]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/workqueue.c
workqueue: use manager lock only to protect worker_idr
[mirror_ubuntu-eoan-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
11ebea50 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 73 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 74
c8e55f36
TH
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
3270476a 106 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
9625ab17 127 * M: pool->manager_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
3c25a55d
LJ
133 * WQ: wq->mutex protected.
134 *
b5927605 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
136 *
137 * MD: wq_mayday_lock protected.
1da177e4 138 */
1da177e4 139
2eaebdb3 140/* struct worker is defined in workqueue_internal.h */
c34056a3 141
bd7bdd43 142struct worker_pool {
d565ed63 143 spinlock_t lock; /* the pool lock */
d84ff051 144 int cpu; /* I: the associated cpu */
f3f90ad4 145 int node; /* I: the associated node ID */
9daf9e67 146 int id; /* I: pool ID */
11ebea50 147 unsigned int flags; /* X: flags */
bd7bdd43
TH
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
151
152 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
c5aa87bb 159 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
bc3a1afc 163 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 164 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 165 struct mutex manager_mutex; /* manager exclusion */
9625ab17 166 struct idr worker_idr; /* M: worker IDs and iteration */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
8a2b7538
TH
307/* I: attributes used when instantiating ordered pools on demand */
308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
d320c038 310struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 311EXPORT_SYMBOL(system_wq);
044c782c 312struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 313EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 314struct workqueue_struct *system_long_wq __read_mostly;
d320c038 315EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 316struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 317EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 318struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 319EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
320struct workqueue_struct *system_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 324
7d19c5ce
TH
325static int worker_thread(void *__worker);
326static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
97bd2347
TH
329#define CREATE_TRACE_POINTS
330#include <trace/events/workqueue.h>
331
68e13a67 332#define assert_rcu_or_pool_mutex() \
5bcab335 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
5bcab335 336
b09f4fd3 337#define assert_rcu_or_wq_mutex(wq) \
76af4d93 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 339 lockdep_is_held(&wq->mutex), \
b09f4fd3 340 "sched RCU or wq->mutex should be held")
76af4d93 341
f02ae73a
TH
342#define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 345 (pool)++)
4ce62e9e 346
17116969
TH
347/**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
611c92a0 350 * @pi: integer used for iteration
fa1b54e6 351 *
68e13a67
LJ
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
17116969 358 */
611c92a0
TH
359#define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 362 else
17116969 363
822d8405
TH
364/**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
367 * @wi: integer used for iteration
368 * @pool: worker_pool to iterate workers of
369 *
9625ab17 370 * This must be called with @pool->manager_mutex.
822d8405
TH
371 *
372 * The if/else clause exists only for the lockdep assertion and can be
373 * ignored.
374 */
375#define for_each_pool_worker(worker, wi, pool) \
376 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
9625ab17 377 if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
822d8405
TH
378 else
379
49e3cf44
TH
380/**
381 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
382 * @pwq: iteration cursor
383 * @wq: the target workqueue
76af4d93 384 *
b09f4fd3 385 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
386 * If the pwq needs to be used beyond the locking in effect, the caller is
387 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
49e3cf44
TH
391 */
392#define for_each_pwq(pwq, wq) \
76af4d93 393 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 394 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 395 else
f3421797 396
dc186ad7
TG
397#ifdef CONFIG_DEBUG_OBJECTS_WORK
398
399static struct debug_obj_descr work_debug_descr;
400
99777288
SG
401static void *work_debug_hint(void *addr)
402{
403 return ((struct work_struct *) addr)->func;
404}
405
dc186ad7
TG
406/*
407 * fixup_init is called when:
408 * - an active object is initialized
409 */
410static int work_fixup_init(void *addr, enum debug_obj_state state)
411{
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_init(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422}
423
424/*
425 * fixup_activate is called when:
426 * - an active object is activated
427 * - an unknown object is activated (might be a statically initialized object)
428 */
429static int work_fixup_activate(void *addr, enum debug_obj_state state)
430{
431 struct work_struct *work = addr;
432
433 switch (state) {
434
435 case ODEBUG_STATE_NOTAVAILABLE:
436 /*
437 * This is not really a fixup. The work struct was
438 * statically initialized. We just make sure that it
439 * is tracked in the object tracker.
440 */
22df02bb 441 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
442 debug_object_init(work, &work_debug_descr);
443 debug_object_activate(work, &work_debug_descr);
444 return 0;
445 }
446 WARN_ON_ONCE(1);
447 return 0;
448
449 case ODEBUG_STATE_ACTIVE:
450 WARN_ON(1);
451
452 default:
453 return 0;
454 }
455}
456
457/*
458 * fixup_free is called when:
459 * - an active object is freed
460 */
461static int work_fixup_free(void *addr, enum debug_obj_state state)
462{
463 struct work_struct *work = addr;
464
465 switch (state) {
466 case ODEBUG_STATE_ACTIVE:
467 cancel_work_sync(work);
468 debug_object_free(work, &work_debug_descr);
469 return 1;
470 default:
471 return 0;
472 }
473}
474
475static struct debug_obj_descr work_debug_descr = {
476 .name = "work_struct",
99777288 477 .debug_hint = work_debug_hint,
dc186ad7
TG
478 .fixup_init = work_fixup_init,
479 .fixup_activate = work_fixup_activate,
480 .fixup_free = work_fixup_free,
481};
482
483static inline void debug_work_activate(struct work_struct *work)
484{
485 debug_object_activate(work, &work_debug_descr);
486}
487
488static inline void debug_work_deactivate(struct work_struct *work)
489{
490 debug_object_deactivate(work, &work_debug_descr);
491}
492
493void __init_work(struct work_struct *work, int onstack)
494{
495 if (onstack)
496 debug_object_init_on_stack(work, &work_debug_descr);
497 else
498 debug_object_init(work, &work_debug_descr);
499}
500EXPORT_SYMBOL_GPL(__init_work);
501
502void destroy_work_on_stack(struct work_struct *work)
503{
504 debug_object_free(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(destroy_work_on_stack);
507
ea2e64f2
TG
508void destroy_delayed_work_on_stack(struct delayed_work *work)
509{
510 destroy_timer_on_stack(&work->timer);
511 debug_object_free(&work->work, &work_debug_descr);
512}
513EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
514
dc186ad7
TG
515#else
516static inline void debug_work_activate(struct work_struct *work) { }
517static inline void debug_work_deactivate(struct work_struct *work) { }
518#endif
519
4e8b22bd
LB
520/**
521 * worker_pool_assign_id - allocate ID and assing it to @pool
522 * @pool: the pool pointer of interest
523 *
524 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
525 * successfully, -errno on failure.
526 */
9daf9e67
TH
527static int worker_pool_assign_id(struct worker_pool *pool)
528{
529 int ret;
530
68e13a67 531 lockdep_assert_held(&wq_pool_mutex);
5bcab335 532
4e8b22bd
LB
533 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
534 GFP_KERNEL);
229641a6 535 if (ret >= 0) {
e68035fb 536 pool->id = ret;
229641a6
TH
537 return 0;
538 }
fa1b54e6 539 return ret;
7c3eed5c
TH
540}
541
df2d5ae4
TH
542/**
543 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
544 * @wq: the target workqueue
545 * @node: the node ID
546 *
547 * This must be called either with pwq_lock held or sched RCU read locked.
548 * If the pwq needs to be used beyond the locking in effect, the caller is
549 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
550 *
551 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
552 */
553static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
554 int node)
555{
556 assert_rcu_or_wq_mutex(wq);
557 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
558}
559
73f53c4a
TH
560static unsigned int work_color_to_flags(int color)
561{
562 return color << WORK_STRUCT_COLOR_SHIFT;
563}
564
565static int get_work_color(struct work_struct *work)
566{
567 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
568 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
569}
570
571static int work_next_color(int color)
572{
573 return (color + 1) % WORK_NR_COLORS;
574}
1da177e4 575
14441960 576/*
112202d9
TH
577 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
578 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 579 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 580 *
112202d9
TH
581 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
582 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
583 * work->data. These functions should only be called while the work is
584 * owned - ie. while the PENDING bit is set.
7a22ad75 585 *
112202d9 586 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 587 * corresponding to a work. Pool is available once the work has been
112202d9 588 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 589 * available only while the work item is queued.
7a22ad75 590 *
bbb68dfa
TH
591 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
592 * canceled. While being canceled, a work item may have its PENDING set
593 * but stay off timer and worklist for arbitrarily long and nobody should
594 * try to steal the PENDING bit.
14441960 595 */
7a22ad75
TH
596static inline void set_work_data(struct work_struct *work, unsigned long data,
597 unsigned long flags)
365970a1 598{
6183c009 599 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
600 atomic_long_set(&work->data, data | flags | work_static(work));
601}
365970a1 602
112202d9 603static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
604 unsigned long extra_flags)
605{
112202d9
TH
606 set_work_data(work, (unsigned long)pwq,
607 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
608}
609
4468a00f
LJ
610static void set_work_pool_and_keep_pending(struct work_struct *work,
611 int pool_id)
612{
613 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
614 WORK_STRUCT_PENDING);
615}
616
7c3eed5c
TH
617static void set_work_pool_and_clear_pending(struct work_struct *work,
618 int pool_id)
7a22ad75 619{
23657bb1
TH
620 /*
621 * The following wmb is paired with the implied mb in
622 * test_and_set_bit(PENDING) and ensures all updates to @work made
623 * here are visible to and precede any updates by the next PENDING
624 * owner.
625 */
626 smp_wmb();
7c3eed5c 627 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 628}
f756d5e2 629
7a22ad75 630static void clear_work_data(struct work_struct *work)
1da177e4 631{
7c3eed5c
TH
632 smp_wmb(); /* see set_work_pool_and_clear_pending() */
633 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
634}
635
112202d9 636static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 637{
e120153d 638 unsigned long data = atomic_long_read(&work->data);
7a22ad75 639
112202d9 640 if (data & WORK_STRUCT_PWQ)
e120153d
TH
641 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
642 else
643 return NULL;
4d707b9f
ON
644}
645
7c3eed5c
TH
646/**
647 * get_work_pool - return the worker_pool a given work was associated with
648 * @work: the work item of interest
649 *
68e13a67
LJ
650 * Pools are created and destroyed under wq_pool_mutex, and allows read
651 * access under sched-RCU read lock. As such, this function should be
652 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
653 *
654 * All fields of the returned pool are accessible as long as the above
655 * mentioned locking is in effect. If the returned pool needs to be used
656 * beyond the critical section, the caller is responsible for ensuring the
657 * returned pool is and stays online.
d185af30
YB
658 *
659 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
660 */
661static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 662{
e120153d 663 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 664 int pool_id;
7a22ad75 665
68e13a67 666 assert_rcu_or_pool_mutex();
fa1b54e6 667
112202d9
TH
668 if (data & WORK_STRUCT_PWQ)
669 return ((struct pool_workqueue *)
7c3eed5c 670 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 671
7c3eed5c
TH
672 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
673 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
674 return NULL;
675
fa1b54e6 676 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
677}
678
679/**
680 * get_work_pool_id - return the worker pool ID a given work is associated with
681 * @work: the work item of interest
682 *
d185af30 683 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
684 * %WORK_OFFQ_POOL_NONE if none.
685 */
686static int get_work_pool_id(struct work_struct *work)
687{
54d5b7d0
LJ
688 unsigned long data = atomic_long_read(&work->data);
689
112202d9
TH
690 if (data & WORK_STRUCT_PWQ)
691 return ((struct pool_workqueue *)
54d5b7d0 692 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 693
54d5b7d0 694 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
695}
696
bbb68dfa
TH
697static void mark_work_canceling(struct work_struct *work)
698{
7c3eed5c 699 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 700
7c3eed5c
TH
701 pool_id <<= WORK_OFFQ_POOL_SHIFT;
702 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
703}
704
705static bool work_is_canceling(struct work_struct *work)
706{
707 unsigned long data = atomic_long_read(&work->data);
708
112202d9 709 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
710}
711
e22bee78 712/*
3270476a
TH
713 * Policy functions. These define the policies on how the global worker
714 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 715 * they're being called with pool->lock held.
e22bee78
TH
716 */
717
63d95a91 718static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 719{
e19e397a 720 return !atomic_read(&pool->nr_running);
a848e3b6
ON
721}
722
4594bf15 723/*
e22bee78
TH
724 * Need to wake up a worker? Called from anything but currently
725 * running workers.
974271c4
TH
726 *
727 * Note that, because unbound workers never contribute to nr_running, this
706026c2 728 * function will always return %true for unbound pools as long as the
974271c4 729 * worklist isn't empty.
4594bf15 730 */
63d95a91 731static bool need_more_worker(struct worker_pool *pool)
365970a1 732{
63d95a91 733 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 734}
4594bf15 735
e22bee78 736/* Can I start working? Called from busy but !running workers. */
63d95a91 737static bool may_start_working(struct worker_pool *pool)
e22bee78 738{
63d95a91 739 return pool->nr_idle;
e22bee78
TH
740}
741
742/* Do I need to keep working? Called from currently running workers. */
63d95a91 743static bool keep_working(struct worker_pool *pool)
e22bee78 744{
e19e397a
TH
745 return !list_empty(&pool->worklist) &&
746 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
747}
748
749/* Do we need a new worker? Called from manager. */
63d95a91 750static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 751{
63d95a91 752 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 753}
365970a1 754
e22bee78 755/* Do I need to be the manager? */
63d95a91 756static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 757{
63d95a91 758 return need_to_create_worker(pool) ||
11ebea50 759 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
760}
761
762/* Do we have too many workers and should some go away? */
63d95a91 763static bool too_many_workers(struct worker_pool *pool)
e22bee78 764{
34a06bd6 765 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
766 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
767 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 768
ea1abd61
LJ
769 /*
770 * nr_idle and idle_list may disagree if idle rebinding is in
771 * progress. Never return %true if idle_list is empty.
772 */
773 if (list_empty(&pool->idle_list))
774 return false;
775
e22bee78 776 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
777}
778
4d707b9f 779/*
e22bee78
TH
780 * Wake up functions.
781 */
782
7e11629d 783/* Return the first worker. Safe with preemption disabled */
63d95a91 784static struct worker *first_worker(struct worker_pool *pool)
7e11629d 785{
63d95a91 786 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
787 return NULL;
788
63d95a91 789 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
790}
791
792/**
793 * wake_up_worker - wake up an idle worker
63d95a91 794 * @pool: worker pool to wake worker from
7e11629d 795 *
63d95a91 796 * Wake up the first idle worker of @pool.
7e11629d
TH
797 *
798 * CONTEXT:
d565ed63 799 * spin_lock_irq(pool->lock).
7e11629d 800 */
63d95a91 801static void wake_up_worker(struct worker_pool *pool)
7e11629d 802{
63d95a91 803 struct worker *worker = first_worker(pool);
7e11629d
TH
804
805 if (likely(worker))
806 wake_up_process(worker->task);
807}
808
d302f017 809/**
e22bee78
TH
810 * wq_worker_waking_up - a worker is waking up
811 * @task: task waking up
812 * @cpu: CPU @task is waking up to
813 *
814 * This function is called during try_to_wake_up() when a worker is
815 * being awoken.
816 *
817 * CONTEXT:
818 * spin_lock_irq(rq->lock)
819 */
d84ff051 820void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
821{
822 struct worker *worker = kthread_data(task);
823
36576000 824 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 825 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 826 atomic_inc(&worker->pool->nr_running);
36576000 827 }
e22bee78
TH
828}
829
830/**
831 * wq_worker_sleeping - a worker is going to sleep
832 * @task: task going to sleep
833 * @cpu: CPU in question, must be the current CPU number
834 *
835 * This function is called during schedule() when a busy worker is
836 * going to sleep. Worker on the same cpu can be woken up by
837 * returning pointer to its task.
838 *
839 * CONTEXT:
840 * spin_lock_irq(rq->lock)
841 *
d185af30 842 * Return:
e22bee78
TH
843 * Worker task on @cpu to wake up, %NULL if none.
844 */
d84ff051 845struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
846{
847 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 848 struct worker_pool *pool;
e22bee78 849
111c225a
TH
850 /*
851 * Rescuers, which may not have all the fields set up like normal
852 * workers, also reach here, let's not access anything before
853 * checking NOT_RUNNING.
854 */
2d64672e 855 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
856 return NULL;
857
111c225a 858 pool = worker->pool;
111c225a 859
e22bee78 860 /* this can only happen on the local cpu */
6183c009
TH
861 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
862 return NULL;
e22bee78
TH
863
864 /*
865 * The counterpart of the following dec_and_test, implied mb,
866 * worklist not empty test sequence is in insert_work().
867 * Please read comment there.
868 *
628c78e7
TH
869 * NOT_RUNNING is clear. This means that we're bound to and
870 * running on the local cpu w/ rq lock held and preemption
871 * disabled, which in turn means that none else could be
d565ed63 872 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 873 * lock is safe.
e22bee78 874 */
e19e397a
TH
875 if (atomic_dec_and_test(&pool->nr_running) &&
876 !list_empty(&pool->worklist))
63d95a91 877 to_wakeup = first_worker(pool);
e22bee78
TH
878 return to_wakeup ? to_wakeup->task : NULL;
879}
880
881/**
882 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 883 * @worker: self
d302f017
TH
884 * @flags: flags to set
885 * @wakeup: wakeup an idle worker if necessary
886 *
e22bee78
TH
887 * Set @flags in @worker->flags and adjust nr_running accordingly. If
888 * nr_running becomes zero and @wakeup is %true, an idle worker is
889 * woken up.
d302f017 890 *
cb444766 891 * CONTEXT:
d565ed63 892 * spin_lock_irq(pool->lock)
d302f017
TH
893 */
894static inline void worker_set_flags(struct worker *worker, unsigned int flags,
895 bool wakeup)
896{
bd7bdd43 897 struct worker_pool *pool = worker->pool;
e22bee78 898
cb444766
TH
899 WARN_ON_ONCE(worker->task != current);
900
e22bee78
TH
901 /*
902 * If transitioning into NOT_RUNNING, adjust nr_running and
903 * wake up an idle worker as necessary if requested by
904 * @wakeup.
905 */
906 if ((flags & WORKER_NOT_RUNNING) &&
907 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 908 if (wakeup) {
e19e397a 909 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 910 !list_empty(&pool->worklist))
63d95a91 911 wake_up_worker(pool);
e22bee78 912 } else
e19e397a 913 atomic_dec(&pool->nr_running);
e22bee78
TH
914 }
915
d302f017
TH
916 worker->flags |= flags;
917}
918
919/**
e22bee78 920 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 921 * @worker: self
d302f017
TH
922 * @flags: flags to clear
923 *
e22bee78 924 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 925 *
cb444766 926 * CONTEXT:
d565ed63 927 * spin_lock_irq(pool->lock)
d302f017
TH
928 */
929static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
930{
63d95a91 931 struct worker_pool *pool = worker->pool;
e22bee78
TH
932 unsigned int oflags = worker->flags;
933
cb444766
TH
934 WARN_ON_ONCE(worker->task != current);
935
d302f017 936 worker->flags &= ~flags;
e22bee78 937
42c025f3
TH
938 /*
939 * If transitioning out of NOT_RUNNING, increment nr_running. Note
940 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
941 * of multiple flags, not a single flag.
942 */
e22bee78
TH
943 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
944 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 945 atomic_inc(&pool->nr_running);
d302f017
TH
946}
947
8cca0eea
TH
948/**
949 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 950 * @pool: pool of interest
8cca0eea
TH
951 * @work: work to find worker for
952 *
c9e7cf27
TH
953 * Find a worker which is executing @work on @pool by searching
954 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
955 * to match, its current execution should match the address of @work and
956 * its work function. This is to avoid unwanted dependency between
957 * unrelated work executions through a work item being recycled while still
958 * being executed.
