]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/workqueue.c
workqueue: skip nr_running sanity check in worker_enter_idle() if trustee is active
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
db7bccf4 48 /* global_cwq flags */
e22bee78
TH
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
649027d7 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
db7bccf4 54
c8e55f36
TH
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 59 WORKER_PREP = 1 << 3, /* preparing to run works */
db7bccf4 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
e22bee78 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 64
fb0e7beb 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
f3421797 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
db7bccf4
TH
67
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
74
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 78
e22bee78
TH
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
81
3233cdbd
TH
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
83 /* call for help after 10ms
84 (min two ticks) */
e22bee78
TH
85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
86 CREATE_COOLDOWN = HZ, /* time to breath after fail */
db7bccf4 87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
e22bee78
TH
88
89 /*
90 * Rescue workers are used only on emergencies and shared by
91 * all cpus. Give -20.
92 */
93 RESCUER_NICE_LEVEL = -20,
c8e55f36 94};
1da177e4
LT
95
96/*
4690c4ab
TH
97 * Structure fields follow one of the following exclusion rules.
98 *
e41e704b
TH
99 * I: Modifiable by initialization/destruction paths and read-only for
100 * everyone else.
4690c4ab 101 *
e22bee78
TH
102 * P: Preemption protected. Disabling preemption is enough and should
103 * only be modified and accessed from the local cpu.
104 *
8b03ae3c 105 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 106 *
e22bee78
TH
107 * X: During normal operation, modification requires gcwq->lock and
108 * should be done only from local cpu. Either disabling preemption
109 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 110 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 111 *
73f53c4a
TH
112 * F: wq->flush_mutex protected.
113 *
4690c4ab 114 * W: workqueue_lock protected.
1da177e4 115 */
1da177e4 116
8b03ae3c 117struct global_cwq;
1da177e4 118
e22bee78
TH
119/*
120 * The poor guys doing the actual heavy lifting. All on-duty workers
121 * are either serving the manager role, on idle list or on busy hash.
122 */
c34056a3 123struct worker {
c8e55f36
TH
124 /* on idle list while idle, on busy hash table while busy */
125 union {
126 struct list_head entry; /* L: while idle */
127 struct hlist_node hentry; /* L: while busy */
128 };
1da177e4 129
c34056a3 130 struct work_struct *current_work; /* L: work being processed */
8cca0eea 131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 132 struct list_head scheduled; /* L: scheduled works */
c34056a3 133 struct task_struct *task; /* I: worker task */
8b03ae3c 134 struct global_cwq *gcwq; /* I: the associated gcwq */
e22bee78
TH
135 /* 64 bytes boundary on 64bit, 32 on 32bit */
136 unsigned long last_active; /* L: last active timestamp */
137 unsigned int flags; /* X: flags */
c34056a3 138 int id; /* I: worker id */
e22bee78 139 struct work_struct rebind_work; /* L: rebind worker to cpu */
c34056a3
TH
140};
141
8b03ae3c 142/*
e22bee78
TH
143 * Global per-cpu workqueue. There's one and only one for each cpu
144 * and all works are queued and processed here regardless of their
145 * target workqueues.
8b03ae3c
TH
146 */
147struct global_cwq {
148 spinlock_t lock; /* the gcwq lock */
7e11629d 149 struct list_head worklist; /* L: list of pending works */
8b03ae3c 150 unsigned int cpu; /* I: the associated cpu */
db7bccf4 151 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
152
153 int nr_workers; /* L: total number of workers */
154 int nr_idle; /* L: currently idle ones */
155
156 /* workers are chained either in the idle_list or busy_hash */
e22bee78 157 struct list_head idle_list; /* X: list of idle workers */
c8e55f36
TH
158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
159 /* L: hash of busy workers */
160
e22bee78
TH
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
163
8b03ae3c 164 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
165
166 struct task_struct *trustee; /* L: for gcwq shutdown */
167 unsigned int trustee_state; /* L: trustee state */
168 wait_queue_head_t trustee_wait; /* trustee wait */
e22bee78 169 struct worker *first_idle; /* L: first idle worker */
8b03ae3c
TH
170} ____cacheline_aligned_in_smp;
171
1da177e4 172/*
502ca9d8 173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
174 * work_struct->data are used for flags and thus cwqs need to be
175 * aligned at two's power of the number of flag bits.
1da177e4
LT
176 */
177struct cpu_workqueue_struct {
8b03ae3c 178 struct global_cwq *gcwq; /* I: the associated gcwq */
4690c4ab 179 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
180 int work_color; /* L: current color */
181 int flush_color; /* L: flushing color */
182 int nr_in_flight[WORK_NR_COLORS];
183 /* L: nr of in_flight works */
1e19ffc6 184 int nr_active; /* L: nr of active works */
a0a1a5fd 185 int max_active; /* L: max active works */
1e19ffc6 186 struct list_head delayed_works; /* L: delayed works */
0f900049 187};
1da177e4 188
73f53c4a
TH
189/*
190 * Structure used to wait for workqueue flush.
191 */
192struct wq_flusher {
193 struct list_head list; /* F: list of flushers */
194 int flush_color; /* F: flush color waiting for */
195 struct completion done; /* flush completion */
196};
197
f2e005aa
TH
198/*
199 * All cpumasks are assumed to be always set on UP and thus can't be
200 * used to determine whether there's something to be done.
201 */
202#ifdef CONFIG_SMP
203typedef cpumask_var_t mayday_mask_t;
204#define mayday_test_and_set_cpu(cpu, mask) \
205 cpumask_test_and_set_cpu((cpu), (mask))
206#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
207#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 208#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
209#define free_mayday_mask(mask) free_cpumask_var((mask))
210#else
211typedef unsigned long mayday_mask_t;
212#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
213#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
214#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
215#define alloc_mayday_mask(maskp, gfp) true
216#define free_mayday_mask(mask) do { } while (0)
217#endif
1da177e4
LT
218
219/*
220 * The externally visible workqueue abstraction is an array of
221 * per-CPU workqueues:
222 */
223struct workqueue_struct {
9c5a2ba7 224 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
225 union {
226 struct cpu_workqueue_struct __percpu *pcpu;
227 struct cpu_workqueue_struct *single;
228 unsigned long v;
229 } cpu_wq; /* I: cwq's */
4690c4ab 230 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
231
232 struct mutex flush_mutex; /* protects wq flushing */
233 int work_color; /* F: current work color */
234 int flush_color; /* F: current flush color */
235 atomic_t nr_cwqs_to_flush; /* flush in progress */
236 struct wq_flusher *first_flusher; /* F: first flusher */
237 struct list_head flusher_queue; /* F: flush waiters */
238 struct list_head flusher_overflow; /* F: flush overflow list */
239
f2e005aa 240 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
241 struct worker *rescuer; /* I: rescue worker */
242
9c5a2ba7 243 int nr_drainers; /* W: drain in progress */
dcd989cb 244 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 245#ifdef CONFIG_LOCKDEP
4690c4ab 246 struct lockdep_map lockdep_map;
4e6045f1 247#endif
b196be89 248 char name[]; /* I: workqueue name */
1da177e4
LT
249};
250
d320c038
TH
251struct workqueue_struct *system_wq __read_mostly;
252struct workqueue_struct *system_long_wq __read_mostly;
253struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 254struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 255struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 256struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
257EXPORT_SYMBOL_GPL(system_wq);
258EXPORT_SYMBOL_GPL(system_long_wq);
259EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 260EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 261EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 262EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 263
97bd2347
TH
264#define CREATE_TRACE_POINTS
265#include <trace/events/workqueue.h>
266
db7bccf4
TH
267#define for_each_busy_worker(worker, i, pos, gcwq) \
268 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
269 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
270
f3421797
TH
271static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
272 unsigned int sw)
273{
274 if (cpu < nr_cpu_ids) {
275 if (sw & 1) {
276 cpu = cpumask_next(cpu, mask);
277 if (cpu < nr_cpu_ids)
278 return cpu;
279 }
280 if (sw & 2)
281 return WORK_CPU_UNBOUND;
282 }
283 return WORK_CPU_NONE;
284}
285
286static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
287 struct workqueue_struct *wq)
288{
289 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
290}
291
09884951
TH
292/*
293 * CPU iterators
294 *
295 * An extra gcwq is defined for an invalid cpu number
296 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
297 * specific CPU. The following iterators are similar to
298 * for_each_*_cpu() iterators but also considers the unbound gcwq.
299 *
300 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
301 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
302 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
303 * WORK_CPU_UNBOUND for unbound workqueues
304 */
f3421797
TH
305#define for_each_gcwq_cpu(cpu) \
306 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
307 (cpu) < WORK_CPU_NONE; \
308 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
309
310#define for_each_online_gcwq_cpu(cpu) \
311 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
312 (cpu) < WORK_CPU_NONE; \
313 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
314
315#define for_each_cwq_cpu(cpu, wq) \
316 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
317 (cpu) < WORK_CPU_NONE; \
318 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
319
dc186ad7
TG
320#ifdef CONFIG_DEBUG_OBJECTS_WORK
321
322static struct debug_obj_descr work_debug_descr;
323
99777288
SG
324static void *work_debug_hint(void *addr)
325{
326 return ((struct work_struct *) addr)->func;
327}
328
dc186ad7
TG
329/*
330 * fixup_init is called when:
331 * - an active object is initialized
332 */
333static int work_fixup_init(void *addr, enum debug_obj_state state)
334{
335 struct work_struct *work = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 cancel_work_sync(work);
340 debug_object_init(work, &work_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345}
346
347/*
348 * fixup_activate is called when:
349 * - an active object is activated
350 * - an unknown object is activated (might be a statically initialized object)
351 */
352static int work_fixup_activate(void *addr, enum debug_obj_state state)
353{
354 struct work_struct *work = addr;
355
356 switch (state) {
357
358 case ODEBUG_STATE_NOTAVAILABLE:
359 /*
360 * This is not really a fixup. The work struct was
361 * statically initialized. We just make sure that it
362 * is tracked in the object tracker.
363 */
22df02bb 364 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
365 debug_object_init(work, &work_debug_descr);
366 debug_object_activate(work, &work_debug_descr);
367 return 0;
368 }
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378}
379
380/*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384static int work_fixup_free(void *addr, enum debug_obj_state state)
385{
386 struct work_struct *work = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 cancel_work_sync(work);
391 debug_object_free(work, &work_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396}
397
398static struct debug_obj_descr work_debug_descr = {
399 .name = "work_struct",
99777288 400 .debug_hint = work_debug_hint,
dc186ad7
TG
401 .fixup_init = work_fixup_init,
402 .fixup_activate = work_fixup_activate,
403 .fixup_free = work_fixup_free,
404};
405
406static inline void debug_work_activate(struct work_struct *work)
407{
408 debug_object_activate(work, &work_debug_descr);
409}
410
411static inline void debug_work_deactivate(struct work_struct *work)
412{
413 debug_object_deactivate(work, &work_debug_descr);
414}
415
416void __init_work(struct work_struct *work, int onstack)
417{
418 if (onstack)
419 debug_object_init_on_stack(work, &work_debug_descr);
420 else
421 debug_object_init(work, &work_debug_descr);
422}
423EXPORT_SYMBOL_GPL(__init_work);
424
425void destroy_work_on_stack(struct work_struct *work)
426{
427 debug_object_free(work, &work_debug_descr);
428}
429EXPORT_SYMBOL_GPL(destroy_work_on_stack);
430
431#else
432static inline void debug_work_activate(struct work_struct *work) { }
433static inline void debug_work_deactivate(struct work_struct *work) { }
434#endif
435
95402b38
GS
436/* Serializes the accesses to the list of workqueues. */
437static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 438static LIST_HEAD(workqueues);
a0a1a5fd 439static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 440
e22bee78
TH
441/*
442 * The almighty global cpu workqueues. nr_running is the only field
443 * which is expected to be used frequently by other cpus via
444 * try_to_wake_up(). Put it in a separate cacheline.
445 */
8b03ae3c 446static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e22bee78 447static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
8b03ae3c 448
f3421797
TH
449/*
450 * Global cpu workqueue and nr_running counter for unbound gcwq. The
451 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
452 * workers have WORKER_UNBOUND set.
453 */
454static struct global_cwq unbound_global_cwq;
455static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
456
c34056a3 457static int worker_thread(void *__worker);
1da177e4 458
8b03ae3c
TH
459static struct global_cwq *get_gcwq(unsigned int cpu)
460{
f3421797
TH
461 if (cpu != WORK_CPU_UNBOUND)
462 return &per_cpu(global_cwq, cpu);
463 else
464 return &unbound_global_cwq;
8b03ae3c
TH
465}
466
e22bee78
TH
467static atomic_t *get_gcwq_nr_running(unsigned int cpu)
468{
f3421797
TH
469 if (cpu != WORK_CPU_UNBOUND)
470 return &per_cpu(gcwq_nr_running, cpu);
471 else
472 return &unbound_gcwq_nr_running;
e22bee78
TH
473}
474
1537663f
TH
475static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 struct workqueue_struct *wq)
b1f4ec17 477{
f3421797 478 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 479 if (likely(cpu < nr_cpu_ids))
f3421797 480 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
481 } else if (likely(cpu == WORK_CPU_UNBOUND))
482 return wq->cpu_wq.single;
483 return NULL;
b1f4ec17
ON
484}
485
73f53c4a
TH
486static unsigned int work_color_to_flags(int color)
487{
488 return color << WORK_STRUCT_COLOR_SHIFT;
489}
490
491static int get_work_color(struct work_struct *work)
492{
493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
495}
496
497static int work_next_color(int color)
498{
499 return (color + 1) % WORK_NR_COLORS;
500}
1da177e4 501
14441960 502/*
e120153d
TH
503 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
504 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
505 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
506 *
507 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
508 * cwq, cpu or clear work->data. These functions should only be
509 * called while the work is owned - ie. while the PENDING bit is set.
510 *
511 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
512 * corresponding to a work. gcwq is available once the work has been
513 * queued anywhere after initialization. cwq is available only from
514 * queueing until execution starts.
14441960 515 */
7a22ad75
TH
516static inline void set_work_data(struct work_struct *work, unsigned long data,
517 unsigned long flags)
365970a1 518{
4594bf15 519 BUG_ON(!work_pending(work));
7a22ad75
TH
520 atomic_long_set(&work->data, data | flags | work_static(work));
521}
365970a1 522
7a22ad75
TH
523static void set_work_cwq(struct work_struct *work,
524 struct cpu_workqueue_struct *cwq,
525 unsigned long extra_flags)
526{
527 set_work_data(work, (unsigned long)cwq,
e120153d 528 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
529}
530
7a22ad75
TH
531static void set_work_cpu(struct work_struct *work, unsigned int cpu)
532{
533 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
534}
f756d5e2 535
7a22ad75 536static void clear_work_data(struct work_struct *work)
1da177e4 537{
7a22ad75 538 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
539}
540
7a22ad75 541static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 542{
e120153d 543 unsigned long data = atomic_long_read(&work->data);
7a22ad75 544
e120153d
TH
545 if (data & WORK_STRUCT_CWQ)
546 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
547 else
548 return NULL;
4d707b9f
ON
549}
550
7a22ad75 551static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 552{
e120153d 553 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
554 unsigned int cpu;
555
e120153d
TH
556 if (data & WORK_STRUCT_CWQ)
557 return ((struct cpu_workqueue_struct *)
558 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
7a22ad75
TH
559
560 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 561 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
562 return NULL;
563
f3421797 564 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 565 return get_gcwq(cpu);
b1f4ec17
ON
566}
567
e22bee78
TH
568/*
569 * Policy functions. These define the policies on how the global
570 * worker pool is managed. Unless noted otherwise, these functions
571 * assume that they're being called with gcwq->lock held.
572 */
573
649027d7 574static bool __need_more_worker(struct global_cwq *gcwq)
a848e3b6 575{
649027d7
TH
576 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
577 gcwq->flags & GCWQ_HIGHPRI_PENDING;
a848e3b6
ON
578}
579
4594bf15 580/*
e22bee78
TH
581 * Need to wake up a worker? Called from anything but currently
582 * running workers.
