]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/workqueue.c
Merge branches 'x86/amd', 'x86/vt-d', 'arm/rockchip', 'arm/omap', 'arm/mediatek'...
[mirror_ubuntu-hirsute-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669 41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
c98a9805 50#include <linux/sched/isolation.h>
62635ea8 51#include <linux/nmi.h>
e22bee78 52
ea138446 53#include "workqueue_internal.h"
1da177e4 54
c8e55f36 55enum {
24647570
TH
56 /*
57 * worker_pool flags
bc2ae0f5 58 *
24647570 59 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 66 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 67 *
bc3a1afc 68 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 69 * attach_mutex to avoid changing binding state while
4736cbf7 70 * worker_attach_to_pool() is in progress.
bc2ae0f5 71 */
692b4825 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
8698a745 102 * all cpus. Give MIN_NICE.
e22bee78 103 */
8698a745
DY
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
92f9c5c4 126 * A: pool->attach_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
5b95e1af
LJ
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
3c25a55d
LJ
137 * WQ: wq->mutex protected.
138 *
b5927605 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
140 *
141 * MD: wq_mayday_lock protected.
1da177e4 142 */
1da177e4 143
2eaebdb3 144/* struct worker is defined in workqueue_internal.h */
c34056a3 145
bd7bdd43 146struct worker_pool {
d565ed63 147 spinlock_t lock; /* the pool lock */
d84ff051 148 int cpu; /* I: the associated cpu */
f3f90ad4 149 int node; /* I: the associated node ID */
9daf9e67 150 int id; /* I: pool ID */
11ebea50 151 unsigned int flags; /* X: flags */
bd7bdd43 152
82607adc
TH
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
bd7bdd43
TH
155 struct list_head worklist; /* L: list of pending works */
156 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
157
158 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
159 int nr_idle; /* L: currently idle ones */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
bc3a1afc 169 /* see manage_workers() for details on the two manager mutexes */
2607d7a6 170 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
171 struct mutex attach_mutex; /* attach/detach exclusion */
172 struct list_head workers; /* A: attached workers */
60f5a4bc 173 struct completion *detach_completion; /* all workers detached */
e19e397a 174
7cda9aae 175 struct ida worker_ida; /* worker IDs for task name */
e19e397a 176
7a4e344c 177 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
179 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 180
e19e397a
TH
181 /*
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
184 * cacheline.
185 */
186 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
187
188 /*
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
191 */
192 struct rcu_head rcu;
8b03ae3c
TH
193} ____cacheline_aligned_in_smp;
194
1da177e4 195/*
112202d9
TH
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
1da177e4 200 */
112202d9 201struct pool_workqueue {
bd7bdd43 202 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 203 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
8864b4e5 206 int refcnt; /* L: reference count */
73f53c4a
TH
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
1e19ffc6 209 int nr_active; /* L: nr of active works */
a0a1a5fd 210 int max_active; /* L: max active works */
1e19ffc6 211 struct list_head delayed_works; /* L: delayed works */
3c25a55d 212 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 213 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
214
215 /*
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 219 * determined without grabbing wq->mutex.
8864b4e5
TH
220 */
221 struct work_struct unbound_release_work;
222 struct rcu_head rcu;
e904e6c2 223} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 224
73f53c4a
TH
225/*
226 * Structure used to wait for workqueue flush.
227 */
228struct wq_flusher {
3c25a55d
LJ
229 struct list_head list; /* WQ: list of flushers */
230 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
231 struct completion done; /* flush completion */
232};
233
226223ab
TH
234struct wq_device;
235
1da177e4 236/*
c5aa87bb
TH
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
239 */
240struct workqueue_struct {
3c25a55d 241 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 242 struct list_head list; /* PR: list of all workqueues */
73f53c4a 243
3c25a55d
LJ
244 struct mutex mutex; /* protects this wq */
245 int work_color; /* WQ: current work color */
246 int flush_color; /* WQ: current flush color */
112202d9 247 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
248 struct wq_flusher *first_flusher; /* WQ: first flusher */
249 struct list_head flusher_queue; /* WQ: flush waiters */
250 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 251
2e109a28 252 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
253 struct worker *rescuer; /* I: rescue worker */
254
87fc741e 255 int nr_drainers; /* WQ: drain in progress */
a357fc03 256 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 257
5b95e1af
LJ
258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 260
226223ab
TH
261#ifdef CONFIG_SYSFS
262 struct wq_device *wq_dev; /* I: for sysfs interface */
263#endif
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad
TH
269 /*
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 302static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 303static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 304
e2dca7ad 305static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 306static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 307
ef557180
MG
308/* PL: allowable cpus for unbound wqs and work items */
309static cpumask_var_t wq_unbound_cpumask;
310
311/* CPU where unbound work was last round robin scheduled from this CPU */
312static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 313
f303fccb
TH
314/*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320static bool wq_debug_force_rr_cpu = true;
321#else
322static bool wq_debug_force_rr_cpu = false;
323#endif
324module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
7d19c5ce 326/* the per-cpu worker pools */
25528213 327static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 328
68e13a67 329static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 330
68e13a67 331/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
332static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
c5aa87bb 334/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
335static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
8a2b7538
TH
337/* I: attributes used when instantiating ordered pools on demand */
338static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
d320c038 340struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 341EXPORT_SYMBOL(system_wq);
044c782c 342struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 343EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 344struct workqueue_struct *system_long_wq __read_mostly;
d320c038 345EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 346struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 347EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 348struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 349EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
350struct workqueue_struct *system_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 354
7d19c5ce 355static int worker_thread(void *__worker);
6ba94429 356static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 357
97bd2347
TH
358#define CREATE_TRACE_POINTS
359#include <trace/events/workqueue.h>
360
68e13a67 361#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
5bcab335 365
b09f4fd3 366#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
76af4d93 370
5b95e1af 371#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 376
f02ae73a
TH
377#define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 380 (pool)++)
4ce62e9e 381
17116969
TH
382/**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
611c92a0 385 * @pi: integer used for iteration
fa1b54e6 386 *
68e13a67
LJ
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
17116969 393 */
611c92a0
TH
394#define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 397 else
17116969 398
822d8405
TH
399/**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
822d8405
TH
402 * @pool: worker_pool to iterate workers of
403 *
92f9c5c4 404 * This must be called with @pool->attach_mutex.
822d8405
TH
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
da028469
LJ
409#define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 411 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
412 else
413
49e3cf44
TH
414/**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
76af4d93 418 *
b09f4fd3 419 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
49e3cf44
TH
425 */
426#define for_each_pwq(pwq, wq) \
76af4d93 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 429 else
f3421797 430
dc186ad7
TG
431#ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433static struct debug_obj_descr work_debug_descr;
434
99777288
SG
435static void *work_debug_hint(void *addr)
436{
437 return ((struct work_struct *) addr)->func;
438}
439
b9fdac7f
CD
440static bool work_is_static_object(void *addr)
441{
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445}
446
dc186ad7
TG
447/*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
02a982a6 451static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
452{
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
02a982a6 459 return true;
dc186ad7 460 default:
02a982a6 461 return false;
dc186ad7
TG
462 }
463}
464
dc186ad7
TG
465/*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
02a982a6 469static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
470{
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
02a982a6 477 return true;
dc186ad7 478 default:
02a982a6 479 return false;
dc186ad7
TG
480 }
481}
482
483static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
99777288 485 .debug_hint = work_debug_hint,
b9fdac7f 486 .is_static_object = work_is_static_object,
dc186ad7 487 .fixup_init = work_fixup_init,
dc186ad7
TG
488 .fixup_free = work_fixup_free,
489};
490
491static inline void debug_work_activate(struct work_struct *work)
492{
493 debug_object_activate(work, &work_debug_descr);
494}
495
496static inline void debug_work_deactivate(struct work_struct *work)
497{
498 debug_object_deactivate(work, &work_debug_descr);
499}
500
501void __init_work(struct work_struct *work, int onstack)
502{
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507}
508EXPORT_SYMBOL_GPL(__init_work);
509
510void destroy_work_on_stack(struct work_struct *work)
511{
512 debug_object_free(work, &work_debug_descr);
513}
514EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
ea2e64f2
TG
516void destroy_delayed_work_on_stack(struct delayed_work *work)
517{
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520}
521EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
dc186ad7
TG
523#else
524static inline void debug_work_activate(struct work_struct *work) { }
525static inline void debug_work_deactivate(struct work_struct *work) { }
526#endif
527
4e8b22bd
LB
528/**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
9daf9e67
TH
535static int worker_pool_assign_id(struct worker_pool *pool)
536{
537 int ret;
538
68e13a67 539 lockdep_assert_held(&wq_pool_mutex);
5bcab335 540
4e8b22bd
LB
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
229641a6 543 if (ret >= 0) {
e68035fb 544 pool->id = ret;
229641a6
TH
545 return 0;
546 }
fa1b54e6 547 return ret;
7c3eed5c
TH
548}
549
df2d5ae4
TH
550/**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
5b95e1af
LJ
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
df2d5ae4
TH
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
559 *
560 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
561 */
562static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564{
5b95e1af 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
df2d5ae4
TH
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577}
578
73f53c4a
TH
579static unsigned int work_color_to_flags(int color)
580{
581 return color << WORK_STRUCT_COLOR_SHIFT;
582}
583
584static int get_work_color(struct work_struct *work)
585{
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588}
589
590static int work_next_color(int color)
591{
592 return (color + 1) % WORK_NR_COLORS;
593}
1da177e4 594
14441960 595/*
112202d9
TH
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 598 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 599 *
112202d9
TH
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
7a22ad75 604 *
112202d9 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 606 * corresponding to a work. Pool is available once the work has been
112202d9 607 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 608 * available only while the work item is queued.
7a22ad75 609 *
bbb68dfa
TH
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
14441960 614 */
7a22ad75
TH
615static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
365970a1 617{
6183c009 618 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
619 atomic_long_set(&work->data, data | flags | work_static(work));
620}
365970a1 621
112202d9 622static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
623 unsigned long extra_flags)
624{
112202d9
TH
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
627}
628
4468a00f
LJ
629static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631{
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634}
635
7c3eed5c
TH
636static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
7a22ad75 638{
23657bb1
TH
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
7c3eed5c 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to qeueue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
7a22ad75 676}
f756d5e2 677
7a22ad75 678static void clear_work_data(struct work_struct *work)
1da177e4 679{
7c3eed5c
TH
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
682}
683
112202d9 684static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 685{
e120153d 686 unsigned long data = atomic_long_read(&work->data);
7a22ad75 687
112202d9 688 if (data & WORK_STRUCT_PWQ)
e120153d
TH
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
4d707b9f
ON
692}
693
7c3eed5c
TH
694/**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
68e13a67
LJ
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
d185af30
YB
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
708 */
709static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 710{
e120153d 711 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 712 int pool_id;
7a22ad75 713
68e13a67 714 assert_rcu_or_pool_mutex();
fa1b54e6 715
112202d9
TH
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
7c3eed5c 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 719
7c3eed5c
TH
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
722 return NULL;
723
fa1b54e6 724 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
725}
726
727/**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
d185af30 731 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734static int get_work_pool_id(struct work_struct *work)
735{
54d5b7d0
LJ
736 unsigned long data = atomic_long_read(&work->data);
737
112202d9
TH
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
54d5b7d0 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 741
54d5b7d0 742 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
743}
744
bbb68dfa
TH
745static void mark_work_canceling(struct work_struct *work)
746{
7c3eed5c 747 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 748
7c3eed5c
TH
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
751}
752
753static bool work_is_canceling(struct work_struct *work)
754{
755 unsigned long data = atomic_long_read(&work->data);
756
112202d9 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
758}
759
e22bee78 760/*
3270476a
TH
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 763 * they're being called with pool->lock held.
e22bee78
TH
764 */
765
63d95a91 766static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 767{
e19e397a 768 return !atomic_read(&pool->nr_running);
a848e3b6
ON
769}
770
4594bf15 771/*
e22bee78
TH
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
974271c4
TH
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
706026c2 776 * function will always return %true for unbound pools as long as the
974271c4 777 * worklist isn't empty.
