]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/workqueue.c
workqueue: add missing smp_wmb() in process_one_work()
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
3270476a 186 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 187
25511a47 188 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
189} ____cacheline_aligned_in_smp;
190
1da177e4 191/*
502ca9d8 192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
1da177e4
LT
195 */
196struct cpu_workqueue_struct {
bd7bdd43 197 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 198 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
1e19ffc6 203 int nr_active; /* L: nr of active works */
a0a1a5fd 204 int max_active; /* L: max active works */
1e19ffc6 205 struct list_head delayed_works; /* L: delayed works */
0f900049 206};
1da177e4 207
73f53c4a
TH
208/*
209 * Structure used to wait for workqueue flush.
210 */
211struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215};
216
f2e005aa
TH
217/*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221#ifdef CONFIG_SMP
222typedef cpumask_var_t mayday_mask_t;
223#define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 227#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
228#define free_mayday_mask(mask) free_cpumask_var((mask))
229#else
230typedef unsigned long mayday_mask_t;
231#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234#define alloc_mayday_mask(maskp, gfp) true
235#define free_mayday_mask(mask) do { } while (0)
236#endif
1da177e4
LT
237
238/*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242struct workqueue_struct {
9c5a2ba7 243 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
4690c4ab 249 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
f2e005aa 259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
260 struct worker *rescuer; /* I: rescue worker */
261
9c5a2ba7 262 int nr_drainers; /* W: drain in progress */
dcd989cb 263 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
b196be89 267 char name[]; /* I: workqueue name */
1da177e4
LT
268};
269
d320c038
TH
270struct workqueue_struct *system_wq __read_mostly;
271struct workqueue_struct *system_long_wq __read_mostly;
272struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 273struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 274struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 275struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
276EXPORT_SYMBOL_GPL(system_wq);
277EXPORT_SYMBOL_GPL(system_long_wq);
278EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 279EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 280EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 281EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 282
97bd2347
TH
283#define CREATE_TRACE_POINTS
284#include <trace/events/workqueue.h>
285
4ce62e9e 286#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 289
db7bccf4
TH
290#define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
f3421797
TH
294static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296{
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307}
308
309static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311{
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313}
314
09884951
TH
315/*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
f3421797
TH
328#define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333#define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338#define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
dc186ad7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345static struct debug_obj_descr work_debug_descr;
346
99777288
SG
347static void *work_debug_hint(void *addr)
348{
349 return ((struct work_struct *) addr)->func;
350}
351
dc186ad7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356static int work_fixup_init(void *addr, enum debug_obj_state state)
357{
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375static int work_fixup_activate(void *addr, enum debug_obj_state state)
376{
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
22df02bb 387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401}
402
403/*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407static int work_fixup_free(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
99777288 423 .debug_hint = work_debug_hint,
dc186ad7
TG
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427};
428
429static inline void debug_work_activate(struct work_struct *work)
430{
431 debug_object_activate(work, &work_debug_descr);
432}
433
434static inline void debug_work_deactivate(struct work_struct *work)
435{
436 debug_object_deactivate(work, &work_debug_descr);
437}
438
439void __init_work(struct work_struct *work, int onstack)
440{
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445}
446EXPORT_SYMBOL_GPL(__init_work);
447
448void destroy_work_on_stack(struct work_struct *work)
449{
450 debug_object_free(work, &work_debug_descr);
451}
452EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454#else
455static inline void debug_work_activate(struct work_struct *work) { }
456static inline void debug_work_deactivate(struct work_struct *work) { }
457#endif
458
95402b38
GS
459/* Serializes the accesses to the list of workqueues. */
460static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 461static LIST_HEAD(workqueues);
a0a1a5fd 462static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 463
e22bee78
TH
464/*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
8b03ae3c 469static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 470static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 471
f3421797
TH
472/*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
478static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480};
f3421797 481
c34056a3 482static int worker_thread(void *__worker);
1da177e4 483
3270476a
TH
484static int worker_pool_pri(struct worker_pool *pool)
485{
486 return pool - pool->gcwq->pools;
487}
488
8b03ae3c
TH
489static struct global_cwq *get_gcwq(unsigned int cpu)
490{
f3421797
TH
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
8b03ae3c
TH
495}
496
63d95a91 497static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 498{
63d95a91 499 int cpu = pool->gcwq->cpu;
3270476a 500 int idx = worker_pool_pri(pool);
63d95a91 501
f3421797 502 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 503 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 504 else
4ce62e9e 505 return &unbound_pool_nr_running[idx];
e22bee78
TH
506}
507
1537663f
TH
508static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
b1f4ec17 510{
f3421797 511 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 512 if (likely(cpu < nr_cpu_ids))
f3421797 513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
e120153d
TH
536 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
537 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
538 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
539 *
540 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
541 * cwq, cpu or clear work->data. These functions should only be
542 * called while the work is owned - ie. while the PENDING bit is set.
543 *
544 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
545 * corresponding to a work. gcwq is available once the work has been
546 * queued anywhere after initialization. cwq is available only from
547 * queueing until execution starts.
14441960 548 */
7a22ad75
TH
549static inline void set_work_data(struct work_struct *work, unsigned long data,
550 unsigned long flags)
365970a1 551{
4594bf15 552 BUG_ON(!work_pending(work));
7a22ad75
TH
553 atomic_long_set(&work->data, data | flags | work_static(work));
554}
365970a1 555
7a22ad75
TH
556static void set_work_cwq(struct work_struct *work,
557 struct cpu_workqueue_struct *cwq,
558 unsigned long extra_flags)
559{
560 set_work_data(work, (unsigned long)cwq,
e120153d 561 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
562}
563
7a22ad75
TH
564static void set_work_cpu(struct work_struct *work, unsigned int cpu)
565{
566 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
567}
f756d5e2 568
7a22ad75 569static void clear_work_data(struct work_struct *work)
1da177e4 570{
7a22ad75 571 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
572}
573
7a22ad75 574static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 575{
e120153d 576 unsigned long data = atomic_long_read(&work->data);
7a22ad75 577
e120153d
TH
578 if (data & WORK_STRUCT_CWQ)
579 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
580 else
581 return NULL;
4d707b9f
ON
582}
583
7a22ad75 584static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 585{
e120153d 586 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
587 unsigned int cpu;
588
e120153d
TH
589 if (data & WORK_STRUCT_CWQ)
590 return ((struct cpu_workqueue_struct *)
bd7bdd43 591 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75
TH
592
593 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 594 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
595 return NULL;
596
f3421797 597 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 598 return get_gcwq(cpu);
b1f4ec17
ON
599}
600
e22bee78 601/*
3270476a
TH
602 * Policy functions. These define the policies on how the global worker
603 * pools are managed. Unless noted otherwise, these functions assume that
604 * they're being called with gcwq->lock held.
e22bee78
TH
605 */
606
63d95a91 607static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 608{
3270476a 609 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
610}
611
4594bf15 612/*
e22bee78
TH
613 * Need to wake up a worker? Called from anything but currently
614 * running workers.
974271c4
TH
615 *
616 * Note that, because unbound workers never contribute to nr_running, this
617 * function will always return %true for unbound gcwq as long as the
618 * worklist isn't empty.
4594bf15 619 */
63d95a91 620static bool need_more_worker(struct worker_pool *pool)
365970a1 621{
63d95a91 622 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 623}
4594bf15 624
e22bee78 625/* Can I start working? Called from busy but !running workers. */
63d95a91 626static bool may_start_working(struct worker_pool *pool)
e22bee78 627{
63d95a91 628 return pool->nr_idle;
e22bee78
TH
629}
630
631/* Do I need to keep working? Called from currently running workers. */
63d95a91 632static bool keep_working(struct worker_pool *pool)
e22bee78 633{
63d95a91 634 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 635
3270476a 636 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
637}
638
639/* Do we need a new worker? Called from manager. */
63d95a91 640static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 641{
63d95a91 642 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 643}
365970a1 644
e22bee78 645/* Do I need to be the manager? */
63d95a91 646static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 647{
63d95a91 648 return need_to_create_worker(pool) ||
11ebea50 649 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
650}
651
652/* Do we have too many workers and should some go away? */
63d95a91 653static bool too_many_workers(struct worker_pool *pool)
e22bee78 654{
60373152 655 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
656 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
657 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
658
659 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
660}
661
4d707b9f 662/*
e22bee78
TH
663 * Wake up functions.
664 */
665
7e11629d 666/* Return the first worker. Safe with preemption disabled */
63d95a91 667static struct worker *first_worker(struct worker_pool *pool)
7e11629d 668{
63d95a91 669 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
670 return NULL;
671
63d95a91 672 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
673}
674
675/**
676 * wake_up_worker - wake up an idle worker
63d95a91 677 * @pool: worker pool to wake worker from
7e11629d 678 *
63d95a91 679 * Wake up the first idle worker of @pool.
7e11629d
TH
680 *
681 * CONTEXT:
682 * spin_lock_irq(gcwq->lock).
683 */
63d95a91 684static void wake_up_worker(struct worker_pool *pool)
7e11629d 685{
63d95a91 686 struct worker *worker = first_worker(pool);
7e11629d
TH
687
688 if (likely(worker))
689 wake_up_process(worker->task);
690}
691
d302f017 692/**
e22bee78
TH
693 * wq_worker_waking_up - a worker is waking up
694 * @task: task waking up
695 * @cpu: CPU @task is waking up to
696 *
697 * This function is called during try_to_wake_up() when a worker is
698 * being awoken.
699 *
700 * CONTEXT:
701 * spin_lock_irq(rq->lock)
702 */
703void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
704{
705 struct worker *worker = kthread_data(task);
706
2d64672e 707 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 708 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
709}
710
711/**
712 * wq_worker_sleeping - a worker is going to sleep
713 * @task: task going to sleep
714 * @cpu: CPU in question, must be the current CPU number
715 *
716 * This function is called during schedule() when a busy worker is
717 * going to sleep. Worker on the same cpu can be woken up by
718 * returning pointer to its task.
719 *
720 * CONTEXT:
721 * spin_lock_irq(rq->lock)
722 *
723 * RETURNS:
724 * Worker task on @cpu to wake up, %NULL if none.
725 */
726struct task_struct *wq_worker_sleeping(struct task_struct *task,
727 unsigned int cpu)
728{
729 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 730 struct worker_pool *pool = worker->pool;
63d95a91 731 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 732
2d64672e 733 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
734 return NULL;
735
736 /* this can only happen on the local cpu */
737 BUG_ON(cpu != raw_smp_processor_id());
738
739 /*
740 * The counterpart of the following dec_and_test, implied mb,
741 * worklist not empty test sequence is in insert_work().
742 * Please read comment there.
743 *
628c78e7
TH
744 * NOT_RUNNING is clear. This means that we're bound to and
745 * running on the local cpu w/ rq lock held and preemption
746 * disabled, which in turn means that none else could be
747 * manipulating idle_list, so dereferencing idle_list without gcwq
748 * lock is safe.
e22bee78 749 */
bd7bdd43 750 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 751 to_wakeup = first_worker(pool);
e22bee78
TH
752 return to_wakeup ? to_wakeup->task : NULL;
753}
754
755/**
756 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 757 * @worker: self
d302f017
TH
758 * @flags: flags to set
759 * @wakeup: wakeup an idle worker if necessary
760 *
e22bee78
TH
761 * Set @flags in @worker->flags and adjust nr_running accordingly. If
762 * nr_running becomes zero and @wakeup is %true, an idle worker is
763 * woken up.
d302f017 764 *
cb444766
TH
765 * CONTEXT:
766 * spin_lock_irq(gcwq->lock)
d302f017
TH
767 */
768static inline void worker_set_flags(struct worker *worker, unsigned int flags,
769 bool wakeup)
770{
bd7bdd43 771 struct worker_pool *pool = worker->pool;
e22bee78 772
cb444766
TH
773 WARN_ON_ONCE(worker->task != current);
774
e22bee78
TH
775 /*
776 * If transitioning into NOT_RUNNING, adjust nr_running and
777 * wake up an idle worker as necessary if requested by
778 * @wakeup.
779 */
780 if ((flags & WORKER_NOT_RUNNING) &&
781 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 782 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
783
784 if (wakeup) {
785 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 786 !list_empty(&pool->worklist))
63d95a91 787 wake_up_worker(pool);
e22bee78
TH
788 } else
789 atomic_dec(nr_running);
790 }
791
d302f017
TH
792 worker->flags |= flags;
793}
794
795/**
e22bee78 796 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 797 * @worker: self
d302f017
TH
798 * @flags: flags to clear
799 *
e22bee78 800 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 801 *
cb444766
TH
802 * CONTEXT:
803 * spin_lock_irq(gcwq->lock)
d302f017
TH
804 */
805static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
806{
63d95a91 807 struct worker_pool *pool = worker->pool;
e22bee78
TH
808 unsigned int oflags = worker->flags;
809
cb444766
TH
810 WARN_ON_ONCE(worker->task != current);
811
d302f017 812 worker->flags &= ~flags;
e22bee78 813
42c025f3
TH
814 /*
815 * If transitioning out of NOT_RUNNING, increment nr_running. Note
816 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
817 * of multiple flags, not a single flag.
818 */
e22bee78
TH
819 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
820 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 821 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
822}
823
c8e55f36
TH
824/**
825 * busy_worker_head - return the busy hash head for a work
826 * @gcwq: gcwq of interest
827 * @work: work to be hashed
828 *
829 * Return hash head of @gcwq for @work.
830 *
831 * CONTEXT:
832 * spin_lock_irq(gcwq->lock).
833 *
834 * RETURNS:
835 * Pointer to the hash head.