4594bf15 583 */
e22bee78 584static bool need_more_worker(struct global_cwq *gcwq)
365970a1 585{
649027d7 586 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
e22bee78 587}
4594bf15 588
e22bee78
TH
589/* Can I start working? Called from busy but !running workers. */
590static bool may_start_working(struct global_cwq *gcwq)
591{
592 return gcwq->nr_idle;
593}
594
595/* Do I need to keep working? Called from currently running workers. */
596static bool keep_working(struct global_cwq *gcwq)
597{
598 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
599
30310045
TH
600 return !list_empty(&gcwq->worklist) &&
601 (atomic_read(nr_running) <= 1 ||
602 gcwq->flags & GCWQ_HIGHPRI_PENDING);
e22bee78
TH
603}
604
605/* Do we need a new worker? Called from manager. */
606static bool need_to_create_worker(struct global_cwq *gcwq)
607{
608 return need_more_worker(gcwq) && !may_start_working(gcwq);
609}
365970a1 610
e22bee78
TH
611/* Do I need to be the manager? */
612static bool need_to_manage_workers(struct global_cwq *gcwq)
613{
614 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
615}
616
617/* Do we have too many workers and should some go away? */
618static bool too_many_workers(struct global_cwq *gcwq)
619{
620 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
621 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
622 int nr_busy = gcwq->nr_workers - nr_idle;
623
624 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
625}
626
4d707b9f 627/*
e22bee78
TH
628 * Wake up functions.
629 */
630
7e11629d
TH
631/* Return the first worker. Safe with preemption disabled */
632static struct worker *first_worker(struct global_cwq *gcwq)
633{
634 if (unlikely(list_empty(&gcwq->idle_list)))
635 return NULL;
636
637 return list_first_entry(&gcwq->idle_list, struct worker, entry);
638}
639
640/**
641 * wake_up_worker - wake up an idle worker
642 * @gcwq: gcwq to wake worker for
643 *
644 * Wake up the first idle worker of @gcwq.
645 *
646 * CONTEXT:
647 * spin_lock_irq(gcwq->lock).
648 */
649static void wake_up_worker(struct global_cwq *gcwq)
650{
651 struct worker *worker = first_worker(gcwq);
652
653 if (likely(worker))
654 wake_up_process(worker->task);
655}
656
d302f017 657/**
e22bee78
TH
658 * wq_worker_waking_up - a worker is waking up
659 * @task: task waking up
660 * @cpu: CPU @task is waking up to
661 *
662 * This function is called during try_to_wake_up() when a worker is
663 * being awoken.
664 *
665 * CONTEXT:
666 * spin_lock_irq(rq->lock)
667 */
668void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
669{
670 struct worker *worker = kthread_data(task);
671
2d64672e 672 if (!(worker->flags & WORKER_NOT_RUNNING))
e22bee78
TH
673 atomic_inc(get_gcwq_nr_running(cpu));
674}
675
676/**
677 * wq_worker_sleeping - a worker is going to sleep
678 * @task: task going to sleep
679 * @cpu: CPU in question, must be the current CPU number
680 *
681 * This function is called during schedule() when a busy worker is
682 * going to sleep. Worker on the same cpu can be woken up by
683 * returning pointer to its task.
684 *
685 * CONTEXT:
686 * spin_lock_irq(rq->lock)
687 *
688 * RETURNS:
689 * Worker task on @cpu to wake up, %NULL if none.
690 */
691struct task_struct *wq_worker_sleeping(struct task_struct *task,
692 unsigned int cpu)
693{
694 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
695 struct global_cwq *gcwq = get_gcwq(cpu);
696 atomic_t *nr_running = get_gcwq_nr_running(cpu);
697
2d64672e 698 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
699 return NULL;
700
701 /* this can only happen on the local cpu */
702 BUG_ON(cpu != raw_smp_processor_id());
703
704 /*
705 * The counterpart of the following dec_and_test, implied mb,
706 * worklist not empty test sequence is in insert_work().
707 * Please read comment there.
708 *
709 * NOT_RUNNING is clear. This means that trustee is not in
710 * charge and we're running on the local cpu w/ rq lock held
711 * and preemption disabled, which in turn means that none else
712 * could be manipulating idle_list, so dereferencing idle_list
713 * without gcwq lock is safe.
714 */
715 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
716 to_wakeup = first_worker(gcwq);
717 return to_wakeup ? to_wakeup->task : NULL;
718}
719
720/**
721 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 722 * @worker: self
d302f017
TH
723 * @flags: flags to set
724 * @wakeup: wakeup an idle worker if necessary
725 *
e22bee78
TH
726 * Set @flags in @worker->flags and adjust nr_running accordingly. If
727 * nr_running becomes zero and @wakeup is %true, an idle worker is
728 * woken up.
d302f017 729 *
cb444766
TH
730 * CONTEXT:
731 * spin_lock_irq(gcwq->lock)
d302f017
TH
732 */
733static inline void worker_set_flags(struct worker *worker, unsigned int flags,
734 bool wakeup)
735{
e22bee78
TH
736 struct global_cwq *gcwq = worker->gcwq;
737
cb444766
TH
738 WARN_ON_ONCE(worker->task != current);
739
e22bee78
TH
740 /*
741 * If transitioning into NOT_RUNNING, adjust nr_running and
742 * wake up an idle worker as necessary if requested by
743 * @wakeup.
744 */
745 if ((flags & WORKER_NOT_RUNNING) &&
746 !(worker->flags & WORKER_NOT_RUNNING)) {
747 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
748
749 if (wakeup) {
750 if (atomic_dec_and_test(nr_running) &&
751 !list_empty(&gcwq->worklist))
752 wake_up_worker(gcwq);
753 } else
754 atomic_dec(nr_running);
755 }
756
d302f017
TH
757 worker->flags |= flags;
758}
759
760/**
e22bee78 761 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 762 * @worker: self
d302f017
TH
763 * @flags: flags to clear
764 *
e22bee78 765 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 766 *
cb444766
TH
767 * CONTEXT:
768 * spin_lock_irq(gcwq->lock)
d302f017
TH
769 */
770static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
771{
e22bee78
TH
772 struct global_cwq *gcwq = worker->gcwq;
773 unsigned int oflags = worker->flags;
774
cb444766
TH
775 WARN_ON_ONCE(worker->task != current);
776
d302f017 777 worker->flags &= ~flags;
e22bee78 778
42c025f3
TH
779 /*
780 * If transitioning out of NOT_RUNNING, increment nr_running. Note
781 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
782 * of multiple flags, not a single flag.
783 */
e22bee78
TH
784 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
785 if (!(worker->flags & WORKER_NOT_RUNNING))
786 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
d302f017
TH
787}
788
c8e55f36
TH
789/**
790 * busy_worker_head - return the busy hash head for a work
791 * @gcwq: gcwq of interest
792 * @work: work to be hashed
793 *
794 * Return hash head of @gcwq for @work.
795 *
796 * CONTEXT:
797 * spin_lock_irq(gcwq->lock).
798 *
799 * RETURNS:
800 * Pointer to the hash head.
801 */
802static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
803 struct work_struct *work)
804{
805 const int base_shift = ilog2(sizeof(struct work_struct));
806 unsigned long v = (unsigned long)work;
807
808 /* simple shift and fold hash, do we need something better? */
809 v >>= base_shift;
810 v += v >> BUSY_WORKER_HASH_ORDER;
811 v &= BUSY_WORKER_HASH_MASK;
812
813 return &gcwq->busy_hash[v];
814}
815
8cca0eea
TH
816/**
817 * __find_worker_executing_work - find worker which is executing a work
818 * @gcwq: gcwq of interest
819 * @bwh: hash head as returned by busy_worker_head()
820 * @work: work to find worker for
821 *
822 * Find a worker which is executing @work on @gcwq. @bwh should be
823 * the hash head obtained by calling busy_worker_head() with the same
824 * work.
825 *
826 * CONTEXT:
827 * spin_lock_irq(gcwq->lock).
828 *
829 * RETURNS:
830 * Pointer to worker which is executing @work if found, NULL
831 * otherwise.
832 */
833static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
834 struct hlist_head *bwh,
835 struct work_struct *work)
836{
837 struct worker *worker;
838 struct hlist_node *tmp;
839
840 hlist_for_each_entry(worker, tmp, bwh, hentry)
841 if (worker->current_work == work)
842 return worker;
843 return NULL;
844}
845
846/**
847 * find_worker_executing_work - find worker which is executing a work
848 * @gcwq: gcwq of interest
849 * @work: work to find worker for
850 *
851 * Find a worker which is executing @work on @gcwq. This function is
852 * identical to __find_worker_executing_work() except that this
853 * function calculates @bwh itself.
854 *
855 * CONTEXT:
856 * spin_lock_irq(gcwq->lock).
857 *
858 * RETURNS:
859 * Pointer to worker which is executing @work if found, NULL
860 * otherwise.
4d707b9f 861 */
8cca0eea
TH
862static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
863 struct work_struct *work)
4d707b9f 864{
8cca0eea
TH
865 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
866 work);
4d707b9f
ON
867}
868
649027d7
TH
869/**
870 * gcwq_determine_ins_pos - find insertion position
871 * @gcwq: gcwq of interest
872 * @cwq: cwq a work is being queued for
873 *
874 * A work for @cwq is about to be queued on @gcwq, determine insertion
875 * position for the work. If @cwq is for HIGHPRI wq, the work is
876 * queued at the head of the queue but in FIFO order with respect to
877 * other HIGHPRI works; otherwise, at the end of the queue. This
878 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
879 * there are HIGHPRI works pending.
880 *
881 * CONTEXT:
882 * spin_lock_irq(gcwq->lock).
883 *
884 * RETURNS:
885 * Pointer to inserstion position.
886 */
887static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
888 struct cpu_workqueue_struct *cwq)
365970a1 889{
649027d7
TH
890 struct work_struct *twork;
891
892 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
893 return &gcwq->worklist;
894
895 list_for_each_entry(twork, &gcwq->worklist, entry) {
896 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
897
898 if (!(tcwq->wq->flags & WQ_HIGHPRI))
899 break;
900 }
901
902 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
903 return &twork->entry;
365970a1
DH
904}
905
4690c4ab 906/**
7e11629d 907 * insert_work - insert a work into gcwq
4690c4ab
TH
908 * @cwq: cwq @work belongs to
909 * @work: work to insert
910 * @head: insertion point
911 * @extra_flags: extra WORK_STRUCT_* flags to set
912 *
7e11629d
TH
913 * Insert @work which belongs to @cwq into @gcwq after @head.
914 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
915 *
916 * CONTEXT:
8b03ae3c 917 * spin_lock_irq(gcwq->lock).
4690c4ab 918 */
b89deed3 919static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
920 struct work_struct *work, struct list_head *head,
921 unsigned int extra_flags)
b89deed3 922{
e22bee78
TH
923 struct global_cwq *gcwq = cwq->gcwq;
924
4690c4ab 925 /* we own @work, set data and link */
7a22ad75 926 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 927
6e84d644
ON
928 /*
929 * Ensure that we get the right work->data if we see the
930 * result of list_add() below, see try_to_grab_pending().
931 */
932 smp_wmb();
4690c4ab 933
1a4d9b0a 934 list_add_tail(&work->entry, head);
e22bee78
TH
935
936 /*
937 * Ensure either worker_sched_deactivated() sees the above
938 * list_add_tail() or we see zero nr_running to avoid workers
939 * lying around lazily while there are works to be processed.
940 */
941 smp_mb();
942
649027d7 943 if (__need_more_worker(gcwq))
e22bee78 944 wake_up_worker(gcwq);
b89deed3
ON
945}
946
c8efcc25
TH
947/*
948 * Test whether @work is being queued from another work executing on the
949 * same workqueue. This is rather expensive and should only be used from
950 * cold paths.
951 */
952static bool is_chained_work(struct workqueue_struct *wq)
953{
954 unsigned long flags;
955 unsigned int cpu;
956
957 for_each_gcwq_cpu(cpu) {
958 struct global_cwq *gcwq = get_gcwq(cpu);
959 struct worker *worker;
960 struct hlist_node *pos;
961 int i;
962
963 spin_lock_irqsave(&gcwq->lock, flags);
964 for_each_busy_worker(worker, i, pos, gcwq) {
965 if (worker->task != current)
966 continue;
967 spin_unlock_irqrestore(&gcwq->lock, flags);
968 /*
969 * I'm @worker, no locking necessary. See if @work
970 * is headed to the same workqueue.
971 */
972 return worker->current_cwq->wq == wq;
973 }
974 spin_unlock_irqrestore(&gcwq->lock, flags);
975 }
976 return false;
977}
978
4690c4ab 979static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
980 struct work_struct *work)
981{
502ca9d8
TH
982 struct global_cwq *gcwq;
983 struct cpu_workqueue_struct *cwq;
1e19ffc6 984 struct list_head *worklist;
8a2e8e5d 985 unsigned int work_flags;
1da177e4
LT
986 unsigned long flags;
987
dc186ad7 988 debug_work_activate(work);
1e19ffc6 989
c8efcc25 990 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 991 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 992 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
993 return;
994
c7fc77f7
TH
995 /* determine gcwq to use */
996 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
997 struct global_cwq *last_gcwq;
998
c7fc77f7
TH
999 if (unlikely(cpu == WORK_CPU_UNBOUND))
1000 cpu = raw_smp_processor_id();
1001
18aa9eff
TH
1002 /*
1003 * It's multi cpu. If @wq is non-reentrant and @work
1004 * was previously on a different cpu, it might still
1005 * be running there, in which case the work needs to
1006 * be queued on that cpu to guarantee non-reentrance.
1007 */
502ca9d8 1008 gcwq = get_gcwq(cpu);
18aa9eff
TH
1009 if (wq->flags & WQ_NON_REENTRANT &&
1010 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1011 struct worker *worker;
1012
1013 spin_lock_irqsave(&last_gcwq->lock, flags);
1014
1015 worker = find_worker_executing_work(last_gcwq, work);
1016
1017 if (worker && worker->current_cwq->wq == wq)
1018 gcwq = last_gcwq;
1019 else {
1020 /* meh... not running there, queue here */
1021 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1022 spin_lock_irqsave(&gcwq->lock, flags);
1023 }
1024 } else
1025 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
1026 } else {
1027 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1028 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
1029 }
1030
1031 /* gcwq determined, get cwq and queue */
1032 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1033 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1034
f5b2552b
DC
1035 if (WARN_ON(!list_empty(&work->entry))) {
1036 spin_unlock_irqrestore(&gcwq->lock, flags);
1037 return;
1038 }
1e19ffc6 1039
73f53c4a 1040 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1041 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1042
1043 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1044 trace_workqueue_activate_work(work);
1e19ffc6 1045 cwq->nr_active++;
649027d7 1046 worklist = gcwq_determine_ins_pos(gcwq, cwq);
8a2e8e5d
TH
1047 } else {
1048 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1049 worklist = &cwq->delayed_works;
8a2e8e5d 1050 }
1e19ffc6 1051
8a2e8e5d 1052 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1053
8b03ae3c 1054 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1055}
1056
0fcb78c2
REB
1057/**
1058 * queue_work - queue work on a workqueue
1059 * @wq: workqueue to use
1060 * @work: work to queue
1061 *
057647fc 1062 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 1063 *
00dfcaf7
ON
1064 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1065 * it can be processed by another CPU.
1da177e4 1066 */
7ad5b3a5 1067int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1068{
ef1ca236
ON
1069 int ret;
1070
1071 ret = queue_work_on(get_cpu(), wq, work);
1072 put_cpu();
1073
1da177e4
LT
1074 return ret;
1075}
ae90dd5d 1076EXPORT_SYMBOL_GPL(queue_work);
1da177e4 1077
c1a220e7
ZR
1078/**
1079 * queue_work_on - queue work on specific cpu
1080 * @cpu: CPU number to execute work on
1081 * @wq: workqueue to use
1082 * @work: work to queue
1083 *
1084 * Returns 0 if @work was already on a queue, non-zero otherwise.
