3267 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3268 wq->name);
e22bee78
TH
3269 if (IS_ERR(rescuer->task))
3270 goto err;
3271
e22bee78
TH
3272 rescuer->task->flags |= PF_THREAD_BOUND;
3273 wake_up_process(rescuer->task);
3af24433
ON
3274 }
3275
a0a1a5fd
TH
3276 /*
3277 * workqueue_lock protects global freeze state and workqueues
3278 * list. Grab it, set max_active accordingly and add the new
3279 * workqueue to workqueues list.
3280 */
e98d5b16 3281 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3282
58a69cb4 3283 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
49e3cf44
TH
3284 for_each_pwq(pwq, wq)
3285 pwq->max_active = 0;
a0a1a5fd 3286
1537663f 3287 list_add(&wq->list, &workqueues);
a0a1a5fd 3288
e98d5b16 3289 spin_unlock_irq(&workqueue_lock);
1537663f 3290
3af24433 3291 return wq;
4690c4ab
TH
3292err:
3293 if (wq) {
112202d9 3294 free_pwqs(wq);
e22bee78 3295 kfree(wq->rescuer);
4690c4ab
TH
3296 kfree(wq);
3297 }
3298 return NULL;
3af24433 3299}
d320c038 3300EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3301
3af24433
ON
3302/**
3303 * destroy_workqueue - safely terminate a workqueue
3304 * @wq: target workqueue
3305 *
3306 * Safely destroy a workqueue. All work currently pending will be done first.
3307 */
3308void destroy_workqueue(struct workqueue_struct *wq)
3309{
49e3cf44 3310 struct pool_workqueue *pwq;
3af24433 3311
9c5a2ba7
TH
3312 /* drain it before proceeding with destruction */
3313 drain_workqueue(wq);
c8efcc25 3314
76af4d93
TH
3315 spin_lock_irq(&workqueue_lock);
3316
6183c009 3317 /* sanity checks */
49e3cf44 3318 for_each_pwq(pwq, wq) {
6183c009
TH
3319 int i;
3320
76af4d93
TH
3321 for (i = 0; i < WORK_NR_COLORS; i++) {
3322 if (WARN_ON(pwq->nr_in_flight[i])) {
3323 spin_unlock_irq(&workqueue_lock);
6183c009 3324 return;
76af4d93
TH
3325 }
3326 }
3327
6183c009 3328 if (WARN_ON(pwq->nr_active) ||
76af4d93
TH
3329 WARN_ON(!list_empty(&pwq->delayed_works))) {
3330 spin_unlock_irq(&workqueue_lock);
6183c009 3331 return;
76af4d93 3332 }
6183c009
TH
3333 }
3334
a0a1a5fd
TH
3335 /*
3336 * wq list is used to freeze wq, remove from list after
3337 * flushing is complete in case freeze races us.
3338 */
b1f4ec17 3339 list_del(&wq->list);
76af4d93 3340
e98d5b16 3341 spin_unlock_irq(&workqueue_lock);
3af24433 3342
e22bee78
TH
3343 if (wq->flags & WQ_RESCUER) {
3344 kthread_stop(wq->rescuer->task);
8d9df9f0 3345 kfree(wq->rescuer);
e22bee78
TH
3346 }
3347
112202d9 3348 free_pwqs(wq);
3af24433
ON
3349 kfree(wq);
3350}
3351EXPORT_SYMBOL_GPL(destroy_workqueue);
3352
9f4bd4cd 3353/**
112202d9
TH
3354 * pwq_set_max_active - adjust max_active of a pwq
3355 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3356 * @max_active: new max_active value.
3357 *
112202d9 3358 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3359 * increased.
3360 *
3361 * CONTEXT:
d565ed63 3362 * spin_lock_irq(pool->lock).
9f4bd4cd 3363 */
112202d9 3364static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3365{
112202d9 3366 pwq->max_active = max_active;
9f4bd4cd 3367
112202d9
TH
3368 while (!list_empty(&pwq->delayed_works) &&
3369 pwq->nr_active < pwq->max_active)
3370 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3371}
3372
dcd989cb
TH
3373/**
3374 * workqueue_set_max_active - adjust max_active of a workqueue
3375 * @wq: target workqueue
3376 * @max_active: new max_active value.
