]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/workqueue.c
workqueue: make freezing/thawing per-pool
[mirror_ubuntu-artful-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43
TH
125struct worker_pool {
126 struct global_cwq *gcwq; /* I: the owning gcwq */
d565ed63 127 spinlock_t lock; /* the pool lock */
ec22ca5e 128 unsigned int cpu; /* I: the associated cpu */
9daf9e67 129 int id; /* I: pool ID */
11ebea50 130 unsigned int flags; /* X: flags */
bd7bdd43
TH
131
132 struct list_head worklist; /* L: list of pending works */
133 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
134
135 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
136 int nr_idle; /* L: currently idle ones */
137
138 struct list_head idle_list; /* X: list of idle workers */
139 struct timer_list idle_timer; /* L: worker idle timeout */
140 struct timer_list mayday_timer; /* L: SOS timer for workers */
141
c9e7cf27
TH
142 /* workers are chained either in busy_hash or idle_list */
143 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
144 /* L: hash of busy workers */
145
24647570 146 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 147 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
148};
149
8b03ae3c 150/*
e22bee78
TH
151 * Global per-cpu workqueue. There's one and only one for each cpu
152 * and all works are queued and processed here regardless of their
153 * target workqueues.
8b03ae3c
TH
154 */
155struct global_cwq {
e34cdddb 156 struct worker_pool pools[NR_STD_WORKER_POOLS];
330dad5b 157 /* normal and highpri pools */
8b03ae3c
TH
158} ____cacheline_aligned_in_smp;
159
1da177e4 160/*
502ca9d8 161 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
162 * work_struct->data are used for flags and thus cwqs need to be
163 * aligned at two's power of the number of flag bits.
1da177e4
LT
164 */
165struct cpu_workqueue_struct {
bd7bdd43 166 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 167 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
168 int work_color; /* L: current color */
169 int flush_color; /* L: flushing color */
170 int nr_in_flight[WORK_NR_COLORS];
171 /* L: nr of in_flight works */
1e19ffc6 172 int nr_active; /* L: nr of active works */
a0a1a5fd 173 int max_active; /* L: max active works */
1e19ffc6 174 struct list_head delayed_works; /* L: delayed works */
0f900049 175};
1da177e4 176
73f53c4a
TH
177/*
178 * Structure used to wait for workqueue flush.
179 */
180struct wq_flusher {
181 struct list_head list; /* F: list of flushers */
182 int flush_color; /* F: flush color waiting for */
183 struct completion done; /* flush completion */
184};
185
f2e005aa
TH
186/*
187 * All cpumasks are assumed to be always set on UP and thus can't be
188 * used to determine whether there's something to be done.
189 */
190#ifdef CONFIG_SMP
191typedef cpumask_var_t mayday_mask_t;
192#define mayday_test_and_set_cpu(cpu, mask) \
193 cpumask_test_and_set_cpu((cpu), (mask))
194#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
195#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 196#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
197#define free_mayday_mask(mask) free_cpumask_var((mask))
198#else
199typedef unsigned long mayday_mask_t;
200#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
201#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
202#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
203#define alloc_mayday_mask(maskp, gfp) true
204#define free_mayday_mask(mask) do { } while (0)
205#endif
1da177e4
LT
206
207/*
208 * The externally visible workqueue abstraction is an array of
209 * per-CPU workqueues:
210 */
211struct workqueue_struct {
9c5a2ba7 212 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
213 union {
214 struct cpu_workqueue_struct __percpu *pcpu;
215 struct cpu_workqueue_struct *single;
216 unsigned long v;
217 } cpu_wq; /* I: cwq's */
4690c4ab 218 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
219
220 struct mutex flush_mutex; /* protects wq flushing */
221 int work_color; /* F: current work color */
222 int flush_color; /* F: current flush color */
223 atomic_t nr_cwqs_to_flush; /* flush in progress */
224 struct wq_flusher *first_flusher; /* F: first flusher */
225 struct list_head flusher_queue; /* F: flush waiters */
226 struct list_head flusher_overflow; /* F: flush overflow list */
227
f2e005aa 228 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
229 struct worker *rescuer; /* I: rescue worker */
230
9c5a2ba7 231 int nr_drainers; /* W: drain in progress */
dcd989cb 232 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 233#ifdef CONFIG_LOCKDEP
4690c4ab 234 struct lockdep_map lockdep_map;
4e6045f1 235#endif
b196be89 236 char name[]; /* I: workqueue name */
1da177e4
LT
237};
238
d320c038 239struct workqueue_struct *system_wq __read_mostly;
d320c038 240EXPORT_SYMBOL_GPL(system_wq);
044c782c 241struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 242EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 243struct workqueue_struct *system_long_wq __read_mostly;
d320c038 244EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 245struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 246EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 247struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 248EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 249
97bd2347
TH
250#define CREATE_TRACE_POINTS
251#include <trace/events/workqueue.h>
252
4ce62e9e 253#define for_each_worker_pool(pool, gcwq) \
3270476a 254 for ((pool) = &(gcwq)->pools[0]; \
e34cdddb 255 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 256
c9e7cf27
TH
257#define for_each_busy_worker(worker, i, pos, pool) \
258 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 259
f3421797
TH
260static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
261 unsigned int sw)
262{
263 if (cpu < nr_cpu_ids) {
264 if (sw & 1) {
265 cpu = cpumask_next(cpu, mask);
266 if (cpu < nr_cpu_ids)
267 return cpu;
268 }
269 if (sw & 2)
270 return WORK_CPU_UNBOUND;
271 }
272 return WORK_CPU_NONE;
273}
274
275static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
276 struct workqueue_struct *wq)
277{
278 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
279}
280
09884951
TH
281/*
282 * CPU iterators
283 *
284 * An extra gcwq is defined for an invalid cpu number
285 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
286 * specific CPU. The following iterators are similar to
287 * for_each_*_cpu() iterators but also considers the unbound gcwq.
288 *
289 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
290 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
291 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
292 * WORK_CPU_UNBOUND for unbound workqueues
293 */
f3421797
TH
294#define for_each_gcwq_cpu(cpu) \
295 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
296 (cpu) < WORK_CPU_NONE; \
297 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
298
299#define for_each_online_gcwq_cpu(cpu) \
300 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
301 (cpu) < WORK_CPU_NONE; \
302 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
303
304#define for_each_cwq_cpu(cpu, wq) \
305 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
306 (cpu) < WORK_CPU_NONE; \
307 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
308
dc186ad7
TG
309#ifdef CONFIG_DEBUG_OBJECTS_WORK
310
311static struct debug_obj_descr work_debug_descr;
312
99777288
SG
313static void *work_debug_hint(void *addr)
314{
315 return ((struct work_struct *) addr)->func;
316}
317
dc186ad7
TG
318/*
319 * fixup_init is called when:
320 * - an active object is initialized
321 */
322static int work_fixup_init(void *addr, enum debug_obj_state state)
323{
324 struct work_struct *work = addr;
325
326 switch (state) {
327 case ODEBUG_STATE_ACTIVE:
328 cancel_work_sync(work);
329 debug_object_init(work, &work_debug_descr);
330 return 1;
331 default:
332 return 0;
333 }
334}
335
336/*
337 * fixup_activate is called when:
338 * - an active object is activated
339 * - an unknown object is activated (might be a statically initialized object)
340 */
341static int work_fixup_activate(void *addr, enum debug_obj_state state)
342{
343 struct work_struct *work = addr;
344
345 switch (state) {
346
347 case ODEBUG_STATE_NOTAVAILABLE:
348 /*
349 * This is not really a fixup. The work struct was
350 * statically initialized. We just make sure that it
351 * is tracked in the object tracker.
352 */
22df02bb 353 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
354 debug_object_init(work, &work_debug_descr);
355 debug_object_activate(work, &work_debug_descr);
356 return 0;
357 }
358 WARN_ON_ONCE(1);
359 return 0;
360
361 case ODEBUG_STATE_ACTIVE:
362 WARN_ON(1);
363
364 default:
365 return 0;
366 }
367}
368
369/*
370 * fixup_free is called when:
371 * - an active object is freed
372 */
373static int work_fixup_free(void *addr, enum debug_obj_state state)
374{
375 struct work_struct *work = addr;
376
377 switch (state) {
378 case ODEBUG_STATE_ACTIVE:
379 cancel_work_sync(work);
380 debug_object_free(work, &work_debug_descr);
381 return 1;
382 default:
383 return 0;
384 }
385}
386
387static struct debug_obj_descr work_debug_descr = {
388 .name = "work_struct",
99777288 389 .debug_hint = work_debug_hint,
dc186ad7
TG
390 .fixup_init = work_fixup_init,
391 .fixup_activate = work_fixup_activate,
392 .fixup_free = work_fixup_free,
393};
394
395static inline void debug_work_activate(struct work_struct *work)
396{
397 debug_object_activate(work, &work_debug_descr);
398}
399
400static inline void debug_work_deactivate(struct work_struct *work)
401{
402 debug_object_deactivate(work, &work_debug_descr);
403}
404
405void __init_work(struct work_struct *work, int onstack)
406{
407 if (onstack)
408 debug_object_init_on_stack(work, &work_debug_descr);
409 else
410 debug_object_init(work, &work_debug_descr);
411}
412EXPORT_SYMBOL_GPL(__init_work);
413
414void destroy_work_on_stack(struct work_struct *work)
415{
416 debug_object_free(work, &work_debug_descr);
417}
418EXPORT_SYMBOL_GPL(destroy_work_on_stack);
419
420#else
421static inline void debug_work_activate(struct work_struct *work) { }
422static inline void debug_work_deactivate(struct work_struct *work) { }
423#endif
424
95402b38
GS
425/* Serializes the accesses to the list of workqueues. */
426static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 427static LIST_HEAD(workqueues);
a0a1a5fd 428static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 429
e22bee78
TH
430/*
431 * The almighty global cpu workqueues. nr_running is the only field
432 * which is expected to be used frequently by other cpus via
433 * try_to_wake_up(). Put it in a separate cacheline.
434 */
8b03ae3c 435static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e34cdddb 436static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
8b03ae3c 437
f3421797 438/*
24647570
TH
439 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
440 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
441 * WORKER_UNBOUND set.
f3421797
TH
442 */
443static struct global_cwq unbound_global_cwq;
e34cdddb
TH
444static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
445 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 446};
f3421797 447
9daf9e67
TH
448/* idr of all pools */
449static DEFINE_MUTEX(worker_pool_idr_mutex);
450static DEFINE_IDR(worker_pool_idr);
451
c34056a3 452static int worker_thread(void *__worker);
1da177e4 453
e34cdddb 454static int std_worker_pool_pri(struct worker_pool *pool)
3270476a
TH
455{
456 return pool - pool->gcwq->pools;
457}
458
8b03ae3c
TH
459static struct global_cwq *get_gcwq(unsigned int cpu)
460{
f3421797
TH
461 if (cpu != WORK_CPU_UNBOUND)
462 return &per_cpu(global_cwq, cpu);
463 else
464 return &unbound_global_cwq;
8b03ae3c
TH
465}
466
9daf9e67
TH
467/* allocate ID and assign it to @pool */
468static int worker_pool_assign_id(struct worker_pool *pool)
469{
470 int ret;
471
472 mutex_lock(&worker_pool_idr_mutex);
473 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
474 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
475 mutex_unlock(&worker_pool_idr_mutex);
476
477 return ret;
478}
479
7c3eed5c
TH
480/*
481 * Lookup worker_pool by id. The idr currently is built during boot and
482 * never modified. Don't worry about locking for now.
483 */
484static struct worker_pool *worker_pool_by_id(int pool_id)
485{
486 return idr_find(&worker_pool_idr, pool_id);
487}
488
d565ed63
TH
489static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
490{
491 struct global_cwq *gcwq = get_gcwq(cpu);
492
493 return &gcwq->pools[highpri];
494}
495
63d95a91 496static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 497{
ec22ca5e 498 int cpu = pool->cpu;
e34cdddb 499 int idx = std_worker_pool_pri(pool);
63d95a91 500
f3421797 501 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 502 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 503 else
4ce62e9e 504 return &unbound_pool_nr_running[idx];
e22bee78
TH
505}
506
1537663f
TH
507static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
508 struct workqueue_struct *wq)
b1f4ec17 509{
f3421797 510 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 511 if (likely(cpu < nr_cpu_ids))
f3421797 512 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
513 } else if (likely(cpu == WORK_CPU_UNBOUND))
514 return wq->cpu_wq.single;
515 return NULL;
b1f4ec17
ON
516}
517
73f53c4a
TH
518static unsigned int work_color_to_flags(int color)
519{
520 return color << WORK_STRUCT_COLOR_SHIFT;
521}
522
523static int get_work_color(struct work_struct *work)
524{
525 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
526 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
527}
528
529static int work_next_color(int color)
530{
531 return (color + 1) % WORK_NR_COLORS;
532}
1da177e4 533
14441960 534/*
b5490077
TH
535 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
536 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 537 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 538 *
7c3eed5c
TH
539 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
540 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
541 * work->data. These functions should only be called while the work is
542 * owned - ie. while the PENDING bit is set.
7a22ad75 543 *
7c3eed5c
TH
544 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
545 * corresponding to a work. Pool is available once the work has been
546 * queued anywhere after initialization until it is sync canceled. cwq is
547 * available only while the work item is queued.
7a22ad75 548 *
bbb68dfa
TH
549 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
550 * canceled. While being canceled, a work item may have its PENDING set
551 * but stay off timer and worklist for arbitrarily long and nobody should
552 * try to steal the PENDING bit.
14441960 553 */
7a22ad75
TH
554static inline void set_work_data(struct work_struct *work, unsigned long data,
555 unsigned long flags)
365970a1 556{
4594bf15 557 BUG_ON(!work_pending(work));
7a22ad75
TH
558 atomic_long_set(&work->data, data | flags | work_static(work));
559}
365970a1 560
7a22ad75
TH
561static void set_work_cwq(struct work_struct *work,
562 struct cpu_workqueue_struct *cwq,
563 unsigned long extra_flags)
564{
565 set_work_data(work, (unsigned long)cwq,
e120153d 566 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
567}
568
7c3eed5c
TH
569static void set_work_pool_and_clear_pending(struct work_struct *work,
570 int pool_id)
7a22ad75 571{
23657bb1
TH
572 /*
573 * The following wmb is paired with the implied mb in
574 * test_and_set_bit(PENDING) and ensures all updates to @work made
575 * here are visible to and precede any updates by the next PENDING
576 * owner.
577 */
578 smp_wmb();
7c3eed5c 579 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 580}
f756d5e2 581
7a22ad75 582static void clear_work_data(struct work_struct *work)
1da177e4 583{
7c3eed5c
TH
584 smp_wmb(); /* see set_work_pool_and_clear_pending() */
585 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
586}
587
7a22ad75 588static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 589{
e120153d 590 unsigned long data = atomic_long_read(&work->data);
7a22ad75 591
e120153d
TH
592 if (data & WORK_STRUCT_CWQ)
593 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
594 else
595 return NULL;
4d707b9f
ON
596}
597
7c3eed5c
TH
598/**
599 * get_work_pool - return the worker_pool a given work was associated with
600 * @work: the work item of interest
601 *
602 * Return the worker_pool @work was last associated with. %NULL if none.
603 */
604static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 605{
e120153d 606 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
607 struct worker_pool *pool;
608 int pool_id;
7a22ad75 609
e120153d
TH
610 if (data & WORK_STRUCT_CWQ)
611 return ((struct cpu_workqueue_struct *)
7c3eed5c 612 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 613
7c3eed5c
TH
614 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
615 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
616 return NULL;
617
7c3eed5c
TH
618 pool = worker_pool_by_id(pool_id);
619 WARN_ON_ONCE(!pool);
620 return pool;
621}
622
623/**
624 * get_work_pool_id - return the worker pool ID a given work is associated with
625 * @work: the work item of interest
626 *
627 * Return the worker_pool ID @work was last associated with.
