]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/workqueue.c
timers: Avoid an unnecessary iteration in __run_timers()
[mirror_ubuntu-eoan-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
863b710b 293static bool wq_online; /* can kworkers be created yet? */
3347fa09 294
bce90380
TH
295static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
4c16bd32
TH
297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
68e13a67 300static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 301static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 302
e2dca7ad 303static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 304static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 305
ef557180
MG
306/* PL: allowable cpus for unbound wqs and work items */
307static cpumask_var_t wq_unbound_cpumask;
308
309/* CPU where unbound work was last round robin scheduled from this CPU */
310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 311
f303fccb
TH
312/*
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
316 */
317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318static bool wq_debug_force_rr_cpu = true;
319#else
320static bool wq_debug_force_rr_cpu = false;
321#endif
322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323
7d19c5ce 324/* the per-cpu worker pools */
25528213 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 326
68e13a67 327static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 328
68e13a67 329/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331
c5aa87bb 332/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334
8a2b7538
TH
335/* I: attributes used when instantiating ordered pools on demand */
336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337
d320c038 338struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 339EXPORT_SYMBOL(system_wq);
044c782c 340struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 341EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 342struct workqueue_struct *system_long_wq __read_mostly;
d320c038 343EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 344struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 345EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 346struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 347EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
348struct workqueue_struct *system_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 352
7d19c5ce 353static int worker_thread(void *__worker);
6ba94429 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 355
97bd2347
TH
356#define CREATE_TRACE_POINTS
357#include <trace/events/workqueue.h>
358
68e13a67 359#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
5bcab335 363
b09f4fd3 364#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
76af4d93 368
5b95e1af 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 374
f02ae73a
TH
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 378 (pool)++)
4ce62e9e 379
17116969
TH
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
611c92a0 383 * @pi: integer used for iteration
fa1b54e6 384 *
68e13a67
LJ
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
17116969 391 */
611c92a0
TH
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 395 else
17116969 396
822d8405
TH
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
822d8405
TH
400 * @pool: worker_pool to iterate workers of
401 *
92f9c5c4 402 * This must be called with @pool->attach_mutex.
822d8405
TH
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
da028469
LJ
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
410 else
411
49e3cf44
TH
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
76af4d93 416 *
b09f4fd3 417 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
49e3cf44
TH
423 */
424#define for_each_pwq(pwq, wq) \
76af4d93 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 427 else
f3421797 428
dc186ad7
TG
429#ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431static struct debug_obj_descr work_debug_descr;
432
99777288
SG
433static void *work_debug_hint(void *addr)
434{
435 return ((struct work_struct *) addr)->func;
436}
437
b9fdac7f
CD
438static bool work_is_static_object(void *addr)
439{
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443}
444
dc186ad7
TG
445/*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
02a982a6 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
450{
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
02a982a6 457 return true;
dc186ad7 458 default:
02a982a6 459 return false;
dc186ad7
TG
460 }
461}
462
dc186ad7
TG
463/*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
02a982a6 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
468{
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
02a982a6 475 return true;
dc186ad7 476 default:
02a982a6 477 return false;
dc186ad7
TG
478 }
479}
480
481static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
99777288 483 .debug_hint = work_debug_hint,
b9fdac7f 484 .is_static_object = work_is_static_object,
dc186ad7 485 .fixup_init = work_fixup_init,
dc186ad7
TG
486 .fixup_free = work_fixup_free,
487};
488
489static inline void debug_work_activate(struct work_struct *work)
490{
491 debug_object_activate(work, &work_debug_descr);
492}
493
494static inline void debug_work_deactivate(struct work_struct *work)
495{
496 debug_object_deactivate(work, &work_debug_descr);
497}
498
499void __init_work(struct work_struct *work, int onstack)
500{
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(__init_work);
507
508void destroy_work_on_stack(struct work_struct *work)
509{
510 debug_object_free(work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
ea2e64f2
TG
514void destroy_delayed_work_on_stack(struct delayed_work *work)
515{
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
dc186ad7
TG
521#else
522static inline void debug_work_activate(struct work_struct *work) { }
523static inline void debug_work_deactivate(struct work_struct *work) { }
524#endif
525
4e8b22bd
LB
526/**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
9daf9e67
TH
533static int worker_pool_assign_id(struct worker_pool *pool)
534{
535 int ret;
536
68e13a67 537 lockdep_assert_held(&wq_pool_mutex);
5bcab335 538
4e8b22bd
LB
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
229641a6 541 if (ret >= 0) {
e68035fb 542 pool->id = ret;
229641a6
TH
543 return 0;
544 }
fa1b54e6 545 return ret;
7c3eed5c
TH
546}
547
df2d5ae4
TH
548/**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
5b95e1af
LJ
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
df2d5ae4
TH
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
557 *
558 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
559 */
560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562{
5b95e1af 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
df2d5ae4
TH
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575}
576
73f53c4a
TH
577static unsigned int work_color_to_flags(int color)
578{
579 return color << WORK_STRUCT_COLOR_SHIFT;
580}
581
582static int get_work_color(struct work_struct *work)
583{
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586}
587
588static int work_next_color(int color)
589{
590 return (color + 1) % WORK_NR_COLORS;
591}
1da177e4 592
14441960 593/*
112202d9
TH
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 596 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 597 *
112202d9
TH
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
7a22ad75 602 *
112202d9 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 604 * corresponding to a work. Pool is available once the work has been
112202d9 605 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 606 * available only while the work item is queued.
7a22ad75 607 *
bbb68dfa
TH
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
14441960 612 */
7a22ad75
TH
613static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
365970a1 615{
6183c009 616 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
617 atomic_long_set(&work->data, data | flags | work_static(work));
618}
365970a1 619
112202d9 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
621 unsigned long extra_flags)
622{
112202d9
TH
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
625}
626
4468a00f
LJ
627static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629{
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632}
633
7c3eed5c
TH
634static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
7a22ad75 636{
23657bb1
TH
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
7c3eed5c 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
7a22ad75 674}
f756d5e2 675
7a22ad75 676static void clear_work_data(struct work_struct *work)
1da177e4 677{
7c3eed5c
TH
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
680}
681
112202d9 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 683{
e120153d 684 unsigned long data = atomic_long_read(&work->data);
7a22ad75 685
112202d9 686 if (data & WORK_STRUCT_PWQ)
e120153d
TH
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
4d707b9f
ON
690}
691
7c3eed5c
TH
692/**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
68e13a67
LJ
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
d185af30
YB
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
706 */
707static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 708{
e120153d 709 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 710 int pool_id;
7a22ad75 711
68e13a67 712 assert_rcu_or_pool_mutex();
fa1b54e6 713
112202d9
TH
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
7c3eed5c 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 717
7c3eed5c
TH
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
720 return NULL;
721
fa1b54e6 722 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
723}
724
725/**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
d185af30 729 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732static int get_work_pool_id(struct work_struct *work)
733{
54d5b7d0
LJ
734 unsigned long data = atomic_long_read(&work->data);
735
112202d9
TH
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
54d5b7d0 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 739
54d5b7d0 740 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
741}
742
bbb68dfa
TH
743static void mark_work_canceling(struct work_struct *work)
744{
7c3eed5c 745 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 746
7c3eed5c
TH
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
749}
750
751static bool work_is_canceling(struct work_struct *work)
752{
753 unsigned long data = atomic_long_read(&work->data);
754
112202d9 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
756}
757
e22bee78 758/*
3270476a
TH
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 761 * they're being called with pool->lock held.
e22bee78
TH
762 */
763
63d95a91 764static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 765{
e19e397a 766 return !atomic_read(&pool->nr_running);
a848e3b6
ON
767}
768
4594bf15 769/*
e22bee78
TH
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
974271c4
TH
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
706026c2 774 * function will always return %true for unbound pools as long as the
974271c4 775 * worklist isn't empty.
4594bf15 776 */
63d95a91 777static bool need_more_worker(struct worker_pool *pool)
365970a1 778{
63d95a91 779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 780}
4594bf15 781
e22bee78 782/* Can I start working? Called from busy but !running workers. */
63d95a91 783static bool may_start_working(struct worker_pool *pool)
e22bee78 784{
63d95a91 785 return pool->nr_idle;
e22bee78
TH
786}
787
788/* Do I need to keep working? Called from currently running workers. */
63d95a91 789static bool keep_working(struct worker_pool *pool)
e22bee78 790{
e19e397a
TH
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
793}
794
795/* Do we need a new worker? Called from manager. */
63d95a91 796static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 797{
63d95a91 798 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 799}
365970a1 800
e22bee78 801/* Do we have too many workers and should some go away? */
63d95a91 802static bool too_many_workers(struct worker_pool *pool)
e22bee78 803{
34a06bd6 804 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
809}
810
4d707b9f 811/*
e22bee78
TH
812 * Wake up functions.
813 */
814
1037de36
LJ
815/* Return the first idle worker. Safe with preemption disabled */
816static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 817{
63d95a91 818 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
819 return NULL;
820
63d95a91 821 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
822}
823
824/**
825 * wake_up_worker - wake up an idle worker
63d95a91 826 * @pool: worker pool to wake worker from
7e11629d 827 *
63d95a91 828 * Wake up the first idle worker of @pool.
7e11629d
TH
829 *
830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock).
7e11629d 832 */
63d95a91 833static void wake_up_worker(struct worker_pool *pool)
7e11629d 834{
1037de36 835 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839}
840
d302f017 841/**
e22bee78
TH
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
845 *
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 */
d84ff051 852void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
853{
854 struct worker *worker = kthread_data(task);
855
36576000 856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 857 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 858 atomic_inc(&worker->pool->nr_running);
36576000 859 }
e22bee78
TH
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
e22bee78
TH
865 *
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
869 *
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
872 *
d185af30 873 * Return:
e22bee78
TH
874 * Worker task on @cpu to wake up, %NULL if none.
875 */
9b7f6597 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
877{
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 879 struct worker_pool *pool;
e22bee78 880
111c225a
TH
881 /*
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
885 */
2d64672e 886 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
887 return NULL;
888
111c225a 889 pool = worker->pool;
111c225a 890
e22bee78 891 /* this can only happen on the local cpu */
9b7f6597 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 893 return NULL;
e22bee78
TH
894
895 /*
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
899 *
628c78e7
TH
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
d565ed63 903 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 904 * lock is safe.
e22bee78 905 */
e19e397a
TH
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
1037de36 908 to_wakeup = first_idle_worker(pool);
e22bee78
TH
909 return to_wakeup ? to_wakeup->task : NULL;
910}
911
912/**
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 914 * @worker: self
d302f017 915 * @flags: flags to set
d302f017 916 *
228f1d00 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 918 *
cb444766 919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock)
d302f017 921 */
228f1d00 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 923{
bd7bdd43 924 struct worker_pool *pool = worker->pool;
e22bee78 925
cb444766
TH
926 WARN_ON_ONCE(worker->task != current);
927
228f1d00 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 931 atomic_dec(&pool->nr_running);
e22bee78
TH
932 }
933
d302f017
TH
934 worker->flags |= flags;
935}
936
937/**
e22bee78 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 939 * @worker: self
d302f017
TH
940 * @flags: flags to clear
941 *
e22bee78 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 943 *
cb444766 944 * CONTEXT:
d565ed63 945 * spin_lock_irq(pool->lock)
d302f017
TH
946 */
947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948{
63d95a91 949 struct worker_pool *pool = worker->pool;
e22bee78
TH
950 unsigned int oflags = worker->flags;
951
cb444766
TH
952 WARN_ON_ONCE(worker->task != current);
953
d302f017 954 worker->flags &= ~flags;
e22bee78 955
42c025f3
TH
956 /*
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
960 */
e22bee78
TH
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 963 atomic_inc(&pool->nr_running);
d302f017
TH
964}
965
8cca0eea
TH
966/**
967 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 968 * @pool: pool of interest
8cca0eea
TH
969 * @work: work to find worker for
970 *
c9e7cf27
TH
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
977 *
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
984 *
c5aa87bb
TH
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
991 *
992 * CONTEXT:
d565ed63 993 * spin_lock_irq(pool->lock).
8cca0eea 994 *
d185af30
YB
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 997 * otherwise.
4d707b9f 998 */
c9e7cf27 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1000 struct work_struct *work)
4d707b9f 1001{
42f8570f 1002 struct worker *worker;
42f8570f 1003
b67bfe0d 1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
42f8570f
SL
1008 return worker;
1009
1010 return NULL;
4d707b9f
ON
1011}
1012
bf4ede01
TH
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
402dd89d 1017 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1018 *
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
d565ed63 1028 * spin_lock_irq(pool->lock).
bf4ede01
TH
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1032{
1033 struct work_struct *n;
1034
1035 /*
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1038 */
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1043 }
1044
1045 /*
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1049 */
1050 if (nextp)
1051 *nextp = n;
1052}
1053
8864b4e5
TH
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1082 /*
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1089 */
1090 schedule_work(&pwq->unbound_release_work);
1091}
1092
dce90d47
TH
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101 if (pwq) {
1102 /*
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1105 */
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1109 }
1110}
1111
112202d9 1112static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1113{
112202d9 1114 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1115
1116 trace_workqueue_activate_work(work);
82607adc
TH
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
112202d9 1119 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1121 pwq->nr_active++;
bf4ede01
TH
1122}
1123
112202d9 1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1125{
112202d9 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1127 struct work_struct, entry);
1128
112202d9 1129 pwq_activate_delayed_work(work);
3aa62497
LJ
1130}
1131
bf4ede01 1132/**
112202d9
TH
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
bf4ede01 1135 * @color: color of work which left the queue
bf4ede01
TH
1136 *
1137 * A work either has completed or is removed from pending queue,
112202d9 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1139 *
1140 * CONTEXT:
d565ed63 1141 * spin_lock_irq(pool->lock).
bf4ede01 1142 */
112202d9 1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1144{
8864b4e5 1145 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1146 if (color == WORK_NO_COLOR)
8864b4e5 1147 goto out_put;
bf4ede01 1148
112202d9 1149 pwq->nr_in_flight[color]--;
bf4ede01 1150
112202d9
TH
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1153 /* one down, submit a delayed one */
112202d9
TH
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1156 }
1157
1158 /* is flush in progress and are we at the flushing tip? */
112202d9 1159 if (likely(pwq->flush_color != color))
8864b4e5 1160 goto out_put;
bf4ede01
TH
1161
1162 /* are there still in-flight works? */
112202d9 1163 if (pwq->nr_in_flight[color])
8864b4e5 1164 goto out_put;
bf4ede01 1165
112202d9
TH
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
bf4ede01
TH
1168
1169 /*
112202d9 1170 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1171 * will handle the rest.
1172 */
112202d9
TH
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1175out_put:
1176 put_pwq(pwq);
bf4ede01
TH
1177}
1178
36e227d2 1179/**
bbb68dfa 1180 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
bbb68dfa 1183 * @flags: place to store irq state
36e227d2
TH
1184 *
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1186 * stable state - idle, on timer or on worklist.
36e227d2 1187 *
d185af30 1188 * Return:
36e227d2
TH
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
36e227d2 1194 *
d185af30 1195 * Note:
bbb68dfa 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
e0aecdd8 1204 * This function is safe to call from any context including IRQ handler.
bf4ede01 1205 */
bbb68dfa
TH
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
bf4ede01 1208{
d565ed63 1209 struct worker_pool *pool;
112202d9 1210 struct pool_workqueue *pwq;
bf4ede01 1211
bbb68dfa
TH
1212 local_irq_save(*flags);
1213
36e227d2
TH
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1217
e0aecdd8
TH
1218 /*
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1222 */
36e227d2
TH
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1225 }
1226
1227 /* try to claim PENDING the normal way */
bf4ede01
TH
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1230
1231 /*
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 */
d565ed63
TH
1235 pool = get_work_pool(work);
1236 if (!pool)
bbb68dfa 1237 goto fail;
bf4ede01 1238
d565ed63 1239 spin_lock(&pool->lock);
0b3dae68 1240 /*
112202d9
TH
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1246 * item is currently queued on that pool.
1247 */
112202d9
TH
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
16062836
TH
1250 debug_work_deactivate(work);
1251
1252 /*
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
112202d9 1255 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1258 */
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1260 pwq_activate_delayed_work(work);
16062836
TH
1261
1262 list_del_init(&work->entry);
9c34a704 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1264
112202d9 1265 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1266 set_work_pool_and_keep_pending(work, pool->id);
1267
1268 spin_unlock(&pool->lock);
1269 return 1;
bf4ede01 1270 }
d565ed63 1271 spin_unlock(&pool->lock);
bbb68dfa
TH
1272fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
36e227d2 1277 return -EAGAIN;
bf4ede01
TH
1278}
1279
4690c4ab 1280/**
706026c2 1281 * insert_work - insert a work into a pool
112202d9 1282 * @pwq: pwq @work belongs to
4690c4ab
TH
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
112202d9 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1288 * work_struct flags.
4690c4ab
TH
1289 *
1290 * CONTEXT:
d565ed63 1291 * spin_lock_irq(pool->lock).
4690c4ab 1292 */
112202d9
TH
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
b89deed3 1295{
112202d9 1296 struct worker_pool *pool = pwq->pool;
e22bee78 1297
4690c4ab 1298 /* we own @work, set data and link */
112202d9 1299 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1300 list_add_tail(&work->entry, head);
8864b4e5 1301 get_pwq(pwq);
e22bee78
TH
1302
1303 /*
c5aa87bb
TH
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
e22bee78
TH
1307 */
1308 smp_mb();
1309
63d95a91
TH
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
b89deed3
ON
1312}
1313
c8efcc25
TH
1314/*
1315 * Test whether @work is being queued from another work executing on the
8d03ecfe 1316 * same workqueue.
c8efcc25
TH
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
8d03ecfe
TH
1320 struct worker *worker;
1321
1322 worker = current_wq_worker();
1323 /*
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1326 */
112202d9 1327 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1328}
1329
ef557180
MG
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
f303fccb 1337 static bool printed_dbg_warning;
ef557180
MG
1338 int new_cpu;
1339
f303fccb
TH
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1346 }
1347
ef557180
MG
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1350
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1357 }
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360 return new_cpu;
1361}
1362
d84ff051 1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1364 struct work_struct *work)
1365{
112202d9 1366 struct pool_workqueue *pwq;
c9178087 1367 struct worker_pool *last_pool;
1e19ffc6 1368 struct list_head *worklist;
8a2e8e5d 1369 unsigned int work_flags;
b75cac93 1370 unsigned int req_cpu = cpu;
8930caba
TH
1371
1372 /*
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1377 */
1378 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1379
dc186ad7 1380 debug_work_activate(work);
1e19ffc6 1381
9ef28a73 1382 /* if draining, only works from the same workqueue are allowed */
618b01eb 1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1384 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1385 return;
9e8cd2f5 1386retry:
df2d5ae4 1387 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1389
c9178087 1390 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1391 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1393 else
1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1395
c9178087
TH
1396 /*
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1400 */
1401 last_pool = get_work_pool(work);
1402 if (last_pool && last_pool != pwq->pool) {
1403 struct worker *worker;
18aa9eff 1404
c9178087 1405 spin_lock(&last_pool->lock);
18aa9eff 1406
c9178087 1407 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1408
c9178087
TH
1409 if (worker && worker->current_pwq->wq == wq) {
1410 pwq = worker->current_pwq;
8930caba 1411 } else {
c9178087
TH
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool->lock);
112202d9 1414 spin_lock(&pwq->pool->lock);
8930caba 1415 }
f3421797 1416 } else {
112202d9 1417 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1418 }
1419
9e8cd2f5
TH
1420 /*
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1426 * make forward-progress.