3377 *
3378 * Set max_active of @wq to @max_active.
3379 *
3380 * CONTEXT:
3381 * Don't call from IRQ context.
3382 */
3383void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3384{
49e3cf44 3385 struct pool_workqueue *pwq;
dcd989cb 3386
f3421797 3387 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3388
e98d5b16 3389 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3390
3391 wq->saved_max_active = max_active;
3392
49e3cf44 3393 for_each_pwq(pwq, wq) {
112202d9 3394 struct worker_pool *pool = pwq->pool;
dcd989cb 3395
e98d5b16 3396 spin_lock(&pool->lock);
dcd989cb 3397
58a69cb4 3398 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3399 !(pool->flags & POOL_FREEZING))
112202d9 3400 pwq_set_max_active(pwq, max_active);
9bfb1839 3401
e98d5b16 3402 spin_unlock(&pool->lock);
65a64464 3403 }
93981800 3404
e98d5b16 3405 spin_unlock_irq(&workqueue_lock);
15316ba8 3406}
dcd989cb 3407EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3408
eef6a7d5 3409/**
dcd989cb
TH
3410 * workqueue_congested - test whether a workqueue is congested
3411 * @cpu: CPU in question
3412 * @wq: target workqueue
eef6a7d5 3413 *
dcd989cb
TH
3414 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3415 * no synchronization around this function and the test result is
3416 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3417 *
dcd989cb
TH
3418 * RETURNS:
3419 * %true if congested, %false otherwise.
eef6a7d5 3420 */
d84ff051 3421bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3422{
7fb98ea7 3423 struct pool_workqueue *pwq;
76af4d93
TH
3424 bool ret;
3425
3426 preempt_disable();
7fb98ea7
TH
3427
3428 if (!(wq->flags & WQ_UNBOUND))
3429 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3430 else
3431 pwq = first_pwq(wq);
dcd989cb 3432
76af4d93
TH
3433 ret = !list_empty(&pwq->delayed_works);
3434 preempt_enable();
3435
3436 return ret;
1da177e4 3437}
dcd989cb 3438EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3439
dcd989cb
TH
3440/**
3441 * work_busy - test whether a work is currently pending or running
3442 * @work: the work to be tested
3443 *
3444 * Test whether @work is currently pending or running. There is no
3445 * synchronization around this function and the test result is
3446 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3447 *
3448 * RETURNS:
3449 * OR'd bitmask of WORK_BUSY_* bits.
3450 */
3451unsigned int work_busy(struct work_struct *work)
1da177e4 3452{
fa1b54e6 3453 struct worker_pool *pool;
dcd989cb
TH
3454 unsigned long flags;
3455 unsigned int ret = 0;
1da177e4 3456
dcd989cb
TH
3457 if (work_pending(work))
3458 ret |= WORK_BUSY_PENDING;
1da177e4 3459
fa1b54e6
TH
3460 local_irq_save(flags);
3461 pool = get_work_pool(work);
038366c5 3462 if (pool) {
fa1b54e6 3463 spin_lock(&pool->lock);
038366c5
LJ
3464 if (find_worker_executing_work(pool, work))
3465 ret |= WORK_BUSY_RUNNING;
fa1b54e6 3466 spin_unlock(&pool->lock);
038366c5 3467 }
fa1b54e6 3468 local_irq_restore(flags);
1da177e4 3469
dcd989cb 3470 return ret;
1da177e4 3471}
dcd989cb 3472EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3473
db7bccf4
TH
3474/*
3475 * CPU hotplug.
3476 *
e22bee78 3477 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3478 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3479 * pool which make migrating pending and scheduled works very
e22bee78 3480 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3481 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3482 * blocked draining impractical.