836 */
837static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
838 struct work_struct *work)
839{
840 const int base_shift = ilog2(sizeof(struct work_struct));
841 unsigned long v = (unsigned long)work;
842
843 /* simple shift and fold hash, do we need something better? */
844 v >>= base_shift;
845 v += v >> BUSY_WORKER_HASH_ORDER;
846 v &= BUSY_WORKER_HASH_MASK;
847
848 return &gcwq->busy_hash[v];
849}
850
8cca0eea
TH
851/**
852 * __find_worker_executing_work - find worker which is executing a work
853 * @gcwq: gcwq of interest
854 * @bwh: hash head as returned by busy_worker_head()
855 * @work: work to find worker for
856 *
857 * Find a worker which is executing @work on @gcwq. @bwh should be
858 * the hash head obtained by calling busy_worker_head() with the same
859 * work.
860 *
861 * CONTEXT:
862 * spin_lock_irq(gcwq->lock).
863 *
864 * RETURNS:
865 * Pointer to worker which is executing @work if found, NULL
866 * otherwise.
867 */
868static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
869 struct hlist_head *bwh,
870 struct work_struct *work)
871{
872 struct worker *worker;
873 struct hlist_node *tmp;
874
875 hlist_for_each_entry(worker, tmp, bwh, hentry)
876 if (worker->current_work == work)
877 return worker;
878 return NULL;
879}
880
881/**
882 * find_worker_executing_work - find worker which is executing a work
883 * @gcwq: gcwq of interest
884 * @work: work to find worker for
885 *
886 * Find a worker which is executing @work on @gcwq. This function is
887 * identical to __find_worker_executing_work() except that this
888 * function calculates @bwh itself.
889 *
890 * CONTEXT:
891 * spin_lock_irq(gcwq->lock).
892 *
893 * RETURNS:
894 * Pointer to worker which is executing @work if found, NULL
895 * otherwise.
4d707b9f 896 */
8cca0eea
TH
897static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
898 struct work_struct *work)
4d707b9f 899{
8cca0eea
TH
900 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
901 work);
4d707b9f
ON
902}
903
4690c4ab 904/**
7e11629d 905 * insert_work - insert a work into gcwq
4690c4ab
TH
906 * @cwq: cwq @work belongs to
907 * @work: work to insert
908 * @head: insertion point
909 * @extra_flags: extra WORK_STRUCT_* flags to set
910 *
7e11629d
TH
911 * Insert @work which belongs to @cwq into @gcwq after @head.
912 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
913 *
914 * CONTEXT:
8b03ae3c 915 * spin_lock_irq(gcwq->lock).
4690c4ab 916 */
b89deed3 917static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
918 struct work_struct *work, struct list_head *head,
919 unsigned int extra_flags)
b89deed3 920{
63d95a91 921 struct worker_pool *pool = cwq->pool;
e22bee78 922
4690c4ab 923 /* we own @work, set data and link */
7a22ad75 924 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 925
6e84d644
ON
926 /*
927 * Ensure that we get the right work->data if we see the
928 * result of list_add() below, see try_to_grab_pending().
929 */
930 smp_wmb();
4690c4ab 931
1a4d9b0a 932 list_add_tail(&work->entry, head);
e22bee78
TH
933
934 /*
935 * Ensure either worker_sched_deactivated() sees the above
936 * list_add_tail() or we see zero nr_running to avoid workers
937 * lying around lazily while there are works to be processed.
938 */
939 smp_mb();
940
63d95a91
TH
941 if (__need_more_worker(pool))
942 wake_up_worker(pool);
b89deed3
ON
943}
944
c8efcc25
TH
945/*
946 * Test whether @work is being queued from another work executing on the
947 * same workqueue. This is rather expensive and should only be used from
948 * cold paths.
949 */
950static bool is_chained_work(struct workqueue_struct *wq)
951{
952 unsigned long flags;
953 unsigned int cpu;
954
955 for_each_gcwq_cpu(cpu) {
956 struct global_cwq *gcwq = get_gcwq(cpu);
957 struct worker *worker;
958 struct hlist_node *pos;
959 int i;
960
961 spin_lock_irqsave(&gcwq->lock, flags);
962 for_each_busy_worker(worker, i, pos, gcwq) {
963 if (worker->task != current)
964 continue;
965 spin_unlock_irqrestore(&gcwq->lock, flags);
966 /*
967 * I'm @worker, no locking necessary. See if @work
968 * is headed to the same workqueue.
969 */
970 return worker->current_cwq->wq == wq;
971 }
972 spin_unlock_irqrestore(&gcwq->lock, flags);
973 }
974 return false;
975}
976
4690c4ab 977static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
978 struct work_struct *work)
979{
502ca9d8
TH
980 struct global_cwq *gcwq;
981 struct cpu_workqueue_struct *cwq;
1e19ffc6 982 struct list_head *worklist;
8a2e8e5d 983 unsigned int work_flags;
1da177e4
LT
984 unsigned long flags;
985
dc186ad7 986 debug_work_activate(work);
1e19ffc6 987
c8efcc25 988 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 989 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 990 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
991 return;
992
c7fc77f7
TH
993 /* determine gcwq to use */
994 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
995 struct global_cwq *last_gcwq;
996
c7fc77f7
TH
997 if (unlikely(cpu == WORK_CPU_UNBOUND))
998 cpu = raw_smp_processor_id();
999
18aa9eff
TH
1000 /*
1001 * It's multi cpu. If @wq is non-reentrant and @work
1002 * was previously on a different cpu, it might still
1003 * be running there, in which case the work needs to
1004 * be queued on that cpu to guarantee non-reentrance.
1005 */
502ca9d8 1006 gcwq = get_gcwq(cpu);
18aa9eff
TH
1007 if (wq->flags & WQ_NON_REENTRANT &&
1008 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1009 struct worker *worker;
1010
1011 spin_lock_irqsave(&last_gcwq->lock, flags);
1012
1013 worker = find_worker_executing_work(last_gcwq, work);
1014
1015 if (worker && worker->current_cwq->wq == wq)
1016 gcwq = last_gcwq;
1017 else {
1018 /* meh... not running there, queue here */
1019 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1020 spin_lock_irqsave(&gcwq->lock, flags);
1021 }
1022 } else
1023 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
1024 } else {
1025 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1026 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
1027 }
1028
1029 /* gcwq determined, get cwq and queue */
1030 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1031 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1032
f5b2552b
DC
1033 if (WARN_ON(!list_empty(&work->entry))) {
1034 spin_unlock_irqrestore(&gcwq->lock, flags);
1035 return;
1036 }
1e19ffc6 1037
73f53c4a 1038 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1039 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1040
1041 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1042 trace_workqueue_activate_work(work);
1e19ffc6 1043 cwq->nr_active++;
3270476a 1044 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1045 } else {
1046 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1047 worklist = &cwq->delayed_works;
8a2e8e5d 1048 }
1e19ffc6 1049
8a2e8e5d 1050 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1051
8b03ae3c 1052 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1053}
1054
c1a220e7
ZR
1055/**
1056 * queue_work_on - queue work on specific cpu
1057 * @cpu: CPU number to execute work on
1058 * @wq: workqueue to use
1059 * @work: work to queue
1060 *
d4283e93 1061 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1062 *
1063 * We queue the work to a specific CPU, the caller must ensure it
1064 * can't go away.
1065 */
d4283e93
TH
1066bool queue_work_on(int cpu, struct workqueue_struct *wq,
1067 struct work_struct *work)
c1a220e7 1068{
d4283e93 1069 bool ret = false;
c1a220e7 1070
22df02bb 1071 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1072 __queue_work(cpu, wq, work);
d4283e93 1073 ret = true;
c1a220e7
ZR
1074 }
1075 return ret;
1076}
1077EXPORT_SYMBOL_GPL(queue_work_on);
1078
0fcb78c2 1079/**
0a13c00e 1080 * queue_work - queue work on a workqueue
0fcb78c2 1081 * @wq: workqueue to use
0a13c00e 1082 * @work: work to queue
0fcb78c2 1083 *
d4283e93 1084 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1085 *
1086 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1087 * it can be processed by another CPU.
0fcb78c2 1088 */
d4283e93 1089bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1090{
d4283e93 1091 bool ret;
1da177e4 1092
0a13c00e
TH
1093 ret = queue_work_on(get_cpu(), wq, work);
1094 put_cpu();
1095
1096 return ret;
1097}
1098EXPORT_SYMBOL_GPL(queue_work);
1099
1100static void delayed_work_timer_fn(unsigned long __data)
1101{
1102 struct delayed_work *dwork = (struct delayed_work *)__data;
1103 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1104
1105 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1106}
1107
0fcb78c2
REB
1108/**
1109 * queue_delayed_work_on - queue work on specific CPU after delay
1110 * @cpu: CPU number to execute work on
1111 * @wq: workqueue to use
af9997e4 1112 * @dwork: work to queue
0fcb78c2
REB
1113 * @delay: number of jiffies to wait before queueing
1114 *
d4283e93 1115 * Returns %false if @work was already on a queue, %true otherwise.
0fcb78c2 1116 */
d4283e93
TH
1117bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1118 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1119{
52bad64d
DH
1120 struct timer_list *timer = &dwork->timer;
1121 struct work_struct *work = &dwork->work;
d4283e93 1122 bool ret = false;
7a6bc1cd 1123
22df02bb 1124 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1125 unsigned int lcpu;
7a22ad75 1126
7a6bc1cd
VP
1127 BUG_ON(timer_pending(timer));
1128 BUG_ON(!list_empty(&work->entry));
1129
8a3e77cc
AL
1130 timer_stats_timer_set_start_info(&dwork->timer);
1131
7a22ad75
TH
1132 /*
1133 * This stores cwq for the moment, for the timer_fn.
1134 * Note that the work's gcwq is preserved to allow
1135 * reentrance detection for delayed works.
1136 */
c7fc77f7
TH
1137 if (!(wq->flags & WQ_UNBOUND)) {
1138 struct global_cwq *gcwq = get_work_gcwq(work);
1139
1140 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1141 lcpu = gcwq->cpu;
1142 else
1143 lcpu = raw_smp_processor_id();
1144 } else
1145 lcpu = WORK_CPU_UNBOUND;
1146
7a22ad75 1147 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1148
7a6bc1cd 1149 timer->expires = jiffies + delay;
52bad64d 1150 timer->data = (unsigned long)dwork;
7a6bc1cd 1151 timer->function = delayed_work_timer_fn;
63bc0362
ON
1152
1153 if (unlikely(cpu >= 0))
1154 add_timer_on(timer, cpu);
1155 else
1156 add_timer(timer);
d4283e93 1157 ret = true;
7a6bc1cd
VP
1158 }
1159 return ret;
1160}
ae90dd5d 1161EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1162
0a13c00e
TH
1163/**
1164 * queue_delayed_work - queue work on a workqueue after delay
1165 * @wq: workqueue to use
1166 * @dwork: delayable work to queue
1167 * @delay: number of jiffies to wait before queueing
1168 *
d4283e93 1169 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e 1170 */
d4283e93 1171bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1172 struct delayed_work *dwork, unsigned long delay)
1173{
1174 if (delay == 0)
1175 return queue_work(wq, &dwork->work);
1176
1177 return queue_delayed_work_on(-1, wq, dwork, delay);
1178}
1179EXPORT_SYMBOL_GPL(queue_delayed_work);
1180
c8e55f36
TH
1181/**
1182 * worker_enter_idle - enter idle state
1183 * @worker: worker which is entering idle state
1184 *
1185 * @worker is entering idle state. Update stats and idle timer if
1186 * necessary.
1187 *
1188 * LOCKING:
1189 * spin_lock_irq(gcwq->lock).
1190 */
1191static void worker_enter_idle(struct worker *worker)
1da177e4 1192{
bd7bdd43
TH
1193 struct worker_pool *pool = worker->pool;
1194 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1195
1196 BUG_ON(worker->flags & WORKER_IDLE);
1197 BUG_ON(!list_empty(&worker->entry) &&
1198 (worker->hentry.next || worker->hentry.pprev));
1199
cb444766
TH
1200 /* can't use worker_set_flags(), also called from start_worker() */
1201 worker->flags |= WORKER_IDLE;
bd7bdd43 1202 pool->nr_idle++;
e22bee78 1203 worker->last_active = jiffies;
c8e55f36
TH
1204
1205 /* idle_list is LIFO */
bd7bdd43 1206 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1207
628c78e7
TH
1208 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1209 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1210
544ecf31 1211 /*
628c78e7
TH
1212 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1213 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1214 * nr_running, the warning may trigger spuriously. Check iff
1215 * unbind is not in progress.
544ecf31 1216 */
628c78e7 1217 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1218 pool->nr_workers == pool->nr_idle &&
63d95a91 1219 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1220}
1221
1222/**
1223 * worker_leave_idle - leave idle state
1224 * @worker: worker which is leaving idle state
1225 *
1226 * @worker is leaving idle state. Update stats.
1227 *
1228 * LOCKING:
1229 * spin_lock_irq(gcwq->lock).
1230 */
1231static void worker_leave_idle(struct worker *worker)
1232{
bd7bdd43 1233 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1234
1235 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1236 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1237 pool->nr_idle--;
c8e55f36
TH
1238 list_del_init(&worker->entry);
1239}
1240
e22bee78
TH
1241/**
1242 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1243 * @worker: self
1244 *
1245 * Works which are scheduled while the cpu is online must at least be
1246 * scheduled to a worker which is bound to the cpu so that if they are
1247 * flushed from cpu callbacks while cpu is going down, they are
1248 * guaranteed to execute on the cpu.
1249 *
1250 * This function is to be used by rogue workers and rescuers to bind
1251 * themselves to the target cpu and may race with cpu going down or
1252 * coming online. kthread_bind() can't be used because it may put the
1253 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1254 * verbatim as it's best effort and blocking and gcwq may be
1255 * [dis]associated in the meantime.
1256 *
f2d5a0ee
TH
1257 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1258 * binding against %GCWQ_DISASSOCIATED which is set during
1259 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1260 * enters idle state or fetches works without dropping lock, it can
1261 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1262 *
1263 * CONTEXT:
1264 * Might sleep. Called without any lock but returns with gcwq->lock
1265 * held.