628 * %WORK_OFFQ_POOL_NONE if none.
629 */
630static int get_work_pool_id(struct work_struct *work)
631{
632 struct worker_pool *pool = get_work_pool(work);
633
634 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
635}
636
bbb68dfa
TH
637static void mark_work_canceling(struct work_struct *work)
638{
7c3eed5c 639 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 640
7c3eed5c
TH
641 pool_id <<= WORK_OFFQ_POOL_SHIFT;
642 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
643}
644
645static bool work_is_canceling(struct work_struct *work)
646{
647 unsigned long data = atomic_long_read(&work->data);
648
649 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
650}
651
e22bee78 652/*
3270476a
TH
653 * Policy functions. These define the policies on how the global worker
654 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 655 * they're being called with pool->lock held.
e22bee78
TH
656 */
657
63d95a91 658static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 659{
3270476a 660 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
661}
662
4594bf15 663/*
e22bee78
TH
664 * Need to wake up a worker? Called from anything but currently
665 * running workers.
974271c4
TH
666 *
667 * Note that, because unbound workers never contribute to nr_running, this
668 * function will always return %true for unbound gcwq as long as the
669 * worklist isn't empty.
4594bf15 670 */
63d95a91 671static bool need_more_worker(struct worker_pool *pool)
365970a1 672{
63d95a91 673 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 674}
4594bf15 675
e22bee78 676/* Can I start working? Called from busy but !running workers. */
63d95a91 677static bool may_start_working(struct worker_pool *pool)
e22bee78 678{
63d95a91 679 return pool->nr_idle;
e22bee78
TH
680}
681
682/* Do I need to keep working? Called from currently running workers. */
63d95a91 683static bool keep_working(struct worker_pool *pool)
e22bee78 684{
63d95a91 685 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 686
3270476a 687 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
688}
689
690/* Do we need a new worker? Called from manager. */
63d95a91 691static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 692{
63d95a91 693 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 694}
365970a1 695
e22bee78 696/* Do I need to be the manager? */
63d95a91 697static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 698{
63d95a91 699 return need_to_create_worker(pool) ||
11ebea50 700 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
701}
702
703/* Do we have too many workers and should some go away? */
63d95a91 704static bool too_many_workers(struct worker_pool *pool)
e22bee78 705{
552a37e9 706 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
707 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
708 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 709
ea1abd61
LJ
710 /*
711 * nr_idle and idle_list may disagree if idle rebinding is in
712 * progress. Never return %true if idle_list is empty.
713 */
714 if (list_empty(&pool->idle_list))
715 return false;
716
e22bee78 717 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
718}
719
4d707b9f 720/*
e22bee78
TH
721 * Wake up functions.
722 */
723
7e11629d 724/* Return the first worker. Safe with preemption disabled */
63d95a91 725static struct worker *first_worker(struct worker_pool *pool)
7e11629d 726{
63d95a91 727 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
728 return NULL;
729
63d95a91 730 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
731}
732
733/**
734 * wake_up_worker - wake up an idle worker
63d95a91 735 * @pool: worker pool to wake worker from
7e11629d 736 *
63d95a91 737 * Wake up the first idle worker of @pool.
7e11629d
TH
738 *
739 * CONTEXT:
d565ed63 740 * spin_lock_irq(pool->lock).
7e11629d 741 */
63d95a91 742static void wake_up_worker(struct worker_pool *pool)
7e11629d 743{
63d95a91 744 struct worker *worker = first_worker(pool);
7e11629d
TH
745
746 if (likely(worker))
747 wake_up_process(worker->task);
748}
749
d302f017 750/**
e22bee78
TH
751 * wq_worker_waking_up - a worker is waking up
752 * @task: task waking up
753 * @cpu: CPU @task is waking up to
754 *
755 * This function is called during try_to_wake_up() when a worker is
756 * being awoken.
757 *
758 * CONTEXT:
759 * spin_lock_irq(rq->lock)
760 */
761void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
762{
763 struct worker *worker = kthread_data(task);
764
36576000 765 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 766 WARN_ON_ONCE(worker->pool->cpu != cpu);
63d95a91 767 atomic_inc(get_pool_nr_running(worker->pool));
36576000 768 }
e22bee78
TH
769}
770
771/**
772 * wq_worker_sleeping - a worker is going to sleep
773 * @task: task going to sleep
774 * @cpu: CPU in question, must be the current CPU number
775 *
776 * This function is called during schedule() when a busy worker is
777 * going to sleep. Worker on the same cpu can be woken up by
778 * returning pointer to its task.
779 *
780 * CONTEXT:
781 * spin_lock_irq(rq->lock)
782 *
783 * RETURNS:
784 * Worker task on @cpu to wake up, %NULL if none.
785 */
786struct task_struct *wq_worker_sleeping(struct task_struct *task,
787 unsigned int cpu)
788{
789 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
790 struct worker_pool *pool;
791 atomic_t *nr_running;
e22bee78 792
111c225a
TH
793 /*
794 * Rescuers, which may not have all the fields set up like normal
795 * workers, also reach here, let's not access anything before
796 * checking NOT_RUNNING.
797 */
2d64672e 798 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
799 return NULL;
800
111c225a
TH
801 pool = worker->pool;
802 nr_running = get_pool_nr_running(pool);
803
e22bee78
TH
804 /* this can only happen on the local cpu */
805 BUG_ON(cpu != raw_smp_processor_id());
806
807 /*
808 * The counterpart of the following dec_and_test, implied mb,
809 * worklist not empty test sequence is in insert_work().
810 * Please read comment there.
811 *
628c78e7
TH
812 * NOT_RUNNING is clear. This means that we're bound to and
813 * running on the local cpu w/ rq lock held and preemption
814 * disabled, which in turn means that none else could be
d565ed63 815 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 816 * lock is safe.
e22bee78 817 */
bd7bdd43 818 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 819 to_wakeup = first_worker(pool);
e22bee78
TH
820 return to_wakeup ? to_wakeup->task : NULL;
821}
822
823/**
824 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 825 * @worker: self
d302f017
TH
826 * @flags: flags to set
827 * @wakeup: wakeup an idle worker if necessary
828 *
e22bee78
TH
829 * Set @flags in @worker->flags and adjust nr_running accordingly. If
830 * nr_running becomes zero and @wakeup is %true, an idle worker is
831 * woken up.
d302f017 832 *
cb444766 833 * CONTEXT:
d565ed63 834 * spin_lock_irq(pool->lock)
d302f017
TH
835 */
836static inline void worker_set_flags(struct worker *worker, unsigned int flags,
837 bool wakeup)
838{
bd7bdd43 839 struct worker_pool *pool = worker->pool;
e22bee78 840
cb444766
TH
841 WARN_ON_ONCE(worker->task != current);
842
e22bee78
TH
843 /*
844 * If transitioning into NOT_RUNNING, adjust nr_running and
845 * wake up an idle worker as necessary if requested by
846 * @wakeup.
847 */
848 if ((flags & WORKER_NOT_RUNNING) &&
849 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 850 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
851
852 if (wakeup) {
853 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 854 !list_empty(&pool->worklist))
63d95a91 855 wake_up_worker(pool);
e22bee78
TH
856 } else
857 atomic_dec(nr_running);
858 }
859
d302f017
TH
860 worker->flags |= flags;
861}
862
863/**
e22bee78 864 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 865 * @worker: self
d302f017
TH
866 * @flags: flags to clear
867 *
e22bee78 868 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 869 *
cb444766 870 * CONTEXT:
d565ed63 871 * spin_lock_irq(pool->lock)
d302f017
TH
872 */
873static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
874{
63d95a91 875 struct worker_pool *pool = worker->pool;
e22bee78
TH
876 unsigned int oflags = worker->flags;
877
cb444766
TH
878 WARN_ON_ONCE(worker->task != current);
879
d302f017 880 worker->flags &= ~flags;
e22bee78 881
42c025f3
TH
882 /*
883 * If transitioning out of NOT_RUNNING, increment nr_running. Note
884 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
885 * of multiple flags, not a single flag.
886 */
e22bee78
TH
887 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
888 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 889 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
890}
891
8cca0eea
TH
892/**
893 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 894 * @pool: pool of interest
8cca0eea
TH
895 * @work: work to find worker for
896 *
c9e7cf27
TH
897 * Find a worker which is executing @work on @pool by searching
898 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
899 * to match, its current execution should match the address of @work and
900 * its work function. This is to avoid unwanted dependency between
901 * unrelated work executions through a work item being recycled while still
902 * being executed.
903 *
904 * This is a bit tricky. A work item may be freed once its execution
905 * starts and nothing prevents the freed area from being recycled for
906 * another work item. If the same work item address ends up being reused
907 * before the original execution finishes, workqueue will identify the
908 * recycled work item as currently executing and make it wait until the
909 * current execution finishes, introducing an unwanted dependency.
910 *
911 * This function checks the work item address, work function and workqueue
912 * to avoid false positives. Note that this isn't complete as one may
913 * construct a work function which can introduce dependency onto itself
914 * through a recycled work item. Well, if somebody wants to shoot oneself
915 * in the foot that badly, there's only so much we can do, and if such
916 * deadlock actually occurs, it should be easy to locate the culprit work
917 * function.
8cca0eea
TH
918 *
919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock).
8cca0eea
TH
921 *
922 * RETURNS:
923 * Pointer to worker which is executing @work if found, NULL
924 * otherwise.
4d707b9f 925 */
c9e7cf27 926static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 927 struct work_struct *work)
4d707b9f 928{
42f8570f
SL
929 struct worker *worker;
930 struct hlist_node *tmp;
931
c9e7cf27 932 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
933 (unsigned long)work)
934 if (worker->current_work == work &&
935 worker->current_func == work->func)
42f8570f
SL
936 return worker;
937
938 return NULL;
4d707b9f
ON
939}
940
bf4ede01
TH
941/**
942 * move_linked_works - move linked works to a list
943 * @work: start of series of works to be scheduled
944 * @head: target list to append @work to
945 * @nextp: out paramter for nested worklist walking
946 *
947 * Schedule linked works starting from @work to @head. Work series to
948 * be scheduled starts at @work and includes any consecutive work with
949 * WORK_STRUCT_LINKED set in its predecessor.
950 *
951 * If @nextp is not NULL, it's updated to point to the next work of
952 * the last scheduled work. This allows move_linked_works() to be
953 * nested inside outer list_for_each_entry_safe().
954 *
955 * CONTEXT:
d565ed63 956 * spin_lock_irq(pool->lock).
bf4ede01
TH
957 */
958static void move_linked_works(struct work_struct *work, struct list_head *head,
959 struct work_struct **nextp)
960{
961 struct work_struct *n;
962
963 /*
964 * Linked worklist will always end before the end of the list,
965 * use NULL for list head.
966 */
967 list_for_each_entry_safe_from(work, n, NULL, entry) {
968 list_move_tail(&work->entry, head);
969 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
970 break;
971 }
972
973 /*
974 * If we're already inside safe list traversal and have moved
975 * multiple works to the scheduled queue, the next position
976 * needs to be updated.
977 */
978 if (nextp)
979 *nextp = n;
980}
981
3aa62497 982static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 983{
3aa62497 984 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
985
986 trace_workqueue_activate_work(work);
987 move_linked_works(work, &cwq->pool->worklist, NULL);
988 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
989 cwq->nr_active++;
990}
991
3aa62497
LJ
992static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
993{
994 struct work_struct *work = list_first_entry(&cwq->delayed_works,
995 struct work_struct, entry);
996
997 cwq_activate_delayed_work(work);
998}
999
bf4ede01
TH
1000/**
1001 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1002 * @cwq: cwq of interest
1003 * @color: color of work which left the queue
bf4ede01
TH
1004 *
1005 * A work either has completed or is removed from pending queue,
1006 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1007 *
1008 * CONTEXT:
d565ed63 1009 * spin_lock_irq(pool->lock).
bf4ede01 1010 */
b3f9f405 1011static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1012{
1013 /* ignore uncolored works */
1014 if (color == WORK_NO_COLOR)
1015 return;
1016
1017 cwq->nr_in_flight[color]--;
1018
b3f9f405
LJ
1019 cwq->nr_active--;
1020 if (!list_empty(&cwq->delayed_works)) {
1021 /* one down, submit a delayed one */
1022 if (cwq->nr_active < cwq->max_active)
1023 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1024 }
1025
1026 /* is flush in progress and are we at the flushing tip? */
1027 if (likely(cwq->flush_color != color))
1028 return;
1029
1030 /* are there still in-flight works? */
1031 if (cwq->nr_in_flight[color])
1032 return;
1033
1034 /* this cwq is done, clear flush_color */
1035 cwq->flush_color = -1;
1036
1037 /*
1038 * If this was the last cwq, wake up the first flusher. It
1039 * will handle the rest.
1040 */
1041 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1042 complete(&cwq->wq->first_flusher->done);
1043}
1044
36e227d2 1045/**
bbb68dfa 1046 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1047 * @work: work item to steal
1048 * @is_dwork: @work is a delayed_work
bbb68dfa 1049 * @flags: place to store irq state
36e227d2
TH
1050 *
1051 * Try to grab PENDING bit of @work. This function can handle @work in any
1052 * stable state - idle, on timer or on worklist. Return values are
1053 *
1054 * 1 if @work was pending and we successfully stole PENDING
1055 * 0 if @work was idle and we claimed PENDING
1056 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1057 * -ENOENT if someone else is canceling @work, this state may persist
1058 * for arbitrarily long
36e227d2 1059 *
bbb68dfa 1060 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1061 * interrupted while holding PENDING and @work off queue, irq must be
1062 * disabled on entry. This, combined with delayed_work->timer being
1063 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1064 *
1065 * On successful return, >= 0, irq is disabled and the caller is
1066 * responsible for releasing it using local_irq_restore(*@flags).
1067 *
e0aecdd8 1068 * This function is safe to call from any context including IRQ handler.
bf4ede01 1069 */
bbb68dfa
TH
1070static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1071 unsigned long *flags)
bf4ede01 1072{
d565ed63 1073 struct worker_pool *pool;
bf4ede01 1074
bbb68dfa
TH
1075 local_irq_save(*flags);
1076
36e227d2
TH
1077 /* try to steal the timer if it exists */
1078 if (is_dwork) {
1079 struct delayed_work *dwork = to_delayed_work(work);
1080
e0aecdd8
TH
1081 /*
1082 * dwork->timer is irqsafe. If del_timer() fails, it's
1083 * guaranteed that the timer is not queued anywhere and not
1084 * running on the local CPU.
1085 */
36e227d2
TH
1086 if (likely(del_timer(&dwork->timer)))
1087 return 1;
1088 }
1089
1090 /* try to claim PENDING the normal way */
bf4ede01
TH
1091 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1092 return 0;
1093
1094 /*
1095 * The queueing is in progress, or it is already queued. Try to
1096 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1097 */
d565ed63
TH
1098 pool = get_work_pool(work);
1099 if (!pool)
bbb68dfa 1100 goto fail;
bf4ede01 1101
d565ed63 1102 spin_lock(&pool->lock);
bf4ede01
TH
1103 if (!list_empty(&work->entry)) {
1104 /*
d565ed63
TH
1105 * This work is queued, but perhaps we locked the wrong
1106 * pool. In that case we must see the new value after
1107 * rmb(), see insert_work()->wmb().
bf4ede01
TH
1108 */
1109 smp_rmb();
d565ed63 1110 if (pool == get_work_pool(work)) {
bf4ede01 1111 debug_work_deactivate(work);
3aa62497
LJ
1112
1113 /*
1114 * A delayed work item cannot be grabbed directly
1115 * because it might have linked NO_COLOR work items
1116 * which, if left on the delayed_list, will confuse
1117 * cwq->nr_active management later on and cause
1118 * stall. Make sure the work item is activated
1119 * before grabbing.