4594bf15 778 */
63d95a91 779static bool need_more_worker(struct worker_pool *pool)
365970a1 780{
63d95a91 781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 782}
4594bf15 783
e22bee78 784/* Can I start working? Called from busy but !running workers. */
63d95a91 785static bool may_start_working(struct worker_pool *pool)
e22bee78 786{
63d95a91 787 return pool->nr_idle;
e22bee78
TH
788}
789
790/* Do I need to keep working? Called from currently running workers. */
63d95a91 791static bool keep_working(struct worker_pool *pool)
e22bee78 792{
e19e397a
TH
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
795}
796
797/* Do we need a new worker? Called from manager. */
63d95a91 798static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 799{
63d95a91 800 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 801}
365970a1 802
e22bee78 803/* Do we have too many workers and should some go away? */
63d95a91 804static bool too_many_workers(struct worker_pool *pool)
e22bee78 805{
692b4825 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
811}
812
4d707b9f 813/*
e22bee78
TH
814 * Wake up functions.
815 */
816
1037de36
LJ
817/* Return the first idle worker. Safe with preemption disabled */
818static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 819{
63d95a91 820 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
821 return NULL;
822
63d95a91 823 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
824}
825
826/**
827 * wake_up_worker - wake up an idle worker
63d95a91 828 * @pool: worker pool to wake worker from
7e11629d 829 *
63d95a91 830 * Wake up the first idle worker of @pool.
7e11629d
TH
831 *
832 * CONTEXT:
d565ed63 833 * spin_lock_irq(pool->lock).
7e11629d 834 */
63d95a91 835static void wake_up_worker(struct worker_pool *pool)
7e11629d 836{
1037de36 837 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841}
842
d302f017 843/**
e22bee78
TH
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
d84ff051 854void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
855{
856 struct worker *worker = kthread_data(task);
857
36576000 858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 859 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 860 atomic_inc(&worker->pool->nr_running);
36576000 861 }
e22bee78
TH
862}
863
864/**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
e22bee78
TH
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
d185af30 875 * Return:
e22bee78
TH
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
9b7f6597 878struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
879{
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 881 struct worker_pool *pool;
e22bee78 882
111c225a
TH
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
2d64672e 888 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
889 return NULL;
890
111c225a 891 pool = worker->pool;
111c225a 892
e22bee78 893 /* this can only happen on the local cpu */
9b7f6597 894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 895 return NULL;
e22bee78
TH
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
628c78e7
TH
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
d565ed63 905 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 906 * lock is safe.
e22bee78 907 */
e19e397a
TH
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
1037de36 910 to_wakeup = first_idle_worker(pool);
e22bee78
TH
911 return to_wakeup ? to_wakeup->task : NULL;
912}
913
914/**
915 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 916 * @worker: self
d302f017 917 * @flags: flags to set
d302f017 918 *
228f1d00 919 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 920 *
cb444766 921 * CONTEXT:
d565ed63 922 * spin_lock_irq(pool->lock)
d302f017 923 */
228f1d00 924static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 925{
bd7bdd43 926 struct worker_pool *pool = worker->pool;
e22bee78 927
cb444766
TH
928 WARN_ON_ONCE(worker->task != current);
929
228f1d00 930 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
931 if ((flags & WORKER_NOT_RUNNING) &&
932 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 933 atomic_dec(&pool->nr_running);
e22bee78
TH
934 }
935
d302f017
TH
936 worker->flags |= flags;
937}
938
939/**
e22bee78 940 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 941 * @worker: self
d302f017
TH
942 * @flags: flags to clear
943 *
e22bee78 944 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 945 *
cb444766 946 * CONTEXT:
d565ed63 947 * spin_lock_irq(pool->lock)
d302f017
TH
948 */
949static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
950{
63d95a91 951 struct worker_pool *pool = worker->pool;
e22bee78
TH
952 unsigned int oflags = worker->flags;
953
cb444766
TH
954 WARN_ON_ONCE(worker->task != current);
955
d302f017 956 worker->flags &= ~flags;
e22bee78 957
42c025f3
TH
958 /*
959 * If transitioning out of NOT_RUNNING, increment nr_running. Note
960 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
961 * of multiple flags, not a single flag.
962 */
e22bee78
TH
963 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
964 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 965 atomic_inc(&pool->nr_running);
d302f017
TH
966}
967
8cca0eea
TH
968/**
969 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 970 * @pool: pool of interest
8cca0eea
TH
971 * @work: work to find worker for
972 *
c9e7cf27
TH
973 * Find a worker which is executing @work on @pool by searching
974 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
975 * to match, its current execution should match the address of @work and
976 * its work function. This is to avoid unwanted dependency between
977 * unrelated work executions through a work item being recycled while still
978 * being executed.
979 *
980 * This is a bit tricky. A work item may be freed once its execution
981 * starts and nothing prevents the freed area from being recycled for
982 * another work item. If the same work item address ends up being reused
983 * before the original execution finishes, workqueue will identify the
984 * recycled work item as currently executing and make it wait until the
985 * current execution finishes, introducing an unwanted dependency.
986 *
c5aa87bb
TH
987 * This function checks the work item address and work function to avoid
988 * false positives. Note that this isn't complete as one may construct a
989 * work function which can introduce dependency onto itself through a
990 * recycled work item. Well, if somebody wants to shoot oneself in the
991 * foot that badly, there's only so much we can do, and if such deadlock
992 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
993 *
994 * CONTEXT:
d565ed63 995 * spin_lock_irq(pool->lock).
8cca0eea 996 *
d185af30
YB
997 * Return:
998 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 999 * otherwise.
4d707b9f 1000 */
c9e7cf27 1001static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1002 struct work_struct *work)
4d707b9f 1003{
42f8570f 1004 struct worker *worker;
42f8570f 1005
b67bfe0d 1006 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1007 (unsigned long)work)
1008 if (worker->current_work == work &&
1009 worker->current_func == work->func)
42f8570f
SL
1010 return worker;
1011
1012 return NULL;
4d707b9f
ON
1013}
1014
bf4ede01
TH
1015/**
1016 * move_linked_works - move linked works to a list
1017 * @work: start of series of works to be scheduled
1018 * @head: target list to append @work to
402dd89d 1019 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1020 *
1021 * Schedule linked works starting from @work to @head. Work series to
1022 * be scheduled starts at @work and includes any consecutive work with
1023 * WORK_STRUCT_LINKED set in its predecessor.
1024 *
1025 * If @nextp is not NULL, it's updated to point to the next work of
1026 * the last scheduled work. This allows move_linked_works() to be
1027 * nested inside outer list_for_each_entry_safe().
1028 *
1029 * CONTEXT:
d565ed63 1030 * spin_lock_irq(pool->lock).
bf4ede01
TH
1031 */
1032static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 struct work_struct **nextp)
1034{
1035 struct work_struct *n;
1036
1037 /*
1038 * Linked worklist will always end before the end of the list,
1039 * use NULL for list head.
1040 */
1041 list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 list_move_tail(&work->entry, head);
1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 break;
1045 }
1046
1047 /*
1048 * If we're already inside safe list traversal and have moved
1049 * multiple works to the scheduled queue, the next position
1050 * needs to be updated.
1051 */
1052 if (nextp)
1053 *nextp = n;
1054}
1055
8864b4e5
TH
1056/**
1057 * get_pwq - get an extra reference on the specified pool_workqueue
1058 * @pwq: pool_workqueue to get
1059 *
1060 * Obtain an extra reference on @pwq. The caller should guarantee that
1061 * @pwq has positive refcnt and be holding the matching pool->lock.
1062 */
1063static void get_pwq(struct pool_workqueue *pwq)
1064{
1065 lockdep_assert_held(&pwq->pool->lock);
1066 WARN_ON_ONCE(pwq->refcnt <= 0);
1067 pwq->refcnt++;
1068}
1069
1070/**
1071 * put_pwq - put a pool_workqueue reference
1072 * @pwq: pool_workqueue to put
1073 *
1074 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1075 * destruction. The caller should be holding the matching pool->lock.
1076 */
1077static void put_pwq(struct pool_workqueue *pwq)
1078{
1079 lockdep_assert_held(&pwq->pool->lock);
1080 if (likely(--pwq->refcnt))
1081 return;
1082 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1083 return;
1084 /*
1085 * @pwq can't be released under pool->lock, bounce to
1086 * pwq_unbound_release_workfn(). This never recurses on the same
1087 * pool->lock as this path is taken only for unbound workqueues and
1088 * the release work item is scheduled on a per-cpu workqueue. To
1089 * avoid lockdep warning, unbound pool->locks are given lockdep
1090 * subclass of 1 in get_unbound_pool().
1091 */
1092 schedule_work(&pwq->unbound_release_work);
1093}
1094
dce90d47
TH
1095/**
1096 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1097 * @pwq: pool_workqueue to put (can be %NULL)
1098 *
1099 * put_pwq() with locking. This function also allows %NULL @pwq.
1100 */
1101static void put_pwq_unlocked(struct pool_workqueue *pwq)
1102{
1103 if (pwq) {
1104 /*
1105 * As both pwqs and pools are sched-RCU protected, the
1106 * following lock operations are safe.
1107 */
1108 spin_lock_irq(&pwq->pool->lock);
1109 put_pwq(pwq);
1110 spin_unlock_irq(&pwq->pool->lock);
1111 }
1112}
1113
112202d9 1114static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1115{
112202d9 1116 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1117
1118 trace_workqueue_activate_work(work);
82607adc
TH
1119 if (list_empty(&pwq->pool->worklist))
1120 pwq->pool->watchdog_ts = jiffies;
112202d9 1121 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1122 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1123 pwq->nr_active++;
bf4ede01
TH
1124}
1125
112202d9 1126static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1127{
112202d9 1128 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1129 struct work_struct, entry);
1130
112202d9 1131 pwq_activate_delayed_work(work);
3aa62497
LJ
1132}
1133
bf4ede01 1134/**
112202d9
TH
1135 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1136 * @pwq: pwq of interest
bf4ede01 1137 * @color: color of work which left the queue
bf4ede01
TH
1138 *
1139 * A work either has completed or is removed from pending queue,
112202d9 1140 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1141 *
1142 * CONTEXT:
d565ed63 1143 * spin_lock_irq(pool->lock).
bf4ede01 1144 */
112202d9 1145static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1146{
8864b4e5 1147 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1148 if (color == WORK_NO_COLOR)
8864b4e5 1149 goto out_put;
bf4ede01 1150
112202d9 1151 pwq->nr_in_flight[color]--;
bf4ede01 1152
112202d9
TH
1153 pwq->nr_active--;
1154 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1155 /* one down, submit a delayed one */
112202d9
TH
1156 if (pwq->nr_active < pwq->max_active)
1157 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1158 }
1159
1160 /* is flush in progress and are we at the flushing tip? */
112202d9 1161 if (likely(pwq->flush_color != color))
8864b4e5 1162 goto out_put;
bf4ede01
TH
1163
1164 /* are there still in-flight works? */
112202d9 1165 if (pwq->nr_in_flight[color])
8864b4e5 1166 goto out_put;
bf4ede01 1167
112202d9
TH
1168 /* this pwq is done, clear flush_color */
1169 pwq->flush_color = -1;
bf4ede01
TH
1170
1171 /*
112202d9 1172 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1173 * will handle the rest.