1266 *
1267 * RETURNS:
1268 * %true if the associated gcwq is online (@worker is successfully
1269 * bound), %false if offline.
1270 */
1271static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1272__acquires(&gcwq->lock)
e22bee78 1273{
bd7bdd43 1274 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1275 struct task_struct *task = worker->task;
1276
1277 while (true) {
4e6045f1 1278 /*
e22bee78
TH
1279 * The following call may fail, succeed or succeed
1280 * without actually migrating the task to the cpu if
1281 * it races with cpu hotunplug operation. Verify
1282 * against GCWQ_DISASSOCIATED.
4e6045f1 1283 */
f3421797
TH
1284 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1285 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1286
1287 spin_lock_irq(&gcwq->lock);
1288 if (gcwq->flags & GCWQ_DISASSOCIATED)
1289 return false;
1290 if (task_cpu(task) == gcwq->cpu &&
1291 cpumask_equal(&current->cpus_allowed,
1292 get_cpu_mask(gcwq->cpu)))
1293 return true;
1294 spin_unlock_irq(&gcwq->lock);
1295
5035b20f
TH
1296 /*
1297 * We've raced with CPU hot[un]plug. Give it a breather
1298 * and retry migration. cond_resched() is required here;
1299 * otherwise, we might deadlock against cpu_stop trying to
1300 * bring down the CPU on non-preemptive kernel.
1301 */
e22bee78 1302 cpu_relax();
5035b20f 1303 cond_resched();
e22bee78
TH
1304 }
1305}
1306
25511a47
TH
1307struct idle_rebind {
1308 int cnt; /* # workers to be rebound */
1309 struct completion done; /* all workers rebound */
1310};
1311
1312/*
1313 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1314 * happen synchronously for idle workers. worker_thread() will test
1315 * %WORKER_REBIND before leaving idle and call this function.
1316 */
1317static void idle_worker_rebind(struct worker *worker)
1318{
1319 struct global_cwq *gcwq = worker->pool->gcwq;
1320
1321 /* CPU must be online at this point */
1322 WARN_ON(!worker_maybe_bind_and_lock(worker));
1323 if (!--worker->idle_rebind->cnt)
1324 complete(&worker->idle_rebind->done);
1325 spin_unlock_irq(&worker->pool->gcwq->lock);
1326
1327 /* we did our part, wait for rebind_workers() to finish up */
1328 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1329}
1330
e22bee78 1331/*
25511a47 1332 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1333 * the associated cpu which is coming back online. This is scheduled by
1334 * cpu up but can race with other cpu hotplug operations and may be
1335 * executed twice without intervening cpu down.
e22bee78 1336 */
25511a47 1337static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1338{
1339 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1340 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1341
1342 if (worker_maybe_bind_and_lock(worker))
1343 worker_clr_flags(worker, WORKER_REBIND);
1344
1345 spin_unlock_irq(&gcwq->lock);
1346}
1347
25511a47
TH
1348/**
1349 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1350 * @gcwq: gcwq of interest
1351 *
1352 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1353 * is different for idle and busy ones.
1354 *
1355 * The idle ones should be rebound synchronously and idle rebinding should
1356 * be complete before any worker starts executing work items with
1357 * concurrency management enabled; otherwise, scheduler may oops trying to
1358 * wake up non-local idle worker from wq_worker_sleeping().
1359 *
1360 * This is achieved by repeatedly requesting rebinding until all idle
1361 * workers are known to have been rebound under @gcwq->lock and holding all
1362 * idle workers from becoming busy until idle rebinding is complete.
1363 *
1364 * Once idle workers are rebound, busy workers can be rebound as they
1365 * finish executing their current work items. Queueing the rebind work at
1366 * the head of their scheduled lists is enough. Note that nr_running will
1367 * be properbly bumped as busy workers rebind.
1368 *
1369 * On return, all workers are guaranteed to either be bound or have rebind
1370 * work item scheduled.
1371 */
1372static void rebind_workers(struct global_cwq *gcwq)
1373 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1374{
1375 struct idle_rebind idle_rebind;
1376 struct worker_pool *pool;
1377 struct worker *worker;
1378 struct hlist_node *pos;
1379 int i;
1380
1381 lockdep_assert_held(&gcwq->lock);
1382
1383 for_each_worker_pool(pool, gcwq)
1384 lockdep_assert_held(&pool->manager_mutex);
1385
1386 /*
1387 * Rebind idle workers. Interlocked both ways. We wait for
1388 * workers to rebind via @idle_rebind.done. Workers will wait for
1389 * us to finish up by watching %WORKER_REBIND.
1390 */
1391 init_completion(&idle_rebind.done);
1392retry:
1393 idle_rebind.cnt = 1;
1394 INIT_COMPLETION(idle_rebind.done);
1395
1396 /* set REBIND and kick idle ones, we'll wait for these later */
1397 for_each_worker_pool(pool, gcwq) {
1398 list_for_each_entry(worker, &pool->idle_list, entry) {
1399 if (worker->flags & WORKER_REBIND)
1400 continue;
1401
1402 /* morph UNBOUND to REBIND */
1403 worker->flags &= ~WORKER_UNBOUND;
1404 worker->flags |= WORKER_REBIND;
1405
1406 idle_rebind.cnt++;
1407 worker->idle_rebind = &idle_rebind;
1408
1409 /* worker_thread() will call idle_worker_rebind() */
1410 wake_up_process(worker->task);
1411 }
1412 }
1413
1414 if (--idle_rebind.cnt) {
1415 spin_unlock_irq(&gcwq->lock);
1416 wait_for_completion(&idle_rebind.done);
1417 spin_lock_irq(&gcwq->lock);
1418 /* busy ones might have become idle while waiting, retry */
1419 goto retry;
1420 }
1421
1422 /*
1423 * All idle workers are rebound and waiting for %WORKER_REBIND to
1424 * be cleared inside idle_worker_rebind(). Clear and release.
1425 * Clearing %WORKER_REBIND from this foreign context is safe
1426 * because these workers are still guaranteed to be idle.
1427 */
1428 for_each_worker_pool(pool, gcwq)
1429 list_for_each_entry(worker, &pool->idle_list, entry)
1430 worker->flags &= ~WORKER_REBIND;
1431
1432 wake_up_all(&gcwq->rebind_hold);
1433
1434 /* rebind busy workers */
1435 for_each_busy_worker(worker, i, pos, gcwq) {
1436 struct work_struct *rebind_work = &worker->rebind_work;
1437
1438 /* morph UNBOUND to REBIND */
1439 worker->flags &= ~WORKER_UNBOUND;
1440 worker->flags |= WORKER_REBIND;
1441
1442 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1443 work_data_bits(rebind_work)))
1444 continue;
1445
1446 /* wq doesn't matter, use the default one */
1447 debug_work_activate(rebind_work);
1448 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1449 worker->scheduled.next,
1450 work_color_to_flags(WORK_NO_COLOR));
1451 }
1452}
1453
c34056a3
TH
1454static struct worker *alloc_worker(void)
1455{
1456 struct worker *worker;
1457
1458 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1459 if (worker) {
1460 INIT_LIST_HEAD(&worker->entry);
affee4b2 1461 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1462 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1463 /* on creation a worker is in !idle && prep state */
1464 worker->flags = WORKER_PREP;
c8e55f36 1465 }
c34056a3
TH
1466 return worker;
1467}
1468
1469/**
1470 * create_worker - create a new workqueue worker
63d95a91 1471 * @pool: pool the new worker will belong to
c34056a3 1472 *
63d95a91 1473 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1474 * can be started by calling start_worker() or destroyed using
1475 * destroy_worker().
1476 *
1477 * CONTEXT:
1478 * Might sleep. Does GFP_KERNEL allocations.
1479 *
1480 * RETURNS:
1481 * Pointer to the newly created worker.
1482 */
bc2ae0f5 1483static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1484{
63d95a91 1485 struct global_cwq *gcwq = pool->gcwq;
3270476a 1486 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1487 struct worker *worker = NULL;
f3421797 1488 int id = -1;
c34056a3 1489
8b03ae3c 1490 spin_lock_irq(&gcwq->lock);
bd7bdd43 1491 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1492 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1493 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1494 goto fail;
8b03ae3c 1495 spin_lock_irq(&gcwq->lock);
c34056a3 1496 }
8b03ae3c 1497 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1498
1499 worker = alloc_worker();
1500 if (!worker)
1501 goto fail;
1502
bd7bdd43 1503 worker->pool = pool;
c34056a3
TH
1504 worker->id = id;
1505
bc2ae0f5 1506 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1507 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1508 worker, cpu_to_node(gcwq->cpu),
1509 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1510 else
1511 worker->task = kthread_create(worker_thread, worker,
3270476a 1512 "kworker/u:%d%s", id, pri);
c34056a3
TH
1513 if (IS_ERR(worker->task))
1514 goto fail;
1515
3270476a
TH
1516 if (worker_pool_pri(pool))
1517 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1518
db7bccf4 1519 /*
bc2ae0f5
TH
1520 * Determine CPU binding of the new worker depending on
1521 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1522 * flag remains stable across this function. See the comments
1523 * above the flag definition for details.
1524 *
1525 * As an unbound worker may later become a regular one if CPU comes
1526 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1527 */
bc2ae0f5 1528 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1529 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1530 } else {
db7bccf4 1531 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1532 worker->flags |= WORKER_UNBOUND;
f3421797 1533 }
c34056a3
TH
1534
1535 return worker;
1536fail:
1537 if (id >= 0) {
8b03ae3c 1538 spin_lock_irq(&gcwq->lock);
bd7bdd43 1539 ida_remove(&pool->worker_ida, id);
8b03ae3c 1540 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1541 }
1542 kfree(worker);
1543 return NULL;
1544}
1545
1546/**
1547 * start_worker - start a newly created worker
1548 * @worker: worker to start
1549 *
c8e55f36 1550 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1551 *
1552 * CONTEXT:
8b03ae3c 1553 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1554 */
1555static void start_worker(struct worker *worker)
1556{
cb444766 1557 worker->flags |= WORKER_STARTED;
bd7bdd43 1558 worker->pool->nr_workers++;
c8e55f36 1559 worker_enter_idle(worker);
c34056a3
TH
1560 wake_up_process(worker->task);
1561}
1562
1563/**
1564 * destroy_worker - destroy a workqueue worker
1565 * @worker: worker to be destroyed
1566 *
c8e55f36
TH
1567 * Destroy @worker and adjust @gcwq stats accordingly.
1568 *
1569 * CONTEXT:
1570 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1571 */
1572static void destroy_worker(struct worker *worker)
1573{
bd7bdd43
TH
1574 struct worker_pool *pool = worker->pool;
1575 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1576 int id = worker->id;
1577
1578 /* sanity check frenzy */
1579 BUG_ON(worker->current_work);
affee4b2 1580 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1581
c8e55f36 1582 if (worker->flags & WORKER_STARTED)
bd7bdd43 1583 pool->nr_workers--;
c8e55f36 1584 if (worker->flags & WORKER_IDLE)
bd7bdd43 1585 pool->nr_idle--;
c8e55f36
TH
1586
1587 list_del_init(&worker->entry);
cb444766 1588 worker->flags |= WORKER_DIE;
c8e55f36
TH
1589
1590 spin_unlock_irq(&gcwq->lock);
1591
c34056a3
TH
1592 kthread_stop(worker->task);
1593 kfree(worker);
1594
8b03ae3c 1595 spin_lock_irq(&gcwq->lock);
bd7bdd43 1596 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1597}
1598
63d95a91 1599static void idle_worker_timeout(unsigned long __pool)
e22bee78 1600{
63d95a91
TH
1601 struct worker_pool *pool = (void *)__pool;
1602 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1603
1604 spin_lock_irq(&gcwq->lock);
1605
63d95a91 1606 if (too_many_workers(pool)) {
e22bee78
TH
1607 struct worker *worker;
1608 unsigned long expires;
1609
1610 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1611 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1612 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1613
1614 if (time_before(jiffies, expires))
63d95a91 1615 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1616 else {
1617 /* it's been idle for too long, wake up manager */
11ebea50 1618 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1619 wake_up_worker(pool);
d5abe669 1620 }
e22bee78
TH
1621 }
1622
1623 spin_unlock_irq(&gcwq->lock);
1624}
d5abe669 1625
e22bee78
TH
1626static bool send_mayday(struct work_struct *work)
1627{
1628 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1629 struct workqueue_struct *wq = cwq->wq;
f3421797 1630 unsigned int cpu;
e22bee78
TH
1631
1632 if (!(wq->flags & WQ_RESCUER))
1633 return false;
1634
1635 /* mayday mayday mayday */
bd7bdd43 1636 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1637 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1638 if (cpu == WORK_CPU_UNBOUND)
1639 cpu = 0;
f2e005aa 1640 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1641 wake_up_process(wq->rescuer->task);
1642 return true;
1643}
1644
63d95a91 1645static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1646{
63d95a91
TH
1647 struct worker_pool *pool = (void *)__pool;
1648 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1649 struct work_struct *work;
1650
1651 spin_lock_irq(&gcwq->lock);
1652
63d95a91 1653 if (need_to_create_worker(pool)) {
e22bee78
TH
1654 /*
1655 * We've been trying to create a new worker but
1656 * haven't been successful. We might be hitting an
1657 * allocation deadlock. Send distress signals to
1658 * rescuers.
1659 */
63d95a91 1660 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1661 send_mayday(work);
1da177e4 1662 }
e22bee78
TH
1663
1664 spin_unlock_irq(&gcwq->lock);
1665
63d95a91 1666 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1667}
1668
e22bee78
TH
1669/**
1670 * maybe_create_worker - create a new worker if necessary
63d95a91 1671 * @pool: pool to create a new worker for
e22bee78 1672 *
63d95a91 1673 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1674 * have at least one idle worker on return from this function. If
1675 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1676 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1677 * possible allocation deadlock.
1678 *
1679 * On return, need_to_create_worker() is guaranteed to be false and
1680 * may_start_working() true.