1120 */
1121 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1122 cwq_activate_delayed_work(work);
1123
bf4ede01
TH
1124 list_del_init(&work->entry);
1125 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1126 get_work_color(work));
36e227d2 1127
d565ed63 1128 spin_unlock(&pool->lock);
36e227d2 1129 return 1;
bf4ede01
TH
1130 }
1131 }
d565ed63 1132 spin_unlock(&pool->lock);
bbb68dfa
TH
1133fail:
1134 local_irq_restore(*flags);
1135 if (work_is_canceling(work))
1136 return -ENOENT;
1137 cpu_relax();
36e227d2 1138 return -EAGAIN;
bf4ede01
TH
1139}
1140
4690c4ab 1141/**
7e11629d 1142 * insert_work - insert a work into gcwq
4690c4ab
TH
1143 * @cwq: cwq @work belongs to
1144 * @work: work to insert
1145 * @head: insertion point
1146 * @extra_flags: extra WORK_STRUCT_* flags to set
1147 *
7e11629d
TH
1148 * Insert @work which belongs to @cwq into @gcwq after @head.
1149 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1150 *
1151 * CONTEXT:
d565ed63 1152 * spin_lock_irq(pool->lock).
4690c4ab 1153 */
b89deed3 1154static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1155 struct work_struct *work, struct list_head *head,
1156 unsigned int extra_flags)
b89deed3 1157{
63d95a91 1158 struct worker_pool *pool = cwq->pool;
e22bee78 1159
4690c4ab 1160 /* we own @work, set data and link */
7a22ad75 1161 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1162
6e84d644
ON
1163 /*
1164 * Ensure that we get the right work->data if we see the
1165 * result of list_add() below, see try_to_grab_pending().
1166 */
1167 smp_wmb();
4690c4ab 1168
1a4d9b0a 1169 list_add_tail(&work->entry, head);
e22bee78
TH
1170
1171 /*
1172 * Ensure either worker_sched_deactivated() sees the above
1173 * list_add_tail() or we see zero nr_running to avoid workers
1174 * lying around lazily while there are works to be processed.
1175 */
1176 smp_mb();
1177
63d95a91
TH
1178 if (__need_more_worker(pool))
1179 wake_up_worker(pool);
b89deed3
ON
1180}
1181
c8efcc25
TH
1182/*
1183 * Test whether @work is being queued from another work executing on the
1184 * same workqueue. This is rather expensive and should only be used from
1185 * cold paths.
1186 */
1187static bool is_chained_work(struct workqueue_struct *wq)
1188{
1189 unsigned long flags;
1190 unsigned int cpu;
1191
1192 for_each_gcwq_cpu(cpu) {
c9e7cf27
TH
1193 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1194 struct worker_pool *pool = cwq->pool;
c8efcc25
TH
1195 struct worker *worker;
1196 struct hlist_node *pos;
1197 int i;
1198
d565ed63 1199 spin_lock_irqsave(&pool->lock, flags);
c9e7cf27 1200 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1201 if (worker->task != current)
1202 continue;
d565ed63 1203 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1204 /*
1205 * I'm @worker, no locking necessary. See if @work
1206 * is headed to the same workqueue.
1207 */
1208 return worker->current_cwq->wq == wq;
1209 }
d565ed63 1210 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1211 }
1212 return false;
1213}
1214
4690c4ab 1215static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1216 struct work_struct *work)
1217{
d565ed63
TH
1218 bool highpri = wq->flags & WQ_HIGHPRI;
1219 struct worker_pool *pool;
502ca9d8 1220 struct cpu_workqueue_struct *cwq;
1e19ffc6 1221 struct list_head *worklist;
8a2e8e5d 1222 unsigned int work_flags;
b75cac93 1223 unsigned int req_cpu = cpu;
8930caba
TH
1224
1225 /*
1226 * While a work item is PENDING && off queue, a task trying to
1227 * steal the PENDING will busy-loop waiting for it to either get
1228 * queued or lose PENDING. Grabbing PENDING and queueing should
1229 * happen with IRQ disabled.
1230 */
1231 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1232
dc186ad7 1233 debug_work_activate(work);
1e19ffc6 1234
c8efcc25 1235 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1236 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1237 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1238 return;
1239
d565ed63 1240 /* determine pool to use */
c7fc77f7 1241 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1242 struct worker_pool *last_pool;
18aa9eff 1243
57469821 1244 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1245 cpu = raw_smp_processor_id();
1246
18aa9eff 1247 /*
dbf2576e
TH
1248 * It's multi cpu. If @work was previously on a different
1249 * cpu, it might still be running there, in which case the
1250 * work needs to be queued on that cpu to guarantee
1251 * non-reentrancy.
18aa9eff 1252 */
d565ed63 1253 pool = get_std_worker_pool(cpu, highpri);
c9e7cf27 1254 last_pool = get_work_pool(work);
dbf2576e 1255
d565ed63 1256 if (last_pool && last_pool != pool) {
18aa9eff
TH
1257 struct worker *worker;
1258
d565ed63 1259 spin_lock(&last_pool->lock);
18aa9eff 1260
c9e7cf27 1261 worker = find_worker_executing_work(last_pool, work);
18aa9eff
TH
1262
1263 if (worker && worker->current_cwq->wq == wq)
d565ed63 1264 pool = last_pool;
18aa9eff
TH
1265 else {
1266 /* meh... not running there, queue here */
d565ed63
TH
1267 spin_unlock(&last_pool->lock);
1268 spin_lock(&pool->lock);
18aa9eff 1269 }
8930caba 1270 } else {
d565ed63 1271 spin_lock(&pool->lock);
8930caba 1272 }
f3421797 1273 } else {
d565ed63
TH
1274 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1275 spin_lock(&pool->lock);
502ca9d8
TH
1276 }
1277
d565ed63
TH
1278 /* pool determined, get cwq and queue */
1279 cwq = get_cwq(pool->cpu, wq);
b75cac93 1280 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1281
f5b2552b 1282 if (WARN_ON(!list_empty(&work->entry))) {
d565ed63 1283 spin_unlock(&pool->lock);
f5b2552b
DC
1284 return;
1285 }
1e19ffc6 1286
73f53c4a 1287 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1288 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1289
1290 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1291 trace_workqueue_activate_work(work);
1e19ffc6 1292 cwq->nr_active++;
3270476a 1293 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1294 } else {
1295 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1296 worklist = &cwq->delayed_works;
8a2e8e5d 1297 }
1e19ffc6 1298
8a2e8e5d 1299 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1300
d565ed63 1301 spin_unlock(&pool->lock);
1da177e4
LT
1302}
1303
0fcb78c2 1304/**
c1a220e7
ZR
1305 * queue_work_on - queue work on specific cpu
1306 * @cpu: CPU number to execute work on
0fcb78c2
REB
1307 * @wq: workqueue to use
1308 * @work: work to queue
1309 *
d4283e93 1310 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1311 *
c1a220e7
ZR
1312 * We queue the work to a specific CPU, the caller must ensure it
1313 * can't go away.
1da177e4 1314 */
d4283e93
TH
1315bool queue_work_on(int cpu, struct workqueue_struct *wq,
1316 struct work_struct *work)
1da177e4 1317{
d4283e93 1318 bool ret = false;
8930caba 1319 unsigned long flags;
ef1ca236 1320
8930caba 1321 local_irq_save(flags);
c1a220e7 1322
22df02bb 1323 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1324 __queue_work(cpu, wq, work);
d4283e93 1325 ret = true;
c1a220e7 1326 }
ef1ca236 1327
8930caba 1328 local_irq_restore(flags);
1da177e4
LT
1329 return ret;
1330}
c1a220e7 1331EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1332
c1a220e7 1333/**
0a13c00e 1334 * queue_work - queue work on a workqueue
c1a220e7
ZR
1335 * @wq: workqueue to use
1336 * @work: work to queue
1337 *
d4283e93 1338 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1339 *
0a13c00e
TH
1340 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1341 * it can be processed by another CPU.
c1a220e7 1342 */
d4283e93 1343bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1344{
57469821 1345 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1346}
0a13c00e 1347EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1348
d8e794df 1349void delayed_work_timer_fn(unsigned long __data)
1da177e4 1350{
52bad64d 1351 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1352 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1353
e0aecdd8 1354 /* should have been called from irqsafe timer with irq already off */
1265057f 1355 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1356}
d8e794df 1357EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1358
7beb2edf
TH
1359static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1360 struct delayed_work *dwork, unsigned long delay)
1da177e4 1361{
7beb2edf
TH
1362 struct timer_list *timer = &dwork->timer;
1363 struct work_struct *work = &dwork->work;
1364 unsigned int lcpu;
1365
1366 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1367 timer->data != (unsigned long)dwork);
fc4b514f
TH
1368 WARN_ON_ONCE(timer_pending(timer));
1369 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1370
8852aac2
TH
1371 /*
1372 * If @delay is 0, queue @dwork->work immediately. This is for
1373 * both optimization and correctness. The earliest @timer can
1374 * expire is on the closest next tick and delayed_work users depend
1375 * on that there's no such delay when @delay is 0.
1376 */
1377 if (!delay) {
1378 __queue_work(cpu, wq, &dwork->work);
1379 return;
1380 }
1381
7beb2edf 1382 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1383
7beb2edf
TH
1384 /*
1385 * This stores cwq for the moment, for the timer_fn. Note that the
ec22ca5e 1386 * work's pool is preserved to allow reentrance detection for
7beb2edf
TH
1387 * delayed works.
1388 */
1389 if (!(wq->flags & WQ_UNBOUND)) {
ec22ca5e 1390 struct worker_pool *pool = get_work_pool(work);
7beb2edf 1391
e42986de 1392 /*
ec22ca5e 1393 * If we cannot get the last pool from @work directly,
e42986de
JK
1394 * select the last CPU such that it avoids unnecessarily
1395 * triggering non-reentrancy check in __queue_work().
1396 */
1397 lcpu = cpu;
ec22ca5e
TH
1398 if (pool)
1399 lcpu = pool->cpu;
e42986de 1400 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1401 lcpu = raw_smp_processor_id();
1402 } else {
1403 lcpu = WORK_CPU_UNBOUND;
1404 }
1405
1406 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1407
1265057f 1408 dwork->cpu = cpu;
7beb2edf
TH
1409 timer->expires = jiffies + delay;
1410
1411 if (unlikely(cpu != WORK_CPU_UNBOUND))
1412 add_timer_on(timer, cpu);
1413 else
1414 add_timer(timer);
1da177e4
LT
1415}
1416
0fcb78c2
REB
1417/**
1418 * queue_delayed_work_on - queue work on specific CPU after delay
1419 * @cpu: CPU number to execute work on
1420 * @wq: workqueue to use
af9997e4 1421 * @dwork: work to queue
0fcb78c2
REB
1422 * @delay: number of jiffies to wait before queueing
1423 *
715f1300
TH
1424 * Returns %false if @work was already on a queue, %true otherwise. If
1425 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1426 * execution.
0fcb78c2 1427 */
d4283e93
TH
1428bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1429 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1430{
52bad64d 1431 struct work_struct *work = &dwork->work;
d4283e93 1432 bool ret = false;
8930caba 1433 unsigned long flags;
7a6bc1cd 1434
8930caba
TH
1435 /* read the comment in __queue_work() */
1436 local_irq_save(flags);
7a6bc1cd 1437
22df02bb 1438 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1439 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1440 ret = true;
7a6bc1cd 1441 }
8a3e77cc 1442
8930caba 1443 local_irq_restore(flags);
7a6bc1cd
VP
1444 return ret;
1445}
ae90dd5d 1446EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1447
0a13c00e
TH
1448/**
1449 * queue_delayed_work - queue work on a workqueue after delay
1450 * @wq: workqueue to use
1451 * @dwork: delayable work to queue
1452 * @delay: number of jiffies to wait before queueing
1453 *
715f1300 1454 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1455 */
d4283e93 1456bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1457 struct delayed_work *dwork, unsigned long delay)
1458{
57469821 1459 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1460}
1461EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1462
8376fe22
TH
1463/**
1464 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1465 * @cpu: CPU number to execute work on
1466 * @wq: workqueue to use
1467 * @dwork: work to queue
1468 * @delay: number of jiffies to wait before queueing
1469 *
1470 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1471 * modify @dwork's timer so that it expires after @delay. If @delay is
1472 * zero, @work is guaranteed to be scheduled immediately regardless of its
1473 * current state.
1474 *
1475 * Returns %false if @dwork was idle and queued, %true if @dwork was
1476 * pending and its timer was modified.
1477 *
e0aecdd8 1478 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1479 * See try_to_grab_pending() for details.
1480 */
1481bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1482 struct delayed_work *dwork, unsigned long delay)
1483{
1484 unsigned long flags;
1485 int ret;
c7fc77f7 1486
8376fe22
TH
1487 do {
1488 ret = try_to_grab_pending(&dwork->work, true, &flags);
1489 } while (unlikely(ret == -EAGAIN));
63bc0362 1490
8376fe22
TH
1491 if (likely(ret >= 0)) {
1492 __queue_delayed_work(cpu, wq, dwork, delay);
1493 local_irq_restore(flags);
7a6bc1cd 1494 }
8376fe22
TH
1495
1496 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1497 return ret;
1498}
8376fe22
TH
1499EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1500
1501/**
1502 * mod_delayed_work - modify delay of or queue a delayed work
1503 * @wq: workqueue to use
1504 * @dwork: work to queue
1505 * @delay: number of jiffies to wait before queueing
1506 *
1507 * mod_delayed_work_on() on local CPU.
1508 */
1509bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1510 unsigned long delay)
1511{
1512 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1513}
1514EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1515
c8e55f36
TH
1516/**
1517 * worker_enter_idle - enter idle state
1518 * @worker: worker which is entering idle state
1519 *
1520 * @worker is entering idle state. Update stats and idle timer if
1521 * necessary.
1522 *
1523 * LOCKING:
d565ed63 1524 * spin_lock_irq(pool->lock).
c8e55f36
TH
1525 */
1526static void worker_enter_idle(struct worker *worker)
1da177e4 1527{
bd7bdd43 1528 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1529
1530 BUG_ON(worker->flags & WORKER_IDLE);
1531 BUG_ON(!list_empty(&worker->entry) &&
1532 (worker->hentry.next || worker->hentry.pprev));
1533
cb444766
TH
1534 /* can't use worker_set_flags(), also called from start_worker() */
1535 worker->flags |= WORKER_IDLE;
bd7bdd43 1536 pool->nr_idle++;
e22bee78 1537 worker->last_active = jiffies;
c8e55f36
TH
1538
1539 /* idle_list is LIFO */
bd7bdd43 1540 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1541
628c78e7
TH
1542 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1543 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1544
544ecf31 1545 /*
628c78e7 1546 * Sanity check nr_running. Because gcwq_unbind_fn() releases
d565ed63 1547 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1548 * nr_running, the warning may trigger spuriously. Check iff
1549 * unbind is not in progress.
544ecf31 1550 */
24647570 1551 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1552 pool->nr_workers == pool->nr_idle &&
63d95a91 1553 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1554}
1555
1556/**
1557 * worker_leave_idle - leave idle state
1558 * @worker: worker which is leaving idle state
1559 *
1560 * @worker is leaving idle state. Update stats.
1561 *
1562 * LOCKING:
d565ed63 1563 * spin_lock_irq(pool->lock).
c8e55f36
TH
1564 */
1565static void worker_leave_idle(struct worker *worker)
1566{
bd7bdd43 1567 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1568
1569 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1570 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1571 pool->nr_idle--;
c8e55f36
TH
1572 list_del_init(&worker->entry);
1573}
1574
e22bee78
TH
1575/**
1576 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1577 * @worker: self
1578 *
1579 * Works which are scheduled while the cpu is online must at least be
1580 * scheduled to a worker which is bound to the cpu so that if they are
1581 * flushed from cpu callbacks while cpu is going down, they are
1582 * guaranteed to execute on the cpu.