1174 */
112202d9
TH
1175 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1176 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1177out_put:
1178 put_pwq(pwq);
bf4ede01
TH
1179}
1180
36e227d2 1181/**
bbb68dfa 1182 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1183 * @work: work item to steal
1184 * @is_dwork: @work is a delayed_work
bbb68dfa 1185 * @flags: place to store irq state
36e227d2
TH
1186 *
1187 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1188 * stable state - idle, on timer or on worklist.
36e227d2 1189 *
d185af30 1190 * Return:
36e227d2
TH
1191 * 1 if @work was pending and we successfully stole PENDING
1192 * 0 if @work was idle and we claimed PENDING
1193 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1194 * -ENOENT if someone else is canceling @work, this state may persist
1195 * for arbitrarily long
36e227d2 1196 *
d185af30 1197 * Note:
bbb68dfa 1198 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1199 * interrupted while holding PENDING and @work off queue, irq must be
1200 * disabled on entry. This, combined with delayed_work->timer being
1201 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1202 *
1203 * On successful return, >= 0, irq is disabled and the caller is
1204 * responsible for releasing it using local_irq_restore(*@flags).
1205 *
e0aecdd8 1206 * This function is safe to call from any context including IRQ handler.
bf4ede01 1207 */
bbb68dfa
TH
1208static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1209 unsigned long *flags)
bf4ede01 1210{
d565ed63 1211 struct worker_pool *pool;
112202d9 1212 struct pool_workqueue *pwq;
bf4ede01 1213
bbb68dfa
TH
1214 local_irq_save(*flags);
1215
36e227d2
TH
1216 /* try to steal the timer if it exists */
1217 if (is_dwork) {
1218 struct delayed_work *dwork = to_delayed_work(work);
1219
e0aecdd8
TH
1220 /*
1221 * dwork->timer is irqsafe. If del_timer() fails, it's
1222 * guaranteed that the timer is not queued anywhere and not
1223 * running on the local CPU.
1224 */
36e227d2
TH
1225 if (likely(del_timer(&dwork->timer)))
1226 return 1;
1227 }
1228
1229 /* try to claim PENDING the normal way */
bf4ede01
TH
1230 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1231 return 0;
1232
1233 /*
1234 * The queueing is in progress, or it is already queued. Try to
1235 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1236 */
d565ed63
TH
1237 pool = get_work_pool(work);
1238 if (!pool)
bbb68dfa 1239 goto fail;
bf4ede01 1240
d565ed63 1241 spin_lock(&pool->lock);
0b3dae68 1242 /*
112202d9
TH
1243 * work->data is guaranteed to point to pwq only while the work
1244 * item is queued on pwq->wq, and both updating work->data to point
1245 * to pwq on queueing and to pool on dequeueing are done under
1246 * pwq->pool->lock. This in turn guarantees that, if work->data
1247 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1248 * item is currently queued on that pool.
1249 */
112202d9
TH
1250 pwq = get_work_pwq(work);
1251 if (pwq && pwq->pool == pool) {
16062836
TH
1252 debug_work_deactivate(work);
1253
1254 /*
1255 * A delayed work item cannot be grabbed directly because
1256 * it might have linked NO_COLOR work items which, if left
112202d9 1257 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1258 * management later on and cause stall. Make sure the work
1259 * item is activated before grabbing.
1260 */
1261 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1262 pwq_activate_delayed_work(work);
16062836
TH
1263
1264 list_del_init(&work->entry);
9c34a704 1265 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1266
112202d9 1267 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1268 set_work_pool_and_keep_pending(work, pool->id);
1269
1270 spin_unlock(&pool->lock);
1271 return 1;
bf4ede01 1272 }
d565ed63 1273 spin_unlock(&pool->lock);
bbb68dfa
TH
1274fail:
1275 local_irq_restore(*flags);
1276 if (work_is_canceling(work))
1277 return -ENOENT;
1278 cpu_relax();
36e227d2 1279 return -EAGAIN;
bf4ede01
TH
1280}
1281
4690c4ab 1282/**
706026c2 1283 * insert_work - insert a work into a pool
112202d9 1284 * @pwq: pwq @work belongs to
4690c4ab
TH
1285 * @work: work to insert
1286 * @head: insertion point
1287 * @extra_flags: extra WORK_STRUCT_* flags to set
1288 *
112202d9 1289 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1290 * work_struct flags.
4690c4ab
TH
1291 *
1292 * CONTEXT:
d565ed63 1293 * spin_lock_irq(pool->lock).
4690c4ab 1294 */
112202d9
TH
1295static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1296 struct list_head *head, unsigned int extra_flags)
b89deed3 1297{
112202d9 1298 struct worker_pool *pool = pwq->pool;
e22bee78 1299
4690c4ab 1300 /* we own @work, set data and link */
112202d9 1301 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1302 list_add_tail(&work->entry, head);
8864b4e5 1303 get_pwq(pwq);
e22bee78
TH
1304
1305 /*
c5aa87bb
TH
1306 * Ensure either wq_worker_sleeping() sees the above
1307 * list_add_tail() or we see zero nr_running to avoid workers lying
1308 * around lazily while there are works to be processed.
e22bee78
TH
1309 */
1310 smp_mb();
1311
63d95a91
TH
1312 if (__need_more_worker(pool))
1313 wake_up_worker(pool);
b89deed3
ON
1314}
1315
c8efcc25
TH
1316/*
1317 * Test whether @work is being queued from another work executing on the
8d03ecfe 1318 * same workqueue.
c8efcc25
TH
1319 */
1320static bool is_chained_work(struct workqueue_struct *wq)
1321{
8d03ecfe
TH
1322 struct worker *worker;
1323
1324 worker = current_wq_worker();
1325 /*
1326 * Return %true iff I'm a worker execuing a work item on @wq. If
1327 * I'm @worker, it's safe to dereference it without locking.
1328 */
112202d9 1329 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1330}
1331
ef557180
MG
1332/*
1333 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1334 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1335 * avoid perturbing sensitive tasks.
1336 */
1337static int wq_select_unbound_cpu(int cpu)
1338{
f303fccb 1339 static bool printed_dbg_warning;
ef557180
MG
1340 int new_cpu;
1341
f303fccb
TH
1342 if (likely(!wq_debug_force_rr_cpu)) {
1343 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1344 return cpu;
1345 } else if (!printed_dbg_warning) {
1346 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1347 printed_dbg_warning = true;
1348 }
1349
ef557180
MG
1350 if (cpumask_empty(wq_unbound_cpumask))
1351 return cpu;
1352
1353 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1354 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids)) {
1356 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1357 if (unlikely(new_cpu >= nr_cpu_ids))
1358 return cpu;
1359 }
1360 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1361
1362 return new_cpu;
1363}
1364
d84ff051 1365static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1366 struct work_struct *work)
1367{
112202d9 1368 struct pool_workqueue *pwq;
c9178087 1369 struct worker_pool *last_pool;
1e19ffc6 1370 struct list_head *worklist;
8a2e8e5d 1371 unsigned int work_flags;
b75cac93 1372 unsigned int req_cpu = cpu;
8930caba
TH
1373
1374 /*
1375 * While a work item is PENDING && off queue, a task trying to
1376 * steal the PENDING will busy-loop waiting for it to either get
1377 * queued or lose PENDING. Grabbing PENDING and queueing should
1378 * happen with IRQ disabled.
1379 */
8e8eb730 1380 lockdep_assert_irqs_disabled();
1da177e4 1381
dc186ad7 1382 debug_work_activate(work);
1e19ffc6 1383
9ef28a73 1384 /* if draining, only works from the same workqueue are allowed */
618b01eb 1385 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1386 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1387 return;
9e8cd2f5 1388retry:
df2d5ae4 1389 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1390 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1391
c9178087 1392 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1393 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1394 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1395 else
1396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1397
c9178087
TH
1398 /*
1399 * If @work was previously on a different pool, it might still be
1400 * running there, in which case the work needs to be queued on that
1401 * pool to guarantee non-reentrancy.
1402 */
1403 last_pool = get_work_pool(work);
1404 if (last_pool && last_pool != pwq->pool) {
1405 struct worker *worker;
18aa9eff 1406
c9178087 1407 spin_lock(&last_pool->lock);
18aa9eff 1408
c9178087 1409 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1410
c9178087
TH
1411 if (worker && worker->current_pwq->wq == wq) {
1412 pwq = worker->current_pwq;
8930caba 1413 } else {
c9178087
TH
1414 /* meh... not running there, queue here */
1415 spin_unlock(&last_pool->lock);
112202d9 1416 spin_lock(&pwq->pool->lock);
8930caba 1417 }
f3421797 1418 } else {
112202d9 1419 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1420 }
1421
9e8cd2f5
TH
1422 /*
1423 * pwq is determined and locked. For unbound pools, we could have
1424 * raced with pwq release and it could already be dead. If its
1425 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1426 * without another pwq replacing it in the numa_pwq_tbl or while
1427 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1428 * make forward-progress.
1429 */
1430 if (unlikely(!pwq->refcnt)) {
1431 if (wq->flags & WQ_UNBOUND) {
1432 spin_unlock(&pwq->pool->lock);
1433 cpu_relax();
1434 goto retry;
1435 }
1436 /* oops */
1437 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1438 wq->name, cpu);
1439 }
1440
112202d9
TH
1441 /* pwq determined, queue */
1442 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1443
f5b2552b 1444 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1445 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1446 return;
1447 }
1e19ffc6 1448
112202d9
TH
1449 pwq->nr_in_flight[pwq->work_color]++;
1450 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1451
112202d9 1452 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1453 trace_workqueue_activate_work(work);
112202d9
TH
1454 pwq->nr_active++;
1455 worklist = &pwq->pool->worklist;
82607adc
TH
1456 if (list_empty(worklist))
1457 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1458 } else {
1459 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1460 worklist = &pwq->delayed_works;
8a2e8e5d 1461 }
1e19ffc6 1462
112202d9 1463 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1464
112202d9 1465 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1466}
1467
0fcb78c2 1468/**
c1a220e7
ZR
1469 * queue_work_on - queue work on specific cpu
1470 * @cpu: CPU number to execute work on
0fcb78c2
REB
1471 * @wq: workqueue to use
1472 * @work: work to queue
1473 *
c1a220e7
ZR
1474 * We queue the work to a specific CPU, the caller must ensure it
1475 * can't go away.
d185af30
YB
1476 *
1477 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1478 */
d4283e93
TH
1479bool queue_work_on(int cpu, struct workqueue_struct *wq,
1480 struct work_struct *work)
1da177e4 1481{
d4283e93 1482 bool ret = false;
8930caba 1483 unsigned long flags;
ef1ca236 1484
8930caba 1485 local_irq_save(flags);
c1a220e7 1486
22df02bb 1487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1488 __queue_work(cpu, wq, work);
d4283e93 1489 ret = true;
c1a220e7 1490 }
ef1ca236 1491
8930caba 1492 local_irq_restore(flags);
1da177e4
LT
1493 return ret;
1494}
ad7b1f84 1495EXPORT_SYMBOL(queue_work_on);
1da177e4 1496
8c20feb6 1497void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1498{
8c20feb6 1499 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1500
e0aecdd8 1501 /* should have been called from irqsafe timer with irq already off */
60c057bc 1502 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1503}
1438ade5 1504EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1505
7beb2edf
TH
1506static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1507 struct delayed_work *dwork, unsigned long delay)
1da177e4 1508{
7beb2edf
TH
1509 struct timer_list *timer = &dwork->timer;
1510 struct work_struct *work = &dwork->work;
7beb2edf 1511
637fdbae 1512 WARN_ON_ONCE(!wq);
841b86f3 1513 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1514 WARN_ON_ONCE(timer_pending(timer));
1515 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1516
8852aac2
TH
1517 /*
1518 * If @delay is 0, queue @dwork->work immediately. This is for
1519 * both optimization and correctness. The earliest @timer can
1520 * expire is on the closest next tick and delayed_work users depend
1521 * on that there's no such delay when @delay is 0.