1427 */
1428 if (unlikely(!pwq->refcnt)) {
1429 if (wq->flags & WQ_UNBOUND) {
1430 spin_unlock(&pwq->pool->lock);
1431 cpu_relax();
1432 goto retry;
1433 }
1434 /* oops */
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 wq->name, cpu);
1437 }
1438
112202d9
TH
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1441
f5b2552b 1442 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1443 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1444 return;
1445 }
1e19ffc6 1446
112202d9
TH
1447 pwq->nr_in_flight[pwq->work_color]++;
1448 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1449
112202d9 1450 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1451 trace_workqueue_activate_work(work);
112202d9
TH
1452 pwq->nr_active++;
1453 worklist = &pwq->pool->worklist;
82607adc
TH
1454 if (list_empty(worklist))
1455 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1456 } else {
1457 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1458 worklist = &pwq->delayed_works;
8a2e8e5d 1459 }
1e19ffc6 1460
112202d9 1461 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1462
112202d9 1463 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1464}
1465
0fcb78c2 1466/**
c1a220e7
ZR
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
0fcb78c2
REB
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
c1a220e7
ZR
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
d185af30
YB
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1476 */
d4283e93
TH
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 struct work_struct *work)
1da177e4 1479{
d4283e93 1480 bool ret = false;
8930caba 1481 unsigned long flags;
ef1ca236 1482
8930caba 1483 local_irq_save(flags);
c1a220e7 1484
22df02bb 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1486 __queue_work(cpu, wq, work);
d4283e93 1487 ret = true;
c1a220e7 1488 }
ef1ca236 1489
8930caba 1490 local_irq_restore(flags);
1da177e4
LT
1491 return ret;
1492}
ad7b1f84 1493EXPORT_SYMBOL(queue_work_on);
1da177e4 1494
8c20feb6 1495void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1496{
8c20feb6 1497 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1498
e0aecdd8 1499 /* should have been called from irqsafe timer with irq already off */
60c057bc 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1501}
1438ade5 1502EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1503
7beb2edf
TH
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1da177e4 1506{
7beb2edf
TH
1507 struct timer_list *timer = &dwork->timer;
1508 struct work_struct *work = &dwork->work;
7beb2edf 1509
637fdbae 1510 WARN_ON_ONCE(!wq);
8c20feb6 1511 WARN_ON_ONCE(timer->function != (TIMER_FUNC_TYPE)delayed_work_timer_fn);
fc4b514f
TH
1512 WARN_ON_ONCE(timer_pending(timer));
1513 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1514
8852aac2
TH
1515 /*
1516 * If @delay is 0, queue @dwork->work immediately. This is for
1517 * both optimization and correctness. The earliest @timer can
1518 * expire is on the closest next tick and delayed_work users depend
1519 * on that there's no such delay when @delay is 0.
1520 */
1521 if (!delay) {
1522 __queue_work(cpu, wq, &dwork->work);
1523 return;
1524 }
1525
60c057bc 1526 dwork->wq = wq;
1265057f 1527 dwork->cpu = cpu;
7beb2edf
TH
1528 timer->expires = jiffies + delay;
1529
041bd12e
TH
1530 if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 add_timer_on(timer, cpu);
1532 else
1533 add_timer(timer);
1da177e4
LT
1534}
1535
0fcb78c2
REB
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
af9997e4 1540 * @dwork: work to queue
0fcb78c2
REB
1541 * @delay: number of jiffies to wait before queueing
1542 *
d185af30 1543 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
0fcb78c2 1546 */
d4283e93
TH
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1549{
52bad64d 1550 struct work_struct *work = &dwork->work;
d4283e93 1551 bool ret = false;
8930caba 1552 unsigned long flags;
7a6bc1cd 1553
8930caba
TH
1554 /* read the comment in __queue_work() */
1555 local_irq_save(flags);
7a6bc1cd 1556
22df02bb 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1558 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1559 ret = true;
7a6bc1cd 1560 }
8a3e77cc 1561
8930caba 1562 local_irq_restore(flags);
7a6bc1cd
VP
1563 return ret;
1564}
ad7b1f84 1565EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1566
8376fe22
TH
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay. If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
d185af30 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1580 * pending and its timer was modified.
1581 *
e0aecdd8 1582 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 struct delayed_work *dwork, unsigned long delay)
1587{
1588 unsigned long flags;
1589 int ret;
c7fc77f7 1590
8376fe22
TH
1591 do {
1592 ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 } while (unlikely(ret == -EAGAIN));
63bc0362 1594
8376fe22
TH
1595 if (likely(ret >= 0)) {
1596 __queue_delayed_work(cpu, wq, dwork, delay);
1597 local_irq_restore(flags);
7a6bc1cd 1598 }
8376fe22
TH
1599
1600 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1601 return ret;
1602}
8376fe22
TH
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
c8e55f36
TH
1605/**
1606 * worker_enter_idle - enter idle state
1607 * @worker: worker which is entering idle state
1608 *
1609 * @worker is entering idle state. Update stats and idle timer if
1610 * necessary.
1611 *
1612 * LOCKING:
d565ed63 1613 * spin_lock_irq(pool->lock).
c8e55f36
TH
1614 */
1615static void worker_enter_idle(struct worker *worker)
1da177e4 1616{
bd7bdd43 1617 struct worker_pool *pool = worker->pool;
c8e55f36 1618
6183c009
TH
1619 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1620 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1621 (worker->hentry.next || worker->hentry.pprev)))
1622 return;
c8e55f36 1623
051e1850 1624 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1625 worker->flags |= WORKER_IDLE;
bd7bdd43 1626 pool->nr_idle++;
e22bee78 1627 worker->last_active = jiffies;
c8e55f36
TH
1628
1629 /* idle_list is LIFO */
bd7bdd43 1630 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1631
628c78e7
TH
1632 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1633 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1634
544ecf31 1635 /*
706026c2 1636 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1637 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1638 * nr_running, the warning may trigger spuriously. Check iff
1639 * unbind is not in progress.
544ecf31 1640 */
24647570 1641 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1642 pool->nr_workers == pool->nr_idle &&
e19e397a 1643 atomic_read(&pool->nr_running));
c8e55f36
TH
1644}
1645
1646/**
1647 * worker_leave_idle - leave idle state
1648 * @worker: worker which is leaving idle state
1649 *
1650 * @worker is leaving idle state. Update stats.
1651 *
1652 * LOCKING:
d565ed63 1653 * spin_lock_irq(pool->lock).
c8e55f36
TH
1654 */
1655static void worker_leave_idle(struct worker *worker)
1656{
bd7bdd43 1657 struct worker_pool *pool = worker->pool;
c8e55f36 1658
6183c009
TH
1659 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1660 return;
d302f017 1661 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1662 pool->nr_idle--;
c8e55f36
TH
1663 list_del_init(&worker->entry);
1664}
1665
f7537df5 1666static struct worker *alloc_worker(int node)
c34056a3
TH
1667{
1668 struct worker *worker;
1669
f7537df5 1670 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1671 if (worker) {
1672 INIT_LIST_HEAD(&worker->entry);
affee4b2 1673 INIT_LIST_HEAD(&worker->scheduled);
da028469 1674 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1675 /* on creation a worker is in !idle && prep state */
1676 worker->flags = WORKER_PREP;
c8e55f36 1677 }
c34056a3
TH
1678 return worker;
1679}
1680
4736cbf7
LJ
1681/**
1682 * worker_attach_to_pool() - attach a worker to a pool
1683 * @worker: worker to be attached
1684 * @pool: the target pool
1685 *
1686 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1687 * cpu-binding of @worker are kept coordinated with the pool across
1688 * cpu-[un]hotplugs.
1689 */
1690static void worker_attach_to_pool(struct worker *worker,
1691 struct worker_pool *pool)
1692{
1693 mutex_lock(&pool->attach_mutex);
1694
1695 /*
1696 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1697 * online CPUs. It'll be re-applied when any of the CPUs come up.
1698 */
1699 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1700
1701 /*
1702 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1703 * stable across this function. See the comments above the
1704 * flag definition for details.
1705 */
1706 if (pool->flags & POOL_DISASSOCIATED)
1707 worker->flags |= WORKER_UNBOUND;
1708
1709 list_add_tail(&worker->node, &pool->workers);
1710
1711 mutex_unlock(&pool->attach_mutex);
1712}
1713
60f5a4bc
LJ
1714/**
1715 * worker_detach_from_pool() - detach a worker from its pool
1716 * @worker: worker which is attached to its pool
1717 * @pool: the pool @worker is attached to
1718 *
4736cbf7
LJ
1719 * Undo the attaching which had been done in worker_attach_to_pool(). The
1720 * caller worker shouldn't access to the pool after detached except it has
1721 * other reference to the pool.
60f5a4bc
LJ
1722 */
1723static void worker_detach_from_pool(struct worker *worker,
1724 struct worker_pool *pool)
1725{
1726 struct completion *detach_completion = NULL;
1727
92f9c5c4 1728 mutex_lock(&pool->attach_mutex);
da028469
LJ
1729 list_del(&worker->node);
1730 if (list_empty(&pool->workers))
60f5a4bc 1731 detach_completion = pool->detach_completion;
92f9c5c4 1732 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1733
b62c0751
LJ
1734 /* clear leftover flags without pool->lock after it is detached */
1735 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1736
60f5a4bc
LJ
1737 if (detach_completion)
1738 complete(detach_completion);
1739}
1740
c34056a3
TH
1741/**
1742 * create_worker - create a new workqueue worker
63d95a91 1743 * @pool: pool the new worker will belong to
c34056a3 1744 *
051e1850 1745 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1746 *
1747 * CONTEXT:
1748 * Might sleep. Does GFP_KERNEL allocations.
1749 *
d185af30 1750 * Return:
c34056a3
TH
1751 * Pointer to the newly created worker.
1752 */
bc2ae0f5 1753static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1754{
c34056a3 1755 struct worker *worker = NULL;
f3421797 1756 int id = -1;
e3c916a4 1757 char id_buf[16];
c34056a3 1758
7cda9aae
LJ
1759 /* ID is needed to determine kthread name */
1760 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1761 if (id < 0)
1762 goto fail;
c34056a3 1763
f7537df5 1764 worker = alloc_worker(pool->node);
c34056a3
TH
1765 if (!worker)
1766 goto fail;
1767
bd7bdd43 1768 worker->pool = pool;
c34056a3
TH
1769 worker->id = id;
1770
29c91e99 1771 if (pool->cpu >= 0)
e3c916a4
TH
1772 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1773 pool->attrs->nice < 0 ? "H" : "");
f3421797 1774 else
e3c916a4
TH
1775 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1776
f3f90ad4 1777 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1778 "kworker/%s", id_buf);
c34056a3
TH
1779 if (IS_ERR(worker->task))
1780 goto fail;
1781
91151228 1782 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1783 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1784
da028469 1785 /* successful, attach the worker to the pool */
4736cbf7 1786 worker_attach_to_pool(worker, pool);
822d8405 1787
051e1850
LJ
1788 /* start the newly created worker */
1789 spin_lock_irq(&pool->lock);
1790 worker->pool->nr_workers++;
1791 worker_enter_idle(worker);
1792 wake_up_process(worker->task);
1793 spin_unlock_irq(&pool->lock);
1794
c34056a3 1795 return worker;
822d8405 1796
c34056a3 1797fail:
9625ab17 1798 if (id >= 0)
7cda9aae 1799 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1800 kfree(worker);
1801 return NULL;
1802}
1803
c34056a3
TH
1804/**
1805 * destroy_worker - destroy a workqueue worker
1806 * @worker: worker to be destroyed
1807 *
73eb7fe7
LJ
1808 * Destroy @worker and adjust @pool stats accordingly. The worker should
1809 * be idle.
c8e55f36
TH
1810 *
1811 * CONTEXT:
60f5a4bc 1812 * spin_lock_irq(pool->lock).
c34056a3
TH
1813 */
1814static void destroy_worker(struct worker *worker)
1815{
bd7bdd43 1816 struct worker_pool *pool = worker->pool;
c34056a3 1817
cd549687
TH
1818 lockdep_assert_held(&pool->lock);
1819
c34056a3 1820 /* sanity check frenzy */
6183c009 1821 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1822 WARN_ON(!list_empty(&worker->scheduled)) ||
1823 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1824 return;
c34056a3 1825
73eb7fe7
LJ
1826 pool->nr_workers--;
1827 pool->nr_idle--;
5bdfff96 1828
c8e55f36 1829 list_del_init(&worker->entry);
cb444766 1830 worker->flags |= WORKER_DIE;
60f5a4bc 1831 wake_up_process(worker->task);
c34056a3
TH
1832}
1833
63d95a91 1834static void idle_worker_timeout(unsigned long __pool)
e22bee78 1835{
63d95a91 1836 struct worker_pool *pool = (void *)__pool;
e22bee78 1837
d565ed63 1838 spin_lock_irq(&pool->lock);
e22bee78 1839
3347fc9f 1840 while (too_many_workers(pool)) {
e22bee78
TH
1841 struct worker *worker;
1842 unsigned long expires;
1843
1844 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1845 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1846 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1847
3347fc9f 1848 if (time_before(jiffies, expires)) {
63d95a91 1849 mod_timer(&pool->idle_timer, expires);
3347fc9f 1850 break;
d5abe669 1851 }
3347fc9f
LJ
1852
1853 destroy_worker(worker);
e22bee78
TH
1854 }
1855
d565ed63 1856 spin_unlock_irq(&pool->lock);
e22bee78 1857}
d5abe669 1858
493a1724 1859static void send_mayday(struct work_struct *work)
e22bee78 1860{
112202d9
TH
1861 struct pool_workqueue *pwq = get_work_pwq(work);
1862 struct workqueue_struct *wq = pwq->wq;
493a1724 1863
2e109a28 1864 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1865
493008a8 1866 if (!wq->rescuer)
493a1724 1867 return;
e22bee78
TH
1868
1869 /* mayday mayday mayday */
493a1724 1870 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1871 /*
1872 * If @pwq is for an unbound wq, its base ref may be put at
1873 * any time due to an attribute change. Pin @pwq until the
1874 * rescuer is done with it.
1875 */
1876 get_pwq(pwq);
493a1724 1877 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1878 wake_up_process(wq->rescuer->task);
493a1724 1879 }
e22bee78
TH
1880}
1881
706026c2 1882static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1883{
63d95a91 1884 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1885 struct work_struct *work;
1886
b2d82909
TH
1887 spin_lock_irq(&pool->lock);
1888 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1889
63d95a91 1890 if (need_to_create_worker(pool)) {
e22bee78
TH
1891 /*
1892 * We've been trying to create a new worker but
1893 * haven't been successful. We might be hitting an
1894 * allocation deadlock. Send distress signals to
1895 * rescuers.
1896 */
63d95a91 1897 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1898 send_mayday(work);
1da177e4 1899 }
e22bee78 1900
b2d82909
TH
1901 spin_unlock(&wq_mayday_lock);
1902 spin_unlock_irq(&pool->lock);
e22bee78 1903
63d95a91 1904 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1905}
1906
e22bee78
TH
1907/**
1908 * maybe_create_worker - create a new worker if necessary
63d95a91 1909 * @pool: pool to create a new worker for
e22bee78 1910 *
63d95a91 1911 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1912 * have at least one idle worker on return from this function. If
1913 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1914 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1915 * possible allocation deadlock.
1916 *
c5aa87bb
TH
1917 * On return, need_to_create_worker() is guaranteed to be %false and
1918 * may_start_working() %true.
e22bee78
TH
1919 *
1920 * LOCKING:
d565ed63 1921 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1922 * multiple times. Does GFP_KERNEL allocations. Called only from
1923 * manager.
e22bee78 1924 */
29187a9e 1925static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1926__releases(&pool->lock)
1927__acquires(&pool->lock)
1da177e4 1928{
e22bee78 1929restart:
d565ed63 1930 spin_unlock_irq(&pool->lock);
9f9c2364 1931
e22bee78 1932 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1933 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1934
1935 while (true) {
051e1850 1936 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1937 break;
1da177e4 1938
e212f361 1939 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1940
63d95a91 1941 if (!need_to_create_worker(pool))
e22bee78
TH
1942 break;
1943 }
1944
63d95a91 1945 del_timer_sync(&pool->mayday_timer);
d565ed63 1946 spin_lock_irq(&pool->lock);
051e1850
LJ
1947 /*
1948 * This is necessary even after a new worker was just successfully
1949 * created as @pool->lock was dropped and the new worker might have
1950 * already become busy.
1951 */
63d95a91 1952 if (need_to_create_worker(pool))
e22bee78 1953 goto restart;
e22bee78
TH
1954}
1955
73f53c4a 1956/**
e22bee78
TH
1957 * manage_workers - manage worker pool
1958 * @worker: self
73f53c4a 1959 *
706026c2 1960 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1961 * to. At any given time, there can be only zero or one manager per
706026c2 1962 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1963 *
1964 * The caller can safely start processing works on false return. On
1965 * true return, it's guaranteed that need_to_create_worker() is false
1966 * and may_start_working() is true.
73f53c4a
TH
1967 *
1968 * CONTEXT:
d565ed63 1969 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1970 * multiple times. Does GFP_KERNEL allocations.
1971 *
d185af30 1972 * Return:
29187a9e
TH
1973 * %false if the pool doesn't need management and the caller can safely
1974 * start processing works, %true if management function was performed and
1975 * the conditions that the caller verified before calling the function may
1976 * no longer be true.
73f53c4a 1977 */
e22bee78 1978static bool manage_workers(struct worker *worker)
73f53c4a 1979{
63d95a91 1980 struct worker_pool *pool = worker->pool;
73f53c4a 1981
bc3a1afc 1982 /*
bc3a1afc
TH
1983 * Anyone who successfully grabs manager_arb wins the arbitration
1984 * and becomes the manager. mutex_trylock() on pool->manager_arb
1985 * failure while holding pool->lock reliably indicates that someone
1986 * else is managing the pool and the worker which failed trylock
1987 * can proceed to executing work items. This means that anyone
1988 * grabbing manager_arb is responsible for actually performing
1989 * manager duties. If manager_arb is grabbed and released without
1990 * actual management, the pool may stall indefinitely.
bc3a1afc 1991 */
34a06bd6 1992 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1993 return false;
2607d7a6 1994 pool->manager = worker;
1e19ffc6 1995
29187a9e 1996 maybe_create_worker(pool);
e22bee78 1997
2607d7a6 1998 pool->manager = NULL;
34a06bd6 1999 mutex_unlock(&pool->manager_arb);
29187a9e 2000 return true;
73f53c4a
TH
2001}
2002
a62428c0
TH
2003/**
2004 * process_one_work - process single work
c34056a3 2005 * @worker: self
a62428c0
TH
2006 * @work: work to process
2007 *
2008 * Process @work. This function contains all the logics necessary to
2009 * process a single work including synchronization against and
2010 * interaction with other workers on the same cpu, queueing and
2011 * flushing. As long as context requirement is met, any worker can
2012 * call this function to process a work.
2013 *
2014 * CONTEXT:
d565ed63 2015 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2016 */
c34056a3 2017static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2018__releases(&pool->lock)
2019__acquires(&pool->lock)
a62428c0 2020{
112202d9 2021 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2022 struct worker_pool *pool = worker->pool;
112202d9 2023 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2024 int work_color;
7e11629d 2025 struct worker *collision;
a62428c0
TH
2026#ifdef CONFIG_LOCKDEP
2027 /*
2028 * It is permissible to free the struct work_struct from
2029 * inside the function that is called from it, this we need to
2030 * take into account for lockdep too. To avoid bogus "held
2031 * lock freed" warnings as well as problems when looking into
2032 * work->lockdep_map, make a copy and use that here.
2033 */
4d82a1de
PZ
2034 struct lockdep_map lockdep_map;
2035
2036 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2037#endif
807407c0 2038 /* ensure we're on the correct CPU */
85327af6 2039 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2040 raw_smp_processor_id() != pool->cpu);
25511a47 2041
7e11629d
TH
2042 /*
2043 * A single work shouldn't be executed concurrently by
2044 * multiple workers on a single cpu. Check whether anyone is
2045 * already processing the work. If so, defer the work to the
2046 * currently executing one.