3483 *
24647570 3484 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3485 * running as an unbound one and allowing it to be reattached later if the
3486 * cpu comes back online.
db7bccf4 3487 */
1da177e4 3488
706026c2 3489static void wq_unbind_fn(struct work_struct *work)
3af24433 3490{
38db41d9 3491 int cpu = smp_processor_id();
4ce62e9e 3492 struct worker_pool *pool;
db7bccf4 3493 struct worker *worker;
db7bccf4 3494 int i;
3af24433 3495
38db41d9 3496 for_each_std_worker_pool(pool, cpu) {
6183c009 3497 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3498
94cf58bb
TH
3499 mutex_lock(&pool->assoc_mutex);
3500 spin_lock_irq(&pool->lock);
3af24433 3501
94cf58bb
TH
3502 /*
3503 * We've claimed all manager positions. Make all workers
3504 * unbound and set DISASSOCIATED. Before this, all workers
3505 * except for the ones which are still executing works from
3506 * before the last CPU down must be on the cpu. After
3507 * this, they may become diasporas.
3508 */
4ce62e9e 3509 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3510 worker->flags |= WORKER_UNBOUND;
3af24433 3511
b67bfe0d 3512 for_each_busy_worker(worker, i, pool)
c9e7cf27 3513 worker->flags |= WORKER_UNBOUND;
06ba38a9 3514
24647570 3515 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3516
94cf58bb
TH
3517 spin_unlock_irq(&pool->lock);
3518 mutex_unlock(&pool->assoc_mutex);
3519 }
628c78e7 3520
e22bee78 3521 /*
403c821d 3522 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3523 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3524 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3525 */
e22bee78 3526 schedule();
06ba38a9 3527
e22bee78 3528 /*
628c78e7
TH
3529 * Sched callbacks are disabled now. Zap nr_running. After this,
3530 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3531 * are always true as long as the worklist is not empty. Pools on
3532 * @cpu now behave as unbound (in terms of concurrency management)
3533 * pools which are served by workers tied to the CPU.
628c78e7
TH
3534 *
3535 * On return from this function, the current worker would trigger
3536 * unbound chain execution of pending work items if other workers
3537 * didn't already.
e22bee78 3538 */
38db41d9 3539 for_each_std_worker_pool(pool, cpu)
e19e397a 3540 atomic_set(&pool->nr_running, 0);
3af24433 3541}
3af24433 3542
8db25e78
TH
3543/*
3544 * Workqueues should be brought up before normal priority CPU notifiers.
3545 * This will be registered high priority CPU notifier.
3546 */
9fdf9b73 3547static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3548 unsigned long action,
3549 void *hcpu)
3af24433 3550{
d84ff051 3551 int cpu = (unsigned long)hcpu;
4ce62e9e 3552 struct worker_pool *pool;
3ce63377 3553
8db25e78 3554 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3555 case CPU_UP_PREPARE:
38db41d9 3556 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3557 struct worker *worker;
3558
3559 if (pool->nr_workers)
3560 continue;
3561
3562 worker = create_worker(pool);
3563 if (!worker)
3564 return NOTIFY_BAD;
3565
d565ed63 3566 spin_lock_irq(&pool->lock);
3ce63377 3567 start_worker(worker);
d565ed63 3568 spin_unlock_irq(&pool->lock);
3af24433 3569 }
8db25e78 3570 break;
3af24433 3571
db7bccf4
TH
3572 case CPU_DOWN_FAILED:
3573 case CPU_ONLINE:
38db41d9 3574 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3575 mutex_lock(&pool->assoc_mutex);
3576 spin_lock_irq(&pool->lock);
3577
24647570 3578 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3579 rebind_workers(pool);
3580
3581 spin_unlock_irq(&pool->lock);
3582 mutex_unlock(&pool->assoc_mutex);
3583 }
db7bccf4 3584 break;
00dfcaf7 3585 }
65758202
TH
3586 return NOTIFY_OK;
3587}
3588
3589/*
3590 * Workqueues should be brought down after normal priority CPU notifiers.
3591 * This will be registered as low priority CPU notifier.