959 *
960 * This is a bit tricky. A work item may be freed once its execution
961 * starts and nothing prevents the freed area from being recycled for
962 * another work item. If the same work item address ends up being reused
963 * before the original execution finishes, workqueue will identify the
964 * recycled work item as currently executing and make it wait until the
965 * current execution finishes, introducing an unwanted dependency.
966 *
c5aa87bb
TH
967 * This function checks the work item address and work function to avoid
968 * false positives. Note that this isn't complete as one may construct a
969 * work function which can introduce dependency onto itself through a
970 * recycled work item. Well, if somebody wants to shoot oneself in the
971 * foot that badly, there's only so much we can do, and if such deadlock
972 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
973 *
974 * CONTEXT:
d565ed63 975 * spin_lock_irq(pool->lock).
8cca0eea 976 *
d185af30
YB
977 * Return:
978 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 979 * otherwise.
4d707b9f 980 */
c9e7cf27 981static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 982 struct work_struct *work)
4d707b9f 983{
42f8570f 984 struct worker *worker;
42f8570f 985
b67bfe0d 986 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
987 (unsigned long)work)
988 if (worker->current_work == work &&
989 worker->current_func == work->func)
42f8570f
SL
990 return worker;
991
992 return NULL;
4d707b9f
ON
993}
994
bf4ede01
TH
995/**
996 * move_linked_works - move linked works to a list
997 * @work: start of series of works to be scheduled
998 * @head: target list to append @work to
999 * @nextp: out paramter for nested worklist walking
1000 *
1001 * Schedule linked works starting from @work to @head. Work series to
1002 * be scheduled starts at @work and includes any consecutive work with
1003 * WORK_STRUCT_LINKED set in its predecessor.
1004 *
1005 * If @nextp is not NULL, it's updated to point to the next work of
1006 * the last scheduled work. This allows move_linked_works() to be
1007 * nested inside outer list_for_each_entry_safe().
1008 *
1009 * CONTEXT:
d565ed63 1010 * spin_lock_irq(pool->lock).
bf4ede01
TH
1011 */
1012static void move_linked_works(struct work_struct *work, struct list_head *head,
1013 struct work_struct **nextp)
1014{
1015 struct work_struct *n;
1016
1017 /*
1018 * Linked worklist will always end before the end of the list,
1019 * use NULL for list head.
1020 */
1021 list_for_each_entry_safe_from(work, n, NULL, entry) {
1022 list_move_tail(&work->entry, head);
1023 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1024 break;
1025 }
1026
1027 /*
1028 * If we're already inside safe list traversal and have moved
1029 * multiple works to the scheduled queue, the next position
1030 * needs to be updated.
1031 */
1032 if (nextp)
1033 *nextp = n;
1034}
1035
8864b4e5
TH
1036/**
1037 * get_pwq - get an extra reference on the specified pool_workqueue
1038 * @pwq: pool_workqueue to get
1039 *
1040 * Obtain an extra reference on @pwq. The caller should guarantee that
1041 * @pwq has positive refcnt and be holding the matching pool->lock.
1042 */
1043static void get_pwq(struct pool_workqueue *pwq)
1044{
1045 lockdep_assert_held(&pwq->pool->lock);
1046 WARN_ON_ONCE(pwq->refcnt <= 0);
1047 pwq->refcnt++;
1048}
1049
1050/**
1051 * put_pwq - put a pool_workqueue reference
1052 * @pwq: pool_workqueue to put
1053 *
1054 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1055 * destruction. The caller should be holding the matching pool->lock.
1056 */
1057static void put_pwq(struct pool_workqueue *pwq)
1058{
1059 lockdep_assert_held(&pwq->pool->lock);
1060 if (likely(--pwq->refcnt))
1061 return;
1062 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1063 return;
1064 /*
1065 * @pwq can't be released under pool->lock, bounce to
1066 * pwq_unbound_release_workfn(). This never recurses on the same
1067 * pool->lock as this path is taken only for unbound workqueues and
1068 * the release work item is scheduled on a per-cpu workqueue. To
1069 * avoid lockdep warning, unbound pool->locks are given lockdep
1070 * subclass of 1 in get_unbound_pool().
1071 */
1072 schedule_work(&pwq->unbound_release_work);
1073}
1074
dce90d47
TH
1075/**
1076 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1077 * @pwq: pool_workqueue to put (can be %NULL)
1078 *
1079 * put_pwq() with locking. This function also allows %NULL @pwq.
1080 */
1081static void put_pwq_unlocked(struct pool_workqueue *pwq)
1082{
1083 if (pwq) {
1084 /*
1085 * As both pwqs and pools are sched-RCU protected, the
1086 * following lock operations are safe.
1087 */
1088 spin_lock_irq(&pwq->pool->lock);
1089 put_pwq(pwq);
1090 spin_unlock_irq(&pwq->pool->lock);
1091 }
1092}
1093
112202d9 1094static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1095{
112202d9 1096 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1097
1098 trace_workqueue_activate_work(work);
112202d9 1099 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1100 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1101 pwq->nr_active++;
bf4ede01
TH
1102}
1103
112202d9 1104static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1105{
112202d9 1106 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1107 struct work_struct, entry);
1108
112202d9 1109 pwq_activate_delayed_work(work);
3aa62497
LJ
1110}
1111
bf4ede01 1112/**
112202d9
TH
1113 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1114 * @pwq: pwq of interest
bf4ede01 1115 * @color: color of work which left the queue
bf4ede01
TH
1116 *
1117 * A work either has completed or is removed from pending queue,
112202d9 1118 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1119 *
1120 * CONTEXT:
d565ed63 1121 * spin_lock_irq(pool->lock).
bf4ede01 1122 */
112202d9 1123static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1124{
8864b4e5 1125 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1126 if (color == WORK_NO_COLOR)
8864b4e5 1127 goto out_put;
bf4ede01 1128
112202d9 1129 pwq->nr_in_flight[color]--;
bf4ede01 1130
112202d9
TH
1131 pwq->nr_active--;
1132 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1133 /* one down, submit a delayed one */
112202d9
TH
1134 if (pwq->nr_active < pwq->max_active)
1135 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1136 }
1137
1138 /* is flush in progress and are we at the flushing tip? */
112202d9 1139 if (likely(pwq->flush_color != color))
8864b4e5 1140 goto out_put;
bf4ede01
TH
1141
1142 /* are there still in-flight works? */
112202d9 1143 if (pwq->nr_in_flight[color])
8864b4e5 1144 goto out_put;
bf4ede01 1145
112202d9
TH
1146 /* this pwq is done, clear flush_color */
1147 pwq->flush_color = -1;
bf4ede01
TH
1148
1149 /*
112202d9 1150 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1151 * will handle the rest.
1152 */
112202d9
TH
1153 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1154 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1155out_put:
1156 put_pwq(pwq);
bf4ede01
TH
1157}
1158
36e227d2 1159/**
bbb68dfa 1160 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1161 * @work: work item to steal
1162 * @is_dwork: @work is a delayed_work
bbb68dfa 1163 * @flags: place to store irq state
36e227d2
TH
1164 *
1165 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1166 * stable state - idle, on timer or on worklist.
36e227d2 1167 *
d185af30 1168 * Return:
36e227d2
TH
1169 * 1 if @work was pending and we successfully stole PENDING
1170 * 0 if @work was idle and we claimed PENDING
1171 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1172 * -ENOENT if someone else is canceling @work, this state may persist
1173 * for arbitrarily long
36e227d2 1174 *
d185af30 1175 * Note:
bbb68dfa 1176 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1177 * interrupted while holding PENDING and @work off queue, irq must be
1178 * disabled on entry. This, combined with delayed_work->timer being
1179 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1180 *
1181 * On successful return, >= 0, irq is disabled and the caller is
1182 * responsible for releasing it using local_irq_restore(*@flags).
1183 *
e0aecdd8 1184 * This function is safe to call from any context including IRQ handler.
bf4ede01 1185 */
bbb68dfa
TH
1186static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1187 unsigned long *flags)
bf4ede01 1188{
d565ed63 1189 struct worker_pool *pool;
112202d9 1190 struct pool_workqueue *pwq;
bf4ede01 1191
bbb68dfa
TH
1192 local_irq_save(*flags);
1193
36e227d2
TH
1194 /* try to steal the timer if it exists */
1195 if (is_dwork) {
1196 struct delayed_work *dwork = to_delayed_work(work);
1197
e0aecdd8
TH
1198 /*
1199 * dwork->timer is irqsafe. If del_timer() fails, it's
1200 * guaranteed that the timer is not queued anywhere and not
1201 * running on the local CPU.
1202 */
36e227d2
TH
1203 if (likely(del_timer(&dwork->timer)))
1204 return 1;
1205 }
1206
1207 /* try to claim PENDING the normal way */
bf4ede01
TH
1208 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1209 return 0;
1210
1211 /*
1212 * The queueing is in progress, or it is already queued. Try to
1213 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1214 */
d565ed63
TH
1215 pool = get_work_pool(work);
1216 if (!pool)
bbb68dfa 1217 goto fail;
bf4ede01 1218
d565ed63 1219 spin_lock(&pool->lock);
0b3dae68 1220 /*
112202d9
TH
1221 * work->data is guaranteed to point to pwq only while the work
1222 * item is queued on pwq->wq, and both updating work->data to point
1223 * to pwq on queueing and to pool on dequeueing are done under
1224 * pwq->pool->lock. This in turn guarantees that, if work->data
1225 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1226 * item is currently queued on that pool.
1227 */
112202d9
TH
1228 pwq = get_work_pwq(work);
1229 if (pwq && pwq->pool == pool) {
16062836
TH
1230 debug_work_deactivate(work);
1231
1232 /*
1233 * A delayed work item cannot be grabbed directly because
1234 * it might have linked NO_COLOR work items which, if left
112202d9 1235 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1236 * management later on and cause stall. Make sure the work
1237 * item is activated before grabbing.
1238 */
1239 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1240 pwq_activate_delayed_work(work);
16062836
TH
1241
1242 list_del_init(&work->entry);
112202d9 1243 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1244
112202d9 1245 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1246 set_work_pool_and_keep_pending(work, pool->id);
1247
1248 spin_unlock(&pool->lock);
1249 return 1;
bf4ede01 1250 }
d565ed63 1251 spin_unlock(&pool->lock);
bbb68dfa
TH
1252fail:
1253 local_irq_restore(*flags);
1254 if (work_is_canceling(work))
1255 return -ENOENT;
1256 cpu_relax();
36e227d2 1257 return -EAGAIN;
bf4ede01
TH
1258}
1259
4690c4ab 1260/**
706026c2 1261 * insert_work - insert a work into a pool
112202d9 1262 * @pwq: pwq @work belongs to
4690c4ab
TH
1263 * @work: work to insert
1264 * @head: insertion point
1265 * @extra_flags: extra WORK_STRUCT_* flags to set
1266 *
112202d9 1267 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1268 * work_struct flags.
4690c4ab
TH
1269 *
1270 * CONTEXT:
d565ed63 1271 * spin_lock_irq(pool->lock).
4690c4ab 1272 */
112202d9
TH
1273static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1274 struct list_head *head, unsigned int extra_flags)
b89deed3 1275{
112202d9 1276 struct worker_pool *pool = pwq->pool;
e22bee78 1277
4690c4ab 1278 /* we own @work, set data and link */
112202d9 1279 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1280 list_add_tail(&work->entry, head);
8864b4e5 1281 get_pwq(pwq);
e22bee78
TH
1282
1283 /*
c5aa87bb
TH
1284 * Ensure either wq_worker_sleeping() sees the above
1285 * list_add_tail() or we see zero nr_running to avoid workers lying
1286 * around lazily while there are works to be processed.
e22bee78
TH
1287 */
1288 smp_mb();
1289
63d95a91
TH
1290 if (__need_more_worker(pool))
1291 wake_up_worker(pool);
b89deed3
ON
1292}
1293
c8efcc25
TH
1294/*
1295 * Test whether @work is being queued from another work executing on the
8d03ecfe 1296 * same workqueue.
c8efcc25
TH
1297 */
1298static bool is_chained_work(struct workqueue_struct *wq)
1299{
8d03ecfe
TH
1300 struct worker *worker;
1301
1302 worker = current_wq_worker();
1303 /*
1304 * Return %true iff I'm a worker execuing a work item on @wq. If
1305 * I'm @worker, it's safe to dereference it without locking.
1306 */
112202d9 1307 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1308}
1309
d84ff051 1310static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1311 struct work_struct *work)
1312{
112202d9 1313 struct pool_workqueue *pwq;
c9178087 1314 struct worker_pool *last_pool;
1e19ffc6 1315 struct list_head *worklist;
8a2e8e5d 1316 unsigned int work_flags;
b75cac93 1317 unsigned int req_cpu = cpu;
8930caba
TH
1318
1319 /*
1320 * While a work item is PENDING && off queue, a task trying to
1321 * steal the PENDING will busy-loop waiting for it to either get
1322 * queued or lose PENDING. Grabbing PENDING and queueing should
1323 * happen with IRQ disabled.
1324 */
1325 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1326
dc186ad7 1327 debug_work_activate(work);
1e19ffc6 1328
9ef28a73 1329 /* if draining, only works from the same workqueue are allowed */
618b01eb 1330 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1331 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1332 return;
9e8cd2f5 1333retry:
df2d5ae4
TH
1334 if (req_cpu == WORK_CPU_UNBOUND)
1335 cpu = raw_smp_processor_id();
1336
c9178087 1337 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1338 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1339 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1340 else
1341 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1342
c9178087
TH
1343 /*
1344 * If @work was previously on a different pool, it might still be
1345 * running there, in which case the work needs to be queued on that
1346 * pool to guarantee non-reentrancy.
1347 */
1348 last_pool = get_work_pool(work);
1349 if (last_pool && last_pool != pwq->pool) {
1350 struct worker *worker;
18aa9eff 1351
c9178087 1352 spin_lock(&last_pool->lock);
18aa9eff 1353
c9178087 1354 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1355
c9178087
TH
1356 if (worker && worker->current_pwq->wq == wq) {
1357 pwq = worker->current_pwq;
8930caba 1358 } else {
c9178087
TH
1359 /* meh... not running there, queue here */
1360 spin_unlock(&last_pool->lock);
112202d9 1361 spin_lock(&pwq->pool->lock);
8930caba 1362 }
f3421797 1363 } else {
112202d9 1364 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1365 }
1366
9e8cd2f5
TH
1367 /*
1368 * pwq is determined and locked. For unbound pools, we could have
1369 * raced with pwq release and it could already be dead. If its
1370 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1371 * without another pwq replacing it in the numa_pwq_tbl or while
1372 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1373 * make forward-progress.
1374 */
1375 if (unlikely(!pwq->refcnt)) {
1376 if (wq->flags & WQ_UNBOUND) {
1377 spin_unlock(&pwq->pool->lock);
1378 cpu_relax();
1379 goto retry;
1380 }
1381 /* oops */
1382 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1383 wq->name, cpu);
1384 }
1385
112202d9
TH
1386 /* pwq determined, queue */
1387 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1388
f5b2552b 1389 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1390 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1391 return;
1392 }
1e19ffc6 1393
112202d9
TH
1394 pwq->nr_in_flight[pwq->work_color]++;
1395 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1396
112202d9 1397 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1398 trace_workqueue_activate_work(work);
112202d9
TH
1399 pwq->nr_active++;
1400 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1401 } else {
1402 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1403 worklist = &pwq->delayed_works;
8a2e8e5d 1404 }
1e19ffc6 1405
112202d9 1406 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1407
112202d9 1408 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1409}
1410
0fcb78c2 1411/**
c1a220e7
ZR
1412 * queue_work_on - queue work on specific cpu
1413 * @cpu: CPU number to execute work on
0fcb78c2
REB
1414 * @wq: workqueue to use
1415 * @work: work to queue
1416 *
c1a220e7
ZR
1417 * We queue the work to a specific CPU, the caller must ensure it
1418 * can't go away.
d185af30
YB
1419 *
1420 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1421 */
d4283e93
TH
1422bool queue_work_on(int cpu, struct workqueue_struct *wq,
1423 struct work_struct *work)
1da177e4 1424{
d4283e93 1425 bool ret = false;
8930caba 1426 unsigned long flags;
ef1ca236 1427
8930caba 1428 local_irq_save(flags);
c1a220e7 1429
22df02bb 1430 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1431 __queue_work(cpu, wq, work);
d4283e93 1432 ret = true;
c1a220e7 1433 }
ef1ca236 1434
8930caba 1435 local_irq_restore(flags);
1da177e4
LT
1436 return ret;
1437}
ad7b1f84 1438EXPORT_SYMBOL(queue_work_on);
1da177e4 1439
d8e794df 1440void delayed_work_timer_fn(unsigned long __data)
1da177e4 1441{
52bad64d 1442 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1443
e0aecdd8 1444 /* should have been called from irqsafe timer with irq already off */
60c057bc 1445 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1446}
1438ade5 1447EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1448
7beb2edf
TH
1449static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1450 struct delayed_work *dwork, unsigned long delay)
1da177e4 1451{
7beb2edf
TH
1452 struct timer_list *timer = &dwork->timer;
1453 struct work_struct *work = &dwork->work;
7beb2edf
TH
1454
1455 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1456 timer->data != (unsigned long)dwork);
fc4b514f
TH
1457 WARN_ON_ONCE(timer_pending(timer));
1458 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1459
8852aac2
TH
1460 /*
1461 * If @delay is 0, queue @dwork->work immediately. This is for
1462 * both optimization and correctness. The earliest @timer can
1463 * expire is on the closest next tick and delayed_work users depend
1464 * on that there's no such delay when @delay is 0.
1465 */
1466 if (!delay) {
1467 __queue_work(cpu, wq, &dwork->work);
1468 return;
1469 }
1470
7beb2edf 1471 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1472
60c057bc 1473 dwork->wq = wq;
1265057f 1474 dwork->cpu = cpu;
7beb2edf
TH
1475 timer->expires = jiffies + delay;
1476
1477 if (unlikely(cpu != WORK_CPU_UNBOUND))
1478 add_timer_on(timer, cpu);
1479 else
1480 add_timer(timer);
1da177e4
LT
1481}
1482
0fcb78c2
REB
1483/**
1484 * queue_delayed_work_on - queue work on specific CPU after delay
1485 * @cpu: CPU number to execute work on
1486 * @wq: workqueue to use
af9997e4 1487 * @dwork: work to queue
0fcb78c2
REB
1488 * @delay: number of jiffies to wait before queueing
1489 *
d185af30 1490 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1491 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1492 * execution.
0fcb78c2 1493 */
d4283e93
TH
1494bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1495 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1496{
52bad64d 1497 struct work_struct *work = &dwork->work;
d4283e93 1498 bool ret = false;
8930caba 1499 unsigned long flags;
7a6bc1cd 1500
8930caba
TH
1501 /* read the comment in __queue_work() */
1502 local_irq_save(flags);
7a6bc1cd 1503
22df02bb 1504 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1505 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1506 ret = true;
7a6bc1cd 1507 }
8a3e77cc 1508
8930caba 1509 local_irq_restore(flags);
7a6bc1cd
VP
1510 return ret;
1511}
ad7b1f84 1512EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1513
8376fe22
TH
1514/**
1515 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1516 * @cpu: CPU number to execute work on
1517 * @wq: workqueue to use
1518 * @dwork: work to queue
1519 * @delay: number of jiffies to wait before queueing
1520 *
1521 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1522 * modify @dwork's timer so that it expires after @delay. If @delay is
1523 * zero, @work is guaranteed to be scheduled immediately regardless of its
1524 * current state.
1525 *
d185af30 1526 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1527 * pending and its timer was modified.
1528 *
e0aecdd8 1529 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1530 * See try_to_grab_pending() for details.
