]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/workqueue.c
workqueue: more destroy_workqueue() fixes
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 70 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
1258fae7 127 * A: wq_pool_attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
24acfb71 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 136 * RCU for reads.
5b95e1af 137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
24acfb71 140 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
d565ed63 148 spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43 156 struct list_head worklist; /* L: list of pending works */
ea1abd61 157
5826cc8f
LJ
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4 170 struct list_head workers; /* A: attached workers */
60f5a4bc 171 struct completion *detach_completion; /* all workers detached */
e19e397a 172
7cda9aae 173 struct ida worker_ida; /* worker IDs for task name */
e19e397a 174
7a4e344c 175 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 178
e19e397a
TH
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
185
186 /*
24acfb71 187 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
8b03ae3c
TH
191} ____cacheline_aligned_in_smp;
192
1da177e4 193/*
112202d9
TH
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
1da177e4 198 */
112202d9 199struct pool_workqueue {
bd7bdd43 200 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 201 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
8864b4e5 204 int refcnt; /* L: reference count */
73f53c4a
TH
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
1e19ffc6 207 int nr_active; /* L: nr of active works */
a0a1a5fd 208 int max_active; /* L: max active works */
1e19ffc6 209 struct list_head delayed_works; /* L: delayed works */
3c25a55d 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 211 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 216 * itself is also RCU protected so that the first pwq can be
b09f4fd3 217 * determined without grabbing wq->mutex.
8864b4e5
TH
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
e904e6c2 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 222
73f53c4a
TH
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
3c25a55d
LJ
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
229 struct completion done; /* flush completion */
230};
231
226223ab
TH
232struct wq_device;
233
1da177e4 234/*
c5aa87bb
TH
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
237 */
238struct workqueue_struct {
3c25a55d 239 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 240 struct list_head list; /* PR: list of all workqueues */
73f53c4a 241
3c25a55d
LJ
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
112202d9 245 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 249
2e109a28 250 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 251 struct worker *rescuer; /* MD: rescue worker */
e22bee78 252
87fc741e 253 int nr_drainers; /* WQ: drain in progress */
a357fc03 254 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 255
5b95e1af
LJ
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 258
226223ab
TH
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
4e6045f1 262#ifdef CONFIG_LOCKDEP
669de8bd
BVA
263 char *lock_name;
264 struct lock_class_key key;
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad 269 /*
24acfb71
TG
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 305
e2dca7ad 306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 307static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 308
ef557180
MG
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 314
f303fccb
TH
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
7d19c5ce 327/* the per-cpu worker pools */
25528213 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 329
68e13a67 330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 331
68e13a67 332/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
c5aa87bb 335/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
8a2b7538
TH
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
d320c038 341struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 342EXPORT_SYMBOL(system_wq);
044c782c 343struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 344EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 345struct workqueue_struct *system_long_wq __read_mostly;
d320c038 346EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 347struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 348EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 349struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 350EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 355
7d19c5ce 356static int worker_thread(void *__worker);
6ba94429 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 358static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 359
97bd2347
TH
360#define CREATE_TRACE_POINTS
361#include <trace/events/workqueue.h>
362
68e13a67 363#define assert_rcu_or_pool_mutex() \
24acfb71 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 365 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 366 "RCU or wq_pool_mutex should be held")
5bcab335 367
b09f4fd3 368#define assert_rcu_or_wq_mutex(wq) \
24acfb71 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 370 !lockdep_is_held(&wq->mutex), \
24acfb71 371 "RCU or wq->mutex should be held")
76af4d93 372
5b95e1af 373#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 374 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
375 !lockdep_is_held(&wq->mutex) && \
376 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 377 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 378
f02ae73a
TH
379#define for_each_cpu_worker_pool(pool, cpu) \
380 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
381 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 382 (pool)++)
4ce62e9e 383
17116969
TH
384/**
385 * for_each_pool - iterate through all worker_pools in the system
386 * @pool: iteration cursor
611c92a0 387 * @pi: integer used for iteration
fa1b54e6 388 *
24acfb71 389 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
390 * locked. If the pool needs to be used beyond the locking in effect, the
391 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
392 *
393 * The if/else clause exists only for the lockdep assertion and can be
394 * ignored.
17116969 395 */
611c92a0
TH
396#define for_each_pool(pool, pi) \
397 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 398 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 399 else
17116969 400
822d8405
TH
401/**
402 * for_each_pool_worker - iterate through all workers of a worker_pool
403 * @worker: iteration cursor
822d8405
TH
404 * @pool: worker_pool to iterate workers of
405 *
1258fae7 406 * This must be called with wq_pool_attach_mutex.
822d8405
TH
407 *
408 * The if/else clause exists only for the lockdep assertion and can be
409 * ignored.
410 */
da028469
LJ
411#define for_each_pool_worker(worker, pool) \
412 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 413 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
414 else
415
49e3cf44
TH
416/**
417 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
418 * @pwq: iteration cursor
419 * @wq: the target workqueue
76af4d93 420 *
24acfb71 421 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
422 * If the pwq needs to be used beyond the locking in effect, the caller is
423 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
424 *
425 * The if/else clause exists only for the lockdep assertion and can be
426 * ignored.
49e3cf44
TH
427 */
428#define for_each_pwq(pwq, wq) \
76af4d93 429 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 430 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 431 else
f3421797 432
dc186ad7
TG
433#ifdef CONFIG_DEBUG_OBJECTS_WORK
434
435static struct debug_obj_descr work_debug_descr;
436
99777288
SG
437static void *work_debug_hint(void *addr)
438{
439 return ((struct work_struct *) addr)->func;
440}
441
b9fdac7f
CD
442static bool work_is_static_object(void *addr)
443{
444 struct work_struct *work = addr;
445
446 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
447}
448
dc186ad7
TG
449/*
450 * fixup_init is called when:
451 * - an active object is initialized
452 */
02a982a6 453static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
454{
455 struct work_struct *work = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 cancel_work_sync(work);
460 debug_object_init(work, &work_debug_descr);
02a982a6 461 return true;
dc186ad7 462 default:
02a982a6 463 return false;
dc186ad7
TG
464 }
465}
466
dc186ad7
TG
467/*
468 * fixup_free is called when:
469 * - an active object is freed
470 */
02a982a6 471static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
472{
473 struct work_struct *work = addr;
474
475 switch (state) {
476 case ODEBUG_STATE_ACTIVE:
477 cancel_work_sync(work);
478 debug_object_free(work, &work_debug_descr);
02a982a6 479 return true;
dc186ad7 480 default:
02a982a6 481 return false;
dc186ad7
TG
482 }
483}
484
485static struct debug_obj_descr work_debug_descr = {
486 .name = "work_struct",
99777288 487 .debug_hint = work_debug_hint,
b9fdac7f 488 .is_static_object = work_is_static_object,
dc186ad7 489 .fixup_init = work_fixup_init,
dc186ad7
TG
490 .fixup_free = work_fixup_free,
491};
492
493static inline void debug_work_activate(struct work_struct *work)
494{
495 debug_object_activate(work, &work_debug_descr);
496}
497
498static inline void debug_work_deactivate(struct work_struct *work)
499{
500 debug_object_deactivate(work, &work_debug_descr);
501}
502
503void __init_work(struct work_struct *work, int onstack)
504{
505 if (onstack)
506 debug_object_init_on_stack(work, &work_debug_descr);
507 else
508 debug_object_init(work, &work_debug_descr);
509}
510EXPORT_SYMBOL_GPL(__init_work);
511
512void destroy_work_on_stack(struct work_struct *work)
513{
514 debug_object_free(work, &work_debug_descr);
515}
516EXPORT_SYMBOL_GPL(destroy_work_on_stack);
517
ea2e64f2
TG
518void destroy_delayed_work_on_stack(struct delayed_work *work)
519{
520 destroy_timer_on_stack(&work->timer);
521 debug_object_free(&work->work, &work_debug_descr);
522}
523EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
524
dc186ad7
TG
525#else
526static inline void debug_work_activate(struct work_struct *work) { }
527static inline void debug_work_deactivate(struct work_struct *work) { }
528#endif
529
4e8b22bd
LB
530/**
531 * worker_pool_assign_id - allocate ID and assing it to @pool
532 * @pool: the pool pointer of interest
533 *
534 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
535 * successfully, -errno on failure.
536 */
9daf9e67
TH
537static int worker_pool_assign_id(struct worker_pool *pool)
538{
539 int ret;
540
68e13a67 541 lockdep_assert_held(&wq_pool_mutex);
5bcab335 542
4e8b22bd
LB
543 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
544 GFP_KERNEL);
229641a6 545 if (ret >= 0) {
e68035fb 546 pool->id = ret;
229641a6
TH
547 return 0;
548 }
fa1b54e6 549 return ret;
7c3eed5c
TH
550}
551
df2d5ae4
TH
552/**
553 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
554 * @wq: the target workqueue
555 * @node: the node ID
556 *
24acfb71 557 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 558 * read locked.
df2d5ae4
TH
559 * If the pwq needs to be used beyond the locking in effect, the caller is
560 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
561 *
562 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
563 */
564static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
565 int node)
566{
5b95e1af 567 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
568
569 /*
570 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
571 * delayed item is pending. The plan is to keep CPU -> NODE
572 * mapping valid and stable across CPU on/offlines. Once that
573 * happens, this workaround can be removed.
574 */
575 if (unlikely(node == NUMA_NO_NODE))
576 return wq->dfl_pwq;
577
df2d5ae4
TH
578 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
579}
580
73f53c4a
TH
581static unsigned int work_color_to_flags(int color)
582{
583 return color << WORK_STRUCT_COLOR_SHIFT;
584}
585
586static int get_work_color(struct work_struct *work)
587{
588 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
589 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
590}
591
592static int work_next_color(int color)
593{
594 return (color + 1) % WORK_NR_COLORS;
595}
1da177e4 596
14441960 597/*
112202d9
TH
598 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
599 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 600 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 601 *
112202d9
TH
602 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
603 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
604 * work->data. These functions should only be called while the work is
605 * owned - ie. while the PENDING bit is set.
7a22ad75 606 *
112202d9 607 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 608 * corresponding to a work. Pool is available once the work has been
112202d9 609 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 610 * available only while the work item is queued.
7a22ad75 611 *
bbb68dfa
TH
612 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
613 * canceled. While being canceled, a work item may have its PENDING set
614 * but stay off timer and worklist for arbitrarily long and nobody should
615 * try to steal the PENDING bit.
14441960 616 */
7a22ad75
TH
617static inline void set_work_data(struct work_struct *work, unsigned long data,
618 unsigned long flags)
365970a1 619{
6183c009 620 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
621 atomic_long_set(&work->data, data | flags | work_static(work));
622}
365970a1 623
112202d9 624static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
625 unsigned long extra_flags)
626{
112202d9
TH
627 set_work_data(work, (unsigned long)pwq,
628 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
629}
630
4468a00f
LJ
631static void set_work_pool_and_keep_pending(struct work_struct *work,
632 int pool_id)
633{
634 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
635 WORK_STRUCT_PENDING);
636}
637
7c3eed5c
TH
638static void set_work_pool_and_clear_pending(struct work_struct *work,
639 int pool_id)
7a22ad75 640{
23657bb1
TH
641 /*
642 * The following wmb is paired with the implied mb in
643 * test_and_set_bit(PENDING) and ensures all updates to @work made
644 * here are visible to and precede any updates by the next PENDING
645 * owner.
646 */
647 smp_wmb();
7c3eed5c 648 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
649 /*
650 * The following mb guarantees that previous clear of a PENDING bit
651 * will not be reordered with any speculative LOADS or STORES from
652 * work->current_func, which is executed afterwards. This possible
8bdc6201 653 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
654 * the same @work. E.g. consider this case:
655 *
656 * CPU#0 CPU#1
657 * ---------------------------- --------------------------------
658 *
659 * 1 STORE event_indicated
660 * 2 queue_work_on() {
661 * 3 test_and_set_bit(PENDING)
662 * 4 } set_..._and_clear_pending() {
663 * 5 set_work_data() # clear bit
664 * 6 smp_mb()
665 * 7 work->current_func() {
666 * 8 LOAD event_indicated
667 * }
668 *
669 * Without an explicit full barrier speculative LOAD on line 8 can
670 * be executed before CPU#0 does STORE on line 1. If that happens,
671 * CPU#0 observes the PENDING bit is still set and new execution of
672 * a @work is not queued in a hope, that CPU#1 will eventually
673 * finish the queued @work. Meanwhile CPU#1 does not see
674 * event_indicated is set, because speculative LOAD was executed
675 * before actual STORE.
676 */
677 smp_mb();
7a22ad75 678}
f756d5e2 679
7a22ad75 680static void clear_work_data(struct work_struct *work)
1da177e4 681{
7c3eed5c
TH
682 smp_wmb(); /* see set_work_pool_and_clear_pending() */
683 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
684}
685
112202d9 686static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 687{
e120153d 688 unsigned long data = atomic_long_read(&work->data);
7a22ad75 689
112202d9 690 if (data & WORK_STRUCT_PWQ)
e120153d
TH
691 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
692 else
693 return NULL;
4d707b9f
ON
694}
695
7c3eed5c
TH
696/**
697 * get_work_pool - return the worker_pool a given work was associated with
698 * @work: the work item of interest
699 *
68e13a67 700 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
701 * access under RCU read lock. As such, this function should be
702 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
703 *
704 * All fields of the returned pool are accessible as long as the above
705 * mentioned locking is in effect. If the returned pool needs to be used
706 * beyond the critical section, the caller is responsible for ensuring the
707 * returned pool is and stays online.
d185af30
YB
708 *
709 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
710 */
711static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 712{
e120153d 713 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 714 int pool_id;
7a22ad75 715
68e13a67 716 assert_rcu_or_pool_mutex();
fa1b54e6 717
112202d9
TH
718 if (data & WORK_STRUCT_PWQ)
719 return ((struct pool_workqueue *)
7c3eed5c 720 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 721
7c3eed5c
TH
722 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
723 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
724 return NULL;
725
fa1b54e6 726 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
727}
728
729/**
730 * get_work_pool_id - return the worker pool ID a given work is associated with
731 * @work: the work item of interest
732 *
d185af30 733 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
734 * %WORK_OFFQ_POOL_NONE if none.
735 */
736static int get_work_pool_id(struct work_struct *work)
737{
54d5b7d0
LJ
738 unsigned long data = atomic_long_read(&work->data);
739
112202d9
TH
740 if (data & WORK_STRUCT_PWQ)
741 return ((struct pool_workqueue *)
54d5b7d0 742 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 743
54d5b7d0 744 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
745}
746
bbb68dfa
TH
747static void mark_work_canceling(struct work_struct *work)
748{
7c3eed5c 749 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 750
7c3eed5c
TH
751 pool_id <<= WORK_OFFQ_POOL_SHIFT;
752 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
753}
754
755static bool work_is_canceling(struct work_struct *work)
756{
757 unsigned long data = atomic_long_read(&work->data);
758
112202d9 759 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
760}
761
e22bee78 762/*
3270476a
TH
763 * Policy functions. These define the policies on how the global worker
764 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 765 * they're being called with pool->lock held.
e22bee78
TH
766 */
767
63d95a91 768static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 769{
e19e397a 770 return !atomic_read(&pool->nr_running);
a848e3b6
ON
771}
772
4594bf15 773/*
e22bee78
TH
774 * Need to wake up a worker? Called from anything but currently
775 * running workers.
974271c4
TH
776 *
777 * Note that, because unbound workers never contribute to nr_running, this
706026c2 778 * function will always return %true for unbound pools as long as the
974271c4 779 * worklist isn't empty.
4594bf15 780 */
63d95a91 781static bool need_more_worker(struct worker_pool *pool)
365970a1 782{
63d95a91 783 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 784}
4594bf15 785
e22bee78 786/* Can I start working? Called from busy but !running workers. */
63d95a91 787static bool may_start_working(struct worker_pool *pool)
e22bee78 788{
63d95a91 789 return pool->nr_idle;
e22bee78
TH
790}
791
792/* Do I need to keep working? Called from currently running workers. */
63d95a91 793static bool keep_working(struct worker_pool *pool)
e22bee78 794{
e19e397a
TH
795 return !list_empty(&pool->worklist) &&
796 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
797}
798
799/* Do we need a new worker? Called from manager. */
63d95a91 800static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 801{
63d95a91 802 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 803}
365970a1 804
e22bee78 805/* Do we have too many workers and should some go away? */
63d95a91 806static bool too_many_workers(struct worker_pool *pool)
e22bee78 807{
692b4825 808 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
809 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
810 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
811
812 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
813}
814
4d707b9f 815/*
e22bee78
TH
816 * Wake up functions.
817 */
818
1037de36
LJ
819/* Return the first idle worker. Safe with preemption disabled */
820static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 821{
63d95a91 822 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
823 return NULL;
824
63d95a91 825 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
826}
827
828/**
829 * wake_up_worker - wake up an idle worker
63d95a91 830 * @pool: worker pool to wake worker from
7e11629d 831 *
63d95a91 832 * Wake up the first idle worker of @pool.
7e11629d
TH
833 *
834 * CONTEXT:
d565ed63 835 * spin_lock_irq(pool->lock).
7e11629d 836 */
63d95a91 837static void wake_up_worker(struct worker_pool *pool)
7e11629d 838{
1037de36 839 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
840
841 if (likely(worker))
842 wake_up_process(worker->task);
843}
844
d302f017 845/**
6d25be57 846 * wq_worker_running - a worker is running again
e22bee78 847 * @task: task waking up
e22bee78 848 *
6d25be57 849 * This function is called when a worker returns from schedule()
e22bee78 850 */
6d25be57 851void wq_worker_running(struct task_struct *task)
e22bee78
TH
852{
853 struct worker *worker = kthread_data(task);
854
6d25be57
TG
855 if (!worker->sleeping)
856 return;
857 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 858 atomic_inc(&worker->pool->nr_running);
6d25be57 859 worker->sleeping = 0;
e22bee78
TH
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
e22bee78 865 *
6d25be57
TG
866 * This function is called from schedule() when a busy worker is
867 * going to sleep.
e22bee78 868 */
6d25be57 869void wq_worker_sleeping(struct task_struct *task)
e22bee78 870{
6d25be57 871 struct worker *next, *worker = kthread_data(task);
111c225a 872 struct worker_pool *pool;
e22bee78 873
111c225a
TH
874 /*
875 * Rescuers, which may not have all the fields set up like normal
876 * workers, also reach here, let's not access anything before
877 * checking NOT_RUNNING.
878 */
2d64672e 879 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 880 return;
e22bee78 881
111c225a 882 pool = worker->pool;
111c225a 883
6d25be57
TG
884 if (WARN_ON_ONCE(worker->sleeping))
885 return;
886
887 worker->sleeping = 1;
888 spin_lock_irq(&pool->lock);
e22bee78
TH
889
890 /*
891 * The counterpart of the following dec_and_test, implied mb,
892 * worklist not empty test sequence is in insert_work().
893 * Please read comment there.
894 *
628c78e7
TH
895 * NOT_RUNNING is clear. This means that we're bound to and
896 * running on the local cpu w/ rq lock held and preemption
897 * disabled, which in turn means that none else could be
d565ed63 898 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 899 * lock is safe.
e22bee78 900 */
e19e397a 901 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
902 !list_empty(&pool->worklist)) {
903 next = first_idle_worker(pool);
904 if (next)
905 wake_up_process(next->task);
906 }
907 spin_unlock_irq(&pool->lock);
e22bee78
TH
908}
909
1b69ac6b
JW
910/**
911 * wq_worker_last_func - retrieve worker's last work function
8194fe94 912 * @task: Task to retrieve last work function of.
1b69ac6b
JW
913 *
914 * Determine the last function a worker executed. This is called from
915 * the scheduler to get a worker's last known identity.
916 *
917 * CONTEXT:
918 * spin_lock_irq(rq->lock)
919 *
4b047002
JW
920 * This function is called during schedule() when a kworker is going
921 * to sleep. It's used by psi to identify aggregation workers during
922 * dequeuing, to allow periodic aggregation to shut-off when that
923 * worker is the last task in the system or cgroup to go to sleep.
924 *
925 * As this function doesn't involve any workqueue-related locking, it
926 * only returns stable values when called from inside the scheduler's
927 * queuing and dequeuing paths, when @task, which must be a kworker,
928 * is guaranteed to not be processing any works.
929 *
1b69ac6b
JW
930 * Return:
931 * The last work function %current executed as a worker, NULL if it
932 * hasn't executed any work yet.
933 */
934work_func_t wq_worker_last_func(struct task_struct *task)
935{
936 struct worker *worker = kthread_data(task);
937
938 return worker->last_func;
939}
940
e22bee78
TH
941/**
942 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 943 * @worker: self
d302f017 944 * @flags: flags to set
d302f017 945 *
228f1d00 946 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 947 *
cb444766 948 * CONTEXT:
d565ed63 949 * spin_lock_irq(pool->lock)
d302f017 950 */
228f1d00 951static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 952{
bd7bdd43 953 struct worker_pool *pool = worker->pool;
e22bee78 954
cb444766
TH
955 WARN_ON_ONCE(worker->task != current);
956
228f1d00 957 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
958 if ((flags & WORKER_NOT_RUNNING) &&
959 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 960 atomic_dec(&pool->nr_running);
e22bee78
TH
961 }
962
d302f017
TH
963 worker->flags |= flags;
964}
965
966/**
e22bee78 967 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 968 * @worker: self
d302f017
TH
969 * @flags: flags to clear
970 *
e22bee78 971 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 972 *
cb444766 973 * CONTEXT:
d565ed63 974 * spin_lock_irq(pool->lock)
d302f017
TH
975 */
976static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
977{
63d95a91 978 struct worker_pool *pool = worker->pool;
e22bee78
TH
979 unsigned int oflags = worker->flags;
980
cb444766
TH
981 WARN_ON_ONCE(worker->task != current);
982
d302f017 983 worker->flags &= ~flags;
e22bee78 984
42c025f3
TH
985 /*
986 * If transitioning out of NOT_RUNNING, increment nr_running. Note
987 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
988 * of multiple flags, not a single flag.
989 */
e22bee78
TH
990 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
991 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 992 atomic_inc(&pool->nr_running);
d302f017
TH
993}
994
8cca0eea
TH
995/**
996 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 997 * @pool: pool of interest
8cca0eea
TH
998 * @work: work to find worker for
999 *
c9e7cf27
TH
1000 * Find a worker which is executing @work on @pool by searching
1001 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1002 * to match, its current execution should match the address of @work and
1003 * its work function. This is to avoid unwanted dependency between
1004 * unrelated work executions through a work item being recycled while still
1005 * being executed.
1006 *
1007 * This is a bit tricky. A work item may be freed once its execution
1008 * starts and nothing prevents the freed area from being recycled for
1009 * another work item. If the same work item address ends up being reused
1010 * before the original execution finishes, workqueue will identify the
1011 * recycled work item as currently executing and make it wait until the
1012 * current execution finishes, introducing an unwanted dependency.
1013 *
c5aa87bb
TH
1014 * This function checks the work item address and work function to avoid
1015 * false positives. Note that this isn't complete as one may construct a
1016 * work function which can introduce dependency onto itself through a
1017 * recycled work item. Well, if somebody wants to shoot oneself in the
1018 * foot that badly, there's only so much we can do, and if such deadlock
1019 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1020 *
1021 * CONTEXT:
d565ed63 1022 * spin_lock_irq(pool->lock).