1583 *
1584 * This function is to be used by rogue workers and rescuers to bind
1585 * themselves to the target cpu and may race with cpu going down or
1586 * coming online. kthread_bind() can't be used because it may put the
1587 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1588 * verbatim as it's best effort and blocking and gcwq may be
1589 * [dis]associated in the meantime.
1590 *
f2d5a0ee 1591 * This function tries set_cpus_allowed() and locks gcwq and verifies the
24647570 1592 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1593 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1594 * enters idle state or fetches works without dropping lock, it can
1595 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1596 *
1597 * CONTEXT:
d565ed63 1598 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1599 * held.
1600 *
1601 * RETURNS:
1602 * %true if the associated gcwq is online (@worker is successfully
1603 * bound), %false if offline.
1604 */
1605static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1606__acquires(&pool->lock)
e22bee78 1607{
24647570 1608 struct worker_pool *pool = worker->pool;
e22bee78
TH
1609 struct task_struct *task = worker->task;
1610
1611 while (true) {
4e6045f1 1612 /*
e22bee78
TH
1613 * The following call may fail, succeed or succeed
1614 * without actually migrating the task to the cpu if
1615 * it races with cpu hotunplug operation. Verify
24647570 1616 * against POOL_DISASSOCIATED.
4e6045f1 1617 */
24647570 1618 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1619 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1620
d565ed63 1621 spin_lock_irq(&pool->lock);
24647570 1622 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1623 return false;
ec22ca5e 1624 if (task_cpu(task) == pool->cpu &&
e22bee78 1625 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1626 get_cpu_mask(pool->cpu)))
e22bee78 1627 return true;
d565ed63 1628 spin_unlock_irq(&pool->lock);
e22bee78 1629
5035b20f
TH
1630 /*
1631 * We've raced with CPU hot[un]plug. Give it a breather
1632 * and retry migration. cond_resched() is required here;
1633 * otherwise, we might deadlock against cpu_stop trying to
1634 * bring down the CPU on non-preemptive kernel.
1635 */
e22bee78 1636 cpu_relax();
5035b20f 1637 cond_resched();
e22bee78
TH
1638 }
1639}
1640
25511a47 1641/*
ea1abd61 1642 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1643 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1644 */
1645static void idle_worker_rebind(struct worker *worker)
1646{
5f7dabfd
LJ
1647 /* CPU may go down again inbetween, clear UNBOUND only on success */
1648 if (worker_maybe_bind_and_lock(worker))
1649 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1650
ea1abd61
LJ
1651 /* rebind complete, become available again */
1652 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1653 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1654}
1655
e22bee78 1656/*
25511a47 1657 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1658 * the associated cpu which is coming back online. This is scheduled by
1659 * cpu up but can race with other cpu hotplug operations and may be
1660 * executed twice without intervening cpu down.
e22bee78 1661 */
25511a47 1662static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1663{
1664 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1665
eab6d828
LJ
1666 if (worker_maybe_bind_and_lock(worker))
1667 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1668
d565ed63 1669 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1670}
1671
25511a47 1672/**
94cf58bb
TH
1673 * rebind_workers - rebind all workers of a pool to the associated CPU
1674 * @pool: pool of interest
25511a47 1675 *
94cf58bb 1676 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1677 * is different for idle and busy ones.
1678 *
ea1abd61
LJ
1679 * Idle ones will be removed from the idle_list and woken up. They will
1680 * add themselves back after completing rebind. This ensures that the
1681 * idle_list doesn't contain any unbound workers when re-bound busy workers
1682 * try to perform local wake-ups for concurrency management.
25511a47 1683 *
ea1abd61
LJ
1684 * Busy workers can rebind after they finish their current work items.
1685 * Queueing the rebind work item at the head of the scheduled list is
1686 * enough. Note that nr_running will be properly bumped as busy workers
1687 * rebind.
25511a47 1688 *
ea1abd61
LJ
1689 * On return, all non-manager workers are scheduled for rebind - see
1690 * manage_workers() for the manager special case. Any idle worker
1691 * including the manager will not appear on @idle_list until rebind is
1692 * complete, making local wake-ups safe.
25511a47 1693 */
94cf58bb 1694static void rebind_workers(struct worker_pool *pool)
25511a47 1695{
ea1abd61 1696 struct worker *worker, *n;
25511a47
TH
1697 struct hlist_node *pos;
1698 int i;
1699
94cf58bb
TH
1700 lockdep_assert_held(&pool->assoc_mutex);
1701 lockdep_assert_held(&pool->lock);
25511a47 1702
5f7dabfd 1703 /* dequeue and kick idle ones */
94cf58bb
TH
1704 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1705 /*
1706 * idle workers should be off @pool->idle_list until rebind
1707 * is complete to avoid receiving premature local wake-ups.
1708 */
1709 list_del_init(&worker->entry);
25511a47 1710
94cf58bb
TH
1711 /*
1712 * worker_thread() will see the above dequeuing and call
1713 * idle_worker_rebind().
1714 */
1715 wake_up_process(worker->task);
1716 }
25511a47 1717
94cf58bb
TH
1718 /* rebind busy workers */
1719 for_each_busy_worker(worker, i, pos, pool) {
1720 struct work_struct *rebind_work = &worker->rebind_work;
1721 struct workqueue_struct *wq;
25511a47 1722
94cf58bb
TH
1723 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1724 work_data_bits(rebind_work)))
1725 continue;
25511a47 1726
94cf58bb 1727 debug_work_activate(rebind_work);
90beca5d 1728
94cf58bb
TH
1729 /*
1730 * wq doesn't really matter but let's keep @worker->pool
1731 * and @cwq->pool consistent for sanity.
1732 */
1733 if (std_worker_pool_pri(worker->pool))
1734 wq = system_highpri_wq;
1735 else
1736 wq = system_wq;
1737
1738 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1739 worker->scheduled.next,
1740 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1741 }
25511a47
TH
1742}
1743
c34056a3
TH
1744static struct worker *alloc_worker(void)
1745{
1746 struct worker *worker;
1747
1748 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1749 if (worker) {
1750 INIT_LIST_HEAD(&worker->entry);
affee4b2 1751 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1752 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1753 /* on creation a worker is in !idle && prep state */
1754 worker->flags = WORKER_PREP;
c8e55f36 1755 }
c34056a3
TH
1756 return worker;
1757}
1758
1759/**
1760 * create_worker - create a new workqueue worker
63d95a91 1761 * @pool: pool the new worker will belong to
c34056a3 1762 *
63d95a91 1763 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1764 * can be started by calling start_worker() or destroyed using
1765 * destroy_worker().
1766 *
1767 * CONTEXT:
1768 * Might sleep. Does GFP_KERNEL allocations.
1769 *
1770 * RETURNS:
1771 * Pointer to the newly created worker.
1772 */
bc2ae0f5 1773static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1774{
e34cdddb 1775 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1776 struct worker *worker = NULL;
f3421797 1777 int id = -1;
c34056a3 1778
d565ed63 1779 spin_lock_irq(&pool->lock);
bd7bdd43 1780 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1781 spin_unlock_irq(&pool->lock);
bd7bdd43 1782 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1783 goto fail;
d565ed63 1784 spin_lock_irq(&pool->lock);
c34056a3 1785 }
d565ed63 1786 spin_unlock_irq(&pool->lock);
c34056a3
TH
1787
1788 worker = alloc_worker();
1789 if (!worker)
1790 goto fail;
1791
bd7bdd43 1792 worker->pool = pool;
c34056a3
TH
1793 worker->id = id;
1794
ec22ca5e 1795 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1796 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1797 worker, cpu_to_node(pool->cpu),
1798 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1799 else
1800 worker->task = kthread_create(worker_thread, worker,
3270476a 1801 "kworker/u:%d%s", id, pri);
c34056a3
TH
1802 if (IS_ERR(worker->task))
1803 goto fail;
1804
e34cdddb 1805 if (std_worker_pool_pri(pool))
3270476a
TH
1806 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1807
db7bccf4 1808 /*
bc2ae0f5 1809 * Determine CPU binding of the new worker depending on
24647570 1810 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1811 * flag remains stable across this function. See the comments
1812 * above the flag definition for details.
1813 *
1814 * As an unbound worker may later become a regular one if CPU comes
1815 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1816 */
24647570 1817 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1818 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1819 } else {
db7bccf4 1820 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1821 worker->flags |= WORKER_UNBOUND;
f3421797 1822 }
c34056a3
TH
1823
1824 return worker;
1825fail:
1826 if (id >= 0) {
d565ed63 1827 spin_lock_irq(&pool->lock);
bd7bdd43 1828 ida_remove(&pool->worker_ida, id);
d565ed63 1829 spin_unlock_irq(&pool->lock);
c34056a3
TH
1830 }
1831 kfree(worker);
1832 return NULL;
1833}
1834
1835/**
1836 * start_worker - start a newly created worker
1837 * @worker: worker to start
1838 *
c8e55f36 1839 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1840 *
1841 * CONTEXT:
d565ed63 1842 * spin_lock_irq(pool->lock).
c34056a3
TH
1843 */
1844static void start_worker(struct worker *worker)
1845{
cb444766 1846 worker->flags |= WORKER_STARTED;
bd7bdd43 1847 worker->pool->nr_workers++;
c8e55f36 1848 worker_enter_idle(worker);
c34056a3
TH
1849 wake_up_process(worker->task);
1850}
1851
1852/**
1853 * destroy_worker - destroy a workqueue worker
1854 * @worker: worker to be destroyed
1855 *
c8e55f36
TH
1856 * Destroy @worker and adjust @gcwq stats accordingly.
1857 *
1858 * CONTEXT:
d565ed63 1859 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1860 */
1861static void destroy_worker(struct worker *worker)
1862{
bd7bdd43 1863 struct worker_pool *pool = worker->pool;
c34056a3
TH
1864 int id = worker->id;
1865
1866 /* sanity check frenzy */
1867 BUG_ON(worker->current_work);
affee4b2 1868 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1869
c8e55f36 1870 if (worker->flags & WORKER_STARTED)
bd7bdd43 1871 pool->nr_workers--;
c8e55f36 1872 if (worker->flags & WORKER_IDLE)
bd7bdd43 1873 pool->nr_idle--;
c8e55f36
TH
1874
1875 list_del_init(&worker->entry);
cb444766 1876 worker->flags |= WORKER_DIE;
c8e55f36 1877
d565ed63 1878 spin_unlock_irq(&pool->lock);
c8e55f36 1879
c34056a3
TH
1880 kthread_stop(worker->task);
1881 kfree(worker);
1882
d565ed63 1883 spin_lock_irq(&pool->lock);
bd7bdd43 1884 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1885}
1886
63d95a91 1887static void idle_worker_timeout(unsigned long __pool)
e22bee78 1888{
63d95a91 1889 struct worker_pool *pool = (void *)__pool;
e22bee78 1890
d565ed63 1891 spin_lock_irq(&pool->lock);
e22bee78 1892
63d95a91 1893 if (too_many_workers(pool)) {
e22bee78
TH
1894 struct worker *worker;
1895 unsigned long expires;
1896
1897 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1898 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1899 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1900
1901 if (time_before(jiffies, expires))
63d95a91 1902 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1903 else {
1904 /* it's been idle for too long, wake up manager */
11ebea50 1905 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1906 wake_up_worker(pool);
d5abe669 1907 }
e22bee78
TH
1908 }
1909
d565ed63 1910 spin_unlock_irq(&pool->lock);
e22bee78 1911}
d5abe669 1912
e22bee78
TH
1913static bool send_mayday(struct work_struct *work)
1914{
1915 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1916 struct workqueue_struct *wq = cwq->wq;
f3421797 1917 unsigned int cpu;
e22bee78
TH
1918
1919 if (!(wq->flags & WQ_RESCUER))
1920 return false;
1921
1922 /* mayday mayday mayday */
ec22ca5e 1923 cpu = cwq->pool->cpu;
f3421797
TH
1924 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1925 if (cpu == WORK_CPU_UNBOUND)
1926 cpu = 0;
f2e005aa 1927 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1928 wake_up_process(wq->rescuer->task);
1929 return true;
1930}
1931
63d95a91 1932static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1933{
63d95a91 1934 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1935 struct work_struct *work;
1936
d565ed63 1937 spin_lock_irq(&pool->lock);
e22bee78 1938
63d95a91 1939 if (need_to_create_worker(pool)) {
e22bee78
TH
1940 /*
1941 * We've been trying to create a new worker but
1942 * haven't been successful. We might be hitting an
1943 * allocation deadlock. Send distress signals to
1944 * rescuers.
1945 */
63d95a91 1946 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1947 send_mayday(work);
1da177e4 1948 }
e22bee78 1949
d565ed63 1950 spin_unlock_irq(&pool->lock);
e22bee78 1951
63d95a91 1952 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1953}
1954
e22bee78
TH
1955/**
1956 * maybe_create_worker - create a new worker if necessary
63d95a91 1957 * @pool: pool to create a new worker for
e22bee78 1958 *
63d95a91 1959 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1960 * have at least one idle worker on return from this function. If
1961 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1962 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1963 * possible allocation deadlock.
1964 *
1965 * On return, need_to_create_worker() is guaranteed to be false and
1966 * may_start_working() true.
1967 *
1968 * LOCKING:
d565ed63 1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1970 * multiple times. Does GFP_KERNEL allocations. Called only from
1971 * manager.
1972 *
1973 * RETURNS:
d565ed63 1974 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1975 * otherwise.
1976 */
63d95a91 1977static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1978__releases(&pool->lock)
1979__acquires(&pool->lock)
1da177e4 1980{
63d95a91 1981 if (!need_to_create_worker(pool))
e22bee78
TH
1982 return false;
1983restart:
d565ed63 1984 spin_unlock_irq(&pool->lock);
9f9c2364 1985
e22bee78 1986 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1987 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1988
1989 while (true) {
1990 struct worker *worker;
1991
bc2ae0f5 1992 worker = create_worker(pool);
e22bee78 1993 if (worker) {
63d95a91 1994 del_timer_sync(&pool->mayday_timer);
d565ed63 1995 spin_lock_irq(&pool->lock);
e22bee78 1996 start_worker(worker);
63d95a91 1997 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1998 return true;
1999 }
2000
63d95a91 2001 if (!need_to_create_worker(pool))
e22bee78 2002 break;
1da177e4 2003
e22bee78
TH
2004 __set_current_state(TASK_INTERRUPTIBLE);
2005 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2006
63d95a91 2007 if (!need_to_create_worker(pool))
e22bee78
TH
2008 break;
2009 }
2010
63d95a91 2011 del_timer_sync(&pool->mayday_timer);
d565ed63 2012 spin_lock_irq(&pool->lock);
63d95a91 2013 if (need_to_create_worker(pool))
e22bee78
TH
2014 goto restart;
2015 return true;
2016}
2017
2018/**
2019 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2020 * @pool: pool to destroy workers for
e22bee78 2021 *
63d95a91 2022 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2023 * IDLE_WORKER_TIMEOUT.
2024 *
2025 * LOCKING:
d565ed63 2026 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2027 * multiple times. Called only from manager.
2028 *
2029 * RETURNS:
d565ed63 2030 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
2031 * otherwise.