2047 */
c9e7cf27 2048 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2049 if (unlikely(collision)) {
2050 move_linked_works(work, &collision->scheduled, NULL);
2051 return;
2052 }
2053
8930caba 2054 /* claim and dequeue */
a62428c0 2055 debug_work_deactivate(work);
c9e7cf27 2056 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2057 worker->current_work = work;
a2c1c57b 2058 worker->current_func = work->func;
112202d9 2059 worker->current_pwq = pwq;
73f53c4a 2060 work_color = get_work_color(work);
7a22ad75 2061
a62428c0
TH
2062 list_del_init(&work->entry);
2063
fb0e7beb 2064 /*
228f1d00
LJ
2065 * CPU intensive works don't participate in concurrency management.
2066 * They're the scheduler's responsibility. This takes @worker out
2067 * of concurrency management and the next code block will chain
2068 * execution of the pending work items.
fb0e7beb
TH
2069 */
2070 if (unlikely(cpu_intensive))
228f1d00 2071 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2072
974271c4 2073 /*
a489a03e
LJ
2074 * Wake up another worker if necessary. The condition is always
2075 * false for normal per-cpu workers since nr_running would always
2076 * be >= 1 at this point. This is used to chain execution of the
2077 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2078 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2079 */
a489a03e 2080 if (need_more_worker(pool))
63d95a91 2081 wake_up_worker(pool);
974271c4 2082
8930caba 2083 /*
7c3eed5c 2084 * Record the last pool and clear PENDING which should be the last
d565ed63 2085 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2086 * PENDING and queued state changes happen together while IRQ is
2087 * disabled.
8930caba 2088 */
7c3eed5c 2089 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2090
d565ed63 2091 spin_unlock_irq(&pool->lock);
a62428c0 2092
a1d14934 2093 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2094 lock_map_acquire(&lockdep_map);
e6f3faa7 2095 /*
f52be570
PZ
2096 * Strictly speaking we should mark the invariant state without holding
2097 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2098 *
2099 * However, that would result in:
2100 *
2101 * A(W1)
2102 * WFC(C)
2103 * A(W1)
2104 * C(C)
2105 *
2106 * Which would create W1->C->W1 dependencies, even though there is no
2107 * actual deadlock possible. There are two solutions, using a
2108 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2109 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2110 * these locks.
2111 *
2112 * AFAICT there is no possible deadlock scenario between the
2113 * flush_work() and complete() primitives (except for single-threaded
2114 * workqueues), so hiding them isn't a problem.
2115 */
f52be570 2116 lockdep_invariant_state(true);
e36c886a 2117 trace_workqueue_execute_start(work);
a2c1c57b 2118 worker->current_func(work);
e36c886a
AV
2119 /*
2120 * While we must be careful to not use "work" after this, the trace
2121 * point will only record its address.
2122 */
2123 trace_workqueue_execute_end(work);
a62428c0 2124 lock_map_release(&lockdep_map);
112202d9 2125 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2126
2127 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2128 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2129 " last function: %pf\n",
a2c1c57b
TH
2130 current->comm, preempt_count(), task_pid_nr(current),
2131 worker->current_func);
a62428c0
TH
2132 debug_show_held_locks(current);
2133 dump_stack();
2134 }
2135
b22ce278
TH
2136 /*
2137 * The following prevents a kworker from hogging CPU on !PREEMPT
2138 * kernels, where a requeueing work item waiting for something to
2139 * happen could deadlock with stop_machine as such work item could
2140 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2141 * stop_machine. At the same time, report a quiescent RCU state so
2142 * the same condition doesn't freeze RCU.
b22ce278 2143 */
3e28e377 2144 cond_resched_rcu_qs();
b22ce278 2145
d565ed63 2146 spin_lock_irq(&pool->lock);
a62428c0 2147
fb0e7beb
TH
2148 /* clear cpu intensive status */
2149 if (unlikely(cpu_intensive))
2150 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2151
a62428c0 2152 /* we're done with it, release */
42f8570f 2153 hash_del(&worker->hentry);
c34056a3 2154 worker->current_work = NULL;
a2c1c57b 2155 worker->current_func = NULL;
112202d9 2156 worker->current_pwq = NULL;
3d1cb205 2157 worker->desc_valid = false;
112202d9 2158 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2159}
2160
affee4b2
TH
2161/**
2162 * process_scheduled_works - process scheduled works
2163 * @worker: self
2164 *
2165 * Process all scheduled works. Please note that the scheduled list
2166 * may change while processing a work, so this function repeatedly
2167 * fetches a work from the top and executes it.
2168 *
2169 * CONTEXT:
d565ed63 2170 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2171 * multiple times.
2172 */
2173static void process_scheduled_works(struct worker *worker)
1da177e4 2174{
affee4b2
TH
2175 while (!list_empty(&worker->scheduled)) {
2176 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2177 struct work_struct, entry);
c34056a3 2178 process_one_work(worker, work);
1da177e4 2179 }
1da177e4
LT
2180}
2181
4690c4ab
TH
2182/**
2183 * worker_thread - the worker thread function
c34056a3 2184 * @__worker: self
4690c4ab 2185 *
c5aa87bb
TH
2186 * The worker thread function. All workers belong to a worker_pool -
2187 * either a per-cpu one or dynamic unbound one. These workers process all
2188 * work items regardless of their specific target workqueue. The only
2189 * exception is work items which belong to workqueues with a rescuer which
2190 * will be explained in rescuer_thread().
d185af30
YB
2191 *
2192 * Return: 0
4690c4ab 2193 */
c34056a3 2194static int worker_thread(void *__worker)
1da177e4 2195{
c34056a3 2196 struct worker *worker = __worker;
bd7bdd43 2197 struct worker_pool *pool = worker->pool;
1da177e4 2198
e22bee78
TH
2199 /* tell the scheduler that this is a workqueue worker */
2200 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2201woke_up:
d565ed63 2202 spin_lock_irq(&pool->lock);
1da177e4 2203
a9ab775b
TH
2204 /* am I supposed to die? */
2205 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2206 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2207 WARN_ON_ONCE(!list_empty(&worker->entry));
2208 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2209
2210 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2211 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2212 worker_detach_from_pool(worker, pool);
2213 kfree(worker);
a9ab775b 2214 return 0;
c8e55f36 2215 }
affee4b2 2216
c8e55f36 2217 worker_leave_idle(worker);
db7bccf4 2218recheck:
e22bee78 2219 /* no more worker necessary? */
63d95a91 2220 if (!need_more_worker(pool))
e22bee78
TH
2221 goto sleep;
2222
2223 /* do we need to manage? */
63d95a91 2224 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2225 goto recheck;
2226
c8e55f36
TH
2227 /*
2228 * ->scheduled list can only be filled while a worker is
2229 * preparing to process a work or actually processing it.
2230 * Make sure nobody diddled with it while I was sleeping.
2231 */
6183c009 2232 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2233
e22bee78 2234 /*
a9ab775b
TH
2235 * Finish PREP stage. We're guaranteed to have at least one idle
2236 * worker or that someone else has already assumed the manager
2237 * role. This is where @worker starts participating in concurrency
2238 * management if applicable and concurrency management is restored
2239 * after being rebound. See rebind_workers() for details.
e22bee78 2240 */
a9ab775b 2241 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2242
2243 do {
c8e55f36 2244 struct work_struct *work =
bd7bdd43 2245 list_first_entry(&pool->worklist,
c8e55f36
TH
2246 struct work_struct, entry);
2247
82607adc
TH
2248 pool->watchdog_ts = jiffies;
2249
c8e55f36
TH
2250 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2251 /* optimization path, not strictly necessary */
2252 process_one_work(worker, work);
2253 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2254 process_scheduled_works(worker);
c8e55f36
TH
2255 } else {
2256 move_linked_works(work, &worker->scheduled, NULL);
2257 process_scheduled_works(worker);
affee4b2 2258 }
63d95a91 2259 } while (keep_working(pool));
e22bee78 2260
228f1d00 2261 worker_set_flags(worker, WORKER_PREP);
d313dd85 2262sleep:
c8e55f36 2263 /*
d565ed63
TH
2264 * pool->lock is held and there's no work to process and no need to
2265 * manage, sleep. Workers are woken up only while holding
2266 * pool->lock or from local cpu, so setting the current state
2267 * before releasing pool->lock is enough to prevent losing any
2268 * event.
c8e55f36
TH
2269 */
2270 worker_enter_idle(worker);
c5a94a61 2271 __set_current_state(TASK_IDLE);
d565ed63 2272 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2273 schedule();
2274 goto woke_up;
1da177e4
LT
2275}
2276
e22bee78
TH
2277/**
2278 * rescuer_thread - the rescuer thread function
111c225a 2279 * @__rescuer: self
e22bee78
TH
2280 *
2281 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2282 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2283 *
706026c2 2284 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2285 * worker which uses GFP_KERNEL allocation which has slight chance of
2286 * developing into deadlock if some works currently on the same queue
2287 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2288 * the problem rescuer solves.
2289 *
706026c2
TH
2290 * When such condition is possible, the pool summons rescuers of all
2291 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2292 * those works so that forward progress can be guaranteed.
2293 *
2294 * This should happen rarely.
d185af30
YB
2295 *
2296 * Return: 0
e22bee78 2297 */
111c225a 2298static int rescuer_thread(void *__rescuer)
e22bee78 2299{
111c225a
TH
2300 struct worker *rescuer = __rescuer;
2301 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2302 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2303 bool should_stop;
e22bee78
TH
2304
2305 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2306
2307 /*
2308 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2309 * doesn't participate in concurrency management.
2310 */
2311 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78 2312repeat:
c5a94a61 2313 set_current_state(TASK_IDLE);
e22bee78 2314
4d595b86
LJ
2315 /*
2316 * By the time the rescuer is requested to stop, the workqueue
2317 * shouldn't have any work pending, but @wq->maydays may still have
2318 * pwq(s) queued. This can happen by non-rescuer workers consuming
2319 * all the work items before the rescuer got to them. Go through
2320 * @wq->maydays processing before acting on should_stop so that the
2321 * list is always empty on exit.
2322 */
2323 should_stop = kthread_should_stop();
e22bee78 2324
493a1724 2325 /* see whether any pwq is asking for help */
2e109a28 2326 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2327
2328 while (!list_empty(&wq->maydays)) {
2329 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2330 struct pool_workqueue, mayday_node);
112202d9 2331 struct worker_pool *pool = pwq->pool;
e22bee78 2332 struct work_struct *work, *n;
82607adc 2333 bool first = true;
e22bee78
TH
2334
2335 __set_current_state(TASK_RUNNING);
493a1724
TH
2336 list_del_init(&pwq->mayday_node);
2337
2e109a28 2338 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2339
51697d39
LJ
2340 worker_attach_to_pool(rescuer, pool);
2341
2342 spin_lock_irq(&pool->lock);
b3104104 2343 rescuer->pool = pool;
e22bee78
TH
2344
2345 /*
2346 * Slurp in all works issued via this workqueue and
2347 * process'em.
2348 */
0479c8c5 2349 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2350 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2351 if (get_work_pwq(work) == pwq) {
2352 if (first)
2353 pool->watchdog_ts = jiffies;
e22bee78 2354 move_linked_works(work, scheduled, &n);
82607adc
TH
2355 }
2356 first = false;
2357 }
e22bee78 2358
008847f6
N
2359 if (!list_empty(scheduled)) {
2360 process_scheduled_works(rescuer);
2361
2362 /*
2363 * The above execution of rescued work items could
2364 * have created more to rescue through
2365 * pwq_activate_first_delayed() or chained
2366 * queueing. Let's put @pwq back on mayday list so
2367 * that such back-to-back work items, which may be
2368 * being used to relieve memory pressure, don't
2369 * incur MAYDAY_INTERVAL delay inbetween.
2370 */
2371 if (need_to_create_worker(pool)) {
2372 spin_lock(&wq_mayday_lock);
2373 get_pwq(pwq);
2374 list_move_tail(&pwq->mayday_node, &wq->maydays);
2375 spin_unlock(&wq_mayday_lock);
2376 }
2377 }
7576958a 2378
77668c8b
LJ
2379 /*
2380 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2381 * go away while we're still attached to it.
77668c8b
LJ
2382 */
2383 put_pwq(pwq);
2384
7576958a 2385 /*
d8ca83e6 2386 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2387 * regular worker; otherwise, we end up with 0 concurrency
2388 * and stalling the execution.
2389 */
d8ca83e6 2390 if (need_more_worker(pool))
63d95a91 2391 wake_up_worker(pool);
7576958a 2392
b3104104 2393 rescuer->pool = NULL;
13b1d625
LJ
2394 spin_unlock_irq(&pool->lock);
2395
2396 worker_detach_from_pool(rescuer, pool);
2397
2398 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2399 }
2400
2e109a28 2401 spin_unlock_irq(&wq_mayday_lock);
493a1724 2402
4d595b86
LJ
2403 if (should_stop) {
2404 __set_current_state(TASK_RUNNING);
2405 rescuer->task->flags &= ~PF_WQ_WORKER;
2406 return 0;
2407 }
2408
111c225a
TH
2409 /* rescuers should never participate in concurrency management */
2410 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2411 schedule();
2412 goto repeat;
1da177e4
LT
2413}
2414
fca839c0
TH
2415/**
2416 * check_flush_dependency - check for flush dependency sanity
2417 * @target_wq: workqueue being flushed
2418 * @target_work: work item being flushed (NULL for workqueue flushes)
2419 *
2420 * %current is trying to flush the whole @target_wq or @target_work on it.
2421 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2422 * reclaiming memory or running on a workqueue which doesn't have
2423 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2424 * a deadlock.
2425 */
2426static void check_flush_dependency(struct workqueue_struct *target_wq,
2427 struct work_struct *target_work)
2428{
2429 work_func_t target_func = target_work ? target_work->func : NULL;
2430 struct worker *worker;
2431
2432 if (target_wq->flags & WQ_MEM_RECLAIM)
2433 return;
2434
2435 worker = current_wq_worker();
2436
2437 WARN_ONCE(current->flags & PF_MEMALLOC,
2438 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2439 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2440 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2441 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2442 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2443 worker->current_pwq->wq->name, worker->current_func,
2444 target_wq->name, target_func);
2445}
2446
fc2e4d70
ON
2447struct wq_barrier {
2448 struct work_struct work;
2449 struct completion done;
2607d7a6 2450 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2451};
2452
2453static void wq_barrier_func(struct work_struct *work)
2454{
2455 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2456 complete(&barr->done);
2457}
2458
4690c4ab
TH
2459/**
2460 * insert_wq_barrier - insert a barrier work
112202d9 2461 * @pwq: pwq to insert barrier into
4690c4ab 2462 * @barr: wq_barrier to insert
affee4b2
TH
2463 * @target: target work to attach @barr to
2464 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2465 *
affee4b2
TH
2466 * @barr is linked to @target such that @barr is completed only after
2467 * @target finishes execution. Please note that the ordering
2468 * guarantee is observed only with respect to @target and on the local
2469 * cpu.
2470 *
2471 * Currently, a queued barrier can't be canceled. This is because
2472 * try_to_grab_pending() can't determine whether the work to be
2473 * grabbed is at the head of the queue and thus can't clear LINKED
2474 * flag of the previous work while there must be a valid next work
2475 * after a work with LINKED flag set.
2476 *
2477 * Note that when @worker is non-NULL, @target may be modified
112202d9 2478 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2479 *
2480 * CONTEXT:
d565ed63 2481 * spin_lock_irq(pool->lock).
4690c4ab 2482 */
112202d9 2483static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2484 struct wq_barrier *barr,
2485 struct work_struct *target, struct worker *worker)
fc2e4d70 2486{
affee4b2
TH
2487 struct list_head *head;
2488 unsigned int linked = 0;
2489
dc186ad7 2490 /*
d565ed63 2491 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2492 * as we know for sure that this will not trigger any of the
2493 * checks and call back into the fixup functions where we
2494 * might deadlock.
2495 */
ca1cab37 2496 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2497 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5
BF
2498
2499 /*
2500 * Explicitly init the crosslock for wq_barrier::done, make its lock
2501 * key a subkey of the corresponding work. As a result we won't
2502 * build a dependency between wq_barrier::done and unrelated work.
2503 */
2504 lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2505 "(complete)wq_barr::done",
2506 target->lockdep_map.key, 1);
2507 __init_completion(&barr->done);
2607d7a6 2508 barr->task = current;
83c22520 2509
affee4b2
TH
2510 /*
2511 * If @target is currently being executed, schedule the
2512 * barrier to the worker; otherwise, put it after @target.
2513 */
2514 if (worker)
2515 head = worker->scheduled.next;
2516 else {
2517 unsigned long *bits = work_data_bits(target);
2518
2519 head = target->entry.next;
2520 /* there can already be other linked works, inherit and set */
2521 linked = *bits & WORK_STRUCT_LINKED;
2522 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2523 }
2524
dc186ad7 2525 debug_work_activate(&barr->work);
112202d9 2526 insert_work(pwq, &barr->work, head,
affee4b2 2527 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2528}
2529
73f53c4a 2530/**
112202d9 2531 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2532 * @wq: workqueue being flushed
2533 * @flush_color: new flush color, < 0 for no-op
2534 * @work_color: new work color, < 0 for no-op
2535 *
112202d9 2536 * Prepare pwqs for workqueue flushing.
73f53c4a 2537 *
112202d9
TH
2538 * If @flush_color is non-negative, flush_color on all pwqs should be
2539 * -1. If no pwq has in-flight commands at the specified color, all
2540 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2541 * has in flight commands, its pwq->flush_color is set to
2542 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2543 * wakeup logic is armed and %true is returned.
2544 *
2545 * The caller should have initialized @wq->first_flusher prior to
2546 * calling this function with non-negative @flush_color. If
2547 * @flush_color is negative, no flush color update is done and %false
2548 * is returned.
2549 *
112202d9 2550 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2551 * work_color which is previous to @work_color and all will be
2552 * advanced to @work_color.
2553 *
2554 * CONTEXT:
3c25a55d 2555 * mutex_lock(wq->mutex).
73f53c4a 2556 *
d185af30 2557 * Return:
73f53c4a
TH
2558 * %true if @flush_color >= 0 and there's something to flush. %false
2559 * otherwise.
2560 */
112202d9 2561static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2562 int flush_color, int work_color)
1da177e4 2563{
73f53c4a 2564 bool wait = false;
49e3cf44 2565 struct pool_workqueue *pwq;
1da177e4 2566
73f53c4a 2567 if (flush_color >= 0) {
6183c009 2568 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2569 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2570 }
2355b70f 2571
49e3cf44 2572 for_each_pwq(pwq, wq) {
112202d9 2573 struct worker_pool *pool = pwq->pool;
fc2e4d70 2574
b09f4fd3 2575 spin_lock_irq(&pool->lock);
83c22520 2576
73f53c4a 2577 if (flush_color >= 0) {
6183c009 2578 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2579
112202d9
TH
2580 if (pwq->nr_in_flight[flush_color]) {
2581 pwq->flush_color = flush_color;
2582 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2583 wait = true;
2584 }
2585 }
1da177e4 2586
73f53c4a 2587 if (work_color >= 0) {
6183c009 2588 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2589 pwq->work_color = work_color;
73f53c4a 2590 }
1da177e4 2591
b09f4fd3 2592 spin_unlock_irq(&pool->lock);
1da177e4 2593 }
2355b70f 2594
112202d9 2595 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2596 complete(&wq->first_flusher->done);
14441960 2597
73f53c4a 2598 return wait;
1da177e4
LT
2599}
2600
0fcb78c2 2601/**
1da177e4 2602 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2603 * @wq: workqueue to flush
1da177e4 2604 *
c5aa87bb
TH
2605 * This function sleeps until all work items which were queued on entry
2606 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2607 */
7ad5b3a5 2608void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2609{
73f53c4a
TH
2610 struct wq_flusher this_flusher = {
2611 .list = LIST_HEAD_INIT(this_flusher.list),
2612 .flush_color = -1,
2613 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2614 };
2615 int next_color;
1da177e4 2616
3347fa09
TH
2617 if (WARN_ON(!wq_online))
2618 return;
2619
3295f0ef
IM
2620 lock_map_acquire(&wq->lockdep_map);
2621 lock_map_release(&wq->lockdep_map);
73f53c4a 2622
3c25a55d 2623 mutex_lock(&wq->mutex);
73f53c4a
TH
2624
2625 /*
2626 * Start-to-wait phase
2627 */
2628 next_color = work_next_color(wq->work_color);
2629
2630 if (next_color != wq->flush_color) {
2631 /*
2632 * Color space is not full. The current work_color
2633 * becomes our flush_color and work_color is advanced
2634 * by one.