8cca0eea 1023 *
d185af30
YB
1024 * Return:
1025 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1026 * otherwise.
4d707b9f 1027 */
c9e7cf27 1028static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1029 struct work_struct *work)
4d707b9f 1030{
42f8570f 1031 struct worker *worker;
42f8570f 1032
b67bfe0d 1033 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1034 (unsigned long)work)
1035 if (worker->current_work == work &&
1036 worker->current_func == work->func)
42f8570f
SL
1037 return worker;
1038
1039 return NULL;
4d707b9f
ON
1040}
1041
bf4ede01
TH
1042/**
1043 * move_linked_works - move linked works to a list
1044 * @work: start of series of works to be scheduled
1045 * @head: target list to append @work to
402dd89d 1046 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1047 *
1048 * Schedule linked works starting from @work to @head. Work series to
1049 * be scheduled starts at @work and includes any consecutive work with
1050 * WORK_STRUCT_LINKED set in its predecessor.
1051 *
1052 * If @nextp is not NULL, it's updated to point to the next work of
1053 * the last scheduled work. This allows move_linked_works() to be
1054 * nested inside outer list_for_each_entry_safe().
1055 *
1056 * CONTEXT:
d565ed63 1057 * spin_lock_irq(pool->lock).
bf4ede01
TH
1058 */
1059static void move_linked_works(struct work_struct *work, struct list_head *head,
1060 struct work_struct **nextp)
1061{
1062 struct work_struct *n;
1063
1064 /*
1065 * Linked worklist will always end before the end of the list,
1066 * use NULL for list head.
1067 */
1068 list_for_each_entry_safe_from(work, n, NULL, entry) {
1069 list_move_tail(&work->entry, head);
1070 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1071 break;
1072 }
1073
1074 /*
1075 * If we're already inside safe list traversal and have moved
1076 * multiple works to the scheduled queue, the next position
1077 * needs to be updated.
1078 */
1079 if (nextp)
1080 *nextp = n;
1081}
1082
8864b4e5
TH
1083/**
1084 * get_pwq - get an extra reference on the specified pool_workqueue
1085 * @pwq: pool_workqueue to get
1086 *
1087 * Obtain an extra reference on @pwq. The caller should guarantee that
1088 * @pwq has positive refcnt and be holding the matching pool->lock.
1089 */
1090static void get_pwq(struct pool_workqueue *pwq)
1091{
1092 lockdep_assert_held(&pwq->pool->lock);
1093 WARN_ON_ONCE(pwq->refcnt <= 0);
1094 pwq->refcnt++;
1095}
1096
1097/**
1098 * put_pwq - put a pool_workqueue reference
1099 * @pwq: pool_workqueue to put
1100 *
1101 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1102 * destruction. The caller should be holding the matching pool->lock.
1103 */
1104static void put_pwq(struct pool_workqueue *pwq)
1105{
1106 lockdep_assert_held(&pwq->pool->lock);
1107 if (likely(--pwq->refcnt))
1108 return;
1109 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1110 return;
1111 /*
1112 * @pwq can't be released under pool->lock, bounce to
1113 * pwq_unbound_release_workfn(). This never recurses on the same
1114 * pool->lock as this path is taken only for unbound workqueues and
1115 * the release work item is scheduled on a per-cpu workqueue. To
1116 * avoid lockdep warning, unbound pool->locks are given lockdep
1117 * subclass of 1 in get_unbound_pool().
1118 */
1119 schedule_work(&pwq->unbound_release_work);
1120}
1121
dce90d47
TH
1122/**
1123 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1124 * @pwq: pool_workqueue to put (can be %NULL)
1125 *
1126 * put_pwq() with locking. This function also allows %NULL @pwq.
1127 */
1128static void put_pwq_unlocked(struct pool_workqueue *pwq)
1129{
1130 if (pwq) {
1131 /*
24acfb71 1132 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1133 * following lock operations are safe.
1134 */
1135 spin_lock_irq(&pwq->pool->lock);
1136 put_pwq(pwq);
1137 spin_unlock_irq(&pwq->pool->lock);
1138 }
1139}
1140
112202d9 1141static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1142{
112202d9 1143 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1144
1145 trace_workqueue_activate_work(work);
82607adc
TH
1146 if (list_empty(&pwq->pool->worklist))
1147 pwq->pool->watchdog_ts = jiffies;
112202d9 1148 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1149 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1150 pwq->nr_active++;
bf4ede01
TH
1151}
1152
112202d9 1153static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1154{
112202d9 1155 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1156 struct work_struct, entry);
1157
112202d9 1158 pwq_activate_delayed_work(work);
3aa62497
LJ
1159}
1160
bf4ede01 1161/**
112202d9
TH
1162 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1163 * @pwq: pwq of interest
bf4ede01 1164 * @color: color of work which left the queue
bf4ede01
TH
1165 *
1166 * A work either has completed or is removed from pending queue,
112202d9 1167 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1168 *
1169 * CONTEXT:
d565ed63 1170 * spin_lock_irq(pool->lock).
bf4ede01 1171 */
112202d9 1172static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1173{
8864b4e5 1174 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1175 if (color == WORK_NO_COLOR)
8864b4e5 1176 goto out_put;
bf4ede01 1177
112202d9 1178 pwq->nr_in_flight[color]--;
bf4ede01 1179
112202d9
TH
1180 pwq->nr_active--;
1181 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1182 /* one down, submit a delayed one */
112202d9
TH
1183 if (pwq->nr_active < pwq->max_active)
1184 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1185 }
1186
1187 /* is flush in progress and are we at the flushing tip? */
112202d9 1188 if (likely(pwq->flush_color != color))
8864b4e5 1189 goto out_put;
bf4ede01
TH
1190
1191 /* are there still in-flight works? */
112202d9 1192 if (pwq->nr_in_flight[color])
8864b4e5 1193 goto out_put;
bf4ede01 1194
112202d9
TH
1195 /* this pwq is done, clear flush_color */
1196 pwq->flush_color = -1;
bf4ede01
TH
1197
1198 /*
112202d9 1199 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1200 * will handle the rest.
1201 */
112202d9
TH
1202 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1203 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1204out_put:
1205 put_pwq(pwq);
bf4ede01
TH
1206}
1207
36e227d2 1208/**
bbb68dfa 1209 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1210 * @work: work item to steal
1211 * @is_dwork: @work is a delayed_work
bbb68dfa 1212 * @flags: place to store irq state
36e227d2
TH
1213 *
1214 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1215 * stable state - idle, on timer or on worklist.
36e227d2 1216 *
d185af30 1217 * Return:
36e227d2
TH
1218 * 1 if @work was pending and we successfully stole PENDING
1219 * 0 if @work was idle and we claimed PENDING
1220 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1221 * -ENOENT if someone else is canceling @work, this state may persist
1222 * for arbitrarily long
36e227d2 1223 *
d185af30 1224 * Note:
bbb68dfa 1225 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1226 * interrupted while holding PENDING and @work off queue, irq must be
1227 * disabled on entry. This, combined with delayed_work->timer being
1228 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1229 *
1230 * On successful return, >= 0, irq is disabled and the caller is
1231 * responsible for releasing it using local_irq_restore(*@flags).
1232 *
e0aecdd8 1233 * This function is safe to call from any context including IRQ handler.
bf4ede01 1234 */
bbb68dfa
TH
1235static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1236 unsigned long *flags)
bf4ede01 1237{
d565ed63 1238 struct worker_pool *pool;
112202d9 1239 struct pool_workqueue *pwq;
bf4ede01 1240
bbb68dfa
TH
1241 local_irq_save(*flags);
1242
36e227d2
TH
1243 /* try to steal the timer if it exists */
1244 if (is_dwork) {
1245 struct delayed_work *dwork = to_delayed_work(work);
1246
e0aecdd8
TH
1247 /*
1248 * dwork->timer is irqsafe. If del_timer() fails, it's
1249 * guaranteed that the timer is not queued anywhere and not
1250 * running on the local CPU.
1251 */
36e227d2
TH
1252 if (likely(del_timer(&dwork->timer)))
1253 return 1;
1254 }
1255
1256 /* try to claim PENDING the normal way */
bf4ede01
TH
1257 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1258 return 0;
1259
24acfb71 1260 rcu_read_lock();
bf4ede01
TH
1261 /*
1262 * The queueing is in progress, or it is already queued. Try to
1263 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1264 */
d565ed63
TH
1265 pool = get_work_pool(work);
1266 if (!pool)
bbb68dfa 1267 goto fail;
bf4ede01 1268
d565ed63 1269 spin_lock(&pool->lock);
0b3dae68 1270 /*
112202d9
TH
1271 * work->data is guaranteed to point to pwq only while the work
1272 * item is queued on pwq->wq, and both updating work->data to point
1273 * to pwq on queueing and to pool on dequeueing are done under
1274 * pwq->pool->lock. This in turn guarantees that, if work->data
1275 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1276 * item is currently queued on that pool.
1277 */
112202d9
TH
1278 pwq = get_work_pwq(work);
1279 if (pwq && pwq->pool == pool) {
16062836
TH
1280 debug_work_deactivate(work);
1281
1282 /*
1283 * A delayed work item cannot be grabbed directly because
1284 * it might have linked NO_COLOR work items which, if left
112202d9 1285 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1286 * management later on and cause stall. Make sure the work
1287 * item is activated before grabbing.
1288 */
1289 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1290 pwq_activate_delayed_work(work);
16062836
TH
1291
1292 list_del_init(&work->entry);
9c34a704 1293 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1294
112202d9 1295 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1296 set_work_pool_and_keep_pending(work, pool->id);
1297
1298 spin_unlock(&pool->lock);
24acfb71 1299 rcu_read_unlock();
16062836 1300 return 1;
bf4ede01 1301 }
d565ed63 1302 spin_unlock(&pool->lock);
bbb68dfa 1303fail:
24acfb71 1304 rcu_read_unlock();
bbb68dfa
TH
1305 local_irq_restore(*flags);
1306 if (work_is_canceling(work))
1307 return -ENOENT;
1308 cpu_relax();
36e227d2 1309 return -EAGAIN;
bf4ede01
TH
1310}
1311
4690c4ab 1312/**
706026c2 1313 * insert_work - insert a work into a pool
112202d9 1314 * @pwq: pwq @work belongs to
4690c4ab
TH
1315 * @work: work to insert
1316 * @head: insertion point
1317 * @extra_flags: extra WORK_STRUCT_* flags to set
1318 *
112202d9 1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1320 * work_struct flags.
4690c4ab
TH
1321 *
1322 * CONTEXT:
d565ed63 1323 * spin_lock_irq(pool->lock).
4690c4ab 1324 */
112202d9
TH
1325static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 struct list_head *head, unsigned int extra_flags)
b89deed3 1327{
112202d9 1328 struct worker_pool *pool = pwq->pool;
e22bee78 1329
4690c4ab 1330 /* we own @work, set data and link */
112202d9 1331 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1332 list_add_tail(&work->entry, head);
8864b4e5 1333 get_pwq(pwq);
e22bee78
TH
1334
1335 /*
c5aa87bb
TH
1336 * Ensure either wq_worker_sleeping() sees the above
1337 * list_add_tail() or we see zero nr_running to avoid workers lying
1338 * around lazily while there are works to be processed.
e22bee78
TH
1339 */
1340 smp_mb();
1341
63d95a91
TH
1342 if (__need_more_worker(pool))
1343 wake_up_worker(pool);
b89deed3
ON
1344}
1345
c8efcc25
TH
1346/*
1347 * Test whether @work is being queued from another work executing on the
8d03ecfe 1348 * same workqueue.
c8efcc25
TH
1349 */
1350static bool is_chained_work(struct workqueue_struct *wq)
1351{
8d03ecfe
TH
1352 struct worker *worker;
1353
1354 worker = current_wq_worker();
1355 /*
bf393fd4 1356 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1357 * I'm @worker, it's safe to dereference it without locking.
1358 */
112202d9 1359 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1360}
1361
ef557180
MG
1362/*
1363 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1364 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1365 * avoid perturbing sensitive tasks.
1366 */
1367static int wq_select_unbound_cpu(int cpu)
1368{
f303fccb 1369 static bool printed_dbg_warning;
ef557180
MG
1370 int new_cpu;
1371
f303fccb
TH
1372 if (likely(!wq_debug_force_rr_cpu)) {
1373 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1374 return cpu;
1375 } else if (!printed_dbg_warning) {
1376 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1377 printed_dbg_warning = true;
1378 }
1379
ef557180
MG
1380 if (cpumask_empty(wq_unbound_cpumask))
1381 return cpu;
1382
1383 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1384 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1385 if (unlikely(new_cpu >= nr_cpu_ids)) {
1386 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1387 if (unlikely(new_cpu >= nr_cpu_ids))
1388 return cpu;
1389 }
1390 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1391
1392 return new_cpu;
1393}
1394
d84ff051 1395static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1396 struct work_struct *work)
1397{
112202d9 1398 struct pool_workqueue *pwq;
c9178087 1399 struct worker_pool *last_pool;
1e19ffc6 1400 struct list_head *worklist;
8a2e8e5d 1401 unsigned int work_flags;
b75cac93 1402 unsigned int req_cpu = cpu;
8930caba
TH
1403
1404 /*
1405 * While a work item is PENDING && off queue, a task trying to
1406 * steal the PENDING will busy-loop waiting for it to either get
1407 * queued or lose PENDING. Grabbing PENDING and queueing should
1408 * happen with IRQ disabled.
1409 */
8e8eb730 1410 lockdep_assert_irqs_disabled();
1da177e4 1411
dc186ad7 1412 debug_work_activate(work);
1e19ffc6 1413
9ef28a73 1414 /* if draining, only works from the same workqueue are allowed */
618b01eb 1415 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1416 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1417 return;
24acfb71 1418 rcu_read_lock();
9e8cd2f5 1419retry:
df2d5ae4 1420 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1421 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1422
c9178087 1423 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1424 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1425 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1426 else
1427 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1428
c9178087
TH
1429 /*
1430 * If @work was previously on a different pool, it might still be
1431 * running there, in which case the work needs to be queued on that
1432 * pool to guarantee non-reentrancy.
1433 */
1434 last_pool = get_work_pool(work);
1435 if (last_pool && last_pool != pwq->pool) {
1436 struct worker *worker;
18aa9eff 1437
c9178087 1438 spin_lock(&last_pool->lock);
18aa9eff 1439
c9178087 1440 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1441
c9178087
TH
1442 if (worker && worker->current_pwq->wq == wq) {
1443 pwq = worker->current_pwq;
8930caba 1444 } else {
c9178087
TH
1445 /* meh... not running there, queue here */
1446 spin_unlock(&last_pool->lock);
112202d9 1447 spin_lock(&pwq->pool->lock);
8930caba 1448 }
f3421797 1449 } else {
112202d9 1450 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1451 }
1452
9e8cd2f5
TH
1453 /*
1454 * pwq is determined and locked. For unbound pools, we could have
1455 * raced with pwq release and it could already be dead. If its
1456 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1457 * without another pwq replacing it in the numa_pwq_tbl or while
1458 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1459 * make forward-progress.
1460 */
1461 if (unlikely(!pwq->refcnt)) {
1462 if (wq->flags & WQ_UNBOUND) {
1463 spin_unlock(&pwq->pool->lock);
1464 cpu_relax();
1465 goto retry;
1466 }
1467 /* oops */
1468 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1469 wq->name, cpu);
1470 }
1471
112202d9
TH
1472 /* pwq determined, queue */
1473 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1474
24acfb71
TG
1475 if (WARN_ON(!list_empty(&work->entry)))
1476 goto out;
1e19ffc6 1477
112202d9
TH
1478 pwq->nr_in_flight[pwq->work_color]++;
1479 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1480
112202d9 1481 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1482 trace_workqueue_activate_work(work);
112202d9
TH
1483 pwq->nr_active++;
1484 worklist = &pwq->pool->worklist;
82607adc
TH
1485 if (list_empty(worklist))
1486 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1487 } else {
1488 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1489 worklist = &pwq->delayed_works;
8a2e8e5d 1490 }
1e19ffc6 1491
112202d9 1492 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1493
24acfb71 1494out:
112202d9 1495 spin_unlock(&pwq->pool->lock);
24acfb71 1496 rcu_read_unlock();
1da177e4
LT
1497}
1498
0fcb78c2 1499/**
c1a220e7
ZR
1500 * queue_work_on - queue work on specific cpu
1501 * @cpu: CPU number to execute work on
0fcb78c2
REB
1502 * @wq: workqueue to use
1503 * @work: work to queue
1504 *
c1a220e7
ZR
1505 * We queue the work to a specific CPU, the caller must ensure it
1506 * can't go away.
d185af30
YB
1507 *
1508 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1509 */
d4283e93
TH
1510bool queue_work_on(int cpu, struct workqueue_struct *wq,
1511 struct work_struct *work)
1da177e4 1512{
d4283e93 1513 bool ret = false;
8930caba 1514 unsigned long flags;
ef1ca236 1515
8930caba 1516 local_irq_save(flags);
c1a220e7 1517
22df02bb 1518 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1519 __queue_work(cpu, wq, work);
d4283e93 1520 ret = true;
c1a220e7 1521 }
ef1ca236 1522
8930caba 1523 local_irq_restore(flags);
1da177e4
LT
1524 return ret;
1525}
ad7b1f84 1526EXPORT_SYMBOL(queue_work_on);
1da177e4 1527
8204e0c1
AD
1528/**
1529 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1530 * @node: NUMA node ID that we want to select a CPU from
1531 *
1532 * This function will attempt to find a "random" cpu available on a given
1533 * node. If there are no CPUs available on the given node it will return
1534 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1535 * available CPU if we need to schedule this work.
1536 */
1537static int workqueue_select_cpu_near(int node)
1538{
1539 int cpu;
1540
1541 /* No point in doing this if NUMA isn't enabled for workqueues */
1542 if (!wq_numa_enabled)
1543 return WORK_CPU_UNBOUND;
1544
1545 /* Delay binding to CPU if node is not valid or online */
1546 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1547 return WORK_CPU_UNBOUND;
1548
1549 /* Use local node/cpu if we are already there */
1550 cpu = raw_smp_processor_id();
1551 if (node == cpu_to_node(cpu))
1552 return cpu;
1553
1554 /* Use "random" otherwise know as "first" online CPU of node */
1555 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1556
1557 /* If CPU is valid return that, otherwise just defer */
1558 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1559}
1560
1561/**
1562 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1563 * @node: NUMA node that we are targeting the work for
1564 * @wq: workqueue to use
1565 * @work: work to queue
1566 *
1567 * We queue the work to a "random" CPU within a given NUMA node. The basic
1568 * idea here is to provide a way to somehow associate work with a given
1569 * NUMA node.
1570 *
1571 * This function will only make a best effort attempt at getting this onto
1572 * the right NUMA node. If no node is requested or the requested node is
1573 * offline then we just fall back to standard queue_work behavior.
1574 *
1575 * Currently the "random" CPU ends up being the first available CPU in the
1576 * intersection of cpu_online_mask and the cpumask of the node, unless we
1577 * are running on the node. In that case we just use the current CPU.
1578 *
1579 * Return: %false if @work was already on a queue, %true otherwise.
1580 */
1581bool queue_work_node(int node, struct workqueue_struct *wq,
1582 struct work_struct *work)
1583{
1584 unsigned long flags;
1585 bool ret = false;
1586
1587 /*
1588 * This current implementation is specific to unbound workqueues.
1589 * Specifically we only return the first available CPU for a given
1590 * node instead of cycling through individual CPUs within the node.
1591 *
1592 * If this is used with a per-cpu workqueue then the logic in
1593 * workqueue_select_cpu_near would need to be updated to allow for
1594 * some round robin type logic.
1595 */
1596 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1597
1598 local_irq_save(flags);
1599
1600 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1601 int cpu = workqueue_select_cpu_near(node);
1602
1603 __queue_work(cpu, wq, work);
1604 ret = true;
1605 }
1606
1607 local_irq_restore(flags);
1608 return ret;
1609}
1610EXPORT_SYMBOL_GPL(queue_work_node);
1611
8c20feb6 1612void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1613{
8c20feb6 1614 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1615
e0aecdd8 1616 /* should have been called from irqsafe timer with irq already off */
60c057bc 1617 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1618}
1438ade5 1619EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1620
7beb2edf
TH
1621static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1622 struct delayed_work *dwork, unsigned long delay)
1da177e4 1623{
7beb2edf
TH
1624 struct timer_list *timer = &dwork->timer;
1625 struct work_struct *work = &dwork->work;
7beb2edf 1626
637fdbae 1627 WARN_ON_ONCE(!wq);
841b86f3 1628 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1629 WARN_ON_ONCE(timer_pending(timer));
1630 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1631
8852aac2
TH
1632 /*
1633 * If @delay is 0, queue @dwork->work immediately. This is for
1634 * both optimization and correctness. The earliest @timer can
1635 * expire is on the closest next tick and delayed_work users depend
1636 * on that there's no such delay when @delay is 0.
1637 */
1638 if (!delay) {
1639 __queue_work(cpu, wq, &dwork->work);
1640 return;
1641 }
1642
60c057bc 1643 dwork->wq = wq;
1265057f 1644 dwork->cpu = cpu;
7beb2edf
TH
1645 timer->expires = jiffies + delay;
1646
041bd12e
TH
1647 if (unlikely(cpu != WORK_CPU_UNBOUND))
1648 add_timer_on(timer, cpu);
1649 else
1650 add_timer(timer);
1da177e4
LT
1651}
1652
0fcb78c2
REB
1653/**
1654 * queue_delayed_work_on - queue work on specific CPU after delay
1655 * @cpu: CPU number to execute work on
1656 * @wq: workqueue to use
af9997e4 1657 * @dwork: work to queue
0fcb78c2
REB
1658 * @delay: number of jiffies to wait before queueing
1659 *
d185af30 1660 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1661 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1662 * execution.
0fcb78c2 1663 */
d4283e93
TH
1664bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1665 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1666{
52bad64d 1667 struct work_struct *work = &dwork->work;
d4283e93 1668 bool ret = false;
8930caba 1669 unsigned long flags;
7a6bc1cd 1670
8930caba
TH
1671 /* read the comment in __queue_work() */
1672 local_irq_save(flags);
7a6bc1cd 1673
22df02bb 1674 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1675 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1676 ret = true;
7a6bc1cd 1677 }
8a3e77cc 1678
8930caba 1679 local_irq_restore(flags);
7a6bc1cd
VP
1680 return ret;
1681}
ad7b1f84 1682EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1683
8376fe22
TH
1684/**
1685 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1686 * @cpu: CPU number to execute work on
1687 * @wq: workqueue to use
1688 * @dwork: work to queue
1689 * @delay: number of jiffies to wait before queueing
1690 *
1691 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1692 * modify @dwork's timer so that it expires after @delay. If @delay is
1693 * zero, @work is guaranteed to be scheduled immediately regardless of its
1694 * current state.
1695 *
d185af30 1696 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1697 * pending and its timer was modified.
1698 *
e0aecdd8 1699 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1700 * See try_to_grab_pending() for details.