1681 *
1682 * LOCKING:
1683 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1684 * multiple times. Does GFP_KERNEL allocations. Called only from
1685 * manager.
1686 *
1687 * RETURNS:
1688 * false if no action was taken and gcwq->lock stayed locked, true
1689 * otherwise.
1690 */
63d95a91 1691static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1692__releases(&gcwq->lock)
1693__acquires(&gcwq->lock)
1da177e4 1694{
63d95a91
TH
1695 struct global_cwq *gcwq = pool->gcwq;
1696
1697 if (!need_to_create_worker(pool))
e22bee78
TH
1698 return false;
1699restart:
9f9c2364
TH
1700 spin_unlock_irq(&gcwq->lock);
1701
e22bee78 1702 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1703 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1704
1705 while (true) {
1706 struct worker *worker;
1707
bc2ae0f5 1708 worker = create_worker(pool);
e22bee78 1709 if (worker) {
63d95a91 1710 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1711 spin_lock_irq(&gcwq->lock);
1712 start_worker(worker);
63d95a91 1713 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1714 return true;
1715 }
1716
63d95a91 1717 if (!need_to_create_worker(pool))
e22bee78 1718 break;
1da177e4 1719
e22bee78
TH
1720 __set_current_state(TASK_INTERRUPTIBLE);
1721 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1722
63d95a91 1723 if (!need_to_create_worker(pool))
e22bee78
TH
1724 break;
1725 }
1726
63d95a91 1727 del_timer_sync(&pool->mayday_timer);
e22bee78 1728 spin_lock_irq(&gcwq->lock);
63d95a91 1729 if (need_to_create_worker(pool))
e22bee78
TH
1730 goto restart;
1731 return true;
1732}
1733
1734/**
1735 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1736 * @pool: pool to destroy workers for
e22bee78 1737 *
63d95a91 1738 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1739 * IDLE_WORKER_TIMEOUT.
1740 *
1741 * LOCKING:
1742 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1743 * multiple times. Called only from manager.
1744 *
1745 * RETURNS:
1746 * false if no action was taken and gcwq->lock stayed locked, true
1747 * otherwise.
1748 */
63d95a91 1749static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1750{
1751 bool ret = false;
1da177e4 1752
63d95a91 1753 while (too_many_workers(pool)) {
e22bee78
TH
1754 struct worker *worker;
1755 unsigned long expires;
3af24433 1756
63d95a91 1757 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1758 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1759
e22bee78 1760 if (time_before(jiffies, expires)) {
63d95a91 1761 mod_timer(&pool->idle_timer, expires);
3af24433 1762 break;
e22bee78 1763 }
1da177e4 1764
e22bee78
TH
1765 destroy_worker(worker);
1766 ret = true;
1da177e4 1767 }
3af24433 1768
e22bee78
TH
1769 return ret;
1770}
1771
1772/**
1773 * manage_workers - manage worker pool
1774 * @worker: self
1775 *
1776 * Assume the manager role and manage gcwq worker pool @worker belongs
1777 * to. At any given time, there can be only zero or one manager per
1778 * gcwq. The exclusion is handled automatically by this function.
1779 *
1780 * The caller can safely start processing works on false return. On
1781 * true return, it's guaranteed that need_to_create_worker() is false
1782 * and may_start_working() is true.
1783 *
1784 * CONTEXT:
1785 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1786 * multiple times. Does GFP_KERNEL allocations.
1787 *
1788 * RETURNS:
1789 * false if no action was taken and gcwq->lock stayed locked, true if
1790 * some action was taken.
1791 */
1792static bool manage_workers(struct worker *worker)
1793{
63d95a91 1794 struct worker_pool *pool = worker->pool;
e22bee78
TH
1795 bool ret = false;
1796
60373152 1797 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
1798 return ret;
1799
11ebea50 1800 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
1801
1802 /*
1803 * Destroy and then create so that may_start_working() is true
1804 * on return.
1805 */
63d95a91
TH
1806 ret |= maybe_destroy_workers(pool);
1807 ret |= maybe_create_worker(pool);
e22bee78 1808
60373152 1809 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
1810 return ret;
1811}
1812
affee4b2
TH
1813/**
1814 * move_linked_works - move linked works to a list
1815 * @work: start of series of works to be scheduled
1816 * @head: target list to append @work to
1817 * @nextp: out paramter for nested worklist walking
1818 *
1819 * Schedule linked works starting from @work to @head. Work series to
1820 * be scheduled starts at @work and includes any consecutive work with
1821 * WORK_STRUCT_LINKED set in its predecessor.
1822 *
1823 * If @nextp is not NULL, it's updated to point to the next work of
1824 * the last scheduled work. This allows move_linked_works() to be
1825 * nested inside outer list_for_each_entry_safe().
1826 *
1827 * CONTEXT:
8b03ae3c 1828 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1829 */
1830static void move_linked_works(struct work_struct *work, struct list_head *head,
1831 struct work_struct **nextp)
1832{
1833 struct work_struct *n;
1834
1835 /*
1836 * Linked worklist will always end before the end of the list,
1837 * use NULL for list head.
1838 */
1839 list_for_each_entry_safe_from(work, n, NULL, entry) {
1840 list_move_tail(&work->entry, head);
1841 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1842 break;
1843 }
1844
1845 /*
1846 * If we're already inside safe list traversal and have moved
1847 * multiple works to the scheduled queue, the next position
1848 * needs to be updated.
1849 */
1850 if (nextp)
1851 *nextp = n;
1852}
1853
1e19ffc6
TH
1854static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1855{
1856 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1857 struct work_struct, entry);
1858
cdadf009 1859 trace_workqueue_activate_work(work);
3270476a 1860 move_linked_works(work, &cwq->pool->worklist, NULL);
8a2e8e5d 1861 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1862 cwq->nr_active++;
1863}
1864
73f53c4a
TH
1865/**
1866 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1867 * @cwq: cwq of interest
1868 * @color: color of work which left the queue
8a2e8e5d 1869 * @delayed: for a delayed work
73f53c4a
TH
1870 *
1871 * A work either has completed or is removed from pending queue,
1872 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1873 *
1874 * CONTEXT:
8b03ae3c 1875 * spin_lock_irq(gcwq->lock).
73f53c4a 1876 */
8a2e8e5d
TH
1877static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1878 bool delayed)
73f53c4a
TH
1879{
1880 /* ignore uncolored works */
1881 if (color == WORK_NO_COLOR)
1882 return;
1883
1884 cwq->nr_in_flight[color]--;
1e19ffc6 1885
8a2e8e5d
TH
1886 if (!delayed) {
1887 cwq->nr_active--;
1888 if (!list_empty(&cwq->delayed_works)) {
1889 /* one down, submit a delayed one */
1890 if (cwq->nr_active < cwq->max_active)
1891 cwq_activate_first_delayed(cwq);
1892 }
502ca9d8 1893 }
73f53c4a
TH
1894
1895 /* is flush in progress and are we at the flushing tip? */
1896 if (likely(cwq->flush_color != color))
1897 return;
1898
1899 /* are there still in-flight works? */
1900 if (cwq->nr_in_flight[color])
1901 return;
1902
1903 /* this cwq is done, clear flush_color */
1904 cwq->flush_color = -1;
1905
1906 /*
1907 * If this was the last cwq, wake up the first flusher. It
1908 * will handle the rest.
1909 */
1910 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1911 complete(&cwq->wq->first_flusher->done);
1912}
1913
a62428c0
TH
1914/**
1915 * process_one_work - process single work
c34056a3 1916 * @worker: self
a62428c0
TH
1917 * @work: work to process
1918 *
1919 * Process @work. This function contains all the logics necessary to
1920 * process a single work including synchronization against and
1921 * interaction with other workers on the same cpu, queueing and
1922 * flushing. As long as context requirement is met, any worker can
1923 * call this function to process a work.
1924 *
1925 * CONTEXT:
8b03ae3c 1926 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1927 */
c34056a3 1928static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1929__releases(&gcwq->lock)
1930__acquires(&gcwq->lock)
a62428c0 1931{
7e11629d 1932 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
1933 struct worker_pool *pool = worker->pool;
1934 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 1935 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1936 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1937 work_func_t f = work->func;
73f53c4a 1938 int work_color;
7e11629d 1939 struct worker *collision;
a62428c0
TH
1940#ifdef CONFIG_LOCKDEP
1941 /*
1942 * It is permissible to free the struct work_struct from
1943 * inside the function that is called from it, this we need to
1944 * take into account for lockdep too. To avoid bogus "held
1945 * lock freed" warnings as well as problems when looking into
1946 * work->lockdep_map, make a copy and use that here.
1947 */
4d82a1de
PZ
1948 struct lockdep_map lockdep_map;
1949
1950 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1951#endif
6fec10a1
TH
1952 /*
1953 * Ensure we're on the correct CPU. DISASSOCIATED test is
1954 * necessary to avoid spurious warnings from rescuers servicing the
1955 * unbound or a disassociated gcwq.
1956 */
25511a47 1957 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 1958 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
1959 raw_smp_processor_id() != gcwq->cpu);
1960
7e11629d
TH
1961 /*
1962 * A single work shouldn't be executed concurrently by
1963 * multiple workers on a single cpu. Check whether anyone is
1964 * already processing the work. If so, defer the work to the
1965 * currently executing one.
1966 */
1967 collision = __find_worker_executing_work(gcwq, bwh, work);
1968 if (unlikely(collision)) {
1969 move_linked_works(work, &collision->scheduled, NULL);
1970 return;
1971 }
1972
a62428c0 1973 /* claim and process */
a62428c0 1974 debug_work_deactivate(work);
c8e55f36 1975 hlist_add_head(&worker->hentry, bwh);
c34056a3 1976 worker->current_work = work;
8cca0eea 1977 worker->current_cwq = cwq;
73f53c4a 1978 work_color = get_work_color(work);
7a22ad75 1979
7a22ad75
TH
1980 /* record the current cpu number in the work data and dequeue */
1981 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1982 list_del_init(&work->entry);
1983
fb0e7beb
TH
1984 /*
1985 * CPU intensive works don't participate in concurrency
1986 * management. They're the scheduler's responsibility.
1987 */
1988 if (unlikely(cpu_intensive))
1989 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1990
974271c4
TH
1991 /*
1992 * Unbound gcwq isn't concurrency managed and work items should be
1993 * executed ASAP. Wake up another worker if necessary.
1994 */
63d95a91
TH
1995 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
1996 wake_up_worker(pool);
974271c4 1997
8b03ae3c 1998 spin_unlock_irq(&gcwq->lock);
a62428c0 1999
959d1af8 2000 smp_wmb(); /* paired with test_and_set_bit(PENDING) */
a62428c0 2001 work_clear_pending(work);
959d1af8 2002
e159489b 2003 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2004 lock_map_acquire(&lockdep_map);
e36c886a 2005 trace_workqueue_execute_start(work);
a62428c0 2006 f(work);
e36c886a
AV
2007 /*
2008 * While we must be careful to not use "work" after this, the trace
2009 * point will only record its address.
2010 */
2011 trace_workqueue_execute_end(work);
a62428c0
TH
2012 lock_map_release(&lockdep_map);
2013 lock_map_release(&cwq->wq->lockdep_map);
2014
2015 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2016 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2017 "%s/0x%08x/%d\n",
2018 current->comm, preempt_count(), task_pid_nr(current));
2019 printk(KERN_ERR " last function: ");
2020 print_symbol("%s\n", (unsigned long)f);
2021 debug_show_held_locks(current);
2022 dump_stack();
2023 }
2024
8b03ae3c 2025 spin_lock_irq(&gcwq->lock);
a62428c0 2026
fb0e7beb
TH
2027 /* clear cpu intensive status */
2028 if (unlikely(cpu_intensive))
2029 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2030
a62428c0 2031 /* we're done with it, release */
c8e55f36 2032 hlist_del_init(&worker->hentry);
c34056a3 2033 worker->current_work = NULL;
8cca0eea 2034 worker->current_cwq = NULL;
8a2e8e5d 2035 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2036}
2037
affee4b2
TH
2038/**
2039 * process_scheduled_works - process scheduled works
2040 * @worker: self
2041 *
2042 * Process all scheduled works. Please note that the scheduled list
2043 * may change while processing a work, so this function repeatedly
2044 * fetches a work from the top and executes it.
2045 *
2046 * CONTEXT:
8b03ae3c 2047 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2048 * multiple times.
2049 */
2050static void process_scheduled_works(struct worker *worker)
1da177e4 2051{
affee4b2
TH
2052 while (!list_empty(&worker->scheduled)) {
2053 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2054 struct work_struct, entry);
c34056a3 2055 process_one_work(worker, work);
1da177e4 2056 }
1da177e4
LT
2057}
2058
4690c4ab
TH
2059/**
2060 * worker_thread - the worker thread function
c34056a3 2061 * @__worker: self
4690c4ab 2062 *
e22bee78
TH
2063 * The gcwq worker thread function. There's a single dynamic pool of
2064 * these per each cpu. These workers process all works regardless of
2065 * their specific target workqueue. The only exception is works which
2066 * belong to workqueues with a rescuer which will be explained in
2067 * rescuer_thread().
4690c4ab 2068 */
c34056a3 2069static int worker_thread(void *__worker)
1da177e4 2070{
c34056a3 2071 struct worker *worker = __worker;
bd7bdd43
TH
2072 struct worker_pool *pool = worker->pool;
2073 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2074
e22bee78
TH
2075 /* tell the scheduler that this is a workqueue worker */
2076 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2077woke_up:
c8e55f36 2078 spin_lock_irq(&gcwq->lock);
1da177e4 2079
25511a47
TH
2080 /*
2081 * DIE can be set only while idle and REBIND set while busy has
2082 * @worker->rebind_work scheduled. Checking here is enough.