1531 */
1532bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1533 struct delayed_work *dwork, unsigned long delay)
1534{
1535 unsigned long flags;
1536 int ret;
c7fc77f7 1537
8376fe22
TH
1538 do {
1539 ret = try_to_grab_pending(&dwork->work, true, &flags);
1540 } while (unlikely(ret == -EAGAIN));
63bc0362 1541
8376fe22
TH
1542 if (likely(ret >= 0)) {
1543 __queue_delayed_work(cpu, wq, dwork, delay);
1544 local_irq_restore(flags);
7a6bc1cd 1545 }
8376fe22
TH
1546
1547 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1548 return ret;
1549}
8376fe22
TH
1550EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1551
c8e55f36
TH
1552/**
1553 * worker_enter_idle - enter idle state
1554 * @worker: worker which is entering idle state
1555 *
1556 * @worker is entering idle state. Update stats and idle timer if
1557 * necessary.
1558 *
1559 * LOCKING:
d565ed63 1560 * spin_lock_irq(pool->lock).
c8e55f36
TH
1561 */
1562static void worker_enter_idle(struct worker *worker)
1da177e4 1563{
bd7bdd43 1564 struct worker_pool *pool = worker->pool;
c8e55f36 1565
6183c009
TH
1566 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1567 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1568 (worker->hentry.next || worker->hentry.pprev)))
1569 return;
c8e55f36 1570
cb444766
TH
1571 /* can't use worker_set_flags(), also called from start_worker() */
1572 worker->flags |= WORKER_IDLE;
bd7bdd43 1573 pool->nr_idle++;
e22bee78 1574 worker->last_active = jiffies;
c8e55f36
TH
1575
1576 /* idle_list is LIFO */
bd7bdd43 1577 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1578
628c78e7
TH
1579 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1580 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1581
544ecf31 1582 /*
706026c2 1583 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1584 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1585 * nr_running, the warning may trigger spuriously. Check iff
1586 * unbind is not in progress.
544ecf31 1587 */
24647570 1588 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1589 pool->nr_workers == pool->nr_idle &&
e19e397a 1590 atomic_read(&pool->nr_running));
c8e55f36
TH
1591}
1592
1593/**
1594 * worker_leave_idle - leave idle state
1595 * @worker: worker which is leaving idle state
1596 *
1597 * @worker is leaving idle state. Update stats.
1598 *
1599 * LOCKING:
d565ed63 1600 * spin_lock_irq(pool->lock).
c8e55f36
TH
1601 */
1602static void worker_leave_idle(struct worker *worker)
1603{
bd7bdd43 1604 struct worker_pool *pool = worker->pool;
c8e55f36 1605
6183c009
TH
1606 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1607 return;
d302f017 1608 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1609 pool->nr_idle--;
c8e55f36
TH
1610 list_del_init(&worker->entry);
1611}
1612
e22bee78 1613/**
f36dc67b
LJ
1614 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1615 * @pool: target worker_pool
1616 *
1617 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1618 *
1619 * Works which are scheduled while the cpu is online must at least be
1620 * scheduled to a worker which is bound to the cpu so that if they are
1621 * flushed from cpu callbacks while cpu is going down, they are
1622 * guaranteed to execute on the cpu.
1623 *
f5faa077 1624 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1625 * themselves to the target cpu and may race with cpu going down or
1626 * coming online. kthread_bind() can't be used because it may put the
1627 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1628 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1629 * [dis]associated in the meantime.
1630 *
706026c2 1631 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1632 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1633 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1634 * enters idle state or fetches works without dropping lock, it can
1635 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1636 *
1637 * CONTEXT:
d565ed63 1638 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1639 * held.
1640 *
d185af30 1641 * Return:
706026c2 1642 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1643 * bound), %false if offline.
1644 */
f36dc67b 1645static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1646__acquires(&pool->lock)
e22bee78 1647{
e22bee78 1648 while (true) {
4e6045f1 1649 /*
e22bee78
TH
1650 * The following call may fail, succeed or succeed
1651 * without actually migrating the task to the cpu if
1652 * it races with cpu hotunplug operation. Verify
24647570 1653 * against POOL_DISASSOCIATED.
4e6045f1 1654 */
24647570 1655 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1656 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1657
d565ed63 1658 spin_lock_irq(&pool->lock);
24647570 1659 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1660 return false;
f5faa077 1661 if (task_cpu(current) == pool->cpu &&
7a4e344c 1662 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1663 return true;
d565ed63 1664 spin_unlock_irq(&pool->lock);
e22bee78 1665
5035b20f
TH
1666 /*
1667 * We've raced with CPU hot[un]plug. Give it a breather
1668 * and retry migration. cond_resched() is required here;
1669 * otherwise, we might deadlock against cpu_stop trying to
1670 * bring down the CPU on non-preemptive kernel.
1671 */
e22bee78 1672 cpu_relax();
5035b20f 1673 cond_resched();
e22bee78
TH
1674 }
1675}
1676
c34056a3
TH
1677static struct worker *alloc_worker(void)
1678{
1679 struct worker *worker;
1680
1681 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1682 if (worker) {
1683 INIT_LIST_HEAD(&worker->entry);
affee4b2 1684 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1685 /* on creation a worker is in !idle && prep state */
1686 worker->flags = WORKER_PREP;
c8e55f36 1687 }
c34056a3
TH
1688 return worker;
1689}
1690
1691/**
1692 * create_worker - create a new workqueue worker
63d95a91 1693 * @pool: pool the new worker will belong to
c34056a3 1694 *
63d95a91 1695 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1696 * can be started by calling start_worker() or destroyed using
1697 * destroy_worker().
1698 *
1699 * CONTEXT:
1700 * Might sleep. Does GFP_KERNEL allocations.
1701 *
d185af30 1702 * Return:
c34056a3
TH
1703 * Pointer to the newly created worker.
1704 */
bc2ae0f5 1705static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1706{
c34056a3 1707 struct worker *worker = NULL;
f3421797 1708 int id = -1;
e3c916a4 1709 char id_buf[16];
c34056a3 1710
cd549687
TH
1711 lockdep_assert_held(&pool->manager_mutex);
1712
822d8405
TH
1713 /*
1714 * ID is needed to determine kthread name. Allocate ID first
1715 * without installing the pointer.
1716 */
9625ab17 1717 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
822d8405
TH
1718 if (id < 0)
1719 goto fail;
c34056a3
TH
1720
1721 worker = alloc_worker();
1722 if (!worker)
1723 goto fail;
1724
bd7bdd43 1725 worker->pool = pool;
c34056a3
TH
1726 worker->id = id;
1727
29c91e99 1728 if (pool->cpu >= 0)
e3c916a4
TH
1729 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1730 pool->attrs->nice < 0 ? "H" : "");
f3421797 1731 else
e3c916a4
TH
1732 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1733
f3f90ad4 1734 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1735 "kworker/%s", id_buf);
c34056a3
TH
1736 if (IS_ERR(worker->task))
1737 goto fail;
1738
91151228
ON
1739 set_user_nice(worker->task, pool->attrs->nice);
1740
1741 /* prevent userland from meddling with cpumask of workqueue workers */
1742 worker->task->flags |= PF_NO_SETAFFINITY;
1743
c5aa87bb
TH
1744 /*
1745 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1746 * online CPUs. It'll be re-applied when any of the CPUs come up.
1747 */
7a4e344c 1748 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1749
7a4e344c
TH
1750 /*
1751 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1752 * remains stable across this function. See the comments above the
1753 * flag definition for details.
1754 */
1755 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1756 worker->flags |= WORKER_UNBOUND;
c34056a3 1757
822d8405 1758 /* successful, commit the pointer to idr */
822d8405 1759 idr_replace(&pool->worker_idr, worker, worker->id);
822d8405 1760
c34056a3 1761 return worker;
822d8405 1762
c34056a3 1763fail:
9625ab17 1764 if (id >= 0)
822d8405 1765 idr_remove(&pool->worker_idr, id);
c34056a3
TH
1766 kfree(worker);
1767 return NULL;
1768}
1769
1770/**
1771 * start_worker - start a newly created worker
1772 * @worker: worker to start
1773 *
706026c2 1774 * Make the pool aware of @worker and start it.
c34056a3
TH
1775 *
1776 * CONTEXT:
d565ed63 1777 * spin_lock_irq(pool->lock).
c34056a3
TH
1778 */
1779static void start_worker(struct worker *worker)
1780{
cb444766 1781 worker->flags |= WORKER_STARTED;
bd7bdd43 1782 worker->pool->nr_workers++;
c8e55f36 1783 worker_enter_idle(worker);
c34056a3
TH
1784 wake_up_process(worker->task);
1785}
1786
ebf44d16
TH
1787/**
1788 * create_and_start_worker - create and start a worker for a pool
1789 * @pool: the target pool
1790 *
cd549687 1791 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1792 *
1793 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1794 */
1795static int create_and_start_worker(struct worker_pool *pool)
1796{
1797 struct worker *worker;
1798
cd549687
TH
1799 mutex_lock(&pool->manager_mutex);
1800
ebf44d16
TH
1801 worker = create_worker(pool);
1802 if (worker) {
1803 spin_lock_irq(&pool->lock);
1804 start_worker(worker);
1805 spin_unlock_irq(&pool->lock);
1806 }
1807
cd549687
TH
1808 mutex_unlock(&pool->manager_mutex);
1809
ebf44d16
TH
1810 return worker ? 0 : -ENOMEM;
1811}
1812
c34056a3
TH
1813/**
1814 * destroy_worker - destroy a workqueue worker
1815 * @worker: worker to be destroyed
1816 *
706026c2 1817 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1818 *
1819 * CONTEXT:
d565ed63 1820 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1821 */
1822static void destroy_worker(struct worker *worker)
1823{
bd7bdd43 1824 struct worker_pool *pool = worker->pool;
c34056a3 1825
cd549687
TH
1826 lockdep_assert_held(&pool->manager_mutex);
1827 lockdep_assert_held(&pool->lock);
1828
c34056a3 1829 /* sanity check frenzy */
6183c009
TH
1830 if (WARN_ON(worker->current_work) ||
1831 WARN_ON(!list_empty(&worker->scheduled)))
1832 return;
c34056a3 1833
c8e55f36 1834 if (worker->flags & WORKER_STARTED)
bd7bdd43 1835 pool->nr_workers--;
c8e55f36 1836 if (worker->flags & WORKER_IDLE)
bd7bdd43 1837 pool->nr_idle--;
c8e55f36 1838
5bdfff96
LJ
1839 /*
1840 * Once WORKER_DIE is set, the kworker may destroy itself at any
1841 * point. Pin to ensure the task stays until we're done with it.
1842 */
1843 get_task_struct(worker->task);
1844
c8e55f36 1845 list_del_init(&worker->entry);
cb444766 1846 worker->flags |= WORKER_DIE;
c8e55f36 1847
822d8405
TH
1848 idr_remove(&pool->worker_idr, worker->id);
1849
d565ed63 1850 spin_unlock_irq(&pool->lock);
c8e55f36 1851
c34056a3 1852 kthread_stop(worker->task);
5bdfff96 1853 put_task_struct(worker->task);
c34056a3
TH
1854 kfree(worker);
1855
d565ed63 1856 spin_lock_irq(&pool->lock);
c34056a3
TH
1857}
1858
63d95a91 1859static void idle_worker_timeout(unsigned long __pool)
e22bee78 1860{
63d95a91 1861 struct worker_pool *pool = (void *)__pool;
e22bee78 1862
d565ed63 1863 spin_lock_irq(&pool->lock);
e22bee78 1864
63d95a91 1865 if (too_many_workers(pool)) {
e22bee78
TH
1866 struct worker *worker;
1867 unsigned long expires;
1868
1869 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1870 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1871 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1872
1873 if (time_before(jiffies, expires))
63d95a91 1874 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1875 else {
1876 /* it's been idle for too long, wake up manager */
11ebea50 1877 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1878 wake_up_worker(pool);
d5abe669 1879 }
e22bee78
TH
1880 }
1881
d565ed63 1882 spin_unlock_irq(&pool->lock);
e22bee78 1883}
d5abe669 1884
493a1724 1885static void send_mayday(struct work_struct *work)
e22bee78 1886{
112202d9
TH
1887 struct pool_workqueue *pwq = get_work_pwq(work);
1888 struct workqueue_struct *wq = pwq->wq;
493a1724 1889
2e109a28 1890 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1891
493008a8 1892 if (!wq->rescuer)
493a1724 1893 return;
e22bee78
TH
1894
1895 /* mayday mayday mayday */
493a1724 1896 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1897 /*
1898 * If @pwq is for an unbound wq, its base ref may be put at
1899 * any time due to an attribute change. Pin @pwq until the
1900 * rescuer is done with it.
1901 */
1902 get_pwq(pwq);
493a1724 1903 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1904 wake_up_process(wq->rescuer->task);
493a1724 1905 }
e22bee78
TH
1906}
1907
706026c2 1908static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1909{
63d95a91 1910 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1911 struct work_struct *work;
1912
2e109a28 1913 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1914 spin_lock(&pool->lock);
e22bee78 1915
63d95a91 1916 if (need_to_create_worker(pool)) {
e22bee78
TH
1917 /*
1918 * We've been trying to create a new worker but
1919 * haven't been successful. We might be hitting an
1920 * allocation deadlock. Send distress signals to
1921 * rescuers.
1922 */
63d95a91 1923 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1924 send_mayday(work);
1da177e4 1925 }
e22bee78 1926
493a1724 1927 spin_unlock(&pool->lock);
2e109a28 1928 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1929
63d95a91 1930 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1931}
1932
e22bee78
TH
1933/**
1934 * maybe_create_worker - create a new worker if necessary
63d95a91 1935 * @pool: pool to create a new worker for
e22bee78 1936 *
63d95a91 1937 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1938 * have at least one idle worker on return from this function. If
1939 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1940 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1941 * possible allocation deadlock.
1942 *
c5aa87bb
TH
1943 * On return, need_to_create_worker() is guaranteed to be %false and
1944 * may_start_working() %true.
e22bee78
TH
1945 *
1946 * LOCKING:
d565ed63 1947 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1948 * multiple times. Does GFP_KERNEL allocations. Called only from
1949 * manager.
1950 *
d185af30 1951 * Return:
c5aa87bb 1952 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1953 * otherwise.
1954 */
63d95a91 1955static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1956__releases(&pool->lock)
1957__acquires(&pool->lock)
1da177e4 1958{
63d95a91 1959 if (!need_to_create_worker(pool))
e22bee78
TH
1960 return false;
1961restart:
d565ed63 1962 spin_unlock_irq(&pool->lock);
9f9c2364 1963
e22bee78 1964 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1965 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1966
1967 while (true) {
1968 struct worker *worker;
1969
bc2ae0f5 1970 worker = create_worker(pool);
e22bee78 1971 if (worker) {
63d95a91 1972 del_timer_sync(&pool->mayday_timer);
d565ed63 1973 spin_lock_irq(&pool->lock);
e22bee78 1974 start_worker(worker);
6183c009
TH
1975 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1976 goto restart;
e22bee78
TH
1977 return true;
1978 }
1979
63d95a91 1980 if (!need_to_create_worker(pool))
e22bee78 1981 break;
1da177e4 1982
e22bee78
TH
1983 __set_current_state(TASK_INTERRUPTIBLE);
1984 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1985
63d95a91 1986 if (!need_to_create_worker(pool))
e22bee78
TH
1987 break;
1988 }
1989
63d95a91 1990 del_timer_sync(&pool->mayday_timer);
d565ed63 1991 spin_lock_irq(&pool->lock);
63d95a91 1992 if (need_to_create_worker(pool))
e22bee78
TH
1993 goto restart;
1994 return true;
1995}
1996
1997/**
1998 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1999 * @pool: pool to destroy workers for
e22bee78 2000 *
63d95a91 2001 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2002 * IDLE_WORKER_TIMEOUT.
2003 *
2004 * LOCKING:
d565ed63 2005 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2006 * multiple times. Called only from manager.
2007 *
d185af30 2008 * Return:
c5aa87bb 2009 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2010 * otherwise.
2011 */
63d95a91 2012static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2013{
2014 bool ret = false;
1da177e4 2015
63d95a91 2016 while (too_many_workers(pool)) {
e22bee78
TH
2017 struct worker *worker;
2018 unsigned long expires;
3af24433 2019
63d95a91 2020 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2021 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2022
e22bee78 2023 if (time_before(jiffies, expires)) {
63d95a91 2024 mod_timer(&pool->idle_timer, expires);
3af24433 2025 break;
e22bee78 2026 }
1da177e4 2027
e22bee78
TH
2028 destroy_worker(worker);
2029 ret = true;
1da177e4 2030 }
1e19ffc6 2031
e22bee78 2032 return ret;
1e19ffc6
TH
2033}
2034
73f53c4a 2035/**
e22bee78
TH
2036 * manage_workers - manage worker pool
2037 * @worker: self
73f53c4a 2038 *
706026c2 2039 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2040 * to. At any given time, there can be only zero or one manager per
706026c2 2041 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2042 *
2043 * The caller can safely start processing works on false return. On
2044 * true return, it's guaranteed that need_to_create_worker() is false
2045 * and may_start_working() is true.
73f53c4a
TH
2046 *
2047 * CONTEXT:
d565ed63 2048 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2049 * multiple times. Does GFP_KERNEL allocations.
2050 *
d185af30 2051 * Return:
2d498db9
L
2052 * %false if the pool don't need management and the caller can safely start
2053 * processing works, %true indicates that the function released pool->lock
2054 * and reacquired it to perform some management function and that the
2055 * conditions that the caller verified while holding the lock before
2056 * calling the function might no longer be true.
73f53c4a 2057 */
e22bee78 2058static bool manage_workers(struct worker *worker)
73f53c4a 2059{
63d95a91 2060 struct worker_pool *pool = worker->pool;
e22bee78 2061 bool ret = false;
73f53c4a 2062
bc3a1afc
TH
2063 /*
2064 * Managership is governed by two mutexes - manager_arb and
2065 * manager_mutex. manager_arb handles arbitration of manager role.
2066 * Anyone who successfully grabs manager_arb wins the arbitration
2067 * and becomes the manager. mutex_trylock() on pool->manager_arb
2068 * failure while holding pool->lock reliably indicates that someone
2069 * else is managing the pool and the worker which failed trylock
2070 * can proceed to executing work items. This means that anyone
2071 * grabbing manager_arb is responsible for actually performing
2072 * manager duties. If manager_arb is grabbed and released without
2073 * actual management, the pool may stall indefinitely.
2074 *
2075 * manager_mutex is used for exclusion of actual management
2076 * operations. The holder of manager_mutex can be sure that none
2077 * of management operations, including creation and destruction of
2078 * workers, won't take place until the mutex is released. Because
2079 * manager_mutex doesn't interfere with manager role arbitration,
2080 * it is guaranteed that the pool's management, while may be
2081 * delayed, won't be disturbed by someone else grabbing
2082 * manager_mutex.
2083 */
34a06bd6 2084 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2085 return ret;
1e19ffc6 2086
ee378aa4 2087 /*
bc3a1afc
TH
2088 * With manager arbitration won, manager_mutex would be free in
2089 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2090 */
bc3a1afc 2091 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2092 spin_unlock_irq(&pool->lock);
bc3a1afc 2093 mutex_lock(&pool->manager_mutex);
8f174b11 2094 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2095 ret = true;
2096 }
73f53c4a 2097
11ebea50 2098 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2099
2100 /*
e22bee78
TH
2101 * Destroy and then create so that may_start_working() is true
2102 * on return.