1701 */
1702bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1703 struct delayed_work *dwork, unsigned long delay)
1704{
1705 unsigned long flags;
1706 int ret;
c7fc77f7 1707
8376fe22
TH
1708 do {
1709 ret = try_to_grab_pending(&dwork->work, true, &flags);
1710 } while (unlikely(ret == -EAGAIN));
63bc0362 1711
8376fe22
TH
1712 if (likely(ret >= 0)) {
1713 __queue_delayed_work(cpu, wq, dwork, delay);
1714 local_irq_restore(flags);
7a6bc1cd 1715 }
8376fe22
TH
1716
1717 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1718 return ret;
1719}
8376fe22
TH
1720EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1721
05f0fe6b
TH
1722static void rcu_work_rcufn(struct rcu_head *rcu)
1723{
1724 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1725
1726 /* read the comment in __queue_work() */
1727 local_irq_disable();
1728 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1729 local_irq_enable();
1730}
1731
1732/**
1733 * queue_rcu_work - queue work after a RCU grace period
1734 * @wq: workqueue to use
1735 * @rwork: work to queue
1736 *
1737 * Return: %false if @rwork was already pending, %true otherwise. Note
1738 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1739 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1740 * execution may happen before a full RCU grace period has passed.
1741 */
1742bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1743{
1744 struct work_struct *work = &rwork->work;
1745
1746 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1747 rwork->wq = wq;
1748 call_rcu(&rwork->rcu, rcu_work_rcufn);
1749 return true;
1750 }
1751
1752 return false;
1753}
1754EXPORT_SYMBOL(queue_rcu_work);
1755
c8e55f36
TH
1756/**
1757 * worker_enter_idle - enter idle state
1758 * @worker: worker which is entering idle state
1759 *
1760 * @worker is entering idle state. Update stats and idle timer if
1761 * necessary.
1762 *
1763 * LOCKING:
d565ed63 1764 * spin_lock_irq(pool->lock).
c8e55f36
TH
1765 */
1766static void worker_enter_idle(struct worker *worker)
1da177e4 1767{
bd7bdd43 1768 struct worker_pool *pool = worker->pool;
c8e55f36 1769
6183c009
TH
1770 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1771 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1772 (worker->hentry.next || worker->hentry.pprev)))
1773 return;
c8e55f36 1774
051e1850 1775 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1776 worker->flags |= WORKER_IDLE;
bd7bdd43 1777 pool->nr_idle++;
e22bee78 1778 worker->last_active = jiffies;
c8e55f36
TH
1779
1780 /* idle_list is LIFO */
bd7bdd43 1781 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1782
628c78e7
TH
1783 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1784 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1785
544ecf31 1786 /*
e8b3f8db 1787 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1788 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1789 * nr_running, the warning may trigger spuriously. Check iff
1790 * unbind is not in progress.
544ecf31 1791 */
24647570 1792 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1793 pool->nr_workers == pool->nr_idle &&
e19e397a 1794 atomic_read(&pool->nr_running));
c8e55f36
TH
1795}
1796
1797/**
1798 * worker_leave_idle - leave idle state
1799 * @worker: worker which is leaving idle state
1800 *
1801 * @worker is leaving idle state. Update stats.
1802 *
1803 * LOCKING:
d565ed63 1804 * spin_lock_irq(pool->lock).
c8e55f36
TH
1805 */
1806static void worker_leave_idle(struct worker *worker)
1807{
bd7bdd43 1808 struct worker_pool *pool = worker->pool;
c8e55f36 1809
6183c009
TH
1810 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1811 return;
d302f017 1812 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1813 pool->nr_idle--;
c8e55f36
TH
1814 list_del_init(&worker->entry);
1815}
1816
f7537df5 1817static struct worker *alloc_worker(int node)
c34056a3
TH
1818{
1819 struct worker *worker;
1820
f7537df5 1821 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1822 if (worker) {
1823 INIT_LIST_HEAD(&worker->entry);
affee4b2 1824 INIT_LIST_HEAD(&worker->scheduled);
da028469 1825 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1826 /* on creation a worker is in !idle && prep state */
1827 worker->flags = WORKER_PREP;
c8e55f36 1828 }
c34056a3
TH
1829 return worker;
1830}
1831
4736cbf7
LJ
1832/**
1833 * worker_attach_to_pool() - attach a worker to a pool
1834 * @worker: worker to be attached
1835 * @pool: the target pool
1836 *
1837 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1838 * cpu-binding of @worker are kept coordinated with the pool across
1839 * cpu-[un]hotplugs.
1840 */
1841static void worker_attach_to_pool(struct worker *worker,
1842 struct worker_pool *pool)
1843{
1258fae7 1844 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1845
1846 /*
1847 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1848 * online CPUs. It'll be re-applied when any of the CPUs come up.
1849 */
1850 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1851
1852 /*
1258fae7
TH
1853 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1854 * stable across this function. See the comments above the flag
1855 * definition for details.
4736cbf7
LJ
1856 */
1857 if (pool->flags & POOL_DISASSOCIATED)
1858 worker->flags |= WORKER_UNBOUND;
1859
1860 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1861 worker->pool = pool;
4736cbf7 1862
1258fae7 1863 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1864}
1865
60f5a4bc
LJ
1866/**
1867 * worker_detach_from_pool() - detach a worker from its pool
1868 * @worker: worker which is attached to its pool
60f5a4bc 1869 *
4736cbf7
LJ
1870 * Undo the attaching which had been done in worker_attach_to_pool(). The
1871 * caller worker shouldn't access to the pool after detached except it has
1872 * other reference to the pool.
60f5a4bc 1873 */
a2d812a2 1874static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1875{
a2d812a2 1876 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1877 struct completion *detach_completion = NULL;
1878
1258fae7 1879 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1880
da028469 1881 list_del(&worker->node);
a2d812a2
TH
1882 worker->pool = NULL;
1883
da028469 1884 if (list_empty(&pool->workers))
60f5a4bc 1885 detach_completion = pool->detach_completion;
1258fae7 1886 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1887
b62c0751
LJ
1888 /* clear leftover flags without pool->lock after it is detached */
1889 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1890
60f5a4bc
LJ
1891 if (detach_completion)
1892 complete(detach_completion);
1893}
1894
c34056a3
TH
1895/**
1896 * create_worker - create a new workqueue worker
63d95a91 1897 * @pool: pool the new worker will belong to
c34056a3 1898 *
051e1850 1899 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1900 *
1901 * CONTEXT:
1902 * Might sleep. Does GFP_KERNEL allocations.
1903 *
d185af30 1904 * Return:
c34056a3
TH
1905 * Pointer to the newly created worker.
1906 */
bc2ae0f5 1907static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1908{
c34056a3 1909 struct worker *worker = NULL;
f3421797 1910 int id = -1;
e3c916a4 1911 char id_buf[16];
c34056a3 1912
7cda9aae
LJ
1913 /* ID is needed to determine kthread name */
1914 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1915 if (id < 0)
1916 goto fail;
c34056a3 1917
f7537df5 1918 worker = alloc_worker(pool->node);
c34056a3
TH
1919 if (!worker)
1920 goto fail;
1921
c34056a3
TH
1922 worker->id = id;
1923
29c91e99 1924 if (pool->cpu >= 0)
e3c916a4
TH
1925 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1926 pool->attrs->nice < 0 ? "H" : "");
f3421797 1927 else
e3c916a4
TH
1928 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1929
f3f90ad4 1930 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1931 "kworker/%s", id_buf);
c34056a3
TH
1932 if (IS_ERR(worker->task))
1933 goto fail;
1934
91151228 1935 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1936 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1937
da028469 1938 /* successful, attach the worker to the pool */
4736cbf7 1939 worker_attach_to_pool(worker, pool);
822d8405 1940
051e1850
LJ
1941 /* start the newly created worker */
1942 spin_lock_irq(&pool->lock);
1943 worker->pool->nr_workers++;
1944 worker_enter_idle(worker);
1945 wake_up_process(worker->task);
1946 spin_unlock_irq(&pool->lock);
1947
c34056a3 1948 return worker;
822d8405 1949
c34056a3 1950fail:
9625ab17 1951 if (id >= 0)
7cda9aae 1952 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1953 kfree(worker);
1954 return NULL;
1955}
1956
c34056a3
TH
1957/**
1958 * destroy_worker - destroy a workqueue worker
1959 * @worker: worker to be destroyed
1960 *
73eb7fe7
LJ
1961 * Destroy @worker and adjust @pool stats accordingly. The worker should
1962 * be idle.
c8e55f36
TH
1963 *
1964 * CONTEXT:
60f5a4bc 1965 * spin_lock_irq(pool->lock).
c34056a3
TH
1966 */
1967static void destroy_worker(struct worker *worker)
1968{
bd7bdd43 1969 struct worker_pool *pool = worker->pool;
c34056a3 1970
cd549687
TH
1971 lockdep_assert_held(&pool->lock);
1972
c34056a3 1973 /* sanity check frenzy */
6183c009 1974 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1975 WARN_ON(!list_empty(&worker->scheduled)) ||
1976 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1977 return;
c34056a3 1978
73eb7fe7
LJ
1979 pool->nr_workers--;
1980 pool->nr_idle--;
5bdfff96 1981
c8e55f36 1982 list_del_init(&worker->entry);
cb444766 1983 worker->flags |= WORKER_DIE;
60f5a4bc 1984 wake_up_process(worker->task);
c34056a3
TH
1985}
1986
32a6c723 1987static void idle_worker_timeout(struct timer_list *t)
e22bee78 1988{
32a6c723 1989 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1990
d565ed63 1991 spin_lock_irq(&pool->lock);
e22bee78 1992
3347fc9f 1993 while (too_many_workers(pool)) {
e22bee78
TH
1994 struct worker *worker;
1995 unsigned long expires;
1996
1997 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1998 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1999 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2000
3347fc9f 2001 if (time_before(jiffies, expires)) {
63d95a91 2002 mod_timer(&pool->idle_timer, expires);
3347fc9f 2003 break;
d5abe669 2004 }
3347fc9f
LJ
2005
2006 destroy_worker(worker);
e22bee78
TH
2007 }
2008
d565ed63 2009 spin_unlock_irq(&pool->lock);
e22bee78 2010}
d5abe669 2011
493a1724 2012static void send_mayday(struct work_struct *work)
e22bee78 2013{
112202d9
TH
2014 struct pool_workqueue *pwq = get_work_pwq(work);
2015 struct workqueue_struct *wq = pwq->wq;
493a1724 2016
2e109a28 2017 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2018
493008a8 2019 if (!wq->rescuer)
493a1724 2020 return;
e22bee78
TH
2021
2022 /* mayday mayday mayday */
493a1724 2023 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2024 /*
2025 * If @pwq is for an unbound wq, its base ref may be put at
2026 * any time due to an attribute change. Pin @pwq until the
2027 * rescuer is done with it.
2028 */
2029 get_pwq(pwq);
493a1724 2030 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2031 wake_up_process(wq->rescuer->task);
493a1724 2032 }
e22bee78
TH
2033}
2034
32a6c723 2035static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2036{
32a6c723 2037 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2038 struct work_struct *work;
2039
b2d82909
TH
2040 spin_lock_irq(&pool->lock);
2041 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2042
63d95a91 2043 if (need_to_create_worker(pool)) {
e22bee78
TH
2044 /*
2045 * We've been trying to create a new worker but
2046 * haven't been successful. We might be hitting an
2047 * allocation deadlock. Send distress signals to
2048 * rescuers.
2049 */
63d95a91 2050 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2051 send_mayday(work);
1da177e4 2052 }
e22bee78 2053
b2d82909
TH
2054 spin_unlock(&wq_mayday_lock);
2055 spin_unlock_irq(&pool->lock);
e22bee78 2056
63d95a91 2057 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2058}
2059
e22bee78
TH
2060/**
2061 * maybe_create_worker - create a new worker if necessary
63d95a91 2062 * @pool: pool to create a new worker for
e22bee78 2063 *
63d95a91 2064 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2065 * have at least one idle worker on return from this function. If
2066 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2067 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2068 * possible allocation deadlock.
2069 *
c5aa87bb
TH
2070 * On return, need_to_create_worker() is guaranteed to be %false and
2071 * may_start_working() %true.
e22bee78
TH
2072 *
2073 * LOCKING:
d565ed63 2074 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2075 * multiple times. Does GFP_KERNEL allocations. Called only from
2076 * manager.
e22bee78 2077 */
29187a9e 2078static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2079__releases(&pool->lock)
2080__acquires(&pool->lock)
1da177e4 2081{
e22bee78 2082restart:
d565ed63 2083 spin_unlock_irq(&pool->lock);
9f9c2364 2084
e22bee78 2085 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2086 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2087
2088 while (true) {
051e1850 2089 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2090 break;
1da177e4 2091
e212f361 2092 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2093
63d95a91 2094 if (!need_to_create_worker(pool))
e22bee78
TH
2095 break;
2096 }
2097
63d95a91 2098 del_timer_sync(&pool->mayday_timer);
d565ed63 2099 spin_lock_irq(&pool->lock);
051e1850
LJ
2100 /*
2101 * This is necessary even after a new worker was just successfully
2102 * created as @pool->lock was dropped and the new worker might have
2103 * already become busy.
2104 */
63d95a91 2105 if (need_to_create_worker(pool))
e22bee78 2106 goto restart;
e22bee78
TH
2107}
2108
73f53c4a 2109/**
e22bee78
TH
2110 * manage_workers - manage worker pool
2111 * @worker: self
73f53c4a 2112 *
706026c2 2113 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2114 * to. At any given time, there can be only zero or one manager per
706026c2 2115 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2116 *
2117 * The caller can safely start processing works on false return. On
2118 * true return, it's guaranteed that need_to_create_worker() is false
2119 * and may_start_working() is true.
73f53c4a
TH
2120 *
2121 * CONTEXT:
d565ed63 2122 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2123 * multiple times. Does GFP_KERNEL allocations.
2124 *
d185af30 2125 * Return:
29187a9e
TH
2126 * %false if the pool doesn't need management and the caller can safely
2127 * start processing works, %true if management function was performed and
2128 * the conditions that the caller verified before calling the function may
2129 * no longer be true.
73f53c4a 2130 */
e22bee78 2131static bool manage_workers(struct worker *worker)
73f53c4a 2132{
63d95a91 2133 struct worker_pool *pool = worker->pool;
73f53c4a 2134
692b4825 2135 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2136 return false;
692b4825
TH
2137
2138 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2139 pool->manager = worker;
1e19ffc6 2140
29187a9e 2141 maybe_create_worker(pool);
e22bee78 2142
2607d7a6 2143 pool->manager = NULL;
692b4825
TH
2144 pool->flags &= ~POOL_MANAGER_ACTIVE;
2145 wake_up(&wq_manager_wait);
29187a9e 2146 return true;
73f53c4a
TH
2147}
2148
a62428c0
TH
2149/**
2150 * process_one_work - process single work
c34056a3 2151 * @worker: self
a62428c0
TH
2152 * @work: work to process
2153 *
2154 * Process @work. This function contains all the logics necessary to
2155 * process a single work including synchronization against and
2156 * interaction with other workers on the same cpu, queueing and
2157 * flushing. As long as context requirement is met, any worker can
2158 * call this function to process a work.
2159 *
2160 * CONTEXT:
d565ed63 2161 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2162 */
c34056a3 2163static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2164__releases(&pool->lock)
2165__acquires(&pool->lock)
a62428c0 2166{
112202d9 2167 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2168 struct worker_pool *pool = worker->pool;
112202d9 2169 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2170 int work_color;
7e11629d 2171 struct worker *collision;
a62428c0
TH
2172#ifdef CONFIG_LOCKDEP
2173 /*
2174 * It is permissible to free the struct work_struct from
2175 * inside the function that is called from it, this we need to
2176 * take into account for lockdep too. To avoid bogus "held
2177 * lock freed" warnings as well as problems when looking into
2178 * work->lockdep_map, make a copy and use that here.
2179 */
4d82a1de
PZ
2180 struct lockdep_map lockdep_map;
2181
2182 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2183#endif
807407c0 2184 /* ensure we're on the correct CPU */
85327af6 2185 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2186 raw_smp_processor_id() != pool->cpu);
25511a47 2187
7e11629d
TH
2188 /*
2189 * A single work shouldn't be executed concurrently by
2190 * multiple workers on a single cpu. Check whether anyone is
2191 * already processing the work. If so, defer the work to the
2192 * currently executing one.
2193 */
c9e7cf27 2194 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2195 if (unlikely(collision)) {
2196 move_linked_works(work, &collision->scheduled, NULL);
2197 return;
2198 }
2199
8930caba 2200 /* claim and dequeue */
a62428c0 2201 debug_work_deactivate(work);
c9e7cf27 2202 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2203 worker->current_work = work;
a2c1c57b 2204 worker->current_func = work->func;
112202d9 2205 worker->current_pwq = pwq;
73f53c4a 2206 work_color = get_work_color(work);
7a22ad75 2207
8bf89593
TH
2208 /*
2209 * Record wq name for cmdline and debug reporting, may get
2210 * overridden through set_worker_desc().
2211 */
2212 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2213
a62428c0
TH
2214 list_del_init(&work->entry);
2215
fb0e7beb 2216 /*
228f1d00
LJ
2217 * CPU intensive works don't participate in concurrency management.
2218 * They're the scheduler's responsibility. This takes @worker out
2219 * of concurrency management and the next code block will chain
2220 * execution of the pending work items.
fb0e7beb
TH
2221 */
2222 if (unlikely(cpu_intensive))
228f1d00 2223 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2224
974271c4 2225 /*
a489a03e
LJ
2226 * Wake up another worker if necessary. The condition is always
2227 * false for normal per-cpu workers since nr_running would always
2228 * be >= 1 at this point. This is used to chain execution of the
2229 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2230 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2231 */
a489a03e 2232 if (need_more_worker(pool))
63d95a91 2233 wake_up_worker(pool);
974271c4 2234
8930caba 2235 /*
7c3eed5c 2236 * Record the last pool and clear PENDING which should be the last
d565ed63 2237 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2238 * PENDING and queued state changes happen together while IRQ is
2239 * disabled.
8930caba 2240 */
7c3eed5c 2241 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2242
d565ed63 2243 spin_unlock_irq(&pool->lock);
a62428c0 2244
a1d14934 2245 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2246 lock_map_acquire(&lockdep_map);
e6f3faa7 2247 /*
f52be570
PZ
2248 * Strictly speaking we should mark the invariant state without holding
2249 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2250 *
2251 * However, that would result in:
2252 *
2253 * A(W1)
2254 * WFC(C)
2255 * A(W1)
2256 * C(C)
2257 *
2258 * Which would create W1->C->W1 dependencies, even though there is no
2259 * actual deadlock possible. There are two solutions, using a
2260 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2261 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2262 * these locks.
2263 *
2264 * AFAICT there is no possible deadlock scenario between the
2265 * flush_work() and complete() primitives (except for single-threaded
2266 * workqueues), so hiding them isn't a problem.
2267 */
f52be570 2268 lockdep_invariant_state(true);
e36c886a 2269 trace_workqueue_execute_start(work);
a2c1c57b 2270 worker->current_func(work);
e36c886a
AV
2271 /*
2272 * While we must be careful to not use "work" after this, the trace
2273 * point will only record its address.
2274 */
2275 trace_workqueue_execute_end(work);
a62428c0 2276 lock_map_release(&lockdep_map);
112202d9 2277 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2278
2279 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2280 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2281 " last function: %ps\n",
a2c1c57b
TH
2282 current->comm, preempt_count(), task_pid_nr(current),
2283 worker->current_func);
a62428c0
TH
2284 debug_show_held_locks(current);
2285 dump_stack();
2286 }
2287
b22ce278
TH
2288 /*
2289 * The following prevents a kworker from hogging CPU on !PREEMPT
2290 * kernels, where a requeueing work item waiting for something to
2291 * happen could deadlock with stop_machine as such work item could
2292 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2293 * stop_machine. At the same time, report a quiescent RCU state so
2294 * the same condition doesn't freeze RCU.
b22ce278 2295 */
a7e6425e 2296 cond_resched();
b22ce278 2297
d565ed63 2298 spin_lock_irq(&pool->lock);
a62428c0 2299
fb0e7beb
TH
2300 /* clear cpu intensive status */
2301 if (unlikely(cpu_intensive))
2302 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2303
1b69ac6b
JW
2304 /* tag the worker for identification in schedule() */
2305 worker->last_func = worker->current_func;
2306
a62428c0 2307 /* we're done with it, release */
42f8570f 2308 hash_del(&worker->hentry);
c34056a3 2309 worker->current_work = NULL;
a2c1c57b 2310 worker->current_func = NULL;
112202d9
TH
2311 worker->current_pwq = NULL;
2312 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2313}
2314
affee4b2
TH
2315/**
2316 * process_scheduled_works - process scheduled works
2317 * @worker: self
2318 *
2319 * Process all scheduled works. Please note that the scheduled list
2320 * may change while processing a work, so this function repeatedly
2321 * fetches a work from the top and executes it.
2322 *
2323 * CONTEXT:
d565ed63 2324 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2325 * multiple times.
2326 */
2327static void process_scheduled_works(struct worker *worker)
1da177e4 2328{
affee4b2
TH
2329 while (!list_empty(&worker->scheduled)) {
2330 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2331 struct work_struct, entry);
c34056a3 2332 process_one_work(worker, work);
1da177e4 2333 }
1da177e4
LT
2334}
2335
197f6acc
TH
2336static void set_pf_worker(bool val)
2337{
2338 mutex_lock(&wq_pool_attach_mutex);
2339 if (val)
2340 current->flags |= PF_WQ_WORKER;
2341 else
2342 current->flags &= ~PF_WQ_WORKER;
2343 mutex_unlock(&wq_pool_attach_mutex);
2344}
2345
4690c4ab
TH
2346/**
2347 * worker_thread - the worker thread function
c34056a3 2348 * @__worker: self
4690c4ab 2349 *
c5aa87bb
TH
2350 * The worker thread function. All workers belong to a worker_pool -
2351 * either a per-cpu one or dynamic unbound one. These workers process all
2352 * work items regardless of their specific target workqueue. The only
2353 * exception is work items which belong to workqueues with a rescuer which
2354 * will be explained in rescuer_thread().
d185af30
YB
2355 *
2356 * Return: 0
4690c4ab 2357 */
c34056a3 2358static int worker_thread(void *__worker)
1da177e4 2359{
c34056a3 2360 struct worker *worker = __worker;
bd7bdd43 2361 struct worker_pool *pool = worker->pool;
1da177e4 2362
e22bee78 2363 /* tell the scheduler that this is a workqueue worker */
197f6acc 2364 set_pf_worker(true);
c8e55f36 2365woke_up:
d565ed63 2366 spin_lock_irq(&pool->lock);
1da177e4 2367
a9ab775b
TH
2368 /* am I supposed to die? */
2369 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2370 spin_unlock_irq(&pool->lock);
a9ab775b 2371 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2372 set_pf_worker(false);
60f5a4bc
LJ
2373
2374 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2375 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2376 worker_detach_from_pool(worker);
60f5a4bc 2377 kfree(worker);
a9ab775b 2378 return 0;
c8e55f36 2379 }
affee4b2 2380
c8e55f36 2381 worker_leave_idle(worker);
db7bccf4 2382recheck:
e22bee78 2383 /* no more worker necessary? */
63d95a91 2384 if (!need_more_worker(pool))
e22bee78
TH
2385 goto sleep;
2386
2387 /* do we need to manage? */
63d95a91 2388 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2389 goto recheck;
2390
c8e55f36
TH
2391 /*
2392 * ->scheduled list can only be filled while a worker is
2393 * preparing to process a work or actually processing it.
2394 * Make sure nobody diddled with it while I was sleeping.