2635 */
6183c009 2636 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2637 this_flusher.flush_color = wq->work_color;
2638 wq->work_color = next_color;
2639
2640 if (!wq->first_flusher) {
2641 /* no flush in progress, become the first flusher */
6183c009 2642 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2643
2644 wq->first_flusher = &this_flusher;
2645
112202d9 2646 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2647 wq->work_color)) {
2648 /* nothing to flush, done */
2649 wq->flush_color = next_color;
2650 wq->first_flusher = NULL;
2651 goto out_unlock;
2652 }
2653 } else {
2654 /* wait in queue */
6183c009 2655 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2656 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2657 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2658 }
2659 } else {
2660 /*
2661 * Oops, color space is full, wait on overflow queue.
2662 * The next flush completion will assign us
2663 * flush_color and transfer to flusher_queue.
2664 */
2665 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2666 }
2667
fca839c0
TH
2668 check_flush_dependency(wq, NULL);
2669
3c25a55d 2670 mutex_unlock(&wq->mutex);
73f53c4a
TH
2671
2672 wait_for_completion(&this_flusher.done);
2673
2674 /*
2675 * Wake-up-and-cascade phase
2676 *
2677 * First flushers are responsible for cascading flushes and
2678 * handling overflow. Non-first flushers can simply return.
2679 */
2680 if (wq->first_flusher != &this_flusher)
2681 return;
2682
3c25a55d 2683 mutex_lock(&wq->mutex);
73f53c4a 2684
4ce48b37
TH
2685 /* we might have raced, check again with mutex held */
2686 if (wq->first_flusher != &this_flusher)
2687 goto out_unlock;
2688
73f53c4a
TH
2689 wq->first_flusher = NULL;
2690
6183c009
TH
2691 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2692 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2693
2694 while (true) {
2695 struct wq_flusher *next, *tmp;
2696
2697 /* complete all the flushers sharing the current flush color */
2698 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2699 if (next->flush_color != wq->flush_color)
2700 break;
2701 list_del_init(&next->list);
2702 complete(&next->done);
2703 }
2704
6183c009
TH
2705 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2706 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2707
2708 /* this flush_color is finished, advance by one */
2709 wq->flush_color = work_next_color(wq->flush_color);
2710
2711 /* one color has been freed, handle overflow queue */
2712 if (!list_empty(&wq->flusher_overflow)) {
2713 /*
2714 * Assign the same color to all overflowed
2715 * flushers, advance work_color and append to
2716 * flusher_queue. This is the start-to-wait
2717 * phase for these overflowed flushers.
2718 */
2719 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2720 tmp->flush_color = wq->work_color;
2721
2722 wq->work_color = work_next_color(wq->work_color);
2723
2724 list_splice_tail_init(&wq->flusher_overflow,
2725 &wq->flusher_queue);
112202d9 2726 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2727 }
2728
2729 if (list_empty(&wq->flusher_queue)) {
6183c009 2730 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2731 break;
2732 }
2733
2734 /*
2735 * Need to flush more colors. Make the next flusher
112202d9 2736 * the new first flusher and arm pwqs.
73f53c4a 2737 */
6183c009
TH
2738 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2739 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2740
2741 list_del_init(&next->list);
2742 wq->first_flusher = next;
2743
112202d9 2744 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2745 break;
2746
2747 /*
2748 * Meh... this color is already done, clear first
2749 * flusher and repeat cascading.
2750 */
2751 wq->first_flusher = NULL;
2752 }
2753
2754out_unlock:
3c25a55d 2755 mutex_unlock(&wq->mutex);
1da177e4 2756}
1dadafa8 2757EXPORT_SYMBOL(flush_workqueue);
1da177e4 2758
9c5a2ba7
TH
2759/**
2760 * drain_workqueue - drain a workqueue
2761 * @wq: workqueue to drain
2762 *
2763 * Wait until the workqueue becomes empty. While draining is in progress,
2764 * only chain queueing is allowed. IOW, only currently pending or running
2765 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2766 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2767 * by the depth of chaining and should be relatively short. Whine if it
2768 * takes too long.
2769 */
2770void drain_workqueue(struct workqueue_struct *wq)
2771{
2772 unsigned int flush_cnt = 0;
49e3cf44 2773 struct pool_workqueue *pwq;
9c5a2ba7
TH
2774
2775 /*
2776 * __queue_work() needs to test whether there are drainers, is much
2777 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2778 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2779 */
87fc741e 2780 mutex_lock(&wq->mutex);
9c5a2ba7 2781 if (!wq->nr_drainers++)
618b01eb 2782 wq->flags |= __WQ_DRAINING;
87fc741e 2783 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2784reflush:
2785 flush_workqueue(wq);
2786
b09f4fd3 2787 mutex_lock(&wq->mutex);
76af4d93 2788
49e3cf44 2789 for_each_pwq(pwq, wq) {
fa2563e4 2790 bool drained;
9c5a2ba7 2791
b09f4fd3 2792 spin_lock_irq(&pwq->pool->lock);
112202d9 2793 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2794 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2795
2796 if (drained)
9c5a2ba7
TH
2797 continue;
2798
2799 if (++flush_cnt == 10 ||
2800 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2801 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2802 wq->name, flush_cnt);
76af4d93 2803
b09f4fd3 2804 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2805 goto reflush;
2806 }
2807
9c5a2ba7 2808 if (!--wq->nr_drainers)
618b01eb 2809 wq->flags &= ~__WQ_DRAINING;
87fc741e 2810 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2811}
2812EXPORT_SYMBOL_GPL(drain_workqueue);
2813
606a5020 2814static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2815{
affee4b2 2816 struct worker *worker = NULL;
c9e7cf27 2817 struct worker_pool *pool;
112202d9 2818 struct pool_workqueue *pwq;
db700897
ON
2819
2820 might_sleep();
fa1b54e6
TH
2821
2822 local_irq_disable();
c9e7cf27 2823 pool = get_work_pool(work);
fa1b54e6
TH
2824 if (!pool) {
2825 local_irq_enable();
baf59022 2826 return false;
fa1b54e6 2827 }
db700897 2828
fa1b54e6 2829 spin_lock(&pool->lock);
0b3dae68 2830 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2831 pwq = get_work_pwq(work);
2832 if (pwq) {
2833 if (unlikely(pwq->pool != pool))
4690c4ab 2834 goto already_gone;
606a5020 2835 } else {
c9e7cf27 2836 worker = find_worker_executing_work(pool, work);
affee4b2 2837 if (!worker)
4690c4ab 2838 goto already_gone;
112202d9 2839 pwq = worker->current_pwq;
606a5020 2840 }
db700897 2841
fca839c0
TH
2842 check_flush_dependency(pwq->wq, work);
2843
112202d9 2844 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2845 spin_unlock_irq(&pool->lock);
7a22ad75 2846
e159489b 2847 /*
a1d14934
PZ
2848 * Force a lock recursion deadlock when using flush_work() inside a
2849 * single-threaded or rescuer equipped workqueue.
2850 *
2851 * For single threaded workqueues the deadlock happens when the work
2852 * is after the work issuing the flush_work(). For rescuer equipped
2853 * workqueues the deadlock happens when the rescuer stalls, blocking
2854 * forward progress.
e159489b 2855 */
a1d14934 2856 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
112202d9 2857 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2858 lock_map_release(&pwq->wq->lockdep_map);
2859 }
e159489b 2860
401a8d04 2861 return true;
4690c4ab 2862already_gone:
d565ed63 2863 spin_unlock_irq(&pool->lock);
401a8d04 2864 return false;
db700897 2865}
baf59022
TH
2866
2867/**
2868 * flush_work - wait for a work to finish executing the last queueing instance
2869 * @work: the work to flush
2870 *
606a5020
TH
2871 * Wait until @work has finished execution. @work is guaranteed to be idle
2872 * on return if it hasn't been requeued since flush started.
baf59022 2873 *
d185af30 2874 * Return:
baf59022
TH
2875 * %true if flush_work() waited for the work to finish execution,
2876 * %false if it was already idle.
2877 */
2878bool flush_work(struct work_struct *work)
2879{
12997d1a
BH
2880 struct wq_barrier barr;
2881
3347fa09
TH
2882 if (WARN_ON(!wq_online))
2883 return false;
2884
0976dfc1
SB
2885 lock_map_acquire(&work->lockdep_map);
2886 lock_map_release(&work->lockdep_map);
2887
12997d1a
BH
2888 if (start_flush_work(work, &barr)) {
2889 wait_for_completion(&barr.done);
2890 destroy_work_on_stack(&barr.work);
2891 return true;
2892 } else {
2893 return false;
2894 }
6e84d644 2895}
606a5020 2896EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2897
8603e1b3 2898struct cwt_wait {
ac6424b9 2899 wait_queue_entry_t wait;
8603e1b3
TH
2900 struct work_struct *work;
2901};
2902
ac6424b9 2903static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2904{
2905 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2906
2907 if (cwait->work != key)
2908 return 0;
2909 return autoremove_wake_function(wait, mode, sync, key);
2910}
2911
36e227d2 2912static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2913{
8603e1b3 2914 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2915 unsigned long flags;
1f1f642e
ON
2916 int ret;
2917
2918 do {
bbb68dfa
TH
2919 ret = try_to_grab_pending(work, is_dwork, &flags);
2920 /*
8603e1b3
TH
2921 * If someone else is already canceling, wait for it to
2922 * finish. flush_work() doesn't work for PREEMPT_NONE
2923 * because we may get scheduled between @work's completion
2924 * and the other canceling task resuming and clearing
2925 * CANCELING - flush_work() will return false immediately
2926 * as @work is no longer busy, try_to_grab_pending() will
2927 * return -ENOENT as @work is still being canceled and the
2928 * other canceling task won't be able to clear CANCELING as
2929 * we're hogging the CPU.
2930 *
2931 * Let's wait for completion using a waitqueue. As this
2932 * may lead to the thundering herd problem, use a custom
2933 * wake function which matches @work along with exclusive
2934 * wait and wakeup.
bbb68dfa 2935 */
8603e1b3
TH
2936 if (unlikely(ret == -ENOENT)) {
2937 struct cwt_wait cwait;
2938
2939 init_wait(&cwait.wait);
2940 cwait.wait.func = cwt_wakefn;
2941 cwait.work = work;
2942
2943 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2944 TASK_UNINTERRUPTIBLE);
2945 if (work_is_canceling(work))
2946 schedule();
2947 finish_wait(&cancel_waitq, &cwait.wait);
2948 }
1f1f642e
ON
2949 } while (unlikely(ret < 0));
2950
bbb68dfa
TH
2951 /* tell other tasks trying to grab @work to back off */
2952 mark_work_canceling(work);
2953 local_irq_restore(flags);
2954
3347fa09
TH
2955 /*
2956 * This allows canceling during early boot. We know that @work
2957 * isn't executing.
2958 */
2959 if (wq_online)
2960 flush_work(work);
2961
7a22ad75 2962 clear_work_data(work);
8603e1b3
TH
2963
2964 /*
2965 * Paired with prepare_to_wait() above so that either
2966 * waitqueue_active() is visible here or !work_is_canceling() is
2967 * visible there.
2968 */
2969 smp_mb();
2970 if (waitqueue_active(&cancel_waitq))
2971 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2972
1f1f642e
ON
2973 return ret;
2974}
2975
6e84d644 2976/**
401a8d04
TH
2977 * cancel_work_sync - cancel a work and wait for it to finish
2978 * @work: the work to cancel
6e84d644 2979 *
401a8d04
TH
2980 * Cancel @work and wait for its execution to finish. This function
2981 * can be used even if the work re-queues itself or migrates to
2982 * another workqueue. On return from this function, @work is
2983 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2984 *
401a8d04
TH
2985 * cancel_work_sync(&delayed_work->work) must not be used for
2986 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2987 *
401a8d04 2988 * The caller must ensure that the workqueue on which @work was last
6e84d644 2989 * queued can't be destroyed before this function returns.
401a8d04 2990 *
d185af30 2991 * Return:
401a8d04 2992 * %true if @work was pending, %false otherwise.
6e84d644 2993 */
401a8d04 2994bool cancel_work_sync(struct work_struct *work)
6e84d644 2995{
36e227d2 2996 return __cancel_work_timer(work, false);
b89deed3 2997}
28e53bdd 2998EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2999
6e84d644 3000/**
401a8d04
TH
3001 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3002 * @dwork: the delayed work to flush
6e84d644 3003 *
401a8d04
TH
3004 * Delayed timer is cancelled and the pending work is queued for
3005 * immediate execution. Like flush_work(), this function only
3006 * considers the last queueing instance of @dwork.
1f1f642e 3007 *
d185af30 3008 * Return:
401a8d04
TH
3009 * %true if flush_work() waited for the work to finish execution,
3010 * %false if it was already idle.
6e84d644 3011 */
401a8d04
TH
3012bool flush_delayed_work(struct delayed_work *dwork)
3013{
8930caba 3014 local_irq_disable();
401a8d04 3015 if (del_timer_sync(&dwork->timer))
60c057bc 3016 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3017 local_irq_enable();
401a8d04
TH
3018 return flush_work(&dwork->work);
3019}
3020EXPORT_SYMBOL(flush_delayed_work);
3021
f72b8792
JA
3022static bool __cancel_work(struct work_struct *work, bool is_dwork)
3023{
3024 unsigned long flags;
3025 int ret;
3026
3027 do {
3028 ret = try_to_grab_pending(work, is_dwork, &flags);
3029 } while (unlikely(ret == -EAGAIN));
3030
3031 if (unlikely(ret < 0))
3032 return false;
3033
3034 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3035 local_irq_restore(flags);
3036 return ret;
3037}
3038
3039/*
3040 * See cancel_delayed_work()
3041 */
3042bool cancel_work(struct work_struct *work)
3043{
3044 return __cancel_work(work, false);
3045}
3046
09383498 3047/**
57b30ae7
TH
3048 * cancel_delayed_work - cancel a delayed work
3049 * @dwork: delayed_work to cancel
09383498 3050 *
d185af30
YB
3051 * Kill off a pending delayed_work.
3052 *
3053 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3054 * pending.
3055 *
3056 * Note:
3057 * The work callback function may still be running on return, unless
3058 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3059 * use cancel_delayed_work_sync() to wait on it.
09383498 3060 *
57b30ae7 3061 * This function is safe to call from any context including IRQ handler.
09383498 3062 */
57b30ae7 3063bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3064{
f72b8792 3065 return __cancel_work(&dwork->work, true);
09383498 3066}
57b30ae7 3067EXPORT_SYMBOL(cancel_delayed_work);
09383498 3068
401a8d04
TH
3069/**
3070 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3071 * @dwork: the delayed work cancel
3072 *
3073 * This is cancel_work_sync() for delayed works.
3074 *
d185af30 3075 * Return:
401a8d04
TH
3076 * %true if @dwork was pending, %false otherwise.
3077 */
3078bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3079{
36e227d2 3080 return __cancel_work_timer(&dwork->work, true);
6e84d644 3081}
f5a421a4 3082EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3083
b6136773 3084/**
31ddd871 3085 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3086 * @func: the function to call
b6136773 3087 *
31ddd871
TH
3088 * schedule_on_each_cpu() executes @func on each online CPU using the
3089 * system workqueue and blocks until all CPUs have completed.
b6136773 3090 * schedule_on_each_cpu() is very slow.
31ddd871 3091 *
d185af30 3092 * Return:
31ddd871 3093 * 0 on success, -errno on failure.
b6136773 3094 */
65f27f38 3095int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3096{
3097 int cpu;
38f51568 3098 struct work_struct __percpu *works;
15316ba8 3099
b6136773
AM
3100 works = alloc_percpu(struct work_struct);
3101 if (!works)
15316ba8 3102 return -ENOMEM;
b6136773 3103
93981800
TH
3104 get_online_cpus();
3105
15316ba8 3106 for_each_online_cpu(cpu) {
9bfb1839
IM
3107 struct work_struct *work = per_cpu_ptr(works, cpu);
3108
3109 INIT_WORK(work, func);
b71ab8c2 3110 schedule_work_on(cpu, work);
65a64464 3111 }
93981800
TH
3112
3113 for_each_online_cpu(cpu)
3114 flush_work(per_cpu_ptr(works, cpu));
3115
95402b38 3116 put_online_cpus();
b6136773 3117 free_percpu(works);
15316ba8
CL
3118 return 0;
3119}
3120
1fa44eca
JB
3121/**
3122 * execute_in_process_context - reliably execute the routine with user context
3123 * @fn: the function to execute
1fa44eca
JB
3124 * @ew: guaranteed storage for the execute work structure (must
3125 * be available when the work executes)
3126 *
3127 * Executes the function immediately if process context is available,
3128 * otherwise schedules the function for delayed execution.
3129 *
d185af30 3130 * Return: 0 - function was executed
1fa44eca
JB
3131 * 1 - function was scheduled for execution
3132 */
65f27f38 3133int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3134{
3135 if (!in_interrupt()) {
65f27f38 3136 fn(&ew->work);
1fa44eca
JB
3137 return 0;
3138 }
3139
65f27f38 3140 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3141 schedule_work(&ew->work);
3142
3143 return 1;
3144}
3145EXPORT_SYMBOL_GPL(execute_in_process_context);
3146
6ba94429
FW
3147/**
3148 * free_workqueue_attrs - free a workqueue_attrs
3149 * @attrs: workqueue_attrs to free
226223ab 3150 *
6ba94429 3151 * Undo alloc_workqueue_attrs().
226223ab 3152 */
6ba94429 3153void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3154{
6ba94429
FW
3155 if (attrs) {
3156 free_cpumask_var(attrs->cpumask);
3157 kfree(attrs);
3158 }
226223ab
TH
3159}
3160
6ba94429
FW
3161/**
3162 * alloc_workqueue_attrs - allocate a workqueue_attrs
3163 * @gfp_mask: allocation mask to use
3164 *
3165 * Allocate a new workqueue_attrs, initialize with default settings and
3166 * return it.
3167 *
3168 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3169 */
3170struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3171{
6ba94429 3172 struct workqueue_attrs *attrs;
226223ab 3173
6ba94429
FW
3174 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3175 if (!attrs)
3176 goto fail;
3177 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3178 goto fail;
3179
3180 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3181 return attrs;
3182fail:
3183 free_workqueue_attrs(attrs);
3184 return NULL;
226223ab
TH
3185}
3186
6ba94429
FW
3187static void copy_workqueue_attrs(struct workqueue_attrs *to,
3188 const struct workqueue_attrs *from)
226223ab 3189{
6ba94429
FW
3190 to->nice = from->nice;
3191 cpumask_copy(to->cpumask, from->cpumask);
3192 /*
3193 * Unlike hash and equality test, this function doesn't ignore
3194 * ->no_numa as it is used for both pool and wq attrs. Instead,
3195 * get_unbound_pool() explicitly clears ->no_numa after copying.