2032 */
63d95a91 2033static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2034{
2035 bool ret = false;
1da177e4 2036
63d95a91 2037 while (too_many_workers(pool)) {
e22bee78
TH
2038 struct worker *worker;
2039 unsigned long expires;
3af24433 2040
63d95a91 2041 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2042 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2043
e22bee78 2044 if (time_before(jiffies, expires)) {
63d95a91 2045 mod_timer(&pool->idle_timer, expires);
3af24433 2046 break;
e22bee78 2047 }
1da177e4 2048
e22bee78
TH
2049 destroy_worker(worker);
2050 ret = true;
1da177e4 2051 }
1e19ffc6 2052
e22bee78 2053 return ret;
1e19ffc6
TH
2054}
2055
73f53c4a 2056/**
e22bee78
TH
2057 * manage_workers - manage worker pool
2058 * @worker: self
73f53c4a 2059 *
e22bee78
TH
2060 * Assume the manager role and manage gcwq worker pool @worker belongs
2061 * to. At any given time, there can be only zero or one manager per
2062 * gcwq. The exclusion is handled automatically by this function.
2063 *
2064 * The caller can safely start processing works on false return. On
2065 * true return, it's guaranteed that need_to_create_worker() is false
2066 * and may_start_working() is true.
73f53c4a
TH
2067 *
2068 * CONTEXT:
d565ed63 2069 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2070 * multiple times. Does GFP_KERNEL allocations.
2071 *
2072 * RETURNS:
d565ed63
TH
2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2075 */
e22bee78 2076static bool manage_workers(struct worker *worker)
73f53c4a 2077{
63d95a91 2078 struct worker_pool *pool = worker->pool;
e22bee78 2079 bool ret = false;
73f53c4a 2080
ee378aa4 2081 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2082 return ret;
1e19ffc6 2083
552a37e9 2084 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2085
ee378aa4
LJ
2086 /*
2087 * To simplify both worker management and CPU hotplug, hold off
2088 * management while hotplug is in progress. CPU hotplug path can't
2089 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2090 * lead to idle worker depletion (all become busy thinking someone
2091 * else is managing) which in turn can result in deadlock under
b2eb83d1 2092 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2093 * manager against CPU hotplug.
2094 *
b2eb83d1 2095 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2096 * progress. trylock first without dropping @pool->lock.
ee378aa4 2097 */
b2eb83d1 2098 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2099 spin_unlock_irq(&pool->lock);
b2eb83d1 2100 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2101 /*
2102 * CPU hotplug could have happened while we were waiting
b2eb83d1 2103 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4
LJ
2104 * because manager isn't either on idle or busy list, and
2105 * @gcwq's state and ours could have deviated.
2106 *
b2eb83d1 2107 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4
LJ
2108 * simply try to bind. It will succeed or fail depending
2109 * on @gcwq's current state. Try it and adjust
2110 * %WORKER_UNBOUND accordingly.
2111 */
2112 if (worker_maybe_bind_and_lock(worker))
2113 worker->flags &= ~WORKER_UNBOUND;
2114 else
2115 worker->flags |= WORKER_UNBOUND;
73f53c4a 2116
ee378aa4
LJ
2117 ret = true;
2118 }
73f53c4a 2119
11ebea50 2120 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2121
2122 /*
e22bee78
TH
2123 * Destroy and then create so that may_start_working() is true
2124 * on return.
73f53c4a 2125 */
63d95a91
TH
2126 ret |= maybe_destroy_workers(pool);
2127 ret |= maybe_create_worker(pool);
e22bee78 2128
552a37e9 2129 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2130 mutex_unlock(&pool->assoc_mutex);
e22bee78 2131 return ret;
73f53c4a
TH
2132}
2133
a62428c0
TH
2134/**
2135 * process_one_work - process single work
c34056a3 2136 * @worker: self
a62428c0
TH
2137 * @work: work to process
2138 *
2139 * Process @work. This function contains all the logics necessary to
2140 * process a single work including synchronization against and
2141 * interaction with other workers on the same cpu, queueing and
2142 * flushing. As long as context requirement is met, any worker can
2143 * call this function to process a work.
2144 *
2145 * CONTEXT:
d565ed63 2146 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2147 */
c34056a3 2148static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2149__releases(&pool->lock)
2150__acquires(&pool->lock)
a62428c0 2151{
7e11629d 2152 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43 2153 struct worker_pool *pool = worker->pool;
fb0e7beb 2154 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2155 int work_color;
7e11629d 2156 struct worker *collision;
a62428c0
TH
2157#ifdef CONFIG_LOCKDEP
2158 /*
2159 * It is permissible to free the struct work_struct from
2160 * inside the function that is called from it, this we need to
2161 * take into account for lockdep too. To avoid bogus "held
2162 * lock freed" warnings as well as problems when looking into
2163 * work->lockdep_map, make a copy and use that here.
2164 */
4d82a1de
PZ
2165 struct lockdep_map lockdep_map;
2166
2167 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2168#endif
6fec10a1
TH
2169 /*
2170 * Ensure we're on the correct CPU. DISASSOCIATED test is
2171 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2172 * unbound or a disassociated pool.
6fec10a1 2173 */
5f7dabfd 2174 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2175 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2176 raw_smp_processor_id() != pool->cpu);
25511a47 2177
7e11629d
TH
2178 /*
2179 * A single work shouldn't be executed concurrently by
2180 * multiple workers on a single cpu. Check whether anyone is
2181 * already processing the work. If so, defer the work to the
2182 * currently executing one.
2183 */
c9e7cf27 2184 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2185 if (unlikely(collision)) {
2186 move_linked_works(work, &collision->scheduled, NULL);
2187 return;
2188 }
2189
8930caba 2190 /* claim and dequeue */
a62428c0 2191 debug_work_deactivate(work);
c9e7cf27 2192 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2193 worker->current_work = work;
a2c1c57b 2194 worker->current_func = work->func;
8cca0eea 2195 worker->current_cwq = cwq;
73f53c4a 2196 work_color = get_work_color(work);
7a22ad75 2197
a62428c0
TH
2198 list_del_init(&work->entry);
2199
fb0e7beb
TH
2200 /*
2201 * CPU intensive works don't participate in concurrency
2202 * management. They're the scheduler's responsibility.
2203 */
2204 if (unlikely(cpu_intensive))
2205 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2206
974271c4 2207 /*
d565ed63 2208 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2209 * executed ASAP. Wake up another worker if necessary.
2210 */
63d95a91
TH
2211 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2212 wake_up_worker(pool);
974271c4 2213
8930caba 2214 /*
7c3eed5c 2215 * Record the last pool and clear PENDING which should be the last
d565ed63 2216 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2217 * PENDING and queued state changes happen together while IRQ is
2218 * disabled.
8930caba 2219 */
7c3eed5c 2220 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2221
d565ed63 2222 spin_unlock_irq(&pool->lock);
a62428c0 2223
e159489b 2224 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2225 lock_map_acquire(&lockdep_map);
e36c886a 2226 trace_workqueue_execute_start(work);
a2c1c57b 2227 worker->current_func(work);
e36c886a
AV
2228 /*
2229 * While we must be careful to not use "work" after this, the trace
2230 * point will only record its address.
2231 */
2232 trace_workqueue_execute_end(work);
a62428c0
TH
2233 lock_map_release(&lockdep_map);
2234 lock_map_release(&cwq->wq->lockdep_map);
2235
2236 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2237 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2238 " last function: %pf\n",
a2c1c57b
TH
2239 current->comm, preempt_count(), task_pid_nr(current),
2240 worker->current_func);
a62428c0
TH
2241 debug_show_held_locks(current);
2242 dump_stack();
2243 }
2244
d565ed63 2245 spin_lock_irq(&pool->lock);
a62428c0 2246
fb0e7beb
TH
2247 /* clear cpu intensive status */
2248 if (unlikely(cpu_intensive))
2249 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2250
a62428c0 2251 /* we're done with it, release */
42f8570f 2252 hash_del(&worker->hentry);
c34056a3 2253 worker->current_work = NULL;
a2c1c57b 2254 worker->current_func = NULL;
8cca0eea 2255 worker->current_cwq = NULL;
b3f9f405 2256 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2257}
2258
affee4b2
TH
2259/**
2260 * process_scheduled_works - process scheduled works
2261 * @worker: self
2262 *
2263 * Process all scheduled works. Please note that the scheduled list
2264 * may change while processing a work, so this function repeatedly
2265 * fetches a work from the top and executes it.
2266 *
2267 * CONTEXT:
d565ed63 2268 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2269 * multiple times.
2270 */
2271static void process_scheduled_works(struct worker *worker)
1da177e4 2272{
affee4b2
TH
2273 while (!list_empty(&worker->scheduled)) {
2274 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2275 struct work_struct, entry);
c34056a3 2276 process_one_work(worker, work);
1da177e4 2277 }
1da177e4
LT
2278}
2279
4690c4ab
TH
2280/**
2281 * worker_thread - the worker thread function
c34056a3 2282 * @__worker: self
4690c4ab 2283 *
e22bee78
TH
2284 * The gcwq worker thread function. There's a single dynamic pool of
2285 * these per each cpu. These workers process all works regardless of
2286 * their specific target workqueue. The only exception is works which
2287 * belong to workqueues with a rescuer which will be explained in
2288 * rescuer_thread().
4690c4ab 2289 */
c34056a3 2290static int worker_thread(void *__worker)
1da177e4 2291{
c34056a3 2292 struct worker *worker = __worker;
bd7bdd43 2293 struct worker_pool *pool = worker->pool;
1da177e4 2294
e22bee78
TH
2295 /* tell the scheduler that this is a workqueue worker */
2296 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2297woke_up:
d565ed63 2298 spin_lock_irq(&pool->lock);
1da177e4 2299
5f7dabfd
LJ
2300 /* we are off idle list if destruction or rebind is requested */
2301 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2302 spin_unlock_irq(&pool->lock);
25511a47 2303
5f7dabfd 2304 /* if DIE is set, destruction is requested */
25511a47
TH
2305 if (worker->flags & WORKER_DIE) {
2306 worker->task->flags &= ~PF_WQ_WORKER;
2307 return 0;
2308 }
2309
5f7dabfd 2310 /* otherwise, rebind */
25511a47
TH
2311 idle_worker_rebind(worker);
2312 goto woke_up;
c8e55f36 2313 }
affee4b2 2314
c8e55f36 2315 worker_leave_idle(worker);
db7bccf4 2316recheck:
e22bee78 2317 /* no more worker necessary? */
63d95a91 2318 if (!need_more_worker(pool))
e22bee78
TH
2319 goto sleep;
2320
2321 /* do we need to manage? */
63d95a91 2322 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2323 goto recheck;
2324
c8e55f36
TH
2325 /*
2326 * ->scheduled list can only be filled while a worker is
2327 * preparing to process a work or actually processing it.
2328 * Make sure nobody diddled with it while I was sleeping.
2329 */
2330 BUG_ON(!list_empty(&worker->scheduled));
2331
e22bee78
TH
2332 /*
2333 * When control reaches this point, we're guaranteed to have
2334 * at least one idle worker or that someone else has already
2335 * assumed the manager role.
2336 */
2337 worker_clr_flags(worker, WORKER_PREP);
2338
2339 do {
c8e55f36 2340 struct work_struct *work =
bd7bdd43 2341 list_first_entry(&pool->worklist,
c8e55f36
TH
2342 struct work_struct, entry);
2343
2344 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2345 /* optimization path, not strictly necessary */
2346 process_one_work(worker, work);
2347 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2348 process_scheduled_works(worker);
c8e55f36
TH
2349 } else {
2350 move_linked_works(work, &worker->scheduled, NULL);
2351 process_scheduled_works(worker);
affee4b2 2352 }
63d95a91 2353 } while (keep_working(pool));
e22bee78
TH
2354
2355 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2356sleep:
63d95a91 2357 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2358 goto recheck;
d313dd85 2359
c8e55f36 2360 /*
d565ed63
TH
2361 * pool->lock is held and there's no work to process and no need to
2362 * manage, sleep. Workers are woken up only while holding
2363 * pool->lock or from local cpu, so setting the current state
2364 * before releasing pool->lock is enough to prevent losing any
2365 * event.
c8e55f36
TH
2366 */
2367 worker_enter_idle(worker);
2368 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2369 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2370 schedule();
2371 goto woke_up;
1da177e4
LT
2372}
2373
e22bee78
TH
2374/**
2375 * rescuer_thread - the rescuer thread function
111c225a 2376 * @__rescuer: self
e22bee78
TH
2377 *
2378 * Workqueue rescuer thread function. There's one rescuer for each
2379 * workqueue which has WQ_RESCUER set.
2380 *
2381 * Regular work processing on a gcwq may block trying to create a new
2382 * worker which uses GFP_KERNEL allocation which has slight chance of
2383 * developing into deadlock if some works currently on the same queue
2384 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2385 * the problem rescuer solves.
2386 *
2387 * When such condition is possible, the gcwq summons rescuers of all
2388 * workqueues which have works queued on the gcwq and let them process
2389 * those works so that forward progress can be guaranteed.
2390 *
2391 * This should happen rarely.
2392 */
111c225a 2393static int rescuer_thread(void *__rescuer)
e22bee78 2394{
111c225a
TH
2395 struct worker *rescuer = __rescuer;
2396 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2397 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2398 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2399 unsigned int cpu;
2400
2401 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2402
2403 /*
2404 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2405 * doesn't participate in concurrency management.
2406 */
2407 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2408repeat:
2409 set_current_state(TASK_INTERRUPTIBLE);
2410
412d32e6
MG
2411 if (kthread_should_stop()) {
2412 __set_current_state(TASK_RUNNING);
111c225a 2413 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2414 return 0;
412d32e6 2415 }
e22bee78 2416
f3421797
TH
2417 /*
2418 * See whether any cpu is asking for help. Unbounded
2419 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2420 */
f2e005aa 2421 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2422 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2423 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43 2424 struct worker_pool *pool = cwq->pool;
e22bee78
TH
2425 struct work_struct *work, *n;
2426
2427 __set_current_state(TASK_RUNNING);
f2e005aa 2428 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2429
2430 /* migrate to the target cpu if possible */
bd7bdd43 2431 rescuer->pool = pool;
e22bee78
TH
2432 worker_maybe_bind_and_lock(rescuer);
2433
2434 /*
2435 * Slurp in all works issued via this workqueue and
2436 * process'em.
2437 */
2438 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2439 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2440 if (get_work_cwq(work) == cwq)
2441 move_linked_works(work, scheduled, &n);
2442
2443 process_scheduled_works(rescuer);
7576958a
TH
2444
2445 /*
d565ed63 2446 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2447 * regular worker; otherwise, we end up with 0 concurrency
2448 * and stalling the execution.
2449 */
63d95a91
TH
2450 if (keep_working(pool))
2451 wake_up_worker(pool);
7576958a 2452
d565ed63 2453 spin_unlock_irq(&pool->lock);
e22bee78
TH
2454 }
2455
111c225a
TH
2456 /* rescuers should never participate in concurrency management */
2457 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2458 schedule();
2459 goto repeat;
1da177e4
LT
2460}
2461
fc2e4d70
ON
2462struct wq_barrier {
2463 struct work_struct work;
2464 struct completion done;
2465};
2466
2467static void wq_barrier_func(struct work_struct *work)
2468{
2469 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2470 complete(&barr->done);
2471}
2472
4690c4ab
TH
2473/**
2474 * insert_wq_barrier - insert a barrier work
2475 * @cwq: cwq to insert barrier into
2476 * @barr: wq_barrier to insert
affee4b2
TH
2477 * @target: target work to attach @barr to
2478 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2479 *
affee4b2
TH
2480 * @barr is linked to @target such that @barr is completed only after
2481 * @target finishes execution. Please note that the ordering
2482 * guarantee is observed only with respect to @target and on the local
2483 * cpu.
2484 *
2485 * Currently, a queued barrier can't be canceled. This is because
2486 * try_to_grab_pending() can't determine whether the work to be
2487 * grabbed is at the head of the queue and thus can't clear LINKED
2488 * flag of the previous work while there must be a valid next work
2489 * after a work with LINKED flag set.
2490 *
2491 * Note that when @worker is non-NULL, @target may be modified
2492 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2493 *
2494 * CONTEXT:
d565ed63 2495 * spin_lock_irq(pool->lock).