2395 */
6183c009 2396 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2397
e22bee78 2398 /*
a9ab775b
TH
2399 * Finish PREP stage. We're guaranteed to have at least one idle
2400 * worker or that someone else has already assumed the manager
2401 * role. This is where @worker starts participating in concurrency
2402 * management if applicable and concurrency management is restored
2403 * after being rebound. See rebind_workers() for details.
e22bee78 2404 */
a9ab775b 2405 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2406
2407 do {
c8e55f36 2408 struct work_struct *work =
bd7bdd43 2409 list_first_entry(&pool->worklist,
c8e55f36
TH
2410 struct work_struct, entry);
2411
82607adc
TH
2412 pool->watchdog_ts = jiffies;
2413
c8e55f36
TH
2414 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2415 /* optimization path, not strictly necessary */
2416 process_one_work(worker, work);
2417 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2418 process_scheduled_works(worker);
c8e55f36
TH
2419 } else {
2420 move_linked_works(work, &worker->scheduled, NULL);
2421 process_scheduled_works(worker);
affee4b2 2422 }
63d95a91 2423 } while (keep_working(pool));
e22bee78 2424
228f1d00 2425 worker_set_flags(worker, WORKER_PREP);
d313dd85 2426sleep:
c8e55f36 2427 /*
d565ed63
TH
2428 * pool->lock is held and there's no work to process and no need to
2429 * manage, sleep. Workers are woken up only while holding
2430 * pool->lock or from local cpu, so setting the current state
2431 * before releasing pool->lock is enough to prevent losing any
2432 * event.
c8e55f36
TH
2433 */
2434 worker_enter_idle(worker);
c5a94a61 2435 __set_current_state(TASK_IDLE);
d565ed63 2436 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2437 schedule();
2438 goto woke_up;
1da177e4
LT
2439}
2440
e22bee78
TH
2441/**
2442 * rescuer_thread - the rescuer thread function
111c225a 2443 * @__rescuer: self
e22bee78
TH
2444 *
2445 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2446 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2447 *
706026c2 2448 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2449 * worker which uses GFP_KERNEL allocation which has slight chance of
2450 * developing into deadlock if some works currently on the same queue
2451 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2452 * the problem rescuer solves.
2453 *
706026c2
TH
2454 * When such condition is possible, the pool summons rescuers of all
2455 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2456 * those works so that forward progress can be guaranteed.
2457 *
2458 * This should happen rarely.
d185af30
YB
2459 *
2460 * Return: 0
e22bee78 2461 */
111c225a 2462static int rescuer_thread(void *__rescuer)
e22bee78 2463{
111c225a
TH
2464 struct worker *rescuer = __rescuer;
2465 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2466 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2467 bool should_stop;
e22bee78
TH
2468
2469 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2470
2471 /*
2472 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2473 * doesn't participate in concurrency management.
2474 */
197f6acc 2475 set_pf_worker(true);
e22bee78 2476repeat:
c5a94a61 2477 set_current_state(TASK_IDLE);
e22bee78 2478
4d595b86
LJ
2479 /*
2480 * By the time the rescuer is requested to stop, the workqueue
2481 * shouldn't have any work pending, but @wq->maydays may still have
2482 * pwq(s) queued. This can happen by non-rescuer workers consuming
2483 * all the work items before the rescuer got to them. Go through
2484 * @wq->maydays processing before acting on should_stop so that the
2485 * list is always empty on exit.
2486 */
2487 should_stop = kthread_should_stop();
e22bee78 2488
493a1724 2489 /* see whether any pwq is asking for help */
2e109a28 2490 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2491
2492 while (!list_empty(&wq->maydays)) {
2493 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2494 struct pool_workqueue, mayday_node);
112202d9 2495 struct worker_pool *pool = pwq->pool;
e22bee78 2496 struct work_struct *work, *n;
82607adc 2497 bool first = true;
e22bee78
TH
2498
2499 __set_current_state(TASK_RUNNING);
493a1724
TH
2500 list_del_init(&pwq->mayday_node);
2501
2e109a28 2502 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2503
51697d39
LJ
2504 worker_attach_to_pool(rescuer, pool);
2505
2506 spin_lock_irq(&pool->lock);
e22bee78
TH
2507
2508 /*
2509 * Slurp in all works issued via this workqueue and
2510 * process'em.
2511 */
0479c8c5 2512 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2513 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2514 if (get_work_pwq(work) == pwq) {
2515 if (first)
2516 pool->watchdog_ts = jiffies;
e22bee78 2517 move_linked_works(work, scheduled, &n);
82607adc
TH
2518 }
2519 first = false;
2520 }
e22bee78 2521
008847f6
N
2522 if (!list_empty(scheduled)) {
2523 process_scheduled_works(rescuer);
2524
2525 /*
2526 * The above execution of rescued work items could
2527 * have created more to rescue through
2528 * pwq_activate_first_delayed() or chained
2529 * queueing. Let's put @pwq back on mayday list so
2530 * that such back-to-back work items, which may be
2531 * being used to relieve memory pressure, don't
2532 * incur MAYDAY_INTERVAL delay inbetween.
2533 */
2534 if (need_to_create_worker(pool)) {
2535 spin_lock(&wq_mayday_lock);
2536 get_pwq(pwq);
2537 list_move_tail(&pwq->mayday_node, &wq->maydays);
2538 spin_unlock(&wq_mayday_lock);
2539 }
2540 }
7576958a 2541
77668c8b
LJ
2542 /*
2543 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2544 * go away while we're still attached to it.
77668c8b
LJ
2545 */
2546 put_pwq(pwq);
2547
7576958a 2548 /*
d8ca83e6 2549 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2550 * regular worker; otherwise, we end up with 0 concurrency
2551 * and stalling the execution.
2552 */
d8ca83e6 2553 if (need_more_worker(pool))
63d95a91 2554 wake_up_worker(pool);
7576958a 2555
13b1d625
LJ
2556 spin_unlock_irq(&pool->lock);
2557
a2d812a2 2558 worker_detach_from_pool(rescuer);
13b1d625
LJ
2559
2560 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2561 }
2562
2e109a28 2563 spin_unlock_irq(&wq_mayday_lock);
493a1724 2564
4d595b86
LJ
2565 if (should_stop) {
2566 __set_current_state(TASK_RUNNING);
197f6acc 2567 set_pf_worker(false);
4d595b86
LJ
2568 return 0;
2569 }
2570
111c225a
TH
2571 /* rescuers should never participate in concurrency management */
2572 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2573 schedule();
2574 goto repeat;
1da177e4
LT
2575}
2576
fca839c0
TH
2577/**
2578 * check_flush_dependency - check for flush dependency sanity
2579 * @target_wq: workqueue being flushed
2580 * @target_work: work item being flushed (NULL for workqueue flushes)
2581 *
2582 * %current is trying to flush the whole @target_wq or @target_work on it.
2583 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2584 * reclaiming memory or running on a workqueue which doesn't have
2585 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2586 * a deadlock.
2587 */
2588static void check_flush_dependency(struct workqueue_struct *target_wq,
2589 struct work_struct *target_work)
2590{
2591 work_func_t target_func = target_work ? target_work->func : NULL;
2592 struct worker *worker;
2593
2594 if (target_wq->flags & WQ_MEM_RECLAIM)
2595 return;
2596
2597 worker = current_wq_worker();
2598
2599 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2600 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2601 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2602 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2603 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2604 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2605 worker->current_pwq->wq->name, worker->current_func,
2606 target_wq->name, target_func);
2607}
2608
fc2e4d70
ON
2609struct wq_barrier {
2610 struct work_struct work;
2611 struct completion done;
2607d7a6 2612 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2613};
2614
2615static void wq_barrier_func(struct work_struct *work)
2616{
2617 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2618 complete(&barr->done);
2619}
2620
4690c4ab
TH
2621/**
2622 * insert_wq_barrier - insert a barrier work
112202d9 2623 * @pwq: pwq to insert barrier into
4690c4ab 2624 * @barr: wq_barrier to insert
affee4b2
TH
2625 * @target: target work to attach @barr to
2626 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2627 *
affee4b2
TH
2628 * @barr is linked to @target such that @barr is completed only after
2629 * @target finishes execution. Please note that the ordering
2630 * guarantee is observed only with respect to @target and on the local
2631 * cpu.
2632 *
2633 * Currently, a queued barrier can't be canceled. This is because
2634 * try_to_grab_pending() can't determine whether the work to be
2635 * grabbed is at the head of the queue and thus can't clear LINKED
2636 * flag of the previous work while there must be a valid next work
2637 * after a work with LINKED flag set.
2638 *
2639 * Note that when @worker is non-NULL, @target may be modified
112202d9 2640 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2641 *
2642 * CONTEXT:
d565ed63 2643 * spin_lock_irq(pool->lock).
4690c4ab 2644 */
112202d9 2645static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2646 struct wq_barrier *barr,
2647 struct work_struct *target, struct worker *worker)
fc2e4d70 2648{
affee4b2
TH
2649 struct list_head *head;
2650 unsigned int linked = 0;
2651
dc186ad7 2652 /*
d565ed63 2653 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2654 * as we know for sure that this will not trigger any of the
2655 * checks and call back into the fixup functions where we
2656 * might deadlock.
2657 */
ca1cab37 2658 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2659 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2660
fd1a5b04
BP
2661 init_completion_map(&barr->done, &target->lockdep_map);
2662
2607d7a6 2663 barr->task = current;
83c22520 2664
affee4b2
TH
2665 /*
2666 * If @target is currently being executed, schedule the
2667 * barrier to the worker; otherwise, put it after @target.
2668 */
2669 if (worker)
2670 head = worker->scheduled.next;
2671 else {
2672 unsigned long *bits = work_data_bits(target);
2673
2674 head = target->entry.next;
2675 /* there can already be other linked works, inherit and set */
2676 linked = *bits & WORK_STRUCT_LINKED;
2677 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2678 }
2679
dc186ad7 2680 debug_work_activate(&barr->work);
112202d9 2681 insert_work(pwq, &barr->work, head,
affee4b2 2682 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2683}
2684
73f53c4a 2685/**
112202d9 2686 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2687 * @wq: workqueue being flushed
2688 * @flush_color: new flush color, < 0 for no-op
2689 * @work_color: new work color, < 0 for no-op
2690 *
112202d9 2691 * Prepare pwqs for workqueue flushing.
73f53c4a 2692 *
112202d9
TH
2693 * If @flush_color is non-negative, flush_color on all pwqs should be
2694 * -1. If no pwq has in-flight commands at the specified color, all
2695 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2696 * has in flight commands, its pwq->flush_color is set to
2697 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2698 * wakeup logic is armed and %true is returned.
2699 *
2700 * The caller should have initialized @wq->first_flusher prior to
2701 * calling this function with non-negative @flush_color. If
2702 * @flush_color is negative, no flush color update is done and %false
2703 * is returned.
2704 *
112202d9 2705 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2706 * work_color which is previous to @work_color and all will be
2707 * advanced to @work_color.
2708 *
2709 * CONTEXT:
3c25a55d 2710 * mutex_lock(wq->mutex).
73f53c4a 2711 *
d185af30 2712 * Return:
73f53c4a
TH
2713 * %true if @flush_color >= 0 and there's something to flush. %false
2714 * otherwise.
2715 */
112202d9 2716static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2717 int flush_color, int work_color)
1da177e4 2718{
73f53c4a 2719 bool wait = false;
49e3cf44 2720 struct pool_workqueue *pwq;
1da177e4 2721
73f53c4a 2722 if (flush_color >= 0) {
6183c009 2723 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2724 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2725 }
2355b70f 2726
49e3cf44 2727 for_each_pwq(pwq, wq) {
112202d9 2728 struct worker_pool *pool = pwq->pool;
fc2e4d70 2729
b09f4fd3 2730 spin_lock_irq(&pool->lock);
83c22520 2731
73f53c4a 2732 if (flush_color >= 0) {
6183c009 2733 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2734
112202d9
TH
2735 if (pwq->nr_in_flight[flush_color]) {
2736 pwq->flush_color = flush_color;
2737 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2738 wait = true;
2739 }
2740 }
1da177e4 2741
73f53c4a 2742 if (work_color >= 0) {
6183c009 2743 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2744 pwq->work_color = work_color;
73f53c4a 2745 }
1da177e4 2746
b09f4fd3 2747 spin_unlock_irq(&pool->lock);
1da177e4 2748 }
2355b70f 2749
112202d9 2750 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2751 complete(&wq->first_flusher->done);
14441960 2752
73f53c4a 2753 return wait;
1da177e4
LT
2754}
2755
0fcb78c2 2756/**
1da177e4 2757 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2758 * @wq: workqueue to flush
1da177e4 2759 *
c5aa87bb
TH
2760 * This function sleeps until all work items which were queued on entry
2761 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2762 */
7ad5b3a5 2763void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2764{
73f53c4a
TH
2765 struct wq_flusher this_flusher = {
2766 .list = LIST_HEAD_INIT(this_flusher.list),
2767 .flush_color = -1,
fd1a5b04 2768 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2769 };
2770 int next_color;
1da177e4 2771
3347fa09
TH
2772 if (WARN_ON(!wq_online))
2773 return;
2774
87915adc
JB
2775 lock_map_acquire(&wq->lockdep_map);
2776 lock_map_release(&wq->lockdep_map);
2777
3c25a55d 2778 mutex_lock(&wq->mutex);
73f53c4a
TH
2779
2780 /*
2781 * Start-to-wait phase
2782 */
2783 next_color = work_next_color(wq->work_color);
2784
2785 if (next_color != wq->flush_color) {
2786 /*
2787 * Color space is not full. The current work_color
2788 * becomes our flush_color and work_color is advanced
2789 * by one.
2790 */
6183c009 2791 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2792 this_flusher.flush_color = wq->work_color;
2793 wq->work_color = next_color;
2794
2795 if (!wq->first_flusher) {
2796 /* no flush in progress, become the first flusher */
6183c009 2797 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2798
2799 wq->first_flusher = &this_flusher;
2800
112202d9 2801 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2802 wq->work_color)) {
2803 /* nothing to flush, done */
2804 wq->flush_color = next_color;
2805 wq->first_flusher = NULL;
2806 goto out_unlock;
2807 }
2808 } else {
2809 /* wait in queue */
6183c009 2810 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2811 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2812 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2813 }
2814 } else {
2815 /*
2816 * Oops, color space is full, wait on overflow queue.
2817 * The next flush completion will assign us
2818 * flush_color and transfer to flusher_queue.
2819 */
2820 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2821 }
2822
fca839c0
TH
2823 check_flush_dependency(wq, NULL);
2824
3c25a55d 2825 mutex_unlock(&wq->mutex);
73f53c4a
TH
2826
2827 wait_for_completion(&this_flusher.done);
2828
2829 /*
2830 * Wake-up-and-cascade phase
2831 *
2832 * First flushers are responsible for cascading flushes and
2833 * handling overflow. Non-first flushers can simply return.
2834 */
2835 if (wq->first_flusher != &this_flusher)
2836 return;
2837
3c25a55d 2838 mutex_lock(&wq->mutex);
73f53c4a 2839
4ce48b37
TH
2840 /* we might have raced, check again with mutex held */
2841 if (wq->first_flusher != &this_flusher)
2842 goto out_unlock;
2843
73f53c4a
TH
2844 wq->first_flusher = NULL;
2845
6183c009
TH
2846 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2847 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2848
2849 while (true) {
2850 struct wq_flusher *next, *tmp;
2851
2852 /* complete all the flushers sharing the current flush color */
2853 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2854 if (next->flush_color != wq->flush_color)
2855 break;
2856 list_del_init(&next->list);
2857 complete(&next->done);
2858 }
2859
6183c009
TH
2860 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2861 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2862
2863 /* this flush_color is finished, advance by one */
2864 wq->flush_color = work_next_color(wq->flush_color);
2865
2866 /* one color has been freed, handle overflow queue */
2867 if (!list_empty(&wq->flusher_overflow)) {
2868 /*
2869 * Assign the same color to all overflowed
2870 * flushers, advance work_color and append to
2871 * flusher_queue. This is the start-to-wait
2872 * phase for these overflowed flushers.
2873 */
2874 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2875 tmp->flush_color = wq->work_color;
2876
2877 wq->work_color = work_next_color(wq->work_color);
2878
2879 list_splice_tail_init(&wq->flusher_overflow,
2880 &wq->flusher_queue);
112202d9 2881 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2882 }
2883
2884 if (list_empty(&wq->flusher_queue)) {
6183c009 2885 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2886 break;
2887 }
2888
2889 /*
2890 * Need to flush more colors. Make the next flusher
112202d9 2891 * the new first flusher and arm pwqs.
73f53c4a 2892 */
6183c009
TH
2893 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2894 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2895
2896 list_del_init(&next->list);
2897 wq->first_flusher = next;
2898
112202d9 2899 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2900 break;
2901
2902 /*
2903 * Meh... this color is already done, clear first
2904 * flusher and repeat cascading.
2905 */
2906 wq->first_flusher = NULL;
2907 }
2908
2909out_unlock:
3c25a55d 2910 mutex_unlock(&wq->mutex);
1da177e4 2911}
1dadafa8 2912EXPORT_SYMBOL(flush_workqueue);
1da177e4 2913
9c5a2ba7
TH
2914/**
2915 * drain_workqueue - drain a workqueue
2916 * @wq: workqueue to drain
2917 *
2918 * Wait until the workqueue becomes empty. While draining is in progress,
2919 * only chain queueing is allowed. IOW, only currently pending or running
2920 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2921 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2922 * by the depth of chaining and should be relatively short. Whine if it
2923 * takes too long.
2924 */
2925void drain_workqueue(struct workqueue_struct *wq)
2926{
2927 unsigned int flush_cnt = 0;
49e3cf44 2928 struct pool_workqueue *pwq;
9c5a2ba7
TH
2929
2930 /*
2931 * __queue_work() needs to test whether there are drainers, is much
2932 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2933 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2934 */
87fc741e 2935 mutex_lock(&wq->mutex);
9c5a2ba7 2936 if (!wq->nr_drainers++)
618b01eb 2937 wq->flags |= __WQ_DRAINING;
87fc741e 2938 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2939reflush:
2940 flush_workqueue(wq);
2941
b09f4fd3 2942 mutex_lock(&wq->mutex);
76af4d93 2943
49e3cf44 2944 for_each_pwq(pwq, wq) {
fa2563e4 2945 bool drained;
9c5a2ba7 2946
b09f4fd3 2947 spin_lock_irq(&pwq->pool->lock);
112202d9 2948 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2949 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2950
2951 if (drained)
9c5a2ba7
TH
2952 continue;
2953
2954 if (++flush_cnt == 10 ||
2955 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2956 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2957 wq->name, flush_cnt);
76af4d93 2958
b09f4fd3 2959 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2960 goto reflush;
2961 }
2962
9c5a2ba7 2963 if (!--wq->nr_drainers)
618b01eb 2964 wq->flags &= ~__WQ_DRAINING;
87fc741e 2965 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2966}
2967EXPORT_SYMBOL_GPL(drain_workqueue);
2968
d6e89786
JB
2969static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2970 bool from_cancel)
db700897 2971{
affee4b2 2972 struct worker *worker = NULL;
c9e7cf27 2973 struct worker_pool *pool;
112202d9 2974 struct pool_workqueue *pwq;
db700897
ON
2975
2976 might_sleep();
fa1b54e6 2977
24acfb71 2978 rcu_read_lock();
c9e7cf27 2979 pool = get_work_pool(work);
fa1b54e6 2980 if (!pool) {
24acfb71 2981 rcu_read_unlock();
baf59022 2982 return false;
fa1b54e6 2983 }
db700897 2984
24acfb71 2985 spin_lock_irq(&pool->lock);
0b3dae68 2986 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2987 pwq = get_work_pwq(work);
2988 if (pwq) {
2989 if (unlikely(pwq->pool != pool))
4690c4ab 2990 goto already_gone;
606a5020 2991 } else {
c9e7cf27 2992 worker = find_worker_executing_work(pool, work);
affee4b2 2993 if (!worker)
4690c4ab 2994 goto already_gone;
112202d9 2995 pwq = worker->current_pwq;
606a5020 2996 }
db700897 2997
fca839c0
TH
2998 check_flush_dependency(pwq->wq, work);
2999
112202d9 3000 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3001 spin_unlock_irq(&pool->lock);
7a22ad75 3002
e159489b 3003 /*
a1d14934
PZ
3004 * Force a lock recursion deadlock when using flush_work() inside a
3005 * single-threaded or rescuer equipped workqueue.
3006 *
3007 * For single threaded workqueues the deadlock happens when the work
3008 * is after the work issuing the flush_work(). For rescuer equipped
3009 * workqueues the deadlock happens when the rescuer stalls, blocking
3010 * forward progress.
e159489b 3011 */
d6e89786
JB
3012 if (!from_cancel &&
3013 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3014 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3015 lock_map_release(&pwq->wq->lockdep_map);
3016 }
24acfb71 3017 rcu_read_unlock();
401a8d04 3018 return true;
4690c4ab 3019already_gone:
d565ed63 3020 spin_unlock_irq(&pool->lock);
24acfb71 3021 rcu_read_unlock();
401a8d04 3022 return false;
db700897 3023}
baf59022 3024
d6e89786
JB
3025static bool __flush_work(struct work_struct *work, bool from_cancel)
3026{
3027 struct wq_barrier barr;
3028
3029 if (WARN_ON(!wq_online))
3030 return false;
3031
4d43d395
TH
3032 if (WARN_ON(!work->func))
3033 return false;
3034
87915adc
JB
3035 if (!from_cancel) {
3036 lock_map_acquire(&work->lockdep_map);
3037 lock_map_release(&work->lockdep_map);
3038 }
3039
d6e89786
JB
3040 if (start_flush_work(work, &barr, from_cancel)) {
3041 wait_for_completion(&barr.done);
3042 destroy_work_on_stack(&barr.work);
3043 return true;
3044 } else {
3045 return false;
3046 }
3047}
3048
baf59022
TH
3049/**
3050 * flush_work - wait for a work to finish executing the last queueing instance
3051 * @work: the work to flush
3052 *
606a5020
TH
3053 * Wait until @work has finished execution. @work is guaranteed to be idle
3054 * on return if it hasn't been requeued since flush started.
baf59022 3055 *
d185af30 3056 * Return:
baf59022
TH
3057 * %true if flush_work() waited for the work to finish execution,
3058 * %false if it was already idle.
3059 */
3060bool flush_work(struct work_struct *work)
3061{
d6e89786 3062 return __flush_work(work, false);
6e84d644 3063}
606a5020 3064EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3065
8603e1b3 3066struct cwt_wait {
ac6424b9 3067 wait_queue_entry_t wait;
8603e1b3
TH
3068 struct work_struct *work;
3069};
3070
ac6424b9 3071static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3072{
3073 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3074
3075 if (cwait->work != key)
3076 return 0;
3077 return autoremove_wake_function(wait, mode, sync, key);
3078}
3079
36e227d2 3080static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3081{
8603e1b3 3082 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3083 unsigned long flags;
1f1f642e
ON
3084 int ret;
3085
3086 do {
bbb68dfa
TH
3087 ret = try_to_grab_pending(work, is_dwork, &flags);
3088 /*
8603e1b3
TH
3089 * If someone else is already canceling, wait for it to
3090 * finish. flush_work() doesn't work for PREEMPT_NONE
3091 * because we may get scheduled between @work's completion
3092 * and the other canceling task resuming and clearing
3093 * CANCELING - flush_work() will return false immediately
3094 * as @work is no longer busy, try_to_grab_pending() will
3095 * return -ENOENT as @work is still being canceled and the
3096 * other canceling task won't be able to clear CANCELING as
3097 * we're hogging the CPU.