73f53c4a 2103 */
63d95a91
TH
2104 ret |= maybe_destroy_workers(pool);
2105 ret |= maybe_create_worker(pool);
e22bee78 2106
bc3a1afc 2107 mutex_unlock(&pool->manager_mutex);
34a06bd6 2108 mutex_unlock(&pool->manager_arb);
e22bee78 2109 return ret;
73f53c4a
TH
2110}
2111
a62428c0
TH
2112/**
2113 * process_one_work - process single work
c34056a3 2114 * @worker: self
a62428c0
TH
2115 * @work: work to process
2116 *
2117 * Process @work. This function contains all the logics necessary to
2118 * process a single work including synchronization against and
2119 * interaction with other workers on the same cpu, queueing and
2120 * flushing. As long as context requirement is met, any worker can
2121 * call this function to process a work.
2122 *
2123 * CONTEXT:
d565ed63 2124 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2125 */
c34056a3 2126static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2127__releases(&pool->lock)
2128__acquires(&pool->lock)
a62428c0 2129{
112202d9 2130 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2131 struct worker_pool *pool = worker->pool;
112202d9 2132 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2133 int work_color;
7e11629d 2134 struct worker *collision;
a62428c0
TH
2135#ifdef CONFIG_LOCKDEP
2136 /*
2137 * It is permissible to free the struct work_struct from
2138 * inside the function that is called from it, this we need to
2139 * take into account for lockdep too. To avoid bogus "held
2140 * lock freed" warnings as well as problems when looking into
2141 * work->lockdep_map, make a copy and use that here.
2142 */
4d82a1de
PZ
2143 struct lockdep_map lockdep_map;
2144
2145 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2146#endif
6fec10a1
TH
2147 /*
2148 * Ensure we're on the correct CPU. DISASSOCIATED test is
2149 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2150 * unbound or a disassociated pool.
6fec10a1 2151 */
5f7dabfd 2152 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2153 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2154 raw_smp_processor_id() != pool->cpu);
25511a47 2155
7e11629d
TH
2156 /*
2157 * A single work shouldn't be executed concurrently by
2158 * multiple workers on a single cpu. Check whether anyone is
2159 * already processing the work. If so, defer the work to the
2160 * currently executing one.
2161 */
c9e7cf27 2162 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2163 if (unlikely(collision)) {
2164 move_linked_works(work, &collision->scheduled, NULL);
2165 return;
2166 }
2167
8930caba 2168 /* claim and dequeue */
a62428c0 2169 debug_work_deactivate(work);
c9e7cf27 2170 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2171 worker->current_work = work;
a2c1c57b 2172 worker->current_func = work->func;
112202d9 2173 worker->current_pwq = pwq;
73f53c4a 2174 work_color = get_work_color(work);
7a22ad75 2175
a62428c0
TH
2176 list_del_init(&work->entry);
2177
fb0e7beb
TH
2178 /*
2179 * CPU intensive works don't participate in concurrency
2180 * management. They're the scheduler's responsibility.
2181 */
2182 if (unlikely(cpu_intensive))
2183 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2184
974271c4 2185 /*
d565ed63 2186 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2187 * executed ASAP. Wake up another worker if necessary.
2188 */
63d95a91
TH
2189 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2190 wake_up_worker(pool);
974271c4 2191
8930caba 2192 /*
7c3eed5c 2193 * Record the last pool and clear PENDING which should be the last
d565ed63 2194 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2195 * PENDING and queued state changes happen together while IRQ is
2196 * disabled.
8930caba 2197 */
7c3eed5c 2198 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2199
d565ed63 2200 spin_unlock_irq(&pool->lock);
a62428c0 2201
112202d9 2202 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2203 lock_map_acquire(&lockdep_map);
e36c886a 2204 trace_workqueue_execute_start(work);
a2c1c57b 2205 worker->current_func(work);
e36c886a
AV
2206 /*
2207 * While we must be careful to not use "work" after this, the trace
2208 * point will only record its address.
2209 */
2210 trace_workqueue_execute_end(work);
a62428c0 2211 lock_map_release(&lockdep_map);
112202d9 2212 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2213
2214 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2215 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2216 " last function: %pf\n",
a2c1c57b
TH
2217 current->comm, preempt_count(), task_pid_nr(current),
2218 worker->current_func);
a62428c0
TH
2219 debug_show_held_locks(current);
2220 dump_stack();
2221 }
2222
b22ce278
TH
2223 /*
2224 * The following prevents a kworker from hogging CPU on !PREEMPT
2225 * kernels, where a requeueing work item waiting for something to
2226 * happen could deadlock with stop_machine as such work item could
2227 * indefinitely requeue itself while all other CPUs are trapped in
2228 * stop_machine.
2229 */
2230 cond_resched();
2231
d565ed63 2232 spin_lock_irq(&pool->lock);
a62428c0 2233
fb0e7beb
TH
2234 /* clear cpu intensive status */
2235 if (unlikely(cpu_intensive))
2236 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2237
a62428c0 2238 /* we're done with it, release */
42f8570f 2239 hash_del(&worker->hentry);
c34056a3 2240 worker->current_work = NULL;
a2c1c57b 2241 worker->current_func = NULL;
112202d9 2242 worker->current_pwq = NULL;
3d1cb205 2243 worker->desc_valid = false;
112202d9 2244 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2245}
2246
affee4b2
TH
2247/**
2248 * process_scheduled_works - process scheduled works
2249 * @worker: self
2250 *
2251 * Process all scheduled works. Please note that the scheduled list
2252 * may change while processing a work, so this function repeatedly
2253 * fetches a work from the top and executes it.
2254 *
2255 * CONTEXT:
d565ed63 2256 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2257 * multiple times.
2258 */
2259static void process_scheduled_works(struct worker *worker)
1da177e4 2260{
affee4b2
TH
2261 while (!list_empty(&worker->scheduled)) {
2262 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2263 struct work_struct, entry);
c34056a3 2264 process_one_work(worker, work);
1da177e4 2265 }
1da177e4
LT
2266}
2267
4690c4ab
TH
2268/**
2269 * worker_thread - the worker thread function
c34056a3 2270 * @__worker: self
4690c4ab 2271 *
c5aa87bb
TH
2272 * The worker thread function. All workers belong to a worker_pool -
2273 * either a per-cpu one or dynamic unbound one. These workers process all
2274 * work items regardless of their specific target workqueue. The only
2275 * exception is work items which belong to workqueues with a rescuer which
2276 * will be explained in rescuer_thread().
d185af30
YB
2277 *
2278 * Return: 0
4690c4ab 2279 */
c34056a3 2280static int worker_thread(void *__worker)
1da177e4 2281{
c34056a3 2282 struct worker *worker = __worker;
bd7bdd43 2283 struct worker_pool *pool = worker->pool;
1da177e4 2284
e22bee78
TH
2285 /* tell the scheduler that this is a workqueue worker */
2286 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2287woke_up:
d565ed63 2288 spin_lock_irq(&pool->lock);
1da177e4 2289
a9ab775b
TH
2290 /* am I supposed to die? */
2291 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2292 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2293 WARN_ON_ONCE(!list_empty(&worker->entry));
2294 worker->task->flags &= ~PF_WQ_WORKER;
2295 return 0;
c8e55f36 2296 }
affee4b2 2297
c8e55f36 2298 worker_leave_idle(worker);
db7bccf4 2299recheck:
e22bee78 2300 /* no more worker necessary? */
63d95a91 2301 if (!need_more_worker(pool))
e22bee78
TH
2302 goto sleep;
2303
2304 /* do we need to manage? */
63d95a91 2305 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2306 goto recheck;
2307
c8e55f36
TH
2308 /*
2309 * ->scheduled list can only be filled while a worker is
2310 * preparing to process a work or actually processing it.
2311 * Make sure nobody diddled with it while I was sleeping.
2312 */
6183c009 2313 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2314
e22bee78 2315 /*
a9ab775b
TH
2316 * Finish PREP stage. We're guaranteed to have at least one idle
2317 * worker or that someone else has already assumed the manager
2318 * role. This is where @worker starts participating in concurrency
2319 * management if applicable and concurrency management is restored
2320 * after being rebound. See rebind_workers() for details.
e22bee78 2321 */
a9ab775b 2322 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2323
2324 do {
c8e55f36 2325 struct work_struct *work =
bd7bdd43 2326 list_first_entry(&pool->worklist,
c8e55f36
TH
2327 struct work_struct, entry);
2328
2329 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2330 /* optimization path, not strictly necessary */
2331 process_one_work(worker, work);
2332 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2333 process_scheduled_works(worker);
c8e55f36
TH
2334 } else {
2335 move_linked_works(work, &worker->scheduled, NULL);
2336 process_scheduled_works(worker);
affee4b2 2337 }
63d95a91 2338 } while (keep_working(pool));
e22bee78
TH
2339
2340 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2341sleep:
63d95a91 2342 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2343 goto recheck;
d313dd85 2344
c8e55f36 2345 /*
d565ed63
TH
2346 * pool->lock is held and there's no work to process and no need to
2347 * manage, sleep. Workers are woken up only while holding
2348 * pool->lock or from local cpu, so setting the current state
2349 * before releasing pool->lock is enough to prevent losing any
2350 * event.
c8e55f36
TH
2351 */
2352 worker_enter_idle(worker);
2353 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2354 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2355 schedule();
2356 goto woke_up;
1da177e4
LT
2357}
2358
e22bee78
TH
2359/**
2360 * rescuer_thread - the rescuer thread function
111c225a 2361 * @__rescuer: self
e22bee78
TH
2362 *
2363 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2364 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2365 *
706026c2 2366 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2367 * worker which uses GFP_KERNEL allocation which has slight chance of
2368 * developing into deadlock if some works currently on the same queue
2369 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2370 * the problem rescuer solves.
2371 *
706026c2
TH
2372 * When such condition is possible, the pool summons rescuers of all
2373 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2374 * those works so that forward progress can be guaranteed.
2375 *
2376 * This should happen rarely.
d185af30
YB
2377 *
2378 * Return: 0
e22bee78 2379 */
111c225a 2380static int rescuer_thread(void *__rescuer)
e22bee78 2381{
111c225a
TH
2382 struct worker *rescuer = __rescuer;
2383 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2384 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2385 bool should_stop;
e22bee78
TH
2386
2387 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2388
2389 /*
2390 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2391 * doesn't participate in concurrency management.
2392 */
2393 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2394repeat:
2395 set_current_state(TASK_INTERRUPTIBLE);
2396
4d595b86
LJ
2397 /*
2398 * By the time the rescuer is requested to stop, the workqueue
2399 * shouldn't have any work pending, but @wq->maydays may still have
2400 * pwq(s) queued. This can happen by non-rescuer workers consuming
2401 * all the work items before the rescuer got to them. Go through
2402 * @wq->maydays processing before acting on should_stop so that the
2403 * list is always empty on exit.
2404 */
2405 should_stop = kthread_should_stop();
e22bee78 2406
493a1724 2407 /* see whether any pwq is asking for help */
2e109a28 2408 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2409
2410 while (!list_empty(&wq->maydays)) {
2411 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2412 struct pool_workqueue, mayday_node);
112202d9 2413 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2414 struct work_struct *work, *n;
2415
2416 __set_current_state(TASK_RUNNING);
493a1724
TH
2417 list_del_init(&pwq->mayday_node);
2418
2e109a28 2419 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2420
2421 /* migrate to the target cpu if possible */
f36dc67b 2422 worker_maybe_bind_and_lock(pool);
b3104104 2423 rescuer->pool = pool;
e22bee78
TH
2424
2425 /*
2426 * Slurp in all works issued via this workqueue and
2427 * process'em.
2428 */
6183c009 2429 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2430 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2431 if (get_work_pwq(work) == pwq)
e22bee78
TH
2432 move_linked_works(work, scheduled, &n);
2433
2434 process_scheduled_works(rescuer);
7576958a 2435
77668c8b
LJ
2436 /*
2437 * Put the reference grabbed by send_mayday(). @pool won't
2438 * go away while we're holding its lock.
2439 */
2440 put_pwq(pwq);
2441
7576958a 2442 /*
d565ed63 2443 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2444 * regular worker; otherwise, we end up with 0 concurrency
2445 * and stalling the execution.
2446 */
63d95a91
TH
2447 if (keep_working(pool))
2448 wake_up_worker(pool);
7576958a 2449
b3104104 2450 rescuer->pool = NULL;
493a1724 2451 spin_unlock(&pool->lock);
2e109a28 2452 spin_lock(&wq_mayday_lock);
e22bee78
TH
2453 }
2454
2e109a28 2455 spin_unlock_irq(&wq_mayday_lock);
493a1724 2456
4d595b86
LJ
2457 if (should_stop) {
2458 __set_current_state(TASK_RUNNING);
2459 rescuer->task->flags &= ~PF_WQ_WORKER;
2460 return 0;
2461 }
2462
111c225a
TH
2463 /* rescuers should never participate in concurrency management */
2464 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2465 schedule();
2466 goto repeat;
1da177e4
LT
2467}
2468
fc2e4d70
ON
2469struct wq_barrier {
2470 struct work_struct work;
2471 struct completion done;
2472};
2473
2474static void wq_barrier_func(struct work_struct *work)
2475{
2476 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2477 complete(&barr->done);
2478}
2479
4690c4ab
TH
2480/**
2481 * insert_wq_barrier - insert a barrier work
112202d9 2482 * @pwq: pwq to insert barrier into
4690c4ab 2483 * @barr: wq_barrier to insert
affee4b2
TH
2484 * @target: target work to attach @barr to
2485 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2486 *
affee4b2
TH
2487 * @barr is linked to @target such that @barr is completed only after
2488 * @target finishes execution. Please note that the ordering
2489 * guarantee is observed only with respect to @target and on the local
2490 * cpu.
2491 *
2492 * Currently, a queued barrier can't be canceled. This is because
2493 * try_to_grab_pending() can't determine whether the work to be
2494 * grabbed is at the head of the queue and thus can't clear LINKED
2495 * flag of the previous work while there must be a valid next work
2496 * after a work with LINKED flag set.
2497 *
2498 * Note that when @worker is non-NULL, @target may be modified
112202d9 2499 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2500 *
2501 * CONTEXT:
d565ed63 2502 * spin_lock_irq(pool->lock).
4690c4ab 2503 */
112202d9 2504static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2505 struct wq_barrier *barr,
2506 struct work_struct *target, struct worker *worker)
fc2e4d70 2507{
affee4b2
TH
2508 struct list_head *head;
2509 unsigned int linked = 0;
2510
dc186ad7 2511 /*
d565ed63 2512 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2513 * as we know for sure that this will not trigger any of the
2514 * checks and call back into the fixup functions where we
2515 * might deadlock.
2516 */
ca1cab37 2517 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2518 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2519 init_completion(&barr->done);
83c22520 2520
affee4b2
TH
2521 /*
2522 * If @target is currently being executed, schedule the
2523 * barrier to the worker; otherwise, put it after @target.
2524 */
2525 if (worker)
2526 head = worker->scheduled.next;
2527 else {
2528 unsigned long *bits = work_data_bits(target);
2529
2530 head = target->entry.next;
2531 /* there can already be other linked works, inherit and set */
2532 linked = *bits & WORK_STRUCT_LINKED;
2533 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2534 }
2535
dc186ad7 2536 debug_work_activate(&barr->work);
112202d9 2537 insert_work(pwq, &barr->work, head,
affee4b2 2538 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2539}
2540
73f53c4a 2541/**
112202d9 2542 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2543 * @wq: workqueue being flushed
2544 * @flush_color: new flush color, < 0 for no-op
2545 * @work_color: new work color, < 0 for no-op
2546 *
112202d9 2547 * Prepare pwqs for workqueue flushing.
73f53c4a 2548 *
112202d9
TH
2549 * If @flush_color is non-negative, flush_color on all pwqs should be
2550 * -1. If no pwq has in-flight commands at the specified color, all
2551 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2552 * has in flight commands, its pwq->flush_color is set to
2553 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2554 * wakeup logic is armed and %true is returned.
2555 *
2556 * The caller should have initialized @wq->first_flusher prior to
2557 * calling this function with non-negative @flush_color. If
2558 * @flush_color is negative, no flush color update is done and %false
2559 * is returned.
2560 *
112202d9 2561 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2562 * work_color which is previous to @work_color and all will be
2563 * advanced to @work_color.
2564 *
2565 * CONTEXT:
3c25a55d 2566 * mutex_lock(wq->mutex).
73f53c4a 2567 *
d185af30 2568 * Return:
73f53c4a
TH
2569 * %true if @flush_color >= 0 and there's something to flush. %false
2570 * otherwise.
2571 */
112202d9 2572static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2573 int flush_color, int work_color)
1da177e4 2574{
73f53c4a 2575 bool wait = false;
49e3cf44 2576 struct pool_workqueue *pwq;
1da177e4 2577
73f53c4a 2578 if (flush_color >= 0) {
6183c009 2579 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2580 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2581 }
2355b70f 2582
49e3cf44 2583 for_each_pwq(pwq, wq) {
112202d9 2584 struct worker_pool *pool = pwq->pool;
fc2e4d70 2585
b09f4fd3 2586 spin_lock_irq(&pool->lock);
83c22520 2587
73f53c4a 2588 if (flush_color >= 0) {
6183c009 2589 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2590
112202d9
TH
2591 if (pwq->nr_in_flight[flush_color]) {
2592 pwq->flush_color = flush_color;
2593 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2594 wait = true;
2595 }
2596 }
1da177e4 2597
73f53c4a 2598 if (work_color >= 0) {
6183c009 2599 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2600 pwq->work_color = work_color;
73f53c4a 2601 }
1da177e4 2602
b09f4fd3 2603 spin_unlock_irq(&pool->lock);
1da177e4 2604 }
2355b70f 2605
112202d9 2606 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2607 complete(&wq->first_flusher->done);
14441960 2608
73f53c4a 2609 return wait;
1da177e4
LT
2610}
2611
0fcb78c2 2612/**
1da177e4 2613 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2614 * @wq: workqueue to flush
1da177e4 2615 *
c5aa87bb
TH
2616 * This function sleeps until all work items which were queued on entry
2617 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2618 */
7ad5b3a5 2619void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2620{
73f53c4a
TH
2621 struct wq_flusher this_flusher = {
2622 .list = LIST_HEAD_INIT(this_flusher.list),
2623 .flush_color = -1,
2624 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2625 };
2626 int next_color;
1da177e4 2627
3295f0ef
IM
2628 lock_map_acquire(&wq->lockdep_map);
2629 lock_map_release(&wq->lockdep_map);
73f53c4a 2630
3c25a55d 2631 mutex_lock(&wq->mutex);
73f53c4a
TH
2632
2633 /*
2634 * Start-to-wait phase
2635 */
2636 next_color = work_next_color(wq->work_color);
2637
2638 if (next_color != wq->flush_color) {
2639 /*
2640 * Color space is not full. The current work_color
2641 * becomes our flush_color and work_color is advanced
2642 * by one.
2643 */
6183c009 2644 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2645 this_flusher.flush_color = wq->work_color;
2646 wq->work_color = next_color;
2647
2648 if (!wq->first_flusher) {
2649 /* no flush in progress, become the first flusher */
6183c009 2650 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2651
2652 wq->first_flusher = &this_flusher;
2653
112202d9 2654 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2655 wq->work_color)) {
2656 /* nothing to flush, done */
2657 wq->flush_color = next_color;
2658 wq->first_flusher = NULL;
2659 goto out_unlock;
2660 }
2661 } else {
2662 /* wait in queue */
6183c009 2663 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2664 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2665 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2666 }
2667 } else {
2668 /*
2669 * Oops, color space is full, wait on overflow queue.
2670 * The next flush completion will assign us
2671 * flush_color and transfer to flusher_queue.
2672 */
2673 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2674 }
2675
3c25a55d 2676 mutex_unlock(&wq->mutex);
73f53c4a
TH
2677
2678 wait_for_completion(&this_flusher.done);
2679
2680 /*
2681 * Wake-up-and-cascade phase
2682 *
2683 * First flushers are responsible for cascading flushes and
2684 * handling overflow. Non-first flushers can simply return.