4690c4ab 2496 */
83c22520 2497static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2498 struct wq_barrier *barr,
2499 struct work_struct *target, struct worker *worker)
fc2e4d70 2500{
affee4b2
TH
2501 struct list_head *head;
2502 unsigned int linked = 0;
2503
dc186ad7 2504 /*
d565ed63 2505 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2506 * as we know for sure that this will not trigger any of the
2507 * checks and call back into the fixup functions where we
2508 * might deadlock.
2509 */
ca1cab37 2510 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2511 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2512 init_completion(&barr->done);
83c22520 2513
affee4b2
TH
2514 /*
2515 * If @target is currently being executed, schedule the
2516 * barrier to the worker; otherwise, put it after @target.
2517 */
2518 if (worker)
2519 head = worker->scheduled.next;
2520 else {
2521 unsigned long *bits = work_data_bits(target);
2522
2523 head = target->entry.next;
2524 /* there can already be other linked works, inherit and set */
2525 linked = *bits & WORK_STRUCT_LINKED;
2526 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2527 }
2528
dc186ad7 2529 debug_work_activate(&barr->work);
affee4b2
TH
2530 insert_work(cwq, &barr->work, head,
2531 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2532}
2533
73f53c4a
TH
2534/**
2535 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2536 * @wq: workqueue being flushed
2537 * @flush_color: new flush color, < 0 for no-op
2538 * @work_color: new work color, < 0 for no-op
2539 *
2540 * Prepare cwqs for workqueue flushing.
2541 *
2542 * If @flush_color is non-negative, flush_color on all cwqs should be
2543 * -1. If no cwq has in-flight commands at the specified color, all
2544 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2545 * has in flight commands, its cwq->flush_color is set to
2546 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2547 * wakeup logic is armed and %true is returned.
2548 *
2549 * The caller should have initialized @wq->first_flusher prior to
2550 * calling this function with non-negative @flush_color. If
2551 * @flush_color is negative, no flush color update is done and %false
2552 * is returned.
2553 *
2554 * If @work_color is non-negative, all cwqs should have the same
2555 * work_color which is previous to @work_color and all will be
2556 * advanced to @work_color.
2557 *
2558 * CONTEXT:
2559 * mutex_lock(wq->flush_mutex).
2560 *
2561 * RETURNS:
2562 * %true if @flush_color >= 0 and there's something to flush. %false
2563 * otherwise.
2564 */
2565static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2566 int flush_color, int work_color)
1da177e4 2567{
73f53c4a
TH
2568 bool wait = false;
2569 unsigned int cpu;
1da177e4 2570
73f53c4a
TH
2571 if (flush_color >= 0) {
2572 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2573 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2574 }
2355b70f 2575
f3421797 2576 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2577 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
d565ed63 2578 struct worker_pool *pool = cwq->pool;
fc2e4d70 2579
d565ed63 2580 spin_lock_irq(&pool->lock);
83c22520 2581
73f53c4a
TH
2582 if (flush_color >= 0) {
2583 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2584
73f53c4a
TH
2585 if (cwq->nr_in_flight[flush_color]) {
2586 cwq->flush_color = flush_color;
2587 atomic_inc(&wq->nr_cwqs_to_flush);
2588 wait = true;
2589 }
2590 }
1da177e4 2591
73f53c4a
TH
2592 if (work_color >= 0) {
2593 BUG_ON(work_color != work_next_color(cwq->work_color));
2594 cwq->work_color = work_color;
2595 }
1da177e4 2596
d565ed63 2597 spin_unlock_irq(&pool->lock);
1da177e4 2598 }
2355b70f 2599
73f53c4a
TH
2600 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2601 complete(&wq->first_flusher->done);
14441960 2602
73f53c4a 2603 return wait;
1da177e4
LT
2604}
2605
0fcb78c2 2606/**
1da177e4 2607 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2608 * @wq: workqueue to flush
1da177e4
LT
2609 *
2610 * Forces execution of the workqueue and blocks until its completion.
2611 * This is typically used in driver shutdown handlers.
2612 *
fc2e4d70
ON
2613 * We sleep until all works which were queued on entry have been handled,
2614 * but we are not livelocked by new incoming ones.
1da177e4 2615 */
7ad5b3a5 2616void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2617{
73f53c4a
TH
2618 struct wq_flusher this_flusher = {
2619 .list = LIST_HEAD_INIT(this_flusher.list),
2620 .flush_color = -1,
2621 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2622 };
2623 int next_color;
1da177e4 2624
3295f0ef
IM
2625 lock_map_acquire(&wq->lockdep_map);
2626 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2627
2628 mutex_lock(&wq->flush_mutex);
2629
2630 /*
2631 * Start-to-wait phase
2632 */
2633 next_color = work_next_color(wq->work_color);
2634
2635 if (next_color != wq->flush_color) {
2636 /*
2637 * Color space is not full. The current work_color
2638 * becomes our flush_color and work_color is advanced
2639 * by one.
2640 */
2641 BUG_ON(!list_empty(&wq->flusher_overflow));
2642 this_flusher.flush_color = wq->work_color;
2643 wq->work_color = next_color;
2644
2645 if (!wq->first_flusher) {
2646 /* no flush in progress, become the first flusher */
2647 BUG_ON(wq->flush_color != this_flusher.flush_color);
2648
2649 wq->first_flusher = &this_flusher;
2650
2651 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2652 wq->work_color)) {
2653 /* nothing to flush, done */
2654 wq->flush_color = next_color;
2655 wq->first_flusher = NULL;
2656 goto out_unlock;
2657 }
2658 } else {
2659 /* wait in queue */
2660 BUG_ON(wq->flush_color == this_flusher.flush_color);
2661 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2662 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2663 }
2664 } else {
2665 /*
2666 * Oops, color space is full, wait on overflow queue.
2667 * The next flush completion will assign us
2668 * flush_color and transfer to flusher_queue.
2669 */
2670 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2671 }
2672
2673 mutex_unlock(&wq->flush_mutex);
2674
2675 wait_for_completion(&this_flusher.done);
2676
2677 /*
2678 * Wake-up-and-cascade phase
2679 *
2680 * First flushers are responsible for cascading flushes and
2681 * handling overflow. Non-first flushers can simply return.
2682 */
2683 if (wq->first_flusher != &this_flusher)
2684 return;
2685
2686 mutex_lock(&wq->flush_mutex);
2687
4ce48b37
TH
2688 /* we might have raced, check again with mutex held */
2689 if (wq->first_flusher != &this_flusher)
2690 goto out_unlock;
2691
73f53c4a
TH
2692 wq->first_flusher = NULL;
2693
2694 BUG_ON(!list_empty(&this_flusher.list));
2695 BUG_ON(wq->flush_color != this_flusher.flush_color);
2696
2697 while (true) {
2698 struct wq_flusher *next, *tmp;
2699
2700 /* complete all the flushers sharing the current flush color */
2701 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2702 if (next->flush_color != wq->flush_color)
2703 break;
2704 list_del_init(&next->list);
2705 complete(&next->done);
2706 }
2707
2708 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2709 wq->flush_color != work_next_color(wq->work_color));
2710
2711 /* this flush_color is finished, advance by one */
2712 wq->flush_color = work_next_color(wq->flush_color);
2713
2714 /* one color has been freed, handle overflow queue */
2715 if (!list_empty(&wq->flusher_overflow)) {
2716 /*
2717 * Assign the same color to all overflowed
2718 * flushers, advance work_color and append to
2719 * flusher_queue. This is the start-to-wait
2720 * phase for these overflowed flushers.
2721 */
2722 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2723 tmp->flush_color = wq->work_color;
2724
2725 wq->work_color = work_next_color(wq->work_color);
2726
2727 list_splice_tail_init(&wq->flusher_overflow,
2728 &wq->flusher_queue);
2729 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2730 }
2731
2732 if (list_empty(&wq->flusher_queue)) {
2733 BUG_ON(wq->flush_color != wq->work_color);
2734 break;
2735 }
2736
2737 /*
2738 * Need to flush more colors. Make the next flusher
2739 * the new first flusher and arm cwqs.
2740 */
2741 BUG_ON(wq->flush_color == wq->work_color);
2742 BUG_ON(wq->flush_color != next->flush_color);
2743
2744 list_del_init(&next->list);
2745 wq->first_flusher = next;
2746
2747 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2748 break;
2749
2750 /*
2751 * Meh... this color is already done, clear first
2752 * flusher and repeat cascading.
2753 */
2754 wq->first_flusher = NULL;
2755 }
2756
2757out_unlock:
2758 mutex_unlock(&wq->flush_mutex);
1da177e4 2759}
ae90dd5d 2760EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2761
9c5a2ba7
TH
2762/**
2763 * drain_workqueue - drain a workqueue
2764 * @wq: workqueue to drain
2765 *
2766 * Wait until the workqueue becomes empty. While draining is in progress,
2767 * only chain queueing is allowed. IOW, only currently pending or running
2768 * work items on @wq can queue further work items on it. @wq is flushed
2769 * repeatedly until it becomes empty. The number of flushing is detemined
2770 * by the depth of chaining and should be relatively short. Whine if it
2771 * takes too long.
2772 */
2773void drain_workqueue(struct workqueue_struct *wq)
2774{
2775 unsigned int flush_cnt = 0;
2776 unsigned int cpu;
2777
2778 /*
2779 * __queue_work() needs to test whether there are drainers, is much
2780 * hotter than drain_workqueue() and already looks at @wq->flags.
2781 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2782 */
2783 spin_lock(&workqueue_lock);
2784 if (!wq->nr_drainers++)
2785 wq->flags |= WQ_DRAINING;
2786 spin_unlock(&workqueue_lock);
2787reflush:
2788 flush_workqueue(wq);
2789
2790 for_each_cwq_cpu(cpu, wq) {
2791 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2792 bool drained;
9c5a2ba7 2793
d565ed63 2794 spin_lock_irq(&cwq->pool->lock);
fa2563e4 2795 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
d565ed63 2796 spin_unlock_irq(&cwq->pool->lock);
fa2563e4
TT
2797
2798 if (drained)
9c5a2ba7
TH
2799 continue;
2800
2801 if (++flush_cnt == 10 ||
2802 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2803 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2804 wq->name, flush_cnt);
9c5a2ba7
TH
2805 goto reflush;
2806 }
2807
2808 spin_lock(&workqueue_lock);
2809 if (!--wq->nr_drainers)
2810 wq->flags &= ~WQ_DRAINING;
2811 spin_unlock(&workqueue_lock);
2812}
2813EXPORT_SYMBOL_GPL(drain_workqueue);
2814
606a5020 2815static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2816{
affee4b2 2817 struct worker *worker = NULL;
c9e7cf27 2818 struct worker_pool *pool;
db700897 2819 struct cpu_workqueue_struct *cwq;
db700897
ON
2820
2821 might_sleep();
c9e7cf27
TH
2822 pool = get_work_pool(work);
2823 if (!pool)
baf59022 2824 return false;
db700897 2825
d565ed63 2826 spin_lock_irq(&pool->lock);
db700897
ON
2827 if (!list_empty(&work->entry)) {
2828 /*
2829 * See the comment near try_to_grab_pending()->smp_rmb().
d565ed63 2830 * If it was re-queued to a different pool under us, we
7a22ad75 2831 * are not going to wait.
db700897
ON
2832 */
2833 smp_rmb();
7a22ad75 2834 cwq = get_work_cwq(work);
d565ed63 2835 if (unlikely(!cwq || pool != cwq->pool))
4690c4ab 2836 goto already_gone;
606a5020 2837 } else {
c9e7cf27 2838 worker = find_worker_executing_work(pool, work);
affee4b2 2839 if (!worker)
4690c4ab 2840 goto already_gone;
7a22ad75 2841 cwq = worker->current_cwq;
606a5020 2842 }
db700897 2843
baf59022 2844 insert_wq_barrier(cwq, barr, work, worker);
d565ed63 2845 spin_unlock_irq(&pool->lock);
7a22ad75 2846
e159489b
TH
2847 /*
2848 * If @max_active is 1 or rescuer is in use, flushing another work
2849 * item on the same workqueue may lead to deadlock. Make sure the
2850 * flusher is not running on the same workqueue by verifying write
2851 * access.
2852 */
2853 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2854 lock_map_acquire(&cwq->wq->lockdep_map);
2855 else
2856 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2857 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2858
401a8d04 2859 return true;
4690c4ab 2860already_gone:
d565ed63 2861 spin_unlock_irq(&pool->lock);
401a8d04 2862 return false;
db700897 2863}
baf59022
TH
2864
2865/**
2866 * flush_work - wait for a work to finish executing the last queueing instance
2867 * @work: the work to flush
2868 *
606a5020
TH
2869 * Wait until @work has finished execution. @work is guaranteed to be idle
2870 * on return if it hasn't been requeued since flush started.
baf59022
TH
2871 *
2872 * RETURNS:
2873 * %true if flush_work() waited for the work to finish execution,
2874 * %false if it was already idle.
2875 */
2876bool flush_work(struct work_struct *work)
2877{
2878 struct wq_barrier barr;
2879
0976dfc1
SB
2880 lock_map_acquire(&work->lockdep_map);
2881 lock_map_release(&work->lockdep_map);
2882
606a5020 2883 if (start_flush_work(work, &barr)) {
401a8d04
TH
2884 wait_for_completion(&barr.done);
2885 destroy_work_on_stack(&barr.work);
2886 return true;
606a5020 2887 } else {
401a8d04 2888 return false;
6e84d644 2889 }
6e84d644 2890}
606a5020 2891EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2892
36e227d2 2893static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2894{
bbb68dfa 2895 unsigned long flags;
1f1f642e
ON
2896 int ret;
2897
2898 do {
bbb68dfa
TH
2899 ret = try_to_grab_pending(work, is_dwork, &flags);
2900 /*
2901 * If someone else is canceling, wait for the same event it
2902 * would be waiting for before retrying.
2903 */
2904 if (unlikely(ret == -ENOENT))
606a5020 2905 flush_work(work);
1f1f642e
ON
2906 } while (unlikely(ret < 0));
2907
bbb68dfa
TH
2908 /* tell other tasks trying to grab @work to back off */
2909 mark_work_canceling(work);
2910 local_irq_restore(flags);
2911
606a5020 2912 flush_work(work);
7a22ad75 2913 clear_work_data(work);
1f1f642e
ON
2914 return ret;
2915}
2916
6e84d644 2917/**
401a8d04
TH
2918 * cancel_work_sync - cancel a work and wait for it to finish
2919 * @work: the work to cancel
6e84d644 2920 *
401a8d04
TH
2921 * Cancel @work and wait for its execution to finish. This function
2922 * can be used even if the work re-queues itself or migrates to
2923 * another workqueue. On return from this function, @work is
2924 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2925 *
401a8d04
TH
2926 * cancel_work_sync(&delayed_work->work) must not be used for
2927 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2928 *
401a8d04 2929 * The caller must ensure that the workqueue on which @work was last
6e84d644 2930 * queued can't be destroyed before this function returns.
401a8d04
TH
2931 *
2932 * RETURNS:
2933 * %true if @work was pending, %false otherwise.
6e84d644 2934 */
401a8d04 2935bool cancel_work_sync(struct work_struct *work)
6e84d644 2936{
36e227d2 2937 return __cancel_work_timer(work, false);
b89deed3 2938}
28e53bdd 2939EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2940
6e84d644 2941/**
401a8d04
TH
2942 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2943 * @dwork: the delayed work to flush
6e84d644 2944 *
401a8d04
TH
2945 * Delayed timer is cancelled and the pending work is queued for
2946 * immediate execution. Like flush_work(), this function only
2947 * considers the last queueing instance of @dwork.
1f1f642e 2948 *
401a8d04
TH
2949 * RETURNS:
2950 * %true if flush_work() waited for the work to finish execution,
2951 * %false if it was already idle.