2083 */
2084 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2085 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2086
2087 if (worker->flags & WORKER_DIE) {
2088 worker->task->flags &= ~PF_WQ_WORKER;
2089 return 0;
2090 }
2091
2092 idle_worker_rebind(worker);
2093 goto woke_up;
c8e55f36 2094 }
affee4b2 2095
c8e55f36 2096 worker_leave_idle(worker);
db7bccf4 2097recheck:
e22bee78 2098 /* no more worker necessary? */
63d95a91 2099 if (!need_more_worker(pool))
e22bee78
TH
2100 goto sleep;
2101
2102 /* do we need to manage? */
63d95a91 2103 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2104 goto recheck;
2105
c8e55f36
TH
2106 /*
2107 * ->scheduled list can only be filled while a worker is
2108 * preparing to process a work or actually processing it.
2109 * Make sure nobody diddled with it while I was sleeping.
2110 */
2111 BUG_ON(!list_empty(&worker->scheduled));
2112
e22bee78
TH
2113 /*
2114 * When control reaches this point, we're guaranteed to have
2115 * at least one idle worker or that someone else has already
2116 * assumed the manager role.
2117 */
2118 worker_clr_flags(worker, WORKER_PREP);
2119
2120 do {
c8e55f36 2121 struct work_struct *work =
bd7bdd43 2122 list_first_entry(&pool->worklist,
c8e55f36
TH
2123 struct work_struct, entry);
2124
2125 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2126 /* optimization path, not strictly necessary */
2127 process_one_work(worker, work);
2128 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2129 process_scheduled_works(worker);
c8e55f36
TH
2130 } else {
2131 move_linked_works(work, &worker->scheduled, NULL);
2132 process_scheduled_works(worker);
affee4b2 2133 }
63d95a91 2134 } while (keep_working(pool));
e22bee78
TH
2135
2136 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2137sleep:
63d95a91 2138 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2139 goto recheck;
d313dd85 2140
c8e55f36 2141 /*
e22bee78
TH
2142 * gcwq->lock is held and there's no work to process and no
2143 * need to manage, sleep. Workers are woken up only while
2144 * holding gcwq->lock or from local cpu, so setting the
2145 * current state before releasing gcwq->lock is enough to
2146 * prevent losing any event.
c8e55f36
TH
2147 */
2148 worker_enter_idle(worker);
2149 __set_current_state(TASK_INTERRUPTIBLE);
2150 spin_unlock_irq(&gcwq->lock);
2151 schedule();
2152 goto woke_up;
1da177e4
LT
2153}
2154
e22bee78
TH
2155/**
2156 * rescuer_thread - the rescuer thread function
2157 * @__wq: the associated workqueue
2158 *
2159 * Workqueue rescuer thread function. There's one rescuer for each
2160 * workqueue which has WQ_RESCUER set.
2161 *
2162 * Regular work processing on a gcwq may block trying to create a new
2163 * worker which uses GFP_KERNEL allocation which has slight chance of
2164 * developing into deadlock if some works currently on the same queue
2165 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2166 * the problem rescuer solves.
2167 *
2168 * When such condition is possible, the gcwq summons rescuers of all
2169 * workqueues which have works queued on the gcwq and let them process
2170 * those works so that forward progress can be guaranteed.
2171 *
2172 * This should happen rarely.
2173 */
2174static int rescuer_thread(void *__wq)
2175{
2176 struct workqueue_struct *wq = __wq;
2177 struct worker *rescuer = wq->rescuer;
2178 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2179 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2180 unsigned int cpu;
2181
2182 set_user_nice(current, RESCUER_NICE_LEVEL);
2183repeat:
2184 set_current_state(TASK_INTERRUPTIBLE);
2185
2186 if (kthread_should_stop())
2187 return 0;
2188
f3421797
TH
2189 /*
2190 * See whether any cpu is asking for help. Unbounded
2191 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2192 */
f2e005aa 2193 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2194 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2195 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2196 struct worker_pool *pool = cwq->pool;
2197 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2198 struct work_struct *work, *n;
2199
2200 __set_current_state(TASK_RUNNING);
f2e005aa 2201 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2202
2203 /* migrate to the target cpu if possible */
bd7bdd43 2204 rescuer->pool = pool;
e22bee78
TH
2205 worker_maybe_bind_and_lock(rescuer);
2206
2207 /*
2208 * Slurp in all works issued via this workqueue and
2209 * process'em.
2210 */
2211 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2212 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2213 if (get_work_cwq(work) == cwq)
2214 move_linked_works(work, scheduled, &n);
2215
2216 process_scheduled_works(rescuer);
7576958a
TH
2217
2218 /*
2219 * Leave this gcwq. If keep_working() is %true, notify a
2220 * regular worker; otherwise, we end up with 0 concurrency
2221 * and stalling the execution.
2222 */
63d95a91
TH
2223 if (keep_working(pool))
2224 wake_up_worker(pool);
7576958a 2225
e22bee78
TH
2226 spin_unlock_irq(&gcwq->lock);
2227 }
2228
2229 schedule();
2230 goto repeat;
1da177e4
LT
2231}
2232
fc2e4d70
ON
2233struct wq_barrier {
2234 struct work_struct work;
2235 struct completion done;
2236};
2237
2238static void wq_barrier_func(struct work_struct *work)
2239{
2240 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2241 complete(&barr->done);
2242}
2243
4690c4ab
TH
2244/**
2245 * insert_wq_barrier - insert a barrier work
2246 * @cwq: cwq to insert barrier into
2247 * @barr: wq_barrier to insert
affee4b2
TH
2248 * @target: target work to attach @barr to
2249 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2250 *
affee4b2
TH
2251 * @barr is linked to @target such that @barr is completed only after
2252 * @target finishes execution. Please note that the ordering
2253 * guarantee is observed only with respect to @target and on the local
2254 * cpu.
2255 *
2256 * Currently, a queued barrier can't be canceled. This is because
2257 * try_to_grab_pending() can't determine whether the work to be
2258 * grabbed is at the head of the queue and thus can't clear LINKED
2259 * flag of the previous work while there must be a valid next work
2260 * after a work with LINKED flag set.
2261 *
2262 * Note that when @worker is non-NULL, @target may be modified
2263 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2264 *
2265 * CONTEXT:
8b03ae3c 2266 * spin_lock_irq(gcwq->lock).
4690c4ab 2267 */
83c22520 2268static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2269 struct wq_barrier *barr,
2270 struct work_struct *target, struct worker *worker)
fc2e4d70 2271{
affee4b2
TH
2272 struct list_head *head;
2273 unsigned int linked = 0;
2274
dc186ad7 2275 /*
8b03ae3c 2276 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2277 * as we know for sure that this will not trigger any of the
2278 * checks and call back into the fixup functions where we
2279 * might deadlock.
2280 */
ca1cab37 2281 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2282 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2283 init_completion(&barr->done);
83c22520 2284
affee4b2
TH
2285 /*
2286 * If @target is currently being executed, schedule the
2287 * barrier to the worker; otherwise, put it after @target.
2288 */
2289 if (worker)
2290 head = worker->scheduled.next;
2291 else {
2292 unsigned long *bits = work_data_bits(target);
2293
2294 head = target->entry.next;
2295 /* there can already be other linked works, inherit and set */
2296 linked = *bits & WORK_STRUCT_LINKED;
2297 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2298 }
2299
dc186ad7 2300 debug_work_activate(&barr->work);
affee4b2
TH
2301 insert_work(cwq, &barr->work, head,
2302 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2303}
2304
73f53c4a
TH
2305/**
2306 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2307 * @wq: workqueue being flushed
2308 * @flush_color: new flush color, < 0 for no-op
2309 * @work_color: new work color, < 0 for no-op
2310 *
2311 * Prepare cwqs for workqueue flushing.
2312 *
2313 * If @flush_color is non-negative, flush_color on all cwqs should be
2314 * -1. If no cwq has in-flight commands at the specified color, all
2315 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2316 * has in flight commands, its cwq->flush_color is set to
2317 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2318 * wakeup logic is armed and %true is returned.
2319 *
2320 * The caller should have initialized @wq->first_flusher prior to
2321 * calling this function with non-negative @flush_color. If
2322 * @flush_color is negative, no flush color update is done and %false
2323 * is returned.
2324 *
2325 * If @work_color is non-negative, all cwqs should have the same
2326 * work_color which is previous to @work_color and all will be
2327 * advanced to @work_color.
2328 *
2329 * CONTEXT:
2330 * mutex_lock(wq->flush_mutex).
2331 *
2332 * RETURNS:
2333 * %true if @flush_color >= 0 and there's something to flush. %false
2334 * otherwise.
2335 */
2336static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2337 int flush_color, int work_color)
1da177e4 2338{
73f53c4a
TH
2339 bool wait = false;
2340 unsigned int cpu;
1da177e4 2341
73f53c4a
TH
2342 if (flush_color >= 0) {
2343 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2344 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2345 }
2355b70f 2346
f3421797 2347 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2348 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2349 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2350
8b03ae3c 2351 spin_lock_irq(&gcwq->lock);
83c22520 2352
73f53c4a
TH
2353 if (flush_color >= 0) {
2354 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2355
73f53c4a
TH
2356 if (cwq->nr_in_flight[flush_color]) {
2357 cwq->flush_color = flush_color;
2358 atomic_inc(&wq->nr_cwqs_to_flush);
2359 wait = true;
2360 }
2361 }
1da177e4 2362
73f53c4a
TH
2363 if (work_color >= 0) {
2364 BUG_ON(work_color != work_next_color(cwq->work_color));
2365 cwq->work_color = work_color;
2366 }
1da177e4 2367
8b03ae3c 2368 spin_unlock_irq(&gcwq->lock);
1da177e4 2369 }
2355b70f 2370
73f53c4a
TH
2371 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2372 complete(&wq->first_flusher->done);
14441960 2373
73f53c4a 2374 return wait;
1da177e4
LT
2375}
2376
0fcb78c2 2377/**
1da177e4 2378 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2379 * @wq: workqueue to flush
1da177e4
LT
2380 *
2381 * Forces execution of the workqueue and blocks until its completion.
2382 * This is typically used in driver shutdown handlers.
2383 *
fc2e4d70
ON
2384 * We sleep until all works which were queued on entry have been handled,
2385 * but we are not livelocked by new incoming ones.
1da177e4 2386 */
7ad5b3a5 2387void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2388{
73f53c4a
TH
2389 struct wq_flusher this_flusher = {
2390 .list = LIST_HEAD_INIT(this_flusher.list),
2391 .flush_color = -1,
2392 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2393 };
2394 int next_color;
1da177e4 2395
3295f0ef
IM
2396 lock_map_acquire(&wq->lockdep_map);
2397 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2398
2399 mutex_lock(&wq->flush_mutex);
2400
2401 /*
2402 * Start-to-wait phase
2403 */
2404 next_color = work_next_color(wq->work_color);
2405
2406 if (next_color != wq->flush_color) {
2407 /*
2408 * Color space is not full. The current work_color
2409 * becomes our flush_color and work_color is advanced
2410 * by one.
2411 */
2412 BUG_ON(!list_empty(&wq->flusher_overflow));
2413 this_flusher.flush_color = wq->work_color;
2414 wq->work_color = next_color;
2415
2416 if (!wq->first_flusher) {
2417 /* no flush in progress, become the first flusher */
2418 BUG_ON(wq->flush_color != this_flusher.flush_color);
2419
2420 wq->first_flusher = &this_flusher;
2421
2422 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2423 wq->work_color)) {
2424 /* nothing to flush, done */
2425 wq->flush_color = next_color;
2426 wq->first_flusher = NULL;
2427 goto out_unlock;
2428 }
2429 } else {
2430 /* wait in queue */
2431 BUG_ON(wq->flush_color == this_flusher.flush_color);
2432 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2433 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2434 }
2435 } else {
2436 /*
2437 * Oops, color space is full, wait on overflow queue.
2438 * The next flush completion will assign us
2439 * flush_color and transfer to flusher_queue.
2440 */
2441 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2442 }
2443
2444 mutex_unlock(&wq->flush_mutex);
2445
2446 wait_for_completion(&this_flusher.done);
2447
2448 /*
2449 * Wake-up-and-cascade phase
2450 *
2451 * First flushers are responsible for cascading flushes and
2452 * handling overflow. Non-first flushers can simply return.
2453 */
2454 if (wq->first_flusher != &this_flusher)
2455 return;
2456
2457 mutex_lock(&wq->flush_mutex);
2458
4ce48b37
TH
2459 /* we might have raced, check again with mutex held */
2460 if (wq->first_flusher != &this_flusher)
2461 goto out_unlock;
2462
73f53c4a
TH
2463 wq->first_flusher = NULL;
2464
2465 BUG_ON(!list_empty(&this_flusher.list));
2466 BUG_ON(wq->flush_color != this_flusher.flush_color);
2467
2468 while (true) {
2469 struct wq_flusher *next, *tmp;
2470
2471 /* complete all the flushers sharing the current flush color */
2472 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2473 if (next->flush_color != wq->flush_color)
2474 break;
2475 list_del_init(&next->list);
2476 complete(&next->done);
2477 }
2478
2479 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2480 wq->flush_color != work_next_color(wq->work_color));
2481
2482 /* this flush_color is finished, advance by one */
2483 wq->flush_color = work_next_color(wq->flush_color);
2484
2485 /* one color has been freed, handle overflow queue */
2486 if (!list_empty(&wq->flusher_overflow)) {
2487 /*
2488 * Assign the same color to all overflowed
2489 * flushers, advance work_color and append to
2490 * flusher_queue. This is the start-to-wait
2491 * phase for these overflowed flushers.
2492 */
2493 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2494 tmp->flush_color = wq->work_color;
2495
2496 wq->work_color = work_next_color(wq->work_color);
2497
2498 list_splice_tail_init(&wq->flusher_overflow,
2499 &wq->flusher_queue);
2500 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2501 }
2502
2503 if (list_empty(&wq->flusher_queue)) {
2504 BUG_ON(wq->flush_color != wq->work_color);
2505 break;
2506 }
2507
2508 /*
2509 * Need to flush more colors. Make the next flusher
2510 * the new first flusher and arm cwqs.