2685 */
2686 if (wq->first_flusher != &this_flusher)
2687 return;
2688
3c25a55d 2689 mutex_lock(&wq->mutex);
73f53c4a 2690
4ce48b37
TH
2691 /* we might have raced, check again with mutex held */
2692 if (wq->first_flusher != &this_flusher)
2693 goto out_unlock;
2694
73f53c4a
TH
2695 wq->first_flusher = NULL;
2696
6183c009
TH
2697 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2698 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2699
2700 while (true) {
2701 struct wq_flusher *next, *tmp;
2702
2703 /* complete all the flushers sharing the current flush color */
2704 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2705 if (next->flush_color != wq->flush_color)
2706 break;
2707 list_del_init(&next->list);
2708 complete(&next->done);
2709 }
2710
6183c009
TH
2711 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2712 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2713
2714 /* this flush_color is finished, advance by one */
2715 wq->flush_color = work_next_color(wq->flush_color);
2716
2717 /* one color has been freed, handle overflow queue */
2718 if (!list_empty(&wq->flusher_overflow)) {
2719 /*
2720 * Assign the same color to all overflowed
2721 * flushers, advance work_color and append to
2722 * flusher_queue. This is the start-to-wait
2723 * phase for these overflowed flushers.
2724 */
2725 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2726 tmp->flush_color = wq->work_color;
2727
2728 wq->work_color = work_next_color(wq->work_color);
2729
2730 list_splice_tail_init(&wq->flusher_overflow,
2731 &wq->flusher_queue);
112202d9 2732 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2733 }
2734
2735 if (list_empty(&wq->flusher_queue)) {
6183c009 2736 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2737 break;
2738 }
2739
2740 /*
2741 * Need to flush more colors. Make the next flusher
112202d9 2742 * the new first flusher and arm pwqs.
73f53c4a 2743 */
6183c009
TH
2744 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2745 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2746
2747 list_del_init(&next->list);
2748 wq->first_flusher = next;
2749
112202d9 2750 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2751 break;
2752
2753 /*
2754 * Meh... this color is already done, clear first
2755 * flusher and repeat cascading.
2756 */
2757 wq->first_flusher = NULL;
2758 }
2759
2760out_unlock:
3c25a55d 2761 mutex_unlock(&wq->mutex);
1da177e4 2762}
ae90dd5d 2763EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2764
9c5a2ba7
TH
2765/**
2766 * drain_workqueue - drain a workqueue
2767 * @wq: workqueue to drain
2768 *
2769 * Wait until the workqueue becomes empty. While draining is in progress,
2770 * only chain queueing is allowed. IOW, only currently pending or running
2771 * work items on @wq can queue further work items on it. @wq is flushed
2772 * repeatedly until it becomes empty. The number of flushing is detemined
2773 * by the depth of chaining and should be relatively short. Whine if it
2774 * takes too long.
2775 */
2776void drain_workqueue(struct workqueue_struct *wq)
2777{
2778 unsigned int flush_cnt = 0;
49e3cf44 2779 struct pool_workqueue *pwq;
9c5a2ba7
TH
2780
2781 /*
2782 * __queue_work() needs to test whether there are drainers, is much
2783 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2784 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2785 */
87fc741e 2786 mutex_lock(&wq->mutex);
9c5a2ba7 2787 if (!wq->nr_drainers++)
618b01eb 2788 wq->flags |= __WQ_DRAINING;
87fc741e 2789 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2790reflush:
2791 flush_workqueue(wq);
2792
b09f4fd3 2793 mutex_lock(&wq->mutex);
76af4d93 2794
49e3cf44 2795 for_each_pwq(pwq, wq) {
fa2563e4 2796 bool drained;
9c5a2ba7 2797
b09f4fd3 2798 spin_lock_irq(&pwq->pool->lock);
112202d9 2799 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2800 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2801
2802 if (drained)
9c5a2ba7
TH
2803 continue;
2804
2805 if (++flush_cnt == 10 ||
2806 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2807 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2808 wq->name, flush_cnt);
76af4d93 2809
b09f4fd3 2810 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2811 goto reflush;
2812 }
2813
9c5a2ba7 2814 if (!--wq->nr_drainers)
618b01eb 2815 wq->flags &= ~__WQ_DRAINING;
87fc741e 2816 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2817}
2818EXPORT_SYMBOL_GPL(drain_workqueue);
2819
606a5020 2820static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2821{
affee4b2 2822 struct worker *worker = NULL;
c9e7cf27 2823 struct worker_pool *pool;
112202d9 2824 struct pool_workqueue *pwq;
db700897
ON
2825
2826 might_sleep();
fa1b54e6
TH
2827
2828 local_irq_disable();
c9e7cf27 2829 pool = get_work_pool(work);
fa1b54e6
TH
2830 if (!pool) {
2831 local_irq_enable();
baf59022 2832 return false;
fa1b54e6 2833 }
db700897 2834
fa1b54e6 2835 spin_lock(&pool->lock);
0b3dae68 2836 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2837 pwq = get_work_pwq(work);
2838 if (pwq) {
2839 if (unlikely(pwq->pool != pool))
4690c4ab 2840 goto already_gone;
606a5020 2841 } else {
c9e7cf27 2842 worker = find_worker_executing_work(pool, work);
affee4b2 2843 if (!worker)
4690c4ab 2844 goto already_gone;
112202d9 2845 pwq = worker->current_pwq;
606a5020 2846 }
db700897 2847
112202d9 2848 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2849 spin_unlock_irq(&pool->lock);
7a22ad75 2850
e159489b
TH
2851 /*
2852 * If @max_active is 1 or rescuer is in use, flushing another work
2853 * item on the same workqueue may lead to deadlock. Make sure the
2854 * flusher is not running on the same workqueue by verifying write
2855 * access.
2856 */
493008a8 2857 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2858 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2859 else
112202d9
TH
2860 lock_map_acquire_read(&pwq->wq->lockdep_map);
2861 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2862
401a8d04 2863 return true;
4690c4ab 2864already_gone:
d565ed63 2865 spin_unlock_irq(&pool->lock);
401a8d04 2866 return false;
db700897 2867}
baf59022
TH
2868
2869/**
2870 * flush_work - wait for a work to finish executing the last queueing instance
2871 * @work: the work to flush
2872 *
606a5020
TH
2873 * Wait until @work has finished execution. @work is guaranteed to be idle
2874 * on return if it hasn't been requeued since flush started.
baf59022 2875 *
d185af30 2876 * Return:
baf59022
TH
2877 * %true if flush_work() waited for the work to finish execution,
2878 * %false if it was already idle.
2879 */
2880bool flush_work(struct work_struct *work)
2881{
12997d1a
BH
2882 struct wq_barrier barr;
2883
0976dfc1
SB
2884 lock_map_acquire(&work->lockdep_map);
2885 lock_map_release(&work->lockdep_map);
2886
12997d1a
BH
2887 if (start_flush_work(work, &barr)) {
2888 wait_for_completion(&barr.done);
2889 destroy_work_on_stack(&barr.work);
2890 return true;
2891 } else {
2892 return false;
2893 }
6e84d644 2894}
606a5020 2895EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2896
36e227d2 2897static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2898{
bbb68dfa 2899 unsigned long flags;
1f1f642e
ON
2900 int ret;
2901
2902 do {
bbb68dfa
TH
2903 ret = try_to_grab_pending(work, is_dwork, &flags);
2904 /*
2905 * If someone else is canceling, wait for the same event it
2906 * would be waiting for before retrying.
2907 */
2908 if (unlikely(ret == -ENOENT))
606a5020 2909 flush_work(work);
1f1f642e
ON
2910 } while (unlikely(ret < 0));
2911
bbb68dfa
TH
2912 /* tell other tasks trying to grab @work to back off */
2913 mark_work_canceling(work);
2914 local_irq_restore(flags);
2915
606a5020 2916 flush_work(work);
7a22ad75 2917 clear_work_data(work);
1f1f642e
ON
2918 return ret;
2919}
2920
6e84d644 2921/**
401a8d04
TH
2922 * cancel_work_sync - cancel a work and wait for it to finish
2923 * @work: the work to cancel
6e84d644 2924 *
401a8d04
TH
2925 * Cancel @work and wait for its execution to finish. This function
2926 * can be used even if the work re-queues itself or migrates to
2927 * another workqueue. On return from this function, @work is
2928 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2929 *
401a8d04
TH
2930 * cancel_work_sync(&delayed_work->work) must not be used for
2931 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2932 *
401a8d04 2933 * The caller must ensure that the workqueue on which @work was last
6e84d644 2934 * queued can't be destroyed before this function returns.
401a8d04 2935 *
d185af30 2936 * Return:
401a8d04 2937 * %true if @work was pending, %false otherwise.
6e84d644 2938 */
401a8d04 2939bool cancel_work_sync(struct work_struct *work)
6e84d644 2940{
36e227d2 2941 return __cancel_work_timer(work, false);
b89deed3 2942}
28e53bdd 2943EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2944
6e84d644 2945/**
401a8d04
TH
2946 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2947 * @dwork: the delayed work to flush
6e84d644 2948 *
401a8d04
TH
2949 * Delayed timer is cancelled and the pending work is queued for
2950 * immediate execution. Like flush_work(), this function only
2951 * considers the last queueing instance of @dwork.
1f1f642e 2952 *
d185af30 2953 * Return:
401a8d04
TH
2954 * %true if flush_work() waited for the work to finish execution,
2955 * %false if it was already idle.
6e84d644 2956 */
401a8d04
TH
2957bool flush_delayed_work(struct delayed_work *dwork)
2958{
8930caba 2959 local_irq_disable();
401a8d04 2960 if (del_timer_sync(&dwork->timer))
60c057bc 2961 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2962 local_irq_enable();
401a8d04
TH
2963 return flush_work(&dwork->work);
2964}
2965EXPORT_SYMBOL(flush_delayed_work);
2966
09383498 2967/**
57b30ae7
TH
2968 * cancel_delayed_work - cancel a delayed work
2969 * @dwork: delayed_work to cancel
09383498 2970 *
d185af30
YB
2971 * Kill off a pending delayed_work.
2972 *
2973 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2974 * pending.
2975 *
2976 * Note:
2977 * The work callback function may still be running on return, unless
2978 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2979 * use cancel_delayed_work_sync() to wait on it.
09383498 2980 *
57b30ae7 2981 * This function is safe to call from any context including IRQ handler.
09383498 2982 */
57b30ae7 2983bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2984{
57b30ae7
TH
2985 unsigned long flags;
2986 int ret;
2987
2988 do {
2989 ret = try_to_grab_pending(&dwork->work, true, &flags);
2990 } while (unlikely(ret == -EAGAIN));
2991
2992 if (unlikely(ret < 0))
2993 return false;
2994
7c3eed5c
TH
2995 set_work_pool_and_clear_pending(&dwork->work,
2996 get_work_pool_id(&dwork->work));
57b30ae7 2997 local_irq_restore(flags);
c0158ca6 2998 return ret;
09383498 2999}
57b30ae7 3000EXPORT_SYMBOL(cancel_delayed_work);
09383498 3001
401a8d04
TH
3002/**
3003 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3004 * @dwork: the delayed work cancel
3005 *
3006 * This is cancel_work_sync() for delayed works.
3007 *
d185af30 3008 * Return:
401a8d04
TH
3009 * %true if @dwork was pending, %false otherwise.
3010 */
3011bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3012{
36e227d2 3013 return __cancel_work_timer(&dwork->work, true);
6e84d644 3014}
f5a421a4 3015EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3016
b6136773 3017/**
31ddd871 3018 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3019 * @func: the function to call
b6136773 3020 *
31ddd871
TH
3021 * schedule_on_each_cpu() executes @func on each online CPU using the
3022 * system workqueue and blocks until all CPUs have completed.
b6136773 3023 * schedule_on_each_cpu() is very slow.
31ddd871 3024 *
d185af30 3025 * Return:
31ddd871 3026 * 0 on success, -errno on failure.
b6136773 3027 */
65f27f38 3028int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3029{
3030 int cpu;
38f51568 3031 struct work_struct __percpu *works;
15316ba8 3032
b6136773
AM
3033 works = alloc_percpu(struct work_struct);
3034 if (!works)
15316ba8 3035 return -ENOMEM;
b6136773 3036
93981800
TH
3037 get_online_cpus();
3038
15316ba8 3039 for_each_online_cpu(cpu) {
9bfb1839
IM
3040 struct work_struct *work = per_cpu_ptr(works, cpu);
3041
3042 INIT_WORK(work, func);
b71ab8c2 3043 schedule_work_on(cpu, work);
65a64464 3044 }
93981800
TH
3045
3046 for_each_online_cpu(cpu)
3047 flush_work(per_cpu_ptr(works, cpu));
3048
95402b38 3049 put_online_cpus();
b6136773 3050 free_percpu(works);
15316ba8
CL
3051 return 0;
3052}
3053
eef6a7d5
AS
3054/**
3055 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3056 *
3057 * Forces execution of the kernel-global workqueue and blocks until its
3058 * completion.
3059 *
3060 * Think twice before calling this function! It's very easy to get into
3061 * trouble if you don't take great care. Either of the following situations
3062 * will lead to deadlock:
3063 *
3064 * One of the work items currently on the workqueue needs to acquire
3065 * a lock held by your code or its caller.
3066 *
3067 * Your code is running in the context of a work routine.
3068 *
3069 * They will be detected by lockdep when they occur, but the first might not
3070 * occur very often. It depends on what work items are on the workqueue and
3071 * what locks they need, which you have no control over.
3072 *
3073 * In most situations flushing the entire workqueue is overkill; you merely
3074 * need to know that a particular work item isn't queued and isn't running.
3075 * In such cases you should use cancel_delayed_work_sync() or
3076 * cancel_work_sync() instead.
3077 */
1da177e4
LT
3078void flush_scheduled_work(void)
3079{
d320c038 3080 flush_workqueue(system_wq);
1da177e4 3081}
ae90dd5d 3082EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3083
1fa44eca
JB
3084/**
3085 * execute_in_process_context - reliably execute the routine with user context
3086 * @fn: the function to execute
1fa44eca
JB
3087 * @ew: guaranteed storage for the execute work structure (must
3088 * be available when the work executes)
3089 *
3090 * Executes the function immediately if process context is available,
3091 * otherwise schedules the function for delayed execution.
3092 *
d185af30 3093 * Return: 0 - function was executed
1fa44eca
JB
3094 * 1 - function was scheduled for execution
3095 */
65f27f38 3096int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3097{
3098 if (!in_interrupt()) {
65f27f38 3099 fn(&ew->work);
1fa44eca
JB
3100 return 0;
3101 }
3102
65f27f38 3103 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3104 schedule_work(&ew->work);
3105
3106 return 1;
3107}
3108EXPORT_SYMBOL_GPL(execute_in_process_context);
3109
226223ab
TH
3110#ifdef CONFIG_SYSFS
3111/*
3112 * Workqueues with WQ_SYSFS flag set is visible to userland via
3113 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3114 * following attributes.
3115 *
3116 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3117 * max_active RW int : maximum number of in-flight work items
3118 *
3119 * Unbound workqueues have the following extra attributes.
3120 *
3121 * id RO int : the associated pool ID
3122 * nice RW int : nice value of the workers
3123 * cpumask RW mask : bitmask of allowed CPUs for the workers
3124 */
3125struct wq_device {
3126 struct workqueue_struct *wq;
3127 struct device dev;
3128};
3129
3130static struct workqueue_struct *dev_to_wq(struct device *dev)
3131{
3132 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3133
3134 return wq_dev->wq;
3135}
3136
1a6661da
GKH
3137static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3138 char *buf)
226223ab
TH
3139{
3140 struct workqueue_struct *wq = dev_to_wq(dev);
3141
3142 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3143}
1a6661da 3144static DEVICE_ATTR_RO(per_cpu);
226223ab 3145
1a6661da
GKH
3146static ssize_t max_active_show(struct device *dev,
3147 struct device_attribute *attr, char *buf)
226223ab
TH
3148{
3149 struct workqueue_struct *wq = dev_to_wq(dev);
3150
3151 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3152}
3153
1a6661da
GKH
3154static ssize_t max_active_store(struct device *dev,
3155 struct device_attribute *attr, const char *buf,
3156 size_t count)
226223ab
TH
3157{
3158 struct workqueue_struct *wq = dev_to_wq(dev);
3159 int val;
3160
3161 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3162 return -EINVAL;
3163
3164 workqueue_set_max_active(wq, val);
3165 return count;
3166}
1a6661da 3167static DEVICE_ATTR_RW(max_active);
226223ab 3168
1a6661da
GKH
3169static struct attribute *wq_sysfs_attrs[] = {
3170 &dev_attr_per_cpu.attr,
3171 &dev_attr_max_active.attr,
3172 NULL,
226223ab 3173};
1a6661da 3174ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3175
d55262c4
TH
3176static ssize_t wq_pool_ids_show(struct device *dev,
3177 struct device_attribute *attr, char *buf)
226223ab
TH
3178{
3179 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3180 const char *delim = "";
3181 int node, written = 0;
226223ab
TH
3182
3183 rcu_read_lock_sched();
d55262c4
TH
3184 for_each_node(node) {
3185 written += scnprintf(buf + written, PAGE_SIZE - written,
3186 "%s%d:%d", delim, node,
3187 unbound_pwq_by_node(wq, node)->pool->id);
3188 delim = " ";
3189 }
3190 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3191 rcu_read_unlock_sched();
3192
3193 return written;
3194}
3195
3196static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3197 char *buf)
3198{
3199 struct workqueue_struct *wq = dev_to_wq(dev);
3200 int written;
3201
6029a918
TH
3202 mutex_lock(&wq->mutex);
3203 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3204 mutex_unlock(&wq->mutex);
226223ab
TH
3205
3206 return written;
3207}
3208
3209/* prepare workqueue_attrs for sysfs store operations */
3210static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3211{
3212 struct workqueue_attrs *attrs;
3213
3214 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3215 if (!attrs)
3216 return NULL;
3217
6029a918
TH
3218 mutex_lock(&wq->mutex);
3219 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3220 mutex_unlock(&wq->mutex);
226223ab
TH
3221 return attrs;
3222}
3223
3224static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3225 const char *buf, size_t count)
3226{
3227 struct workqueue_struct *wq = dev_to_wq(dev);
3228 struct workqueue_attrs *attrs;
3229 int ret;
3230
3231 attrs = wq_sysfs_prep_attrs(wq);
3232 if (!attrs)
3233 return -ENOMEM;
3234
3235 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3236 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3237 ret = apply_workqueue_attrs(wq, attrs);
3238 else
3239 ret = -EINVAL;
3240
3241 free_workqueue_attrs(attrs);
3242 return ret ?: count;
3243}
3244
3245static ssize_t wq_cpumask_show(struct device *dev,
3246 struct device_attribute *attr, char *buf)
3247{
3248 struct workqueue_struct *wq = dev_to_wq(dev);
3249 int written;
3250
6029a918
TH
3251 mutex_lock(&wq->mutex);
3252 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3253 mutex_unlock(&wq->mutex);
226223ab
TH
3254
3255 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3256 return written;
3257}
3258
3259static ssize_t wq_cpumask_store(struct device *dev,
3260 struct device_attribute *attr,
3261 const char *buf, size_t count)
3262{
3263 struct workqueue_struct *wq = dev_to_wq(dev);
3264 struct workqueue_attrs *attrs;
3265 int ret;
3266
3267 attrs = wq_sysfs_prep_attrs(wq);
3268 if (!attrs)
3269 return -ENOMEM;
3270
3271 ret = cpumask_parse(buf, attrs->cpumask);
3272 if (!ret)
3273 ret = apply_workqueue_attrs(wq, attrs);
3274
3275 free_workqueue_attrs(attrs);
3276 return ret ?: count;
3277}
3278
d55262c4
TH
3279static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3280 char *buf)
3281{
3282 struct workqueue_struct *wq = dev_to_wq(dev);
3283 int written;
3284
3285 mutex_lock(&wq->mutex);
3286 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3287 !wq->unbound_attrs->no_numa);
3288 mutex_unlock(&wq->mutex);
3289
3290 return written;
3291}
3292
3293static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3294 const char *buf, size_t count)
3295{
3296 struct workqueue_struct *wq = dev_to_wq(dev);
3297 struct workqueue_attrs *attrs;
3298 int v, ret;
3299
3300 attrs = wq_sysfs_prep_attrs(wq);
3301 if (!attrs)
3302 return -ENOMEM;
3303
3304 ret = -EINVAL;
3305 if (sscanf(buf, "%d", &v) == 1) {
3306 attrs->no_numa = !v;
3307 ret = apply_workqueue_attrs(wq, attrs);
3308 }
3309
3310 free_workqueue_attrs(attrs);
3311 return ret ?: count;
3312}
3313
226223ab 3314static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3315 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3316 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3317 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3318 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3319 __ATTR_NULL,
3320};
3321
3322static struct bus_type wq_subsys = {
3323 .name = "workqueue",
1a6661da 3324 .dev_groups = wq_sysfs_groups,
226223ab
TH
3325};
3326
3327static int __init wq_sysfs_init(void)
3328{
3329 return subsys_virtual_register(&wq_subsys, NULL);
3330}
3331core_initcall(wq_sysfs_init);
3332
3333static void wq_device_release(struct device *dev)
3334{
3335 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3336
3337 kfree(wq_dev);
3338}
3339
3340/**
3341 * workqueue_sysfs_register - make a workqueue visible in sysfs
3342 * @wq: the workqueue to register
3343 *
3344 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3345 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3346 * which is the preferred method.