1522 */
1523 if (!delay) {
1524 __queue_work(cpu, wq, &dwork->work);
1525 return;
1526 }
1527
60c057bc 1528 dwork->wq = wq;
1265057f 1529 dwork->cpu = cpu;
7beb2edf
TH
1530 timer->expires = jiffies + delay;
1531
041bd12e
TH
1532 if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 add_timer_on(timer, cpu);
1534 else
1535 add_timer(timer);
1da177e4
LT
1536}
1537
0fcb78c2
REB
1538/**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
af9997e4 1542 * @dwork: work to queue
0fcb78c2
REB
1543 * @delay: number of jiffies to wait before queueing
1544 *
d185af30 1545 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
0fcb78c2 1548 */
d4283e93
TH
1549bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1551{
52bad64d 1552 struct work_struct *work = &dwork->work;
d4283e93 1553 bool ret = false;
8930caba 1554 unsigned long flags;
7a6bc1cd 1555
8930caba
TH
1556 /* read the comment in __queue_work() */
1557 local_irq_save(flags);
7a6bc1cd 1558
22df02bb 1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1560 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1561 ret = true;
7a6bc1cd 1562 }
8a3e77cc 1563
8930caba 1564 local_irq_restore(flags);
7a6bc1cd
VP
1565 return ret;
1566}
ad7b1f84 1567EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1568
8376fe22
TH
1569/**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay. If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
d185af30 1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1582 * pending and its timer was modified.
1583 *
e0aecdd8 1584 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1585 * See try_to_grab_pending() for details.
1586 */
1587bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 struct delayed_work *dwork, unsigned long delay)
1589{
1590 unsigned long flags;
1591 int ret;
c7fc77f7 1592
8376fe22
TH
1593 do {
1594 ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 } while (unlikely(ret == -EAGAIN));
63bc0362 1596
8376fe22
TH
1597 if (likely(ret >= 0)) {
1598 __queue_delayed_work(cpu, wq, dwork, delay);
1599 local_irq_restore(flags);
7a6bc1cd 1600 }
8376fe22
TH
1601
1602 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1603 return ret;
1604}
8376fe22
TH
1605EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
c8e55f36
TH
1607/**
1608 * worker_enter_idle - enter idle state
1609 * @worker: worker which is entering idle state
1610 *
1611 * @worker is entering idle state. Update stats and idle timer if
1612 * necessary.
1613 *
1614 * LOCKING:
d565ed63 1615 * spin_lock_irq(pool->lock).
c8e55f36
TH
1616 */
1617static void worker_enter_idle(struct worker *worker)
1da177e4 1618{
bd7bdd43 1619 struct worker_pool *pool = worker->pool;
c8e55f36 1620
6183c009
TH
1621 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 (worker->hentry.next || worker->hentry.pprev)))
1624 return;
c8e55f36 1625
051e1850 1626 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1627 worker->flags |= WORKER_IDLE;
bd7bdd43 1628 pool->nr_idle++;
e22bee78 1629 worker->last_active = jiffies;
c8e55f36
TH
1630
1631 /* idle_list is LIFO */
bd7bdd43 1632 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1633
628c78e7
TH
1634 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1636
544ecf31 1637 /*
e8b3f8db 1638 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1639 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1640 * nr_running, the warning may trigger spuriously. Check iff
1641 * unbind is not in progress.
544ecf31 1642 */
24647570 1643 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1644 pool->nr_workers == pool->nr_idle &&
e19e397a 1645 atomic_read(&pool->nr_running));
c8e55f36
TH
1646}
1647
1648/**
1649 * worker_leave_idle - leave idle state
1650 * @worker: worker which is leaving idle state
1651 *
1652 * @worker is leaving idle state. Update stats.
1653 *
1654 * LOCKING:
d565ed63 1655 * spin_lock_irq(pool->lock).
c8e55f36
TH
1656 */
1657static void worker_leave_idle(struct worker *worker)
1658{
bd7bdd43 1659 struct worker_pool *pool = worker->pool;
c8e55f36 1660
6183c009
TH
1661 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 return;
d302f017 1663 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1664 pool->nr_idle--;
c8e55f36
TH
1665 list_del_init(&worker->entry);
1666}
1667
f7537df5 1668static struct worker *alloc_worker(int node)
c34056a3
TH
1669{
1670 struct worker *worker;
1671
f7537df5 1672 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1673 if (worker) {
1674 INIT_LIST_HEAD(&worker->entry);
affee4b2 1675 INIT_LIST_HEAD(&worker->scheduled);
da028469 1676 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1677 /* on creation a worker is in !idle && prep state */
1678 worker->flags = WORKER_PREP;
c8e55f36 1679 }
c34056a3
TH
1680 return worker;
1681}
1682
4736cbf7
LJ
1683/**
1684 * worker_attach_to_pool() - attach a worker to a pool
1685 * @worker: worker to be attached
1686 * @pool: the target pool
1687 *
1688 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1689 * cpu-binding of @worker are kept coordinated with the pool across
1690 * cpu-[un]hotplugs.
1691 */
1692static void worker_attach_to_pool(struct worker *worker,
1693 struct worker_pool *pool)
1694{
1695 mutex_lock(&pool->attach_mutex);
1696
1697 /*
1698 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 * online CPUs. It'll be re-applied when any of the CPUs come up.
1700 */
1701 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702
1703 /*
1704 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 * stable across this function. See the comments above the
1706 * flag definition for details.
1707 */
1708 if (pool->flags & POOL_DISASSOCIATED)
1709 worker->flags |= WORKER_UNBOUND;
1710
1711 list_add_tail(&worker->node, &pool->workers);
1712
1713 mutex_unlock(&pool->attach_mutex);
1714}
1715
60f5a4bc
LJ
1716/**
1717 * worker_detach_from_pool() - detach a worker from its pool
1718 * @worker: worker which is attached to its pool
1719 * @pool: the pool @worker is attached to
1720 *
4736cbf7
LJ
1721 * Undo the attaching which had been done in worker_attach_to_pool(). The
1722 * caller worker shouldn't access to the pool after detached except it has
1723 * other reference to the pool.
60f5a4bc
LJ
1724 */
1725static void worker_detach_from_pool(struct worker *worker,
1726 struct worker_pool *pool)
1727{
1728 struct completion *detach_completion = NULL;
1729
92f9c5c4 1730 mutex_lock(&pool->attach_mutex);
da028469
LJ
1731 list_del(&worker->node);
1732 if (list_empty(&pool->workers))
60f5a4bc 1733 detach_completion = pool->detach_completion;
92f9c5c4 1734 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1735
b62c0751
LJ
1736 /* clear leftover flags without pool->lock after it is detached */
1737 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738
60f5a4bc
LJ
1739 if (detach_completion)
1740 complete(detach_completion);
1741}
1742
c34056a3
TH
1743/**
1744 * create_worker - create a new workqueue worker
63d95a91 1745 * @pool: pool the new worker will belong to
c34056a3 1746 *
051e1850 1747 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1748 *
1749 * CONTEXT:
1750 * Might sleep. Does GFP_KERNEL allocations.
1751 *
d185af30 1752 * Return:
c34056a3
TH
1753 * Pointer to the newly created worker.
1754 */
bc2ae0f5 1755static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1756{
c34056a3 1757 struct worker *worker = NULL;
f3421797 1758 int id = -1;
e3c916a4 1759 char id_buf[16];
c34056a3 1760
7cda9aae
LJ
1761 /* ID is needed to determine kthread name */
1762 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1763 if (id < 0)
1764 goto fail;
c34056a3 1765
f7537df5 1766 worker = alloc_worker(pool->node);
c34056a3
TH
1767 if (!worker)
1768 goto fail;
1769
bd7bdd43 1770 worker->pool = pool;
c34056a3
TH
1771 worker->id = id;
1772
29c91e99 1773 if (pool->cpu >= 0)
e3c916a4
TH
1774 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 pool->attrs->nice < 0 ? "H" : "");
f3421797 1776 else
e3c916a4
TH
1777 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778
f3f90ad4 1779 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1780 "kworker/%s", id_buf);
c34056a3
TH
1781 if (IS_ERR(worker->task))
1782 goto fail;
1783
91151228 1784 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1785 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1786
da028469 1787 /* successful, attach the worker to the pool */
4736cbf7 1788 worker_attach_to_pool(worker, pool);
822d8405 1789
051e1850
LJ
1790 /* start the newly created worker */
1791 spin_lock_irq(&pool->lock);
1792 worker->pool->nr_workers++;
1793 worker_enter_idle(worker);
1794 wake_up_process(worker->task);
1795 spin_unlock_irq(&pool->lock);
1796
c34056a3 1797 return worker;
822d8405 1798
c34056a3 1799fail:
9625ab17 1800 if (id >= 0)
7cda9aae 1801 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1802 kfree(worker);
1803 return NULL;
1804}
1805
c34056a3
TH
1806/**
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
1809 *
73eb7fe7
LJ
1810 * Destroy @worker and adjust @pool stats accordingly. The worker should
1811 * be idle.
c8e55f36
TH
1812 *
1813 * CONTEXT:
60f5a4bc 1814 * spin_lock_irq(pool->lock).
c34056a3
TH
1815 */
1816static void destroy_worker(struct worker *worker)
1817{
bd7bdd43 1818 struct worker_pool *pool = worker->pool;
c34056a3 1819
cd549687
TH
1820 lockdep_assert_held(&pool->lock);
1821
c34056a3 1822 /* sanity check frenzy */
6183c009 1823 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1824 WARN_ON(!list_empty(&worker->scheduled)) ||
1825 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1826 return;
c34056a3 1827
73eb7fe7
LJ
1828 pool->nr_workers--;
1829 pool->nr_idle--;
5bdfff96 1830
c8e55f36 1831 list_del_init(&worker->entry);
cb444766 1832 worker->flags |= WORKER_DIE;
60f5a4bc 1833 wake_up_process(worker->task);
c34056a3
TH
1834}
1835
32a6c723 1836static void idle_worker_timeout(struct timer_list *t)
e22bee78 1837{
32a6c723 1838 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1839
d565ed63 1840 spin_lock_irq(&pool->lock);
e22bee78 1841
3347fc9f 1842 while (too_many_workers(pool)) {
e22bee78
TH
1843 struct worker *worker;
1844 unsigned long expires;
1845
1846 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
3347fc9f 1850 if (time_before(jiffies, expires)) {
63d95a91 1851 mod_timer(&pool->idle_timer, expires);
3347fc9f 1852 break;
d5abe669 1853 }
3347fc9f
LJ
1854
1855 destroy_worker(worker);
e22bee78
TH
1856 }
1857
d565ed63 1858 spin_unlock_irq(&pool->lock);
e22bee78 1859}
d5abe669 1860
493a1724 1861static void send_mayday(struct work_struct *work)
e22bee78 1862{
112202d9
TH
1863 struct pool_workqueue *pwq = get_work_pwq(work);
1864 struct workqueue_struct *wq = pwq->wq;
493a1724 1865
2e109a28 1866 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1867
493008a8 1868 if (!wq->rescuer)
493a1724 1869 return;
e22bee78
TH
1870
1871 /* mayday mayday mayday */
493a1724 1872 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1873 /*
1874 * If @pwq is for an unbound wq, its base ref may be put at
1875 * any time due to an attribute change. Pin @pwq until the
1876 * rescuer is done with it.