2511 */
2512 BUG_ON(wq->flush_color == wq->work_color);
2513 BUG_ON(wq->flush_color != next->flush_color);
2514
2515 list_del_init(&next->list);
2516 wq->first_flusher = next;
2517
2518 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2519 break;
2520
2521 /*
2522 * Meh... this color is already done, clear first
2523 * flusher and repeat cascading.
2524 */
2525 wq->first_flusher = NULL;
2526 }
2527
2528out_unlock:
2529 mutex_unlock(&wq->flush_mutex);
1da177e4 2530}
ae90dd5d 2531EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2532
9c5a2ba7
TH
2533/**
2534 * drain_workqueue - drain a workqueue
2535 * @wq: workqueue to drain
2536 *
2537 * Wait until the workqueue becomes empty. While draining is in progress,
2538 * only chain queueing is allowed. IOW, only currently pending or running
2539 * work items on @wq can queue further work items on it. @wq is flushed
2540 * repeatedly until it becomes empty. The number of flushing is detemined
2541 * by the depth of chaining and should be relatively short. Whine if it
2542 * takes too long.
2543 */
2544void drain_workqueue(struct workqueue_struct *wq)
2545{
2546 unsigned int flush_cnt = 0;
2547 unsigned int cpu;
2548
2549 /*
2550 * __queue_work() needs to test whether there are drainers, is much
2551 * hotter than drain_workqueue() and already looks at @wq->flags.
2552 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2553 */
2554 spin_lock(&workqueue_lock);
2555 if (!wq->nr_drainers++)
2556 wq->flags |= WQ_DRAINING;
2557 spin_unlock(&workqueue_lock);
2558reflush:
2559 flush_workqueue(wq);
2560
2561 for_each_cwq_cpu(cpu, wq) {
2562 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2563 bool drained;
9c5a2ba7 2564
bd7bdd43 2565 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2566 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2567 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2568
2569 if (drained)
9c5a2ba7
TH
2570 continue;
2571
2572 if (++flush_cnt == 10 ||
2573 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2574 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2575 wq->name, flush_cnt);
2576 goto reflush;
2577 }
2578
2579 spin_lock(&workqueue_lock);
2580 if (!--wq->nr_drainers)
2581 wq->flags &= ~WQ_DRAINING;
2582 spin_unlock(&workqueue_lock);
2583}
2584EXPORT_SYMBOL_GPL(drain_workqueue);
2585
baf59022
TH
2586static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2587 bool wait_executing)
db700897 2588{
affee4b2 2589 struct worker *worker = NULL;
8b03ae3c 2590 struct global_cwq *gcwq;
db700897 2591 struct cpu_workqueue_struct *cwq;
db700897
ON
2592
2593 might_sleep();
7a22ad75
TH
2594 gcwq = get_work_gcwq(work);
2595 if (!gcwq)
baf59022 2596 return false;
db700897 2597
8b03ae3c 2598 spin_lock_irq(&gcwq->lock);
db700897
ON
2599 if (!list_empty(&work->entry)) {
2600 /*
2601 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2602 * If it was re-queued to a different gcwq under us, we
2603 * are not going to wait.
db700897
ON
2604 */
2605 smp_rmb();
7a22ad75 2606 cwq = get_work_cwq(work);
bd7bdd43 2607 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2608 goto already_gone;
baf59022 2609 } else if (wait_executing) {
7a22ad75 2610 worker = find_worker_executing_work(gcwq, work);
affee4b2 2611 if (!worker)
4690c4ab 2612 goto already_gone;
7a22ad75 2613 cwq = worker->current_cwq;
baf59022
TH
2614 } else
2615 goto already_gone;
db700897 2616
baf59022 2617 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2618 spin_unlock_irq(&gcwq->lock);
7a22ad75 2619
e159489b
TH
2620 /*
2621 * If @max_active is 1 or rescuer is in use, flushing another work
2622 * item on the same workqueue may lead to deadlock. Make sure the
2623 * flusher is not running on the same workqueue by verifying write
2624 * access.
2625 */
2626 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2627 lock_map_acquire(&cwq->wq->lockdep_map);
2628 else
2629 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2630 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2631
401a8d04 2632 return true;
4690c4ab 2633already_gone:
8b03ae3c 2634 spin_unlock_irq(&gcwq->lock);
401a8d04 2635 return false;
db700897 2636}
baf59022
TH
2637
2638/**
2639 * flush_work - wait for a work to finish executing the last queueing instance
2640 * @work: the work to flush
2641 *
2642 * Wait until @work has finished execution. This function considers
2643 * only the last queueing instance of @work. If @work has been
2644 * enqueued across different CPUs on a non-reentrant workqueue or on
2645 * multiple workqueues, @work might still be executing on return on
2646 * some of the CPUs from earlier queueing.
2647 *
2648 * If @work was queued only on a non-reentrant, ordered or unbound
2649 * workqueue, @work is guaranteed to be idle on return if it hasn't
2650 * been requeued since flush started.
2651 *
2652 * RETURNS:
2653 * %true if flush_work() waited for the work to finish execution,
2654 * %false if it was already idle.
2655 */
2656bool flush_work(struct work_struct *work)
2657{
2658 struct wq_barrier barr;
2659
0976dfc1
SB
2660 lock_map_acquire(&work->lockdep_map);
2661 lock_map_release(&work->lockdep_map);
2662
baf59022
TH
2663 if (start_flush_work(work, &barr, true)) {
2664 wait_for_completion(&barr.done);
2665 destroy_work_on_stack(&barr.work);
2666 return true;
2667 } else
2668 return false;
2669}
db700897
ON
2670EXPORT_SYMBOL_GPL(flush_work);
2671
401a8d04
TH
2672static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2673{
2674 struct wq_barrier barr;
2675 struct worker *worker;
2676
2677 spin_lock_irq(&gcwq->lock);
2678
2679 worker = find_worker_executing_work(gcwq, work);
2680 if (unlikely(worker))
2681 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2682
2683 spin_unlock_irq(&gcwq->lock);
2684
2685 if (unlikely(worker)) {
2686 wait_for_completion(&barr.done);
2687 destroy_work_on_stack(&barr.work);
2688 return true;
2689 } else
2690 return false;
2691}
2692
2693static bool wait_on_work(struct work_struct *work)
2694{
2695 bool ret = false;
2696 int cpu;
2697
2698 might_sleep();
2699
2700 lock_map_acquire(&work->lockdep_map);
2701 lock_map_release(&work->lockdep_map);
2702
2703 for_each_gcwq_cpu(cpu)
2704 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2705 return ret;
2706}
2707
09383498
TH
2708/**
2709 * flush_work_sync - wait until a work has finished execution
2710 * @work: the work to flush
2711 *
2712 * Wait until @work has finished execution. On return, it's
2713 * guaranteed that all queueing instances of @work which happened
2714 * before this function is called are finished. In other words, if
2715 * @work hasn't been requeued since this function was called, @work is
2716 * guaranteed to be idle on return.
2717 *
2718 * RETURNS:
2719 * %true if flush_work_sync() waited for the work to finish execution,
2720 * %false if it was already idle.
2721 */
2722bool flush_work_sync(struct work_struct *work)
2723{
2724 struct wq_barrier barr;
2725 bool pending, waited;
2726
2727 /* we'll wait for executions separately, queue barr only if pending */
2728 pending = start_flush_work(work, &barr, false);
2729
2730 /* wait for executions to finish */
2731 waited = wait_on_work(work);
2732
2733 /* wait for the pending one */
2734 if (pending) {
2735 wait_for_completion(&barr.done);
2736 destroy_work_on_stack(&barr.work);
2737 }
2738
2739 return pending || waited;
2740}
2741EXPORT_SYMBOL_GPL(flush_work_sync);
2742
6e84d644 2743/*
1f1f642e 2744 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2745 * so this work can't be re-armed in any way.
2746 */
2747static int try_to_grab_pending(struct work_struct *work)
2748{
8b03ae3c 2749 struct global_cwq *gcwq;
1f1f642e 2750 int ret = -1;
6e84d644 2751
22df02bb 2752 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2753 return 0;
6e84d644
ON
2754
2755 /*
2756 * The queueing is in progress, or it is already queued. Try to
2757 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2758 */
7a22ad75
TH
2759 gcwq = get_work_gcwq(work);
2760 if (!gcwq)
6e84d644
ON
2761 return ret;
2762
8b03ae3c 2763 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2764 if (!list_empty(&work->entry)) {
2765 /*
7a22ad75 2766 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2767 * In that case we must see the new value after rmb(), see
2768 * insert_work()->wmb().
2769 */
2770 smp_rmb();
7a22ad75 2771 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2772 debug_work_deactivate(work);
6e84d644 2773 list_del_init(&work->entry);
7a22ad75 2774 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2775 get_work_color(work),
2776 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2777 ret = 1;
2778 }
2779 }
8b03ae3c 2780 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2781
2782 return ret;
2783}
2784
401a8d04 2785static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2786 struct timer_list* timer)
2787{
2788 int ret;
2789
2790 do {
2791 ret = (timer && likely(del_timer(timer)));
2792 if (!ret)
2793 ret = try_to_grab_pending(work);
2794 wait_on_work(work);
2795 } while (unlikely(ret < 0));
2796
7a22ad75 2797 clear_work_data(work);
1f1f642e
ON
2798 return ret;
2799}
2800
6e84d644 2801/**
401a8d04
TH
2802 * cancel_work_sync - cancel a work and wait for it to finish
2803 * @work: the work to cancel
6e84d644 2804 *
401a8d04
TH
2805 * Cancel @work and wait for its execution to finish. This function
2806 * can be used even if the work re-queues itself or migrates to
2807 * another workqueue. On return from this function, @work is
2808 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2809 *
401a8d04
TH
2810 * cancel_work_sync(&delayed_work->work) must not be used for
2811 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2812 *
401a8d04 2813 * The caller must ensure that the workqueue on which @work was last
6e84d644 2814 * queued can't be destroyed before this function returns.
401a8d04
TH
2815 *
2816 * RETURNS:
2817 * %true if @work was pending, %false otherwise.
6e84d644 2818 */
401a8d04 2819bool cancel_work_sync(struct work_struct *work)
6e84d644 2820{
1f1f642e 2821 return __cancel_work_timer(work, NULL);
b89deed3 2822}
28e53bdd 2823EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2824
6e84d644 2825/**
401a8d04
TH
2826 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2827 * @dwork: the delayed work to flush
6e84d644 2828 *
401a8d04
TH
2829 * Delayed timer is cancelled and the pending work is queued for
2830 * immediate execution. Like flush_work(), this function only
2831 * considers the last queueing instance of @dwork.
1f1f642e 2832 *
401a8d04
TH
2833 * RETURNS:
2834 * %true if flush_work() waited for the work to finish execution,
2835 * %false if it was already idle.
6e84d644 2836 */
401a8d04
TH
2837bool flush_delayed_work(struct delayed_work *dwork)
2838{
2839 if (del_timer_sync(&dwork->timer))
2840 __queue_work(raw_smp_processor_id(),
2841 get_work_cwq(&dwork->work)->wq, &dwork->work);
2842 return flush_work(&dwork->work);
2843}
2844EXPORT_SYMBOL(flush_delayed_work);
2845
09383498
TH
2846/**
2847 * flush_delayed_work_sync - wait for a dwork to finish
2848 * @dwork: the delayed work to flush
2849 *
2850 * Delayed timer is cancelled and the pending work is queued for
2851 * execution immediately. Other than timer handling, its behavior
2852 * is identical to flush_work_sync().
2853 *
2854 * RETURNS:
2855 * %true if flush_work_sync() waited for the work to finish execution,
2856 * %false if it was already idle.
2857 */
2858bool flush_delayed_work_sync(struct delayed_work *dwork)
2859{
2860 if (del_timer_sync(&dwork->timer))
2861 __queue_work(raw_smp_processor_id(),
2862 get_work_cwq(&dwork->work)->wq, &dwork->work);
2863 return flush_work_sync(&dwork->work);
2864}
2865EXPORT_SYMBOL(flush_delayed_work_sync);
2866
401a8d04
TH
2867/**
2868 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2869 * @dwork: the delayed work cancel
2870 *
2871 * This is cancel_work_sync() for delayed works.
2872 *
2873 * RETURNS:
2874 * %true if @dwork was pending, %false otherwise.
2875 */
2876bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2877{
1f1f642e 2878 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2879}
f5a421a4 2880EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2881
d4283e93 2882/**
0a13c00e
TH
2883 * schedule_work_on - put work task on a specific cpu
2884 * @cpu: cpu to put the work task on
2885 * @work: job to be done
2886 *
2887 * This puts a job on a specific cpu
2888 */
d4283e93 2889bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
2890{
2891 return queue_work_on(cpu, system_wq, work);
2892}
2893EXPORT_SYMBOL(schedule_work_on);
2894
0fcb78c2
REB
2895/**
2896 * schedule_work - put work task in global workqueue
2897 * @work: job to be done
2898 *
d4283e93
TH
2899 * Returns %false if @work was already on the kernel-global workqueue and
2900 * %true otherwise.
5b0f437d
BVA
2901 *
2902 * This puts a job in the kernel-global workqueue if it was not already
2903 * queued and leaves it in the same position on the kernel-global
2904 * workqueue otherwise.
0fcb78c2 2905 */
d4283e93 2906bool schedule_work(struct work_struct *work)
1da177e4 2907{
d320c038 2908 return queue_work(system_wq, work);
1da177e4 2909}
ae90dd5d 2910EXPORT_SYMBOL(schedule_work);
1da177e4 2911
0a13c00e
TH
2912/**
2913 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2914 * @cpu: cpu to use
2915 * @dwork: job to be done
2916 * @delay: number of jiffies to wait
c1a220e7 2917 *
0a13c00e
TH
2918 * After waiting for a given time this puts a job in the kernel-global
2919 * workqueue on the specified CPU.
c1a220e7 2920 */
d4283e93
TH
2921bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2922 unsigned long delay)
c1a220e7 2923{
0a13c00e 2924 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 2925}
0a13c00e 2926EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 2927
0fcb78c2
REB
2928/**
2929 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2930 * @dwork: job to be done
2931 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2932 *
2933 * After waiting for a given time this puts a job in the kernel-global
2934 * workqueue.