3347 *
3348 * Workqueue user should use this function directly iff it wants to apply
3349 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3350 * apply_workqueue_attrs() may race against userland updating the
3351 * attributes.
3352 *
d185af30 3353 * Return: 0 on success, -errno on failure.
226223ab
TH
3354 */
3355int workqueue_sysfs_register(struct workqueue_struct *wq)
3356{
3357 struct wq_device *wq_dev;
3358 int ret;
3359
3360 /*
3361 * Adjusting max_active or creating new pwqs by applyting
3362 * attributes breaks ordering guarantee. Disallow exposing ordered
3363 * workqueues.
3364 */
3365 if (WARN_ON(wq->flags & __WQ_ORDERED))
3366 return -EINVAL;
3367
3368 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3369 if (!wq_dev)
3370 return -ENOMEM;
3371
3372 wq_dev->wq = wq;
3373 wq_dev->dev.bus = &wq_subsys;
3374 wq_dev->dev.init_name = wq->name;
3375 wq_dev->dev.release = wq_device_release;
3376
3377 /*
3378 * unbound_attrs are created separately. Suppress uevent until
3379 * everything is ready.
3380 */
3381 dev_set_uevent_suppress(&wq_dev->dev, true);
3382
3383 ret = device_register(&wq_dev->dev);
3384 if (ret) {
3385 kfree(wq_dev);
3386 wq->wq_dev = NULL;
3387 return ret;
3388 }
3389
3390 if (wq->flags & WQ_UNBOUND) {
3391 struct device_attribute *attr;
3392
3393 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3394 ret = device_create_file(&wq_dev->dev, attr);
3395 if (ret) {
3396 device_unregister(&wq_dev->dev);
3397 wq->wq_dev = NULL;
3398 return ret;
3399 }
3400 }
3401 }
3402
3403 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3404 return 0;
3405}
3406
3407/**
3408 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3409 * @wq: the workqueue to unregister
3410 *
3411 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3412 */
3413static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3414{
3415 struct wq_device *wq_dev = wq->wq_dev;
3416
3417 if (!wq->wq_dev)
3418 return;
3419
3420 wq->wq_dev = NULL;
3421 device_unregister(&wq_dev->dev);
3422}
3423#else /* CONFIG_SYSFS */
3424static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3425#endif /* CONFIG_SYSFS */
3426
7a4e344c
TH
3427/**
3428 * free_workqueue_attrs - free a workqueue_attrs
3429 * @attrs: workqueue_attrs to free
3430 *
3431 * Undo alloc_workqueue_attrs().
3432 */
3433void free_workqueue_attrs(struct workqueue_attrs *attrs)
3434{
3435 if (attrs) {
3436 free_cpumask_var(attrs->cpumask);
3437 kfree(attrs);
3438 }
3439}
3440
3441/**
3442 * alloc_workqueue_attrs - allocate a workqueue_attrs
3443 * @gfp_mask: allocation mask to use
3444 *
3445 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3446 * return it.
3447 *
3448 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3449 */
3450struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3451{
3452 struct workqueue_attrs *attrs;
3453
3454 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3455 if (!attrs)
3456 goto fail;
3457 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3458 goto fail;
3459
13e2e556 3460 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3461 return attrs;
3462fail:
3463 free_workqueue_attrs(attrs);
3464 return NULL;
3465}
3466
29c91e99
TH
3467static void copy_workqueue_attrs(struct workqueue_attrs *to,
3468 const struct workqueue_attrs *from)
3469{
3470 to->nice = from->nice;
3471 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3472 /*
3473 * Unlike hash and equality test, this function doesn't ignore
3474 * ->no_numa as it is used for both pool and wq attrs. Instead,
3475 * get_unbound_pool() explicitly clears ->no_numa after copying.
3476 */
3477 to->no_numa = from->no_numa;
29c91e99
TH
3478}
3479
29c91e99
TH
3480/* hash value of the content of @attr */
3481static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3482{
3483 u32 hash = 0;
3484
3485 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3486 hash = jhash(cpumask_bits(attrs->cpumask),
3487 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3488 return hash;
3489}
3490
3491/* content equality test */
3492static bool wqattrs_equal(const struct workqueue_attrs *a,
3493 const struct workqueue_attrs *b)
3494{
3495 if (a->nice != b->nice)
3496 return false;
3497 if (!cpumask_equal(a->cpumask, b->cpumask))
3498 return false;
3499 return true;
3500}
3501
7a4e344c
TH
3502/**
3503 * init_worker_pool - initialize a newly zalloc'd worker_pool
3504 * @pool: worker_pool to initialize
3505 *
3506 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3507 *
3508 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3509 * inside @pool proper are initialized and put_unbound_pool() can be called
3510 * on @pool safely to release it.
7a4e344c
TH
3511 */
3512static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3513{
3514 spin_lock_init(&pool->lock);
29c91e99
TH
3515 pool->id = -1;
3516 pool->cpu = -1;
f3f90ad4 3517 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3518 pool->flags |= POOL_DISASSOCIATED;
3519 INIT_LIST_HEAD(&pool->worklist);
3520 INIT_LIST_HEAD(&pool->idle_list);
3521 hash_init(pool->busy_hash);
3522
3523 init_timer_deferrable(&pool->idle_timer);
3524 pool->idle_timer.function = idle_worker_timeout;
3525 pool->idle_timer.data = (unsigned long)pool;
3526
3527 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3528 (unsigned long)pool);
3529
3530 mutex_init(&pool->manager_arb);
bc3a1afc 3531 mutex_init(&pool->manager_mutex);
822d8405 3532 idr_init(&pool->worker_idr);
7a4e344c 3533
29c91e99
TH
3534 INIT_HLIST_NODE(&pool->hash_node);
3535 pool->refcnt = 1;
3536
3537 /* shouldn't fail above this point */
7a4e344c
TH
3538 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3539 if (!pool->attrs)
3540 return -ENOMEM;
3541 return 0;
4e1a1f9a
TH
3542}
3543
29c91e99
TH
3544static void rcu_free_pool(struct rcu_head *rcu)
3545{
3546 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3547
822d8405 3548 idr_destroy(&pool->worker_idr);
29c91e99
TH
3549 free_workqueue_attrs(pool->attrs);
3550 kfree(pool);
3551}
3552
3553/**
3554 * put_unbound_pool - put a worker_pool
3555 * @pool: worker_pool to put
3556 *
3557 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3558 * safe manner. get_unbound_pool() calls this function on its failure path
3559 * and this function should be able to release pools which went through,
3560 * successfully or not, init_worker_pool().
a892cacc
TH
3561 *
3562 * Should be called with wq_pool_mutex held.
29c91e99
TH
3563 */
3564static void put_unbound_pool(struct worker_pool *pool)
3565{
3566 struct worker *worker;
3567
a892cacc
TH
3568 lockdep_assert_held(&wq_pool_mutex);
3569
3570 if (--pool->refcnt)
29c91e99 3571 return;
29c91e99
TH
3572
3573 /* sanity checks */
3574 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3575 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3576 return;
29c91e99
TH
3577
3578 /* release id and unhash */
3579 if (pool->id >= 0)
3580 idr_remove(&worker_pool_idr, pool->id);
3581 hash_del(&pool->hash_node);
3582
c5aa87bb
TH
3583 /*
3584 * Become the manager and destroy all workers. Grabbing
3585 * manager_arb prevents @pool's workers from blocking on
3586 * manager_mutex.
3587 */
29c91e99 3588 mutex_lock(&pool->manager_arb);
cd549687 3589 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3590 spin_lock_irq(&pool->lock);
3591
3592 while ((worker = first_worker(pool)))
3593 destroy_worker(worker);
3594 WARN_ON(pool->nr_workers || pool->nr_idle);
3595
3596 spin_unlock_irq(&pool->lock);
cd549687 3597 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3598 mutex_unlock(&pool->manager_arb);
3599
3600 /* shut down the timers */
3601 del_timer_sync(&pool->idle_timer);
3602 del_timer_sync(&pool->mayday_timer);
3603
3604 /* sched-RCU protected to allow dereferences from get_work_pool() */
3605 call_rcu_sched(&pool->rcu, rcu_free_pool);
3606}
3607
3608/**
3609 * get_unbound_pool - get a worker_pool with the specified attributes
3610 * @attrs: the attributes of the worker_pool to get
3611 *
3612 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3613 * reference count and return it. If there already is a matching
3614 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3615 * create a new one.
a892cacc
TH
3616 *
3617 * Should be called with wq_pool_mutex held.
d185af30
YB
3618 *
3619 * Return: On success, a worker_pool with the same attributes as @attrs.
3620 * On failure, %NULL.
29c91e99
TH
3621 */
3622static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3623{
29c91e99
TH
3624 u32 hash = wqattrs_hash(attrs);
3625 struct worker_pool *pool;
f3f90ad4 3626 int node;
29c91e99 3627
a892cacc 3628 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3629
3630 /* do we already have a matching pool? */
29c91e99
TH
3631 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3632 if (wqattrs_equal(pool->attrs, attrs)) {
3633 pool->refcnt++;
3634 goto out_unlock;
3635 }
3636 }
29c91e99
TH
3637
3638 /* nope, create a new one */
3639 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3640 if (!pool || init_worker_pool(pool) < 0)
3641 goto fail;
3642
12ee4fc6
LJ
3643 if (workqueue_freezing)
3644 pool->flags |= POOL_FREEZING;
3645
8864b4e5 3646 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3647 copy_workqueue_attrs(pool->attrs, attrs);
3648
2865a8fb
SL
3649 /*
3650 * no_numa isn't a worker_pool attribute, always clear it. See
3651 * 'struct workqueue_attrs' comments for detail.
3652 */
3653 pool->attrs->no_numa = false;
3654
f3f90ad4
TH
3655 /* if cpumask is contained inside a NUMA node, we belong to that node */
3656 if (wq_numa_enabled) {
3657 for_each_node(node) {
3658 if (cpumask_subset(pool->attrs->cpumask,
3659 wq_numa_possible_cpumask[node])) {
3660 pool->node = node;
3661 break;
3662 }
3663 }
3664 }
3665
29c91e99
TH
3666 if (worker_pool_assign_id(pool) < 0)
3667 goto fail;
3668
3669 /* create and start the initial worker */
ebf44d16 3670 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3671 goto fail;
3672
29c91e99 3673 /* install */
29c91e99
TH
3674 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3675out_unlock:
29c91e99
TH
3676 return pool;
3677fail:
29c91e99
TH
3678 if (pool)
3679 put_unbound_pool(pool);
3680 return NULL;
3681}
3682
8864b4e5
TH
3683static void rcu_free_pwq(struct rcu_head *rcu)
3684{
3685 kmem_cache_free(pwq_cache,
3686 container_of(rcu, struct pool_workqueue, rcu));
3687}
3688
3689/*
3690 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3691 * and needs to be destroyed.
3692 */
3693static void pwq_unbound_release_workfn(struct work_struct *work)
3694{
3695 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3696 unbound_release_work);
3697 struct workqueue_struct *wq = pwq->wq;
3698 struct worker_pool *pool = pwq->pool;
bc0caf09 3699 bool is_last;
8864b4e5
TH
3700
3701 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3702 return;
3703
75ccf595 3704 /*
3c25a55d 3705 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3706 * necessary on release but do it anyway. It's easier to verify
3707 * and consistent with the linking path.
3708 */
3c25a55d 3709 mutex_lock(&wq->mutex);
8864b4e5 3710 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3711 is_last = list_empty(&wq->pwqs);
3c25a55d 3712 mutex_unlock(&wq->mutex);
8864b4e5 3713
a892cacc 3714 mutex_lock(&wq_pool_mutex);
8864b4e5 3715 put_unbound_pool(pool);
a892cacc
TH
3716 mutex_unlock(&wq_pool_mutex);
3717
8864b4e5
TH
3718 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3719
3720 /*
3721 * If we're the last pwq going away, @wq is already dead and no one
3722 * is gonna access it anymore. Free it.
3723 */
6029a918
TH
3724 if (is_last) {
3725 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3726 kfree(wq);
6029a918 3727 }
8864b4e5
TH
3728}
3729
0fbd95aa 3730/**
699ce097 3731 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3732 * @pwq: target pool_workqueue
0fbd95aa 3733 *
699ce097
TH
3734 * If @pwq isn't freezing, set @pwq->max_active to the associated
3735 * workqueue's saved_max_active and activate delayed work items
3736 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3737 */
699ce097 3738static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3739{
699ce097
TH
3740 struct workqueue_struct *wq = pwq->wq;
3741 bool freezable = wq->flags & WQ_FREEZABLE;
3742
3743 /* for @wq->saved_max_active */
a357fc03 3744 lockdep_assert_held(&wq->mutex);
699ce097
TH
3745
3746 /* fast exit for non-freezable wqs */
3747 if (!freezable && pwq->max_active == wq->saved_max_active)
3748 return;
3749
a357fc03 3750 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3751
3752 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3753 pwq->max_active = wq->saved_max_active;
0fbd95aa 3754
699ce097
TH
3755 while (!list_empty(&pwq->delayed_works) &&
3756 pwq->nr_active < pwq->max_active)
3757 pwq_activate_first_delayed(pwq);
951a078a
LJ
3758
3759 /*
3760 * Need to kick a worker after thawed or an unbound wq's
3761 * max_active is bumped. It's a slow path. Do it always.
3762 */
3763 wake_up_worker(pwq->pool);
699ce097
TH
3764 } else {
3765 pwq->max_active = 0;
3766 }
3767
a357fc03 3768 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3769}
3770
e50aba9a 3771/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3772static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3773 struct worker_pool *pool)
d2c1d404
TH
3774{
3775 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3776
e50aba9a
TH
3777 memset(pwq, 0, sizeof(*pwq));
3778
d2c1d404
TH
3779 pwq->pool = pool;
3780 pwq->wq = wq;
3781 pwq->flush_color = -1;
8864b4e5 3782 pwq->refcnt = 1;
d2c1d404 3783 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3784 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3785 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3786 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3787}
d2c1d404 3788
f147f29e 3789/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3790static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3791{
3792 struct workqueue_struct *wq = pwq->wq;
3793
3794 lockdep_assert_held(&wq->mutex);
75ccf595 3795
1befcf30
TH
3796 /* may be called multiple times, ignore if already linked */
3797 if (!list_empty(&pwq->pwqs_node))
3798 return;
3799
983ca25e
TH
3800 /*
3801 * Set the matching work_color. This is synchronized with
3c25a55d 3802 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3803 */
75ccf595 3804 pwq->work_color = wq->work_color;
983ca25e
TH
3805
3806 /* sync max_active to the current setting */
3807 pwq_adjust_max_active(pwq);
3808
3809 /* link in @pwq */
9e8cd2f5 3810 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3811}
a357fc03 3812
f147f29e
TH
3813/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3814static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3815 const struct workqueue_attrs *attrs)
3816{
3817 struct worker_pool *pool;
3818 struct pool_workqueue *pwq;
3819
3820 lockdep_assert_held(&wq_pool_mutex);
3821
3822 pool = get_unbound_pool(attrs);
3823 if (!pool)
3824 return NULL;
3825
e50aba9a 3826 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3827 if (!pwq) {
3828 put_unbound_pool(pool);
3829 return NULL;
df2d5ae4 3830 }
6029a918 3831
f147f29e
TH
3832 init_pwq(pwq, wq, pool);
3833 return pwq;
d2c1d404
TH
3834}
3835
4c16bd32
TH
3836/* undo alloc_unbound_pwq(), used only in the error path */
3837static void free_unbound_pwq(struct pool_workqueue *pwq)
3838{
3839 lockdep_assert_held(&wq_pool_mutex);
3840
3841 if (pwq) {
3842 put_unbound_pool(pwq->pool);
cece95df 3843 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3844 }
3845}
3846
3847/**
3848 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3849 * @attrs: the wq_attrs of interest
3850 * @node: the target NUMA node
3851 * @cpu_going_down: if >= 0, the CPU to consider as offline
3852 * @cpumask: outarg, the resulting cpumask
3853 *
3854 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3855 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3856 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3857 *
3858 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3859 * enabled and @node has online CPUs requested by @attrs, the returned
3860 * cpumask is the intersection of the possible CPUs of @node and
3861 * @attrs->cpumask.
3862 *
3863 * The caller is responsible for ensuring that the cpumask of @node stays
3864 * stable.
d185af30
YB
3865 *
3866 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3867 * %false if equal.
4c16bd32
TH
3868 */
3869static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3870 int cpu_going_down, cpumask_t *cpumask)
3871{
d55262c4 3872 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3873 goto use_dfl;
3874
3875 /* does @node have any online CPUs @attrs wants? */
3876 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3877 if (cpu_going_down >= 0)
3878 cpumask_clear_cpu(cpu_going_down, cpumask);
3879
3880 if (cpumask_empty(cpumask))
3881 goto use_dfl;
3882
3883 /* yeap, return possible CPUs in @node that @attrs wants */
3884 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3885 return !cpumask_equal(cpumask, attrs->cpumask);
3886
3887use_dfl:
3888 cpumask_copy(cpumask, attrs->cpumask);
3889 return false;
3890}
3891
1befcf30
TH
3892/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3893static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3894 int node,
3895 struct pool_workqueue *pwq)
3896{
3897 struct pool_workqueue *old_pwq;
3898
3899 lockdep_assert_held(&wq->mutex);
3900
3901 /* link_pwq() can handle duplicate calls */
3902 link_pwq(pwq);
3903
3904 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3905 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3906 return old_pwq;
3907}
3908
9e8cd2f5
TH
3909/**
3910 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3911 * @wq: the target workqueue
3912 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3913 *
4c16bd32
TH
3914 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3915 * machines, this function maps a separate pwq to each NUMA node with
3916 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3917 * NUMA node it was issued on. Older pwqs are released as in-flight work
3918 * items finish. Note that a work item which repeatedly requeues itself
3919 * back-to-back will stay on its current pwq.