3196 */
3197 to->no_numa = from->no_numa;
226223ab
TH
3198}
3199
6ba94429
FW
3200/* hash value of the content of @attr */
3201static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3202{
6ba94429 3203 u32 hash = 0;
226223ab 3204
6ba94429
FW
3205 hash = jhash_1word(attrs->nice, hash);
3206 hash = jhash(cpumask_bits(attrs->cpumask),
3207 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3208 return hash;
226223ab 3209}
226223ab 3210
6ba94429
FW
3211/* content equality test */
3212static bool wqattrs_equal(const struct workqueue_attrs *a,
3213 const struct workqueue_attrs *b)
226223ab 3214{
6ba94429
FW
3215 if (a->nice != b->nice)
3216 return false;
3217 if (!cpumask_equal(a->cpumask, b->cpumask))
3218 return false;
3219 return true;
226223ab
TH
3220}
3221
6ba94429
FW
3222/**
3223 * init_worker_pool - initialize a newly zalloc'd worker_pool
3224 * @pool: worker_pool to initialize
3225 *
402dd89d 3226 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3227 *
3228 * Return: 0 on success, -errno on failure. Even on failure, all fields
3229 * inside @pool proper are initialized and put_unbound_pool() can be called
3230 * on @pool safely to release it.
3231 */
3232static int init_worker_pool(struct worker_pool *pool)
226223ab 3233{
6ba94429
FW
3234 spin_lock_init(&pool->lock);
3235 pool->id = -1;
3236 pool->cpu = -1;
3237 pool->node = NUMA_NO_NODE;
3238 pool->flags |= POOL_DISASSOCIATED;
82607adc 3239 pool->watchdog_ts = jiffies;
6ba94429
FW
3240 INIT_LIST_HEAD(&pool->worklist);
3241 INIT_LIST_HEAD(&pool->idle_list);
3242 hash_init(pool->busy_hash);
226223ab 3243
c30fb26b
GT
3244 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3245 (unsigned long)pool);
226223ab 3246
6ba94429
FW
3247 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3248 (unsigned long)pool);
226223ab 3249
6ba94429
FW
3250 mutex_init(&pool->manager_arb);
3251 mutex_init(&pool->attach_mutex);
3252 INIT_LIST_HEAD(&pool->workers);
226223ab 3253
6ba94429
FW
3254 ida_init(&pool->worker_ida);
3255 INIT_HLIST_NODE(&pool->hash_node);
3256 pool->refcnt = 1;
226223ab 3257
6ba94429
FW
3258 /* shouldn't fail above this point */
3259 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3260 if (!pool->attrs)
3261 return -ENOMEM;
3262 return 0;
226223ab
TH
3263}
3264
6ba94429 3265static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3266{
6ba94429
FW
3267 struct workqueue_struct *wq =
3268 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3269
6ba94429
FW
3270 if (!(wq->flags & WQ_UNBOUND))
3271 free_percpu(wq->cpu_pwqs);
226223ab 3272 else
6ba94429 3273 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3274
6ba94429
FW
3275 kfree(wq->rescuer);
3276 kfree(wq);
226223ab
TH
3277}
3278
6ba94429 3279static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3280{
6ba94429 3281 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3282
6ba94429
FW
3283 ida_destroy(&pool->worker_ida);
3284 free_workqueue_attrs(pool->attrs);
3285 kfree(pool);
226223ab
TH
3286}
3287
6ba94429
FW
3288/**
3289 * put_unbound_pool - put a worker_pool
3290 * @pool: worker_pool to put
3291 *
3292 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3293 * safe manner. get_unbound_pool() calls this function on its failure path
3294 * and this function should be able to release pools which went through,
3295 * successfully or not, init_worker_pool().
3296 *
3297 * Should be called with wq_pool_mutex held.
3298 */
3299static void put_unbound_pool(struct worker_pool *pool)
226223ab 3300{
6ba94429
FW
3301 DECLARE_COMPLETION_ONSTACK(detach_completion);
3302 struct worker *worker;
226223ab 3303
6ba94429 3304 lockdep_assert_held(&wq_pool_mutex);
226223ab 3305
6ba94429
FW
3306 if (--pool->refcnt)
3307 return;
226223ab 3308
6ba94429
FW
3309 /* sanity checks */
3310 if (WARN_ON(!(pool->cpu < 0)) ||
3311 WARN_ON(!list_empty(&pool->worklist)))
3312 return;
226223ab 3313
6ba94429
FW
3314 /* release id and unhash */
3315 if (pool->id >= 0)
3316 idr_remove(&worker_pool_idr, pool->id);
3317 hash_del(&pool->hash_node);
d55262c4 3318
6ba94429
FW
3319 /*
3320 * Become the manager and destroy all workers. Grabbing
3321 * manager_arb prevents @pool's workers from blocking on
3322 * attach_mutex.
3323 */
3324 mutex_lock(&pool->manager_arb);
d55262c4 3325
6ba94429
FW
3326 spin_lock_irq(&pool->lock);
3327 while ((worker = first_idle_worker(pool)))
3328 destroy_worker(worker);
3329 WARN_ON(pool->nr_workers || pool->nr_idle);
3330 spin_unlock_irq(&pool->lock);
d55262c4 3331
6ba94429
FW
3332 mutex_lock(&pool->attach_mutex);
3333 if (!list_empty(&pool->workers))
3334 pool->detach_completion = &detach_completion;
3335 mutex_unlock(&pool->attach_mutex);
226223ab 3336
6ba94429
FW
3337 if (pool->detach_completion)
3338 wait_for_completion(pool->detach_completion);
226223ab 3339
6ba94429 3340 mutex_unlock(&pool->manager_arb);
226223ab 3341
6ba94429
FW
3342 /* shut down the timers */
3343 del_timer_sync(&pool->idle_timer);
3344 del_timer_sync(&pool->mayday_timer);
226223ab 3345
6ba94429
FW
3346 /* sched-RCU protected to allow dereferences from get_work_pool() */
3347 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3348}
3349
3350/**
6ba94429
FW
3351 * get_unbound_pool - get a worker_pool with the specified attributes
3352 * @attrs: the attributes of the worker_pool to get
226223ab 3353 *
6ba94429
FW
3354 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3355 * reference count and return it. If there already is a matching
3356 * worker_pool, it will be used; otherwise, this function attempts to
3357 * create a new one.
226223ab 3358 *
6ba94429 3359 * Should be called with wq_pool_mutex held.
226223ab 3360 *
6ba94429
FW
3361 * Return: On success, a worker_pool with the same attributes as @attrs.
3362 * On failure, %NULL.
226223ab 3363 */
6ba94429 3364static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3365{
6ba94429
FW
3366 u32 hash = wqattrs_hash(attrs);
3367 struct worker_pool *pool;
3368 int node;
e2273584 3369 int target_node = NUMA_NO_NODE;
226223ab 3370
6ba94429 3371 lockdep_assert_held(&wq_pool_mutex);
226223ab 3372
6ba94429
FW
3373 /* do we already have a matching pool? */
3374 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3375 if (wqattrs_equal(pool->attrs, attrs)) {
3376 pool->refcnt++;
3377 return pool;
3378 }
3379 }
226223ab 3380
e2273584
XP
3381 /* if cpumask is contained inside a NUMA node, we belong to that node */
3382 if (wq_numa_enabled) {
3383 for_each_node(node) {
3384 if (cpumask_subset(attrs->cpumask,
3385 wq_numa_possible_cpumask[node])) {
3386 target_node = node;
3387 break;
3388 }
3389 }
3390 }
3391
6ba94429 3392 /* nope, create a new one */
e2273584 3393 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3394 if (!pool || init_worker_pool(pool) < 0)
3395 goto fail;
3396
3397 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3398 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3399 pool->node = target_node;
226223ab
TH
3400
3401 /*
6ba94429
FW
3402 * no_numa isn't a worker_pool attribute, always clear it. See
3403 * 'struct workqueue_attrs' comments for detail.
226223ab 3404 */
6ba94429 3405 pool->attrs->no_numa = false;
226223ab 3406
6ba94429
FW
3407 if (worker_pool_assign_id(pool) < 0)
3408 goto fail;
226223ab 3409
6ba94429 3410 /* create and start the initial worker */
3347fa09 3411 if (wq_online && !create_worker(pool))
6ba94429 3412 goto fail;
226223ab 3413
6ba94429
FW
3414 /* install */
3415 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3416
6ba94429
FW
3417 return pool;
3418fail:
3419 if (pool)
3420 put_unbound_pool(pool);
3421 return NULL;
226223ab 3422}
226223ab 3423
6ba94429 3424static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3425{
6ba94429
FW
3426 kmem_cache_free(pwq_cache,
3427 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3428}
3429
6ba94429
FW
3430/*
3431 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3432 * and needs to be destroyed.
7a4e344c 3433 */
6ba94429 3434static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3435{
6ba94429
FW
3436 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3437 unbound_release_work);
3438 struct workqueue_struct *wq = pwq->wq;
3439 struct worker_pool *pool = pwq->pool;
3440 bool is_last;
7a4e344c 3441
6ba94429
FW
3442 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3443 return;
7a4e344c 3444
6ba94429
FW
3445 mutex_lock(&wq->mutex);
3446 list_del_rcu(&pwq->pwqs_node);
3447 is_last = list_empty(&wq->pwqs);
3448 mutex_unlock(&wq->mutex);
3449
3450 mutex_lock(&wq_pool_mutex);
3451 put_unbound_pool(pool);
3452 mutex_unlock(&wq_pool_mutex);
3453
3454 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3455
2865a8fb 3456 /*
6ba94429
FW
3457 * If we're the last pwq going away, @wq is already dead and no one
3458 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3459 */
6ba94429
FW
3460 if (is_last)
3461 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3462}
3463
7a4e344c 3464/**
6ba94429
FW
3465 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3466 * @pwq: target pool_workqueue
d185af30 3467 *
6ba94429
FW
3468 * If @pwq isn't freezing, set @pwq->max_active to the associated
3469 * workqueue's saved_max_active and activate delayed work items
3470 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3471 */
6ba94429 3472static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3473{
6ba94429
FW
3474 struct workqueue_struct *wq = pwq->wq;
3475 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3476 unsigned long flags;
4e1a1f9a 3477
6ba94429
FW
3478 /* for @wq->saved_max_active */
3479 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3480
6ba94429
FW
3481 /* fast exit for non-freezable wqs */
3482 if (!freezable && pwq->max_active == wq->saved_max_active)
3483 return;
7a4e344c 3484
3347fa09
TH
3485 /* this function can be called during early boot w/ irq disabled */
3486 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3487
6ba94429
FW
3488 /*
3489 * During [un]freezing, the caller is responsible for ensuring that
3490 * this function is called at least once after @workqueue_freezing
3491 * is updated and visible.
3492 */
3493 if (!freezable || !workqueue_freezing) {
3494 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3495
6ba94429
FW
3496 while (!list_empty(&pwq->delayed_works) &&
3497 pwq->nr_active < pwq->max_active)
3498 pwq_activate_first_delayed(pwq);
e2dca7ad 3499
6ba94429
FW
3500 /*
3501 * Need to kick a worker after thawed or an unbound wq's
3502 * max_active is bumped. It's a slow path. Do it always.
3503 */
3504 wake_up_worker(pwq->pool);
3505 } else {
3506 pwq->max_active = 0;
3507 }
e2dca7ad 3508
3347fa09 3509 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3510}
3511
6ba94429
FW
3512/* initialize newly alloced @pwq which is associated with @wq and @pool */
3513static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3514 struct worker_pool *pool)
29c91e99 3515{
6ba94429 3516 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3517
6ba94429
FW
3518 memset(pwq, 0, sizeof(*pwq));
3519
3520 pwq->pool = pool;
3521 pwq->wq = wq;
3522 pwq->flush_color = -1;
3523 pwq->refcnt = 1;
3524 INIT_LIST_HEAD(&pwq->delayed_works);
3525 INIT_LIST_HEAD(&pwq->pwqs_node);
3526 INIT_LIST_HEAD(&pwq->mayday_node);
3527 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3528}
3529
6ba94429
FW
3530/* sync @pwq with the current state of its associated wq and link it */
3531static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3532{
6ba94429 3533 struct workqueue_struct *wq = pwq->wq;
29c91e99 3534
6ba94429 3535 lockdep_assert_held(&wq->mutex);
a892cacc 3536
6ba94429
FW
3537 /* may be called multiple times, ignore if already linked */
3538 if (!list_empty(&pwq->pwqs_node))
29c91e99 3539 return;
29c91e99 3540
6ba94429
FW
3541 /* set the matching work_color */
3542 pwq->work_color = wq->work_color;
29c91e99 3543
6ba94429
FW
3544 /* sync max_active to the current setting */
3545 pwq_adjust_max_active(pwq);
29c91e99 3546
6ba94429
FW
3547 /* link in @pwq */
3548 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3549}
29c91e99 3550
6ba94429
FW
3551/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3552static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3553 const struct workqueue_attrs *attrs)
3554{
3555 struct worker_pool *pool;
3556 struct pool_workqueue *pwq;
60f5a4bc 3557
6ba94429 3558 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3559
6ba94429
FW
3560 pool = get_unbound_pool(attrs);
3561 if (!pool)
3562 return NULL;
60f5a4bc 3563
6ba94429
FW
3564 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3565 if (!pwq) {
3566 put_unbound_pool(pool);
3567 return NULL;
3568 }
29c91e99 3569
6ba94429
FW
3570 init_pwq(pwq, wq, pool);
3571 return pwq;
3572}
29c91e99 3573
29c91e99 3574/**
30186c6f 3575 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3576 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3577 * @node: the target NUMA node
3578 * @cpu_going_down: if >= 0, the CPU to consider as offline
3579 * @cpumask: outarg, the resulting cpumask
29c91e99 3580 *
6ba94429
FW
3581 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3582 * @cpu_going_down is >= 0, that cpu is considered offline during
3583 * calculation. The result is stored in @cpumask.
a892cacc 3584 *
6ba94429
FW
3585 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3586 * enabled and @node has online CPUs requested by @attrs, the returned
3587 * cpumask is the intersection of the possible CPUs of @node and
3588 * @attrs->cpumask.
d185af30 3589 *
6ba94429
FW
3590 * The caller is responsible for ensuring that the cpumask of @node stays
3591 * stable.
3592 *
3593 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3594 * %false if equal.
29c91e99 3595 */
6ba94429
FW
3596static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3597 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3598{
6ba94429
FW
3599 if (!wq_numa_enabled || attrs->no_numa)
3600 goto use_dfl;
29c91e99 3601
6ba94429
FW
3602 /* does @node have any online CPUs @attrs wants? */
3603 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3604 if (cpu_going_down >= 0)
3605 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3606
6ba94429
FW
3607 if (cpumask_empty(cpumask))
3608 goto use_dfl;
4c16bd32
TH
3609
3610 /* yeap, return possible CPUs in @node that @attrs wants */
3611 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3612
3613 if (cpumask_empty(cpumask)) {
3614 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3615 "possible intersect\n");
3616 return false;
3617 }
3618
4c16bd32
TH
3619 return !cpumask_equal(cpumask, attrs->cpumask);
3620
3621use_dfl:
3622 cpumask_copy(cpumask, attrs->cpumask);
3623 return false;
3624}
3625
1befcf30
TH
3626/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3627static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3628 int node,
3629 struct pool_workqueue *pwq)
3630{
3631 struct pool_workqueue *old_pwq;
3632
5b95e1af 3633 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3634 lockdep_assert_held(&wq->mutex);
3635
3636 /* link_pwq() can handle duplicate calls */
3637 link_pwq(pwq);
3638
3639 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3640 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3641 return old_pwq;
3642}
3643
2d5f0764
LJ
3644/* context to store the prepared attrs & pwqs before applying */
3645struct apply_wqattrs_ctx {
3646 struct workqueue_struct *wq; /* target workqueue */
3647 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3648 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3649 struct pool_workqueue *dfl_pwq;
3650 struct pool_workqueue *pwq_tbl[];
3651};
3652
3653/* free the resources after success or abort */
3654static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3655{
3656 if (ctx) {
3657 int node;
3658
3659 for_each_node(node)
3660 put_pwq_unlocked(ctx->pwq_tbl[node]);
3661 put_pwq_unlocked(ctx->dfl_pwq);
3662
3663 free_workqueue_attrs(ctx->attrs);
3664
3665 kfree(ctx);
3666 }
3667}
3668
3669/* allocate the attrs and pwqs for later installation */
3670static struct apply_wqattrs_ctx *
3671apply_wqattrs_prepare(struct workqueue_struct *wq,
3672 const struct workqueue_attrs *attrs)
9e8cd2f5 3673{
2d5f0764 3674 struct apply_wqattrs_ctx *ctx;
4c16bd32 3675 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3676 int node;
9e8cd2f5 3677
2d5f0764 3678 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3679
2d5f0764
LJ
3680 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3681 GFP_KERNEL);
8719dcea 3682
13e2e556 3683 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3684 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3685 if (!ctx || !new_attrs || !tmp_attrs)
3686 goto out_free;
13e2e556 3687
042f7df1
LJ
3688 /*
3689 * Calculate the attrs of the default pwq.
3690 * If the user configured cpumask doesn't overlap with the
3691 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3692 */
13e2e556 3693 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3694 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3695 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3696 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3697
4c16bd32
TH
3698 /*
3699 * We may create multiple pwqs with differing cpumasks. Make a
3700 * copy of @new_attrs which will be modified and used to obtain
3701 * pools.
3702 */
3703 copy_workqueue_attrs(tmp_attrs, new_attrs);
3704
4c16bd32
TH
3705 /*
3706 * If something goes wrong during CPU up/down, we'll fall back to
3707 * the default pwq covering whole @attrs->cpumask. Always create
3708 * it even if we don't use it immediately.
3709 */
2d5f0764
LJ
3710 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3711 if (!ctx->dfl_pwq)
3712 goto out_free;
4c16bd32
TH
3713
3714 for_each_node(node) {
042f7df1 3715 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3716 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3717 if (!ctx->pwq_tbl[node])
3718 goto out_free;
4c16bd32 3719 } else {
2d5f0764
LJ
3720 ctx->dfl_pwq->refcnt++;
3721 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3722 }
3723 }
3724
042f7df1
LJ
3725 /* save the user configured attrs and sanitize it. */
3726 copy_workqueue_attrs(new_attrs, attrs);
3727 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3728 ctx->attrs = new_attrs;
042f7df1 3729
2d5f0764
LJ
3730 ctx->wq = wq;
3731 free_workqueue_attrs(tmp_attrs);
3732 return ctx;
3733
3734out_free:
3735 free_workqueue_attrs(tmp_attrs);
3736 free_workqueue_attrs(new_attrs);
3737 apply_wqattrs_cleanup(ctx);
3738 return NULL;
3739}
3740
3741/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3742static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3743{
3744 int node;
9e8cd2f5 3745
4c16bd32 3746 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3747 mutex_lock(&ctx->wq->mutex);
a892cacc 3748
2d5f0764 3749 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3750
3751 /* save the previous pwq and install the new one */
f147f29e 3752 for_each_node(node)
2d5f0764
LJ
3753 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3754 ctx->pwq_tbl[node]);
4c16bd32
TH
3755
3756 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3757 link_pwq(ctx->dfl_pwq);
3758 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3759
2d5f0764
LJ
3760 mutex_unlock(&ctx->wq->mutex);
3761}
9e8cd2f5 3762
a0111cf6
LJ
3763static void apply_wqattrs_lock(void)
3764{
3765 /* CPUs should stay stable across pwq creations and installations */
3766 get_online_cpus();
3767 mutex_lock(&wq_pool_mutex);
3768}
3769
3770static void apply_wqattrs_unlock(void)
3771{
3772 mutex_unlock(&wq_pool_mutex);
3773 put_online_cpus();
3774}
3775
3776static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3777 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3778{
3779 struct apply_wqattrs_ctx *ctx;
4c16bd32 3780
2d5f0764
LJ
3781 /* only unbound workqueues can change attributes */
3782 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3783 return -EINVAL;
13e2e556 3784
2d5f0764 3785 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3786 if (!list_empty(&wq->pwqs)) {
3787 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3788 return -EINVAL;
3789
3790 wq->flags &= ~__WQ_ORDERED;
3791 }
2d5f0764 3792
2d5f0764 3793 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3794 if (!ctx)
3795 return -ENOMEM;
2d5f0764
LJ
3796
3797 /* the ctx has been prepared successfully, let's commit it */
6201171e 3798 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3799 apply_wqattrs_cleanup(ctx);
3800
6201171e 3801 return 0;
9e8cd2f5
TH
3802}
3803
a0111cf6
LJ
3804/**
3805 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3806 * @wq: the target workqueue
3807 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3808 *
3809 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3810 * machines, this function maps a separate pwq to each NUMA node with
3811 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3812 * NUMA node it was issued on. Older pwqs are released as in-flight work
3813 * items finish. Note that a work item which repeatedly requeues itself
3814 * back-to-back will stay on its current pwq.