6e84d644 2952 */
401a8d04
TH
2953bool flush_delayed_work(struct delayed_work *dwork)
2954{
8930caba 2955 local_irq_disable();
401a8d04 2956 if (del_timer_sync(&dwork->timer))
1265057f 2957 __queue_work(dwork->cpu,
401a8d04 2958 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2959 local_irq_enable();
401a8d04
TH
2960 return flush_work(&dwork->work);
2961}
2962EXPORT_SYMBOL(flush_delayed_work);
2963
09383498 2964/**
57b30ae7
TH
2965 * cancel_delayed_work - cancel a delayed work
2966 * @dwork: delayed_work to cancel
09383498 2967 *
57b30ae7
TH
2968 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2969 * and canceled; %false if wasn't pending. Note that the work callback
2970 * function may still be running on return, unless it returns %true and the
2971 * work doesn't re-arm itself. Explicitly flush or use
2972 * cancel_delayed_work_sync() to wait on it.
09383498 2973 *
57b30ae7 2974 * This function is safe to call from any context including IRQ handler.
09383498 2975 */
57b30ae7 2976bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2977{
57b30ae7
TH
2978 unsigned long flags;
2979 int ret;
2980
2981 do {
2982 ret = try_to_grab_pending(&dwork->work, true, &flags);
2983 } while (unlikely(ret == -EAGAIN));
2984
2985 if (unlikely(ret < 0))
2986 return false;
2987
7c3eed5c
TH
2988 set_work_pool_and_clear_pending(&dwork->work,
2989 get_work_pool_id(&dwork->work));
57b30ae7 2990 local_irq_restore(flags);
c0158ca6 2991 return ret;
09383498 2992}
57b30ae7 2993EXPORT_SYMBOL(cancel_delayed_work);
09383498 2994
401a8d04
TH
2995/**
2996 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2997 * @dwork: the delayed work cancel
2998 *
2999 * This is cancel_work_sync() for delayed works.
3000 *
3001 * RETURNS:
3002 * %true if @dwork was pending, %false otherwise.
3003 */
3004bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3005{
36e227d2 3006 return __cancel_work_timer(&dwork->work, true);
6e84d644 3007}
f5a421a4 3008EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3009
0fcb78c2 3010/**
c1a220e7
ZR
3011 * schedule_work_on - put work task on a specific cpu
3012 * @cpu: cpu to put the work task on
3013 * @work: job to be done
3014 *
3015 * This puts a job on a specific cpu
3016 */
d4283e93 3017bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 3018{
d320c038 3019 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3020}
3021EXPORT_SYMBOL(schedule_work_on);
3022
0fcb78c2 3023/**
0fcb78c2
REB
3024 * schedule_work - put work task in global workqueue
3025 * @work: job to be done
0fcb78c2 3026 *
d4283e93
TH
3027 * Returns %false if @work was already on the kernel-global workqueue and
3028 * %true otherwise.
5b0f437d
BVA
3029 *
3030 * This puts a job in the kernel-global workqueue if it was not already
3031 * queued and leaves it in the same position on the kernel-global
3032 * workqueue otherwise.
0fcb78c2 3033 */
d4283e93 3034bool schedule_work(struct work_struct *work)
1da177e4 3035{
d320c038 3036 return queue_work(system_wq, work);
1da177e4 3037}
ae90dd5d 3038EXPORT_SYMBOL(schedule_work);
1da177e4 3039
0fcb78c2
REB
3040/**
3041 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3042 * @cpu: cpu to use
52bad64d 3043 * @dwork: job to be done
0fcb78c2
REB
3044 * @delay: number of jiffies to wait
3045 *
3046 * After waiting for a given time this puts a job in the kernel-global
3047 * workqueue on the specified CPU.
3048 */
d4283e93
TH
3049bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3050 unsigned long delay)
1da177e4 3051{
d320c038 3052 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3053}
ae90dd5d 3054EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3055
0fcb78c2
REB
3056/**
3057 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3058 * @dwork: job to be done
3059 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3060 *
3061 * After waiting for a given time this puts a job in the kernel-global
3062 * workqueue.
3063 */
d4283e93 3064bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3065{
d320c038 3066 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3067}
ae90dd5d 3068EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3069
b6136773 3070/**
31ddd871 3071 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3072 * @func: the function to call
b6136773 3073 *
31ddd871
TH
3074 * schedule_on_each_cpu() executes @func on each online CPU using the
3075 * system workqueue and blocks until all CPUs have completed.
b6136773 3076 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3077 *
3078 * RETURNS:
3079 * 0 on success, -errno on failure.
b6136773 3080 */
65f27f38 3081int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3082{
3083 int cpu;
38f51568 3084 struct work_struct __percpu *works;
15316ba8 3085
b6136773
AM
3086 works = alloc_percpu(struct work_struct);
3087 if (!works)
15316ba8 3088 return -ENOMEM;
b6136773 3089
93981800
TH
3090 get_online_cpus();
3091
15316ba8 3092 for_each_online_cpu(cpu) {
9bfb1839
IM
3093 struct work_struct *work = per_cpu_ptr(works, cpu);
3094
3095 INIT_WORK(work, func);
b71ab8c2 3096 schedule_work_on(cpu, work);
65a64464 3097 }
93981800
TH
3098
3099 for_each_online_cpu(cpu)
3100 flush_work(per_cpu_ptr(works, cpu));
3101
95402b38 3102 put_online_cpus();
b6136773 3103 free_percpu(works);
15316ba8
CL
3104 return 0;
3105}
3106
eef6a7d5
AS
3107/**
3108 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3109 *
3110 * Forces execution of the kernel-global workqueue and blocks until its
3111 * completion.
3112 *
3113 * Think twice before calling this function! It's very easy to get into
3114 * trouble if you don't take great care. Either of the following situations
3115 * will lead to deadlock:
3116 *
3117 * One of the work items currently on the workqueue needs to acquire
3118 * a lock held by your code or its caller.
3119 *
3120 * Your code is running in the context of a work routine.
3121 *
3122 * They will be detected by lockdep when they occur, but the first might not
3123 * occur very often. It depends on what work items are on the workqueue and
3124 * what locks they need, which you have no control over.
3125 *
3126 * In most situations flushing the entire workqueue is overkill; you merely
3127 * need to know that a particular work item isn't queued and isn't running.
3128 * In such cases you should use cancel_delayed_work_sync() or
3129 * cancel_work_sync() instead.
3130 */
1da177e4
LT
3131void flush_scheduled_work(void)
3132{
d320c038 3133 flush_workqueue(system_wq);
1da177e4 3134}
ae90dd5d 3135EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3136
1fa44eca
JB
3137/**
3138 * execute_in_process_context - reliably execute the routine with user context
3139 * @fn: the function to execute
1fa44eca
JB
3140 * @ew: guaranteed storage for the execute work structure (must
3141 * be available when the work executes)
3142 *
3143 * Executes the function immediately if process context is available,
3144 * otherwise schedules the function for delayed execution.
3145 *
3146 * Returns: 0 - function was executed
3147 * 1 - function was scheduled for execution
3148 */
65f27f38 3149int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3150{
3151 if (!in_interrupt()) {
65f27f38 3152 fn(&ew->work);
1fa44eca
JB
3153 return 0;
3154 }
3155
65f27f38 3156 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3157 schedule_work(&ew->work);
3158
3159 return 1;
3160}
3161EXPORT_SYMBOL_GPL(execute_in_process_context);
3162
1da177e4
LT
3163int keventd_up(void)
3164{
d320c038 3165 return system_wq != NULL;
1da177e4
LT
3166}
3167
bdbc5dd7 3168static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3169{
65a64464 3170 /*
0f900049
TH
3171 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3172 * Make sure that the alignment isn't lower than that of
3173 * unsigned long long.
65a64464 3174 */
0f900049
TH
3175 const size_t size = sizeof(struct cpu_workqueue_struct);
3176 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3177 __alignof__(unsigned long long));
65a64464 3178
e06ffa1e 3179 if (!(wq->flags & WQ_UNBOUND))
f3421797 3180 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3181 else {
f3421797
TH
3182 void *ptr;
3183
3184 /*
3185 * Allocate enough room to align cwq and put an extra
3186 * pointer at the end pointing back to the originally
3187 * allocated pointer which will be used for free.
3188 */
3189 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3190 if (ptr) {
3191 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3192 *(void **)(wq->cpu_wq.single + 1) = ptr;
3193 }
bdbc5dd7 3194 }
f3421797 3195
0415b00d 3196 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3197 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3198 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3199}
3200
bdbc5dd7 3201static void free_cwqs(struct workqueue_struct *wq)
0f900049 3202{
e06ffa1e 3203 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3204 free_percpu(wq->cpu_wq.pcpu);
3205 else if (wq->cpu_wq.single) {
3206 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3207 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3208 }
0f900049
TH
3209}
3210
f3421797
TH
3211static int wq_clamp_max_active(int max_active, unsigned int flags,
3212 const char *name)
b71ab8c2 3213{
f3421797
TH
3214 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3215
3216 if (max_active < 1 || max_active > lim)
044c782c
VI
3217 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3218 max_active, name, 1, lim);
b71ab8c2 3219
f3421797 3220 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3221}
3222
b196be89 3223struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3224 unsigned int flags,
3225 int max_active,
3226 struct lock_class_key *key,
b196be89 3227 const char *lock_name, ...)
1da177e4 3228{
b196be89 3229 va_list args, args1;
1da177e4 3230 struct workqueue_struct *wq;
c34056a3 3231 unsigned int cpu;
b196be89
TH
3232 size_t namelen;
3233
3234 /* determine namelen, allocate wq and format name */
3235 va_start(args, lock_name);
3236 va_copy(args1, args);
3237 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3238
3239 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3240 if (!wq)
3241 goto err;
3242
3243 vsnprintf(wq->name, namelen, fmt, args1);
3244 va_end(args);
3245 va_end(args1);
1da177e4 3246
6370a6ad
TH
3247 /*
3248 * Workqueues which may be used during memory reclaim should
3249 * have a rescuer to guarantee forward progress.
3250 */
3251 if (flags & WQ_MEM_RECLAIM)
3252 flags |= WQ_RESCUER;
3253
d320c038 3254 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3255 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3256
b196be89 3257 /* init wq */
97e37d7b 3258 wq->flags = flags;
a0a1a5fd 3259 wq->saved_max_active = max_active;
73f53c4a
TH
3260 mutex_init(&wq->flush_mutex);
3261 atomic_set(&wq->nr_cwqs_to_flush, 0);
3262 INIT_LIST_HEAD(&wq->flusher_queue);
3263 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3264
eb13ba87 3265 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3266 INIT_LIST_HEAD(&wq->list);
3af24433 3267
bdbc5dd7
TH
3268 if (alloc_cwqs(wq) < 0)
3269 goto err;
3270
f3421797 3271 for_each_cwq_cpu(cpu, wq) {
1537663f 3272 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3273 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3274 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3275
0f900049 3276 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3277 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3278 cwq->wq = wq;
73f53c4a 3279 cwq->flush_color = -1;
1e19ffc6 3280 cwq->max_active = max_active;
1e19ffc6 3281 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3282 }
1537663f 3283
e22bee78
TH
3284 if (flags & WQ_RESCUER) {
3285 struct worker *rescuer;
3286
f2e005aa 3287 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3288 goto err;
3289
3290 wq->rescuer = rescuer = alloc_worker();
3291 if (!rescuer)
3292 goto err;
3293
111c225a
TH
3294 rescuer->rescue_wq = wq;
3295 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3296 wq->name);
e22bee78
TH
3297 if (IS_ERR(rescuer->task))
3298 goto err;
3299
e22bee78
TH
3300 rescuer->task->flags |= PF_THREAD_BOUND;
3301 wake_up_process(rescuer->task);
3af24433
ON
3302 }
3303
a0a1a5fd
TH
3304 /*
3305 * workqueue_lock protects global freeze state and workqueues
3306 * list. Grab it, set max_active accordingly and add the new
3307 * workqueue to workqueues list.
3308 */
1537663f 3309 spin_lock(&workqueue_lock);
a0a1a5fd 3310
58a69cb4 3311 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3312 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3313 get_cwq(cpu, wq)->max_active = 0;
3314
1537663f 3315 list_add(&wq->list, &workqueues);
a0a1a5fd 3316
1537663f
TH
3317 spin_unlock(&workqueue_lock);
3318
3af24433 3319 return wq;
4690c4ab
TH
3320err:
3321 if (wq) {
bdbc5dd7 3322 free_cwqs(wq);
f2e005aa 3323 free_mayday_mask(wq->mayday_mask);
e22bee78 3324 kfree(wq->rescuer);
4690c4ab
TH
3325 kfree(wq);
3326 }
3327 return NULL;
3af24433 3328}
d320c038 3329EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3330
3af24433
ON
3331/**
3332 * destroy_workqueue - safely terminate a workqueue
3333 * @wq: target workqueue
3334 *
3335 * Safely destroy a workqueue. All work currently pending will be done first.
3336 */
3337void destroy_workqueue(struct workqueue_struct *wq)
3338{
c8e55f36 3339 unsigned int cpu;
3af24433 3340
9c5a2ba7
TH
3341 /* drain it before proceeding with destruction */
3342 drain_workqueue(wq);
c8efcc25 3343
a0a1a5fd
TH
3344 /*
3345 * wq list is used to freeze wq, remove from list after
3346 * flushing is complete in case freeze races us.
3347 */
95402b38 3348 spin_lock(&workqueue_lock);
b1f4ec17 3349 list_del(&wq->list);
95402b38 3350 spin_unlock(&workqueue_lock);
3af24433 3351
e22bee78 3352 /* sanity check */
f3421797 3353 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3354 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3355 int i;
3356
73f53c4a
TH
3357 for (i = 0; i < WORK_NR_COLORS; i++)
3358 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3359 BUG_ON(cwq->nr_active);
3360 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3361 }
9b41ea72 3362
e22bee78
TH
3363 if (wq->flags & WQ_RESCUER) {
3364 kthread_stop(wq->rescuer->task);
f2e005aa 3365 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3366 kfree(wq->rescuer);
e22bee78
TH
3367 }
3368
bdbc5dd7 3369 free_cwqs(wq);
3af24433
ON
3370 kfree(wq);
3371}
3372EXPORT_SYMBOL_GPL(destroy_workqueue);
3373
9f4bd4cd
LJ
3374/**
3375 * cwq_set_max_active - adjust max_active of a cwq
3376 * @cwq: target cpu_workqueue_struct
3377 * @max_active: new max_active value.
3378 *
3379 * Set @cwq->max_active to @max_active and activate delayed works if
3380 * increased.
3381 *
3382 * CONTEXT:
d565ed63 3383 * spin_lock_irq(pool->lock).
9f4bd4cd
LJ
3384 */
3385static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3386{
3387 cwq->max_active = max_active;
3388
3389 while (!list_empty(&cwq->delayed_works) &&
3390 cwq->nr_active < cwq->max_active)
3391 cwq_activate_first_delayed(cwq);
3392}
3393
dcd989cb
TH
3394/**
3395 * workqueue_set_max_active - adjust max_active of a workqueue
3396 * @wq: target workqueue
3397 * @max_active: new max_active value.
3398 *
3399 * Set max_active of @wq to @max_active.
3400 *
3401 * CONTEXT:
3402 * Don't call from IRQ context.