1877 */
1878 get_pwq(pwq);
493a1724 1879 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1880 wake_up_process(wq->rescuer->task);
493a1724 1881 }
e22bee78
TH
1882}
1883
32a6c723 1884static void pool_mayday_timeout(struct timer_list *t)
e22bee78 1885{
32a6c723 1886 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
1887 struct work_struct *work;
1888
b2d82909
TH
1889 spin_lock_irq(&pool->lock);
1890 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1891
63d95a91 1892 if (need_to_create_worker(pool)) {
e22bee78
TH
1893 /*
1894 * We've been trying to create a new worker but
1895 * haven't been successful. We might be hitting an
1896 * allocation deadlock. Send distress signals to
1897 * rescuers.
1898 */
63d95a91 1899 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1900 send_mayday(work);
1da177e4 1901 }
e22bee78 1902
b2d82909
TH
1903 spin_unlock(&wq_mayday_lock);
1904 spin_unlock_irq(&pool->lock);
e22bee78 1905
63d95a91 1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1907}
1908
e22bee78
TH
1909/**
1910 * maybe_create_worker - create a new worker if necessary
63d95a91 1911 * @pool: pool to create a new worker for
e22bee78 1912 *
63d95a91 1913 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1914 * have at least one idle worker on return from this function. If
1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1916 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1917 * possible allocation deadlock.
1918 *
c5aa87bb
TH
1919 * On return, need_to_create_worker() is guaranteed to be %false and
1920 * may_start_working() %true.
e22bee78
TH
1921 *
1922 * LOCKING:
d565ed63 1923 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1924 * multiple times. Does GFP_KERNEL allocations. Called only from
1925 * manager.
e22bee78 1926 */
29187a9e 1927static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1da177e4 1930{
e22bee78 1931restart:
d565ed63 1932 spin_unlock_irq(&pool->lock);
9f9c2364 1933
e22bee78 1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1936
1937 while (true) {
051e1850 1938 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1939 break;
1da177e4 1940
e212f361 1941 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1942
63d95a91 1943 if (!need_to_create_worker(pool))
e22bee78
TH
1944 break;
1945 }
1946
63d95a91 1947 del_timer_sync(&pool->mayday_timer);
d565ed63 1948 spin_lock_irq(&pool->lock);
051e1850
LJ
1949 /*
1950 * This is necessary even after a new worker was just successfully
1951 * created as @pool->lock was dropped and the new worker might have
1952 * already become busy.
1953 */
63d95a91 1954 if (need_to_create_worker(pool))
e22bee78 1955 goto restart;
e22bee78
TH
1956}
1957
73f53c4a 1958/**
e22bee78
TH
1959 * manage_workers - manage worker pool
1960 * @worker: self
73f53c4a 1961 *
706026c2 1962 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1963 * to. At any given time, there can be only zero or one manager per
706026c2 1964 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1965 *
1966 * The caller can safely start processing works on false return. On
1967 * true return, it's guaranteed that need_to_create_worker() is false
1968 * and may_start_working() is true.
73f53c4a
TH
1969 *
1970 * CONTEXT:
d565ed63 1971 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1972 * multiple times. Does GFP_KERNEL allocations.
1973 *
d185af30 1974 * Return:
29187a9e
TH
1975 * %false if the pool doesn't need management and the caller can safely
1976 * start processing works, %true if management function was performed and
1977 * the conditions that the caller verified before calling the function may
1978 * no longer be true.
73f53c4a 1979 */
e22bee78 1980static bool manage_workers(struct worker *worker)
73f53c4a 1981{
63d95a91 1982 struct worker_pool *pool = worker->pool;
73f53c4a 1983
692b4825 1984 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 1985 return false;
692b4825
TH
1986
1987 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 1988 pool->manager = worker;
1e19ffc6 1989
29187a9e 1990 maybe_create_worker(pool);
e22bee78 1991
2607d7a6 1992 pool->manager = NULL;
692b4825
TH
1993 pool->flags &= ~POOL_MANAGER_ACTIVE;
1994 wake_up(&wq_manager_wait);
29187a9e 1995 return true;
73f53c4a
TH
1996}
1997
a62428c0
TH
1998/**
1999 * process_one_work - process single work
c34056a3 2000 * @worker: self
a62428c0
TH
2001 * @work: work to process
2002 *
2003 * Process @work. This function contains all the logics necessary to
2004 * process a single work including synchronization against and
2005 * interaction with other workers on the same cpu, queueing and
2006 * flushing. As long as context requirement is met, any worker can
2007 * call this function to process a work.
2008 *
2009 * CONTEXT:
d565ed63 2010 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2011 */
c34056a3 2012static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2013__releases(&pool->lock)
2014__acquires(&pool->lock)
a62428c0 2015{
112202d9 2016 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2017 struct worker_pool *pool = worker->pool;
112202d9 2018 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2019 int work_color;
7e11629d 2020 struct worker *collision;
a62428c0
TH
2021#ifdef CONFIG_LOCKDEP
2022 /*
2023 * It is permissible to free the struct work_struct from
2024 * inside the function that is called from it, this we need to
2025 * take into account for lockdep too. To avoid bogus "held
2026 * lock freed" warnings as well as problems when looking into
2027 * work->lockdep_map, make a copy and use that here.
2028 */
4d82a1de
PZ
2029 struct lockdep_map lockdep_map;
2030
2031 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2032#endif
807407c0 2033 /* ensure we're on the correct CPU */
85327af6 2034 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2035 raw_smp_processor_id() != pool->cpu);
25511a47 2036
7e11629d
TH
2037 /*
2038 * A single work shouldn't be executed concurrently by
2039 * multiple workers on a single cpu. Check whether anyone is
2040 * already processing the work. If so, defer the work to the
2041 * currently executing one.
2042 */
c9e7cf27 2043 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2044 if (unlikely(collision)) {
2045 move_linked_works(work, &collision->scheduled, NULL);
2046 return;
2047 }
2048
8930caba 2049 /* claim and dequeue */
a62428c0 2050 debug_work_deactivate(work);
c9e7cf27 2051 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2052 worker->current_work = work;
a2c1c57b 2053 worker->current_func = work->func;
112202d9 2054 worker->current_pwq = pwq;
73f53c4a 2055 work_color = get_work_color(work);
7a22ad75 2056
a62428c0
TH
2057 list_del_init(&work->entry);
2058
fb0e7beb 2059 /*
228f1d00
LJ
2060 * CPU intensive works don't participate in concurrency management.
2061 * They're the scheduler's responsibility. This takes @worker out
2062 * of concurrency management and the next code block will chain
2063 * execution of the pending work items.
fb0e7beb
TH
2064 */
2065 if (unlikely(cpu_intensive))
228f1d00 2066 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2067
974271c4 2068 /*
a489a03e
LJ
2069 * Wake up another worker if necessary. The condition is always
2070 * false for normal per-cpu workers since nr_running would always
2071 * be >= 1 at this point. This is used to chain execution of the
2072 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2073 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2074 */
a489a03e 2075 if (need_more_worker(pool))
63d95a91 2076 wake_up_worker(pool);
974271c4 2077
8930caba 2078 /*
7c3eed5c 2079 * Record the last pool and clear PENDING which should be the last
d565ed63 2080 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2081 * PENDING and queued state changes happen together while IRQ is
2082 * disabled.
8930caba 2083 */
7c3eed5c 2084 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2085
d565ed63 2086 spin_unlock_irq(&pool->lock);
a62428c0 2087
a1d14934 2088 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2089 lock_map_acquire(&lockdep_map);
e6f3faa7 2090 /*
f52be570
PZ
2091 * Strictly speaking we should mark the invariant state without holding
2092 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2093 *
2094 * However, that would result in:
2095 *
2096 * A(W1)
2097 * WFC(C)
2098 * A(W1)
2099 * C(C)
2100 *
2101 * Which would create W1->C->W1 dependencies, even though there is no
2102 * actual deadlock possible. There are two solutions, using a
2103 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2104 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2105 * these locks.
2106 *
2107 * AFAICT there is no possible deadlock scenario between the
2108 * flush_work() and complete() primitives (except for single-threaded
2109 * workqueues), so hiding them isn't a problem.
2110 */
f52be570 2111 lockdep_invariant_state(true);
e36c886a 2112 trace_workqueue_execute_start(work);
a2c1c57b 2113 worker->current_func(work);
e36c886a
AV
2114 /*
2115 * While we must be careful to not use "work" after this, the trace
2116 * point will only record its address.
2117 */
2118 trace_workqueue_execute_end(work);
a62428c0 2119 lock_map_release(&lockdep_map);
112202d9 2120 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2121
2122 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2123 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2124 " last function: %pf\n",
a2c1c57b
TH
2125 current->comm, preempt_count(), task_pid_nr(current),
2126 worker->current_func);
a62428c0
TH
2127 debug_show_held_locks(current);
2128 dump_stack();
2129 }
2130
b22ce278
TH
2131 /*
2132 * The following prevents a kworker from hogging CPU on !PREEMPT
2133 * kernels, where a requeueing work item waiting for something to
2134 * happen could deadlock with stop_machine as such work item could
2135 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2136 * stop_machine. At the same time, report a quiescent RCU state so
2137 * the same condition doesn't freeze RCU.
b22ce278 2138 */
a7e6425e 2139 cond_resched();
b22ce278 2140
d565ed63 2141 spin_lock_irq(&pool->lock);
a62428c0 2142
fb0e7beb
TH
2143 /* clear cpu intensive status */
2144 if (unlikely(cpu_intensive))
2145 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2146
a62428c0 2147 /* we're done with it, release */
42f8570f 2148 hash_del(&worker->hentry);
c34056a3 2149 worker->current_work = NULL;
a2c1c57b 2150 worker->current_func = NULL;
112202d9 2151 worker->current_pwq = NULL;
3d1cb205 2152 worker->desc_valid = false;
112202d9 2153 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2154}
2155
affee4b2
TH
2156/**
2157 * process_scheduled_works - process scheduled works
2158 * @worker: self
2159 *
2160 * Process all scheduled works. Please note that the scheduled list
2161 * may change while processing a work, so this function repeatedly
2162 * fetches a work from the top and executes it.
2163 *
2164 * CONTEXT:
d565ed63 2165 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2166 * multiple times.