3815 *
3816 * Performs GFP_KERNEL allocations.
3817 *
3818 * Return: 0 on success and -errno on failure.
3819 */
3820int apply_workqueue_attrs(struct workqueue_struct *wq,
3821 const struct workqueue_attrs *attrs)
3822{
3823 int ret;
3824
3825 apply_wqattrs_lock();
3826 ret = apply_workqueue_attrs_locked(wq, attrs);
3827 apply_wqattrs_unlock();
3828
3829 return ret;
3830}
3831
4c16bd32
TH
3832/**
3833 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3834 * @wq: the target workqueue
3835 * @cpu: the CPU coming up or going down
3836 * @online: whether @cpu is coming up or going down
3837 *
3838 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3839 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3840 * @wq accordingly.
3841 *
3842 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3843 * falls back to @wq->dfl_pwq which may not be optimal but is always
3844 * correct.
3845 *
3846 * Note that when the last allowed CPU of a NUMA node goes offline for a
3847 * workqueue with a cpumask spanning multiple nodes, the workers which were
3848 * already executing the work items for the workqueue will lose their CPU
3849 * affinity and may execute on any CPU. This is similar to how per-cpu
3850 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3851 * affinity, it's the user's responsibility to flush the work item from
3852 * CPU_DOWN_PREPARE.
3853 */
3854static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3855 bool online)
3856{
3857 int node = cpu_to_node(cpu);
3858 int cpu_off = online ? -1 : cpu;
3859 struct pool_workqueue *old_pwq = NULL, *pwq;
3860 struct workqueue_attrs *target_attrs;
3861 cpumask_t *cpumask;
3862
3863 lockdep_assert_held(&wq_pool_mutex);
3864
f7142ed4
LJ
3865 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3866 wq->unbound_attrs->no_numa)
4c16bd32
TH
3867 return;
3868
3869 /*
3870 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3871 * Let's use a preallocated one. The following buf is protected by
3872 * CPU hotplug exclusion.
3873 */
3874 target_attrs = wq_update_unbound_numa_attrs_buf;
3875 cpumask = target_attrs->cpumask;
3876
4c16bd32
TH
3877 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3878 pwq = unbound_pwq_by_node(wq, node);
3879
3880 /*
3881 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3882 * different from the default pwq's, we need to compare it to @pwq's
3883 * and create a new one if they don't match. If the target cpumask
3884 * equals the default pwq's, the default pwq should be used.
4c16bd32 3885 */
042f7df1 3886 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3887 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3888 return;
4c16bd32 3889 } else {
534a3fbb 3890 goto use_dfl_pwq;
4c16bd32
TH
3891 }
3892
4c16bd32
TH
3893 /* create a new pwq */
3894 pwq = alloc_unbound_pwq(wq, target_attrs);
3895 if (!pwq) {
2d916033
FF
3896 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3897 wq->name);
77f300b1 3898 goto use_dfl_pwq;
4c16bd32
TH
3899 }
3900
f7142ed4 3901 /* Install the new pwq. */
4c16bd32
TH
3902 mutex_lock(&wq->mutex);
3903 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3904 goto out_unlock;
3905
3906use_dfl_pwq:
f7142ed4 3907 mutex_lock(&wq->mutex);
4c16bd32
TH
3908 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3909 get_pwq(wq->dfl_pwq);
3910 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3911 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3912out_unlock:
3913 mutex_unlock(&wq->mutex);
3914 put_pwq_unlocked(old_pwq);
3915}
3916
30cdf249 3917static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3918{
49e3cf44 3919 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3920 int cpu, ret;
30cdf249
TH
3921
3922 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3923 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3924 if (!wq->cpu_pwqs)
30cdf249
TH
3925 return -ENOMEM;
3926
3927 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3928 struct pool_workqueue *pwq =
3929 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3930 struct worker_pool *cpu_pools =
f02ae73a 3931 per_cpu(cpu_worker_pools, cpu);
f3421797 3932
f147f29e
TH
3933 init_pwq(pwq, wq, &cpu_pools[highpri]);
3934
3935 mutex_lock(&wq->mutex);
1befcf30 3936 link_pwq(pwq);
f147f29e 3937 mutex_unlock(&wq->mutex);
30cdf249 3938 }
9e8cd2f5 3939 return 0;
8a2b7538
TH
3940 } else if (wq->flags & __WQ_ORDERED) {
3941 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3942 /* there should only be single pwq for ordering guarantee */
3943 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3944 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3945 "ordering guarantee broken for workqueue %s\n", wq->name);
3946 return ret;
30cdf249 3947 } else {
9e8cd2f5 3948 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3949 }
0f900049
TH
3950}
3951
f3421797
TH
3952static int wq_clamp_max_active(int max_active, unsigned int flags,
3953 const char *name)
b71ab8c2 3954{
f3421797
TH
3955 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3956
3957 if (max_active < 1 || max_active > lim)
044c782c
VI
3958 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3959 max_active, name, 1, lim);
b71ab8c2 3960
f3421797 3961 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3962}
3963
b196be89 3964struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3965 unsigned int flags,
3966 int max_active,
3967 struct lock_class_key *key,
b196be89 3968 const char *lock_name, ...)
1da177e4 3969{
df2d5ae4 3970 size_t tbl_size = 0;
ecf6881f 3971 va_list args;
1da177e4 3972 struct workqueue_struct *wq;
49e3cf44 3973 struct pool_workqueue *pwq;
b196be89 3974
5c0338c6
TH
3975 /*
3976 * Unbound && max_active == 1 used to imply ordered, which is no
3977 * longer the case on NUMA machines due to per-node pools. While
3978 * alloc_ordered_workqueue() is the right way to create an ordered
3979 * workqueue, keep the previous behavior to avoid subtle breakages
3980 * on NUMA.
3981 */
3982 if ((flags & WQ_UNBOUND) && max_active == 1)
3983 flags |= __WQ_ORDERED;
3984
cee22a15
VK
3985 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3986 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3987 flags |= WQ_UNBOUND;
3988
ecf6881f 3989 /* allocate wq and format name */
df2d5ae4 3990 if (flags & WQ_UNBOUND)
ddcb57e2 3991 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3992
3993 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3994 if (!wq)
d2c1d404 3995 return NULL;
b196be89 3996
6029a918
TH
3997 if (flags & WQ_UNBOUND) {
3998 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3999 if (!wq->unbound_attrs)
4000 goto err_free_wq;
4001 }
4002
ecf6881f
TH
4003 va_start(args, lock_name);
4004 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4005 va_end(args);
1da177e4 4006
d320c038 4007 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4008 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4009
b196be89 4010 /* init wq */
97e37d7b 4011 wq->flags = flags;
a0a1a5fd 4012 wq->saved_max_active = max_active;
3c25a55d 4013 mutex_init(&wq->mutex);
112202d9 4014 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4015 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4016 INIT_LIST_HEAD(&wq->flusher_queue);
4017 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4018 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4019
eb13ba87 4020 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4021 INIT_LIST_HEAD(&wq->list);
3af24433 4022
30cdf249 4023 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4024 goto err_free_wq;
1537663f 4025
493008a8
TH
4026 /*
4027 * Workqueues which may be used during memory reclaim should
4028 * have a rescuer to guarantee forward progress.
4029 */
4030 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4031 struct worker *rescuer;
4032
f7537df5 4033 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4034 if (!rescuer)
d2c1d404 4035 goto err_destroy;
e22bee78 4036
111c225a
TH
4037 rescuer->rescue_wq = wq;
4038 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4039 wq->name);
d2c1d404
TH
4040 if (IS_ERR(rescuer->task)) {
4041 kfree(rescuer);
4042 goto err_destroy;
4043 }
e22bee78 4044
d2c1d404 4045 wq->rescuer = rescuer;
25834c73 4046 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 4047 wake_up_process(rescuer->task);
3af24433
ON
4048 }
4049
226223ab
TH
4050 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4051 goto err_destroy;
4052
a0a1a5fd 4053 /*
68e13a67
LJ
4054 * wq_pool_mutex protects global freeze state and workqueues list.
4055 * Grab it, adjust max_active and add the new @wq to workqueues
4056 * list.
a0a1a5fd 4057 */
68e13a67 4058 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4059
a357fc03 4060 mutex_lock(&wq->mutex);
699ce097
TH
4061 for_each_pwq(pwq, wq)
4062 pwq_adjust_max_active(pwq);
a357fc03 4063 mutex_unlock(&wq->mutex);
a0a1a5fd 4064
e2dca7ad 4065 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4066
68e13a67 4067 mutex_unlock(&wq_pool_mutex);
1537663f 4068
3af24433 4069 return wq;
d2c1d404
TH
4070
4071err_free_wq:
6029a918 4072 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4073 kfree(wq);
4074 return NULL;
4075err_destroy:
4076 destroy_workqueue(wq);
4690c4ab 4077 return NULL;
3af24433 4078}
d320c038 4079EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4080
3af24433
ON
4081/**
4082 * destroy_workqueue - safely terminate a workqueue
4083 * @wq: target workqueue
4084 *
4085 * Safely destroy a workqueue. All work currently pending will be done first.
4086 */
4087void destroy_workqueue(struct workqueue_struct *wq)
4088{
49e3cf44 4089 struct pool_workqueue *pwq;
4c16bd32 4090 int node;
3af24433 4091
9c5a2ba7
TH
4092 /* drain it before proceeding with destruction */
4093 drain_workqueue(wq);
c8efcc25 4094
6183c009 4095 /* sanity checks */
b09f4fd3 4096 mutex_lock(&wq->mutex);
49e3cf44 4097 for_each_pwq(pwq, wq) {
6183c009
TH
4098 int i;
4099
76af4d93
TH
4100 for (i = 0; i < WORK_NR_COLORS; i++) {
4101 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4102 mutex_unlock(&wq->mutex);
fa07fb6a 4103 show_workqueue_state();
6183c009 4104 return;
76af4d93
TH
4105 }
4106 }
4107
5c529597 4108 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4109 WARN_ON(pwq->nr_active) ||
76af4d93 4110 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4111 mutex_unlock(&wq->mutex);
fa07fb6a 4112 show_workqueue_state();
6183c009 4113 return;
76af4d93 4114 }
6183c009 4115 }
b09f4fd3 4116 mutex_unlock(&wq->mutex);
6183c009 4117
a0a1a5fd
TH
4118 /*
4119 * wq list is used to freeze wq, remove from list after
4120 * flushing is complete in case freeze races us.
4121 */
68e13a67 4122 mutex_lock(&wq_pool_mutex);
e2dca7ad 4123 list_del_rcu(&wq->list);
68e13a67 4124 mutex_unlock(&wq_pool_mutex);
3af24433 4125
226223ab
TH
4126 workqueue_sysfs_unregister(wq);
4127
e2dca7ad 4128 if (wq->rescuer)
e22bee78 4129 kthread_stop(wq->rescuer->task);
e22bee78 4130
8864b4e5
TH
4131 if (!(wq->flags & WQ_UNBOUND)) {
4132 /*
4133 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4134 * schedule RCU free.
8864b4e5 4135 */
e2dca7ad 4136 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4137 } else {
4138 /*
4139 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4140 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4141 * @wq will be freed when the last pwq is released.
8864b4e5 4142 */
4c16bd32
TH
4143 for_each_node(node) {
4144 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4145 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4146 put_pwq_unlocked(pwq);
4147 }
4148
4149 /*
4150 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4151 * put. Don't access it afterwards.
4152 */
4153 pwq = wq->dfl_pwq;
4154 wq->dfl_pwq = NULL;
dce90d47 4155 put_pwq_unlocked(pwq);
29c91e99 4156 }
3af24433
ON
4157}
4158EXPORT_SYMBOL_GPL(destroy_workqueue);
4159
dcd989cb
TH
4160/**
4161 * workqueue_set_max_active - adjust max_active of a workqueue
4162 * @wq: target workqueue
4163 * @max_active: new max_active value.
4164 *
4165 * Set max_active of @wq to @max_active.
4166 *
4167 * CONTEXT:
4168 * Don't call from IRQ context.
4169 */
4170void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4171{
49e3cf44 4172 struct pool_workqueue *pwq;
dcd989cb 4173
8719dcea 4174 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4175 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4176 return;
4177
f3421797 4178 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4179
a357fc03 4180 mutex_lock(&wq->mutex);
dcd989cb 4181
0a94efb5 4182 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4183 wq->saved_max_active = max_active;
4184
699ce097
TH
4185 for_each_pwq(pwq, wq)
4186 pwq_adjust_max_active(pwq);
93981800 4187
a357fc03 4188 mutex_unlock(&wq->mutex);
15316ba8 4189}
dcd989cb 4190EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4191
e6267616
TH
4192/**
4193 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4194 *
4195 * Determine whether %current is a workqueue rescuer. Can be used from
4196 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4197 *
4198 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4199 */
4200bool current_is_workqueue_rescuer(void)
4201{
4202 struct worker *worker = current_wq_worker();
4203
6a092dfd 4204 return worker && worker->rescue_wq;
e6267616
TH
4205}
4206
eef6a7d5 4207/**
dcd989cb
TH
4208 * workqueue_congested - test whether a workqueue is congested
4209 * @cpu: CPU in question
4210 * @wq: target workqueue
eef6a7d5 4211 *
dcd989cb
TH
4212 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4213 * no synchronization around this function and the test result is
4214 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4215 *
d3251859
TH
4216 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4217 * Note that both per-cpu and unbound workqueues may be associated with
4218 * multiple pool_workqueues which have separate congested states. A
4219 * workqueue being congested on one CPU doesn't mean the workqueue is also
4220 * contested on other CPUs / NUMA nodes.
4221 *
d185af30 4222 * Return:
dcd989cb 4223 * %true if congested, %false otherwise.
eef6a7d5 4224 */
d84ff051 4225bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4226{
7fb98ea7 4227 struct pool_workqueue *pwq;
76af4d93
TH
4228 bool ret;
4229
88109453 4230 rcu_read_lock_sched();
7fb98ea7 4231
d3251859
TH
4232 if (cpu == WORK_CPU_UNBOUND)
4233 cpu = smp_processor_id();
4234
7fb98ea7
TH
4235 if (!(wq->flags & WQ_UNBOUND))
4236 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4237 else
df2d5ae4 4238 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4239
76af4d93 4240 ret = !list_empty(&pwq->delayed_works);
88109453 4241 rcu_read_unlock_sched();
76af4d93
TH
4242
4243 return ret;
1da177e4 4244}
dcd989cb 4245EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4246
dcd989cb
TH
4247/**
4248 * work_busy - test whether a work is currently pending or running
4249 * @work: the work to be tested
4250 *
4251 * Test whether @work is currently pending or running. There is no
4252 * synchronization around this function and the test result is
4253 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4254 *
d185af30 4255 * Return:
dcd989cb
TH
4256 * OR'd bitmask of WORK_BUSY_* bits.
4257 */
4258unsigned int work_busy(struct work_struct *work)
1da177e4 4259{
fa1b54e6 4260 struct worker_pool *pool;
dcd989cb
TH
4261 unsigned long flags;
4262 unsigned int ret = 0;
1da177e4 4263
dcd989cb
TH
4264 if (work_pending(work))
4265 ret |= WORK_BUSY_PENDING;
1da177e4 4266
fa1b54e6
TH
4267 local_irq_save(flags);
4268 pool = get_work_pool(work);
038366c5 4269 if (pool) {
fa1b54e6 4270 spin_lock(&pool->lock);
038366c5
LJ
4271 if (find_worker_executing_work(pool, work))
4272 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4273 spin_unlock(&pool->lock);
038366c5 4274 }
fa1b54e6 4275 local_irq_restore(flags);
1da177e4 4276
dcd989cb 4277 return ret;
1da177e4 4278}
dcd989cb 4279EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4280
3d1cb205
TH
4281/**
4282 * set_worker_desc - set description for the current work item
4283 * @fmt: printf-style format string
4284 * @...: arguments for the format string
4285 *
4286 * This function can be called by a running work function to describe what
4287 * the work item is about. If the worker task gets dumped, this
4288 * information will be printed out together to help debugging. The
4289 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4290 */
4291void set_worker_desc(const char *fmt, ...)
4292{
4293 struct worker *worker = current_wq_worker();
4294 va_list args;
4295
4296 if (worker) {
4297 va_start(args, fmt);
4298 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4299 va_end(args);
4300 worker->desc_valid = true;
4301 }
4302}
4303
4304/**
4305 * print_worker_info - print out worker information and description
4306 * @log_lvl: the log level to use when printing
4307 * @task: target task
4308 *
4309 * If @task is a worker and currently executing a work item, print out the
4310 * name of the workqueue being serviced and worker description set with
4311 * set_worker_desc() by the currently executing work item.
4312 *
4313 * This function can be safely called on any task as long as the
4314 * task_struct itself is accessible. While safe, this function isn't
4315 * synchronized and may print out mixups or garbages of limited length.
4316 */
4317void print_worker_info(const char *log_lvl, struct task_struct *task)
4318{
4319 work_func_t *fn = NULL;
4320 char name[WQ_NAME_LEN] = { };
4321 char desc[WORKER_DESC_LEN] = { };
4322 struct pool_workqueue *pwq = NULL;
4323 struct workqueue_struct *wq = NULL;
4324 bool desc_valid = false;
4325 struct worker *worker;
4326
4327 if (!(task->flags & PF_WQ_WORKER))
4328 return;
4329
4330 /*
4331 * This function is called without any synchronization and @task
4332 * could be in any state. Be careful with dereferences.
4333 */
e700591a 4334 worker = kthread_probe_data(task);
3d1cb205
TH
4335
4336 /*
4337 * Carefully copy the associated workqueue's workfn and name. Keep
4338 * the original last '\0' in case the original contains garbage.
4339 */
4340 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4341 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4342 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4343 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4344
4345 /* copy worker description */
4346 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4347 if (desc_valid)
4348 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4349
4350 if (fn || name[0] || desc[0]) {
4351 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4352 if (desc[0])
4353 pr_cont(" (%s)", desc);
4354 pr_cont("\n");
4355 }
4356}
4357
3494fc30
TH
4358static void pr_cont_pool_info(struct worker_pool *pool)
4359{
4360 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4361 if (pool->node != NUMA_NO_NODE)
4362 pr_cont(" node=%d", pool->node);
4363 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4364}
4365
4366static void pr_cont_work(bool comma, struct work_struct *work)
4367{
4368 if (work->func == wq_barrier_func) {
4369 struct wq_barrier *barr;
4370
4371 barr = container_of(work, struct wq_barrier, work);
4372
4373 pr_cont("%s BAR(%d)", comma ? "," : "",
4374 task_pid_nr(barr->task));
4375 } else {
4376 pr_cont("%s %pf", comma ? "," : "", work->func);
4377 }
4378}
4379
4380static void show_pwq(struct pool_workqueue *pwq)
4381{
4382 struct worker_pool *pool = pwq->pool;
4383 struct work_struct *work;
4384 struct worker *worker;
4385 bool has_in_flight = false, has_pending = false;
4386 int bkt;
4387
4388 pr_info(" pwq %d:", pool->id);
4389 pr_cont_pool_info(pool);
4390
4391 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4392 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4393
4394 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4395 if (worker->current_pwq == pwq) {
4396 has_in_flight = true;
4397 break;
4398 }
4399 }
4400 if (has_in_flight) {
4401 bool comma = false;
4402
4403 pr_info(" in-flight:");
4404 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4405 if (worker->current_pwq != pwq)
4406 continue;
4407
4408 pr_cont("%s %d%s:%pf", comma ? "," : "",
4409 task_pid_nr(worker->task),
4410 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4411 worker->current_func);
4412 list_for_each_entry(work, &worker->scheduled, entry)
4413 pr_cont_work(false, work);
4414 comma = true;
4415 }
4416 pr_cont("\n");
4417 }
4418
4419 list_for_each_entry(work, &pool->worklist, entry) {
4420 if (get_work_pwq(work) == pwq) {
4421 has_pending = true;
4422 break;
4423 }
4424 }
4425 if (has_pending) {
4426 bool comma = false;
4427
4428 pr_info(" pending:");
4429 list_for_each_entry(work, &pool->worklist, entry) {
4430 if (get_work_pwq(work) != pwq)
4431 continue;
4432
4433 pr_cont_work(comma, work);
4434 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4435 }
4436 pr_cont("\n");
4437 }
4438
4439 if (!list_empty(&pwq->delayed_works)) {
4440 bool comma = false;
4441
4442 pr_info(" delayed:");
4443 list_for_each_entry(work, &pwq->delayed_works, entry) {
4444 pr_cont_work(comma, work);
4445 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4446 }
4447 pr_cont("\n");
4448 }
4449}
4450
4451/**
4452 * show_workqueue_state - dump workqueue state
4453 *
7b776af6
RL
4454 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4455 * all busy workqueues and pools.