2935 */
d4283e93 2936bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2937{
d320c038 2938 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2939}
ae90dd5d 2940EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2941
b6136773 2942/**
31ddd871 2943 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2944 * @func: the function to call
b6136773 2945 *
31ddd871
TH
2946 * schedule_on_each_cpu() executes @func on each online CPU using the
2947 * system workqueue and blocks until all CPUs have completed.
b6136773 2948 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2949 *
2950 * RETURNS:
2951 * 0 on success, -errno on failure.
b6136773 2952 */
65f27f38 2953int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2954{
2955 int cpu;
38f51568 2956 struct work_struct __percpu *works;
15316ba8 2957
b6136773
AM
2958 works = alloc_percpu(struct work_struct);
2959 if (!works)
15316ba8 2960 return -ENOMEM;
b6136773 2961
93981800
TH
2962 get_online_cpus();
2963
15316ba8 2964 for_each_online_cpu(cpu) {
9bfb1839
IM
2965 struct work_struct *work = per_cpu_ptr(works, cpu);
2966
2967 INIT_WORK(work, func);
b71ab8c2 2968 schedule_work_on(cpu, work);
65a64464 2969 }
93981800
TH
2970
2971 for_each_online_cpu(cpu)
2972 flush_work(per_cpu_ptr(works, cpu));
2973
95402b38 2974 put_online_cpus();
b6136773 2975 free_percpu(works);
15316ba8
CL
2976 return 0;
2977}
2978
eef6a7d5
AS
2979/**
2980 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2981 *
2982 * Forces execution of the kernel-global workqueue and blocks until its
2983 * completion.
2984 *
2985 * Think twice before calling this function! It's very easy to get into
2986 * trouble if you don't take great care. Either of the following situations
2987 * will lead to deadlock:
2988 *
2989 * One of the work items currently on the workqueue needs to acquire
2990 * a lock held by your code or its caller.
2991 *
2992 * Your code is running in the context of a work routine.
2993 *
2994 * They will be detected by lockdep when they occur, but the first might not
2995 * occur very often. It depends on what work items are on the workqueue and
2996 * what locks they need, which you have no control over.
2997 *
2998 * In most situations flushing the entire workqueue is overkill; you merely
2999 * need to know that a particular work item isn't queued and isn't running.
3000 * In such cases you should use cancel_delayed_work_sync() or
3001 * cancel_work_sync() instead.
3002 */
1da177e4
LT
3003void flush_scheduled_work(void)
3004{
d320c038 3005 flush_workqueue(system_wq);
1da177e4 3006}
ae90dd5d 3007EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3008
1fa44eca
JB
3009/**
3010 * execute_in_process_context - reliably execute the routine with user context
3011 * @fn: the function to execute
1fa44eca
JB
3012 * @ew: guaranteed storage for the execute work structure (must
3013 * be available when the work executes)
3014 *
3015 * Executes the function immediately if process context is available,
3016 * otherwise schedules the function for delayed execution.
3017 *
3018 * Returns: 0 - function was executed
3019 * 1 - function was scheduled for execution
3020 */
65f27f38 3021int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3022{
3023 if (!in_interrupt()) {
65f27f38 3024 fn(&ew->work);
1fa44eca
JB
3025 return 0;
3026 }
3027
65f27f38 3028 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3029 schedule_work(&ew->work);
3030
3031 return 1;
3032}
3033EXPORT_SYMBOL_GPL(execute_in_process_context);
3034
1da177e4
LT
3035int keventd_up(void)
3036{
d320c038 3037 return system_wq != NULL;
1da177e4
LT
3038}
3039
bdbc5dd7 3040static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3041{
65a64464 3042 /*
0f900049
TH
3043 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3044 * Make sure that the alignment isn't lower than that of
3045 * unsigned long long.
65a64464 3046 */
0f900049
TH
3047 const size_t size = sizeof(struct cpu_workqueue_struct);
3048 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3049 __alignof__(unsigned long long));
65a64464 3050
e06ffa1e 3051 if (!(wq->flags & WQ_UNBOUND))
f3421797 3052 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3053 else {
f3421797
TH
3054 void *ptr;
3055
3056 /*
3057 * Allocate enough room to align cwq and put an extra
3058 * pointer at the end pointing back to the originally
3059 * allocated pointer which will be used for free.
3060 */
3061 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3062 if (ptr) {
3063 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3064 *(void **)(wq->cpu_wq.single + 1) = ptr;
3065 }
bdbc5dd7 3066 }
f3421797 3067
0415b00d 3068 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3069 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3070 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3071}
3072
bdbc5dd7 3073static void free_cwqs(struct workqueue_struct *wq)
0f900049 3074{
e06ffa1e 3075 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3076 free_percpu(wq->cpu_wq.pcpu);
3077 else if (wq->cpu_wq.single) {
3078 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3079 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3080 }
0f900049
TH
3081}
3082
f3421797
TH
3083static int wq_clamp_max_active(int max_active, unsigned int flags,
3084 const char *name)
b71ab8c2 3085{
f3421797
TH
3086 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3087
3088 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3089 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3090 "is out of range, clamping between %d and %d\n",
f3421797 3091 max_active, name, 1, lim);
b71ab8c2 3092
f3421797 3093 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3094}
3095
b196be89 3096struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3097 unsigned int flags,
3098 int max_active,
3099 struct lock_class_key *key,
b196be89 3100 const char *lock_name, ...)
1da177e4 3101{
b196be89 3102 va_list args, args1;
1da177e4 3103 struct workqueue_struct *wq;
c34056a3 3104 unsigned int cpu;
b196be89
TH
3105 size_t namelen;
3106
3107 /* determine namelen, allocate wq and format name */
3108 va_start(args, lock_name);
3109 va_copy(args1, args);
3110 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3111
3112 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3113 if (!wq)
3114 goto err;
3115
3116 vsnprintf(wq->name, namelen, fmt, args1);
3117 va_end(args);
3118 va_end(args1);
1da177e4 3119
6370a6ad
TH
3120 /*
3121 * Workqueues which may be used during memory reclaim should
3122 * have a rescuer to guarantee forward progress.
3123 */
3124 if (flags & WQ_MEM_RECLAIM)
3125 flags |= WQ_RESCUER;
3126
d320c038 3127 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3128 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3129
b196be89 3130 /* init wq */
97e37d7b 3131 wq->flags = flags;
a0a1a5fd 3132 wq->saved_max_active = max_active;
73f53c4a
TH
3133 mutex_init(&wq->flush_mutex);
3134 atomic_set(&wq->nr_cwqs_to_flush, 0);
3135 INIT_LIST_HEAD(&wq->flusher_queue);
3136 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3137
eb13ba87 3138 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3139 INIT_LIST_HEAD(&wq->list);
3af24433 3140
bdbc5dd7
TH
3141 if (alloc_cwqs(wq) < 0)
3142 goto err;
3143
f3421797 3144 for_each_cwq_cpu(cpu, wq) {
1537663f 3145 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3146 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3147 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3148
0f900049 3149 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3150 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3151 cwq->wq = wq;
73f53c4a 3152 cwq->flush_color = -1;
1e19ffc6 3153 cwq->max_active = max_active;
1e19ffc6 3154 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3155 }
1537663f 3156
e22bee78
TH
3157 if (flags & WQ_RESCUER) {
3158 struct worker *rescuer;
3159
f2e005aa 3160 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3161 goto err;
3162
3163 wq->rescuer = rescuer = alloc_worker();
3164 if (!rescuer)
3165 goto err;
3166
b196be89
TH
3167 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3168 wq->name);
e22bee78
TH
3169 if (IS_ERR(rescuer->task))
3170 goto err;
3171
e22bee78
TH
3172 rescuer->task->flags |= PF_THREAD_BOUND;
3173 wake_up_process(rescuer->task);
3af24433
ON
3174 }
3175
a0a1a5fd
TH
3176 /*
3177 * workqueue_lock protects global freeze state and workqueues
3178 * list. Grab it, set max_active accordingly and add the new
3179 * workqueue to workqueues list.
3180 */
1537663f 3181 spin_lock(&workqueue_lock);
a0a1a5fd 3182
58a69cb4 3183 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3184 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3185 get_cwq(cpu, wq)->max_active = 0;
3186
1537663f 3187 list_add(&wq->list, &workqueues);
a0a1a5fd 3188
1537663f
TH
3189 spin_unlock(&workqueue_lock);
3190
3af24433 3191 return wq;
4690c4ab
TH
3192err:
3193 if (wq) {
bdbc5dd7 3194 free_cwqs(wq);
f2e005aa 3195 free_mayday_mask(wq->mayday_mask);
e22bee78 3196 kfree(wq->rescuer);
4690c4ab
TH
3197 kfree(wq);
3198 }
3199 return NULL;
3af24433 3200}
d320c038 3201EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3202
3af24433
ON
3203/**
3204 * destroy_workqueue - safely terminate a workqueue
3205 * @wq: target workqueue
3206 *
3207 * Safely destroy a workqueue. All work currently pending will be done first.
3208 */
3209void destroy_workqueue(struct workqueue_struct *wq)
3210{
c8e55f36 3211 unsigned int cpu;
3af24433 3212
9c5a2ba7
TH
3213 /* drain it before proceeding with destruction */
3214 drain_workqueue(wq);
c8efcc25 3215
a0a1a5fd
TH
3216 /*
3217 * wq list is used to freeze wq, remove from list after
3218 * flushing is complete in case freeze races us.
3219 */
95402b38 3220 spin_lock(&workqueue_lock);
b1f4ec17 3221 list_del(&wq->list);
95402b38 3222 spin_unlock(&workqueue_lock);
3af24433 3223
e22bee78 3224 /* sanity check */
f3421797 3225 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3226 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3227 int i;
3228
73f53c4a
TH
3229 for (i = 0; i < WORK_NR_COLORS; i++)
3230 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3231 BUG_ON(cwq->nr_active);
3232 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3233 }
9b41ea72 3234
e22bee78
TH
3235 if (wq->flags & WQ_RESCUER) {
3236 kthread_stop(wq->rescuer->task);
f2e005aa 3237 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3238 kfree(wq->rescuer);
e22bee78
TH
3239 }
3240
bdbc5dd7 3241 free_cwqs(wq);
3af24433
ON
3242 kfree(wq);
3243}
3244EXPORT_SYMBOL_GPL(destroy_workqueue);
3245
dcd989cb
TH
3246/**
3247 * workqueue_set_max_active - adjust max_active of a workqueue
3248 * @wq: target workqueue
3249 * @max_active: new max_active value.
3250 *
3251 * Set max_active of @wq to @max_active.
3252 *
3253 * CONTEXT:
3254 * Don't call from IRQ context.
3255 */
3256void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3257{
3258 unsigned int cpu;
3259
f3421797 3260 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3261
3262 spin_lock(&workqueue_lock);
3263
3264 wq->saved_max_active = max_active;
3265
f3421797 3266 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3267 struct global_cwq *gcwq = get_gcwq(cpu);
3268
3269 spin_lock_irq(&gcwq->lock);
3270
58a69cb4 3271 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3272 !(gcwq->flags & GCWQ_FREEZING))
3273 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3274
dcd989cb 3275 spin_unlock_irq(&gcwq->lock);
65a64464 3276 }
93981800 3277
dcd989cb 3278 spin_unlock(&workqueue_lock);
15316ba8 3279}
dcd989cb 3280EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3281
eef6a7d5 3282/**
dcd989cb
TH
3283 * workqueue_congested - test whether a workqueue is congested
3284 * @cpu: CPU in question
3285 * @wq: target workqueue
eef6a7d5 3286 *
dcd989cb
TH
3287 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3288 * no synchronization around this function and the test result is
3289 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3290 *
dcd989cb
TH
3291 * RETURNS:
3292 * %true if congested, %false otherwise.
eef6a7d5 3293 */
dcd989cb 3294bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3295{
dcd989cb
TH
3296 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3297
3298 return !list_empty(&cwq->delayed_works);
1da177e4 3299}
dcd989cb 3300EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3301
1fa44eca 3302/**
dcd989cb
TH
3303 * work_cpu - return the last known associated cpu for @work
3304 * @work: the work of interest
1fa44eca 3305 *
dcd989cb 3306 * RETURNS:
bdbc5dd7 3307 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3308 */
dcd989cb 3309unsigned int work_cpu(struct work_struct *work)
1fa44eca 3310{
dcd989cb 3311 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3312
bdbc5dd7 3313 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3314}
dcd989cb 3315EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3316
dcd989cb
TH
3317/**
3318 * work_busy - test whether a work is currently pending or running
3319 * @work: the work to be tested
3320 *
3321 * Test whether @work is currently pending or running. There is no
3322 * synchronization around this function and the test result is
3323 * unreliable and only useful as advisory hints or for debugging.
3324 * Especially for reentrant wqs, the pending state might hide the
3325 * running state.
3326 *
3327 * RETURNS:
3328 * OR'd bitmask of WORK_BUSY_* bits.
3329 */
3330unsigned int work_busy(struct work_struct *work)
1da177e4 3331{
dcd989cb
TH
3332 struct global_cwq *gcwq = get_work_gcwq(work);
3333 unsigned long flags;
3334 unsigned int ret = 0;
1da177e4 3335
dcd989cb
TH
3336 if (!gcwq)
3337 return false;
1da177e4 3338
dcd989cb 3339 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3340
dcd989cb
TH
3341 if (work_pending(work))
3342 ret |= WORK_BUSY_PENDING;
3343 if (find_worker_executing_work(gcwq, work))
3344 ret |= WORK_BUSY_RUNNING;
1da177e4 3345
dcd989cb 3346 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3347
dcd989cb 3348 return ret;
1da177e4 3349}
dcd989cb 3350EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3351
db7bccf4
TH
3352/*
3353 * CPU hotplug.