1085 *
1086 * We queue the work to a specific CPU, the caller must ensure it
1087 * can't go away.
1088 */
1089int
1090queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1091{
1092 int ret = 0;
1093
22df02bb 1094 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1095 __queue_work(cpu, wq, work);
c1a220e7
ZR
1096 ret = 1;
1097 }
1098 return ret;
1099}
1100EXPORT_SYMBOL_GPL(queue_work_on);
1101
6d141c3f 1102static void delayed_work_timer_fn(unsigned long __data)
1da177e4 1103{
52bad64d 1104 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1105 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1106
4690c4ab 1107 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1108}
1109
0fcb78c2
REB
1110/**
1111 * queue_delayed_work - queue work on a workqueue after delay
1112 * @wq: workqueue to use
af9997e4 1113 * @dwork: delayable work to queue
0fcb78c2
REB
1114 * @delay: number of jiffies to wait before queueing
1115 *
057647fc 1116 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1117 */
7ad5b3a5 1118int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 1119 struct delayed_work *dwork, unsigned long delay)
1da177e4 1120{
52bad64d 1121 if (delay == 0)
63bc0362 1122 return queue_work(wq, &dwork->work);
1da177e4 1123
63bc0362 1124 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 1125}
ae90dd5d 1126EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 1127
0fcb78c2
REB
1128/**
1129 * queue_delayed_work_on - queue work on specific CPU after delay
1130 * @cpu: CPU number to execute work on
1131 * @wq: workqueue to use
af9997e4 1132 * @dwork: work to queue
0fcb78c2
REB
1133 * @delay: number of jiffies to wait before queueing
1134 *
057647fc 1135 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1136 */
7a6bc1cd 1137int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 1138 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
1139{
1140 int ret = 0;
52bad64d
DH
1141 struct timer_list *timer = &dwork->timer;
1142 struct work_struct *work = &dwork->work;
7a6bc1cd 1143
22df02bb 1144 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1145 unsigned int lcpu;
7a22ad75 1146
7a6bc1cd
VP
1147 BUG_ON(timer_pending(timer));
1148 BUG_ON(!list_empty(&work->entry));
1149
8a3e77cc
AL
1150 timer_stats_timer_set_start_info(&dwork->timer);
1151
7a22ad75
TH
1152 /*
1153 * This stores cwq for the moment, for the timer_fn.
1154 * Note that the work's gcwq is preserved to allow
1155 * reentrance detection for delayed works.
1156 */
c7fc77f7
TH
1157 if (!(wq->flags & WQ_UNBOUND)) {
1158 struct global_cwq *gcwq = get_work_gcwq(work);
1159
1160 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1161 lcpu = gcwq->cpu;
1162 else
1163 lcpu = raw_smp_processor_id();
1164 } else
1165 lcpu = WORK_CPU_UNBOUND;
1166
7a22ad75 1167 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1168
7a6bc1cd 1169 timer->expires = jiffies + delay;
52bad64d 1170 timer->data = (unsigned long)dwork;
7a6bc1cd 1171 timer->function = delayed_work_timer_fn;
63bc0362
ON
1172
1173 if (unlikely(cpu >= 0))
1174 add_timer_on(timer, cpu);
1175 else
1176 add_timer(timer);
7a6bc1cd
VP
1177 ret = 1;
1178 }
1179 return ret;
1180}
ae90dd5d 1181EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1182
c8e55f36
TH
1183/**
1184 * worker_enter_idle - enter idle state
1185 * @worker: worker which is entering idle state
1186 *
1187 * @worker is entering idle state. Update stats and idle timer if
1188 * necessary.
1189 *
1190 * LOCKING:
1191 * spin_lock_irq(gcwq->lock).
1192 */
1193static void worker_enter_idle(struct worker *worker)
1da177e4 1194{
c8e55f36
TH
1195 struct global_cwq *gcwq = worker->gcwq;
1196
1197 BUG_ON(worker->flags & WORKER_IDLE);
1198 BUG_ON(!list_empty(&worker->entry) &&
1199 (worker->hentry.next || worker->hentry.pprev));
1200
cb444766
TH
1201 /* can't use worker_set_flags(), also called from start_worker() */
1202 worker->flags |= WORKER_IDLE;
c8e55f36 1203 gcwq->nr_idle++;
e22bee78 1204 worker->last_active = jiffies;
c8e55f36
TH
1205
1206 /* idle_list is LIFO */
1207 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4 1208
e22bee78
TH
1209 if (likely(!(worker->flags & WORKER_ROGUE))) {
1210 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1211 mod_timer(&gcwq->idle_timer,
1212 jiffies + IDLE_WORKER_TIMEOUT);
1213 } else
db7bccf4 1214 wake_up_all(&gcwq->trustee_wait);
cb444766 1215
544ecf31
TH
1216 /*
1217 * Sanity check nr_running. Because trustee releases gcwq->lock
1218 * between setting %WORKER_ROGUE and zapping nr_running, the
1219 * warning may trigger spuriously. Check iff trustee is idle.
1220 */
1221 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1222 gcwq->nr_workers == gcwq->nr_idle &&
cb444766 1223 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
c8e55f36
TH
1224}
1225
1226/**
1227 * worker_leave_idle - leave idle state
1228 * @worker: worker which is leaving idle state
1229 *
1230 * @worker is leaving idle state. Update stats.
1231 *
1232 * LOCKING:
1233 * spin_lock_irq(gcwq->lock).
1234 */
1235static void worker_leave_idle(struct worker *worker)
1236{
1237 struct global_cwq *gcwq = worker->gcwq;
1238
1239 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1240 worker_clr_flags(worker, WORKER_IDLE);
c8e55f36
TH
1241 gcwq->nr_idle--;
1242 list_del_init(&worker->entry);
1243}
1244
e22bee78
TH
1245/**
1246 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1247 * @worker: self
1248 *
1249 * Works which are scheduled while the cpu is online must at least be
1250 * scheduled to a worker which is bound to the cpu so that if they are
1251 * flushed from cpu callbacks while cpu is going down, they are
1252 * guaranteed to execute on the cpu.
1253 *
1254 * This function is to be used by rogue workers and rescuers to bind
1255 * themselves to the target cpu and may race with cpu going down or
1256 * coming online. kthread_bind() can't be used because it may put the
1257 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1258 * verbatim as it's best effort and blocking and gcwq may be
1259 * [dis]associated in the meantime.
1260 *
1261 * This function tries set_cpus_allowed() and locks gcwq and verifies
1262 * the binding against GCWQ_DISASSOCIATED which is set during
1263 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1264 * idle state or fetches works without dropping lock, it can guarantee
1265 * the scheduling requirement described in the first paragraph.
1266 *
1267 * CONTEXT:
1268 * Might sleep. Called without any lock but returns with gcwq->lock
1269 * held.
1270 *
1271 * RETURNS:
1272 * %true if the associated gcwq is online (@worker is successfully
1273 * bound), %false if offline.
1274 */
1275static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1276__acquires(&gcwq->lock)
e22bee78
TH
1277{
1278 struct global_cwq *gcwq = worker->gcwq;
1279 struct task_struct *task = worker->task;
1280
1281 while (true) {
4e6045f1 1282 /*
e22bee78
TH
1283 * The following call may fail, succeed or succeed
1284 * without actually migrating the task to the cpu if
1285 * it races with cpu hotunplug operation. Verify
1286 * against GCWQ_DISASSOCIATED.
4e6045f1 1287 */
f3421797
TH
1288 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1289 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1290
1291 spin_lock_irq(&gcwq->lock);
1292 if (gcwq->flags & GCWQ_DISASSOCIATED)
1293 return false;
1294 if (task_cpu(task) == gcwq->cpu &&
1295 cpumask_equal(&current->cpus_allowed,
1296 get_cpu_mask(gcwq->cpu)))
1297 return true;
1298 spin_unlock_irq(&gcwq->lock);
1299
5035b20f
TH
1300 /*
1301 * We've raced with CPU hot[un]plug. Give it a breather
1302 * and retry migration. cond_resched() is required here;
1303 * otherwise, we might deadlock against cpu_stop trying to
1304 * bring down the CPU on non-preemptive kernel.
1305 */
e22bee78 1306 cpu_relax();
5035b20f 1307 cond_resched();
e22bee78
TH
1308 }
1309}
1310
1311/*
1312 * Function for worker->rebind_work used to rebind rogue busy workers
1313 * to the associated cpu which is coming back online. This is
1314 * scheduled by cpu up but can race with other cpu hotplug operations
1315 * and may be executed twice without intervening cpu down.
1316 */
1317static void worker_rebind_fn(struct work_struct *work)
1318{
1319 struct worker *worker = container_of(work, struct worker, rebind_work);
1320 struct global_cwq *gcwq = worker->gcwq;
1321
1322 if (worker_maybe_bind_and_lock(worker))
1323 worker_clr_flags(worker, WORKER_REBIND);
1324
1325 spin_unlock_irq(&gcwq->lock);
1326}
1327
c34056a3
TH
1328static struct worker *alloc_worker(void)
1329{
1330 struct worker *worker;
1331
1332 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1333 if (worker) {
1334 INIT_LIST_HEAD(&worker->entry);
affee4b2 1335 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1336 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1337 /* on creation a worker is in !idle && prep state */
1338 worker->flags = WORKER_PREP;
c8e55f36 1339 }
c34056a3
TH
1340 return worker;
1341}
1342
1343/**
1344 * create_worker - create a new workqueue worker
7e11629d 1345 * @gcwq: gcwq the new worker will belong to
c34056a3
TH
1346 * @bind: whether to set affinity to @cpu or not
1347 *
7e11629d 1348 * Create a new worker which is bound to @gcwq. The returned worker
c34056a3
TH
1349 * can be started by calling start_worker() or destroyed using
1350 * destroy_worker().
1351 *
1352 * CONTEXT:
1353 * Might sleep. Does GFP_KERNEL allocations.
1354 *
1355 * RETURNS:
1356 * Pointer to the newly created worker.
1357 */
7e11629d 1358static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
c34056a3 1359{
f3421797 1360 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
c34056a3 1361 struct worker *worker = NULL;
f3421797 1362 int id = -1;
c34056a3 1363
8b03ae3c
TH
1364 spin_lock_irq(&gcwq->lock);
1365 while (ida_get_new(&gcwq->worker_ida, &id)) {
1366 spin_unlock_irq(&gcwq->lock);
1367 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 1368 goto fail;
8b03ae3c 1369 spin_lock_irq(&gcwq->lock);
c34056a3 1370 }
8b03ae3c 1371 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1372
1373 worker = alloc_worker();
1374 if (!worker)
1375 goto fail;
1376
8b03ae3c 1377 worker->gcwq = gcwq;
c34056a3
TH
1378 worker->id = id;
1379
f3421797 1380 if (!on_unbound_cpu)
94dcf29a
ED
1381 worker->task = kthread_create_on_node(worker_thread,
1382 worker,
1383 cpu_to_node(gcwq->cpu),
1384 "kworker/%u:%d", gcwq->cpu, id);
f3421797
TH
1385 else
1386 worker->task = kthread_create(worker_thread, worker,
1387 "kworker/u:%d", id);
c34056a3
TH
1388 if (IS_ERR(worker->task))
1389 goto fail;
1390
db7bccf4
TH
1391 /*
1392 * A rogue worker will become a regular one if CPU comes
1393 * online later on. Make sure every worker has
1394 * PF_THREAD_BOUND set.
1395 */
f3421797 1396 if (bind && !on_unbound_cpu)
8b03ae3c 1397 kthread_bind(worker->task, gcwq->cpu);
f3421797 1398 else {
db7bccf4 1399 worker->task->flags |= PF_THREAD_BOUND;
f3421797
TH
1400 if (on_unbound_cpu)
1401 worker->flags |= WORKER_UNBOUND;
1402 }
c34056a3
TH
1403
1404 return worker;
1405fail:
1406 if (id >= 0) {
8b03ae3c
TH
1407 spin_lock_irq(&gcwq->lock);
1408 ida_remove(&gcwq->worker_ida, id);
1409 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1410 }
1411 kfree(worker);
1412 return NULL;
1413}
1414
1415/**
1416 * start_worker - start a newly created worker
1417 * @worker: worker to start
1418 *
c8e55f36 1419 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1420 *
1421 * CONTEXT:
8b03ae3c 1422 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1423 */
1424static void start_worker(struct worker *worker)
1425{
cb444766 1426 worker->flags |= WORKER_STARTED;
c8e55f36
TH
1427 worker->gcwq->nr_workers++;
1428 worker_enter_idle(worker);
c34056a3
TH
1429 wake_up_process(worker->task);
1430}
1431
1432/**
1433 * destroy_worker - destroy a workqueue worker
1434 * @worker: worker to be destroyed
1435 *
c8e55f36
TH
1436 * Destroy @worker and adjust @gcwq stats accordingly.
1437 *
1438 * CONTEXT:
1439 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1440 */
1441static void destroy_worker(struct worker *worker)
1442{
8b03ae3c 1443 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
1444 int id = worker->id;
1445
1446 /* sanity check frenzy */
1447 BUG_ON(worker->current_work);
affee4b2 1448 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1449
c8e55f36
TH
1450 if (worker->flags & WORKER_STARTED)
1451 gcwq->nr_workers--;
1452 if (worker->flags & WORKER_IDLE)
1453 gcwq->nr_idle--;
1454
1455 list_del_init(&worker->entry);
cb444766 1456 worker->flags |= WORKER_DIE;
c8e55f36
TH
1457
1458 spin_unlock_irq(&gcwq->lock);
1459
c34056a3
TH
1460 kthread_stop(worker->task);
1461 kfree(worker);
1462
8b03ae3c
TH
1463 spin_lock_irq(&gcwq->lock);
1464 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
1465}
1466
e22bee78
TH
1467static void idle_worker_timeout(unsigned long __gcwq)
1468{
1469 struct global_cwq *gcwq = (void *)__gcwq;
1470
1471 spin_lock_irq(&gcwq->lock);
1472
1473 if (too_many_workers(gcwq)) {
1474 struct worker *worker;
1475 unsigned long expires;
1476
1477 /* idle_list is kept in LIFO order, check the last one */
1478 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1479 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1480
1481 if (time_before(jiffies, expires))
1482 mod_timer(&gcwq->idle_timer, expires);
1483 else {
1484 /* it's been idle for too long, wake up manager */
1485 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1486 wake_up_worker(gcwq);
d5abe669 1487 }
e22bee78
TH
1488 }
1489
1490 spin_unlock_irq(&gcwq->lock);
1491}
d5abe669 1492
e22bee78
TH
1493static bool send_mayday(struct work_struct *work)
1494{
1495 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1496 struct workqueue_struct *wq = cwq->wq;
f3421797 1497 unsigned int cpu;
e22bee78
TH
1498
1499 if (!(wq->flags & WQ_RESCUER))
1500 return false;
1501
1502 /* mayday mayday mayday */
f3421797
TH
1503 cpu = cwq->gcwq->cpu;
1504 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1505 if (cpu == WORK_CPU_UNBOUND)
1506 cpu = 0;
f2e005aa 1507 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1508 wake_up_process(wq->rescuer->task);
1509 return true;
1510}
1511
1512static void gcwq_mayday_timeout(unsigned long __gcwq)
1513{
1514 struct global_cwq *gcwq = (void *)__gcwq;
1515 struct work_struct *work;
1516
1517 spin_lock_irq(&gcwq->lock);
1518
1519 if (need_to_create_worker(gcwq)) {
1520 /*
1521 * We've been trying to create a new worker but
1522 * haven't been successful. We might be hitting an
1523 * allocation deadlock. Send distress signals to
1524 * rescuers.