3494fc30
TH
4456 */
4457void show_workqueue_state(void)
4458{
4459 struct workqueue_struct *wq;
4460 struct worker_pool *pool;
4461 unsigned long flags;
4462 int pi;
4463
4464 rcu_read_lock_sched();
4465
4466 pr_info("Showing busy workqueues and worker pools:\n");
4467
4468 list_for_each_entry_rcu(wq, &workqueues, list) {
4469 struct pool_workqueue *pwq;
4470 bool idle = true;
4471
4472 for_each_pwq(pwq, wq) {
4473 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4474 idle = false;
4475 break;
4476 }
4477 }
4478 if (idle)
4479 continue;
4480
4481 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4482
4483 for_each_pwq(pwq, wq) {
4484 spin_lock_irqsave(&pwq->pool->lock, flags);
4485 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4486 show_pwq(pwq);
4487 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4488 }
4489 }
4490
4491 for_each_pool(pool, pi) {
4492 struct worker *worker;
4493 bool first = true;
4494
4495 spin_lock_irqsave(&pool->lock, flags);
4496 if (pool->nr_workers == pool->nr_idle)
4497 goto next_pool;
4498
4499 pr_info("pool %d:", pool->id);
4500 pr_cont_pool_info(pool);
82607adc
TH
4501 pr_cont(" hung=%us workers=%d",
4502 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4503 pool->nr_workers);
3494fc30
TH
4504 if (pool->manager)
4505 pr_cont(" manager: %d",
4506 task_pid_nr(pool->manager->task));
4507 list_for_each_entry(worker, &pool->idle_list, entry) {
4508 pr_cont(" %s%d", first ? "idle: " : "",
4509 task_pid_nr(worker->task));
4510 first = false;
4511 }
4512 pr_cont("\n");
4513 next_pool:
4514 spin_unlock_irqrestore(&pool->lock, flags);
4515 }
4516
4517 rcu_read_unlock_sched();
4518}
4519
db7bccf4
TH
4520/*
4521 * CPU hotplug.
4522 *
e22bee78 4523 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4524 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4525 * pool which make migrating pending and scheduled works very
e22bee78 4526 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4527 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4528 * blocked draining impractical.
4529 *
24647570 4530 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4531 * running as an unbound one and allowing it to be reattached later if the
4532 * cpu comes back online.
db7bccf4 4533 */
1da177e4 4534
706026c2 4535static void wq_unbind_fn(struct work_struct *work)
3af24433 4536{
38db41d9 4537 int cpu = smp_processor_id();
4ce62e9e 4538 struct worker_pool *pool;
db7bccf4 4539 struct worker *worker;
3af24433 4540
f02ae73a 4541 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4542 mutex_lock(&pool->attach_mutex);
94cf58bb 4543 spin_lock_irq(&pool->lock);
3af24433 4544
94cf58bb 4545 /*
92f9c5c4 4546 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4547 * unbound and set DISASSOCIATED. Before this, all workers
4548 * except for the ones which are still executing works from
4549 * before the last CPU down must be on the cpu. After
4550 * this, they may become diasporas.
4551 */
da028469 4552 for_each_pool_worker(worker, pool)
c9e7cf27 4553 worker->flags |= WORKER_UNBOUND;
06ba38a9 4554
24647570 4555 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4556
94cf58bb 4557 spin_unlock_irq(&pool->lock);
92f9c5c4 4558 mutex_unlock(&pool->attach_mutex);
628c78e7 4559
eb283428
LJ
4560 /*
4561 * Call schedule() so that we cross rq->lock and thus can
4562 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4563 * This is necessary as scheduler callbacks may be invoked
4564 * from other cpus.
4565 */
4566 schedule();
06ba38a9 4567
eb283428
LJ
4568 /*
4569 * Sched callbacks are disabled now. Zap nr_running.
4570 * After this, nr_running stays zero and need_more_worker()
4571 * and keep_working() are always true as long as the
4572 * worklist is not empty. This pool now behaves as an
4573 * unbound (in terms of concurrency management) pool which
4574 * are served by workers tied to the pool.
4575 */
e19e397a 4576 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4577
4578 /*
4579 * With concurrency management just turned off, a busy
4580 * worker blocking could lead to lengthy stalls. Kick off
4581 * unbound chain execution of currently pending work items.
4582 */
4583 spin_lock_irq(&pool->lock);
4584 wake_up_worker(pool);
4585 spin_unlock_irq(&pool->lock);
4586 }
3af24433 4587}
3af24433 4588
bd7c089e
TH
4589/**
4590 * rebind_workers - rebind all workers of a pool to the associated CPU
4591 * @pool: pool of interest
4592 *
a9ab775b 4593 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4594 */
4595static void rebind_workers(struct worker_pool *pool)
4596{
a9ab775b 4597 struct worker *worker;
bd7c089e 4598
92f9c5c4 4599 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4600
a9ab775b
TH
4601 /*
4602 * Restore CPU affinity of all workers. As all idle workers should
4603 * be on the run-queue of the associated CPU before any local
402dd89d 4604 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4605 * of all workers first and then clear UNBOUND. As we're called
4606 * from CPU_ONLINE, the following shouldn't fail.
4607 */
da028469 4608 for_each_pool_worker(worker, pool)
a9ab775b
TH
4609 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4610 pool->attrs->cpumask) < 0);
bd7c089e 4611
a9ab775b 4612 spin_lock_irq(&pool->lock);
f7c17d26
WL
4613
4614 /*
4615 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4616 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4617 * being reworked and this can go away in time.
4618 */
4619 if (!(pool->flags & POOL_DISASSOCIATED)) {
4620 spin_unlock_irq(&pool->lock);
4621 return;
4622 }
4623
3de5e884 4624 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4625
da028469 4626 for_each_pool_worker(worker, pool) {
a9ab775b 4627 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4628
4629 /*
a9ab775b
TH
4630 * A bound idle worker should actually be on the runqueue
4631 * of the associated CPU for local wake-ups targeting it to
4632 * work. Kick all idle workers so that they migrate to the
4633 * associated CPU. Doing this in the same loop as
4634 * replacing UNBOUND with REBOUND is safe as no worker will
4635 * be bound before @pool->lock is released.
bd7c089e 4636 */
a9ab775b
TH
4637 if (worker_flags & WORKER_IDLE)
4638 wake_up_process(worker->task);
bd7c089e 4639
a9ab775b
TH
4640 /*
4641 * We want to clear UNBOUND but can't directly call
4642 * worker_clr_flags() or adjust nr_running. Atomically
4643 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4644 * @worker will clear REBOUND using worker_clr_flags() when
4645 * it initiates the next execution cycle thus restoring
4646 * concurrency management. Note that when or whether
4647 * @worker clears REBOUND doesn't affect correctness.
4648 *
4649 * ACCESS_ONCE() is necessary because @worker->flags may be
4650 * tested without holding any lock in
4651 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4652 * fail incorrectly leading to premature concurrency
4653 * management operations.
4654 */
4655 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4656 worker_flags |= WORKER_REBOUND;
4657 worker_flags &= ~WORKER_UNBOUND;
4658 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4659 }
a9ab775b
TH
4660
4661 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4662}
4663
7dbc725e
TH
4664/**
4665 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4666 * @pool: unbound pool of interest
4667 * @cpu: the CPU which is coming up
4668 *
4669 * An unbound pool may end up with a cpumask which doesn't have any online
4670 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4671 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4672 * online CPU before, cpus_allowed of all its workers should be restored.
4673 */
4674static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4675{
4676 static cpumask_t cpumask;
4677 struct worker *worker;
7dbc725e 4678
92f9c5c4 4679 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4680
4681 /* is @cpu allowed for @pool? */
4682 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4683 return;
4684
7dbc725e 4685 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4686
4687 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4688 for_each_pool_worker(worker, pool)
d945b5e9 4689 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4690}
4691
7ee681b2
TG
4692int workqueue_prepare_cpu(unsigned int cpu)
4693{
4694 struct worker_pool *pool;
4695
4696 for_each_cpu_worker_pool(pool, cpu) {
4697 if (pool->nr_workers)
4698 continue;
4699 if (!create_worker(pool))
4700 return -ENOMEM;
4701 }
4702 return 0;
4703}
4704
4705int workqueue_online_cpu(unsigned int cpu)
3af24433 4706{
4ce62e9e 4707 struct worker_pool *pool;
4c16bd32 4708 struct workqueue_struct *wq;
7dbc725e 4709 int pi;
3ce63377 4710
7ee681b2 4711 mutex_lock(&wq_pool_mutex);
7dbc725e 4712
7ee681b2
TG
4713 for_each_pool(pool, pi) {
4714 mutex_lock(&pool->attach_mutex);
94cf58bb 4715
7ee681b2
TG
4716 if (pool->cpu == cpu)
4717 rebind_workers(pool);
4718 else if (pool->cpu < 0)
4719 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4720
7ee681b2
TG
4721 mutex_unlock(&pool->attach_mutex);
4722 }
6ba94429 4723
7ee681b2
TG
4724 /* update NUMA affinity of unbound workqueues */
4725 list_for_each_entry(wq, &workqueues, list)
4726 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4727
7ee681b2
TG
4728 mutex_unlock(&wq_pool_mutex);
4729 return 0;
6ba94429
FW
4730}
4731
7ee681b2 4732int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4733{
6ba94429
FW
4734 struct work_struct unbind_work;
4735 struct workqueue_struct *wq;
4736
7ee681b2
TG
4737 /* unbinding per-cpu workers should happen on the local CPU */
4738 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4739 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4740
4741 /* update NUMA affinity of unbound workqueues */
4742 mutex_lock(&wq_pool_mutex);
4743 list_for_each_entry(wq, &workqueues, list)
4744 wq_update_unbound_numa(wq, cpu, false);
4745 mutex_unlock(&wq_pool_mutex);
4746
4747 /* wait for per-cpu unbinding to finish */
4748 flush_work(&unbind_work);
4749 destroy_work_on_stack(&unbind_work);
4750 return 0;
6ba94429
FW
4751}
4752
4753#ifdef CONFIG_SMP
4754
4755struct work_for_cpu {
4756 struct work_struct work;
4757 long (*fn)(void *);
4758 void *arg;
4759 long ret;
4760};
4761
4762static void work_for_cpu_fn(struct work_struct *work)
4763{
4764 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4765
4766 wfc->ret = wfc->fn(wfc->arg);
4767}
4768
4769/**
22aceb31 4770 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4771 * @cpu: the cpu to run on
4772 * @fn: the function to run
4773 * @arg: the function arg
4774 *
4775 * It is up to the caller to ensure that the cpu doesn't go offline.
4776 * The caller must not hold any locks which would prevent @fn from completing.
4777 *
4778 * Return: The value @fn returns.
4779 */
4780long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4781{
4782 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4783
4784 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4785 schedule_work_on(cpu, &wfc.work);
4786 flush_work(&wfc.work);
4787 destroy_work_on_stack(&wfc.work);
4788 return wfc.ret;
4789}
4790EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4791
4792/**
4793 * work_on_cpu_safe - run a function in thread context on a particular cpu
4794 * @cpu: the cpu to run on
4795 * @fn: the function to run
4796 * @arg: the function argument
4797 *
4798 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4799 * any locks which would prevent @fn from completing.
4800 *
4801 * Return: The value @fn returns.
4802 */
4803long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4804{
4805 long ret = -ENODEV;
4806
4807 get_online_cpus();
4808 if (cpu_online(cpu))
4809 ret = work_on_cpu(cpu, fn, arg);
4810 put_online_cpus();
4811 return ret;
4812}
4813EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4814#endif /* CONFIG_SMP */
4815
4816#ifdef CONFIG_FREEZER
4817
4818/**
4819 * freeze_workqueues_begin - begin freezing workqueues
4820 *
4821 * Start freezing workqueues. After this function returns, all freezable
4822 * workqueues will queue new works to their delayed_works list instead of
4823 * pool->worklist.
4824 *
4825 * CONTEXT:
4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827 */
4828void freeze_workqueues_begin(void)
4829{
4830 struct workqueue_struct *wq;
4831 struct pool_workqueue *pwq;
4832
4833 mutex_lock(&wq_pool_mutex);
4834
4835 WARN_ON_ONCE(workqueue_freezing);
4836 workqueue_freezing = true;
4837
4838 list_for_each_entry(wq, &workqueues, list) {
4839 mutex_lock(&wq->mutex);
4840 for_each_pwq(pwq, wq)
4841 pwq_adjust_max_active(pwq);
4842 mutex_unlock(&wq->mutex);
4843 }
4844
4845 mutex_unlock(&wq_pool_mutex);
4846}
4847
4848/**
4849 * freeze_workqueues_busy - are freezable workqueues still busy?
4850 *
4851 * Check whether freezing is complete. This function must be called
4852 * between freeze_workqueues_begin() and thaw_workqueues().
4853 *
4854 * CONTEXT:
4855 * Grabs and releases wq_pool_mutex.
4856 *
4857 * Return:
4858 * %true if some freezable workqueues are still busy. %false if freezing
4859 * is complete.
4860 */
4861bool freeze_workqueues_busy(void)
4862{
4863 bool busy = false;
4864 struct workqueue_struct *wq;
4865 struct pool_workqueue *pwq;
4866
4867 mutex_lock(&wq_pool_mutex);
4868
4869 WARN_ON_ONCE(!workqueue_freezing);
4870
4871 list_for_each_entry(wq, &workqueues, list) {
4872 if (!(wq->flags & WQ_FREEZABLE))
4873 continue;
4874 /*
4875 * nr_active is monotonically decreasing. It's safe
4876 * to peek without lock.
4877 */
4878 rcu_read_lock_sched();
4879 for_each_pwq(pwq, wq) {
4880 WARN_ON_ONCE(pwq->nr_active < 0);
4881 if (pwq->nr_active) {
4882 busy = true;
4883 rcu_read_unlock_sched();
4884 goto out_unlock;
4885 }
4886 }
4887 rcu_read_unlock_sched();
4888 }
4889out_unlock:
4890 mutex_unlock(&wq_pool_mutex);
4891 return busy;
4892}
4893
4894/**
4895 * thaw_workqueues - thaw workqueues
4896 *
4897 * Thaw workqueues. Normal queueing is restored and all collected
4898 * frozen works are transferred to their respective pool worklists.
4899 *
4900 * CONTEXT:
4901 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4902 */
4903void thaw_workqueues(void)
4904{
4905 struct workqueue_struct *wq;
4906 struct pool_workqueue *pwq;
4907
4908 mutex_lock(&wq_pool_mutex);
4909
4910 if (!workqueue_freezing)
4911 goto out_unlock;
4912
4913 workqueue_freezing = false;
4914
4915 /* restore max_active and repopulate worklist */
4916 list_for_each_entry(wq, &workqueues, list) {
4917 mutex_lock(&wq->mutex);
4918 for_each_pwq(pwq, wq)
4919 pwq_adjust_max_active(pwq);
4920 mutex_unlock(&wq->mutex);
4921 }
4922
4923out_unlock:
4924 mutex_unlock(&wq_pool_mutex);
4925}
4926#endif /* CONFIG_FREEZER */
4927
042f7df1
LJ
4928static int workqueue_apply_unbound_cpumask(void)
4929{
4930 LIST_HEAD(ctxs);
4931 int ret = 0;
4932 struct workqueue_struct *wq;
4933 struct apply_wqattrs_ctx *ctx, *n;
4934
4935 lockdep_assert_held(&wq_pool_mutex);
4936
4937 list_for_each_entry(wq, &workqueues, list) {
4938 if (!(wq->flags & WQ_UNBOUND))
4939 continue;
4940 /* creating multiple pwqs breaks ordering guarantee */
4941 if (wq->flags & __WQ_ORDERED)
4942 continue;
4943
4944 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4945 if (!ctx) {
4946 ret = -ENOMEM;
4947 break;
4948 }
4949
4950 list_add_tail(&ctx->list, &ctxs);
4951 }
4952
4953 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4954 if (!ret)
4955 apply_wqattrs_commit(ctx);
4956 apply_wqattrs_cleanup(ctx);
4957 }
4958
4959 return ret;
4960}
4961
4962/**
4963 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4964 * @cpumask: the cpumask to set
4965 *
4966 * The low-level workqueues cpumask is a global cpumask that limits
4967 * the affinity of all unbound workqueues. This function check the @cpumask
4968 * and apply it to all unbound workqueues and updates all pwqs of them.
4969 *
4970 * Retun: 0 - Success
4971 * -EINVAL - Invalid @cpumask
4972 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4973 */
4974int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4975{
4976 int ret = -EINVAL;
4977 cpumask_var_t saved_cpumask;
4978
4979 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4980 return -ENOMEM;
4981
042f7df1
LJ
4982 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4983 if (!cpumask_empty(cpumask)) {
a0111cf6 4984 apply_wqattrs_lock();
042f7df1
LJ
4985
4986 /* save the old wq_unbound_cpumask. */
4987 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4988
4989 /* update wq_unbound_cpumask at first and apply it to wqs. */
4990 cpumask_copy(wq_unbound_cpumask, cpumask);
4991 ret = workqueue_apply_unbound_cpumask();
4992
4993 /* restore the wq_unbound_cpumask when failed. */
4994 if (ret < 0)
4995 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4996
a0111cf6 4997 apply_wqattrs_unlock();
042f7df1 4998 }
042f7df1
LJ
4999
5000 free_cpumask_var(saved_cpumask);
5001 return ret;
5002}
5003
6ba94429
FW
5004#ifdef CONFIG_SYSFS
5005/*
5006 * Workqueues with WQ_SYSFS flag set is visible to userland via
5007 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5008 * following attributes.
5009 *
5010 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5011 * max_active RW int : maximum number of in-flight work items
5012 *
5013 * Unbound workqueues have the following extra attributes.