3354 *
e22bee78
TH
3355 * There are two challenges in supporting CPU hotplug. Firstly, there
3356 * are a lot of assumptions on strong associations among work, cwq and
3357 * gcwq which make migrating pending and scheduled works very
3358 * difficult to implement without impacting hot paths. Secondly,
3359 * gcwqs serve mix of short, long and very long running works making
3360 * blocked draining impractical.
3361 *
628c78e7
TH
3362 * This is solved by allowing a gcwq to be disassociated from the CPU
3363 * running as an unbound one and allowing it to be reattached later if the
3364 * cpu comes back online.
db7bccf4 3365 */
1da177e4 3366
60373152 3367/* claim manager positions of all pools */
8db25e78 3368static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3369{
3370 struct worker_pool *pool;
3371
3372 for_each_worker_pool(pool, gcwq)
3373 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3374 spin_lock_irq(&gcwq->lock);
60373152
TH
3375}
3376
3377/* release manager positions */
8db25e78 3378static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3379{
3380 struct worker_pool *pool;
3381
8db25e78 3382 spin_unlock_irq(&gcwq->lock);
60373152
TH
3383 for_each_worker_pool(pool, gcwq)
3384 mutex_unlock(&pool->manager_mutex);
3385}
3386
628c78e7 3387static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3388{
628c78e7 3389 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3390 struct worker_pool *pool;
db7bccf4
TH
3391 struct worker *worker;
3392 struct hlist_node *pos;
3393 int i;
3af24433 3394
db7bccf4
TH
3395 BUG_ON(gcwq->cpu != smp_processor_id());
3396
8db25e78 3397 gcwq_claim_management_and_lock(gcwq);
3af24433 3398
f2d5a0ee
TH
3399 /*
3400 * We've claimed all manager positions. Make all workers unbound
3401 * and set DISASSOCIATED. Before this, all workers except for the
3402 * ones which are still executing works from before the last CPU
3403 * down must be on the cpu. After this, they may become diasporas.
3404 */
60373152 3405 for_each_worker_pool(pool, gcwq)
4ce62e9e 3406 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3407 worker->flags |= WORKER_UNBOUND;
3af24433 3408
db7bccf4 3409 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3410 worker->flags |= WORKER_UNBOUND;
06ba38a9 3411
f2d5a0ee
TH
3412 gcwq->flags |= GCWQ_DISASSOCIATED;
3413
8db25e78 3414 gcwq_release_management_and_unlock(gcwq);
628c78e7 3415
e22bee78 3416 /*
403c821d 3417 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3418 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3419 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3420 */
e22bee78 3421 schedule();
06ba38a9 3422
e22bee78 3423 /*
628c78e7
TH
3424 * Sched callbacks are disabled now. Zap nr_running. After this,
3425 * nr_running stays zero and need_more_worker() and keep_working()
3426 * are always true as long as the worklist is not empty. @gcwq now
3427 * behaves as unbound (in terms of concurrency management) gcwq
3428 * which is served by workers tied to the CPU.
3429 *
3430 * On return from this function, the current worker would trigger
3431 * unbound chain execution of pending work items if other workers
3432 * didn't already.
e22bee78 3433 */
4ce62e9e
TH
3434 for_each_worker_pool(pool, gcwq)
3435 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3436}
3af24433 3437
8db25e78
TH
3438/*
3439 * Workqueues should be brought up before normal priority CPU notifiers.
3440 * This will be registered high priority CPU notifier.
3441 */
3442static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3443 unsigned long action,
3444 void *hcpu)
3af24433
ON
3445{
3446 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3447 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3448 struct worker_pool *pool;
3ce63377 3449
8db25e78 3450 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3451 case CPU_UP_PREPARE:
4ce62e9e 3452 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3453 struct worker *worker;
3454
3455 if (pool->nr_workers)
3456 continue;
3457
3458 worker = create_worker(pool);
3459 if (!worker)
3460 return NOTIFY_BAD;
3461
3462 spin_lock_irq(&gcwq->lock);
3463 start_worker(worker);
3464 spin_unlock_irq(&gcwq->lock);
3af24433 3465 }
8db25e78 3466 break;
3af24433 3467
db7bccf4
TH
3468 case CPU_DOWN_FAILED:
3469 case CPU_ONLINE:
8db25e78 3470 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3471 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3472 rebind_workers(gcwq);
8db25e78 3473 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3474 break;
00dfcaf7 3475 }
65758202
TH
3476 return NOTIFY_OK;
3477}
3478
3479/*
3480 * Workqueues should be brought down after normal priority CPU notifiers.
3481 * This will be registered as low priority CPU notifier.
3482 */
3483static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3484 unsigned long action,
3485 void *hcpu)
3486{
8db25e78
TH
3487 unsigned int cpu = (unsigned long)hcpu;
3488 struct work_struct unbind_work;
3489
65758202
TH
3490 switch (action & ~CPU_TASKS_FROZEN) {
3491 case CPU_DOWN_PREPARE:
8db25e78
TH
3492 /* unbinding should happen on the local CPU */
3493 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3494 schedule_work_on(cpu, &unbind_work);
3495 flush_work(&unbind_work);
3496 break;
65758202
TH
3497 }
3498 return NOTIFY_OK;
3499}
3500
2d3854a3 3501#ifdef CONFIG_SMP
8ccad40d 3502
2d3854a3 3503struct work_for_cpu {
6b44003e 3504 struct completion completion;
2d3854a3
RR
3505 long (*fn)(void *);
3506 void *arg;
3507 long ret;
3508};
3509
6b44003e 3510static int do_work_for_cpu(void *_wfc)
2d3854a3 3511{
6b44003e 3512 struct work_for_cpu *wfc = _wfc;
2d3854a3 3513 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3514 complete(&wfc->completion);
3515 return 0;
2d3854a3
RR
3516}
3517
3518/**
3519 * work_on_cpu - run a function in user context on a particular cpu
3520 * @cpu: the cpu to run on
3521 * @fn: the function to run
3522 * @arg: the function arg
3523 *
31ad9081
RR
3524 * This will return the value @fn returns.
3525 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3526 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3527 */
3528long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3529{
6b44003e
AM
3530 struct task_struct *sub_thread;
3531 struct work_for_cpu wfc = {
3532 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3533 .fn = fn,
3534 .arg = arg,
3535 };
3536
3537 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3538 if (IS_ERR(sub_thread))
3539 return PTR_ERR(sub_thread);
3540 kthread_bind(sub_thread, cpu);
3541 wake_up_process(sub_thread);
3542 wait_for_completion(&wfc.completion);
2d3854a3
RR
3543 return wfc.ret;
3544}
3545EXPORT_SYMBOL_GPL(work_on_cpu);
3546#endif /* CONFIG_SMP */
3547
a0a1a5fd
TH
3548#ifdef CONFIG_FREEZER
3549
3550/**
3551 * freeze_workqueues_begin - begin freezing workqueues
3552 *
58a69cb4
TH
3553 * Start freezing workqueues. After this function returns, all freezable
3554 * workqueues will queue new works to their frozen_works list instead of
3555 * gcwq->worklist.
a0a1a5fd
TH
3556 *
3557 * CONTEXT:
8b03ae3c 3558 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3559 */
3560void freeze_workqueues_begin(void)
3561{
a0a1a5fd
TH
3562 unsigned int cpu;
3563
3564 spin_lock(&workqueue_lock);
3565
3566 BUG_ON(workqueue_freezing);
3567 workqueue_freezing = true;
3568
f3421797 3569 for_each_gcwq_cpu(cpu) {
8b03ae3c 3570 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3571 struct workqueue_struct *wq;
8b03ae3c
TH
3572
3573 spin_lock_irq(&gcwq->lock);
3574
db7bccf4
TH
3575 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3576 gcwq->flags |= GCWQ_FREEZING;
3577
a0a1a5fd
TH
3578 list_for_each_entry(wq, &workqueues, list) {
3579 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3580
58a69cb4 3581 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3582 cwq->max_active = 0;
a0a1a5fd 3583 }
8b03ae3c
TH
3584
3585 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3586 }
3587
3588 spin_unlock(&workqueue_lock);
3589}
3590
3591/**
58a69cb4 3592 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3593 *
3594 * Check whether freezing is complete. This function must be called
3595 * between freeze_workqueues_begin() and thaw_workqueues().
3596 *
3597 * CONTEXT:
3598 * Grabs and releases workqueue_lock.
3599 *
3600 * RETURNS:
58a69cb4
TH
3601 * %true if some freezable workqueues are still busy. %false if freezing
3602 * is complete.
a0a1a5fd
TH
3603 */
3604bool freeze_workqueues_busy(void)
3605{
a0a1a5fd
TH
3606 unsigned int cpu;
3607 bool busy = false;
3608
3609 spin_lock(&workqueue_lock);
3610
3611 BUG_ON(!workqueue_freezing);
3612
f3421797 3613 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3614 struct workqueue_struct *wq;
a0a1a5fd
TH
3615 /*
3616 * nr_active is monotonically decreasing. It's safe
3617 * to peek without lock.
3618 */
3619 list_for_each_entry(wq, &workqueues, list) {
3620 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3621
58a69cb4 3622 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3623 continue;
3624
3625 BUG_ON(cwq->nr_active < 0);
3626 if (cwq->nr_active) {
3627 busy = true;
3628 goto out_unlock;
3629 }
3630 }
3631 }
3632out_unlock:
3633 spin_unlock(&workqueue_lock);
3634 return busy;
3635}
3636
3637/**
3638 * thaw_workqueues - thaw workqueues
3639 *
3640 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3641 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3642 *
3643 * CONTEXT:
8b03ae3c 3644 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3645 */
3646void thaw_workqueues(void)
3647{
a0a1a5fd
TH
3648 unsigned int cpu;
3649
3650 spin_lock(&workqueue_lock);
3651
3652 if (!workqueue_freezing)
3653 goto out_unlock;
3654
f3421797 3655 for_each_gcwq_cpu(cpu) {
8b03ae3c 3656 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3657 struct worker_pool *pool;
bdbc5dd7 3658 struct workqueue_struct *wq;
8b03ae3c
TH
3659
3660 spin_lock_irq(&gcwq->lock);
3661
db7bccf4
TH
3662 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3663 gcwq->flags &= ~GCWQ_FREEZING;
3664
a0a1a5fd
TH
3665 list_for_each_entry(wq, &workqueues, list) {
3666 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3667
58a69cb4 3668 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3669 continue;
3670
a0a1a5fd
TH
3671 /* restore max_active and repopulate worklist */
3672 cwq->max_active = wq->saved_max_active;
3673
3674 while (!list_empty(&cwq->delayed_works) &&
3675 cwq->nr_active < cwq->max_active)
3676 cwq_activate_first_delayed(cwq);
a0a1a5fd 3677 }
8b03ae3c 3678
4ce62e9e
TH
3679 for_each_worker_pool(pool, gcwq)
3680 wake_up_worker(pool);
e22bee78 3681
8b03ae3c 3682 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3683 }
3684
3685 workqueue_freezing = false;
3686out_unlock:
3687 spin_unlock(&workqueue_lock);
3688}
3689#endif /* CONFIG_FREEZER */
3690
6ee0578b 3691static int __init init_workqueues(void)
1da177e4 3692{
c34056a3 3693 unsigned int cpu;
c8e55f36 3694 int i;
c34056a3 3695
65758202
TH
3696 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3697 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3698
3699 /* initialize gcwqs */
f3421797 3700 for_each_gcwq_cpu(cpu) {
8b03ae3c 3701 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3702 struct worker_pool *pool;
8b03ae3c
TH
3703
3704 spin_lock_init(&gcwq->lock);
3705 gcwq->cpu = cpu;
477a3c33 3706 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3707
c8e55f36
TH
3708 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3709 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3710
4ce62e9e
TH
3711 for_each_worker_pool(pool, gcwq) {
3712 pool->gcwq = gcwq;
3713 INIT_LIST_HEAD(&pool->worklist);
3714 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3715
4ce62e9e
TH
3716 init_timer_deferrable(&pool->idle_timer);
3717 pool->idle_timer.function = idle_worker_timeout;
3718 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3719
4ce62e9e
TH
3720 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3721 (unsigned long)pool);
3722
60373152 3723 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3724 ida_init(&pool->worker_ida);
3725 }
db7bccf4 3726
25511a47 3727 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3728 }
3729
e22bee78 3730 /* create the initial worker */
f3421797 3731 for_each_online_gcwq_cpu(cpu) {
e22bee78 3732 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3733 struct worker_pool *pool;
e22bee78 3734
477a3c33
TH
3735 if (cpu != WORK_CPU_UNBOUND)
3736 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3737
3738 for_each_worker_pool(pool, gcwq) {
3739 struct worker *worker;
3740
bc2ae0f5 3741 worker = create_worker(pool);
4ce62e9e
TH
3742 BUG_ON(!worker);
3743 spin_lock_irq(&gcwq->lock);
3744 start_worker(worker);
3745 spin_unlock_irq(&gcwq->lock);
3746 }
e22bee78
TH
3747 }
3748
d320c038
TH
3749 system_wq = alloc_workqueue("events", 0, 0);
3750 system_long_wq = alloc_workqueue("events_long", 0, 0);
3751 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3752 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3753 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3754 system_freezable_wq = alloc_workqueue("events_freezable",
3755 WQ_FREEZABLE, 0);
62d3c543
AS
3756 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3757 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3758 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3759 !system_unbound_wq || !system_freezable_wq ||
3760 !system_nrt_freezable_wq);
6ee0578b 3761 return 0;
1da177e4 3762}
6ee0578b 3763early_initcall(init_workqueues);