2167 */
2168static void process_scheduled_works(struct worker *worker)
1da177e4 2169{
affee4b2
TH
2170 while (!list_empty(&worker->scheduled)) {
2171 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2172 struct work_struct, entry);
c34056a3 2173 process_one_work(worker, work);
1da177e4 2174 }
1da177e4
LT
2175}
2176
4690c4ab
TH
2177/**
2178 * worker_thread - the worker thread function
c34056a3 2179 * @__worker: self
4690c4ab 2180 *
c5aa87bb
TH
2181 * The worker thread function. All workers belong to a worker_pool -
2182 * either a per-cpu one or dynamic unbound one. These workers process all
2183 * work items regardless of their specific target workqueue. The only
2184 * exception is work items which belong to workqueues with a rescuer which
2185 * will be explained in rescuer_thread().
d185af30
YB
2186 *
2187 * Return: 0
4690c4ab 2188 */
c34056a3 2189static int worker_thread(void *__worker)
1da177e4 2190{
c34056a3 2191 struct worker *worker = __worker;
bd7bdd43 2192 struct worker_pool *pool = worker->pool;
1da177e4 2193
e22bee78
TH
2194 /* tell the scheduler that this is a workqueue worker */
2195 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2196woke_up:
d565ed63 2197 spin_lock_irq(&pool->lock);
1da177e4 2198
a9ab775b
TH
2199 /* am I supposed to die? */
2200 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2201 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2202 WARN_ON_ONCE(!list_empty(&worker->entry));
2203 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2204
2205 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2206 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2207 worker_detach_from_pool(worker, pool);
2208 kfree(worker);
a9ab775b 2209 return 0;
c8e55f36 2210 }
affee4b2 2211
c8e55f36 2212 worker_leave_idle(worker);
db7bccf4 2213recheck:
e22bee78 2214 /* no more worker necessary? */
63d95a91 2215 if (!need_more_worker(pool))
e22bee78
TH
2216 goto sleep;
2217
2218 /* do we need to manage? */
63d95a91 2219 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2220 goto recheck;
2221
c8e55f36
TH
2222 /*
2223 * ->scheduled list can only be filled while a worker is
2224 * preparing to process a work or actually processing it.
2225 * Make sure nobody diddled with it while I was sleeping.
2226 */
6183c009 2227 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2228
e22bee78 2229 /*
a9ab775b
TH
2230 * Finish PREP stage. We're guaranteed to have at least one idle
2231 * worker or that someone else has already assumed the manager
2232 * role. This is where @worker starts participating in concurrency
2233 * management if applicable and concurrency management is restored
2234 * after being rebound. See rebind_workers() for details.
e22bee78 2235 */
a9ab775b 2236 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2237
2238 do {
c8e55f36 2239 struct work_struct *work =
bd7bdd43 2240 list_first_entry(&pool->worklist,
c8e55f36
TH
2241 struct work_struct, entry);
2242
82607adc
TH
2243 pool->watchdog_ts = jiffies;
2244
c8e55f36
TH
2245 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2246 /* optimization path, not strictly necessary */
2247 process_one_work(worker, work);
2248 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2249 process_scheduled_works(worker);
c8e55f36
TH
2250 } else {
2251 move_linked_works(work, &worker->scheduled, NULL);
2252 process_scheduled_works(worker);
affee4b2 2253 }
63d95a91 2254 } while (keep_working(pool));
e22bee78 2255
228f1d00 2256 worker_set_flags(worker, WORKER_PREP);
d313dd85 2257sleep:
c8e55f36 2258 /*
d565ed63
TH
2259 * pool->lock is held and there's no work to process and no need to
2260 * manage, sleep. Workers are woken up only while holding
2261 * pool->lock or from local cpu, so setting the current state
2262 * before releasing pool->lock is enough to prevent losing any
2263 * event.
c8e55f36
TH
2264 */
2265 worker_enter_idle(worker);
c5a94a61 2266 __set_current_state(TASK_IDLE);
d565ed63 2267 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2268 schedule();
2269 goto woke_up;
1da177e4
LT
2270}
2271
e22bee78
TH
2272/**
2273 * rescuer_thread - the rescuer thread function
111c225a 2274 * @__rescuer: self
e22bee78
TH
2275 *
2276 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2277 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2278 *
706026c2 2279 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2280 * worker which uses GFP_KERNEL allocation which has slight chance of
2281 * developing into deadlock if some works currently on the same queue
2282 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2283 * the problem rescuer solves.
2284 *
706026c2
TH
2285 * When such condition is possible, the pool summons rescuers of all
2286 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2287 * those works so that forward progress can be guaranteed.
2288 *
2289 * This should happen rarely.
d185af30
YB
2290 *
2291 * Return: 0
e22bee78 2292 */
111c225a 2293static int rescuer_thread(void *__rescuer)
e22bee78 2294{
111c225a
TH
2295 struct worker *rescuer = __rescuer;
2296 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2297 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2298 bool should_stop;
e22bee78
TH
2299
2300 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2301
2302 /*
2303 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2304 * doesn't participate in concurrency management.
2305 */
2306 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78 2307repeat:
c5a94a61 2308 set_current_state(TASK_IDLE);
e22bee78 2309
4d595b86
LJ
2310 /*
2311 * By the time the rescuer is requested to stop, the workqueue
2312 * shouldn't have any work pending, but @wq->maydays may still have
2313 * pwq(s) queued. This can happen by non-rescuer workers consuming
2314 * all the work items before the rescuer got to them. Go through
2315 * @wq->maydays processing before acting on should_stop so that the
2316 * list is always empty on exit.
2317 */
2318 should_stop = kthread_should_stop();
e22bee78 2319
493a1724 2320 /* see whether any pwq is asking for help */
2e109a28 2321 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2322
2323 while (!list_empty(&wq->maydays)) {
2324 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2325 struct pool_workqueue, mayday_node);
112202d9 2326 struct worker_pool *pool = pwq->pool;
e22bee78 2327 struct work_struct *work, *n;
82607adc 2328 bool first = true;
e22bee78
TH
2329
2330 __set_current_state(TASK_RUNNING);
493a1724
TH
2331 list_del_init(&pwq->mayday_node);
2332
2e109a28 2333 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2334
51697d39
LJ
2335 worker_attach_to_pool(rescuer, pool);
2336
2337 spin_lock_irq(&pool->lock);
b3104104 2338 rescuer->pool = pool;
e22bee78
TH
2339
2340 /*
2341 * Slurp in all works issued via this workqueue and
2342 * process'em.
2343 */
0479c8c5 2344 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2345 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2346 if (get_work_pwq(work) == pwq) {
2347 if (first)
2348 pool->watchdog_ts = jiffies;
e22bee78 2349 move_linked_works(work, scheduled, &n);
82607adc
TH
2350 }
2351 first = false;
2352 }
e22bee78 2353
008847f6
N
2354 if (!list_empty(scheduled)) {
2355 process_scheduled_works(rescuer);
2356
2357 /*
2358 * The above execution of rescued work items could
2359 * have created more to rescue through
2360 * pwq_activate_first_delayed() or chained
2361 * queueing. Let's put @pwq back on mayday list so
2362 * that such back-to-back work items, which may be
2363 * being used to relieve memory pressure, don't
2364 * incur MAYDAY_INTERVAL delay inbetween.
2365 */
2366 if (need_to_create_worker(pool)) {
2367 spin_lock(&wq_mayday_lock);
2368 get_pwq(pwq);
2369 list_move_tail(&pwq->mayday_node, &wq->maydays);
2370 spin_unlock(&wq_mayday_lock);
2371 }
2372 }
7576958a 2373
77668c8b
LJ
2374 /*
2375 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2376 * go away while we're still attached to it.
77668c8b
LJ
2377 */
2378 put_pwq(pwq);
2379
7576958a 2380 /*
d8ca83e6 2381 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2382 * regular worker; otherwise, we end up with 0 concurrency
2383 * and stalling the execution.
2384 */
d8ca83e6 2385 if (need_more_worker(pool))
63d95a91 2386 wake_up_worker(pool);
7576958a 2387
b3104104 2388 rescuer->pool = NULL;
13b1d625
LJ
2389 spin_unlock_irq(&pool->lock);
2390
2391 worker_detach_from_pool(rescuer, pool);
2392
2393 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2394 }
2395
2e109a28 2396 spin_unlock_irq(&wq_mayday_lock);
493a1724 2397
4d595b86
LJ
2398 if (should_stop) {
2399 __set_current_state(TASK_RUNNING);
2400 rescuer->task->flags &= ~PF_WQ_WORKER;
2401 return 0;
2402 }
2403
111c225a
TH
2404 /* rescuers should never participate in concurrency management */
2405 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2406 schedule();
2407 goto repeat;
1da177e4
LT
2408}
2409
fca839c0
TH
2410/**
2411 * check_flush_dependency - check for flush dependency sanity
2412 * @target_wq: workqueue being flushed
2413 * @target_work: work item being flushed (NULL for workqueue flushes)
2414 *
2415 * %current is trying to flush the whole @target_wq or @target_work on it.
2416 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2417 * reclaiming memory or running on a workqueue which doesn't have
2418 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2419 * a deadlock.
2420 */
2421static void check_flush_dependency(struct workqueue_struct *target_wq,
2422 struct work_struct *target_work)
2423{
2424 work_func_t target_func = target_work ? target_work->func : NULL;
2425 struct worker *worker;
2426
2427 if (target_wq->flags & WQ_MEM_RECLAIM)
2428 return;
2429
2430 worker = current_wq_worker();
2431
2432 WARN_ONCE(current->flags & PF_MEMALLOC,
2433 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2434 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2435 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2436 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2437 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2438 worker->current_pwq->wq->name, worker->current_func,
2439 target_wq->name, target_func);
2440}
2441
fc2e4d70
ON
2442struct wq_barrier {
2443 struct work_struct work;
2444 struct completion done;
2607d7a6 2445 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2446};
2447
2448static void wq_barrier_func(struct work_struct *work)
2449{
2450 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 complete(&barr->done);
2452}
2453
4690c4ab
TH
2454/**
2455 * insert_wq_barrier - insert a barrier work
112202d9 2456 * @pwq: pwq to insert barrier into
4690c4ab 2457 * @barr: wq_barrier to insert
affee4b2
TH
2458 * @target: target work to attach @barr to
2459 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2460 *
affee4b2
TH
2461 * @barr is linked to @target such that @barr is completed only after
2462 * @target finishes execution. Please note that the ordering
2463 * guarantee is observed only with respect to @target and on the local
2464 * cpu.
2465 *
2466 * Currently, a queued barrier can't be canceled. This is because
2467 * try_to_grab_pending() can't determine whether the work to be
2468 * grabbed is at the head of the queue and thus can't clear LINKED
2469 * flag of the previous work while there must be a valid next work
2470 * after a work with LINKED flag set.
2471 *
2472 * Note that when @worker is non-NULL, @target may be modified
112202d9 2473 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2474 *
2475 * CONTEXT:
d565ed63 2476 * spin_lock_irq(pool->lock).
4690c4ab 2477 */
112202d9 2478static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2479 struct wq_barrier *barr,
2480 struct work_struct *target, struct worker *worker)
fc2e4d70 2481{
affee4b2
TH
2482 struct list_head *head;
2483 unsigned int linked = 0;
2484
dc186ad7 2485 /*
d565ed63 2486 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2487 * as we know for sure that this will not trigger any of the
2488 * checks and call back into the fixup functions where we
2489 * might deadlock.