9e8cd2f5 3920 *
d185af30
YB
3921 * Performs GFP_KERNEL allocations.
3922 *
3923 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3924 */
3925int apply_workqueue_attrs(struct workqueue_struct *wq,
3926 const struct workqueue_attrs *attrs)
3927{
4c16bd32
TH
3928 struct workqueue_attrs *new_attrs, *tmp_attrs;
3929 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3930 int node, ret;
9e8cd2f5 3931
8719dcea 3932 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3933 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3934 return -EINVAL;
3935
8719dcea
TH
3936 /* creating multiple pwqs breaks ordering guarantee */
3937 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3938 return -EINVAL;
3939
4c16bd32 3940 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3941 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3942 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3943 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3944 goto enomem;
3945
4c16bd32 3946 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3947 copy_workqueue_attrs(new_attrs, attrs);
3948 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3949
4c16bd32
TH
3950 /*
3951 * We may create multiple pwqs with differing cpumasks. Make a
3952 * copy of @new_attrs which will be modified and used to obtain
3953 * pools.
3954 */
3955 copy_workqueue_attrs(tmp_attrs, new_attrs);
3956
3957 /*
3958 * CPUs should stay stable across pwq creations and installations.
3959 * Pin CPUs, determine the target cpumask for each node and create
3960 * pwqs accordingly.
3961 */
3962 get_online_cpus();
3963
a892cacc 3964 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3965
3966 /*
3967 * If something goes wrong during CPU up/down, we'll fall back to
3968 * the default pwq covering whole @attrs->cpumask. Always create
3969 * it even if we don't use it immediately.
3970 */
3971 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3972 if (!dfl_pwq)
3973 goto enomem_pwq;
3974
3975 for_each_node(node) {
3976 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3977 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3978 if (!pwq_tbl[node])
3979 goto enomem_pwq;
3980 } else {
3981 dfl_pwq->refcnt++;
3982 pwq_tbl[node] = dfl_pwq;
3983 }
3984 }
3985
f147f29e 3986 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3987
4c16bd32 3988 /* all pwqs have been created successfully, let's install'em */
f147f29e 3989 mutex_lock(&wq->mutex);
a892cacc 3990
f147f29e 3991 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3992
3993 /* save the previous pwq and install the new one */
f147f29e 3994 for_each_node(node)
4c16bd32
TH
3995 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3996
3997 /* @dfl_pwq might not have been used, ensure it's linked */
3998 link_pwq(dfl_pwq);
3999 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
4000
4001 mutex_unlock(&wq->mutex);
9e8cd2f5 4002
4c16bd32
TH
4003 /* put the old pwqs */
4004 for_each_node(node)
4005 put_pwq_unlocked(pwq_tbl[node]);
4006 put_pwq_unlocked(dfl_pwq);
4007
4008 put_online_cpus();
4862125b
TH
4009 ret = 0;
4010 /* fall through */
4011out_free:
4c16bd32 4012 free_workqueue_attrs(tmp_attrs);
4862125b 4013 free_workqueue_attrs(new_attrs);
4c16bd32 4014 kfree(pwq_tbl);
4862125b 4015 return ret;
13e2e556 4016
4c16bd32
TH
4017enomem_pwq:
4018 free_unbound_pwq(dfl_pwq);
4019 for_each_node(node)
4020 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4021 free_unbound_pwq(pwq_tbl[node]);
4022 mutex_unlock(&wq_pool_mutex);
4023 put_online_cpus();
13e2e556 4024enomem:
4862125b
TH
4025 ret = -ENOMEM;
4026 goto out_free;
9e8cd2f5
TH
4027}
4028
4c16bd32
TH
4029/**
4030 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4031 * @wq: the target workqueue
4032 * @cpu: the CPU coming up or going down
4033 * @online: whether @cpu is coming up or going down
4034 *
4035 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4036 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4037 * @wq accordingly.
4038 *
4039 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4040 * falls back to @wq->dfl_pwq which may not be optimal but is always
4041 * correct.
4042 *
4043 * Note that when the last allowed CPU of a NUMA node goes offline for a
4044 * workqueue with a cpumask spanning multiple nodes, the workers which were
4045 * already executing the work items for the workqueue will lose their CPU
4046 * affinity and may execute on any CPU. This is similar to how per-cpu
4047 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4048 * affinity, it's the user's responsibility to flush the work item from
4049 * CPU_DOWN_PREPARE.
4050 */
4051static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4052 bool online)
4053{
4054 int node = cpu_to_node(cpu);
4055 int cpu_off = online ? -1 : cpu;
4056 struct pool_workqueue *old_pwq = NULL, *pwq;
4057 struct workqueue_attrs *target_attrs;
4058 cpumask_t *cpumask;
4059
4060 lockdep_assert_held(&wq_pool_mutex);
4061
4062 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4063 return;
4064
4065 /*
4066 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4067 * Let's use a preallocated one. The following buf is protected by
4068 * CPU hotplug exclusion.
4069 */
4070 target_attrs = wq_update_unbound_numa_attrs_buf;
4071 cpumask = target_attrs->cpumask;
4072
4073 mutex_lock(&wq->mutex);
d55262c4
TH
4074 if (wq->unbound_attrs->no_numa)
4075 goto out_unlock;
4c16bd32
TH
4076
4077 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4078 pwq = unbound_pwq_by_node(wq, node);
4079
4080 /*
4081 * Let's determine what needs to be done. If the target cpumask is
4082 * different from wq's, we need to compare it to @pwq's and create
4083 * a new one if they don't match. If the target cpumask equals
534a3fbb 4084 * wq's, the default pwq should be used.
4c16bd32
TH
4085 */
4086 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4087 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4088 goto out_unlock;
4089 } else {
534a3fbb 4090 goto use_dfl_pwq;
4c16bd32
TH
4091 }
4092
4093 mutex_unlock(&wq->mutex);
4094
4095 /* create a new pwq */
4096 pwq = alloc_unbound_pwq(wq, target_attrs);
4097 if (!pwq) {
2d916033
FF
4098 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4099 wq->name);
77f300b1
DY
4100 mutex_lock(&wq->mutex);
4101 goto use_dfl_pwq;
4c16bd32
TH
4102 }
4103
4104 /*
4105 * Install the new pwq. As this function is called only from CPU
4106 * hotplug callbacks and applying a new attrs is wrapped with
4107 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4108 * inbetween.
4109 */
4110 mutex_lock(&wq->mutex);
4111 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4112 goto out_unlock;
4113
4114use_dfl_pwq:
4115 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4116 get_pwq(wq->dfl_pwq);
4117 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4118 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4119out_unlock:
4120 mutex_unlock(&wq->mutex);
4121 put_pwq_unlocked(old_pwq);
4122}
4123
30cdf249 4124static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4125{
49e3cf44 4126 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4127 int cpu, ret;
30cdf249
TH
4128
4129 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4130 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4131 if (!wq->cpu_pwqs)
30cdf249
TH
4132 return -ENOMEM;
4133
4134 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4135 struct pool_workqueue *pwq =
4136 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4137 struct worker_pool *cpu_pools =
f02ae73a 4138 per_cpu(cpu_worker_pools, cpu);
f3421797 4139
f147f29e
TH
4140 init_pwq(pwq, wq, &cpu_pools[highpri]);
4141
4142 mutex_lock(&wq->mutex);
1befcf30 4143 link_pwq(pwq);
f147f29e 4144 mutex_unlock(&wq->mutex);
30cdf249 4145 }
9e8cd2f5 4146 return 0;
8a2b7538
TH
4147 } else if (wq->flags & __WQ_ORDERED) {
4148 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4149 /* there should only be single pwq for ordering guarantee */
4150 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4151 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4152 "ordering guarantee broken for workqueue %s\n", wq->name);
4153 return ret;
30cdf249 4154 } else {
9e8cd2f5 4155 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4156 }
0f900049
TH
4157}
4158
f3421797
TH
4159static int wq_clamp_max_active(int max_active, unsigned int flags,
4160 const char *name)
b71ab8c2 4161{
f3421797
TH
4162 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4163
4164 if (max_active < 1 || max_active > lim)
044c782c
VI
4165 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4166 max_active, name, 1, lim);
b71ab8c2 4167
f3421797 4168 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4169}
4170
b196be89 4171struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4172 unsigned int flags,
4173 int max_active,
4174 struct lock_class_key *key,
b196be89 4175 const char *lock_name, ...)
1da177e4 4176{
df2d5ae4 4177 size_t tbl_size = 0;
ecf6881f 4178 va_list args;
1da177e4 4179 struct workqueue_struct *wq;
49e3cf44 4180 struct pool_workqueue *pwq;
b196be89 4181
cee22a15
VK
4182 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4183 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4184 flags |= WQ_UNBOUND;
4185
ecf6881f 4186 /* allocate wq and format name */
df2d5ae4
TH
4187 if (flags & WQ_UNBOUND)
4188 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4189
4190 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4191 if (!wq)
d2c1d404 4192 return NULL;
b196be89 4193
6029a918
TH
4194 if (flags & WQ_UNBOUND) {
4195 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4196 if (!wq->unbound_attrs)
4197 goto err_free_wq;
4198 }
4199
ecf6881f
TH
4200 va_start(args, lock_name);
4201 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4202 va_end(args);
1da177e4 4203
d320c038 4204 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4205 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4206
b196be89 4207 /* init wq */
97e37d7b 4208 wq->flags = flags;
a0a1a5fd 4209 wq->saved_max_active = max_active;
3c25a55d 4210 mutex_init(&wq->mutex);
112202d9 4211 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4212 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4213 INIT_LIST_HEAD(&wq->flusher_queue);
4214 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4215 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4216
eb13ba87 4217 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4218 INIT_LIST_HEAD(&wq->list);
3af24433 4219
30cdf249 4220 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4221 goto err_free_wq;
1537663f 4222
493008a8
TH
4223 /*
4224 * Workqueues which may be used during memory reclaim should
4225 * have a rescuer to guarantee forward progress.
4226 */
4227 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4228 struct worker *rescuer;
4229
d2c1d404 4230 rescuer = alloc_worker();
e22bee78 4231 if (!rescuer)
d2c1d404 4232 goto err_destroy;
e22bee78 4233
111c225a
TH
4234 rescuer->rescue_wq = wq;
4235 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4236 wq->name);
d2c1d404
TH
4237 if (IS_ERR(rescuer->task)) {
4238 kfree(rescuer);
4239 goto err_destroy;
4240 }
e22bee78 4241
d2c1d404 4242 wq->rescuer = rescuer;
14a40ffc 4243 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4244 wake_up_process(rescuer->task);
3af24433
ON
4245 }
4246
226223ab
TH
4247 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4248 goto err_destroy;
4249
a0a1a5fd 4250 /*
68e13a67
LJ
4251 * wq_pool_mutex protects global freeze state and workqueues list.
4252 * Grab it, adjust max_active and add the new @wq to workqueues
4253 * list.
a0a1a5fd 4254 */
68e13a67 4255 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4256
a357fc03 4257 mutex_lock(&wq->mutex);
699ce097
TH
4258 for_each_pwq(pwq, wq)
4259 pwq_adjust_max_active(pwq);
a357fc03 4260 mutex_unlock(&wq->mutex);
a0a1a5fd 4261
1537663f 4262 list_add(&wq->list, &workqueues);
a0a1a5fd 4263
68e13a67 4264 mutex_unlock(&wq_pool_mutex);
1537663f 4265
3af24433 4266 return wq;
d2c1d404
TH
4267
4268err_free_wq:
6029a918 4269 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4270 kfree(wq);
4271 return NULL;
4272err_destroy:
4273 destroy_workqueue(wq);
4690c4ab 4274 return NULL;
3af24433 4275}
d320c038 4276EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4277
3af24433
ON
4278/**
4279 * destroy_workqueue - safely terminate a workqueue
4280 * @wq: target workqueue
4281 *
4282 * Safely destroy a workqueue. All work currently pending will be done first.
4283 */
4284void destroy_workqueue(struct workqueue_struct *wq)
4285{
49e3cf44 4286 struct pool_workqueue *pwq;
4c16bd32 4287 int node;
3af24433 4288
9c5a2ba7
TH
4289 /* drain it before proceeding with destruction */
4290 drain_workqueue(wq);
c8efcc25 4291
6183c009 4292 /* sanity checks */
b09f4fd3 4293 mutex_lock(&wq->mutex);
49e3cf44 4294 for_each_pwq(pwq, wq) {
6183c009
TH
4295 int i;
4296
76af4d93
TH
4297 for (i = 0; i < WORK_NR_COLORS; i++) {
4298 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4299 mutex_unlock(&wq->mutex);
6183c009 4300 return;
76af4d93
TH
4301 }
4302 }
4303
5c529597 4304 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4305 WARN_ON(pwq->nr_active) ||
76af4d93 4306 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4307 mutex_unlock(&wq->mutex);
6183c009 4308 return;
76af4d93 4309 }
6183c009 4310 }
b09f4fd3 4311 mutex_unlock(&wq->mutex);
6183c009 4312
a0a1a5fd
TH
4313 /*
4314 * wq list is used to freeze wq, remove from list after
4315 * flushing is complete in case freeze races us.
4316 */
68e13a67 4317 mutex_lock(&wq_pool_mutex);
d2c1d404 4318 list_del_init(&wq->list);
68e13a67 4319 mutex_unlock(&wq_pool_mutex);
3af24433 4320
226223ab
TH
4321 workqueue_sysfs_unregister(wq);
4322
493008a8 4323 if (wq->rescuer) {
e22bee78 4324 kthread_stop(wq->rescuer->task);
8d9df9f0 4325 kfree(wq->rescuer);
493008a8 4326 wq->rescuer = NULL;
e22bee78
TH
4327 }
4328
8864b4e5
TH
4329 if (!(wq->flags & WQ_UNBOUND)) {
4330 /*
4331 * The base ref is never dropped on per-cpu pwqs. Directly
4332 * free the pwqs and wq.
4333 */
4334 free_percpu(wq->cpu_pwqs);
4335 kfree(wq);
4336 } else {
4337 /*
4338 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4339 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4340 * @wq will be freed when the last pwq is released.
8864b4e5 4341 */
4c16bd32
TH
4342 for_each_node(node) {
4343 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4344 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4345 put_pwq_unlocked(pwq);
4346 }
4347
4348 /*
4349 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4350 * put. Don't access it afterwards.
4351 */
4352 pwq = wq->dfl_pwq;
4353 wq->dfl_pwq = NULL;
dce90d47 4354 put_pwq_unlocked(pwq);
29c91e99 4355 }
3af24433
ON
4356}
4357EXPORT_SYMBOL_GPL(destroy_workqueue);
4358
dcd989cb
TH
4359/**
4360 * workqueue_set_max_active - adjust max_active of a workqueue
4361 * @wq: target workqueue
4362 * @max_active: new max_active value.
4363 *
4364 * Set max_active of @wq to @max_active.
4365 *
4366 * CONTEXT:
4367 * Don't call from IRQ context.
4368 */
4369void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4370{
49e3cf44 4371 struct pool_workqueue *pwq;
dcd989cb 4372
8719dcea
TH
4373 /* disallow meddling with max_active for ordered workqueues */
4374 if (WARN_ON(wq->flags & __WQ_ORDERED))
4375 return;
4376
f3421797 4377 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4378
a357fc03 4379 mutex_lock(&wq->mutex);
dcd989cb
TH
4380
4381 wq->saved_max_active = max_active;
4382
699ce097
TH
4383 for_each_pwq(pwq, wq)
4384 pwq_adjust_max_active(pwq);
93981800 4385
a357fc03 4386 mutex_unlock(&wq->mutex);
15316ba8 4387}
dcd989cb 4388EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4389
e6267616
TH
4390/**
4391 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4392 *
4393 * Determine whether %current is a workqueue rescuer. Can be used from
4394 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4395 *
4396 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4397 */
4398bool current_is_workqueue_rescuer(void)
4399{
4400 struct worker *worker = current_wq_worker();
4401
6a092dfd 4402 return worker && worker->rescue_wq;
e6267616
TH
4403}
4404
eef6a7d5 4405/**
dcd989cb
TH
4406 * workqueue_congested - test whether a workqueue is congested
4407 * @cpu: CPU in question
4408 * @wq: target workqueue
eef6a7d5 4409 *
dcd989cb
TH
4410 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4411 * no synchronization around this function and the test result is
4412 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4413 *
d3251859
TH
4414 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4415 * Note that both per-cpu and unbound workqueues may be associated with
4416 * multiple pool_workqueues which have separate congested states. A
4417 * workqueue being congested on one CPU doesn't mean the workqueue is also
4418 * contested on other CPUs / NUMA nodes.
4419 *
d185af30 4420 * Return:
dcd989cb 4421 * %true if congested, %false otherwise.
eef6a7d5 4422 */
d84ff051 4423bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4424{
7fb98ea7 4425 struct pool_workqueue *pwq;
76af4d93
TH
4426 bool ret;
4427
88109453 4428 rcu_read_lock_sched();
7fb98ea7 4429
d3251859
TH
4430 if (cpu == WORK_CPU_UNBOUND)
4431 cpu = smp_processor_id();
4432
7fb98ea7
TH
4433 if (!(wq->flags & WQ_UNBOUND))
4434 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4435 else
df2d5ae4 4436 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4437
76af4d93 4438 ret = !list_empty(&pwq->delayed_works);
88109453 4439 rcu_read_unlock_sched();
76af4d93
TH
4440
4441 return ret;
1da177e4 4442}
dcd989cb 4443EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4444
dcd989cb
TH
4445/**
4446 * work_busy - test whether a work is currently pending or running
4447 * @work: the work to be tested
4448 *
4449 * Test whether @work is currently pending or running. There is no
4450 * synchronization around this function and the test result is
4451 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4452 *
d185af30 4453 * Return:
dcd989cb
TH
4454 * OR'd bitmask of WORK_BUSY_* bits.
4455 */
4456unsigned int work_busy(struct work_struct *work)
1da177e4 4457{
fa1b54e6 4458 struct worker_pool *pool;
dcd989cb
TH
4459 unsigned long flags;
4460 unsigned int ret = 0;
1da177e4 4461
dcd989cb
TH
4462 if (work_pending(work))
4463 ret |= WORK_BUSY_PENDING;
1da177e4 4464
fa1b54e6
TH
4465 local_irq_save(flags);
4466 pool = get_work_pool(work);
038366c5 4467 if (pool) {
fa1b54e6 4468 spin_lock(&pool->lock);
038366c5
LJ
4469 if (find_worker_executing_work(pool, work))
4470 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4471 spin_unlock(&pool->lock);
038366c5 4472 }
fa1b54e6 4473 local_irq_restore(flags);
1da177e4 4474
dcd989cb 4475 return ret;
1da177e4 4476}
dcd989cb 4477EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4478
3d1cb205
TH
4479/**
4480 * set_worker_desc - set description for the current work item
4481 * @fmt: printf-style format string
4482 * @...: arguments for the format string
4483 *
4484 * This function can be called by a running work function to describe what
4485 * the work item is about. If the worker task gets dumped, this
4486 * information will be printed out together to help debugging. The
4487 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4488 */
4489void set_worker_desc(const char *fmt, ...)
4490{
4491 struct worker *worker = current_wq_worker();
4492 va_list args;
4493
4494 if (worker) {
4495 va_start(args, fmt);
4496 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4497 va_end(args);
4498 worker->desc_valid = true;
4499 }
4500}
4501
4502/**
4503 * print_worker_info - print out worker information and description
4504 * @log_lvl: the log level to use when printing
4505 * @task: target task
4506 *
4507 * If @task is a worker and currently executing a work item, print out the
4508 * name of the workqueue being serviced and worker description set with
4509 * set_worker_desc() by the currently executing work item.
4510 *
4511 * This function can be safely called on any task as long as the
4512 * task_struct itself is accessible. While safe, this function isn't
4513 * synchronized and may print out mixups or garbages of limited length.