3403 */
3404void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3405{
3406 unsigned int cpu;
3407
f3421797 3408 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3409
3410 spin_lock(&workqueue_lock);
3411
3412 wq->saved_max_active = max_active;
3413
f3421797 3414 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3415 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3416 struct worker_pool *pool = cwq->pool;
dcd989cb 3417
d565ed63 3418 spin_lock_irq(&pool->lock);
dcd989cb 3419
58a69cb4 3420 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3421 !(pool->flags & POOL_FREEZING))
3422 cwq_set_max_active(cwq, max_active);
9bfb1839 3423
d565ed63 3424 spin_unlock_irq(&pool->lock);
65a64464 3425 }
93981800 3426
dcd989cb 3427 spin_unlock(&workqueue_lock);
15316ba8 3428}
dcd989cb 3429EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3430
eef6a7d5 3431/**
dcd989cb
TH
3432 * workqueue_congested - test whether a workqueue is congested
3433 * @cpu: CPU in question
3434 * @wq: target workqueue
eef6a7d5 3435 *
dcd989cb
TH
3436 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3437 * no synchronization around this function and the test result is
3438 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3439 *
dcd989cb
TH
3440 * RETURNS:
3441 * %true if congested, %false otherwise.
eef6a7d5 3442 */
dcd989cb 3443bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3444{
dcd989cb
TH
3445 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3446
3447 return !list_empty(&cwq->delayed_works);
1da177e4 3448}
dcd989cb 3449EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3450
dcd989cb
TH
3451/**
3452 * work_busy - test whether a work is currently pending or running
3453 * @work: the work to be tested
3454 *
3455 * Test whether @work is currently pending or running. There is no
3456 * synchronization around this function and the test result is
3457 * unreliable and only useful as advisory hints or for debugging.
3458 * Especially for reentrant wqs, the pending state might hide the
3459 * running state.
3460 *
3461 * RETURNS:
3462 * OR'd bitmask of WORK_BUSY_* bits.
3463 */
3464unsigned int work_busy(struct work_struct *work)
1da177e4 3465{
c9e7cf27 3466 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3467 unsigned long flags;
3468 unsigned int ret = 0;
1da177e4 3469
c9e7cf27 3470 if (!pool)
999767be 3471 return 0;
1da177e4 3472
d565ed63 3473 spin_lock_irqsave(&pool->lock, flags);
1da177e4 3474
dcd989cb
TH
3475 if (work_pending(work))
3476 ret |= WORK_BUSY_PENDING;
c9e7cf27 3477 if (find_worker_executing_work(pool, work))
dcd989cb 3478 ret |= WORK_BUSY_RUNNING;
1da177e4 3479
d565ed63 3480 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 3481
dcd989cb 3482 return ret;
1da177e4 3483}
dcd989cb 3484EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3485
db7bccf4
TH
3486/*
3487 * CPU hotplug.
3488 *
e22bee78
TH
3489 * There are two challenges in supporting CPU hotplug. Firstly, there
3490 * are a lot of assumptions on strong associations among work, cwq and
3491 * gcwq which make migrating pending and scheduled works very
3492 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3493 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3494 * blocked draining impractical.
3495 *
24647570 3496 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3497 * running as an unbound one and allowing it to be reattached later if the
3498 * cpu comes back online.
db7bccf4 3499 */
1da177e4 3500
628c78e7 3501static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3502{
628c78e7 3503 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3504 struct worker_pool *pool;
db7bccf4
TH
3505 struct worker *worker;
3506 struct hlist_node *pos;
3507 int i;
3af24433 3508
94cf58bb
TH
3509 for_each_worker_pool(pool, gcwq) {
3510 BUG_ON(pool->cpu != smp_processor_id());
db7bccf4 3511
94cf58bb
TH
3512 mutex_lock(&pool->assoc_mutex);
3513 spin_lock_irq(&pool->lock);
3af24433 3514
94cf58bb
TH
3515 /*
3516 * We've claimed all manager positions. Make all workers
3517 * unbound and set DISASSOCIATED. Before this, all workers
3518 * except for the ones which are still executing works from
3519 * before the last CPU down must be on the cpu. After
3520 * this, they may become diasporas.
3521 */
4ce62e9e 3522 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3523 worker->flags |= WORKER_UNBOUND;
3af24433 3524
c9e7cf27
TH
3525 for_each_busy_worker(worker, i, pos, pool)
3526 worker->flags |= WORKER_UNBOUND;
06ba38a9 3527
24647570 3528 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3529
94cf58bb
TH
3530 spin_unlock_irq(&pool->lock);
3531 mutex_unlock(&pool->assoc_mutex);
3532 }
628c78e7 3533
e22bee78 3534 /*
403c821d 3535 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3536 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3537 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3538 */
e22bee78 3539 schedule();
06ba38a9 3540
e22bee78 3541 /*
628c78e7
TH
3542 * Sched callbacks are disabled now. Zap nr_running. After this,
3543 * nr_running stays zero and need_more_worker() and keep_working()
3544 * are always true as long as the worklist is not empty. @gcwq now
3545 * behaves as unbound (in terms of concurrency management) gcwq
3546 * which is served by workers tied to the CPU.
3547 *
3548 * On return from this function, the current worker would trigger
3549 * unbound chain execution of pending work items if other workers
3550 * didn't already.
e22bee78 3551 */
4ce62e9e
TH
3552 for_each_worker_pool(pool, gcwq)
3553 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3554}
3af24433 3555
8db25e78
TH
3556/*
3557 * Workqueues should be brought up before normal priority CPU notifiers.
3558 * This will be registered high priority CPU notifier.
3559 */
9fdf9b73 3560static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3561 unsigned long action,
3562 void *hcpu)
3af24433
ON
3563{
3564 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3565 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3566 struct worker_pool *pool;
3ce63377 3567
8db25e78 3568 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3569 case CPU_UP_PREPARE:
4ce62e9e 3570 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3571 struct worker *worker;
3572
3573 if (pool->nr_workers)
3574 continue;
3575
3576 worker = create_worker(pool);
3577 if (!worker)
3578 return NOTIFY_BAD;
3579
d565ed63 3580 spin_lock_irq(&pool->lock);
3ce63377 3581 start_worker(worker);
d565ed63 3582 spin_unlock_irq(&pool->lock);
3af24433 3583 }
8db25e78 3584 break;
3af24433 3585
db7bccf4
TH
3586 case CPU_DOWN_FAILED:
3587 case CPU_ONLINE:
94cf58bb
TH
3588 for_each_worker_pool(pool, gcwq) {
3589 mutex_lock(&pool->assoc_mutex);
3590 spin_lock_irq(&pool->lock);
3591
24647570 3592 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3593 rebind_workers(pool);
3594
3595 spin_unlock_irq(&pool->lock);
3596 mutex_unlock(&pool->assoc_mutex);
3597 }
db7bccf4 3598 break;
00dfcaf7 3599 }
65758202
TH
3600 return NOTIFY_OK;
3601}
3602
3603/*
3604 * Workqueues should be brought down after normal priority CPU notifiers.
3605 * This will be registered as low priority CPU notifier.
3606 */
9fdf9b73 3607static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3608 unsigned long action,
3609 void *hcpu)
3610{
8db25e78
TH
3611 unsigned int cpu = (unsigned long)hcpu;
3612 struct work_struct unbind_work;
3613
65758202
TH
3614 switch (action & ~CPU_TASKS_FROZEN) {
3615 case CPU_DOWN_PREPARE:
8db25e78
TH
3616 /* unbinding should happen on the local CPU */
3617 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3618 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3619 flush_work(&unbind_work);
3620 break;
65758202
TH
3621 }
3622 return NOTIFY_OK;
3623}
3624
2d3854a3 3625#ifdef CONFIG_SMP
8ccad40d 3626
2d3854a3 3627struct work_for_cpu {
ed48ece2 3628 struct work_struct work;
2d3854a3
RR
3629 long (*fn)(void *);
3630 void *arg;
3631 long ret;
3632};
3633
ed48ece2 3634static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3635{
ed48ece2
TH
3636 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3637
2d3854a3
RR
3638 wfc->ret = wfc->fn(wfc->arg);
3639}
3640
3641/**
3642 * work_on_cpu - run a function in user context on a particular cpu
3643 * @cpu: the cpu to run on
3644 * @fn: the function to run
3645 * @arg: the function arg
3646 *
31ad9081
RR
3647 * This will return the value @fn returns.
3648 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3649 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3650 */
3651long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3652{
ed48ece2 3653 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3654
ed48ece2
TH
3655 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3656 schedule_work_on(cpu, &wfc.work);
3657 flush_work(&wfc.work);
2d3854a3
RR
3658 return wfc.ret;
3659}
3660EXPORT_SYMBOL_GPL(work_on_cpu);
3661#endif /* CONFIG_SMP */
3662
a0a1a5fd
TH
3663#ifdef CONFIG_FREEZER
3664
3665/**
3666 * freeze_workqueues_begin - begin freezing workqueues
3667 *
58a69cb4
TH
3668 * Start freezing workqueues. After this function returns, all freezable
3669 * workqueues will queue new works to their frozen_works list instead of
3670 * gcwq->worklist.
a0a1a5fd
TH
3671 *
3672 * CONTEXT:
d565ed63 3673 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3674 */
3675void freeze_workqueues_begin(void)
3676{
a0a1a5fd
TH
3677 unsigned int cpu;
3678
3679 spin_lock(&workqueue_lock);
3680
3681 BUG_ON(workqueue_freezing);
3682 workqueue_freezing = true;
3683
f3421797 3684 for_each_gcwq_cpu(cpu) {
8b03ae3c 3685 struct global_cwq *gcwq = get_gcwq(cpu);
35b6bb63 3686 struct worker_pool *pool;
bdbc5dd7 3687 struct workqueue_struct *wq;
8b03ae3c 3688
35b6bb63 3689 for_each_worker_pool(pool, gcwq) {
a1056305 3690 spin_lock_irq(&pool->lock);
d565ed63 3691
35b6bb63
TH
3692 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3693 pool->flags |= POOL_FREEZING;
db7bccf4 3694
a1056305
TH
3695 list_for_each_entry(wq, &workqueues, list) {
3696 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3697
a1056305
TH
3698 if (cwq && cwq->pool == pool &&
3699 (wq->flags & WQ_FREEZABLE))
3700 cwq->max_active = 0;
3701 }
8b03ae3c 3702
a1056305
TH
3703 spin_unlock_irq(&pool->lock);
3704 }
a0a1a5fd
TH
3705 }
3706
3707 spin_unlock(&workqueue_lock);
3708}
3709
3710/**
58a69cb4 3711 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3712 *
3713 * Check whether freezing is complete. This function must be called
3714 * between freeze_workqueues_begin() and thaw_workqueues().
3715 *
3716 * CONTEXT:
3717 * Grabs and releases workqueue_lock.
3718 *
3719 * RETURNS:
58a69cb4
TH
3720 * %true if some freezable workqueues are still busy. %false if freezing
3721 * is complete.
a0a1a5fd
TH
3722 */
3723bool freeze_workqueues_busy(void)
3724{
a0a1a5fd
TH
3725 unsigned int cpu;
3726 bool busy = false;
3727
3728 spin_lock(&workqueue_lock);
3729
3730 BUG_ON(!workqueue_freezing);
3731
f3421797 3732 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3733 struct workqueue_struct *wq;
a0a1a5fd
TH
3734 /*
3735 * nr_active is monotonically decreasing. It's safe
3736 * to peek without lock.
3737 */
3738 list_for_each_entry(wq, &workqueues, list) {
3739 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3740
58a69cb4 3741 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3742 continue;
3743
3744 BUG_ON(cwq->nr_active < 0);
3745 if (cwq->nr_active) {
3746 busy = true;
3747 goto out_unlock;
3748 }
3749 }
3750 }
3751out_unlock:
3752 spin_unlock(&workqueue_lock);
3753 return busy;
3754}
3755
3756/**
3757 * thaw_workqueues - thaw workqueues
3758 *
3759 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3760 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3761 *
3762 * CONTEXT:
d565ed63 3763 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3764 */
3765void thaw_workqueues(void)
3766{
a0a1a5fd
TH
3767 unsigned int cpu;
3768
3769 spin_lock(&workqueue_lock);
3770
3771 if (!workqueue_freezing)
3772 goto out_unlock;
3773
f3421797 3774 for_each_gcwq_cpu(cpu) {
8b03ae3c 3775 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3776 struct worker_pool *pool;
bdbc5dd7 3777 struct workqueue_struct *wq;
8b03ae3c 3778
35b6bb63 3779 for_each_worker_pool(pool, gcwq) {
a1056305 3780 spin_lock_irq(&pool->lock);
d565ed63 3781
35b6bb63
TH
3782 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3783 pool->flags &= ~POOL_FREEZING;
db7bccf4 3784
a1056305
TH
3785 list_for_each_entry(wq, &workqueues, list) {
3786 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3787
a1056305
TH
3788 if (!cwq || cwq->pool != pool ||
3789 !(wq->flags & WQ_FREEZABLE))
3790 continue;
a0a1a5fd 3791
a1056305
TH
3792 /* restore max_active and repopulate worklist */
3793 cwq_set_max_active(cwq, wq->saved_max_active);
3794 }
8b03ae3c 3795
4ce62e9e 3796 wake_up_worker(pool);
a1056305
TH
3797
3798 spin_unlock_irq(&pool->lock);
d565ed63 3799 }
a0a1a5fd
TH
3800 }
3801
3802 workqueue_freezing = false;
3803out_unlock:
3804 spin_unlock(&workqueue_lock);
3805}
3806#endif /* CONFIG_FREEZER */
3807
6ee0578b 3808static int __init init_workqueues(void)
1da177e4 3809{
c34056a3
TH
3810 unsigned int cpu;
3811
7c3eed5c
TH
3812 /* make sure we have enough bits for OFFQ pool ID */
3813 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3814 WORK_CPU_LAST * NR_STD_WORKER_POOLS);
b5490077 3815
65758202 3816 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3817 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3818
3819 /* initialize gcwqs */
f3421797 3820 for_each_gcwq_cpu(cpu) {
8b03ae3c 3821 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3822 struct worker_pool *pool;
8b03ae3c 3823
4ce62e9e
TH
3824 for_each_worker_pool(pool, gcwq) {
3825 pool->gcwq = gcwq;
d565ed63 3826 spin_lock_init(&pool->lock);
ec22ca5e 3827 pool->cpu = cpu;
24647570 3828 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3829 INIT_LIST_HEAD(&pool->worklist);
3830 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3831 hash_init(pool->busy_hash);
e7577c50 3832
4ce62e9e
TH
3833 init_timer_deferrable(&pool->idle_timer);
3834 pool->idle_timer.function = idle_worker_timeout;
3835 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3836
4ce62e9e
TH
3837 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3838 (unsigned long)pool);
3839
b2eb83d1 3840 mutex_init(&pool->assoc_mutex);
4ce62e9e 3841 ida_init(&pool->worker_ida);
9daf9e67
TH
3842
3843 /* alloc pool ID */
3844 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3845 }
8b03ae3c
TH
3846 }
3847
e22bee78 3848 /* create the initial worker */
f3421797 3849 for_each_online_gcwq_cpu(cpu) {
e22bee78 3850 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3851 struct worker_pool *pool;
e22bee78 3852
4ce62e9e
TH
3853 for_each_worker_pool(pool, gcwq) {
3854 struct worker *worker;
3855
24647570
TH
3856 if (cpu != WORK_CPU_UNBOUND)
3857 pool->flags &= ~POOL_DISASSOCIATED;
3858
bc2ae0f5 3859 worker = create_worker(pool);
4ce62e9e 3860 BUG_ON(!worker);
d565ed63 3861 spin_lock_irq(&pool->lock);
4ce62e9e 3862 start_worker(worker);
d565ed63 3863 spin_unlock_irq(&pool->lock);
4ce62e9e 3864 }
e22bee78
TH
3865 }
3866
d320c038 3867 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3868 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3869 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3870 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3871 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3872 system_freezable_wq = alloc_workqueue("events_freezable",
3873 WQ_FREEZABLE, 0);
1aabe902 3874 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3875 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3876 return 0;
1da177e4 3877}
6ee0578b 3878early_initcall(init_workqueues);