2490 */
ca1cab37 2491 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2492 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2493
fd1a5b04
BP
2494 init_completion_map(&barr->done, &target->lockdep_map);
2495
2607d7a6 2496 barr->task = current;
83c22520 2497
affee4b2
TH
2498 /*
2499 * If @target is currently being executed, schedule the
2500 * barrier to the worker; otherwise, put it after @target.
2501 */
2502 if (worker)
2503 head = worker->scheduled.next;
2504 else {
2505 unsigned long *bits = work_data_bits(target);
2506
2507 head = target->entry.next;
2508 /* there can already be other linked works, inherit and set */
2509 linked = *bits & WORK_STRUCT_LINKED;
2510 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2511 }
2512
dc186ad7 2513 debug_work_activate(&barr->work);
112202d9 2514 insert_work(pwq, &barr->work, head,
affee4b2 2515 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2516}
2517
73f53c4a 2518/**
112202d9 2519 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2520 * @wq: workqueue being flushed
2521 * @flush_color: new flush color, < 0 for no-op
2522 * @work_color: new work color, < 0 for no-op
2523 *
112202d9 2524 * Prepare pwqs for workqueue flushing.
73f53c4a 2525 *
112202d9
TH
2526 * If @flush_color is non-negative, flush_color on all pwqs should be
2527 * -1. If no pwq has in-flight commands at the specified color, all
2528 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2529 * has in flight commands, its pwq->flush_color is set to
2530 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2531 * wakeup logic is armed and %true is returned.
2532 *
2533 * The caller should have initialized @wq->first_flusher prior to
2534 * calling this function with non-negative @flush_color. If
2535 * @flush_color is negative, no flush color update is done and %false
2536 * is returned.
2537 *
112202d9 2538 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2539 * work_color which is previous to @work_color and all will be
2540 * advanced to @work_color.
2541 *
2542 * CONTEXT:
3c25a55d 2543 * mutex_lock(wq->mutex).
73f53c4a 2544 *
d185af30 2545 * Return:
73f53c4a
TH
2546 * %true if @flush_color >= 0 and there's something to flush. %false
2547 * otherwise.
2548 */
112202d9 2549static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2550 int flush_color, int work_color)
1da177e4 2551{
73f53c4a 2552 bool wait = false;
49e3cf44 2553 struct pool_workqueue *pwq;
1da177e4 2554
73f53c4a 2555 if (flush_color >= 0) {
6183c009 2556 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2557 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2558 }
2355b70f 2559
49e3cf44 2560 for_each_pwq(pwq, wq) {
112202d9 2561 struct worker_pool *pool = pwq->pool;
fc2e4d70 2562
b09f4fd3 2563 spin_lock_irq(&pool->lock);
83c22520 2564
73f53c4a 2565 if (flush_color >= 0) {
6183c009 2566 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2567
112202d9
TH
2568 if (pwq->nr_in_flight[flush_color]) {
2569 pwq->flush_color = flush_color;
2570 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2571 wait = true;
2572 }
2573 }
1da177e4 2574
73f53c4a 2575 if (work_color >= 0) {
6183c009 2576 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2577 pwq->work_color = work_color;
73f53c4a 2578 }
1da177e4 2579
b09f4fd3 2580 spin_unlock_irq(&pool->lock);
1da177e4 2581 }
2355b70f 2582
112202d9 2583 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2584 complete(&wq->first_flusher->done);
14441960 2585
73f53c4a 2586 return wait;
1da177e4
LT
2587}
2588
0fcb78c2 2589/**
1da177e4 2590 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2591 * @wq: workqueue to flush
1da177e4 2592 *
c5aa87bb
TH
2593 * This function sleeps until all work items which were queued on entry
2594 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2595 */
7ad5b3a5 2596void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2597{
73f53c4a
TH
2598 struct wq_flusher this_flusher = {
2599 .list = LIST_HEAD_INIT(this_flusher.list),
2600 .flush_color = -1,
fd1a5b04 2601 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2602 };
2603 int next_color;
1da177e4 2604
3347fa09
TH
2605 if (WARN_ON(!wq_online))
2606 return;
2607
3c25a55d 2608 mutex_lock(&wq->mutex);
73f53c4a
TH
2609
2610 /*
2611 * Start-to-wait phase
2612 */
2613 next_color = work_next_color(wq->work_color);
2614
2615 if (next_color != wq->flush_color) {
2616 /*
2617 * Color space is not full. The current work_color
2618 * becomes our flush_color and work_color is advanced
2619 * by one.
2620 */
6183c009 2621 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2622 this_flusher.flush_color = wq->work_color;
2623 wq->work_color = next_color;
2624
2625 if (!wq->first_flusher) {
2626 /* no flush in progress, become the first flusher */
6183c009 2627 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2628
2629 wq->first_flusher = &this_flusher;
2630
112202d9 2631 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2632 wq->work_color)) {
2633 /* nothing to flush, done */
2634 wq->flush_color = next_color;
2635 wq->first_flusher = NULL;
2636 goto out_unlock;
2637 }
2638 } else {
2639 /* wait in queue */
6183c009 2640 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2641 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2642 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2643 }
2644 } else {
2645 /*
2646 * Oops, color space is full, wait on overflow queue.
2647 * The next flush completion will assign us
2648 * flush_color and transfer to flusher_queue.
2649 */
2650 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2651 }
2652
fca839c0
TH
2653 check_flush_dependency(wq, NULL);
2654
3c25a55d 2655 mutex_unlock(&wq->mutex);
73f53c4a
TH
2656
2657 wait_for_completion(&this_flusher.done);
2658
2659 /*
2660 * Wake-up-and-cascade phase
2661 *
2662 * First flushers are responsible for cascading flushes and
2663 * handling overflow. Non-first flushers can simply return.
2664 */
2665 if (wq->first_flusher != &this_flusher)
2666 return;
2667
3c25a55d 2668 mutex_lock(&wq->mutex);
73f53c4a 2669
4ce48b37
TH
2670 /* we might have raced, check again with mutex held */
2671 if (wq->first_flusher != &this_flusher)
2672 goto out_unlock;
2673
73f53c4a
TH
2674 wq->first_flusher = NULL;
2675
6183c009
TH
2676 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2677 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2678
2679 while (true) {
2680 struct wq_flusher *next, *tmp;
2681
2682 /* complete all the flushers sharing the current flush color */
2683 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2684 if (next->flush_color != wq->flush_color)
2685 break;
2686 list_del_init(&next->list);
2687 complete(&next->done);
2688 }
2689
6183c009
TH
2690 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2691 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2692
2693 /* this flush_color is finished, advance by one */
2694 wq->flush_color = work_next_color(wq->flush_color);
2695
2696 /* one color has been freed, handle overflow queue */
2697 if (!list_empty(&wq->flusher_overflow)) {
2698 /*
2699 * Assign the same color to all overflowed
2700 * flushers, advance work_color and append to
2701 * flusher_queue. This is the start-to-wait
2702 * phase for these overflowed flushers.
2703 */
2704 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2705 tmp->flush_color = wq->work_color;
2706
2707 wq->work_color = work_next_color(wq->work_color);
2708
2709 list_splice_tail_init(&wq->flusher_overflow,
2710 &wq->flusher_queue);
112202d9 2711 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2712 }
2713
2714 if (list_empty(&wq->flusher_queue)) {
6183c009 2715 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2716 break;
2717 }
2718
2719 /*
2720 * Need to flush more colors. Make the next flusher
112202d9 2721 * the new first flusher and arm pwqs.
73f53c4a 2722 */
6183c009
TH
2723 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2724 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2725
2726 list_del_init(&next->list);
2727 wq->first_flusher = next;
2728
112202d9 2729 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2730 break;
2731
2732 /*
2733 * Meh... this color is already done, clear first
2734 * flusher and repeat cascading.
2735 */
2736 wq->first_flusher = NULL;
2737 }
2738
2739out_unlock:
3c25a55d 2740 mutex_unlock(&wq->mutex);
1da177e4 2741}
1dadafa8 2742EXPORT_SYMBOL(flush_workqueue);
1da177e4 2743
9c5a2ba7
TH
2744/**
2745 * drain_workqueue - drain a workqueue
2746 * @wq: workqueue to drain
2747 *
2748 * Wait until the workqueue becomes empty. While draining is in progress,
2749 * only chain queueing is allowed. IOW, only currently pending or running
2750 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2751 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2752 * by the depth of chaining and should be relatively short. Whine if it
2753 * takes too long.
2754 */
2755void drain_workqueue(struct workqueue_struct *wq)
2756{
2757 unsigned int flush_cnt = 0;
49e3cf44 2758 struct pool_workqueue *pwq;
9c5a2ba7
TH
2759
2760 /*
2761 * __queue_work() needs to test whether there are drainers, is much
2762 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2763 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2764 */
87fc741e 2765 mutex_lock(&wq->mutex);
9c5a2ba7 2766 if (!wq->nr_drainers++)
618b01eb 2767 wq->flags |= __WQ_DRAINING;
87fc741e 2768 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2769reflush:
2770 flush_workqueue(wq);
2771
b09f4fd3 2772 mutex_lock(&wq->mutex);
76af4d93 2773
49e3cf44 2774 for_each_pwq(pwq, wq) {
fa2563e4 2775 bool drained;
9c5a2ba7 2776
b09f4fd3 2777 spin_lock_irq(&pwq->pool->lock);
112202d9 2778 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2779 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2780
2781 if (drained)
9c5a2ba7
TH
2782 continue;
2783
2784 if (++flush_cnt == 10 ||
2785 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2786 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2787 wq->name, flush_cnt);
76af4d93 2788
b09f4fd3 2789 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2790 goto reflush;
2791 }
2792
9c5a2ba7 2793 if (!--wq->nr_drainers)
618b01eb 2794 wq->flags &= ~__WQ_DRAINING;
87fc741e 2795 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2796}
2797EXPORT_SYMBOL_GPL(drain_workqueue);
2798
606a5020 2799static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2800{
affee4b2 2801 struct worker *worker = NULL;
c9e7cf27 2802 struct worker_pool *pool;
112202d9 2803 struct pool_workqueue *pwq;
db700897
ON
2804
2805 might_sleep();
fa1b54e6
TH
2806
2807 local_irq_disable();
c9e7cf27 2808 pool = get_work_pool(work);
fa1b54e6
TH
2809 if (!pool) {
2810 local_irq_enable();
baf59022 2811 return false;
fa1b54e6 2812 }
db700897 2813
fa1b54e6 2814 spin_lock(&pool->lock);
0b3dae68 2815 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2816 pwq = get_work_pwq(work);
2817 if (pwq) {
2818 if (unlikely(pwq->pool != pool))
4690c4ab 2819 goto already_gone;
606a5020 2820 } else {
c9e7cf27 2821 worker = find_worker_executing_work(pool, work);
affee4b2 2822 if (!worker)
4690c4ab 2823 goto already_gone;
112202d9 2824 pwq = worker->current_pwq;
606a5020 2825 }
db700897 2826
fca839c0
TH
2827 check_flush_dependency(pwq->wq, work);
2828
112202d9 2829 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2830 spin_unlock_irq(&pool->lock);
7a22ad75 2831
e159489b 2832 /*
a1d14934
PZ
2833 * Force a lock recursion deadlock when using flush_work() inside a
2834 * single-threaded or rescuer equipped workqueue.