1525 */
1526 list_for_each_entry(work, &gcwq->worklist, entry)
1527 send_mayday(work);
1da177e4 1528 }
e22bee78
TH
1529
1530 spin_unlock_irq(&gcwq->lock);
1531
1532 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1533}
1534
e22bee78
TH
1535/**
1536 * maybe_create_worker - create a new worker if necessary
1537 * @gcwq: gcwq to create a new worker for
1538 *
1539 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1540 * have at least one idle worker on return from this function. If
1541 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1542 * sent to all rescuers with works scheduled on @gcwq to resolve
1543 * possible allocation deadlock.
1544 *
1545 * On return, need_to_create_worker() is guaranteed to be false and
1546 * may_start_working() true.
1547 *
1548 * LOCKING:
1549 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1550 * multiple times. Does GFP_KERNEL allocations. Called only from
1551 * manager.
1552 *
1553 * RETURNS:
1554 * false if no action was taken and gcwq->lock stayed locked, true
1555 * otherwise.
1556 */
1557static bool maybe_create_worker(struct global_cwq *gcwq)
06bd6ebf
NK
1558__releases(&gcwq->lock)
1559__acquires(&gcwq->lock)
1da177e4 1560{
e22bee78
TH
1561 if (!need_to_create_worker(gcwq))
1562 return false;
1563restart:
9f9c2364
TH
1564 spin_unlock_irq(&gcwq->lock);
1565
e22bee78
TH
1566 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1567 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1568
1569 while (true) {
1570 struct worker *worker;
1571
e22bee78
TH
1572 worker = create_worker(gcwq, true);
1573 if (worker) {
1574 del_timer_sync(&gcwq->mayday_timer);
1575 spin_lock_irq(&gcwq->lock);
1576 start_worker(worker);
1577 BUG_ON(need_to_create_worker(gcwq));
1578 return true;
1579 }
1580
1581 if (!need_to_create_worker(gcwq))
1582 break;
1da177e4 1583
e22bee78
TH
1584 __set_current_state(TASK_INTERRUPTIBLE);
1585 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1586
e22bee78
TH
1587 if (!need_to_create_worker(gcwq))
1588 break;
1589 }
1590
e22bee78
TH
1591 del_timer_sync(&gcwq->mayday_timer);
1592 spin_lock_irq(&gcwq->lock);
1593 if (need_to_create_worker(gcwq))
1594 goto restart;
1595 return true;
1596}
1597
1598/**
1599 * maybe_destroy_worker - destroy workers which have been idle for a while
1600 * @gcwq: gcwq to destroy workers for
1601 *
1602 * Destroy @gcwq workers which have been idle for longer than
1603 * IDLE_WORKER_TIMEOUT.
1604 *
1605 * LOCKING:
1606 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1607 * multiple times. Called only from manager.
1608 *
1609 * RETURNS:
1610 * false if no action was taken and gcwq->lock stayed locked, true
1611 * otherwise.
1612 */
1613static bool maybe_destroy_workers(struct global_cwq *gcwq)
1614{
1615 bool ret = false;
1da177e4 1616
e22bee78
TH
1617 while (too_many_workers(gcwq)) {
1618 struct worker *worker;
1619 unsigned long expires;
3af24433 1620
e22bee78
TH
1621 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1622 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1623
e22bee78
TH
1624 if (time_before(jiffies, expires)) {
1625 mod_timer(&gcwq->idle_timer, expires);
3af24433 1626 break;
e22bee78 1627 }
1da177e4 1628
e22bee78
TH
1629 destroy_worker(worker);
1630 ret = true;
1da177e4 1631 }
3af24433 1632
e22bee78
TH
1633 return ret;
1634}
1635
1636/**
1637 * manage_workers - manage worker pool
1638 * @worker: self
1639 *
1640 * Assume the manager role and manage gcwq worker pool @worker belongs
1641 * to. At any given time, there can be only zero or one manager per
1642 * gcwq. The exclusion is handled automatically by this function.
1643 *
1644 * The caller can safely start processing works on false return. On
1645 * true return, it's guaranteed that need_to_create_worker() is false
1646 * and may_start_working() is true.
1647 *
1648 * CONTEXT:
1649 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1650 * multiple times. Does GFP_KERNEL allocations.
1651 *
1652 * RETURNS:
1653 * false if no action was taken and gcwq->lock stayed locked, true if
1654 * some action was taken.
1655 */
1656static bool manage_workers(struct worker *worker)
1657{
1658 struct global_cwq *gcwq = worker->gcwq;
1659 bool ret = false;
1660
1661 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1662 return ret;
1663
1664 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1665 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1666
1667 /*
1668 * Destroy and then create so that may_start_working() is true
1669 * on return.
1670 */
1671 ret |= maybe_destroy_workers(gcwq);
1672 ret |= maybe_create_worker(gcwq);
1673
1674 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1675
1676 /*
1677 * The trustee might be waiting to take over the manager
1678 * position, tell it we're done.
1679 */
1680 if (unlikely(gcwq->trustee))
1681 wake_up_all(&gcwq->trustee_wait);
1682
1683 return ret;
1684}
1685
affee4b2
TH
1686/**
1687 * move_linked_works - move linked works to a list
1688 * @work: start of series of works to be scheduled
1689 * @head: target list to append @work to
1690 * @nextp: out paramter for nested worklist walking
1691 *
1692 * Schedule linked works starting from @work to @head. Work series to
1693 * be scheduled starts at @work and includes any consecutive work with
1694 * WORK_STRUCT_LINKED set in its predecessor.
1695 *
1696 * If @nextp is not NULL, it's updated to point to the next work of
1697 * the last scheduled work. This allows move_linked_works() to be
1698 * nested inside outer list_for_each_entry_safe().
1699 *
1700 * CONTEXT:
8b03ae3c 1701 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1702 */
1703static void move_linked_works(struct work_struct *work, struct list_head *head,
1704 struct work_struct **nextp)
1705{
1706 struct work_struct *n;
1707
1708 /*
1709 * Linked worklist will always end before the end of the list,
1710 * use NULL for list head.
1711 */
1712 list_for_each_entry_safe_from(work, n, NULL, entry) {
1713 list_move_tail(&work->entry, head);
1714 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1715 break;
1716 }
1717
1718 /*
1719 * If we're already inside safe list traversal and have moved
1720 * multiple works to the scheduled queue, the next position
1721 * needs to be updated.
1722 */
1723 if (nextp)
1724 *nextp = n;
1725}
1726
1e19ffc6
TH
1727static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1728{
1729 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1730 struct work_struct, entry);
649027d7 1731 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1e19ffc6 1732
cdadf009 1733 trace_workqueue_activate_work(work);
649027d7 1734 move_linked_works(work, pos, NULL);
8a2e8e5d 1735 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1736 cwq->nr_active++;
1737}
1738
73f53c4a
TH
1739/**
1740 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1741 * @cwq: cwq of interest
1742 * @color: color of work which left the queue
8a2e8e5d 1743 * @delayed: for a delayed work
73f53c4a
TH
1744 *
1745 * A work either has completed or is removed from pending queue,
1746 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1747 *
1748 * CONTEXT:
8b03ae3c 1749 * spin_lock_irq(gcwq->lock).
73f53c4a 1750 */
8a2e8e5d
TH
1751static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1752 bool delayed)
73f53c4a
TH
1753{
1754 /* ignore uncolored works */
1755 if (color == WORK_NO_COLOR)
1756 return;
1757
1758 cwq->nr_in_flight[color]--;
1e19ffc6 1759
8a2e8e5d
TH
1760 if (!delayed) {
1761 cwq->nr_active--;
1762 if (!list_empty(&cwq->delayed_works)) {
1763 /* one down, submit a delayed one */
1764 if (cwq->nr_active < cwq->max_active)
1765 cwq_activate_first_delayed(cwq);
1766 }
502ca9d8 1767 }
73f53c4a
TH
1768
1769 /* is flush in progress and are we at the flushing tip? */
1770 if (likely(cwq->flush_color != color))
1771 return;
1772
1773 /* are there still in-flight works? */
1774 if (cwq->nr_in_flight[color])
1775 return;
1776
1777 /* this cwq is done, clear flush_color */
1778 cwq->flush_color = -1;
1779
1780 /*
1781 * If this was the last cwq, wake up the first flusher. It
1782 * will handle the rest.
1783 */
1784 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1785 complete(&cwq->wq->first_flusher->done);
1786}
1787
a62428c0
TH
1788/**
1789 * process_one_work - process single work
c34056a3 1790 * @worker: self
a62428c0
TH
1791 * @work: work to process
1792 *
1793 * Process @work. This function contains all the logics necessary to
1794 * process a single work including synchronization against and
1795 * interaction with other workers on the same cpu, queueing and
1796 * flushing. As long as context requirement is met, any worker can
1797 * call this function to process a work.
1798 *
1799 * CONTEXT:
8b03ae3c 1800 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1801 */
c34056a3 1802static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1803__releases(&gcwq->lock)
1804__acquires(&gcwq->lock)
a62428c0 1805{
7e11629d 1806 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
8b03ae3c 1807 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1808 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1809 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1810 work_func_t f = work->func;
73f53c4a 1811 int work_color;
7e11629d 1812 struct worker *collision;
a62428c0
TH
1813#ifdef CONFIG_LOCKDEP
1814 /*
1815 * It is permissible to free the struct work_struct from
1816 * inside the function that is called from it, this we need to
1817 * take into account for lockdep too. To avoid bogus "held
1818 * lock freed" warnings as well as problems when looking into
1819 * work->lockdep_map, make a copy and use that here.
1820 */
1821 struct lockdep_map lockdep_map = work->lockdep_map;
1822#endif
7e11629d
TH
1823 /*
1824 * A single work shouldn't be executed concurrently by
1825 * multiple workers on a single cpu. Check whether anyone is
1826 * already processing the work. If so, defer the work to the
1827 * currently executing one.
1828 */
1829 collision = __find_worker_executing_work(gcwq, bwh, work);
1830 if (unlikely(collision)) {
1831 move_linked_works(work, &collision->scheduled, NULL);
1832 return;
1833 }
1834
a62428c0 1835 /* claim and process */
a62428c0 1836 debug_work_deactivate(work);
c8e55f36 1837 hlist_add_head(&worker->hentry, bwh);
c34056a3 1838 worker->current_work = work;
8cca0eea 1839 worker->current_cwq = cwq;
73f53c4a 1840 work_color = get_work_color(work);
7a22ad75 1841
7a22ad75
TH
1842 /* record the current cpu number in the work data and dequeue */
1843 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1844 list_del_init(&work->entry);
1845
649027d7
TH
1846 /*
1847 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1848 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1849 */
1850 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1851 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1852 struct work_struct, entry);
1853
1854 if (!list_empty(&gcwq->worklist) &&
1855 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1856 wake_up_worker(gcwq);
1857 else
1858 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1859 }
1860
fb0e7beb
TH
1861 /*
1862 * CPU intensive works don't participate in concurrency
1863 * management. They're the scheduler's responsibility.
1864 */
1865 if (unlikely(cpu_intensive))
1866 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1867
8b03ae3c 1868 spin_unlock_irq(&gcwq->lock);
a62428c0 1869
a62428c0 1870 work_clear_pending(work);
e159489b 1871 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 1872 lock_map_acquire(&lockdep_map);
e36c886a 1873 trace_workqueue_execute_start(work);
a62428c0 1874 f(work);
e36c886a
AV
1875 /*
1876 * While we must be careful to not use "work" after this, the trace
1877 * point will only record its address.
1878 */
1879 trace_workqueue_execute_end(work);
a62428c0
TH
1880 lock_map_release(&lockdep_map);
1881 lock_map_release(&cwq->wq->lockdep_map);
1882
1883 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1884 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1885 "%s/0x%08x/%d\n",
1886 current->comm, preempt_count(), task_pid_nr(current));
1887 printk(KERN_ERR " last function: ");
1888 print_symbol("%s\n", (unsigned long)f);
1889 debug_show_held_locks(current);
1890 dump_stack();
1891 }
1892
8b03ae3c 1893 spin_lock_irq(&gcwq->lock);
a62428c0 1894
fb0e7beb
TH
1895 /* clear cpu intensive status */
1896 if (unlikely(cpu_intensive))
1897 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1898
a62428c0 1899 /* we're done with it, release */
c8e55f36 1900 hlist_del_init(&worker->hentry);
c34056a3 1901 worker->current_work = NULL;
8cca0eea 1902 worker->current_cwq = NULL;
8a2e8e5d 1903 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
1904}
1905
affee4b2
TH
1906/**
1907 * process_scheduled_works - process scheduled works
1908 * @worker: self
1909 *
1910 * Process all scheduled works. Please note that the scheduled list
1911 * may change while processing a work, so this function repeatedly
1912 * fetches a work from the top and executes it.
1913 *
1914 * CONTEXT:
8b03ae3c 1915 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1916 * multiple times.
1917 */
1918static void process_scheduled_works(struct worker *worker)
1da177e4 1919{
affee4b2
TH
1920 while (!list_empty(&worker->scheduled)) {
1921 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1922 struct work_struct, entry);
c34056a3 1923 process_one_work(worker, work);
1da177e4 1924 }
1da177e4
LT
1925}
1926
4690c4ab
TH
1927/**
1928 * worker_thread - the worker thread function
c34056a3 1929 * @__worker: self
4690c4ab 1930 *
e22bee78
TH
1931 * The gcwq worker thread function. There's a single dynamic pool of
1932 * these per each cpu. These workers process all works regardless of
1933 * their specific target workqueue. The only exception is works which
1934 * belong to workqueues with a rescuer which will be explained in
1935 * rescuer_thread().
4690c4ab 1936 */
c34056a3 1937static int worker_thread(void *__worker)
1da177e4 1938{
c34056a3 1939 struct worker *worker = __worker;
8b03ae3c 1940 struct global_cwq *gcwq = worker->gcwq;
1da177e4 1941
e22bee78
TH
1942 /* tell the scheduler that this is a workqueue worker */
1943 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 1944woke_up:
c8e55f36 1945 spin_lock_irq(&gcwq->lock);
1da177e4 1946
c8e55f36
TH
1947 /* DIE can be set only while we're idle, checking here is enough */
1948 if (worker->flags & WORKER_DIE) {
1949 spin_unlock_irq(&gcwq->lock);
e22bee78 1950 worker->task->flags &= ~PF_WQ_WORKER;
c8e55f36
TH
1951 return 0;
1952 }
affee4b2 1953
c8e55f36 1954 worker_leave_idle(worker);
db7bccf4 1955recheck:
e22bee78
TH
1956 /* no more worker necessary? */
1957 if (!need_more_worker(gcwq))
1958 goto sleep;
1959
1960 /* do we need to manage? */
1961 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1962 goto recheck;
1963
c8e55f36
TH
1964 /*
1965 * ->scheduled list can only be filled while a worker is
1966 * preparing to process a work or actually processing it.
1967 * Make sure nobody diddled with it while I was sleeping.
1968 */
1969 BUG_ON(!list_empty(&worker->scheduled));
1970
e22bee78
TH
1971 /*
1972 * When control reaches this point, we're guaranteed to have
1973 * at least one idle worker or that someone else has already
1974 * assumed the manager role.
1975 */
1976 worker_clr_flags(worker, WORKER_PREP);
1977
1978 do {
c8e55f36 1979 struct work_struct *work =
7e11629d 1980 list_first_entry(&gcwq->worklist,
c8e55f36
TH
1981 struct work_struct, entry);
1982
1983 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1984 /* optimization path, not strictly necessary */
1985 process_one_work(worker, work);
1986 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1987 process_scheduled_works(worker);
c8e55f36
TH
1988 } else {
1989 move_linked_works(work, &worker->scheduled, NULL);
1990 process_scheduled_works(worker);
affee4b2 1991 }
e22bee78
TH
1992 } while (keep_working(gcwq));
1993
1994 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 1995sleep:
e22bee78
TH
1996 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1997 goto recheck;
d313dd85 1998
c8e55f36 1999 /*
e22bee78
TH
2000 * gcwq->lock is held and there's no work to process and no
2001 * need to manage, sleep. Workers are woken up only while
2002 * holding gcwq->lock or from local cpu, so setting the
2003 * current state before releasing gcwq->lock is enough to
2004 * prevent losing any event.
c8e55f36
TH
2005 */
2006 worker_enter_idle(worker);
2007 __set_current_state(TASK_INTERRUPTIBLE);
2008 spin_unlock_irq(&gcwq->lock);
2009 schedule();
2010 goto woke_up;
1da177e4
LT
2011}
2012
e22bee78
TH
2013/**
2014 * rescuer_thread - the rescuer thread function
2015 * @__wq: the associated workqueue
2016 *
2017 * Workqueue rescuer thread function. There's one rescuer for each
2018 * workqueue which has WQ_RESCUER set.