4514 */
4515void print_worker_info(const char *log_lvl, struct task_struct *task)
4516{
4517 work_func_t *fn = NULL;
4518 char name[WQ_NAME_LEN] = { };
4519 char desc[WORKER_DESC_LEN] = { };
4520 struct pool_workqueue *pwq = NULL;
4521 struct workqueue_struct *wq = NULL;
4522 bool desc_valid = false;
4523 struct worker *worker;
4524
4525 if (!(task->flags & PF_WQ_WORKER))
4526 return;
4527
4528 /*
4529 * This function is called without any synchronization and @task
4530 * could be in any state. Be careful with dereferences.
4531 */
4532 worker = probe_kthread_data(task);
4533
4534 /*
4535 * Carefully copy the associated workqueue's workfn and name. Keep
4536 * the original last '\0' in case the original contains garbage.
4537 */
4538 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4539 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4540 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4541 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4542
4543 /* copy worker description */
4544 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4545 if (desc_valid)
4546 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4547
4548 if (fn || name[0] || desc[0]) {
2d916033 4549 pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
3d1cb205
TH
4550 if (desc[0])
4551 pr_cont(" (%s)", desc);
4552 pr_cont("\n");
4553 }
4554}
4555
db7bccf4
TH
4556/*
4557 * CPU hotplug.
4558 *
e22bee78 4559 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4560 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4561 * pool which make migrating pending and scheduled works very
e22bee78 4562 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4563 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4564 * blocked draining impractical.
4565 *
24647570 4566 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4567 * running as an unbound one and allowing it to be reattached later if the
4568 * cpu comes back online.
db7bccf4 4569 */
1da177e4 4570
706026c2 4571static void wq_unbind_fn(struct work_struct *work)
3af24433 4572{
38db41d9 4573 int cpu = smp_processor_id();
4ce62e9e 4574 struct worker_pool *pool;
db7bccf4 4575 struct worker *worker;
a9ab775b 4576 int wi;
3af24433 4577
f02ae73a 4578 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4579 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4580
bc3a1afc 4581 mutex_lock(&pool->manager_mutex);
94cf58bb 4582 spin_lock_irq(&pool->lock);
3af24433 4583
94cf58bb 4584 /*
bc3a1afc 4585 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4586 * unbound and set DISASSOCIATED. Before this, all workers
4587 * except for the ones which are still executing works from
4588 * before the last CPU down must be on the cpu. After
4589 * this, they may become diasporas.
4590 */
a9ab775b 4591 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4592 worker->flags |= WORKER_UNBOUND;
06ba38a9 4593
24647570 4594 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4595
94cf58bb 4596 spin_unlock_irq(&pool->lock);
bc3a1afc 4597 mutex_unlock(&pool->manager_mutex);
628c78e7 4598
eb283428
LJ
4599 /*
4600 * Call schedule() so that we cross rq->lock and thus can
4601 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4602 * This is necessary as scheduler callbacks may be invoked
4603 * from other cpus.
4604 */
4605 schedule();
06ba38a9 4606
eb283428
LJ
4607 /*
4608 * Sched callbacks are disabled now. Zap nr_running.
4609 * After this, nr_running stays zero and need_more_worker()
4610 * and keep_working() are always true as long as the
4611 * worklist is not empty. This pool now behaves as an
4612 * unbound (in terms of concurrency management) pool which
4613 * are served by workers tied to the pool.
4614 */
e19e397a 4615 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4616
4617 /*
4618 * With concurrency management just turned off, a busy
4619 * worker blocking could lead to lengthy stalls. Kick off
4620 * unbound chain execution of currently pending work items.
4621 */
4622 spin_lock_irq(&pool->lock);
4623 wake_up_worker(pool);
4624 spin_unlock_irq(&pool->lock);
4625 }
3af24433 4626}
3af24433 4627
bd7c089e
TH
4628/**
4629 * rebind_workers - rebind all workers of a pool to the associated CPU
4630 * @pool: pool of interest
4631 *
a9ab775b 4632 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4633 */
4634static void rebind_workers(struct worker_pool *pool)
4635{
a9ab775b
TH
4636 struct worker *worker;
4637 int wi;
bd7c089e
TH
4638
4639 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4640
a9ab775b
TH
4641 /*
4642 * Restore CPU affinity of all workers. As all idle workers should
4643 * be on the run-queue of the associated CPU before any local
4644 * wake-ups for concurrency management happen, restore CPU affinty
4645 * of all workers first and then clear UNBOUND. As we're called
4646 * from CPU_ONLINE, the following shouldn't fail.
4647 */
4648 for_each_pool_worker(worker, wi, pool)
4649 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4650 pool->attrs->cpumask) < 0);
bd7c089e 4651
a9ab775b 4652 spin_lock_irq(&pool->lock);
bd7c089e 4653
a9ab775b
TH
4654 for_each_pool_worker(worker, wi, pool) {
4655 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4656
4657 /*
a9ab775b
TH
4658 * A bound idle worker should actually be on the runqueue
4659 * of the associated CPU for local wake-ups targeting it to
4660 * work. Kick all idle workers so that they migrate to the
4661 * associated CPU. Doing this in the same loop as
4662 * replacing UNBOUND with REBOUND is safe as no worker will
4663 * be bound before @pool->lock is released.
bd7c089e 4664 */
a9ab775b
TH
4665 if (worker_flags & WORKER_IDLE)
4666 wake_up_process(worker->task);
bd7c089e 4667
a9ab775b
TH
4668 /*
4669 * We want to clear UNBOUND but can't directly call
4670 * worker_clr_flags() or adjust nr_running. Atomically
4671 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4672 * @worker will clear REBOUND using worker_clr_flags() when
4673 * it initiates the next execution cycle thus restoring
4674 * concurrency management. Note that when or whether
4675 * @worker clears REBOUND doesn't affect correctness.
4676 *
4677 * ACCESS_ONCE() is necessary because @worker->flags may be
4678 * tested without holding any lock in
4679 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4680 * fail incorrectly leading to premature concurrency
4681 * management operations.
4682 */
4683 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4684 worker_flags |= WORKER_REBOUND;
4685 worker_flags &= ~WORKER_UNBOUND;
4686 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4687 }
a9ab775b
TH
4688
4689 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4690}
4691
7dbc725e
TH
4692/**
4693 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4694 * @pool: unbound pool of interest
4695 * @cpu: the CPU which is coming up
4696 *
4697 * An unbound pool may end up with a cpumask which doesn't have any online
4698 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4699 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4700 * online CPU before, cpus_allowed of all its workers should be restored.
4701 */
4702static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4703{
4704 static cpumask_t cpumask;
4705 struct worker *worker;
4706 int wi;
4707
4708 lockdep_assert_held(&pool->manager_mutex);
4709
4710 /* is @cpu allowed for @pool? */
4711 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4712 return;
4713
4714 /* is @cpu the only online CPU? */
4715 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4716 if (cpumask_weight(&cpumask) != 1)
4717 return;
4718
4719 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4720 for_each_pool_worker(worker, wi, pool)
4721 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4722 pool->attrs->cpumask) < 0);
4723}
4724
8db25e78
TH
4725/*
4726 * Workqueues should be brought up before normal priority CPU notifiers.
4727 * This will be registered high priority CPU notifier.
4728 */
0db0628d 4729static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4730 unsigned long action,
4731 void *hcpu)
3af24433 4732{
d84ff051 4733 int cpu = (unsigned long)hcpu;
4ce62e9e 4734 struct worker_pool *pool;
4c16bd32 4735 struct workqueue_struct *wq;
7dbc725e 4736 int pi;
3ce63377 4737
8db25e78 4738 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4739 case CPU_UP_PREPARE:
f02ae73a 4740 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4741 if (pool->nr_workers)
4742 continue;
ebf44d16 4743 if (create_and_start_worker(pool) < 0)
3ce63377 4744 return NOTIFY_BAD;
3af24433 4745 }
8db25e78 4746 break;
3af24433 4747
db7bccf4
TH
4748 case CPU_DOWN_FAILED:
4749 case CPU_ONLINE:
68e13a67 4750 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4751
4752 for_each_pool(pool, pi) {
bc3a1afc 4753 mutex_lock(&pool->manager_mutex);
94cf58bb 4754
7dbc725e
TH
4755 if (pool->cpu == cpu) {
4756 spin_lock_irq(&pool->lock);
4757 pool->flags &= ~POOL_DISASSOCIATED;
4758 spin_unlock_irq(&pool->lock);
a9ab775b 4759
7dbc725e
TH
4760 rebind_workers(pool);
4761 } else if (pool->cpu < 0) {
4762 restore_unbound_workers_cpumask(pool, cpu);
4763 }
94cf58bb 4764
bc3a1afc 4765 mutex_unlock(&pool->manager_mutex);
94cf58bb 4766 }
7dbc725e 4767
4c16bd32
TH
4768 /* update NUMA affinity of unbound workqueues */
4769 list_for_each_entry(wq, &workqueues, list)
4770 wq_update_unbound_numa(wq, cpu, true);
4771
68e13a67 4772 mutex_unlock(&wq_pool_mutex);
db7bccf4 4773 break;
00dfcaf7 4774 }
65758202
TH
4775 return NOTIFY_OK;
4776}
4777
4778/*
4779 * Workqueues should be brought down after normal priority CPU notifiers.
4780 * This will be registered as low priority CPU notifier.
4781 */
0db0628d 4782static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4783 unsigned long action,
4784 void *hcpu)
4785{
d84ff051 4786 int cpu = (unsigned long)hcpu;
8db25e78 4787 struct work_struct unbind_work;
4c16bd32 4788 struct workqueue_struct *wq;
8db25e78 4789
65758202
TH
4790 switch (action & ~CPU_TASKS_FROZEN) {
4791 case CPU_DOWN_PREPARE:
4c16bd32 4792 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4793 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4794 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4795
4796 /* update NUMA affinity of unbound workqueues */
4797 mutex_lock(&wq_pool_mutex);
4798 list_for_each_entry(wq, &workqueues, list)
4799 wq_update_unbound_numa(wq, cpu, false);
4800 mutex_unlock(&wq_pool_mutex);
4801
4802 /* wait for per-cpu unbinding to finish */
8db25e78 4803 flush_work(&unbind_work);
440a1136 4804 destroy_work_on_stack(&unbind_work);
8db25e78 4805 break;
65758202
TH
4806 }
4807 return NOTIFY_OK;
4808}
4809
2d3854a3 4810#ifdef CONFIG_SMP
8ccad40d 4811
2d3854a3 4812struct work_for_cpu {
ed48ece2 4813 struct work_struct work;
2d3854a3
RR
4814 long (*fn)(void *);
4815 void *arg;
4816 long ret;
4817};
4818
ed48ece2 4819static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4820{
ed48ece2
TH
4821 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4822
2d3854a3
RR
4823 wfc->ret = wfc->fn(wfc->arg);
4824}
4825
4826/**
4827 * work_on_cpu - run a function in user context on a particular cpu
4828 * @cpu: the cpu to run on
4829 * @fn: the function to run
4830 * @arg: the function arg
4831 *
31ad9081 4832 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4833 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4834 *
4835 * Return: The value @fn returns.
2d3854a3 4836 */
d84ff051 4837long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4838{
ed48ece2 4839 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4840
ed48ece2
TH
4841 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4842 schedule_work_on(cpu, &wfc.work);
12997d1a 4843 flush_work(&wfc.work);
440a1136 4844 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4845 return wfc.ret;
4846}
4847EXPORT_SYMBOL_GPL(work_on_cpu);
4848#endif /* CONFIG_SMP */
4849
a0a1a5fd
TH
4850#ifdef CONFIG_FREEZER
4851
4852/**
4853 * freeze_workqueues_begin - begin freezing workqueues
4854 *
58a69cb4 4855 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4856 * workqueues will queue new works to their delayed_works list instead of
706026c2 4857 * pool->worklist.
a0a1a5fd
TH
4858 *
4859 * CONTEXT:
a357fc03 4860 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4861 */
4862void freeze_workqueues_begin(void)
4863{
17116969 4864 struct worker_pool *pool;
24b8a847
TH
4865 struct workqueue_struct *wq;
4866 struct pool_workqueue *pwq;
611c92a0 4867 int pi;
a0a1a5fd 4868
68e13a67 4869 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4870
6183c009 4871 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4872 workqueue_freezing = true;
4873
24b8a847 4874 /* set FREEZING */
611c92a0 4875 for_each_pool(pool, pi) {
5bcab335 4876 spin_lock_irq(&pool->lock);
17116969
TH
4877 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4878 pool->flags |= POOL_FREEZING;
5bcab335 4879 spin_unlock_irq(&pool->lock);
24b8a847 4880 }
a0a1a5fd 4881
24b8a847 4882 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4883 mutex_lock(&wq->mutex);
699ce097
TH
4884 for_each_pwq(pwq, wq)
4885 pwq_adjust_max_active(pwq);
a357fc03 4886 mutex_unlock(&wq->mutex);
a0a1a5fd 4887 }
5bcab335 4888
68e13a67 4889 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4890}
4891
4892/**
58a69cb4 4893 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4894 *
4895 * Check whether freezing is complete. This function must be called
4896 * between freeze_workqueues_begin() and thaw_workqueues().
4897 *
4898 * CONTEXT:
68e13a67 4899 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4900 *
d185af30 4901 * Return:
58a69cb4
TH
4902 * %true if some freezable workqueues are still busy. %false if freezing
4903 * is complete.
a0a1a5fd
TH
4904 */
4905bool freeze_workqueues_busy(void)
4906{
a0a1a5fd 4907 bool busy = false;
24b8a847
TH
4908 struct workqueue_struct *wq;
4909 struct pool_workqueue *pwq;
a0a1a5fd 4910
68e13a67 4911 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4912
6183c009 4913 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4914
24b8a847
TH
4915 list_for_each_entry(wq, &workqueues, list) {
4916 if (!(wq->flags & WQ_FREEZABLE))
4917 continue;
a0a1a5fd
TH
4918 /*
4919 * nr_active is monotonically decreasing. It's safe
4920 * to peek without lock.
4921 */
88109453 4922 rcu_read_lock_sched();
24b8a847 4923 for_each_pwq(pwq, wq) {
6183c009 4924 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4925 if (pwq->nr_active) {
a0a1a5fd 4926 busy = true;
88109453 4927 rcu_read_unlock_sched();
a0a1a5fd
TH
4928 goto out_unlock;
4929 }
4930 }
88109453 4931 rcu_read_unlock_sched();
a0a1a5fd
TH
4932 }
4933out_unlock:
68e13a67 4934 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4935 return busy;
4936}
4937
4938/**
4939 * thaw_workqueues - thaw workqueues
4940 *
4941 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4942 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4943 *
4944 * CONTEXT:
a357fc03 4945 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4946 */
4947void thaw_workqueues(void)
4948{
24b8a847
TH
4949 struct workqueue_struct *wq;
4950 struct pool_workqueue *pwq;
4951 struct worker_pool *pool;
611c92a0 4952 int pi;
a0a1a5fd 4953
68e13a67 4954 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4955
4956 if (!workqueue_freezing)
4957 goto out_unlock;
4958
24b8a847 4959 /* clear FREEZING */
611c92a0 4960 for_each_pool(pool, pi) {
5bcab335 4961 spin_lock_irq(&pool->lock);
24b8a847
TH
4962 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4963 pool->flags &= ~POOL_FREEZING;
5bcab335 4964 spin_unlock_irq(&pool->lock);
24b8a847 4965 }
8b03ae3c 4966
24b8a847
TH
4967 /* restore max_active and repopulate worklist */
4968 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4969 mutex_lock(&wq->mutex);
699ce097
TH
4970 for_each_pwq(pwq, wq)
4971 pwq_adjust_max_active(pwq);
a357fc03 4972 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4973 }
4974
4975 workqueue_freezing = false;
4976out_unlock:
68e13a67 4977 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4978}
4979#endif /* CONFIG_FREEZER */
4980
bce90380
TH
4981static void __init wq_numa_init(void)
4982{
4983 cpumask_var_t *tbl;
4984 int node, cpu;
4985
4986 /* determine NUMA pwq table len - highest node id + 1 */
4987 for_each_node(node)
4988 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4989
4990 if (num_possible_nodes() <= 1)
4991 return;
4992
d55262c4
TH
4993 if (wq_disable_numa) {
4994 pr_info("workqueue: NUMA affinity support disabled\n");
4995 return;
4996 }
4997
4c16bd32
TH
4998 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4999 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5000
bce90380
TH
5001 /*
5002 * We want masks of possible CPUs of each node which isn't readily
5003 * available. Build one from cpu_to_node() which should have been
5004 * fully initialized by now.
5005 */
5006 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5007 BUG_ON(!tbl);
5008
5009 for_each_node(node)
1be0c25d
TH
5010 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5011 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5012
5013 for_each_possible_cpu(cpu) {
5014 node = cpu_to_node(cpu);
5015 if (WARN_ON(node == NUMA_NO_NODE)) {
5016 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5017 /* happens iff arch is bonkers, let's just proceed */
5018 return;
5019 }
5020 cpumask_set_cpu(cpu, tbl[node]);
5021 }
5022
5023 wq_numa_possible_cpumask = tbl;
5024 wq_numa_enabled = true;
5025}
5026
6ee0578b 5027static int __init init_workqueues(void)
1da177e4 5028{
7a4e344c
TH
5029 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5030 int i, cpu;
c34056a3 5031
e904e6c2
TH
5032 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5033
5034 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5035
65758202 5036 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5037 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5038
bce90380
TH
5039 wq_numa_init();
5040
706026c2 5041 /* initialize CPU pools */
29c91e99 5042 for_each_possible_cpu(cpu) {
4ce62e9e 5043 struct worker_pool *pool;
8b03ae3c 5044
7a4e344c 5045 i = 0;
f02ae73a 5046 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5047 BUG_ON(init_worker_pool(pool));
ec22ca5e 5048 pool->cpu = cpu;
29c91e99 5049 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5050 pool->attrs->nice = std_nice[i++];
f3f90ad4 5051 pool->node = cpu_to_node(cpu);
7a4e344c 5052
9daf9e67 5053 /* alloc pool ID */
68e13a67 5054 mutex_lock(&wq_pool_mutex);
9daf9e67 5055 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5056 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5057 }
8b03ae3c
TH
5058 }
5059
e22bee78 5060 /* create the initial worker */
29c91e99 5061 for_each_online_cpu(cpu) {
4ce62e9e 5062 struct worker_pool *pool;
e22bee78 5063
f02ae73a 5064 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5065 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5066 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5067 }
e22bee78
TH
5068 }
5069
8a2b7538 5070 /* create default unbound and ordered wq attrs */
29c91e99
TH
5071 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5072 struct workqueue_attrs *attrs;
5073
5074 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5075 attrs->nice = std_nice[i];
29c91e99 5076 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5077
5078 /*
5079 * An ordered wq should have only one pwq as ordering is
5080 * guaranteed by max_active which is enforced by pwqs.
5081 * Turn off NUMA so that dfl_pwq is used for all nodes.
5082 */
5083 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5084 attrs->nice = std_nice[i];
5085 attrs->no_numa = true;
5086 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5087 }
5088
d320c038 5089 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5090 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5091 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5092 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5093 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5094 system_freezable_wq = alloc_workqueue("events_freezable",
5095 WQ_FREEZABLE, 0);
0668106c
VK
5096 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5097 WQ_POWER_EFFICIENT, 0);
5098 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5099 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5100 0);
1aabe902 5101 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5102 !system_unbound_wq || !system_freezable_wq ||
5103 !system_power_efficient_wq ||
5104 !system_freezable_power_efficient_wq);
6ee0578b 5105 return 0;
1da177e4 5106}
6ee0578b 5107early_initcall(init_workqueues);