3098 *
3099 * Let's wait for completion using a waitqueue. As this
3100 * may lead to the thundering herd problem, use a custom
3101 * wake function which matches @work along with exclusive
3102 * wait and wakeup.
bbb68dfa 3103 */
8603e1b3
TH
3104 if (unlikely(ret == -ENOENT)) {
3105 struct cwt_wait cwait;
3106
3107 init_wait(&cwait.wait);
3108 cwait.wait.func = cwt_wakefn;
3109 cwait.work = work;
3110
3111 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3112 TASK_UNINTERRUPTIBLE);
3113 if (work_is_canceling(work))
3114 schedule();
3115 finish_wait(&cancel_waitq, &cwait.wait);
3116 }
1f1f642e
ON
3117 } while (unlikely(ret < 0));
3118
bbb68dfa
TH
3119 /* tell other tasks trying to grab @work to back off */
3120 mark_work_canceling(work);
3121 local_irq_restore(flags);
3122
3347fa09
TH
3123 /*
3124 * This allows canceling during early boot. We know that @work
3125 * isn't executing.
3126 */
3127 if (wq_online)
d6e89786 3128 __flush_work(work, true);
3347fa09 3129
7a22ad75 3130 clear_work_data(work);
8603e1b3
TH
3131
3132 /*
3133 * Paired with prepare_to_wait() above so that either
3134 * waitqueue_active() is visible here or !work_is_canceling() is
3135 * visible there.
3136 */
3137 smp_mb();
3138 if (waitqueue_active(&cancel_waitq))
3139 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3140
1f1f642e
ON
3141 return ret;
3142}
3143
6e84d644 3144/**
401a8d04
TH
3145 * cancel_work_sync - cancel a work and wait for it to finish
3146 * @work: the work to cancel
6e84d644 3147 *
401a8d04
TH
3148 * Cancel @work and wait for its execution to finish. This function
3149 * can be used even if the work re-queues itself or migrates to
3150 * another workqueue. On return from this function, @work is
3151 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3152 *
401a8d04
TH
3153 * cancel_work_sync(&delayed_work->work) must not be used for
3154 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3155 *
401a8d04 3156 * The caller must ensure that the workqueue on which @work was last
6e84d644 3157 * queued can't be destroyed before this function returns.
401a8d04 3158 *
d185af30 3159 * Return:
401a8d04 3160 * %true if @work was pending, %false otherwise.
6e84d644 3161 */
401a8d04 3162bool cancel_work_sync(struct work_struct *work)
6e84d644 3163{
36e227d2 3164 return __cancel_work_timer(work, false);
b89deed3 3165}
28e53bdd 3166EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3167
6e84d644 3168/**
401a8d04
TH
3169 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3170 * @dwork: the delayed work to flush
6e84d644 3171 *
401a8d04
TH
3172 * Delayed timer is cancelled and the pending work is queued for
3173 * immediate execution. Like flush_work(), this function only
3174 * considers the last queueing instance of @dwork.
1f1f642e 3175 *
d185af30 3176 * Return:
401a8d04
TH
3177 * %true if flush_work() waited for the work to finish execution,
3178 * %false if it was already idle.
6e84d644 3179 */
401a8d04
TH
3180bool flush_delayed_work(struct delayed_work *dwork)
3181{
8930caba 3182 local_irq_disable();
401a8d04 3183 if (del_timer_sync(&dwork->timer))
60c057bc 3184 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3185 local_irq_enable();
401a8d04
TH
3186 return flush_work(&dwork->work);
3187}
3188EXPORT_SYMBOL(flush_delayed_work);
3189
05f0fe6b
TH
3190/**
3191 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3192 * @rwork: the rcu work to flush
3193 *
3194 * Return:
3195 * %true if flush_rcu_work() waited for the work to finish execution,
3196 * %false if it was already idle.
3197 */
3198bool flush_rcu_work(struct rcu_work *rwork)
3199{
3200 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3201 rcu_barrier();
3202 flush_work(&rwork->work);
3203 return true;
3204 } else {
3205 return flush_work(&rwork->work);
3206 }
3207}
3208EXPORT_SYMBOL(flush_rcu_work);
3209
f72b8792
JA
3210static bool __cancel_work(struct work_struct *work, bool is_dwork)
3211{
3212 unsigned long flags;
3213 int ret;
3214
3215 do {
3216 ret = try_to_grab_pending(work, is_dwork, &flags);
3217 } while (unlikely(ret == -EAGAIN));
3218
3219 if (unlikely(ret < 0))
3220 return false;
3221
3222 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3223 local_irq_restore(flags);
3224 return ret;
3225}
3226
09383498 3227/**
57b30ae7
TH
3228 * cancel_delayed_work - cancel a delayed work
3229 * @dwork: delayed_work to cancel
09383498 3230 *
d185af30
YB
3231 * Kill off a pending delayed_work.
3232 *
3233 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3234 * pending.
3235 *
3236 * Note:
3237 * The work callback function may still be running on return, unless
3238 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3239 * use cancel_delayed_work_sync() to wait on it.
09383498 3240 *
57b30ae7 3241 * This function is safe to call from any context including IRQ handler.
09383498 3242 */
57b30ae7 3243bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3244{
f72b8792 3245 return __cancel_work(&dwork->work, true);
09383498 3246}
57b30ae7 3247EXPORT_SYMBOL(cancel_delayed_work);
09383498 3248
401a8d04
TH
3249/**
3250 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3251 * @dwork: the delayed work cancel
3252 *
3253 * This is cancel_work_sync() for delayed works.
3254 *
d185af30 3255 * Return:
401a8d04
TH
3256 * %true if @dwork was pending, %false otherwise.
3257 */
3258bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3259{
36e227d2 3260 return __cancel_work_timer(&dwork->work, true);
6e84d644 3261}
f5a421a4 3262EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3263
b6136773 3264/**
31ddd871 3265 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3266 * @func: the function to call
b6136773 3267 *
31ddd871
TH
3268 * schedule_on_each_cpu() executes @func on each online CPU using the
3269 * system workqueue and blocks until all CPUs have completed.
b6136773 3270 * schedule_on_each_cpu() is very slow.
31ddd871 3271 *
d185af30 3272 * Return:
31ddd871 3273 * 0 on success, -errno on failure.
b6136773 3274 */
65f27f38 3275int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3276{
3277 int cpu;
38f51568 3278 struct work_struct __percpu *works;
15316ba8 3279
b6136773
AM
3280 works = alloc_percpu(struct work_struct);
3281 if (!works)
15316ba8 3282 return -ENOMEM;
b6136773 3283
93981800
TH
3284 get_online_cpus();
3285
15316ba8 3286 for_each_online_cpu(cpu) {
9bfb1839
IM
3287 struct work_struct *work = per_cpu_ptr(works, cpu);
3288
3289 INIT_WORK(work, func);
b71ab8c2 3290 schedule_work_on(cpu, work);
65a64464 3291 }
93981800
TH
3292
3293 for_each_online_cpu(cpu)
3294 flush_work(per_cpu_ptr(works, cpu));
3295
95402b38 3296 put_online_cpus();
b6136773 3297 free_percpu(works);
15316ba8
CL
3298 return 0;
3299}
3300
1fa44eca
JB
3301/**
3302 * execute_in_process_context - reliably execute the routine with user context
3303 * @fn: the function to execute
1fa44eca
JB
3304 * @ew: guaranteed storage for the execute work structure (must
3305 * be available when the work executes)
3306 *
3307 * Executes the function immediately if process context is available,
3308 * otherwise schedules the function for delayed execution.
3309 *
d185af30 3310 * Return: 0 - function was executed
1fa44eca
JB
3311 * 1 - function was scheduled for execution
3312 */
65f27f38 3313int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3314{
3315 if (!in_interrupt()) {
65f27f38 3316 fn(&ew->work);
1fa44eca
JB
3317 return 0;
3318 }
3319
65f27f38 3320 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3321 schedule_work(&ew->work);
3322
3323 return 1;
3324}
3325EXPORT_SYMBOL_GPL(execute_in_process_context);
3326
6ba94429
FW
3327/**
3328 * free_workqueue_attrs - free a workqueue_attrs
3329 * @attrs: workqueue_attrs to free
226223ab 3330 *
6ba94429 3331 * Undo alloc_workqueue_attrs().
226223ab 3332 */
513c98d0 3333void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3334{
6ba94429
FW
3335 if (attrs) {
3336 free_cpumask_var(attrs->cpumask);
3337 kfree(attrs);
3338 }
226223ab
TH
3339}
3340
6ba94429
FW
3341/**
3342 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3343 *
3344 * Allocate a new workqueue_attrs, initialize with default settings and
3345 * return it.
3346 *
3347 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3348 */
513c98d0 3349struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3350{
6ba94429 3351 struct workqueue_attrs *attrs;
226223ab 3352
be69d00d 3353 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3354 if (!attrs)
3355 goto fail;
be69d00d 3356 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3357 goto fail;
3358
3359 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3360 return attrs;
3361fail:
3362 free_workqueue_attrs(attrs);
3363 return NULL;
226223ab
TH
3364}
3365
6ba94429
FW
3366static void copy_workqueue_attrs(struct workqueue_attrs *to,
3367 const struct workqueue_attrs *from)
226223ab 3368{
6ba94429
FW
3369 to->nice = from->nice;
3370 cpumask_copy(to->cpumask, from->cpumask);
3371 /*
3372 * Unlike hash and equality test, this function doesn't ignore
3373 * ->no_numa as it is used for both pool and wq attrs. Instead,
3374 * get_unbound_pool() explicitly clears ->no_numa after copying.
3375 */
3376 to->no_numa = from->no_numa;
226223ab
TH
3377}
3378
6ba94429
FW
3379/* hash value of the content of @attr */
3380static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3381{
6ba94429 3382 u32 hash = 0;
226223ab 3383
6ba94429
FW
3384 hash = jhash_1word(attrs->nice, hash);
3385 hash = jhash(cpumask_bits(attrs->cpumask),
3386 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3387 return hash;
226223ab 3388}
226223ab 3389
6ba94429
FW
3390/* content equality test */
3391static bool wqattrs_equal(const struct workqueue_attrs *a,
3392 const struct workqueue_attrs *b)
226223ab 3393{
6ba94429
FW
3394 if (a->nice != b->nice)
3395 return false;
3396 if (!cpumask_equal(a->cpumask, b->cpumask))
3397 return false;
3398 return true;
226223ab
TH
3399}
3400
6ba94429
FW
3401/**
3402 * init_worker_pool - initialize a newly zalloc'd worker_pool
3403 * @pool: worker_pool to initialize
3404 *
402dd89d 3405 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3406 *
3407 * Return: 0 on success, -errno on failure. Even on failure, all fields
3408 * inside @pool proper are initialized and put_unbound_pool() can be called
3409 * on @pool safely to release it.
3410 */
3411static int init_worker_pool(struct worker_pool *pool)
226223ab 3412{
6ba94429
FW
3413 spin_lock_init(&pool->lock);
3414 pool->id = -1;
3415 pool->cpu = -1;
3416 pool->node = NUMA_NO_NODE;
3417 pool->flags |= POOL_DISASSOCIATED;
82607adc 3418 pool->watchdog_ts = jiffies;
6ba94429
FW
3419 INIT_LIST_HEAD(&pool->worklist);
3420 INIT_LIST_HEAD(&pool->idle_list);
3421 hash_init(pool->busy_hash);
226223ab 3422
32a6c723 3423 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3424
32a6c723 3425 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3426
6ba94429 3427 INIT_LIST_HEAD(&pool->workers);
226223ab 3428
6ba94429
FW
3429 ida_init(&pool->worker_ida);
3430 INIT_HLIST_NODE(&pool->hash_node);
3431 pool->refcnt = 1;
226223ab 3432
6ba94429 3433 /* shouldn't fail above this point */
be69d00d 3434 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3435 if (!pool->attrs)
3436 return -ENOMEM;
3437 return 0;
226223ab
TH
3438}
3439
669de8bd
BVA
3440#ifdef CONFIG_LOCKDEP
3441static void wq_init_lockdep(struct workqueue_struct *wq)
3442{
3443 char *lock_name;
3444
3445 lockdep_register_key(&wq->key);
3446 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3447 if (!lock_name)
3448 lock_name = wq->name;
69a106c0
QC
3449
3450 wq->lock_name = lock_name;
669de8bd
BVA
3451 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3452}
3453
3454static void wq_unregister_lockdep(struct workqueue_struct *wq)
3455{
3456 lockdep_unregister_key(&wq->key);
3457}
3458
3459static void wq_free_lockdep(struct workqueue_struct *wq)
3460{
3461 if (wq->lock_name != wq->name)
3462 kfree(wq->lock_name);
3463}
3464#else
3465static void wq_init_lockdep(struct workqueue_struct *wq)
3466{
3467}
3468
3469static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470{
3471}
3472
3473static void wq_free_lockdep(struct workqueue_struct *wq)
3474{
3475}
3476#endif
3477
6ba94429 3478static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3479{
6ba94429
FW
3480 struct workqueue_struct *wq =
3481 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3482
669de8bd
BVA
3483 wq_free_lockdep(wq);
3484
6ba94429
FW
3485 if (!(wq->flags & WQ_UNBOUND))
3486 free_percpu(wq->cpu_pwqs);
226223ab 3487 else
6ba94429 3488 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3489
6ba94429
FW
3490 kfree(wq->rescuer);
3491 kfree(wq);
226223ab
TH
3492}
3493
6ba94429 3494static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3495{
6ba94429 3496 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3497
6ba94429
FW
3498 ida_destroy(&pool->worker_ida);
3499 free_workqueue_attrs(pool->attrs);
3500 kfree(pool);
226223ab
TH
3501}
3502
6ba94429
FW
3503/**
3504 * put_unbound_pool - put a worker_pool
3505 * @pool: worker_pool to put
3506 *
24acfb71 3507 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3508 * safe manner. get_unbound_pool() calls this function on its failure path
3509 * and this function should be able to release pools which went through,
3510 * successfully or not, init_worker_pool().
3511 *
3512 * Should be called with wq_pool_mutex held.
3513 */
3514static void put_unbound_pool(struct worker_pool *pool)
226223ab 3515{
6ba94429
FW
3516 DECLARE_COMPLETION_ONSTACK(detach_completion);
3517 struct worker *worker;
226223ab 3518
6ba94429 3519 lockdep_assert_held(&wq_pool_mutex);
226223ab 3520
6ba94429
FW
3521 if (--pool->refcnt)
3522 return;
226223ab 3523
6ba94429
FW
3524 /* sanity checks */
3525 if (WARN_ON(!(pool->cpu < 0)) ||
3526 WARN_ON(!list_empty(&pool->worklist)))
3527 return;
226223ab 3528
6ba94429
FW
3529 /* release id and unhash */
3530 if (pool->id >= 0)
3531 idr_remove(&worker_pool_idr, pool->id);
3532 hash_del(&pool->hash_node);
d55262c4 3533
6ba94429 3534 /*
692b4825
TH
3535 * Become the manager and destroy all workers. This prevents
3536 * @pool's workers from blocking on attach_mutex. We're the last
3537 * manager and @pool gets freed with the flag set.
6ba94429 3538 */
6ba94429 3539 spin_lock_irq(&pool->lock);
692b4825
TH
3540 wait_event_lock_irq(wq_manager_wait,
3541 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3542 pool->flags |= POOL_MANAGER_ACTIVE;
3543
6ba94429
FW
3544 while ((worker = first_idle_worker(pool)))
3545 destroy_worker(worker);
3546 WARN_ON(pool->nr_workers || pool->nr_idle);
3547 spin_unlock_irq(&pool->lock);
d55262c4 3548
1258fae7 3549 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3550 if (!list_empty(&pool->workers))
3551 pool->detach_completion = &detach_completion;
1258fae7 3552 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3553
6ba94429
FW
3554 if (pool->detach_completion)
3555 wait_for_completion(pool->detach_completion);
226223ab 3556
6ba94429
FW
3557 /* shut down the timers */
3558 del_timer_sync(&pool->idle_timer);
3559 del_timer_sync(&pool->mayday_timer);
226223ab 3560
24acfb71 3561 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3562 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3563}
3564
3565/**
6ba94429
FW
3566 * get_unbound_pool - get a worker_pool with the specified attributes
3567 * @attrs: the attributes of the worker_pool to get
226223ab 3568 *
6ba94429
FW
3569 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3570 * reference count and return it. If there already is a matching
3571 * worker_pool, it will be used; otherwise, this function attempts to
3572 * create a new one.
226223ab 3573 *
6ba94429 3574 * Should be called with wq_pool_mutex held.
226223ab 3575 *
6ba94429
FW
3576 * Return: On success, a worker_pool with the same attributes as @attrs.
3577 * On failure, %NULL.
226223ab 3578 */
6ba94429 3579static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3580{
6ba94429
FW
3581 u32 hash = wqattrs_hash(attrs);
3582 struct worker_pool *pool;
3583 int node;
e2273584 3584 int target_node = NUMA_NO_NODE;
226223ab 3585
6ba94429 3586 lockdep_assert_held(&wq_pool_mutex);
226223ab 3587
6ba94429
FW
3588 /* do we already have a matching pool? */
3589 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3590 if (wqattrs_equal(pool->attrs, attrs)) {
3591 pool->refcnt++;
3592 return pool;
3593 }
3594 }
226223ab 3595
e2273584
XP
3596 /* if cpumask is contained inside a NUMA node, we belong to that node */
3597 if (wq_numa_enabled) {
3598 for_each_node(node) {
3599 if (cpumask_subset(attrs->cpumask,
3600 wq_numa_possible_cpumask[node])) {
3601 target_node = node;
3602 break;
3603 }
3604 }
3605 }
3606
6ba94429 3607 /* nope, create a new one */
e2273584 3608 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3609 if (!pool || init_worker_pool(pool) < 0)
3610 goto fail;
3611
3612 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3613 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3614 pool->node = target_node;
226223ab
TH
3615
3616 /*
6ba94429
FW
3617 * no_numa isn't a worker_pool attribute, always clear it. See
3618 * 'struct workqueue_attrs' comments for detail.
226223ab 3619 */
6ba94429 3620 pool->attrs->no_numa = false;
226223ab 3621
6ba94429
FW
3622 if (worker_pool_assign_id(pool) < 0)
3623 goto fail;
226223ab 3624
6ba94429 3625 /* create and start the initial worker */
3347fa09 3626 if (wq_online && !create_worker(pool))
6ba94429 3627 goto fail;
226223ab 3628
6ba94429
FW
3629 /* install */
3630 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3631
6ba94429
FW
3632 return pool;
3633fail:
3634 if (pool)
3635 put_unbound_pool(pool);
3636 return NULL;
226223ab 3637}
226223ab 3638
6ba94429 3639static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3640{
6ba94429
FW
3641 kmem_cache_free(pwq_cache,
3642 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3643}
3644
6ba94429
FW
3645/*
3646 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3647 * and needs to be destroyed.
7a4e344c 3648 */
6ba94429 3649static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3650{
6ba94429
FW
3651 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3652 unbound_release_work);
3653 struct workqueue_struct *wq = pwq->wq;
3654 struct worker_pool *pool = pwq->pool;
3655 bool is_last;
7a4e344c 3656
6ba94429
FW
3657 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3658 return;
7a4e344c 3659
6ba94429
FW
3660 mutex_lock(&wq->mutex);
3661 list_del_rcu(&pwq->pwqs_node);
3662 is_last = list_empty(&wq->pwqs);
3663 mutex_unlock(&wq->mutex);
3664
3665 mutex_lock(&wq_pool_mutex);
3666 put_unbound_pool(pool);
3667 mutex_unlock(&wq_pool_mutex);
3668
25b00775 3669 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3670
2865a8fb 3671 /*
6ba94429
FW
3672 * If we're the last pwq going away, @wq is already dead and no one
3673 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3674 */
669de8bd
BVA
3675 if (is_last) {
3676 wq_unregister_lockdep(wq);
25b00775 3677 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3678 }
29c91e99
TH
3679}
3680
7a4e344c 3681/**
6ba94429
FW
3682 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3683 * @pwq: target pool_workqueue
d185af30 3684 *
6ba94429
FW
3685 * If @pwq isn't freezing, set @pwq->max_active to the associated
3686 * workqueue's saved_max_active and activate delayed work items
3687 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3688 */
6ba94429 3689static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3690{
6ba94429
FW
3691 struct workqueue_struct *wq = pwq->wq;
3692 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3693 unsigned long flags;
4e1a1f9a 3694
6ba94429
FW
3695 /* for @wq->saved_max_active */
3696 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3697
6ba94429
FW
3698 /* fast exit for non-freezable wqs */
3699 if (!freezable && pwq->max_active == wq->saved_max_active)
3700 return;
7a4e344c 3701
3347fa09
TH
3702 /* this function can be called during early boot w/ irq disabled */
3703 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3704
6ba94429
FW
3705 /*
3706 * During [un]freezing, the caller is responsible for ensuring that
3707 * this function is called at least once after @workqueue_freezing
3708 * is updated and visible.
3709 */
3710 if (!freezable || !workqueue_freezing) {
3711 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3712
6ba94429
FW
3713 while (!list_empty(&pwq->delayed_works) &&
3714 pwq->nr_active < pwq->max_active)
3715 pwq_activate_first_delayed(pwq);
e2dca7ad 3716
6ba94429
FW
3717 /*
3718 * Need to kick a worker after thawed or an unbound wq's
3719 * max_active is bumped. It's a slow path. Do it always.
3720 */
3721 wake_up_worker(pwq->pool);
3722 } else {
3723 pwq->max_active = 0;
3724 }
e2dca7ad 3725
3347fa09 3726 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3727}
3728
6ba94429
FW
3729/* initialize newly alloced @pwq which is associated with @wq and @pool */
3730static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3731 struct worker_pool *pool)
29c91e99 3732{
6ba94429 3733 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3734
6ba94429
FW
3735 memset(pwq, 0, sizeof(*pwq));
3736
3737 pwq->pool = pool;
3738 pwq->wq = wq;
3739 pwq->flush_color = -1;
3740 pwq->refcnt = 1;
3741 INIT_LIST_HEAD(&pwq->delayed_works);
3742 INIT_LIST_HEAD(&pwq->pwqs_node);
3743 INIT_LIST_HEAD(&pwq->mayday_node);
3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3745}
3746
6ba94429
FW
3747/* sync @pwq with the current state of its associated wq and link it */
3748static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3749{
6ba94429 3750 struct workqueue_struct *wq = pwq->wq;
29c91e99 3751
6ba94429 3752 lockdep_assert_held(&wq->mutex);
a892cacc 3753
6ba94429
FW
3754 /* may be called multiple times, ignore if already linked */
3755 if (!list_empty(&pwq->pwqs_node))
29c91e99 3756 return;
29c91e99 3757
6ba94429
FW
3758 /* set the matching work_color */
3759 pwq->work_color = wq->work_color;
29c91e99 3760
6ba94429
FW
3761 /* sync max_active to the current setting */
3762 pwq_adjust_max_active(pwq);
29c91e99 3763
6ba94429
FW
3764 /* link in @pwq */
3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3766}
29c91e99 3767
6ba94429
FW
3768/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 const struct workqueue_attrs *attrs)
3771{
3772 struct worker_pool *pool;
3773 struct pool_workqueue *pwq;
60f5a4bc 3774
6ba94429 3775 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3776
6ba94429
FW
3777 pool = get_unbound_pool(attrs);
3778 if (!pool)
3779 return NULL;
60f5a4bc 3780
6ba94429
FW
3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3782 if (!pwq) {
3783 put_unbound_pool(pool);
3784 return NULL;
3785 }
29c91e99 3786
6ba94429
FW
3787 init_pwq(pwq, wq, pool);
3788 return pwq;
3789}
29c91e99 3790
29c91e99 3791/**
30186c6f 3792 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3793 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3794 * @node: the target NUMA node
3795 * @cpu_going_down: if >= 0, the CPU to consider as offline
3796 * @cpumask: outarg, the resulting cpumask
29c91e99 3797 *
6ba94429
FW
3798 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3799 * @cpu_going_down is >= 0, that cpu is considered offline during
3800 * calculation. The result is stored in @cpumask.
a892cacc 3801 *
6ba94429
FW
3802 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3803 * enabled and @node has online CPUs requested by @attrs, the returned
3804 * cpumask is the intersection of the possible CPUs of @node and
3805 * @attrs->cpumask.
d185af30 3806 *
6ba94429
FW
3807 * The caller is responsible for ensuring that the cpumask of @node stays
3808 * stable.