5014 *
5015 * id RO int : the associated pool ID
5016 * nice RW int : nice value of the workers
5017 * cpumask RW mask : bitmask of allowed CPUs for the workers
5018 */
5019struct wq_device {
5020 struct workqueue_struct *wq;
5021 struct device dev;
5022};
5023
5024static struct workqueue_struct *dev_to_wq(struct device *dev)
5025{
5026 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5027
5028 return wq_dev->wq;
5029}
5030
5031static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5032 char *buf)
5033{
5034 struct workqueue_struct *wq = dev_to_wq(dev);
5035
5036 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5037}
5038static DEVICE_ATTR_RO(per_cpu);
5039
5040static ssize_t max_active_show(struct device *dev,
5041 struct device_attribute *attr, char *buf)
5042{
5043 struct workqueue_struct *wq = dev_to_wq(dev);
5044
5045 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5046}
5047
5048static ssize_t max_active_store(struct device *dev,
5049 struct device_attribute *attr, const char *buf,
5050 size_t count)
5051{
5052 struct workqueue_struct *wq = dev_to_wq(dev);
5053 int val;
5054
5055 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5056 return -EINVAL;
5057
5058 workqueue_set_max_active(wq, val);
5059 return count;
5060}
5061static DEVICE_ATTR_RW(max_active);
5062
5063static struct attribute *wq_sysfs_attrs[] = {
5064 &dev_attr_per_cpu.attr,
5065 &dev_attr_max_active.attr,
5066 NULL,
5067};
5068ATTRIBUTE_GROUPS(wq_sysfs);
5069
5070static ssize_t wq_pool_ids_show(struct device *dev,
5071 struct device_attribute *attr, char *buf)
5072{
5073 struct workqueue_struct *wq = dev_to_wq(dev);
5074 const char *delim = "";
5075 int node, written = 0;
5076
5077 rcu_read_lock_sched();
5078 for_each_node(node) {
5079 written += scnprintf(buf + written, PAGE_SIZE - written,
5080 "%s%d:%d", delim, node,
5081 unbound_pwq_by_node(wq, node)->pool->id);
5082 delim = " ";
5083 }
5084 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5085 rcu_read_unlock_sched();
5086
5087 return written;
5088}
5089
5090static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5091 char *buf)
5092{
5093 struct workqueue_struct *wq = dev_to_wq(dev);
5094 int written;
5095
5096 mutex_lock(&wq->mutex);
5097 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5098 mutex_unlock(&wq->mutex);
5099
5100 return written;
5101}
5102
5103/* prepare workqueue_attrs for sysfs store operations */
5104static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5105{
5106 struct workqueue_attrs *attrs;
5107
899a94fe
LJ
5108 lockdep_assert_held(&wq_pool_mutex);
5109
6ba94429
FW
5110 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5111 if (!attrs)
5112 return NULL;
5113
6ba94429 5114 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5115 return attrs;
5116}
5117
5118static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5119 const char *buf, size_t count)
5120{
5121 struct workqueue_struct *wq = dev_to_wq(dev);
5122 struct workqueue_attrs *attrs;
d4d3e257
LJ
5123 int ret = -ENOMEM;
5124
5125 apply_wqattrs_lock();
6ba94429
FW
5126
5127 attrs = wq_sysfs_prep_attrs(wq);
5128 if (!attrs)
d4d3e257 5129 goto out_unlock;
6ba94429
FW
5130
5131 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5132 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5133 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5134 else
5135 ret = -EINVAL;
5136
d4d3e257
LJ
5137out_unlock:
5138 apply_wqattrs_unlock();
6ba94429
FW
5139 free_workqueue_attrs(attrs);
5140 return ret ?: count;
5141}
5142
5143static ssize_t wq_cpumask_show(struct device *dev,
5144 struct device_attribute *attr, char *buf)
5145{
5146 struct workqueue_struct *wq = dev_to_wq(dev);
5147 int written;
5148
5149 mutex_lock(&wq->mutex);
5150 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5151 cpumask_pr_args(wq->unbound_attrs->cpumask));
5152 mutex_unlock(&wq->mutex);
5153 return written;
5154}
5155
5156static ssize_t wq_cpumask_store(struct device *dev,
5157 struct device_attribute *attr,
5158 const char *buf, size_t count)
5159{
5160 struct workqueue_struct *wq = dev_to_wq(dev);
5161 struct workqueue_attrs *attrs;
d4d3e257
LJ
5162 int ret = -ENOMEM;
5163
5164 apply_wqattrs_lock();
6ba94429
FW
5165
5166 attrs = wq_sysfs_prep_attrs(wq);
5167 if (!attrs)
d4d3e257 5168 goto out_unlock;
6ba94429
FW
5169
5170 ret = cpumask_parse(buf, attrs->cpumask);
5171 if (!ret)
d4d3e257 5172 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5173
d4d3e257
LJ
5174out_unlock:
5175 apply_wqattrs_unlock();
6ba94429
FW
5176 free_workqueue_attrs(attrs);
5177 return ret ?: count;
5178}
5179
5180static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5181 char *buf)
5182{
5183 struct workqueue_struct *wq = dev_to_wq(dev);
5184 int written;
7dbc725e 5185
6ba94429
FW
5186 mutex_lock(&wq->mutex);
5187 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5188 !wq->unbound_attrs->no_numa);
5189 mutex_unlock(&wq->mutex);
4c16bd32 5190
6ba94429 5191 return written;
65758202
TH
5192}
5193
6ba94429
FW
5194static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5195 const char *buf, size_t count)
65758202 5196{
6ba94429
FW
5197 struct workqueue_struct *wq = dev_to_wq(dev);
5198 struct workqueue_attrs *attrs;
d4d3e257
LJ
5199 int v, ret = -ENOMEM;
5200
5201 apply_wqattrs_lock();
4c16bd32 5202
6ba94429
FW
5203 attrs = wq_sysfs_prep_attrs(wq);
5204 if (!attrs)
d4d3e257 5205 goto out_unlock;
4c16bd32 5206
6ba94429
FW
5207 ret = -EINVAL;
5208 if (sscanf(buf, "%d", &v) == 1) {
5209 attrs->no_numa = !v;
d4d3e257 5210 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5211 }
6ba94429 5212
d4d3e257
LJ
5213out_unlock:
5214 apply_wqattrs_unlock();
6ba94429
FW
5215 free_workqueue_attrs(attrs);
5216 return ret ?: count;
65758202
TH
5217}
5218
6ba94429
FW
5219static struct device_attribute wq_sysfs_unbound_attrs[] = {
5220 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5221 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5222 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5223 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5224 __ATTR_NULL,
5225};
8ccad40d 5226
6ba94429
FW
5227static struct bus_type wq_subsys = {
5228 .name = "workqueue",
5229 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5230};
5231
b05a7928
FW
5232static ssize_t wq_unbound_cpumask_show(struct device *dev,
5233 struct device_attribute *attr, char *buf)
5234{
5235 int written;
5236
042f7df1 5237 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5238 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5239 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5240 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5241
5242 return written;
5243}
5244
042f7df1
LJ
5245static ssize_t wq_unbound_cpumask_store(struct device *dev,
5246 struct device_attribute *attr, const char *buf, size_t count)
5247{
5248 cpumask_var_t cpumask;
5249 int ret;
5250
5251 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5252 return -ENOMEM;
5253
5254 ret = cpumask_parse(buf, cpumask);
5255 if (!ret)
5256 ret = workqueue_set_unbound_cpumask(cpumask);
5257
5258 free_cpumask_var(cpumask);
5259 return ret ? ret : count;
5260}
5261
b05a7928 5262static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5263 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5264 wq_unbound_cpumask_store);
b05a7928 5265
6ba94429 5266static int __init wq_sysfs_init(void)
2d3854a3 5267{
b05a7928
FW
5268 int err;
5269
5270 err = subsys_virtual_register(&wq_subsys, NULL);
5271 if (err)
5272 return err;
5273
5274 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5275}
6ba94429 5276core_initcall(wq_sysfs_init);
2d3854a3 5277
6ba94429 5278static void wq_device_release(struct device *dev)
2d3854a3 5279{
6ba94429 5280 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5281
6ba94429 5282 kfree(wq_dev);
2d3854a3 5283}
a0a1a5fd
TH
5284
5285/**
6ba94429
FW
5286 * workqueue_sysfs_register - make a workqueue visible in sysfs
5287 * @wq: the workqueue to register
a0a1a5fd 5288 *
6ba94429
FW
5289 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5290 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5291 * which is the preferred method.
a0a1a5fd 5292 *
6ba94429
FW
5293 * Workqueue user should use this function directly iff it wants to apply
5294 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5295 * apply_workqueue_attrs() may race against userland updating the
5296 * attributes.
5297 *
5298 * Return: 0 on success, -errno on failure.
a0a1a5fd 5299 */
6ba94429 5300int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5301{
6ba94429
FW
5302 struct wq_device *wq_dev;
5303 int ret;
a0a1a5fd 5304
6ba94429 5305 /*
402dd89d 5306 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5307 * attributes breaks ordering guarantee. Disallow exposing ordered
5308 * workqueues.
5309 */
0a94efb5 5310 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5311 return -EINVAL;
a0a1a5fd 5312
6ba94429
FW
5313 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5314 if (!wq_dev)
5315 return -ENOMEM;
5bcab335 5316
6ba94429
FW
5317 wq_dev->wq = wq;
5318 wq_dev->dev.bus = &wq_subsys;
6ba94429 5319 wq_dev->dev.release = wq_device_release;
23217b44 5320 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5321
6ba94429
FW
5322 /*
5323 * unbound_attrs are created separately. Suppress uevent until
5324 * everything is ready.
5325 */
5326 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5327
6ba94429
FW
5328 ret = device_register(&wq_dev->dev);
5329 if (ret) {
5330 kfree(wq_dev);
5331 wq->wq_dev = NULL;
5332 return ret;
5333 }
a0a1a5fd 5334
6ba94429
FW
5335 if (wq->flags & WQ_UNBOUND) {
5336 struct device_attribute *attr;
a0a1a5fd 5337
6ba94429
FW
5338 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5339 ret = device_create_file(&wq_dev->dev, attr);
5340 if (ret) {
5341 device_unregister(&wq_dev->dev);
5342 wq->wq_dev = NULL;
5343 return ret;
a0a1a5fd
TH
5344 }
5345 }
5346 }
6ba94429
FW
5347
5348 dev_set_uevent_suppress(&wq_dev->dev, false);
5349 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5350 return 0;
a0a1a5fd
TH
5351}
5352
5353/**
6ba94429
FW
5354 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5355 * @wq: the workqueue to unregister
a0a1a5fd 5356 *
6ba94429 5357 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5358 */
6ba94429 5359static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5360{
6ba94429 5361 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5362
6ba94429
FW
5363 if (!wq->wq_dev)
5364 return;
a0a1a5fd 5365
6ba94429
FW
5366 wq->wq_dev = NULL;
5367 device_unregister(&wq_dev->dev);
a0a1a5fd 5368}
6ba94429
FW
5369#else /* CONFIG_SYSFS */
5370static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5371#endif /* CONFIG_SYSFS */
a0a1a5fd 5372
82607adc
TH
5373/*
5374 * Workqueue watchdog.
5375 *
5376 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5377 * flush dependency, a concurrency managed work item which stays RUNNING
5378 * indefinitely. Workqueue stalls can be very difficult to debug as the
5379 * usual warning mechanisms don't trigger and internal workqueue state is
5380 * largely opaque.
5381 *
5382 * Workqueue watchdog monitors all worker pools periodically and dumps
5383 * state if some pools failed to make forward progress for a while where
5384 * forward progress is defined as the first item on ->worklist changing.
5385 *
5386 * This mechanism is controlled through the kernel parameter
5387 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5388 * corresponding sysfs parameter file.
5389 */
5390#ifdef CONFIG_WQ_WATCHDOG
5391
82607adc 5392static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5393static struct timer_list wq_watchdog_timer;
82607adc
TH
5394
5395static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5396static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5397
5398static void wq_watchdog_reset_touched(void)
5399{
5400 int cpu;
5401
5402 wq_watchdog_touched = jiffies;
5403 for_each_possible_cpu(cpu)
5404 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5405}
5406
5cd79d6a 5407static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5408{
5409 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5410 bool lockup_detected = false;
5411 struct worker_pool *pool;
5412 int pi;
5413
5414 if (!thresh)
5415 return;
5416
5417 rcu_read_lock();
5418
5419 for_each_pool(pool, pi) {
5420 unsigned long pool_ts, touched, ts;
5421
5422 if (list_empty(&pool->worklist))
5423 continue;
5424
5425 /* get the latest of pool and touched timestamps */
5426 pool_ts = READ_ONCE(pool->watchdog_ts);
5427 touched = READ_ONCE(wq_watchdog_touched);
5428
5429 if (time_after(pool_ts, touched))
5430 ts = pool_ts;
5431 else
5432 ts = touched;
5433
5434 if (pool->cpu >= 0) {
5435 unsigned long cpu_touched =
5436 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5437 pool->cpu));
5438 if (time_after(cpu_touched, ts))
5439 ts = cpu_touched;
5440 }
5441
5442 /* did we stall? */
5443 if (time_after(jiffies, ts + thresh)) {
5444 lockup_detected = true;
5445 pr_emerg("BUG: workqueue lockup - pool");
5446 pr_cont_pool_info(pool);
5447 pr_cont(" stuck for %us!\n",
5448 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5449 }
5450 }
5451
5452 rcu_read_unlock();
5453
5454 if (lockup_detected)
5455 show_workqueue_state();
5456
5457 wq_watchdog_reset_touched();
5458 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5459}
5460
5461void wq_watchdog_touch(int cpu)
5462{
5463 if (cpu >= 0)
5464 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5465 else
5466 wq_watchdog_touched = jiffies;
5467}
5468
5469static void wq_watchdog_set_thresh(unsigned long thresh)
5470{
5471 wq_watchdog_thresh = 0;
5472 del_timer_sync(&wq_watchdog_timer);
5473
5474 if (thresh) {
5475 wq_watchdog_thresh = thresh;
5476 wq_watchdog_reset_touched();
5477 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5478 }
5479}
5480
5481static int wq_watchdog_param_set_thresh(const char *val,
5482 const struct kernel_param *kp)
5483{
5484 unsigned long thresh;
5485 int ret;
5486
5487 ret = kstrtoul(val, 0, &thresh);
5488 if (ret)
5489 return ret;
5490
5491 if (system_wq)
5492 wq_watchdog_set_thresh(thresh);
5493 else
5494 wq_watchdog_thresh = thresh;
5495
5496 return 0;
5497}
5498
5499static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5500 .set = wq_watchdog_param_set_thresh,
5501 .get = param_get_ulong,
5502};
5503
5504module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5505 0644);
5506
5507static void wq_watchdog_init(void)
5508{
5cd79d6a 5509 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5510 wq_watchdog_set_thresh(wq_watchdog_thresh);
5511}
5512
5513#else /* CONFIG_WQ_WATCHDOG */
5514
5515static inline void wq_watchdog_init(void) { }
5516
5517#endif /* CONFIG_WQ_WATCHDOG */
5518
bce90380
TH
5519static void __init wq_numa_init(void)
5520{
5521 cpumask_var_t *tbl;
5522 int node, cpu;
5523
bce90380
TH
5524 if (num_possible_nodes() <= 1)
5525 return;
5526
d55262c4
TH
5527 if (wq_disable_numa) {
5528 pr_info("workqueue: NUMA affinity support disabled\n");
5529 return;
5530 }
5531
4c16bd32
TH
5532 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5533 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5534
bce90380
TH
5535 /*
5536 * We want masks of possible CPUs of each node which isn't readily
5537 * available. Build one from cpu_to_node() which should have been
5538 * fully initialized by now.
5539 */
ddcb57e2 5540 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5541 BUG_ON(!tbl);
5542
5543 for_each_node(node)
5a6024f1 5544 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5545 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5546
5547 for_each_possible_cpu(cpu) {
5548 node = cpu_to_node(cpu);
5549 if (WARN_ON(node == NUMA_NO_NODE)) {
5550 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5551 /* happens iff arch is bonkers, let's just proceed */
5552 return;
5553 }
5554 cpumask_set_cpu(cpu, tbl[node]);
5555 }
5556
5557 wq_numa_possible_cpumask = tbl;
5558 wq_numa_enabled = true;
5559}
5560
3347fa09
TH
5561/**
5562 * workqueue_init_early - early init for workqueue subsystem
5563 *
5564 * This is the first half of two-staged workqueue subsystem initialization
5565 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5566 * idr are up. It sets up all the data structures and system workqueues
5567 * and allows early boot code to create workqueues and queue/cancel work
5568 * items. Actual work item execution starts only after kthreads can be
5569 * created and scheduled right before early initcalls.
5570 */
5571int __init workqueue_init_early(void)
1da177e4 5572{
7a4e344c
TH
5573 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5574 int i, cpu;
c34056a3 5575
e904e6c2
TH
5576 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5577
b05a7928
FW
5578 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5579 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5580
e904e6c2
TH
5581 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5582
706026c2 5583 /* initialize CPU pools */
29c91e99 5584 for_each_possible_cpu(cpu) {
4ce62e9e 5585 struct worker_pool *pool;
8b03ae3c 5586
7a4e344c 5587 i = 0;
f02ae73a 5588 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5589 BUG_ON(init_worker_pool(pool));
ec22ca5e 5590 pool->cpu = cpu;
29c91e99 5591 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5592 pool->attrs->nice = std_nice[i++];
f3f90ad4 5593 pool->node = cpu_to_node(cpu);
7a4e344c 5594
9daf9e67 5595 /* alloc pool ID */
68e13a67 5596 mutex_lock(&wq_pool_mutex);
9daf9e67 5597 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5598 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5599 }
8b03ae3c
TH
5600 }
5601
8a2b7538 5602 /* create default unbound and ordered wq attrs */
29c91e99
TH
5603 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5604 struct workqueue_attrs *attrs;
5605
5606 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5607 attrs->nice = std_nice[i];
29c91e99 5608 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5609
5610 /*
5611 * An ordered wq should have only one pwq as ordering is
5612 * guaranteed by max_active which is enforced by pwqs.
5613 * Turn off NUMA so that dfl_pwq is used for all nodes.
5614 */
5615 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5616 attrs->nice = std_nice[i];
5617 attrs->no_numa = true;
5618 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5619 }
5620
d320c038 5621 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5622 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5623 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5624 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5625 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5626 system_freezable_wq = alloc_workqueue("events_freezable",
5627 WQ_FREEZABLE, 0);
0668106c
VK
5628 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5629 WQ_POWER_EFFICIENT, 0);
5630 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5631 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5632 0);
1aabe902 5633 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5634 !system_unbound_wq || !system_freezable_wq ||
5635 !system_power_efficient_wq ||
5636 !system_freezable_power_efficient_wq);
82607adc 5637
3347fa09
TH
5638 return 0;
5639}
5640
5641/**
5642 * workqueue_init - bring workqueue subsystem fully online
5643 *
5644 * This is the latter half of two-staged workqueue subsystem initialization
5645 * and invoked as soon as kthreads can be created and scheduled.
5646 * Workqueues have been created and work items queued on them, but there
5647 * are no kworkers executing the work items yet. Populate the worker pools
5648 * with the initial workers and enable future kworker creations.
5649 */
5650int __init workqueue_init(void)
5651{
2186d9f9 5652 struct workqueue_struct *wq;
3347fa09
TH
5653 struct worker_pool *pool;
5654 int cpu, bkt;
5655
2186d9f9
TH
5656 /*
5657 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5658 * CPU to node mapping may not be available that early on some
5659 * archs such as power and arm64. As per-cpu pools created
5660 * previously could be missing node hint and unbound pools NUMA
5661 * affinity, fix them up.
5662 */
5663 wq_numa_init();
5664
5665 mutex_lock(&wq_pool_mutex);
5666
5667 for_each_possible_cpu(cpu) {
5668 for_each_cpu_worker_pool(pool, cpu) {
5669 pool->node = cpu_to_node(cpu);
5670 }
5671 }
5672
5673 list_for_each_entry(wq, &workqueues, list)
5674 wq_update_unbound_numa(wq, smp_processor_id(), true);
5675
5676 mutex_unlock(&wq_pool_mutex);
5677
3347fa09
TH
5678 /* create the initial workers */
5679 for_each_online_cpu(cpu) {
5680 for_each_cpu_worker_pool(pool, cpu) {
5681 pool->flags &= ~POOL_DISASSOCIATED;
5682 BUG_ON(!create_worker(pool));
5683 }
5684 }
5685
5686 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5687 BUG_ON(!create_worker(pool));
5688
5689 wq_online = true;
82607adc
TH
5690 wq_watchdog_init();
5691
6ee0578b 5692 return 0;
1da177e4 5693}