2019 *
2020 * Regular work processing on a gcwq may block trying to create a new
2021 * worker which uses GFP_KERNEL allocation which has slight chance of
2022 * developing into deadlock if some works currently on the same queue
2023 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2024 * the problem rescuer solves.
2025 *
2026 * When such condition is possible, the gcwq summons rescuers of all
2027 * workqueues which have works queued on the gcwq and let them process
2028 * those works so that forward progress can be guaranteed.
2029 *
2030 * This should happen rarely.
2031 */
2032static int rescuer_thread(void *__wq)
2033{
2034 struct workqueue_struct *wq = __wq;
2035 struct worker *rescuer = wq->rescuer;
2036 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2037 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2038 unsigned int cpu;
2039
2040 set_user_nice(current, RESCUER_NICE_LEVEL);
2041repeat:
2042 set_current_state(TASK_INTERRUPTIBLE);
2043
2044 if (kthread_should_stop())
2045 return 0;
2046
f3421797
TH
2047 /*
2048 * See whether any cpu is asking for help. Unbounded
2049 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2050 */
f2e005aa 2051 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2052 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2053 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
e22bee78
TH
2054 struct global_cwq *gcwq = cwq->gcwq;
2055 struct work_struct *work, *n;
2056
2057 __set_current_state(TASK_RUNNING);
f2e005aa 2058 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2059
2060 /* migrate to the target cpu if possible */
2061 rescuer->gcwq = gcwq;
2062 worker_maybe_bind_and_lock(rescuer);
2063
2064 /*
2065 * Slurp in all works issued via this workqueue and
2066 * process'em.
2067 */
2068 BUG_ON(!list_empty(&rescuer->scheduled));
2069 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2070 if (get_work_cwq(work) == cwq)
2071 move_linked_works(work, scheduled, &n);
2072
2073 process_scheduled_works(rescuer);
7576958a
TH
2074
2075 /*
2076 * Leave this gcwq. If keep_working() is %true, notify a
2077 * regular worker; otherwise, we end up with 0 concurrency
2078 * and stalling the execution.
2079 */
2080 if (keep_working(gcwq))
2081 wake_up_worker(gcwq);
2082
e22bee78
TH
2083 spin_unlock_irq(&gcwq->lock);
2084 }
2085
2086 schedule();
2087 goto repeat;
1da177e4
LT
2088}
2089
fc2e4d70
ON
2090struct wq_barrier {
2091 struct work_struct work;
2092 struct completion done;
2093};
2094
2095static void wq_barrier_func(struct work_struct *work)
2096{
2097 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2098 complete(&barr->done);
2099}
2100
4690c4ab
TH
2101/**
2102 * insert_wq_barrier - insert a barrier work
2103 * @cwq: cwq to insert barrier into
2104 * @barr: wq_barrier to insert
affee4b2
TH
2105 * @target: target work to attach @barr to
2106 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2107 *
affee4b2
TH
2108 * @barr is linked to @target such that @barr is completed only after
2109 * @target finishes execution. Please note that the ordering
2110 * guarantee is observed only with respect to @target and on the local
2111 * cpu.
2112 *
2113 * Currently, a queued barrier can't be canceled. This is because
2114 * try_to_grab_pending() can't determine whether the work to be
2115 * grabbed is at the head of the queue and thus can't clear LINKED
2116 * flag of the previous work while there must be a valid next work
2117 * after a work with LINKED flag set.
2118 *
2119 * Note that when @worker is non-NULL, @target may be modified
2120 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2121 *
2122 * CONTEXT:
8b03ae3c 2123 * spin_lock_irq(gcwq->lock).
4690c4ab 2124 */
83c22520 2125static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2126 struct wq_barrier *barr,
2127 struct work_struct *target, struct worker *worker)
fc2e4d70 2128{
affee4b2
TH
2129 struct list_head *head;
2130 unsigned int linked = 0;
2131
dc186ad7 2132 /*
8b03ae3c 2133 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2134 * as we know for sure that this will not trigger any of the
2135 * checks and call back into the fixup functions where we
2136 * might deadlock.
2137 */
ca1cab37 2138 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2139 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2140 init_completion(&barr->done);
83c22520 2141
affee4b2
TH
2142 /*
2143 * If @target is currently being executed, schedule the
2144 * barrier to the worker; otherwise, put it after @target.
2145 */
2146 if (worker)
2147 head = worker->scheduled.next;
2148 else {
2149 unsigned long *bits = work_data_bits(target);
2150
2151 head = target->entry.next;
2152 /* there can already be other linked works, inherit and set */
2153 linked = *bits & WORK_STRUCT_LINKED;
2154 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2155 }
2156
dc186ad7 2157 debug_work_activate(&barr->work);
affee4b2
TH
2158 insert_work(cwq, &barr->work, head,
2159 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2160}
2161
73f53c4a
TH
2162/**
2163 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2164 * @wq: workqueue being flushed
2165 * @flush_color: new flush color, < 0 for no-op
2166 * @work_color: new work color, < 0 for no-op
2167 *
2168 * Prepare cwqs for workqueue flushing.
2169 *
2170 * If @flush_color is non-negative, flush_color on all cwqs should be
2171 * -1. If no cwq has in-flight commands at the specified color, all
2172 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2173 * has in flight commands, its cwq->flush_color is set to
2174 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2175 * wakeup logic is armed and %true is returned.
2176 *
2177 * The caller should have initialized @wq->first_flusher prior to
2178 * calling this function with non-negative @flush_color. If
2179 * @flush_color is negative, no flush color update is done and %false
2180 * is returned.
2181 *
2182 * If @work_color is non-negative, all cwqs should have the same
2183 * work_color which is previous to @work_color and all will be
2184 * advanced to @work_color.
2185 *
2186 * CONTEXT:
2187 * mutex_lock(wq->flush_mutex).
2188 *
2189 * RETURNS:
2190 * %true if @flush_color >= 0 and there's something to flush. %false
2191 * otherwise.
2192 */
2193static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2194 int flush_color, int work_color)
1da177e4 2195{
73f53c4a
TH
2196 bool wait = false;
2197 unsigned int cpu;
1da177e4 2198
73f53c4a
TH
2199 if (flush_color >= 0) {
2200 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2201 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2202 }
2355b70f 2203
f3421797 2204 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2205 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2206 struct global_cwq *gcwq = cwq->gcwq;
fc2e4d70 2207
8b03ae3c 2208 spin_lock_irq(&gcwq->lock);
83c22520 2209
73f53c4a
TH
2210 if (flush_color >= 0) {
2211 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2212
73f53c4a
TH
2213 if (cwq->nr_in_flight[flush_color]) {
2214 cwq->flush_color = flush_color;
2215 atomic_inc(&wq->nr_cwqs_to_flush);
2216 wait = true;
2217 }
2218 }
1da177e4 2219
73f53c4a
TH
2220 if (work_color >= 0) {
2221 BUG_ON(work_color != work_next_color(cwq->work_color));
2222 cwq->work_color = work_color;
2223 }
1da177e4 2224
8b03ae3c 2225 spin_unlock_irq(&gcwq->lock);
1da177e4 2226 }
2355b70f 2227
73f53c4a
TH
2228 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2229 complete(&wq->first_flusher->done);
14441960 2230
73f53c4a 2231 return wait;
1da177e4
LT
2232}
2233
0fcb78c2 2234/**
1da177e4 2235 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2236 * @wq: workqueue to flush
1da177e4
LT
2237 *
2238 * Forces execution of the workqueue and blocks until its completion.
2239 * This is typically used in driver shutdown handlers.
2240 *
fc2e4d70
ON
2241 * We sleep until all works which were queued on entry have been handled,
2242 * but we are not livelocked by new incoming ones.
1da177e4 2243 */
7ad5b3a5 2244void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2245{
73f53c4a
TH
2246 struct wq_flusher this_flusher = {
2247 .list = LIST_HEAD_INIT(this_flusher.list),
2248 .flush_color = -1,
2249 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2250 };
2251 int next_color;
1da177e4 2252
3295f0ef
IM
2253 lock_map_acquire(&wq->lockdep_map);
2254 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2255
2256 mutex_lock(&wq->flush_mutex);
2257
2258 /*
2259 * Start-to-wait phase
2260 */
2261 next_color = work_next_color(wq->work_color);
2262
2263 if (next_color != wq->flush_color) {
2264 /*
2265 * Color space is not full. The current work_color
2266 * becomes our flush_color and work_color is advanced
2267 * by one.
2268 */
2269 BUG_ON(!list_empty(&wq->flusher_overflow));
2270 this_flusher.flush_color = wq->work_color;
2271 wq->work_color = next_color;
2272
2273 if (!wq->first_flusher) {
2274 /* no flush in progress, become the first flusher */
2275 BUG_ON(wq->flush_color != this_flusher.flush_color);
2276
2277 wq->first_flusher = &this_flusher;
2278
2279 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2280 wq->work_color)) {
2281 /* nothing to flush, done */
2282 wq->flush_color = next_color;
2283 wq->first_flusher = NULL;
2284 goto out_unlock;
2285 }
2286 } else {
2287 /* wait in queue */
2288 BUG_ON(wq->flush_color == this_flusher.flush_color);
2289 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2290 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2291 }
2292 } else {
2293 /*
2294 * Oops, color space is full, wait on overflow queue.
2295 * The next flush completion will assign us
2296 * flush_color and transfer to flusher_queue.
2297 */
2298 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2299 }
2300
2301 mutex_unlock(&wq->flush_mutex);
2302
2303 wait_for_completion(&this_flusher.done);
2304
2305 /*
2306 * Wake-up-and-cascade phase
2307 *
2308 * First flushers are responsible for cascading flushes and
2309 * handling overflow. Non-first flushers can simply return.
2310 */
2311 if (wq->first_flusher != &this_flusher)
2312 return;
2313
2314 mutex_lock(&wq->flush_mutex);
2315
4ce48b37
TH
2316 /* we might have raced, check again with mutex held */
2317 if (wq->first_flusher != &this_flusher)
2318 goto out_unlock;
2319
73f53c4a
TH
2320 wq->first_flusher = NULL;
2321
2322 BUG_ON(!list_empty(&this_flusher.list));
2323 BUG_ON(wq->flush_color != this_flusher.flush_color);
2324
2325 while (true) {
2326 struct wq_flusher *next, *tmp;
2327
2328 /* complete all the flushers sharing the current flush color */
2329 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2330 if (next->flush_color != wq->flush_color)
2331 break;
2332 list_del_init(&next->list);
2333 complete(&next->done);
2334 }
2335
2336 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2337 wq->flush_color != work_next_color(wq->work_color));
2338
2339 /* this flush_color is finished, advance by one */
2340 wq->flush_color = work_next_color(wq->flush_color);
2341
2342 /* one color has been freed, handle overflow queue */
2343 if (!list_empty(&wq->flusher_overflow)) {
2344 /*
2345 * Assign the same color to all overflowed
2346 * flushers, advance work_color and append to
2347 * flusher_queue. This is the start-to-wait
2348 * phase for these overflowed flushers.
2349 */
2350 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2351 tmp->flush_color = wq->work_color;
2352
2353 wq->work_color = work_next_color(wq->work_color);
2354
2355 list_splice_tail_init(&wq->flusher_overflow,
2356 &wq->flusher_queue);
2357 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2358 }
2359
2360 if (list_empty(&wq->flusher_queue)) {
2361 BUG_ON(wq->flush_color != wq->work_color);
2362 break;
2363 }
2364
2365 /*
2366 * Need to flush more colors. Make the next flusher
2367 * the new first flusher and arm cwqs.
2368 */
2369 BUG_ON(wq->flush_color == wq->work_color);
2370 BUG_ON(wq->flush_color != next->flush_color);
2371
2372 list_del_init(&next->list);
2373 wq->first_flusher = next;
2374
2375 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2376 break;
2377
2378 /*
2379 * Meh... this color is already done, clear first
2380 * flusher and repeat cascading.
2381 */
2382 wq->first_flusher = NULL;
2383 }
2384
2385out_unlock:
2386 mutex_unlock(&wq->flush_mutex);
1da177e4 2387}
ae90dd5d 2388EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2389
9c5a2ba7
TH
2390/**
2391 * drain_workqueue - drain a workqueue
2392 * @wq: workqueue to drain
2393 *
2394 * Wait until the workqueue becomes empty. While draining is in progress,
2395 * only chain queueing is allowed. IOW, only currently pending or running
2396 * work items on @wq can queue further work items on it. @wq is flushed
2397 * repeatedly until it becomes empty. The number of flushing is detemined
2398 * by the depth of chaining and should be relatively short. Whine if it
2399 * takes too long.
2400 */
2401void drain_workqueue(struct workqueue_struct *wq)
2402{
2403 unsigned int flush_cnt = 0;
2404 unsigned int cpu;
2405
2406 /*
2407 * __queue_work() needs to test whether there are drainers, is much
2408 * hotter than drain_workqueue() and already looks at @wq->flags.
2409 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2410 */
2411 spin_lock(&workqueue_lock);
2412 if (!wq->nr_drainers++)
2413 wq->flags |= WQ_DRAINING;
2414 spin_unlock(&workqueue_lock);
2415reflush:
2416 flush_workqueue(wq);
2417
2418 for_each_cwq_cpu(cpu, wq) {
2419 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2420 bool drained;
9c5a2ba7 2421
fa2563e4
TT
2422 spin_lock_irq(&cwq->gcwq->lock);
2423 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2424 spin_unlock_irq(&cwq->gcwq->lock);
2425
2426 if (drained)
9c5a2ba7
TH
2427 continue;
2428
2429 if (++flush_cnt == 10 ||
2430 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2431 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2432 wq->name, flush_cnt);
2433 goto reflush;
2434 }
2435
2436 spin_lock(&workqueue_lock);
2437 if (!--wq->nr_drainers)
2438 wq->flags &= ~WQ_DRAINING;
2439 spin_unlock(&workqueue_lock);
2440}
2441EXPORT_SYMBOL_GPL(drain_workqueue);
2442
baf59022
TH
2443static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2444 bool wait_executing)
db700897 2445{
affee4b2 2446 struct worker *worker = NULL;
8b03ae3c 2447 struct global_cwq *gcwq;
db700897 2448 struct cpu_workqueue_struct *cwq;
db700897
ON
2449
2450 might_sleep();
7a22ad75
TH
2451 gcwq = get_work_gcwq(work);
2452 if (!gcwq)
baf59022 2453 return false;
db700897 2454
8b03ae3c 2455 spin_lock_irq(&gcwq->lock);
db700897
ON
2456 if (!list_empty(&work->entry)) {
2457 /*
2458 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2459 * If it was re-queued to a different gcwq under us, we
2460 * are not going to wait.
db700897
ON
2461 */
2462 smp_rmb();
7a22ad75
TH
2463 cwq = get_work_cwq(work);
2464 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 2465 goto already_gone;
baf59022 2466 } else if (wait_executing) {
7a22ad75 2467 worker = find_worker_executing_work(gcwq, work);
affee4b2 2468 if (!worker)
4690c4ab 2469 goto already_gone;
7a22ad75 2470 cwq = worker->current_cwq;
baf59022
TH
2471 } else
2472 goto already_gone;
db700897 2473
baf59022 2474 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2475 spin_unlock_irq(&gcwq->lock);
7a22ad75 2476
e159489b
TH
2477 /*
2478 * If @max_active is 1 or rescuer is in use, flushing another work
2479 * item on the same workqueue may lead to deadlock. Make sure the
2480 * flusher is not running on the same workqueue by verifying write
2481 * access.