3809 *
3810 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3811 * %false if equal.
29c91e99 3812 */
6ba94429
FW
3813static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3814 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3815{
6ba94429
FW
3816 if (!wq_numa_enabled || attrs->no_numa)
3817 goto use_dfl;
29c91e99 3818
6ba94429
FW
3819 /* does @node have any online CPUs @attrs wants? */
3820 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3821 if (cpu_going_down >= 0)
3822 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3823
6ba94429
FW
3824 if (cpumask_empty(cpumask))
3825 goto use_dfl;
4c16bd32
TH
3826
3827 /* yeap, return possible CPUs in @node that @attrs wants */
3828 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3829
3830 if (cpumask_empty(cpumask)) {
3831 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3832 "possible intersect\n");
3833 return false;
3834 }
3835
4c16bd32
TH
3836 return !cpumask_equal(cpumask, attrs->cpumask);
3837
3838use_dfl:
3839 cpumask_copy(cpumask, attrs->cpumask);
3840 return false;
3841}
3842
1befcf30
TH
3843/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3844static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3845 int node,
3846 struct pool_workqueue *pwq)
3847{
3848 struct pool_workqueue *old_pwq;
3849
5b95e1af 3850 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3851 lockdep_assert_held(&wq->mutex);
3852
3853 /* link_pwq() can handle duplicate calls */
3854 link_pwq(pwq);
3855
3856 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3857 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3858 return old_pwq;
3859}
3860
2d5f0764
LJ
3861/* context to store the prepared attrs & pwqs before applying */
3862struct apply_wqattrs_ctx {
3863 struct workqueue_struct *wq; /* target workqueue */
3864 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3865 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3866 struct pool_workqueue *dfl_pwq;
3867 struct pool_workqueue *pwq_tbl[];
3868};
3869
3870/* free the resources after success or abort */
3871static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3872{
3873 if (ctx) {
3874 int node;
3875
3876 for_each_node(node)
3877 put_pwq_unlocked(ctx->pwq_tbl[node]);
3878 put_pwq_unlocked(ctx->dfl_pwq);
3879
3880 free_workqueue_attrs(ctx->attrs);
3881
3882 kfree(ctx);
3883 }
3884}
3885
3886/* allocate the attrs and pwqs for later installation */
3887static struct apply_wqattrs_ctx *
3888apply_wqattrs_prepare(struct workqueue_struct *wq,
3889 const struct workqueue_attrs *attrs)
9e8cd2f5 3890{
2d5f0764 3891 struct apply_wqattrs_ctx *ctx;
4c16bd32 3892 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3893 int node;
9e8cd2f5 3894
2d5f0764 3895 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3896
acafe7e3 3897 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3898
be69d00d
TG
3899 new_attrs = alloc_workqueue_attrs();
3900 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3901 if (!ctx || !new_attrs || !tmp_attrs)
3902 goto out_free;
13e2e556 3903
042f7df1
LJ
3904 /*
3905 * Calculate the attrs of the default pwq.
3906 * If the user configured cpumask doesn't overlap with the
3907 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3908 */
13e2e556 3909 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3910 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3911 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3912 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3913
4c16bd32
TH
3914 /*
3915 * We may create multiple pwqs with differing cpumasks. Make a
3916 * copy of @new_attrs which will be modified and used to obtain
3917 * pools.
3918 */
3919 copy_workqueue_attrs(tmp_attrs, new_attrs);
3920
4c16bd32
TH
3921 /*
3922 * If something goes wrong during CPU up/down, we'll fall back to
3923 * the default pwq covering whole @attrs->cpumask. Always create
3924 * it even if we don't use it immediately.
3925 */
2d5f0764
LJ
3926 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3927 if (!ctx->dfl_pwq)
3928 goto out_free;
4c16bd32
TH
3929
3930 for_each_node(node) {
042f7df1 3931 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3932 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3933 if (!ctx->pwq_tbl[node])
3934 goto out_free;
4c16bd32 3935 } else {
2d5f0764
LJ
3936 ctx->dfl_pwq->refcnt++;
3937 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3938 }
3939 }
3940
042f7df1
LJ
3941 /* save the user configured attrs and sanitize it. */
3942 copy_workqueue_attrs(new_attrs, attrs);
3943 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3944 ctx->attrs = new_attrs;
042f7df1 3945
2d5f0764
LJ
3946 ctx->wq = wq;
3947 free_workqueue_attrs(tmp_attrs);
3948 return ctx;
3949
3950out_free:
3951 free_workqueue_attrs(tmp_attrs);
3952 free_workqueue_attrs(new_attrs);
3953 apply_wqattrs_cleanup(ctx);
3954 return NULL;
3955}
3956
3957/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3958static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3959{
3960 int node;
9e8cd2f5 3961
4c16bd32 3962 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3963 mutex_lock(&ctx->wq->mutex);
a892cacc 3964
2d5f0764 3965 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3966
3967 /* save the previous pwq and install the new one */
f147f29e 3968 for_each_node(node)
2d5f0764
LJ
3969 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3970 ctx->pwq_tbl[node]);
4c16bd32
TH
3971
3972 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3973 link_pwq(ctx->dfl_pwq);
3974 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3975
2d5f0764
LJ
3976 mutex_unlock(&ctx->wq->mutex);
3977}
9e8cd2f5 3978
a0111cf6
LJ
3979static void apply_wqattrs_lock(void)
3980{
3981 /* CPUs should stay stable across pwq creations and installations */
3982 get_online_cpus();
3983 mutex_lock(&wq_pool_mutex);
3984}
3985
3986static void apply_wqattrs_unlock(void)
3987{
3988 mutex_unlock(&wq_pool_mutex);
3989 put_online_cpus();
3990}
3991
3992static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3993 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3994{
3995 struct apply_wqattrs_ctx *ctx;
4c16bd32 3996
2d5f0764
LJ
3997 /* only unbound workqueues can change attributes */
3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3999 return -EINVAL;
13e2e556 4000
2d5f0764 4001 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4002 if (!list_empty(&wq->pwqs)) {
4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4004 return -EINVAL;
4005
4006 wq->flags &= ~__WQ_ORDERED;
4007 }
2d5f0764 4008
2d5f0764 4009 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4010 if (!ctx)
4011 return -ENOMEM;
2d5f0764
LJ
4012
4013 /* the ctx has been prepared successfully, let's commit it */
6201171e 4014 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4015 apply_wqattrs_cleanup(ctx);
4016
6201171e 4017 return 0;
9e8cd2f5
TH
4018}
4019
a0111cf6
LJ
4020/**
4021 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4022 * @wq: the target workqueue
4023 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4024 *
4025 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4026 * machines, this function maps a separate pwq to each NUMA node with
4027 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4028 * NUMA node it was issued on. Older pwqs are released as in-flight work
4029 * items finish. Note that a work item which repeatedly requeues itself
4030 * back-to-back will stay on its current pwq.
4031 *
4032 * Performs GFP_KERNEL allocations.
4033 *
509b3204
DJ
4034 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4035 *
a0111cf6
LJ
4036 * Return: 0 on success and -errno on failure.
4037 */
513c98d0 4038int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4039 const struct workqueue_attrs *attrs)
4040{
4041 int ret;
4042
509b3204
DJ
4043 lockdep_assert_cpus_held();
4044
4045 mutex_lock(&wq_pool_mutex);
a0111cf6 4046 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4047 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4048
4049 return ret;
4050}
4051
4c16bd32
TH
4052/**
4053 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4054 * @wq: the target workqueue
4055 * @cpu: the CPU coming up or going down
4056 * @online: whether @cpu is coming up or going down
4057 *
4058 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4059 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4060 * @wq accordingly.
4061 *
4062 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4063 * falls back to @wq->dfl_pwq which may not be optimal but is always
4064 * correct.
4065 *
4066 * Note that when the last allowed CPU of a NUMA node goes offline for a
4067 * workqueue with a cpumask spanning multiple nodes, the workers which were
4068 * already executing the work items for the workqueue will lose their CPU
4069 * affinity and may execute on any CPU. This is similar to how per-cpu
4070 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4071 * affinity, it's the user's responsibility to flush the work item from
4072 * CPU_DOWN_PREPARE.
4073 */
4074static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4075 bool online)
4076{
4077 int node = cpu_to_node(cpu);
4078 int cpu_off = online ? -1 : cpu;
4079 struct pool_workqueue *old_pwq = NULL, *pwq;
4080 struct workqueue_attrs *target_attrs;
4081 cpumask_t *cpumask;
4082
4083 lockdep_assert_held(&wq_pool_mutex);
4084
f7142ed4
LJ
4085 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4086 wq->unbound_attrs->no_numa)
4c16bd32
TH
4087 return;
4088
4089 /*
4090 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4091 * Let's use a preallocated one. The following buf is protected by
4092 * CPU hotplug exclusion.
4093 */
4094 target_attrs = wq_update_unbound_numa_attrs_buf;
4095 cpumask = target_attrs->cpumask;
4096
4c16bd32
TH
4097 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4098 pwq = unbound_pwq_by_node(wq, node);
4099
4100 /*
4101 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4102 * different from the default pwq's, we need to compare it to @pwq's
4103 * and create a new one if they don't match. If the target cpumask
4104 * equals the default pwq's, the default pwq should be used.
4c16bd32 4105 */
042f7df1 4106 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4107 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4108 return;
4c16bd32 4109 } else {
534a3fbb 4110 goto use_dfl_pwq;
4c16bd32
TH
4111 }
4112
4c16bd32
TH
4113 /* create a new pwq */
4114 pwq = alloc_unbound_pwq(wq, target_attrs);
4115 if (!pwq) {
2d916033
FF
4116 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4117 wq->name);
77f300b1 4118 goto use_dfl_pwq;
4c16bd32
TH
4119 }
4120
f7142ed4 4121 /* Install the new pwq. */
4c16bd32
TH
4122 mutex_lock(&wq->mutex);
4123 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4124 goto out_unlock;
4125
4126use_dfl_pwq:
f7142ed4 4127 mutex_lock(&wq->mutex);
4c16bd32
TH
4128 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4129 get_pwq(wq->dfl_pwq);
4130 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4131 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4132out_unlock:
4133 mutex_unlock(&wq->mutex);
4134 put_pwq_unlocked(old_pwq);
4135}
4136
30cdf249 4137static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4138{
49e3cf44 4139 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4140 int cpu, ret;
30cdf249
TH
4141
4142 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4143 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4144 if (!wq->cpu_pwqs)
30cdf249
TH
4145 return -ENOMEM;
4146
4147 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4148 struct pool_workqueue *pwq =
4149 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4150 struct worker_pool *cpu_pools =
f02ae73a 4151 per_cpu(cpu_worker_pools, cpu);
f3421797 4152
f147f29e
TH
4153 init_pwq(pwq, wq, &cpu_pools[highpri]);
4154
4155 mutex_lock(&wq->mutex);
1befcf30 4156 link_pwq(pwq);
f147f29e 4157 mutex_unlock(&wq->mutex);
30cdf249 4158 }
9e8cd2f5 4159 return 0;
509b3204
DJ
4160 }
4161
4162 get_online_cpus();
4163 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4164 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4165 /* there should only be single pwq for ordering guarantee */
4166 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4167 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4168 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4169 } else {
509b3204 4170 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4171 }
509b3204
DJ
4172 put_online_cpus();
4173
4174 return ret;
0f900049
TH
4175}
4176
f3421797
TH
4177static int wq_clamp_max_active(int max_active, unsigned int flags,
4178 const char *name)
b71ab8c2 4179{
f3421797
TH
4180 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4181
4182 if (max_active < 1 || max_active > lim)
044c782c
VI
4183 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4184 max_active, name, 1, lim);
b71ab8c2 4185
f3421797 4186 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4187}
4188
983c7515
TH
4189/*
4190 * Workqueues which may be used during memory reclaim should have a rescuer
4191 * to guarantee forward progress.
4192 */
4193static int init_rescuer(struct workqueue_struct *wq)
4194{
4195 struct worker *rescuer;
4196 int ret;
4197
4198 if (!(wq->flags & WQ_MEM_RECLAIM))
4199 return 0;
4200
4201 rescuer = alloc_worker(NUMA_NO_NODE);
4202 if (!rescuer)
4203 return -ENOMEM;
4204
4205 rescuer->rescue_wq = wq;
4206 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4207 ret = PTR_ERR_OR_ZERO(rescuer->task);
4208 if (ret) {
4209 kfree(rescuer);
4210 return ret;
4211 }
4212
4213 wq->rescuer = rescuer;
4214 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4215 wake_up_process(rescuer->task);
4216
4217 return 0;
4218}
4219
a2775bbc 4220__printf(1, 4)
669de8bd
BVA
4221struct workqueue_struct *alloc_workqueue(const char *fmt,
4222 unsigned int flags,
4223 int max_active, ...)
1da177e4 4224{
df2d5ae4 4225 size_t tbl_size = 0;
ecf6881f 4226 va_list args;
1da177e4 4227 struct workqueue_struct *wq;
49e3cf44 4228 struct pool_workqueue *pwq;
b196be89 4229
5c0338c6
TH
4230 /*
4231 * Unbound && max_active == 1 used to imply ordered, which is no
4232 * longer the case on NUMA machines due to per-node pools. While
4233 * alloc_ordered_workqueue() is the right way to create an ordered
4234 * workqueue, keep the previous behavior to avoid subtle breakages
4235 * on NUMA.
4236 */
4237 if ((flags & WQ_UNBOUND) && max_active == 1)
4238 flags |= __WQ_ORDERED;
4239
cee22a15
VK
4240 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4241 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4242 flags |= WQ_UNBOUND;
4243
ecf6881f 4244 /* allocate wq and format name */
df2d5ae4 4245 if (flags & WQ_UNBOUND)
ddcb57e2 4246 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4247
4248 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4249 if (!wq)
d2c1d404 4250 return NULL;
b196be89 4251
6029a918 4252 if (flags & WQ_UNBOUND) {
be69d00d 4253 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4254 if (!wq->unbound_attrs)
4255 goto err_free_wq;
4256 }
4257
669de8bd 4258 va_start(args, max_active);
ecf6881f 4259 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4260 va_end(args);
1da177e4 4261
d320c038 4262 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4263 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4264
b196be89 4265 /* init wq */
97e37d7b 4266 wq->flags = flags;
a0a1a5fd 4267 wq->saved_max_active = max_active;
3c25a55d 4268 mutex_init(&wq->mutex);
112202d9 4269 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4270 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4271 INIT_LIST_HEAD(&wq->flusher_queue);
4272 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4273 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4274
669de8bd 4275 wq_init_lockdep(wq);
cce1a165 4276 INIT_LIST_HEAD(&wq->list);
3af24433 4277
30cdf249 4278 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4279 goto err_unreg_lockdep;
1537663f 4280
40c17f75 4281 if (wq_online && init_rescuer(wq) < 0)
983c7515 4282 goto err_destroy;
3af24433 4283
226223ab
TH
4284 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4285 goto err_destroy;
4286
a0a1a5fd 4287 /*
68e13a67
LJ
4288 * wq_pool_mutex protects global freeze state and workqueues list.
4289 * Grab it, adjust max_active and add the new @wq to workqueues
4290 * list.
a0a1a5fd 4291 */
68e13a67 4292 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4293
a357fc03 4294 mutex_lock(&wq->mutex);
699ce097
TH
4295 for_each_pwq(pwq, wq)
4296 pwq_adjust_max_active(pwq);
a357fc03 4297 mutex_unlock(&wq->mutex);
a0a1a5fd 4298
e2dca7ad 4299 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4300
68e13a67 4301 mutex_unlock(&wq_pool_mutex);
1537663f 4302
3af24433 4303 return wq;
d2c1d404 4304
82efcab3 4305err_unreg_lockdep:
009bb421
BVA
4306 wq_unregister_lockdep(wq);
4307 wq_free_lockdep(wq);
82efcab3 4308err_free_wq:
6029a918 4309 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4310 kfree(wq);
4311 return NULL;
4312err_destroy:
4313 destroy_workqueue(wq);
4690c4ab 4314 return NULL;
3af24433 4315}
669de8bd 4316EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4317
c29eb853
TH
4318static bool pwq_busy(struct pool_workqueue *pwq)
4319{
4320 int i;
4321
4322 for (i = 0; i < WORK_NR_COLORS; i++)
4323 if (pwq->nr_in_flight[i])
4324 return true;
4325
4326 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4327 return true;
4328 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4329 return true;
4330
4331 return false;
4332}
4333
3af24433
ON
4334/**
4335 * destroy_workqueue - safely terminate a workqueue
4336 * @wq: target workqueue
4337 *
4338 * Safely destroy a workqueue. All work currently pending will be done first.
4339 */
4340void destroy_workqueue(struct workqueue_struct *wq)
4341{
49e3cf44 4342 struct pool_workqueue *pwq;
4c16bd32 4343 int node;
3af24433 4344
def98c84
TH
4345 /*
4346 * Remove it from sysfs first so that sanity check failure doesn't
4347 * lead to sysfs name conflicts.
4348 */
4349 workqueue_sysfs_unregister(wq);
4350
9c5a2ba7
TH
4351 /* drain it before proceeding with destruction */
4352 drain_workqueue(wq);
c8efcc25 4353
def98c84
TH
4354 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4355 if (wq->rescuer) {
4356 struct worker *rescuer = wq->rescuer;
4357
4358 /* this prevents new queueing */
4359 spin_lock_irq(&wq_mayday_lock);
4360 wq->rescuer = NULL;
4361 spin_unlock_irq(&wq_mayday_lock);
4362
4363 /* rescuer will empty maydays list before exiting */
4364 kthread_stop(rescuer->task);
8efe1223 4365 kfree(rescuer);
def98c84
TH
4366 }
4367
c29eb853
TH
4368 /*
4369 * Sanity checks - grab all the locks so that we wait for all
4370 * in-flight operations which may do put_pwq().
4371 */
4372 mutex_lock(&wq_pool_mutex);
b09f4fd3 4373 mutex_lock(&wq->mutex);
49e3cf44 4374 for_each_pwq(pwq, wq) {
c29eb853
TH
4375 spin_lock_irq(&pwq->pool->lock);
4376 if (WARN_ON(pwq_busy(pwq))) {
4377 pr_warning("%s: %s has the following busy pwq (refcnt=%d)\n",
4378 __func__, wq->name, pwq->refcnt);
4379 show_pwq(pwq);
4380 spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4381 mutex_unlock(&wq->mutex);
c29eb853 4382 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4383 show_workqueue_state();
6183c009 4384 return;
76af4d93 4385 }
c29eb853 4386 spin_unlock_irq(&pwq->pool->lock);
6183c009 4387 }
b09f4fd3 4388 mutex_unlock(&wq->mutex);
c29eb853 4389 mutex_unlock(&wq_pool_mutex);
6183c009 4390
a0a1a5fd
TH
4391 /*
4392 * wq list is used to freeze wq, remove from list after
4393 * flushing is complete in case freeze races us.
4394 */
68e13a67 4395 mutex_lock(&wq_pool_mutex);
e2dca7ad 4396 list_del_rcu(&wq->list);
68e13a67 4397 mutex_unlock(&wq_pool_mutex);
3af24433 4398
8864b4e5 4399 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4400 wq_unregister_lockdep(wq);
8864b4e5
TH
4401 /*
4402 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4403 * schedule RCU free.
8864b4e5 4404 */
25b00775 4405 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4406 } else {
4407 /*
4408 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4409 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4410 * @wq will be freed when the last pwq is released.
8864b4e5 4411 */
4c16bd32
TH
4412 for_each_node(node) {
4413 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4414 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4415 put_pwq_unlocked(pwq);
4416 }
4417
4418 /*
4419 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4420 * put. Don't access it afterwards.
4421 */
4422 pwq = wq->dfl_pwq;
4423 wq->dfl_pwq = NULL;
dce90d47 4424 put_pwq_unlocked(pwq);
29c91e99 4425 }
3af24433
ON
4426}
4427EXPORT_SYMBOL_GPL(destroy_workqueue);
4428
dcd989cb
TH
4429/**
4430 * workqueue_set_max_active - adjust max_active of a workqueue
4431 * @wq: target workqueue
4432 * @max_active: new max_active value.
4433 *
4434 * Set max_active of @wq to @max_active.
4435 *
4436 * CONTEXT:
4437 * Don't call from IRQ context.
4438 */
4439void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4440{
49e3cf44 4441 struct pool_workqueue *pwq;
dcd989cb 4442
8719dcea 4443 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4444 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4445 return;
4446
f3421797 4447 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4448
a357fc03 4449 mutex_lock(&wq->mutex);
dcd989cb 4450
0a94efb5 4451 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4452 wq->saved_max_active = max_active;
4453
699ce097
TH
4454 for_each_pwq(pwq, wq)
4455 pwq_adjust_max_active(pwq);
93981800 4456
a357fc03 4457 mutex_unlock(&wq->mutex);
15316ba8 4458}
dcd989cb 4459EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4460
27d4ee03
LW
4461/**
4462 * current_work - retrieve %current task's work struct
4463 *
4464 * Determine if %current task is a workqueue worker and what it's working on.
4465 * Useful to find out the context that the %current task is running in.
4466 *
4467 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4468 */
4469struct work_struct *current_work(void)
4470{
4471 struct worker *worker = current_wq_worker();
4472
4473 return worker ? worker->current_work : NULL;
4474}
4475EXPORT_SYMBOL(current_work);
4476
e6267616
TH
4477/**
4478 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4479 *
4480 * Determine whether %current is a workqueue rescuer. Can be used from
4481 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4482 *
4483 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4484 */
4485bool current_is_workqueue_rescuer(void)
4486{
4487 struct worker *worker = current_wq_worker();
4488
6a092dfd 4489 return worker && worker->rescue_wq;
e6267616
TH
4490}
4491
eef6a7d5 4492/**
dcd989cb
TH
4493 * workqueue_congested - test whether a workqueue is congested
4494 * @cpu: CPU in question
4495 * @wq: target workqueue
eef6a7d5 4496 *
dcd989cb
TH
4497 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4498 * no synchronization around this function and the test result is
4499 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4500 *
d3251859
TH
4501 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4502 * Note that both per-cpu and unbound workqueues may be associated with
4503 * multiple pool_workqueues which have separate congested states. A
4504 * workqueue being congested on one CPU doesn't mean the workqueue is also
4505 * contested on other CPUs / NUMA nodes.