3592 */
9fdf9b73 3593static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3594 unsigned long action,
3595 void *hcpu)
3596{
d84ff051 3597 int cpu = (unsigned long)hcpu;
8db25e78
TH
3598 struct work_struct unbind_work;
3599
65758202
TH
3600 switch (action & ~CPU_TASKS_FROZEN) {
3601 case CPU_DOWN_PREPARE:
8db25e78 3602 /* unbinding should happen on the local CPU */
706026c2 3603 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3604 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3605 flush_work(&unbind_work);
3606 break;
65758202
TH
3607 }
3608 return NOTIFY_OK;
3609}
3610
2d3854a3 3611#ifdef CONFIG_SMP
8ccad40d 3612
2d3854a3 3613struct work_for_cpu {
ed48ece2 3614 struct work_struct work;
2d3854a3
RR
3615 long (*fn)(void *);
3616 void *arg;
3617 long ret;
3618};
3619
ed48ece2 3620static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3621{
ed48ece2
TH
3622 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3623
2d3854a3
RR
3624 wfc->ret = wfc->fn(wfc->arg);
3625}
3626
3627/**
3628 * work_on_cpu - run a function in user context on a particular cpu
3629 * @cpu: the cpu to run on
3630 * @fn: the function to run
3631 * @arg: the function arg
3632 *
31ad9081
RR
3633 * This will return the value @fn returns.
3634 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3635 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 3636 */
d84ff051 3637long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 3638{
ed48ece2 3639 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3640
ed48ece2
TH
3641 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3642 schedule_work_on(cpu, &wfc.work);
3643 flush_work(&wfc.work);
2d3854a3
RR
3644 return wfc.ret;
3645}
3646EXPORT_SYMBOL_GPL(work_on_cpu);
3647#endif /* CONFIG_SMP */
3648
a0a1a5fd
TH
3649#ifdef CONFIG_FREEZER
3650
3651/**
3652 * freeze_workqueues_begin - begin freezing workqueues
3653 *
58a69cb4
TH
3654 * Start freezing workqueues. After this function returns, all freezable
3655 * workqueues will queue new works to their frozen_works list instead of
706026c2 3656 * pool->worklist.
a0a1a5fd
TH
3657 *
3658 * CONTEXT:
d565ed63 3659 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3660 */
3661void freeze_workqueues_begin(void)
3662{
17116969 3663 struct worker_pool *pool;
24b8a847
TH
3664 struct workqueue_struct *wq;
3665 struct pool_workqueue *pwq;
17116969 3666 int id;
a0a1a5fd 3667
e98d5b16 3668 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3669
6183c009 3670 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
3671 workqueue_freezing = true;
3672
24b8a847 3673 /* set FREEZING */
17116969 3674 for_each_pool(pool, id) {
17116969 3675 spin_lock(&pool->lock);
17116969
TH
3676 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3677 pool->flags |= POOL_FREEZING;
24b8a847
TH
3678 spin_unlock(&pool->lock);
3679 }
a0a1a5fd 3680
24b8a847
TH
3681 /* suppress further executions by setting max_active to zero */
3682 list_for_each_entry(wq, &workqueues, list) {
3683 if (!(wq->flags & WQ_FREEZABLE))
3684 continue;
8b03ae3c 3685
24b8a847
TH
3686 for_each_pwq(pwq, wq) {
3687 spin_lock(&pwq->pool->lock);
3688 pwq->max_active = 0;
3689 spin_unlock(&pwq->pool->lock);
a1056305 3690 }
a0a1a5fd
TH
3691 }
3692
e98d5b16 3693 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3694}
3695
3696/**
58a69cb4 3697 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3698 *
3699 * Check whether freezing is complete. This function must be called
3700 * between freeze_workqueues_begin() and thaw_workqueues().
3701 *
3702 * CONTEXT:
3703 * Grabs and releases workqueue_lock.
3704 *
3705 * RETURNS:
58a69cb4
TH
3706 * %true if some freezable workqueues are still busy. %false if freezing
3707 * is complete.
a0a1a5fd
TH
3708 */
3709bool freeze_workqueues_busy(void)
3710{
a0a1a5fd 3711 bool busy = false;
24b8a847
TH
3712 struct workqueue_struct *wq;
3713 struct pool_workqueue *pwq;
a0a1a5fd 3714
e98d5b16 3715 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3716
6183c009 3717 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 3718
24b8a847
TH
3719 list_for_each_entry(wq, &workqueues, list) {
3720 if (!(wq->flags & WQ_FREEZABLE))
3721 continue;
a0a1a5fd
TH
3722 /*
3723 * nr_active is monotonically decreasing. It's safe
3724 * to peek without lock.