2482 */
2483 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2484 lock_map_acquire(&cwq->wq->lockdep_map);
2485 else
2486 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2487 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2488
401a8d04 2489 return true;
4690c4ab 2490already_gone:
8b03ae3c 2491 spin_unlock_irq(&gcwq->lock);
401a8d04 2492 return false;
db700897 2493}
baf59022
TH
2494
2495/**
2496 * flush_work - wait for a work to finish executing the last queueing instance
2497 * @work: the work to flush
2498 *
2499 * Wait until @work has finished execution. This function considers
2500 * only the last queueing instance of @work. If @work has been
2501 * enqueued across different CPUs on a non-reentrant workqueue or on
2502 * multiple workqueues, @work might still be executing on return on
2503 * some of the CPUs from earlier queueing.
2504 *
2505 * If @work was queued only on a non-reentrant, ordered or unbound
2506 * workqueue, @work is guaranteed to be idle on return if it hasn't
2507 * been requeued since flush started.
2508 *
2509 * RETURNS:
2510 * %true if flush_work() waited for the work to finish execution,
2511 * %false if it was already idle.
2512 */
2513bool flush_work(struct work_struct *work)
2514{
2515 struct wq_barrier barr;
2516
0976dfc1
SB
2517 lock_map_acquire(&work->lockdep_map);
2518 lock_map_release(&work->lockdep_map);
2519
baf59022
TH
2520 if (start_flush_work(work, &barr, true)) {
2521 wait_for_completion(&barr.done);
2522 destroy_work_on_stack(&barr.work);
2523 return true;
2524 } else
2525 return false;
2526}
db700897
ON
2527EXPORT_SYMBOL_GPL(flush_work);
2528
401a8d04
TH
2529static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2530{
2531 struct wq_barrier barr;
2532 struct worker *worker;
2533
2534 spin_lock_irq(&gcwq->lock);
2535
2536 worker = find_worker_executing_work(gcwq, work);
2537 if (unlikely(worker))
2538 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2539
2540 spin_unlock_irq(&gcwq->lock);
2541
2542 if (unlikely(worker)) {
2543 wait_for_completion(&barr.done);
2544 destroy_work_on_stack(&barr.work);
2545 return true;
2546 } else
2547 return false;
2548}
2549
2550static bool wait_on_work(struct work_struct *work)
2551{
2552 bool ret = false;
2553 int cpu;
2554
2555 might_sleep();
2556
2557 lock_map_acquire(&work->lockdep_map);
2558 lock_map_release(&work->lockdep_map);
2559
2560 for_each_gcwq_cpu(cpu)
2561 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2562 return ret;
2563}
2564
09383498
TH
2565/**
2566 * flush_work_sync - wait until a work has finished execution
2567 * @work: the work to flush
2568 *
2569 * Wait until @work has finished execution. On return, it's
2570 * guaranteed that all queueing instances of @work which happened
2571 * before this function is called are finished. In other words, if
2572 * @work hasn't been requeued since this function was called, @work is
2573 * guaranteed to be idle on return.
2574 *
2575 * RETURNS:
2576 * %true if flush_work_sync() waited for the work to finish execution,
2577 * %false if it was already idle.
2578 */
2579bool flush_work_sync(struct work_struct *work)
2580{
2581 struct wq_barrier barr;
2582 bool pending, waited;
2583
2584 /* we'll wait for executions separately, queue barr only if pending */
2585 pending = start_flush_work(work, &barr, false);
2586
2587 /* wait for executions to finish */
2588 waited = wait_on_work(work);
2589
2590 /* wait for the pending one */
2591 if (pending) {
2592 wait_for_completion(&barr.done);
2593 destroy_work_on_stack(&barr.work);
2594 }
2595
2596 return pending || waited;
2597}
2598EXPORT_SYMBOL_GPL(flush_work_sync);
2599
6e84d644 2600/*
1f1f642e 2601 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2602 * so this work can't be re-armed in any way.
2603 */
2604static int try_to_grab_pending(struct work_struct *work)
2605{
8b03ae3c 2606 struct global_cwq *gcwq;
1f1f642e 2607 int ret = -1;
6e84d644 2608
22df02bb 2609 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2610 return 0;
6e84d644
ON
2611
2612 /*
2613 * The queueing is in progress, or it is already queued. Try to
2614 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2615 */
7a22ad75
TH
2616 gcwq = get_work_gcwq(work);
2617 if (!gcwq)
6e84d644
ON
2618 return ret;
2619
8b03ae3c 2620 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2621 if (!list_empty(&work->entry)) {
2622 /*
7a22ad75 2623 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2624 * In that case we must see the new value after rmb(), see
2625 * insert_work()->wmb().
2626 */
2627 smp_rmb();
7a22ad75 2628 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2629 debug_work_deactivate(work);
6e84d644 2630 list_del_init(&work->entry);
7a22ad75 2631 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2632 get_work_color(work),
2633 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2634 ret = 1;
2635 }
2636 }
8b03ae3c 2637 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2638
2639 return ret;
2640}
2641
401a8d04 2642static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2643 struct timer_list* timer)
2644{
2645 int ret;
2646
2647 do {
2648 ret = (timer && likely(del_timer(timer)));
2649 if (!ret)
2650 ret = try_to_grab_pending(work);
2651 wait_on_work(work);
2652 } while (unlikely(ret < 0));
2653
7a22ad75 2654 clear_work_data(work);
1f1f642e
ON
2655 return ret;
2656}
2657
6e84d644 2658/**
401a8d04
TH
2659 * cancel_work_sync - cancel a work and wait for it to finish
2660 * @work: the work to cancel
6e84d644 2661 *
401a8d04
TH
2662 * Cancel @work and wait for its execution to finish. This function
2663 * can be used even if the work re-queues itself or migrates to
2664 * another workqueue. On return from this function, @work is
2665 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2666 *
401a8d04
TH
2667 * cancel_work_sync(&delayed_work->work) must not be used for
2668 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2669 *
401a8d04 2670 * The caller must ensure that the workqueue on which @work was last
6e84d644 2671 * queued can't be destroyed before this function returns.
401a8d04
TH
2672 *
2673 * RETURNS:
2674 * %true if @work was pending, %false otherwise.
6e84d644 2675 */
401a8d04 2676bool cancel_work_sync(struct work_struct *work)
6e84d644 2677{
1f1f642e 2678 return __cancel_work_timer(work, NULL);
b89deed3 2679}
28e53bdd 2680EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2681
6e84d644 2682/**
401a8d04
TH
2683 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2684 * @dwork: the delayed work to flush
6e84d644 2685 *
401a8d04
TH
2686 * Delayed timer is cancelled and the pending work is queued for
2687 * immediate execution. Like flush_work(), this function only
2688 * considers the last queueing instance of @dwork.
1f1f642e 2689 *
401a8d04
TH
2690 * RETURNS:
2691 * %true if flush_work() waited for the work to finish execution,
2692 * %false if it was already idle.
6e84d644 2693 */
401a8d04
TH
2694bool flush_delayed_work(struct delayed_work *dwork)
2695{
2696 if (del_timer_sync(&dwork->timer))
2697 __queue_work(raw_smp_processor_id(),
2698 get_work_cwq(&dwork->work)->wq, &dwork->work);
2699 return flush_work(&dwork->work);
2700}
2701EXPORT_SYMBOL(flush_delayed_work);
2702
09383498
TH
2703/**
2704 * flush_delayed_work_sync - wait for a dwork to finish
2705 * @dwork: the delayed work to flush
2706 *
2707 * Delayed timer is cancelled and the pending work is queued for
2708 * execution immediately. Other than timer handling, its behavior
2709 * is identical to flush_work_sync().
2710 *
2711 * RETURNS:
2712 * %true if flush_work_sync() waited for the work to finish execution,
2713 * %false if it was already idle.
2714 */
2715bool flush_delayed_work_sync(struct delayed_work *dwork)
2716{
2717 if (del_timer_sync(&dwork->timer))
2718 __queue_work(raw_smp_processor_id(),
2719 get_work_cwq(&dwork->work)->wq, &dwork->work);
2720 return flush_work_sync(&dwork->work);
2721}
2722EXPORT_SYMBOL(flush_delayed_work_sync);
2723
401a8d04
TH
2724/**
2725 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2726 * @dwork: the delayed work cancel
2727 *
2728 * This is cancel_work_sync() for delayed works.
2729 *
2730 * RETURNS:
2731 * %true if @dwork was pending, %false otherwise.
2732 */
2733bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2734{
1f1f642e 2735 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2736}
f5a421a4 2737EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2738
0fcb78c2
REB
2739/**
2740 * schedule_work - put work task in global workqueue
2741 * @work: job to be done
2742 *
5b0f437d
BVA
2743 * Returns zero if @work was already on the kernel-global workqueue and
2744 * non-zero otherwise.
2745 *
2746 * This puts a job in the kernel-global workqueue if it was not already
2747 * queued and leaves it in the same position on the kernel-global
2748 * workqueue otherwise.
0fcb78c2 2749 */
7ad5b3a5 2750int schedule_work(struct work_struct *work)
1da177e4 2751{
d320c038 2752 return queue_work(system_wq, work);
1da177e4 2753}
ae90dd5d 2754EXPORT_SYMBOL(schedule_work);
1da177e4 2755
c1a220e7
ZR
2756/*
2757 * schedule_work_on - put work task on a specific cpu
2758 * @cpu: cpu to put the work task on
2759 * @work: job to be done
2760 *
2761 * This puts a job on a specific cpu
2762 */
2763int schedule_work_on(int cpu, struct work_struct *work)
2764{
d320c038 2765 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2766}
2767EXPORT_SYMBOL(schedule_work_on);
2768
0fcb78c2
REB
2769/**
2770 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2771 * @dwork: job to be done
2772 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2773 *
2774 * After waiting for a given time this puts a job in the kernel-global
2775 * workqueue.
2776 */
7ad5b3a5 2777int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2778 unsigned long delay)
1da177e4 2779{
d320c038 2780 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2781}
ae90dd5d 2782EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2783
0fcb78c2
REB
2784/**
2785 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2786 * @cpu: cpu to use
52bad64d 2787 * @dwork: job to be done
0fcb78c2
REB
2788 * @delay: number of jiffies to wait
2789 *
2790 * After waiting for a given time this puts a job in the kernel-global
2791 * workqueue on the specified CPU.
2792 */
1da177e4 2793int schedule_delayed_work_on(int cpu,
52bad64d 2794 struct delayed_work *dwork, unsigned long delay)
1da177e4 2795{
d320c038 2796 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2797}
ae90dd5d 2798EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2799
b6136773 2800/**
31ddd871 2801 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2802 * @func: the function to call
b6136773 2803 *
31ddd871
TH
2804 * schedule_on_each_cpu() executes @func on each online CPU using the
2805 * system workqueue and blocks until all CPUs have completed.
b6136773 2806 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2807 *
2808 * RETURNS:
2809 * 0 on success, -errno on failure.
b6136773 2810 */
65f27f38 2811int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2812{
2813 int cpu;
38f51568 2814 struct work_struct __percpu *works;
15316ba8 2815
b6136773
AM
2816 works = alloc_percpu(struct work_struct);
2817 if (!works)
15316ba8 2818 return -ENOMEM;
b6136773 2819
93981800
TH
2820 get_online_cpus();
2821
15316ba8 2822 for_each_online_cpu(cpu) {
9bfb1839
IM
2823 struct work_struct *work = per_cpu_ptr(works, cpu);
2824
2825 INIT_WORK(work, func);
b71ab8c2 2826 schedule_work_on(cpu, work);
65a64464 2827 }
93981800
TH
2828
2829 for_each_online_cpu(cpu)
2830 flush_work(per_cpu_ptr(works, cpu));
2831
95402b38 2832 put_online_cpus();
b6136773 2833 free_percpu(works);
15316ba8
CL
2834 return 0;
2835}
2836
eef6a7d5
AS
2837/**
2838 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2839 *
2840 * Forces execution of the kernel-global workqueue and blocks until its
2841 * completion.
2842 *
2843 * Think twice before calling this function! It's very easy to get into
2844 * trouble if you don't take great care. Either of the following situations
2845 * will lead to deadlock:
2846 *
2847 * One of the work items currently on the workqueue needs to acquire
2848 * a lock held by your code or its caller.
2849 *
2850 * Your code is running in the context of a work routine.
2851 *
2852 * They will be detected by lockdep when they occur, but the first might not
2853 * occur very often. It depends on what work items are on the workqueue and
2854 * what locks they need, which you have no control over.
2855 *
2856 * In most situations flushing the entire workqueue is overkill; you merely
2857 * need to know that a particular work item isn't queued and isn't running.
2858 * In such cases you should use cancel_delayed_work_sync() or
2859 * cancel_work_sync() instead.
2860 */
1da177e4
LT
2861void flush_scheduled_work(void)
2862{
d320c038 2863 flush_workqueue(system_wq);
1da177e4 2864}
ae90dd5d 2865EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2866
1fa44eca
JB
2867/**
2868 * execute_in_process_context - reliably execute the routine with user context
2869 * @fn: the function to execute
1fa44eca
JB
2870 * @ew: guaranteed storage for the execute work structure (must
2871 * be available when the work executes)
2872 *
2873 * Executes the function immediately if process context is available,
2874 * otherwise schedules the function for delayed execution.
2875 *
2876 * Returns: 0 - function was executed
2877 * 1 - function was scheduled for execution
2878 */
65f27f38 2879int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2880{
2881 if (!in_interrupt()) {
65f27f38 2882 fn(&ew->work);
1fa44eca
JB
2883 return 0;
2884 }
2885
65f27f38 2886 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2887 schedule_work(&ew->work);
2888
2889 return 1;
2890}
2891EXPORT_SYMBOL_GPL(execute_in_process_context);
2892
1da177e4
LT
2893int keventd_up(void)
2894{
d320c038 2895 return system_wq != NULL;
1da177e4
LT
2896}
2897
bdbc5dd7 2898static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 2899{
65a64464 2900 /*
0f900049
TH
2901 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2902 * Make sure that the alignment isn't lower than that of
2903 * unsigned long long.
65a64464 2904 */
0f900049
TH
2905 const size_t size = sizeof(struct cpu_workqueue_struct);
2906 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2907 __alignof__(unsigned long long));
65a64464 2908
e06ffa1e 2909 if (!(wq->flags & WQ_UNBOUND))
f3421797 2910 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 2911 else {
f3421797
TH
2912 void *ptr;
2913
2914 /*
2915 * Allocate enough room to align cwq and put an extra
2916 * pointer at the end pointing back to the originally
2917 * allocated pointer which will be used for free.
2918 */
2919 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2920 if (ptr) {
2921 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2922 *(void **)(wq->cpu_wq.single + 1) = ptr;
2923 }
bdbc5dd7 2924 }
f3421797 2925
0415b00d 2926 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
2927 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2928 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
2929}
2930
bdbc5dd7 2931static void free_cwqs(struct workqueue_struct *wq)
0f900049 2932{
e06ffa1e 2933 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
2934 free_percpu(wq->cpu_wq.pcpu);
2935 else if (wq->cpu_wq.single) {
2936 /* the pointer to free is stored right after the cwq */
bdbc5dd7 2937 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 2938 }
0f900049
TH
2939}
2940
f3421797
TH
2941static int wq_clamp_max_active(int max_active, unsigned int flags,
2942 const char *name)
b71ab8c2 2943{
f3421797
TH
2944 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2945
2946 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
2947 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2948 "is out of range, clamping between %d and %d\n",
f3421797 2949 max_active, name, 1, lim);
b71ab8c2 2950
f3421797 2951 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
2952}
2953
b196be89 2954struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
2955 unsigned int flags,
2956 int max_active,
2957 struct lock_class_key *key,
b196be89 2958 const char *lock_name, ...)