4506 *
d185af30 4507 * Return:
dcd989cb 4508 * %true if congested, %false otherwise.
eef6a7d5 4509 */
d84ff051 4510bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4511{
7fb98ea7 4512 struct pool_workqueue *pwq;
76af4d93
TH
4513 bool ret;
4514
24acfb71
TG
4515 rcu_read_lock();
4516 preempt_disable();
7fb98ea7 4517
d3251859
TH
4518 if (cpu == WORK_CPU_UNBOUND)
4519 cpu = smp_processor_id();
4520
7fb98ea7
TH
4521 if (!(wq->flags & WQ_UNBOUND))
4522 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4523 else
df2d5ae4 4524 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4525
76af4d93 4526 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4527 preempt_enable();
4528 rcu_read_unlock();
76af4d93
TH
4529
4530 return ret;
1da177e4 4531}
dcd989cb 4532EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4533
dcd989cb
TH
4534/**
4535 * work_busy - test whether a work is currently pending or running
4536 * @work: the work to be tested
4537 *
4538 * Test whether @work is currently pending or running. There is no
4539 * synchronization around this function and the test result is
4540 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4541 *
d185af30 4542 * Return:
dcd989cb
TH
4543 * OR'd bitmask of WORK_BUSY_* bits.
4544 */
4545unsigned int work_busy(struct work_struct *work)
1da177e4 4546{
fa1b54e6 4547 struct worker_pool *pool;
dcd989cb
TH
4548 unsigned long flags;
4549 unsigned int ret = 0;
1da177e4 4550
dcd989cb
TH
4551 if (work_pending(work))
4552 ret |= WORK_BUSY_PENDING;
1da177e4 4553
24acfb71 4554 rcu_read_lock();
fa1b54e6 4555 pool = get_work_pool(work);
038366c5 4556 if (pool) {
24acfb71 4557 spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4558 if (find_worker_executing_work(pool, work))
4559 ret |= WORK_BUSY_RUNNING;
24acfb71 4560 spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4561 }
24acfb71 4562 rcu_read_unlock();
1da177e4 4563
dcd989cb 4564 return ret;
1da177e4 4565}
dcd989cb 4566EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4567
3d1cb205
TH
4568/**
4569 * set_worker_desc - set description for the current work item
4570 * @fmt: printf-style format string
4571 * @...: arguments for the format string
4572 *
4573 * This function can be called by a running work function to describe what
4574 * the work item is about. If the worker task gets dumped, this
4575 * information will be printed out together to help debugging. The
4576 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4577 */
4578void set_worker_desc(const char *fmt, ...)
4579{
4580 struct worker *worker = current_wq_worker();
4581 va_list args;
4582
4583 if (worker) {
4584 va_start(args, fmt);
4585 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4586 va_end(args);
3d1cb205
TH
4587 }
4588}
5c750d58 4589EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4590
4591/**
4592 * print_worker_info - print out worker information and description
4593 * @log_lvl: the log level to use when printing
4594 * @task: target task
4595 *
4596 * If @task is a worker and currently executing a work item, print out the
4597 * name of the workqueue being serviced and worker description set with
4598 * set_worker_desc() by the currently executing work item.
4599 *
4600 * This function can be safely called on any task as long as the
4601 * task_struct itself is accessible. While safe, this function isn't
4602 * synchronized and may print out mixups or garbages of limited length.
4603 */
4604void print_worker_info(const char *log_lvl, struct task_struct *task)
4605{
4606 work_func_t *fn = NULL;
4607 char name[WQ_NAME_LEN] = { };
4608 char desc[WORKER_DESC_LEN] = { };
4609 struct pool_workqueue *pwq = NULL;
4610 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4611 struct worker *worker;
4612
4613 if (!(task->flags & PF_WQ_WORKER))
4614 return;
4615
4616 /*
4617 * This function is called without any synchronization and @task
4618 * could be in any state. Be careful with dereferences.
4619 */
e700591a 4620 worker = kthread_probe_data(task);
3d1cb205
TH
4621
4622 /*
8bf89593
TH
4623 * Carefully copy the associated workqueue's workfn, name and desc.
4624 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4625 */
4626 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4627 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4628 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4629 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4630 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4631
4632 if (fn || name[0] || desc[0]) {
d75f773c 4633 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4634 if (strcmp(name, desc))
3d1cb205
TH
4635 pr_cont(" (%s)", desc);
4636 pr_cont("\n");
4637 }
4638}
4639
3494fc30
TH
4640static void pr_cont_pool_info(struct worker_pool *pool)
4641{
4642 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4643 if (pool->node != NUMA_NO_NODE)
4644 pr_cont(" node=%d", pool->node);
4645 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4646}
4647
4648static void pr_cont_work(bool comma, struct work_struct *work)
4649{
4650 if (work->func == wq_barrier_func) {
4651 struct wq_barrier *barr;
4652
4653 barr = container_of(work, struct wq_barrier, work);
4654
4655 pr_cont("%s BAR(%d)", comma ? "," : "",
4656 task_pid_nr(barr->task));
4657 } else {
d75f773c 4658 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4659 }
4660}
4661
4662static void show_pwq(struct pool_workqueue *pwq)
4663{
4664 struct worker_pool *pool = pwq->pool;
4665 struct work_struct *work;
4666 struct worker *worker;
4667 bool has_in_flight = false, has_pending = false;
4668 int bkt;
4669
4670 pr_info(" pwq %d:", pool->id);
4671 pr_cont_pool_info(pool);
4672
4673 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4674 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4675
4676 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4677 if (worker->current_pwq == pwq) {
4678 has_in_flight = true;
4679 break;
4680 }
4681 }
4682 if (has_in_flight) {
4683 bool comma = false;
4684
4685 pr_info(" in-flight:");
4686 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4687 if (worker->current_pwq != pwq)
4688 continue;
4689
d75f773c 4690 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4691 task_pid_nr(worker->task),
30ae2fc0 4692 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4693 worker->current_func);
4694 list_for_each_entry(work, &worker->scheduled, entry)
4695 pr_cont_work(false, work);
4696 comma = true;
4697 }
4698 pr_cont("\n");
4699 }
4700
4701 list_for_each_entry(work, &pool->worklist, entry) {
4702 if (get_work_pwq(work) == pwq) {
4703 has_pending = true;
4704 break;
4705 }
4706 }
4707 if (has_pending) {
4708 bool comma = false;
4709
4710 pr_info(" pending:");
4711 list_for_each_entry(work, &pool->worklist, entry) {
4712 if (get_work_pwq(work) != pwq)
4713 continue;
4714
4715 pr_cont_work(comma, work);
4716 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4717 }
4718 pr_cont("\n");
4719 }
4720
4721 if (!list_empty(&pwq->delayed_works)) {
4722 bool comma = false;
4723
4724 pr_info(" delayed:");
4725 list_for_each_entry(work, &pwq->delayed_works, entry) {
4726 pr_cont_work(comma, work);
4727 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4728 }
4729 pr_cont("\n");
4730 }
4731}
4732
4733/**
4734 * show_workqueue_state - dump workqueue state
4735 *
7b776af6
RL
4736 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4737 * all busy workqueues and pools.
3494fc30
TH
4738 */
4739void show_workqueue_state(void)
4740{
4741 struct workqueue_struct *wq;
4742 struct worker_pool *pool;
4743 unsigned long flags;
4744 int pi;
4745
24acfb71 4746 rcu_read_lock();
3494fc30
TH
4747
4748 pr_info("Showing busy workqueues and worker pools:\n");
4749
4750 list_for_each_entry_rcu(wq, &workqueues, list) {
4751 struct pool_workqueue *pwq;
4752 bool idle = true;
4753
4754 for_each_pwq(pwq, wq) {
4755 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4756 idle = false;
4757 break;
4758 }
4759 }
4760 if (idle)
4761 continue;
4762
4763 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4764
4765 for_each_pwq(pwq, wq) {
4766 spin_lock_irqsave(&pwq->pool->lock, flags);
4767 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4768 show_pwq(pwq);
4769 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4770 /*
4771 * We could be printing a lot from atomic context, e.g.
4772 * sysrq-t -> show_workqueue_state(). Avoid triggering
4773 * hard lockup.
4774 */
4775 touch_nmi_watchdog();
3494fc30
TH
4776 }
4777 }
4778
4779 for_each_pool(pool, pi) {
4780 struct worker *worker;
4781 bool first = true;
4782
4783 spin_lock_irqsave(&pool->lock, flags);
4784 if (pool->nr_workers == pool->nr_idle)
4785 goto next_pool;
4786
4787 pr_info("pool %d:", pool->id);
4788 pr_cont_pool_info(pool);
82607adc
TH
4789 pr_cont(" hung=%us workers=%d",
4790 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4791 pool->nr_workers);
3494fc30
TH
4792 if (pool->manager)
4793 pr_cont(" manager: %d",
4794 task_pid_nr(pool->manager->task));
4795 list_for_each_entry(worker, &pool->idle_list, entry) {
4796 pr_cont(" %s%d", first ? "idle: " : "",
4797 task_pid_nr(worker->task));
4798 first = false;
4799 }
4800 pr_cont("\n");
4801 next_pool:
4802 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4803 /*
4804 * We could be printing a lot from atomic context, e.g.
4805 * sysrq-t -> show_workqueue_state(). Avoid triggering
4806 * hard lockup.
4807 */
4808 touch_nmi_watchdog();
3494fc30
TH
4809 }
4810
24acfb71 4811 rcu_read_unlock();
3494fc30
TH
4812}
4813
6b59808b
TH
4814/* used to show worker information through /proc/PID/{comm,stat,status} */
4815void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4816{
6b59808b
TH
4817 int off;
4818
4819 /* always show the actual comm */
4820 off = strscpy(buf, task->comm, size);
4821 if (off < 0)
4822 return;
4823
197f6acc 4824 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4825 mutex_lock(&wq_pool_attach_mutex);
4826
197f6acc
TH
4827 if (task->flags & PF_WQ_WORKER) {
4828 struct worker *worker = kthread_data(task);
4829 struct worker_pool *pool = worker->pool;
6b59808b 4830
197f6acc
TH
4831 if (pool) {
4832 spin_lock_irq(&pool->lock);
4833 /*
4834 * ->desc tracks information (wq name or
4835 * set_worker_desc()) for the latest execution. If
4836 * current, prepend '+', otherwise '-'.
4837 */
4838 if (worker->desc[0] != '\0') {
4839 if (worker->current_work)
4840 scnprintf(buf + off, size - off, "+%s",
4841 worker->desc);
4842 else
4843 scnprintf(buf + off, size - off, "-%s",
4844 worker->desc);
4845 }
4846 spin_unlock_irq(&pool->lock);
6b59808b 4847 }
6b59808b
TH
4848 }
4849
4850 mutex_unlock(&wq_pool_attach_mutex);
4851}
4852
66448bc2
MM
4853#ifdef CONFIG_SMP
4854
db7bccf4
TH
4855/*
4856 * CPU hotplug.
4857 *
e22bee78 4858 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4859 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4860 * pool which make migrating pending and scheduled works very
e22bee78 4861 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4862 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4863 * blocked draining impractical.
4864 *
24647570 4865 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4866 * running as an unbound one and allowing it to be reattached later if the
4867 * cpu comes back online.
db7bccf4 4868 */
1da177e4 4869
e8b3f8db 4870static void unbind_workers(int cpu)
3af24433 4871{
4ce62e9e 4872 struct worker_pool *pool;
db7bccf4 4873 struct worker *worker;
3af24433 4874
f02ae73a 4875 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4876 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4877 spin_lock_irq(&pool->lock);
3af24433 4878
94cf58bb 4879 /*
92f9c5c4 4880 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4881 * unbound and set DISASSOCIATED. Before this, all workers
4882 * except for the ones which are still executing works from
4883 * before the last CPU down must be on the cpu. After
4884 * this, they may become diasporas.
4885 */
da028469 4886 for_each_pool_worker(worker, pool)
c9e7cf27 4887 worker->flags |= WORKER_UNBOUND;
06ba38a9 4888
24647570 4889 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4890
94cf58bb 4891 spin_unlock_irq(&pool->lock);
1258fae7 4892 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4893
eb283428
LJ
4894 /*
4895 * Call schedule() so that we cross rq->lock and thus can
4896 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4897 * This is necessary as scheduler callbacks may be invoked
4898 * from other cpus.
4899 */
4900 schedule();
06ba38a9 4901
eb283428
LJ
4902 /*
4903 * Sched callbacks are disabled now. Zap nr_running.
4904 * After this, nr_running stays zero and need_more_worker()
4905 * and keep_working() are always true as long as the
4906 * worklist is not empty. This pool now behaves as an
4907 * unbound (in terms of concurrency management) pool which
4908 * are served by workers tied to the pool.
4909 */
e19e397a 4910 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4911
4912 /*
4913 * With concurrency management just turned off, a busy
4914 * worker blocking could lead to lengthy stalls. Kick off
4915 * unbound chain execution of currently pending work items.
4916 */
4917 spin_lock_irq(&pool->lock);
4918 wake_up_worker(pool);
4919 spin_unlock_irq(&pool->lock);
4920 }
3af24433 4921}
3af24433 4922
bd7c089e
TH
4923/**
4924 * rebind_workers - rebind all workers of a pool to the associated CPU
4925 * @pool: pool of interest
4926 *
a9ab775b 4927 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4928 */
4929static void rebind_workers(struct worker_pool *pool)
4930{
a9ab775b 4931 struct worker *worker;
bd7c089e 4932
1258fae7 4933 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4934
a9ab775b
TH
4935 /*
4936 * Restore CPU affinity of all workers. As all idle workers should
4937 * be on the run-queue of the associated CPU before any local
402dd89d 4938 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4939 * of all workers first and then clear UNBOUND. As we're called
4940 * from CPU_ONLINE, the following shouldn't fail.
4941 */
da028469 4942 for_each_pool_worker(worker, pool)
a9ab775b
TH
4943 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4944 pool->attrs->cpumask) < 0);
bd7c089e 4945
a9ab775b 4946 spin_lock_irq(&pool->lock);
f7c17d26 4947
3de5e884 4948 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4949
da028469 4950 for_each_pool_worker(worker, pool) {
a9ab775b 4951 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4952
4953 /*
a9ab775b
TH
4954 * A bound idle worker should actually be on the runqueue
4955 * of the associated CPU for local wake-ups targeting it to
4956 * work. Kick all idle workers so that they migrate to the
4957 * associated CPU. Doing this in the same loop as
4958 * replacing UNBOUND with REBOUND is safe as no worker will
4959 * be bound before @pool->lock is released.
bd7c089e 4960 */
a9ab775b
TH
4961 if (worker_flags & WORKER_IDLE)
4962 wake_up_process(worker->task);
bd7c089e 4963
a9ab775b
TH
4964 /*
4965 * We want to clear UNBOUND but can't directly call
4966 * worker_clr_flags() or adjust nr_running. Atomically
4967 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4968 * @worker will clear REBOUND using worker_clr_flags() when
4969 * it initiates the next execution cycle thus restoring
4970 * concurrency management. Note that when or whether
4971 * @worker clears REBOUND doesn't affect correctness.
4972 *
c95491ed 4973 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 4974 * tested without holding any lock in
6d25be57 4975 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
4976 * fail incorrectly leading to premature concurrency
4977 * management operations.
4978 */
4979 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4980 worker_flags |= WORKER_REBOUND;
4981 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4982 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4983 }
a9ab775b
TH
4984
4985 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4986}
4987
7dbc725e
TH
4988/**
4989 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4990 * @pool: unbound pool of interest
4991 * @cpu: the CPU which is coming up
4992 *
4993 * An unbound pool may end up with a cpumask which doesn't have any online
4994 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4995 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4996 * online CPU before, cpus_allowed of all its workers should be restored.
4997 */
4998static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4999{
5000 static cpumask_t cpumask;
5001 struct worker *worker;
7dbc725e 5002
1258fae7 5003 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5004
5005 /* is @cpu allowed for @pool? */
5006 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5007 return;
5008
7dbc725e 5009 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5010
5011 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5012 for_each_pool_worker(worker, pool)
d945b5e9 5013 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5014}
5015
7ee681b2
TG
5016int workqueue_prepare_cpu(unsigned int cpu)
5017{
5018 struct worker_pool *pool;
5019
5020 for_each_cpu_worker_pool(pool, cpu) {
5021 if (pool->nr_workers)
5022 continue;
5023 if (!create_worker(pool))
5024 return -ENOMEM;
5025 }
5026 return 0;
5027}
5028
5029int workqueue_online_cpu(unsigned int cpu)
3af24433 5030{
4ce62e9e 5031 struct worker_pool *pool;
4c16bd32 5032 struct workqueue_struct *wq;
7dbc725e 5033 int pi;
3ce63377 5034
7ee681b2 5035 mutex_lock(&wq_pool_mutex);
7dbc725e 5036
7ee681b2 5037 for_each_pool(pool, pi) {
1258fae7 5038 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5039
7ee681b2
TG
5040 if (pool->cpu == cpu)
5041 rebind_workers(pool);
5042 else if (pool->cpu < 0)
5043 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5044
1258fae7 5045 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5046 }
6ba94429 5047
7ee681b2
TG
5048 /* update NUMA affinity of unbound workqueues */
5049 list_for_each_entry(wq, &workqueues, list)
5050 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5051
7ee681b2
TG
5052 mutex_unlock(&wq_pool_mutex);
5053 return 0;
6ba94429
FW
5054}
5055
7ee681b2 5056int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5057{
6ba94429
FW
5058 struct workqueue_struct *wq;
5059
7ee681b2 5060 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5061 if (WARN_ON(cpu != smp_processor_id()))
5062 return -1;
5063
5064 unbind_workers(cpu);
7ee681b2
TG
5065
5066 /* update NUMA affinity of unbound workqueues */
5067 mutex_lock(&wq_pool_mutex);
5068 list_for_each_entry(wq, &workqueues, list)
5069 wq_update_unbound_numa(wq, cpu, false);
5070 mutex_unlock(&wq_pool_mutex);
5071
7ee681b2 5072 return 0;
6ba94429
FW
5073}
5074
6ba94429
FW
5075struct work_for_cpu {
5076 struct work_struct work;
5077 long (*fn)(void *);
5078 void *arg;
5079 long ret;
5080};
5081
5082static void work_for_cpu_fn(struct work_struct *work)
5083{
5084 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5085
5086 wfc->ret = wfc->fn(wfc->arg);
5087}
5088
5089/**
22aceb31 5090 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5091 * @cpu: the cpu to run on
5092 * @fn: the function to run
5093 * @arg: the function arg
5094 *
5095 * It is up to the caller to ensure that the cpu doesn't go offline.
5096 * The caller must not hold any locks which would prevent @fn from completing.
5097 *
5098 * Return: The value @fn returns.
5099 */
5100long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5101{
5102 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5103
5104 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5105 schedule_work_on(cpu, &wfc.work);
5106 flush_work(&wfc.work);
5107 destroy_work_on_stack(&wfc.work);
5108 return wfc.ret;
5109}
5110EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5111
5112/**
5113 * work_on_cpu_safe - run a function in thread context on a particular cpu
5114 * @cpu: the cpu to run on
5115 * @fn: the function to run
5116 * @arg: the function argument
5117 *
5118 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5119 * any locks which would prevent @fn from completing.
5120 *
5121 * Return: The value @fn returns.
5122 */
5123long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5124{
5125 long ret = -ENODEV;
5126
5127 get_online_cpus();
5128 if (cpu_online(cpu))
5129 ret = work_on_cpu(cpu, fn, arg);
5130 put_online_cpus();
5131 return ret;
5132}
5133EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5134#endif /* CONFIG_SMP */
5135
5136#ifdef CONFIG_FREEZER
5137
5138/**
5139 * freeze_workqueues_begin - begin freezing workqueues
5140 *
5141 * Start freezing workqueues. After this function returns, all freezable
5142 * workqueues will queue new works to their delayed_works list instead of
5143 * pool->worklist.
5144 *
5145 * CONTEXT:
5146 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5147 */
5148void freeze_workqueues_begin(void)
5149{
5150 struct workqueue_struct *wq;
5151 struct pool_workqueue *pwq;
5152
5153 mutex_lock(&wq_pool_mutex);
5154
5155 WARN_ON_ONCE(workqueue_freezing);
5156 workqueue_freezing = true;
5157
5158 list_for_each_entry(wq, &workqueues, list) {
5159 mutex_lock(&wq->mutex);
5160 for_each_pwq(pwq, wq)
5161 pwq_adjust_max_active(pwq);
5162 mutex_unlock(&wq->mutex);
5163 }
5164
5165 mutex_unlock(&wq_pool_mutex);
5166}
5167
5168/**
5169 * freeze_workqueues_busy - are freezable workqueues still busy?
5170 *
5171 * Check whether freezing is complete. This function must be called
5172 * between freeze_workqueues_begin() and thaw_workqueues().
5173 *
5174 * CONTEXT:
5175 * Grabs and releases wq_pool_mutex.
5176 *
5177 * Return:
5178 * %true if some freezable workqueues are still busy. %false if freezing
5179 * is complete.
5180 */
5181bool freeze_workqueues_busy(void)
5182{
5183 bool busy = false;
5184 struct workqueue_struct *wq;
5185 struct pool_workqueue *pwq;
5186
5187 mutex_lock(&wq_pool_mutex);
5188
5189 WARN_ON_ONCE(!workqueue_freezing);
5190
5191 list_for_each_entry(wq, &workqueues, list) {
5192 if (!(wq->flags & WQ_FREEZABLE))
5193 continue;
5194 /*
5195 * nr_active is monotonically decreasing. It's safe
5196 * to peek without lock.
5197 */
24acfb71 5198 rcu_read_lock();
6ba94429
FW
5199 for_each_pwq(pwq, wq) {
5200 WARN_ON_ONCE(pwq->nr_active < 0);
5201 if (pwq->nr_active) {
5202 busy = true;
24acfb71 5203 rcu_read_unlock();
6ba94429
FW
5204 goto out_unlock;
5205 }
5206 }
24acfb71 5207 rcu_read_unlock();
6ba94429
FW
5208 }
5209out_unlock:
5210 mutex_unlock(&wq_pool_mutex);
5211 return busy;
5212}
5213
5214/**
5215 * thaw_workqueues - thaw workqueues
5216 *
5217 * Thaw workqueues. Normal queueing is restored and all collected
5218 * frozen works are transferred to their respective pool worklists.
5219 *
5220 * CONTEXT:
5221 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5222 */
5223void thaw_workqueues(void)
5224{
5225 struct workqueue_struct *wq;
5226 struct pool_workqueue *pwq;
5227
5228 mutex_lock(&wq_pool_mutex);
5229
5230 if (!workqueue_freezing)
5231 goto out_unlock;
5232
5233 workqueue_freezing = false;
5234
5235 /* restore max_active and repopulate worklist */
5236 list_for_each_entry(wq, &workqueues, list) {
5237 mutex_lock(&wq->mutex);
5238 for_each_pwq(pwq, wq)
5239 pwq_adjust_max_active(pwq);
5240 mutex_unlock(&wq->mutex);
5241 }
5242
5243out_unlock:
5244 mutex_unlock(&wq_pool_mutex);
5245}
5246#endif /* CONFIG_FREEZER */
5247
042f7df1
LJ
5248static int workqueue_apply_unbound_cpumask(void)
5249{
5250 LIST_HEAD(ctxs);
5251 int ret = 0;
5252 struct workqueue_struct *wq;
5253 struct apply_wqattrs_ctx *ctx, *n;
5254
5255 lockdep_assert_held(&wq_pool_mutex);
5256
5257 list_for_each_entry(wq, &workqueues, list) {
5258 if (!(wq->flags & WQ_UNBOUND))
5259 continue;
5260 /* creating multiple pwqs breaks ordering guarantee */
5261 if (wq->flags & __WQ_ORDERED)
5262 continue;
5263
5264 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5265 if (!ctx) {
5266 ret = -ENOMEM;
5267 break;
5268 }
5269
5270 list_add_tail(&ctx->list, &ctxs);
5271 }
5272
5273 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5274 if (!ret)
5275 apply_wqattrs_commit(ctx);
5276 apply_wqattrs_cleanup(ctx);
5277 }
5278
5279 return ret;
5280}
5281
5282/**
5283 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5284 * @cpumask: the cpumask to set
5285 *
5286 * The low-level workqueues cpumask is a global cpumask that limits
5287 * the affinity of all unbound workqueues. This function check the @cpumask
5288 * and apply it to all unbound workqueues and updates all pwqs of them.