3725 */
24b8a847 3726 for_each_pwq(pwq, wq) {
6183c009 3727 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 3728 if (pwq->nr_active) {
a0a1a5fd
TH
3729 busy = true;
3730 goto out_unlock;
3731 }
3732 }
3733 }
3734out_unlock:
e98d5b16 3735 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3736 return busy;
3737}
3738
3739/**
3740 * thaw_workqueues - thaw workqueues
3741 *
3742 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3743 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3744 *
3745 * CONTEXT:
d565ed63 3746 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3747 */
3748void thaw_workqueues(void)
3749{
24b8a847
TH
3750 struct workqueue_struct *wq;
3751 struct pool_workqueue *pwq;
3752 struct worker_pool *pool;
3753 int id;
a0a1a5fd 3754
e98d5b16 3755 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
3756
3757 if (!workqueue_freezing)
3758 goto out_unlock;
3759
24b8a847
TH
3760 /* clear FREEZING */
3761 for_each_pool(pool, id) {
3762 spin_lock(&pool->lock);
3763 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3764 pool->flags &= ~POOL_FREEZING;
3765 spin_unlock(&pool->lock);
3766 }
8b03ae3c 3767
24b8a847
TH
3768 /* restore max_active and repopulate worklist */
3769 list_for_each_entry(wq, &workqueues, list) {
3770 if (!(wq->flags & WQ_FREEZABLE))
3771 continue;
a1056305 3772
24b8a847
TH
3773 for_each_pwq(pwq, wq) {
3774 spin_lock(&pwq->pool->lock);
3775 pwq_set_max_active(pwq, wq->saved_max_active);
3776 spin_unlock(&pwq->pool->lock);
d565ed63 3777 }
a0a1a5fd
TH
3778 }
3779
24b8a847
TH
3780 /* kick workers */
3781 for_each_pool(pool, id) {
3782 spin_lock(&pool->lock);
3783 wake_up_worker(pool);
3784 spin_unlock(&pool->lock);
3785 }
3786
a0a1a5fd
TH
3787 workqueue_freezing = false;
3788out_unlock:
e98d5b16 3789 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3790}
3791#endif /* CONFIG_FREEZER */
3792
6ee0578b 3793static int __init init_workqueues(void)
1da177e4 3794{
d84ff051 3795 int cpu;
c34056a3 3796
7c3eed5c
TH
3797 /* make sure we have enough bits for OFFQ pool ID */
3798 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3799 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3800
e904e6c2
TH
3801 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
3802
3803 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
3804
65758202 3805 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3806 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3807
706026c2
TH
3808 /* initialize CPU pools */
3809 for_each_wq_cpu(cpu) {
4ce62e9e 3810 struct worker_pool *pool;
8b03ae3c 3811
38db41d9 3812 for_each_std_worker_pool(pool, cpu) {
4e1a1f9a 3813 init_worker_pool(pool);
ec22ca5e 3814 pool->cpu = cpu;
9daf9e67
TH
3815
3816 /* alloc pool ID */
3817 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3818 }
8b03ae3c
TH
3819 }
3820
e22bee78 3821 /* create the initial worker */
706026c2 3822 for_each_online_wq_cpu(cpu) {
4ce62e9e 3823 struct worker_pool *pool;
e22bee78 3824
38db41d9 3825 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3826 struct worker *worker;
3827
24647570
TH
3828 if (cpu != WORK_CPU_UNBOUND)
3829 pool->flags &= ~POOL_DISASSOCIATED;
3830
bc2ae0f5 3831 worker = create_worker(pool);
4ce62e9e 3832 BUG_ON(!worker);
d565ed63 3833 spin_lock_irq(&pool->lock);
4ce62e9e 3834 start_worker(worker);
d565ed63 3835 spin_unlock_irq(&pool->lock);
4ce62e9e 3836 }
e22bee78
TH
3837 }
3838
d320c038 3839 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3840 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3841 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3842 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3843 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3844 system_freezable_wq = alloc_workqueue("events_freezable",
3845 WQ_FREEZABLE, 0);
1aabe902 3846 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3847 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3848 return 0;
1da177e4 3849}
6ee0578b 3850early_initcall(init_workqueues);