1da177e4 2959{
b196be89 2960 va_list args, args1;
1da177e4 2961 struct workqueue_struct *wq;
c34056a3 2962 unsigned int cpu;
b196be89
TH
2963 size_t namelen;
2964
2965 /* determine namelen, allocate wq and format name */
2966 va_start(args, lock_name);
2967 va_copy(args1, args);
2968 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2969
2970 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2971 if (!wq)
2972 goto err;
2973
2974 vsnprintf(wq->name, namelen, fmt, args1);
2975 va_end(args);
2976 va_end(args1);
1da177e4 2977
6370a6ad
TH
2978 /*
2979 * Workqueues which may be used during memory reclaim should
2980 * have a rescuer to guarantee forward progress.
2981 */
2982 if (flags & WQ_MEM_RECLAIM)
2983 flags |= WQ_RESCUER;
2984
f3421797
TH
2985 /*
2986 * Unbound workqueues aren't concurrency managed and should be
2987 * dispatched to workers immediately.
2988 */
2989 if (flags & WQ_UNBOUND)
2990 flags |= WQ_HIGHPRI;
2991
d320c038 2992 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 2993 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 2994
b196be89 2995 /* init wq */
97e37d7b 2996 wq->flags = flags;
a0a1a5fd 2997 wq->saved_max_active = max_active;
73f53c4a
TH
2998 mutex_init(&wq->flush_mutex);
2999 atomic_set(&wq->nr_cwqs_to_flush, 0);
3000 INIT_LIST_HEAD(&wq->flusher_queue);
3001 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3002
eb13ba87 3003 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3004 INIT_LIST_HEAD(&wq->list);
3af24433 3005
bdbc5dd7
TH
3006 if (alloc_cwqs(wq) < 0)
3007 goto err;
3008
f3421797 3009 for_each_cwq_cpu(cpu, wq) {
1537663f 3010 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3011 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 3012
0f900049 3013 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 3014 cwq->gcwq = gcwq;
c34056a3 3015 cwq->wq = wq;
73f53c4a 3016 cwq->flush_color = -1;
1e19ffc6 3017 cwq->max_active = max_active;
1e19ffc6 3018 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3019 }
1537663f 3020
e22bee78
TH
3021 if (flags & WQ_RESCUER) {
3022 struct worker *rescuer;
3023
f2e005aa 3024 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3025 goto err;
3026
3027 wq->rescuer = rescuer = alloc_worker();
3028 if (!rescuer)
3029 goto err;
3030
b196be89
TH
3031 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3032 wq->name);
e22bee78
TH
3033 if (IS_ERR(rescuer->task))
3034 goto err;
3035
e22bee78
TH
3036 rescuer->task->flags |= PF_THREAD_BOUND;
3037 wake_up_process(rescuer->task);
3af24433
ON
3038 }
3039
a0a1a5fd
TH
3040 /*
3041 * workqueue_lock protects global freeze state and workqueues
3042 * list. Grab it, set max_active accordingly and add the new
3043 * workqueue to workqueues list.
3044 */
1537663f 3045 spin_lock(&workqueue_lock);
a0a1a5fd 3046
58a69cb4 3047 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3048 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3049 get_cwq(cpu, wq)->max_active = 0;
3050
1537663f 3051 list_add(&wq->list, &workqueues);
a0a1a5fd 3052
1537663f
TH
3053 spin_unlock(&workqueue_lock);
3054
3af24433 3055 return wq;
4690c4ab
TH
3056err:
3057 if (wq) {
bdbc5dd7 3058 free_cwqs(wq);
f2e005aa 3059 free_mayday_mask(wq->mayday_mask);
e22bee78 3060 kfree(wq->rescuer);
4690c4ab
TH
3061 kfree(wq);
3062 }
3063 return NULL;
3af24433 3064}
d320c038 3065EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3066
3af24433
ON
3067/**
3068 * destroy_workqueue - safely terminate a workqueue
3069 * @wq: target workqueue
3070 *
3071 * Safely destroy a workqueue. All work currently pending will be done first.
3072 */
3073void destroy_workqueue(struct workqueue_struct *wq)
3074{
c8e55f36 3075 unsigned int cpu;
3af24433 3076
9c5a2ba7
TH
3077 /* drain it before proceeding with destruction */
3078 drain_workqueue(wq);
c8efcc25 3079
a0a1a5fd
TH
3080 /*
3081 * wq list is used to freeze wq, remove from list after
3082 * flushing is complete in case freeze races us.
3083 */
95402b38 3084 spin_lock(&workqueue_lock);
b1f4ec17 3085 list_del(&wq->list);
95402b38 3086 spin_unlock(&workqueue_lock);
3af24433 3087
e22bee78 3088 /* sanity check */
f3421797 3089 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3090 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3091 int i;
3092
73f53c4a
TH
3093 for (i = 0; i < WORK_NR_COLORS; i++)
3094 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3095 BUG_ON(cwq->nr_active);
3096 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3097 }
9b41ea72 3098
e22bee78
TH
3099 if (wq->flags & WQ_RESCUER) {
3100 kthread_stop(wq->rescuer->task);
f2e005aa 3101 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3102 kfree(wq->rescuer);
e22bee78
TH
3103 }
3104
bdbc5dd7 3105 free_cwqs(wq);
3af24433
ON
3106 kfree(wq);
3107}
3108EXPORT_SYMBOL_GPL(destroy_workqueue);
3109
dcd989cb
TH
3110/**
3111 * workqueue_set_max_active - adjust max_active of a workqueue
3112 * @wq: target workqueue
3113 * @max_active: new max_active value.
3114 *
3115 * Set max_active of @wq to @max_active.
3116 *
3117 * CONTEXT:
3118 * Don't call from IRQ context.
3119 */
3120void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3121{
3122 unsigned int cpu;
3123
f3421797 3124 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3125
3126 spin_lock(&workqueue_lock);
3127
3128 wq->saved_max_active = max_active;
3129
f3421797 3130 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3131 struct global_cwq *gcwq = get_gcwq(cpu);
3132
3133 spin_lock_irq(&gcwq->lock);
3134
58a69cb4 3135 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3136 !(gcwq->flags & GCWQ_FREEZING))
3137 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3138
dcd989cb 3139 spin_unlock_irq(&gcwq->lock);
65a64464 3140 }
93981800 3141
dcd989cb 3142 spin_unlock(&workqueue_lock);
15316ba8 3143}
dcd989cb 3144EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3145
eef6a7d5 3146/**
dcd989cb
TH
3147 * workqueue_congested - test whether a workqueue is congested
3148 * @cpu: CPU in question
3149 * @wq: target workqueue
eef6a7d5 3150 *
dcd989cb
TH
3151 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3152 * no synchronization around this function and the test result is
3153 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3154 *
dcd989cb
TH
3155 * RETURNS:
3156 * %true if congested, %false otherwise.
eef6a7d5 3157 */
dcd989cb 3158bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3159{
dcd989cb
TH
3160 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3161
3162 return !list_empty(&cwq->delayed_works);
1da177e4 3163}
dcd989cb 3164EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3165
1fa44eca 3166/**
dcd989cb
TH
3167 * work_cpu - return the last known associated cpu for @work
3168 * @work: the work of interest
1fa44eca 3169 *
dcd989cb 3170 * RETURNS:
bdbc5dd7 3171 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3172 */
dcd989cb 3173unsigned int work_cpu(struct work_struct *work)
1fa44eca 3174{
dcd989cb 3175 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3176
bdbc5dd7 3177 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3178}
dcd989cb 3179EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3180
dcd989cb
TH
3181/**
3182 * work_busy - test whether a work is currently pending or running
3183 * @work: the work to be tested
3184 *
3185 * Test whether @work is currently pending or running. There is no
3186 * synchronization around this function and the test result is
3187 * unreliable and only useful as advisory hints or for debugging.
3188 * Especially for reentrant wqs, the pending state might hide the
3189 * running state.
3190 *
3191 * RETURNS:
3192 * OR'd bitmask of WORK_BUSY_* bits.
3193 */
3194unsigned int work_busy(struct work_struct *work)
1da177e4 3195{
dcd989cb
TH
3196 struct global_cwq *gcwq = get_work_gcwq(work);
3197 unsigned long flags;
3198 unsigned int ret = 0;
1da177e4 3199
dcd989cb
TH
3200 if (!gcwq)
3201 return false;
1da177e4 3202
dcd989cb 3203 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3204
dcd989cb
TH
3205 if (work_pending(work))
3206 ret |= WORK_BUSY_PENDING;
3207 if (find_worker_executing_work(gcwq, work))
3208 ret |= WORK_BUSY_RUNNING;
1da177e4 3209
dcd989cb 3210 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3211
dcd989cb 3212 return ret;
1da177e4 3213}
dcd989cb 3214EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3215
db7bccf4
TH
3216/*
3217 * CPU hotplug.
3218 *
e22bee78
TH
3219 * There are two challenges in supporting CPU hotplug. Firstly, there
3220 * are a lot of assumptions on strong associations among work, cwq and
3221 * gcwq which make migrating pending and scheduled works very
3222 * difficult to implement without impacting hot paths. Secondly,
3223 * gcwqs serve mix of short, long and very long running works making
3224 * blocked draining impractical.
3225 *
3226 * This is solved by allowing a gcwq to be detached from CPU, running
3227 * it with unbound (rogue) workers and allowing it to be reattached
3228 * later if the cpu comes back online. A separate thread is created
3229 * to govern a gcwq in such state and is called the trustee of the
3230 * gcwq.
db7bccf4
TH
3231 *
3232 * Trustee states and their descriptions.
3233 *
3234 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3235 * new trustee is started with this state.
3236 *
3237 * IN_CHARGE Once started, trustee will enter this state after
e22bee78
TH
3238 * assuming the manager role and making all existing
3239 * workers rogue. DOWN_PREPARE waits for trustee to
3240 * enter this state. After reaching IN_CHARGE, trustee
3241 * tries to execute the pending worklist until it's empty
3242 * and the state is set to BUTCHER, or the state is set
3243 * to RELEASE.
db7bccf4
TH
3244 *
3245 * BUTCHER Command state which is set by the cpu callback after
3246 * the cpu has went down. Once this state is set trustee
3247 * knows that there will be no new works on the worklist
3248 * and once the worklist is empty it can proceed to
3249 * killing idle workers.
3250 *
3251 * RELEASE Command state which is set by the cpu callback if the
3252 * cpu down has been canceled or it has come online
3253 * again. After recognizing this state, trustee stops
e22bee78
TH
3254 * trying to drain or butcher and clears ROGUE, rebinds
3255 * all remaining workers back to the cpu and releases
3256 * manager role.
db7bccf4
TH
3257 *
3258 * DONE Trustee will enter this state after BUTCHER or RELEASE
3259 * is complete.
3260 *
3261 * trustee CPU draining
3262 * took over down complete
3263 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3264 * | | ^
3265 * | CPU is back online v return workers |
3266 * ----------------> RELEASE --------------
3267 */
1da177e4 3268
db7bccf4
TH
3269/**
3270 * trustee_wait_event_timeout - timed event wait for trustee
3271 * @cond: condition to wait for
3272 * @timeout: timeout in jiffies
3273 *
3274 * wait_event_timeout() for trustee to use. Handles locking and
3275 * checks for RELEASE request.
3276 *
3277 * CONTEXT:
3278 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3279 * multiple times. To be used by trustee.
3280 *
3281 * RETURNS:
3282 * Positive indicating left time if @cond is satisfied, 0 if timed
3283 * out, -1 if canceled.
3284 */
3285#define trustee_wait_event_timeout(cond, timeout) ({ \
3286 long __ret = (timeout); \
3287 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3288 __ret) { \
3289 spin_unlock_irq(&gcwq->lock); \
3290 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3291 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3292 __ret); \
3293 spin_lock_irq(&gcwq->lock); \
3294 } \
3295 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3296})
3af24433 3297
db7bccf4
TH
3298/**
3299 * trustee_wait_event - event wait for trustee
3300 * @cond: condition to wait for
3301 *
3302 * wait_event() for trustee to use. Automatically handles locking and
3303 * checks for CANCEL request.
3304 *
3305 * CONTEXT:
3306 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3307 * multiple times. To be used by trustee.
3308 *
3309 * RETURNS:
3310 * 0 if @cond is satisfied, -1 if canceled.
3311 */
3312#define trustee_wait_event(cond) ({ \
3313 long __ret1; \
3314 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3315 __ret1 < 0 ? -1 : 0; \
3316})
1da177e4 3317
db7bccf4 3318static int __cpuinit trustee_thread(void *__gcwq)
3af24433 3319{
db7bccf4
TH
3320 struct global_cwq *gcwq = __gcwq;
3321 struct worker *worker;
e22bee78 3322 struct work_struct *work;
db7bccf4 3323 struct hlist_node *pos;
e22bee78 3324 long rc;
db7bccf4 3325 int i;
3af24433 3326
db7bccf4
TH
3327 BUG_ON(gcwq->cpu != smp_processor_id());
3328
3329 spin_lock_irq(&gcwq->lock);
3af24433 3330 /*
e22bee78
TH
3331 * Claim the manager position and make all workers rogue.
3332 * Trustee must be bound to the target cpu and can't be
3333 * cancelled.
3af24433 3334 */
db7bccf4 3335 BUG_ON(gcwq->cpu != smp_processor_id());
e22bee78
TH
3336 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3337 BUG_ON(rc < 0);
3af24433 3338
e22bee78 3339 gcwq->flags |= GCWQ_MANAGING_WORKERS;
e1d8aa9f 3340
db7bccf4 3341 list_for_each_entry(worker, &gcwq->idle_list, entry)
cb444766 3342 worker->flags |= WORKER_ROGUE;
3af24433 3343
db7bccf4 3344 for_each_busy_worker(worker, i, pos, gcwq)
cb444766 3345 worker->flags |= WORKER_ROGUE;
06ba38a9 3346
e22bee78
TH
3347 /*
3348 * Call schedule() so that we cross rq->lock and thus can
3349 * guarantee sched callbacks see the rogue flag. This is
3350 * necessary as scheduler callbacks may be invoked from other
3351 * cpus.
3352 */
3353 spin_unlock_irq(&gcwq->lock);
3354 schedule();
3355 spin_lock_irq(&gcwq->lock);
06ba38a9 3356
e22bee78 3357 /*
cb444766
TH
3358 * Sched callbacks are disabled now. Zap nr_running. After
3359 * this, nr_running stays zero and need_more_worker() and
3360 * keep_working() are always true as long as the worklist is
3361 * not empty.
e22bee78 3362 */
cb444766 3363 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
1da177e4 3364
e22bee78
TH
3365 spin_unlock_irq(&gcwq->lock);
3366 del_timer_sync(&gcwq->idle_timer);
3367 spin_lock_irq(&gcwq->lock);
3af24433 3368
db7bccf4
TH
3369 /*
3370 * We're now in charge. Notify and proceed to drain. We need
3371 * to keep the gcwq running during the whole CPU down
3372 * procedure as other cpu hotunplug callbacks may need to
3373 * flush currently running tasks.
3374 */
3375 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3376 wake_up_all(&gcwq->trustee_wait);
3af24433 3377
db7bccf4
TH
3378 /*
3379 * The original cpu is in the process of dying and may go away
3380 * anytime now. When that happens, we and all workers would
e22bee78
TH
3381 * be migrated to other cpus. Try draining any left work. We
3382 * want to get it over with ASAP - spam rescuers, wake up as
3383 * many idlers as necessary and create new ones till the
3384 * worklist is empty. Note that if the gcwq is frozen, there
58a69cb4 3385 * may be frozen works in freezable cwqs. Don't declare
e22bee78 3386 * completion while frozen.
db7bccf4
TH
3387 */
3388 while (gcwq->nr_workers != gcwq->nr_idle ||
3389 gcwq->flags & GCWQ_FREEZING ||
3390 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
e22bee78
TH
3391 int nr_works = 0;
3392
3393 list_for_each_entry(work, &gcwq->worklist, entry) {
3394 send_mayday(work);
3395 nr_works++;
3396 }
3af24433 3397
e22bee78
TH
3398 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3399 if (!nr_works--)
3400 break;
3401 wake_up_process(worker->task);
3402 }
3403
3404 if (need_to_create_worker(gcwq)) {
3405 spin_unlock_irq(&gcwq->lock);
3406 worker = create_worker(gcwq, false);
3407 spin_lock_irq(&gcwq->lock);
3408 if (worker) {
cb444766 3409 worker->flags |= WORKER_ROGUE;
e22bee78
TH
3410 start_worker(worker);
3411 }
1da177e4 3412 }
3af24433 3413
db7bccf4
TH
3414 /* give a breather */
3415 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3416 break;
3af24433 3417 }
1da177e4 3418
14441960 3419 /*
e22bee78
TH
3420 * Either all works have been scheduled and cpu is down, or
3421 * cpu down has already been canceled. Wait for and butcher
3422 * all workers till we're canceled.