5289 *
5290 * Retun: 0 - Success
5291 * -EINVAL - Invalid @cpumask
5292 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5293 */
5294int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5295{
5296 int ret = -EINVAL;
5297 cpumask_var_t saved_cpumask;
5298
5299 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5300 return -ENOMEM;
5301
c98a9805
TS
5302 /*
5303 * Not excluding isolated cpus on purpose.
5304 * If the user wishes to include them, we allow that.
5305 */
042f7df1
LJ
5306 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5307 if (!cpumask_empty(cpumask)) {
a0111cf6 5308 apply_wqattrs_lock();
042f7df1
LJ
5309
5310 /* save the old wq_unbound_cpumask. */
5311 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5312
5313 /* update wq_unbound_cpumask at first and apply it to wqs. */
5314 cpumask_copy(wq_unbound_cpumask, cpumask);
5315 ret = workqueue_apply_unbound_cpumask();
5316
5317 /* restore the wq_unbound_cpumask when failed. */
5318 if (ret < 0)
5319 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5320
a0111cf6 5321 apply_wqattrs_unlock();
042f7df1 5322 }
042f7df1
LJ
5323
5324 free_cpumask_var(saved_cpumask);
5325 return ret;
5326}
5327
6ba94429
FW
5328#ifdef CONFIG_SYSFS
5329/*
5330 * Workqueues with WQ_SYSFS flag set is visible to userland via
5331 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5332 * following attributes.
5333 *
5334 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5335 * max_active RW int : maximum number of in-flight work items
5336 *
5337 * Unbound workqueues have the following extra attributes.
5338 *
9a19b463 5339 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5340 * nice RW int : nice value of the workers
5341 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5342 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5343 */
5344struct wq_device {
5345 struct workqueue_struct *wq;
5346 struct device dev;
5347};
5348
5349static struct workqueue_struct *dev_to_wq(struct device *dev)
5350{
5351 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5352
5353 return wq_dev->wq;
5354}
5355
5356static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5357 char *buf)
5358{
5359 struct workqueue_struct *wq = dev_to_wq(dev);
5360
5361 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5362}
5363static DEVICE_ATTR_RO(per_cpu);
5364
5365static ssize_t max_active_show(struct device *dev,
5366 struct device_attribute *attr, char *buf)
5367{
5368 struct workqueue_struct *wq = dev_to_wq(dev);
5369
5370 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5371}
5372
5373static ssize_t max_active_store(struct device *dev,
5374 struct device_attribute *attr, const char *buf,
5375 size_t count)
5376{
5377 struct workqueue_struct *wq = dev_to_wq(dev);
5378 int val;
5379
5380 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5381 return -EINVAL;
5382
5383 workqueue_set_max_active(wq, val);
5384 return count;
5385}
5386static DEVICE_ATTR_RW(max_active);
5387
5388static struct attribute *wq_sysfs_attrs[] = {
5389 &dev_attr_per_cpu.attr,
5390 &dev_attr_max_active.attr,
5391 NULL,
5392};
5393ATTRIBUTE_GROUPS(wq_sysfs);
5394
5395static ssize_t wq_pool_ids_show(struct device *dev,
5396 struct device_attribute *attr, char *buf)
5397{
5398 struct workqueue_struct *wq = dev_to_wq(dev);
5399 const char *delim = "";
5400 int node, written = 0;
5401
24acfb71
TG
5402 get_online_cpus();
5403 rcu_read_lock();
6ba94429
FW
5404 for_each_node(node) {
5405 written += scnprintf(buf + written, PAGE_SIZE - written,
5406 "%s%d:%d", delim, node,
5407 unbound_pwq_by_node(wq, node)->pool->id);
5408 delim = " ";
5409 }
5410 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5411 rcu_read_unlock();
5412 put_online_cpus();
6ba94429
FW
5413
5414 return written;
5415}
5416
5417static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5418 char *buf)
5419{
5420 struct workqueue_struct *wq = dev_to_wq(dev);
5421 int written;
5422
5423 mutex_lock(&wq->mutex);
5424 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5425 mutex_unlock(&wq->mutex);
5426
5427 return written;
5428}
5429
5430/* prepare workqueue_attrs for sysfs store operations */
5431static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5432{
5433 struct workqueue_attrs *attrs;
5434
899a94fe
LJ
5435 lockdep_assert_held(&wq_pool_mutex);
5436
be69d00d 5437 attrs = alloc_workqueue_attrs();
6ba94429
FW
5438 if (!attrs)
5439 return NULL;
5440
6ba94429 5441 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5442 return attrs;
5443}
5444
5445static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5446 const char *buf, size_t count)
5447{
5448 struct workqueue_struct *wq = dev_to_wq(dev);
5449 struct workqueue_attrs *attrs;
d4d3e257
LJ
5450 int ret = -ENOMEM;
5451
5452 apply_wqattrs_lock();
6ba94429
FW
5453
5454 attrs = wq_sysfs_prep_attrs(wq);
5455 if (!attrs)
d4d3e257 5456 goto out_unlock;
6ba94429
FW
5457
5458 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5459 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5460 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5461 else
5462 ret = -EINVAL;
5463
d4d3e257
LJ
5464out_unlock:
5465 apply_wqattrs_unlock();
6ba94429
FW
5466 free_workqueue_attrs(attrs);
5467 return ret ?: count;
5468}
5469
5470static ssize_t wq_cpumask_show(struct device *dev,
5471 struct device_attribute *attr, char *buf)
5472{
5473 struct workqueue_struct *wq = dev_to_wq(dev);
5474 int written;
5475
5476 mutex_lock(&wq->mutex);
5477 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5478 cpumask_pr_args(wq->unbound_attrs->cpumask));
5479 mutex_unlock(&wq->mutex);
5480 return written;
5481}
5482
5483static ssize_t wq_cpumask_store(struct device *dev,
5484 struct device_attribute *attr,
5485 const char *buf, size_t count)
5486{
5487 struct workqueue_struct *wq = dev_to_wq(dev);
5488 struct workqueue_attrs *attrs;
d4d3e257
LJ
5489 int ret = -ENOMEM;
5490
5491 apply_wqattrs_lock();
6ba94429
FW
5492
5493 attrs = wq_sysfs_prep_attrs(wq);
5494 if (!attrs)
d4d3e257 5495 goto out_unlock;
6ba94429
FW
5496
5497 ret = cpumask_parse(buf, attrs->cpumask);
5498 if (!ret)
d4d3e257 5499 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5500
d4d3e257
LJ
5501out_unlock:
5502 apply_wqattrs_unlock();
6ba94429
FW
5503 free_workqueue_attrs(attrs);
5504 return ret ?: count;
5505}
5506
5507static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5508 char *buf)
5509{
5510 struct workqueue_struct *wq = dev_to_wq(dev);
5511 int written;
7dbc725e 5512
6ba94429
FW
5513 mutex_lock(&wq->mutex);
5514 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5515 !wq->unbound_attrs->no_numa);
5516 mutex_unlock(&wq->mutex);
4c16bd32 5517
6ba94429 5518 return written;
65758202
TH
5519}
5520
6ba94429
FW
5521static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5522 const char *buf, size_t count)
65758202 5523{
6ba94429
FW
5524 struct workqueue_struct *wq = dev_to_wq(dev);
5525 struct workqueue_attrs *attrs;
d4d3e257
LJ
5526 int v, ret = -ENOMEM;
5527
5528 apply_wqattrs_lock();
4c16bd32 5529
6ba94429
FW
5530 attrs = wq_sysfs_prep_attrs(wq);
5531 if (!attrs)
d4d3e257 5532 goto out_unlock;
4c16bd32 5533
6ba94429
FW
5534 ret = -EINVAL;
5535 if (sscanf(buf, "%d", &v) == 1) {
5536 attrs->no_numa = !v;
d4d3e257 5537 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5538 }
6ba94429 5539
d4d3e257
LJ
5540out_unlock:
5541 apply_wqattrs_unlock();
6ba94429
FW
5542 free_workqueue_attrs(attrs);
5543 return ret ?: count;
65758202
TH
5544}
5545
6ba94429
FW
5546static struct device_attribute wq_sysfs_unbound_attrs[] = {
5547 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5548 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5549 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5550 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5551 __ATTR_NULL,
5552};
8ccad40d 5553
6ba94429
FW
5554static struct bus_type wq_subsys = {
5555 .name = "workqueue",
5556 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5557};
5558
b05a7928
FW
5559static ssize_t wq_unbound_cpumask_show(struct device *dev,
5560 struct device_attribute *attr, char *buf)
5561{
5562 int written;
5563
042f7df1 5564 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5565 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5566 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5567 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5568
5569 return written;
5570}
5571
042f7df1
LJ
5572static ssize_t wq_unbound_cpumask_store(struct device *dev,
5573 struct device_attribute *attr, const char *buf, size_t count)
5574{
5575 cpumask_var_t cpumask;
5576 int ret;
5577
5578 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5579 return -ENOMEM;
5580
5581 ret = cpumask_parse(buf, cpumask);
5582 if (!ret)
5583 ret = workqueue_set_unbound_cpumask(cpumask);
5584
5585 free_cpumask_var(cpumask);
5586 return ret ? ret : count;
5587}
5588
b05a7928 5589static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5590 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5591 wq_unbound_cpumask_store);
b05a7928 5592
6ba94429 5593static int __init wq_sysfs_init(void)
2d3854a3 5594{
b05a7928
FW
5595 int err;
5596
5597 err = subsys_virtual_register(&wq_subsys, NULL);
5598 if (err)
5599 return err;
5600
5601 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5602}
6ba94429 5603core_initcall(wq_sysfs_init);
2d3854a3 5604
6ba94429 5605static void wq_device_release(struct device *dev)
2d3854a3 5606{
6ba94429 5607 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5608
6ba94429 5609 kfree(wq_dev);
2d3854a3 5610}
a0a1a5fd
TH
5611
5612/**
6ba94429
FW
5613 * workqueue_sysfs_register - make a workqueue visible in sysfs
5614 * @wq: the workqueue to register
a0a1a5fd 5615 *
6ba94429
FW
5616 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5617 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5618 * which is the preferred method.
a0a1a5fd 5619 *
6ba94429
FW
5620 * Workqueue user should use this function directly iff it wants to apply
5621 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5622 * apply_workqueue_attrs() may race against userland updating the
5623 * attributes.
5624 *
5625 * Return: 0 on success, -errno on failure.
a0a1a5fd 5626 */
6ba94429 5627int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5628{
6ba94429
FW
5629 struct wq_device *wq_dev;
5630 int ret;
a0a1a5fd 5631
6ba94429 5632 /*
402dd89d 5633 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5634 * attributes breaks ordering guarantee. Disallow exposing ordered
5635 * workqueues.
5636 */
0a94efb5 5637 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5638 return -EINVAL;
a0a1a5fd 5639
6ba94429
FW
5640 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5641 if (!wq_dev)
5642 return -ENOMEM;
5bcab335 5643
6ba94429
FW
5644 wq_dev->wq = wq;
5645 wq_dev->dev.bus = &wq_subsys;
6ba94429 5646 wq_dev->dev.release = wq_device_release;
23217b44 5647 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5648
6ba94429
FW
5649 /*
5650 * unbound_attrs are created separately. Suppress uevent until
5651 * everything is ready.
5652 */
5653 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5654
6ba94429
FW
5655 ret = device_register(&wq_dev->dev);
5656 if (ret) {
537f4146 5657 put_device(&wq_dev->dev);
6ba94429
FW
5658 wq->wq_dev = NULL;
5659 return ret;
5660 }
a0a1a5fd 5661
6ba94429
FW
5662 if (wq->flags & WQ_UNBOUND) {
5663 struct device_attribute *attr;
a0a1a5fd 5664
6ba94429
FW
5665 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5666 ret = device_create_file(&wq_dev->dev, attr);
5667 if (ret) {
5668 device_unregister(&wq_dev->dev);
5669 wq->wq_dev = NULL;
5670 return ret;
a0a1a5fd
TH
5671 }
5672 }
5673 }
6ba94429
FW
5674
5675 dev_set_uevent_suppress(&wq_dev->dev, false);
5676 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5677 return 0;
a0a1a5fd
TH
5678}
5679
5680/**
6ba94429
FW
5681 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5682 * @wq: the workqueue to unregister
a0a1a5fd 5683 *
6ba94429 5684 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5685 */
6ba94429 5686static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5687{
6ba94429 5688 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5689
6ba94429
FW
5690 if (!wq->wq_dev)
5691 return;
a0a1a5fd 5692
6ba94429
FW
5693 wq->wq_dev = NULL;
5694 device_unregister(&wq_dev->dev);
a0a1a5fd 5695}
6ba94429
FW
5696#else /* CONFIG_SYSFS */
5697static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5698#endif /* CONFIG_SYSFS */
a0a1a5fd 5699
82607adc
TH
5700/*
5701 * Workqueue watchdog.
5702 *
5703 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5704 * flush dependency, a concurrency managed work item which stays RUNNING
5705 * indefinitely. Workqueue stalls can be very difficult to debug as the
5706 * usual warning mechanisms don't trigger and internal workqueue state is
5707 * largely opaque.
5708 *
5709 * Workqueue watchdog monitors all worker pools periodically and dumps
5710 * state if some pools failed to make forward progress for a while where
5711 * forward progress is defined as the first item on ->worklist changing.
5712 *
5713 * This mechanism is controlled through the kernel parameter
5714 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5715 * corresponding sysfs parameter file.
5716 */
5717#ifdef CONFIG_WQ_WATCHDOG
5718
82607adc 5719static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5720static struct timer_list wq_watchdog_timer;
82607adc
TH
5721
5722static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5723static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5724
5725static void wq_watchdog_reset_touched(void)
5726{
5727 int cpu;
5728
5729 wq_watchdog_touched = jiffies;
5730 for_each_possible_cpu(cpu)
5731 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5732}
5733
5cd79d6a 5734static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5735{
5736 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5737 bool lockup_detected = false;
5738 struct worker_pool *pool;
5739 int pi;
5740
5741 if (!thresh)
5742 return;
5743
5744 rcu_read_lock();
5745
5746 for_each_pool(pool, pi) {
5747 unsigned long pool_ts, touched, ts;
5748
5749 if (list_empty(&pool->worklist))
5750 continue;
5751
5752 /* get the latest of pool and touched timestamps */
5753 pool_ts = READ_ONCE(pool->watchdog_ts);
5754 touched = READ_ONCE(wq_watchdog_touched);
5755
5756 if (time_after(pool_ts, touched))
5757 ts = pool_ts;
5758 else
5759 ts = touched;
5760
5761 if (pool->cpu >= 0) {
5762 unsigned long cpu_touched =
5763 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5764 pool->cpu));
5765 if (time_after(cpu_touched, ts))
5766 ts = cpu_touched;
5767 }
5768
5769 /* did we stall? */
5770 if (time_after(jiffies, ts + thresh)) {
5771 lockup_detected = true;
5772 pr_emerg("BUG: workqueue lockup - pool");
5773 pr_cont_pool_info(pool);
5774 pr_cont(" stuck for %us!\n",
5775 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5776 }
5777 }
5778
5779 rcu_read_unlock();
5780
5781 if (lockup_detected)
5782 show_workqueue_state();
5783
5784 wq_watchdog_reset_touched();
5785 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5786}
5787
cb9d7fd5 5788notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5789{
5790 if (cpu >= 0)
5791 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5792 else
5793 wq_watchdog_touched = jiffies;
5794}
5795
5796static void wq_watchdog_set_thresh(unsigned long thresh)
5797{
5798 wq_watchdog_thresh = 0;
5799 del_timer_sync(&wq_watchdog_timer);
5800
5801 if (thresh) {
5802 wq_watchdog_thresh = thresh;
5803 wq_watchdog_reset_touched();
5804 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5805 }
5806}
5807
5808static int wq_watchdog_param_set_thresh(const char *val,
5809 const struct kernel_param *kp)
5810{
5811 unsigned long thresh;
5812 int ret;
5813
5814 ret = kstrtoul(val, 0, &thresh);
5815 if (ret)
5816 return ret;
5817
5818 if (system_wq)
5819 wq_watchdog_set_thresh(thresh);
5820 else
5821 wq_watchdog_thresh = thresh;
5822
5823 return 0;
5824}
5825
5826static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5827 .set = wq_watchdog_param_set_thresh,
5828 .get = param_get_ulong,
5829};
5830
5831module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5832 0644);
5833
5834static void wq_watchdog_init(void)
5835{
5cd79d6a 5836 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5837 wq_watchdog_set_thresh(wq_watchdog_thresh);
5838}
5839
5840#else /* CONFIG_WQ_WATCHDOG */
5841
5842static inline void wq_watchdog_init(void) { }
5843
5844#endif /* CONFIG_WQ_WATCHDOG */
5845
bce90380
TH
5846static void __init wq_numa_init(void)
5847{
5848 cpumask_var_t *tbl;
5849 int node, cpu;
5850
bce90380
TH
5851 if (num_possible_nodes() <= 1)
5852 return;
5853
d55262c4
TH
5854 if (wq_disable_numa) {
5855 pr_info("workqueue: NUMA affinity support disabled\n");
5856 return;
5857 }
5858
be69d00d 5859 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5860 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5861
bce90380
TH
5862 /*
5863 * We want masks of possible CPUs of each node which isn't readily
5864 * available. Build one from cpu_to_node() which should have been
5865 * fully initialized by now.
5866 */
6396bb22 5867 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5868 BUG_ON(!tbl);
5869
5870 for_each_node(node)
5a6024f1 5871 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5872 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5873
5874 for_each_possible_cpu(cpu) {
5875 node = cpu_to_node(cpu);
5876 if (WARN_ON(node == NUMA_NO_NODE)) {
5877 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5878 /* happens iff arch is bonkers, let's just proceed */
5879 return;
5880 }
5881 cpumask_set_cpu(cpu, tbl[node]);
5882 }
5883
5884 wq_numa_possible_cpumask = tbl;
5885 wq_numa_enabled = true;
5886}
5887
3347fa09
TH
5888/**
5889 * workqueue_init_early - early init for workqueue subsystem
5890 *
5891 * This is the first half of two-staged workqueue subsystem initialization
5892 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5893 * idr are up. It sets up all the data structures and system workqueues
5894 * and allows early boot code to create workqueues and queue/cancel work
5895 * items. Actual work item execution starts only after kthreads can be
5896 * created and scheduled right before early initcalls.
5897 */
5898int __init workqueue_init_early(void)
1da177e4 5899{
7a4e344c 5900 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5901 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5902 int i, cpu;
c34056a3 5903
e904e6c2
TH
5904 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5905
b05a7928 5906 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5907 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5908
e904e6c2
TH
5909 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5910
706026c2 5911 /* initialize CPU pools */
29c91e99 5912 for_each_possible_cpu(cpu) {
4ce62e9e 5913 struct worker_pool *pool;
8b03ae3c 5914
7a4e344c 5915 i = 0;
f02ae73a 5916 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5917 BUG_ON(init_worker_pool(pool));
ec22ca5e 5918 pool->cpu = cpu;
29c91e99 5919 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5920 pool->attrs->nice = std_nice[i++];
f3f90ad4 5921 pool->node = cpu_to_node(cpu);
7a4e344c 5922
9daf9e67 5923 /* alloc pool ID */
68e13a67 5924 mutex_lock(&wq_pool_mutex);
9daf9e67 5925 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5926 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5927 }
8b03ae3c
TH
5928 }
5929
8a2b7538 5930 /* create default unbound and ordered wq attrs */
29c91e99
TH
5931 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5932 struct workqueue_attrs *attrs;
5933
be69d00d 5934 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 5935 attrs->nice = std_nice[i];
29c91e99 5936 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5937
5938 /*
5939 * An ordered wq should have only one pwq as ordering is
5940 * guaranteed by max_active which is enforced by pwqs.
5941 * Turn off NUMA so that dfl_pwq is used for all nodes.
5942 */
be69d00d 5943 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
5944 attrs->nice = std_nice[i];
5945 attrs->no_numa = true;
5946 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5947 }
5948
d320c038 5949 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5950 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5951 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5952 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5953 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5954 system_freezable_wq = alloc_workqueue("events_freezable",
5955 WQ_FREEZABLE, 0);
0668106c
VK
5956 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5957 WQ_POWER_EFFICIENT, 0);
5958 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5959 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5960 0);
1aabe902 5961 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5962 !system_unbound_wq || !system_freezable_wq ||
5963 !system_power_efficient_wq ||
5964 !system_freezable_power_efficient_wq);
82607adc 5965
3347fa09
TH
5966 return 0;
5967}
5968
5969/**
5970 * workqueue_init - bring workqueue subsystem fully online
5971 *
5972 * This is the latter half of two-staged workqueue subsystem initialization
5973 * and invoked as soon as kthreads can be created and scheduled.
5974 * Workqueues have been created and work items queued on them, but there
5975 * are no kworkers executing the work items yet. Populate the worker pools
5976 * with the initial workers and enable future kworker creations.
5977 */
5978int __init workqueue_init(void)
5979{
2186d9f9 5980 struct workqueue_struct *wq;
3347fa09
TH
5981 struct worker_pool *pool;
5982 int cpu, bkt;
5983
2186d9f9
TH
5984 /*
5985 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5986 * CPU to node mapping may not be available that early on some
5987 * archs such as power and arm64. As per-cpu pools created
5988 * previously could be missing node hint and unbound pools NUMA
5989 * affinity, fix them up.
40c17f75
TH
5990 *
5991 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5992 */
5993 wq_numa_init();
5994
5995 mutex_lock(&wq_pool_mutex);
5996
5997 for_each_possible_cpu(cpu) {
5998 for_each_cpu_worker_pool(pool, cpu) {
5999 pool->node = cpu_to_node(cpu);
6000 }
6001 }
6002
40c17f75 6003 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6004 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6005 WARN(init_rescuer(wq),
6006 "workqueue: failed to create early rescuer for %s",
6007 wq->name);
6008 }
2186d9f9
TH
6009
6010 mutex_unlock(&wq_pool_mutex);
6011
3347fa09
TH
6012 /* create the initial workers */
6013 for_each_online_cpu(cpu) {
6014 for_each_cpu_worker_pool(pool, cpu) {
6015 pool->flags &= ~POOL_DISASSOCIATED;
6016 BUG_ON(!create_worker(pool));
6017 }
6018 }
6019
6020 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6021 BUG_ON(!create_worker(pool));
6022
6023 wq_online = true;
82607adc
TH
6024 wq_watchdog_init();
6025
6ee0578b 6026 return 0;
1da177e4 6027}