14441960 3423 */
e22bee78
TH
3424 do {
3425 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3426 while (!list_empty(&gcwq->idle_list))
3427 destroy_worker(list_first_entry(&gcwq->idle_list,
3428 struct worker, entry));
3429 } while (gcwq->nr_workers && rc >= 0);
4e6045f1 3430
14441960 3431 /*
e22bee78
TH
3432 * At this point, either draining has completed and no worker
3433 * is left, or cpu down has been canceled or the cpu is being
3434 * brought back up. There shouldn't be any idle one left.
3435 * Tell the remaining busy ones to rebind once it finishes the
3436 * currently scheduled works by scheduling the rebind_work.
14441960 3437 */
e22bee78
TH
3438 WARN_ON(!list_empty(&gcwq->idle_list));
3439
3440 for_each_busy_worker(worker, i, pos, gcwq) {
3441 struct work_struct *rebind_work = &worker->rebind_work;
3442
3443 /*
3444 * Rebind_work may race with future cpu hotplug
3445 * operations. Use a separate flag to mark that
3446 * rebinding is scheduled.
3447 */
cb444766
TH
3448 worker->flags |= WORKER_REBIND;
3449 worker->flags &= ~WORKER_ROGUE;
e22bee78
TH
3450
3451 /* queue rebind_work, wq doesn't matter, use the default one */
3452 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3453 work_data_bits(rebind_work)))
3454 continue;
3455
3456 debug_work_activate(rebind_work);
d320c038 3457 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
e22bee78
TH
3458 worker->scheduled.next,
3459 work_color_to_flags(WORK_NO_COLOR));
3460 }
3461
3462 /* relinquish manager role */
3463 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3464
db7bccf4
TH
3465 /* notify completion */
3466 gcwq->trustee = NULL;
3467 gcwq->trustee_state = TRUSTEE_DONE;
3468 wake_up_all(&gcwq->trustee_wait);
3469 spin_unlock_irq(&gcwq->lock);
3470 return 0;
3af24433
ON
3471}
3472
3473/**
db7bccf4
TH
3474 * wait_trustee_state - wait for trustee to enter the specified state
3475 * @gcwq: gcwq the trustee of interest belongs to
3476 * @state: target state to wait for
3af24433 3477 *
db7bccf4
TH
3478 * Wait for the trustee to reach @state. DONE is already matched.
3479 *
3480 * CONTEXT:
3481 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3482 * multiple times. To be used by cpu_callback.
3af24433 3483 */
db7bccf4 3484static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
06bd6ebf
NK
3485__releases(&gcwq->lock)
3486__acquires(&gcwq->lock)
3af24433 3487{
db7bccf4
TH
3488 if (!(gcwq->trustee_state == state ||
3489 gcwq->trustee_state == TRUSTEE_DONE)) {
3490 spin_unlock_irq(&gcwq->lock);
3491 __wait_event(gcwq->trustee_wait,
3492 gcwq->trustee_state == state ||
3493 gcwq->trustee_state == TRUSTEE_DONE);
3494 spin_lock_irq(&gcwq->lock);
3495 }
3af24433 3496}
3af24433
ON
3497
3498static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3499 unsigned long action,
3500 void *hcpu)
3501{
3502 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
3503 struct global_cwq *gcwq = get_gcwq(cpu);
3504 struct task_struct *new_trustee = NULL;
e22bee78 3505 struct worker *uninitialized_var(new_worker);
db7bccf4 3506 unsigned long flags;
3af24433 3507
8bb78442
RW
3508 action &= ~CPU_TASKS_FROZEN;
3509
3af24433 3510 switch (action) {
db7bccf4
TH
3511 case CPU_DOWN_PREPARE:
3512 new_trustee = kthread_create(trustee_thread, gcwq,
3513 "workqueue_trustee/%d\n", cpu);
3514 if (IS_ERR(new_trustee))
3515 return notifier_from_errno(PTR_ERR(new_trustee));
3516 kthread_bind(new_trustee, cpu);
e22bee78 3517 /* fall through */
3af24433 3518 case CPU_UP_PREPARE:
e22bee78
TH
3519 BUG_ON(gcwq->first_idle);
3520 new_worker = create_worker(gcwq, false);
3521 if (!new_worker) {
3522 if (new_trustee)
3523 kthread_stop(new_trustee);
3524 return NOTIFY_BAD;
3af24433 3525 }
1da177e4
LT
3526 }
3527
db7bccf4
TH
3528 /* some are called w/ irq disabled, don't disturb irq status */
3529 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 3530
00dfcaf7 3531 switch (action) {
db7bccf4
TH
3532 case CPU_DOWN_PREPARE:
3533 /* initialize trustee and tell it to acquire the gcwq */
3534 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3535 gcwq->trustee = new_trustee;
3536 gcwq->trustee_state = TRUSTEE_START;
3537 wake_up_process(gcwq->trustee);
3538 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
e22bee78
TH
3539 /* fall through */
3540 case CPU_UP_PREPARE:
3541 BUG_ON(gcwq->first_idle);
3542 gcwq->first_idle = new_worker;
3543 break;
3544
3545 case CPU_DYING:
3546 /*
3547 * Before this, the trustee and all workers except for
3548 * the ones which are still executing works from
3549 * before the last CPU down must be on the cpu. After
3550 * this, they'll all be diasporas.
3551 */
3552 gcwq->flags |= GCWQ_DISASSOCIATED;
db7bccf4
TH
3553 break;
3554
3da1c84c 3555 case CPU_POST_DEAD:
db7bccf4 3556 gcwq->trustee_state = TRUSTEE_BUTCHER;
e22bee78
TH
3557 /* fall through */
3558 case CPU_UP_CANCELED:
3559 destroy_worker(gcwq->first_idle);
3560 gcwq->first_idle = NULL;
db7bccf4
TH
3561 break;
3562
3563 case CPU_DOWN_FAILED:
3564 case CPU_ONLINE:
e22bee78 3565 gcwq->flags &= ~GCWQ_DISASSOCIATED;
db7bccf4
TH
3566 if (gcwq->trustee_state != TRUSTEE_DONE) {
3567 gcwq->trustee_state = TRUSTEE_RELEASE;
3568 wake_up_process(gcwq->trustee);
3569 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 3570 }
db7bccf4 3571
e22bee78
TH
3572 /*
3573 * Trustee is done and there might be no worker left.
3574 * Put the first_idle in and request a real manager to
3575 * take a look.
3576 */
3577 spin_unlock_irq(&gcwq->lock);
3578 kthread_bind(gcwq->first_idle->task, cpu);
3579 spin_lock_irq(&gcwq->lock);
3580 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3581 start_worker(gcwq->first_idle);
3582 gcwq->first_idle = NULL;
db7bccf4 3583 break;
00dfcaf7
ON
3584 }
3585
db7bccf4
TH
3586 spin_unlock_irqrestore(&gcwq->lock, flags);
3587
1537663f 3588 return notifier_from_errno(0);
1da177e4 3589}
1da177e4 3590
2d3854a3 3591#ifdef CONFIG_SMP
8ccad40d 3592
2d3854a3 3593struct work_for_cpu {
6b44003e 3594 struct completion completion;
2d3854a3
RR
3595 long (*fn)(void *);
3596 void *arg;
3597 long ret;
3598};
3599
6b44003e 3600static int do_work_for_cpu(void *_wfc)
2d3854a3 3601{
6b44003e 3602 struct work_for_cpu *wfc = _wfc;
2d3854a3 3603 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3604 complete(&wfc->completion);
3605 return 0;
2d3854a3
RR
3606}
3607
3608/**
3609 * work_on_cpu - run a function in user context on a particular cpu
3610 * @cpu: the cpu to run on
3611 * @fn: the function to run
3612 * @arg: the function arg
3613 *
31ad9081
RR
3614 * This will return the value @fn returns.
3615 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3616 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3617 */
3618long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3619{
6b44003e
AM
3620 struct task_struct *sub_thread;
3621 struct work_for_cpu wfc = {
3622 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3623 .fn = fn,
3624 .arg = arg,
3625 };
3626
3627 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3628 if (IS_ERR(sub_thread))
3629 return PTR_ERR(sub_thread);
3630 kthread_bind(sub_thread, cpu);
3631 wake_up_process(sub_thread);
3632 wait_for_completion(&wfc.completion);
2d3854a3
RR
3633 return wfc.ret;
3634}
3635EXPORT_SYMBOL_GPL(work_on_cpu);
3636#endif /* CONFIG_SMP */
3637
a0a1a5fd
TH
3638#ifdef CONFIG_FREEZER
3639
3640/**
3641 * freeze_workqueues_begin - begin freezing workqueues
3642 *
58a69cb4
TH
3643 * Start freezing workqueues. After this function returns, all freezable
3644 * workqueues will queue new works to their frozen_works list instead of
3645 * gcwq->worklist.
a0a1a5fd
TH
3646 *
3647 * CONTEXT:
8b03ae3c 3648 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3649 */
3650void freeze_workqueues_begin(void)
3651{
a0a1a5fd
TH
3652 unsigned int cpu;
3653
3654 spin_lock(&workqueue_lock);
3655
3656 BUG_ON(workqueue_freezing);
3657 workqueue_freezing = true;
3658
f3421797 3659 for_each_gcwq_cpu(cpu) {
8b03ae3c 3660 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3661 struct workqueue_struct *wq;
8b03ae3c
TH
3662
3663 spin_lock_irq(&gcwq->lock);
3664
db7bccf4
TH
3665 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3666 gcwq->flags |= GCWQ_FREEZING;
3667
a0a1a5fd
TH
3668 list_for_each_entry(wq, &workqueues, list) {
3669 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3670
58a69cb4 3671 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3672 cwq->max_active = 0;
a0a1a5fd 3673 }
8b03ae3c
TH
3674
3675 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3676 }
3677
3678 spin_unlock(&workqueue_lock);
3679}
3680
3681/**
58a69cb4 3682 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3683 *
3684 * Check whether freezing is complete. This function must be called
3685 * between freeze_workqueues_begin() and thaw_workqueues().
3686 *
3687 * CONTEXT:
3688 * Grabs and releases workqueue_lock.
3689 *
3690 * RETURNS:
58a69cb4
TH
3691 * %true if some freezable workqueues are still busy. %false if freezing
3692 * is complete.
a0a1a5fd
TH
3693 */
3694bool freeze_workqueues_busy(void)
3695{
a0a1a5fd
TH
3696 unsigned int cpu;
3697 bool busy = false;
3698
3699 spin_lock(&workqueue_lock);
3700
3701 BUG_ON(!workqueue_freezing);
3702
f3421797 3703 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3704 struct workqueue_struct *wq;
a0a1a5fd
TH
3705 /*
3706 * nr_active is monotonically decreasing. It's safe
3707 * to peek without lock.
3708 */
3709 list_for_each_entry(wq, &workqueues, list) {
3710 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3711
58a69cb4 3712 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3713 continue;
3714
3715 BUG_ON(cwq->nr_active < 0);
3716 if (cwq->nr_active) {
3717 busy = true;
3718 goto out_unlock;
3719 }
3720 }
3721 }
3722out_unlock:
3723 spin_unlock(&workqueue_lock);
3724 return busy;
3725}
3726
3727/**
3728 * thaw_workqueues - thaw workqueues
3729 *
3730 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3731 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3732 *
3733 * CONTEXT:
8b03ae3c 3734 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3735 */
3736void thaw_workqueues(void)
3737{
a0a1a5fd
TH
3738 unsigned int cpu;
3739
3740 spin_lock(&workqueue_lock);
3741
3742 if (!workqueue_freezing)
3743 goto out_unlock;
3744
f3421797 3745 for_each_gcwq_cpu(cpu) {
8b03ae3c 3746 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3747 struct workqueue_struct *wq;
8b03ae3c
TH
3748
3749 spin_lock_irq(&gcwq->lock);
3750
db7bccf4
TH
3751 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3752 gcwq->flags &= ~GCWQ_FREEZING;
3753
a0a1a5fd
TH
3754 list_for_each_entry(wq, &workqueues, list) {
3755 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3756
58a69cb4 3757 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3758 continue;
3759
a0a1a5fd
TH
3760 /* restore max_active and repopulate worklist */
3761 cwq->max_active = wq->saved_max_active;
3762
3763 while (!list_empty(&cwq->delayed_works) &&
3764 cwq->nr_active < cwq->max_active)
3765 cwq_activate_first_delayed(cwq);
a0a1a5fd 3766 }
8b03ae3c 3767
e22bee78
TH
3768 wake_up_worker(gcwq);
3769
8b03ae3c 3770 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3771 }
3772
3773 workqueue_freezing = false;
3774out_unlock:
3775 spin_unlock(&workqueue_lock);
3776}
3777#endif /* CONFIG_FREEZER */
3778
6ee0578b 3779static int __init init_workqueues(void)
1da177e4 3780{
c34056a3 3781 unsigned int cpu;
c8e55f36 3782 int i;
c34056a3 3783
f6500947 3784 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
3785
3786 /* initialize gcwqs */
f3421797 3787 for_each_gcwq_cpu(cpu) {
8b03ae3c
TH
3788 struct global_cwq *gcwq = get_gcwq(cpu);
3789
3790 spin_lock_init(&gcwq->lock);
7e11629d 3791 INIT_LIST_HEAD(&gcwq->worklist);
8b03ae3c 3792 gcwq->cpu = cpu;
477a3c33 3793 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3794
c8e55f36
TH
3795 INIT_LIST_HEAD(&gcwq->idle_list);
3796 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3797 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3798
e22bee78
TH
3799 init_timer_deferrable(&gcwq->idle_timer);
3800 gcwq->idle_timer.function = idle_worker_timeout;
3801 gcwq->idle_timer.data = (unsigned long)gcwq;
e7577c50 3802
e22bee78
TH
3803 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3804 (unsigned long)gcwq);
3805
8b03ae3c 3806 ida_init(&gcwq->worker_ida);
db7bccf4
TH
3807
3808 gcwq->trustee_state = TRUSTEE_DONE;
3809 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
3810 }
3811
e22bee78 3812 /* create the initial worker */
f3421797 3813 for_each_online_gcwq_cpu(cpu) {
e22bee78
TH
3814 struct global_cwq *gcwq = get_gcwq(cpu);
3815 struct worker *worker;
3816
477a3c33
TH
3817 if (cpu != WORK_CPU_UNBOUND)
3818 gcwq->flags &= ~GCWQ_DISASSOCIATED;
e22bee78
TH
3819 worker = create_worker(gcwq, true);
3820 BUG_ON(!worker);
3821 spin_lock_irq(&gcwq->lock);
3822 start_worker(worker);
3823 spin_unlock_irq(&gcwq->lock);
3824 }
3825
d320c038
TH
3826 system_wq = alloc_workqueue("events", 0, 0);
3827 system_long_wq = alloc_workqueue("events_long", 0, 0);
3828 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3829 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3830 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3831 system_freezable_wq = alloc_workqueue("events_freezable",
3832 WQ_FREEZABLE, 0);
62d3c543
AS
3833 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3834 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3835 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3836 !system_unbound_wq || !system_freezable_wq ||
3837 !system_nrt_freezable_wq);
6ee0578b 3838 return 0;
1da177e4 3839}
6ee0578b 3840early_initcall(init_workqueues);