2835 *
2836 * For single threaded workqueues the deadlock happens when the work
2837 * is after the work issuing the flush_work(). For rescuer equipped
2838 * workqueues the deadlock happens when the rescuer stalls, blocking
2839 * forward progress.
e159489b 2840 */
a1d14934 2841 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
112202d9 2842 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2843 lock_map_release(&pwq->wq->lockdep_map);
2844 }
e159489b 2845
401a8d04 2846 return true;
4690c4ab 2847already_gone:
d565ed63 2848 spin_unlock_irq(&pool->lock);
401a8d04 2849 return false;
db700897 2850}
baf59022
TH
2851
2852/**
2853 * flush_work - wait for a work to finish executing the last queueing instance
2854 * @work: the work to flush
2855 *
606a5020
TH
2856 * Wait until @work has finished execution. @work is guaranteed to be idle
2857 * on return if it hasn't been requeued since flush started.
baf59022 2858 *
d185af30 2859 * Return:
baf59022
TH
2860 * %true if flush_work() waited for the work to finish execution,
2861 * %false if it was already idle.
2862 */
2863bool flush_work(struct work_struct *work)
2864{
12997d1a
BH
2865 struct wq_barrier barr;
2866
3347fa09
TH
2867 if (WARN_ON(!wq_online))
2868 return false;
2869
12997d1a
BH
2870 if (start_flush_work(work, &barr)) {
2871 wait_for_completion(&barr.done);
2872 destroy_work_on_stack(&barr.work);
2873 return true;
2874 } else {
2875 return false;
2876 }
6e84d644 2877}
606a5020 2878EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2879
8603e1b3 2880struct cwt_wait {
ac6424b9 2881 wait_queue_entry_t wait;
8603e1b3
TH
2882 struct work_struct *work;
2883};
2884
ac6424b9 2885static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2886{
2887 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2888
2889 if (cwait->work != key)
2890 return 0;
2891 return autoremove_wake_function(wait, mode, sync, key);
2892}
2893
36e227d2 2894static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2895{
8603e1b3 2896 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2897 unsigned long flags;
1f1f642e
ON
2898 int ret;
2899
2900 do {
bbb68dfa
TH
2901 ret = try_to_grab_pending(work, is_dwork, &flags);
2902 /*
8603e1b3
TH
2903 * If someone else is already canceling, wait for it to
2904 * finish. flush_work() doesn't work for PREEMPT_NONE
2905 * because we may get scheduled between @work's completion
2906 * and the other canceling task resuming and clearing
2907 * CANCELING - flush_work() will return false immediately
2908 * as @work is no longer busy, try_to_grab_pending() will
2909 * return -ENOENT as @work is still being canceled and the
2910 * other canceling task won't be able to clear CANCELING as
2911 * we're hogging the CPU.
2912 *
2913 * Let's wait for completion using a waitqueue. As this
2914 * may lead to the thundering herd problem, use a custom
2915 * wake function which matches @work along with exclusive
2916 * wait and wakeup.
bbb68dfa 2917 */
8603e1b3
TH
2918 if (unlikely(ret == -ENOENT)) {
2919 struct cwt_wait cwait;
2920
2921 init_wait(&cwait.wait);
2922 cwait.wait.func = cwt_wakefn;
2923 cwait.work = work;
2924
2925 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2926 TASK_UNINTERRUPTIBLE);
2927 if (work_is_canceling(work))
2928 schedule();
2929 finish_wait(&cancel_waitq, &cwait.wait);
2930 }
1f1f642e
ON
2931 } while (unlikely(ret < 0));
2932
bbb68dfa
TH
2933 /* tell other tasks trying to grab @work to back off */
2934 mark_work_canceling(work);
2935 local_irq_restore(flags);
2936
3347fa09
TH
2937 /*
2938 * This allows canceling during early boot. We know that @work
2939 * isn't executing.
2940 */
2941 if (wq_online)
2942 flush_work(work);
2943
7a22ad75 2944 clear_work_data(work);
8603e1b3
TH
2945
2946 /*
2947 * Paired with prepare_to_wait() above so that either
2948 * waitqueue_active() is visible here or !work_is_canceling() is
2949 * visible there.
2950 */
2951 smp_mb();
2952 if (waitqueue_active(&cancel_waitq))
2953 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2954
1f1f642e
ON
2955 return ret;
2956}
2957
6e84d644 2958/**
401a8d04
TH
2959 * cancel_work_sync - cancel a work and wait for it to finish
2960 * @work: the work to cancel
6e84d644 2961 *
401a8d04
TH
2962 * Cancel @work and wait for its execution to finish. This function
2963 * can be used even if the work re-queues itself or migrates to
2964 * another workqueue. On return from this function, @work is
2965 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2966 *
401a8d04
TH
2967 * cancel_work_sync(&delayed_work->work) must not be used for
2968 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2969 *
401a8d04 2970 * The caller must ensure that the workqueue on which @work was last
6e84d644 2971 * queued can't be destroyed before this function returns.
401a8d04 2972 *
d185af30 2973 * Return:
401a8d04 2974 * %true if @work was pending, %false otherwise.
6e84d644 2975 */
401a8d04 2976bool cancel_work_sync(struct work_struct *work)
6e84d644 2977{
36e227d2 2978 return __cancel_work_timer(work, false);
b89deed3 2979}
28e53bdd 2980EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2981
6e84d644 2982/**
401a8d04
TH
2983 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2984 * @dwork: the delayed work to flush
6e84d644 2985 *
401a8d04
TH
2986 * Delayed timer is cancelled and the pending work is queued for
2987 * immediate execution. Like flush_work(), this function only
2988 * considers the last queueing instance of @dwork.
1f1f642e 2989 *
d185af30 2990 * Return:
401a8d04
TH
2991 * %true if flush_work() waited for the work to finish execution,
2992 * %false if it was already idle.
6e84d644 2993 */
401a8d04
TH
2994bool flush_delayed_work(struct delayed_work *dwork)
2995{
8930caba 2996 local_irq_disable();
401a8d04 2997 if (del_timer_sync(&dwork->timer))
60c057bc 2998 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2999 local_irq_enable();
401a8d04
TH
3000 return flush_work(&dwork->work);
3001}
3002EXPORT_SYMBOL(flush_delayed_work);
3003
f72b8792
JA
3004static bool __cancel_work(struct work_struct *work, bool is_dwork)
3005{
3006 unsigned long flags;
3007 int ret;
3008
3009 do {
3010 ret = try_to_grab_pending(work, is_dwork, &flags);
3011 } while (unlikely(ret == -EAGAIN));
3012
3013 if (unlikely(ret < 0))
3014 return false;
3015
3016 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3017 local_irq_restore(flags);
3018 return ret;
3019}
3020
09383498 3021/**
57b30ae7
TH
3022 * cancel_delayed_work - cancel a delayed work
3023 * @dwork: delayed_work to cancel
09383498 3024 *
d185af30
YB
3025 * Kill off a pending delayed_work.
3026 *
3027 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3028 * pending.
3029 *
3030 * Note:
3031 * The work callback function may still be running on return, unless
3032 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3033 * use cancel_delayed_work_sync() to wait on it.
09383498 3034 *
57b30ae7 3035 * This function is safe to call from any context including IRQ handler.
09383498 3036 */
57b30ae7 3037bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3038{
f72b8792 3039 return __cancel_work(&dwork->work, true);
09383498 3040}
57b30ae7 3041EXPORT_SYMBOL(cancel_delayed_work);
09383498 3042
401a8d04
TH
3043/**
3044 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3045 * @dwork: the delayed work cancel
3046 *
3047 * This is cancel_work_sync() for delayed works.
3048 *
d185af30 3049 * Return:
401a8d04
TH
3050 * %true if @dwork was pending, %false otherwise.
3051 */
3052bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3053{
36e227d2 3054 return __cancel_work_timer(&dwork->work, true);
6e84d644 3055}
f5a421a4 3056EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3057
b6136773 3058/**
31ddd871 3059 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3060 * @func: the function to call
b6136773 3061 *
31ddd871
TH
3062 * schedule_on_each_cpu() executes @func on each online CPU using the
3063 * system workqueue and blocks until all CPUs have completed.
b6136773 3064 * schedule_on_each_cpu() is very slow.
31ddd871 3065 *
d185af30 3066 * Return:
31ddd871 3067 * 0 on success, -errno on failure.
b6136773 3068 */
65f27f38 3069int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3070{
3071 int cpu;
38f51568 3072 struct work_struct __percpu *works;
15316ba8 3073
b6136773
AM
3074 works = alloc_percpu(struct work_struct);
3075 if (!works)
15316ba8 3076 return -ENOMEM;
b6136773 3077
93981800
TH
3078 get_online_cpus();
3079
15316ba8 3080 for_each_online_cpu(cpu) {
9bfb1839
IM
3081 struct work_struct *work = per_cpu_ptr(works, cpu);
3082
3083 INIT_WORK(work, func);
b71ab8c2 3084 schedule_work_on(cpu, work);
65a64464 3085 }
93981800
TH
3086
3087 for_each_online_cpu(cpu)
3088 flush_work(per_cpu_ptr(works, cpu));
3089
95402b38 3090 put_online_cpus();
b6136773 3091 free_percpu(works);
15316ba8
CL
3092 return 0;
3093}
3094
1fa44eca
JB
3095/**
3096 * execute_in_process_context - reliably execute the routine with user context
3097 * @fn: the function to execute
1fa44eca
JB
3098 * @ew: guaranteed storage for the execute work structure (must
3099 * be available when the work executes)
3100 *
3101 * Executes the function immediately if process context is available,
3102 * otherwise schedules the function for delayed execution.
3103 *
d185af30 3104 * Return: 0 - function was executed
1fa44eca
JB
3105 * 1 - function was scheduled for execution
3106 */
65f27f38 3107int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3108{
3109 if (!in_interrupt()) {
65f27f38 3110 fn(&ew->work);
1fa44eca
JB
3111 return 0;
3112 }
3113
65f27f38 3114 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3115 schedule_work(&ew->work);
3116
3117 return 1;
3118}
3119EXPORT_SYMBOL_GPL(execute_in_process_context);
3120
6ba94429
FW
3121/**
3122 * free_workqueue_attrs - free a workqueue_attrs
3123 * @attrs: workqueue_attrs to free
226223ab 3124 *
6ba94429 3125 * Undo alloc_workqueue_attrs().
226223ab 3126 */
6ba94429 3127void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3128{
6ba94429
FW
3129 if (attrs) {
3130 free_cpumask_var(attrs->cpumask);
3131 kfree(attrs);
3132 }
226223ab
TH
3133}
3134
6ba94429
FW
3135/**
3136 * alloc_workqueue_attrs - allocate a workqueue_attrs
3137 * @gfp_mask: allocation mask to use
3138 *
3139 * Allocate a new workqueue_attrs, initialize with default settings and
3140 * return it.
3141 *
3142 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3143 */
3144struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3145{
6ba94429 3146 struct workqueue_attrs *attrs;
226223ab 3147
6ba94429
FW
3148 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3149 if (!attrs)
3150 goto fail;
3151 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3152 goto fail;
3153
3154 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3155 return attrs;
3156fail:
3157 free_workqueue_attrs(attrs);
3158 return NULL;
226223ab
TH
3159}
3160
6ba94429
FW
3161static void copy_workqueue_attrs(struct workqueue_attrs *to,
3162 const struct workqueue_attrs *from)
226223ab 3163{
6ba94429
FW
3164 to->nice = from->nice;
3165 cpumask_copy(to->cpumask, from->cpumask);
3166 /*
3167 * Unlike hash and equality test, this function doesn't ignore
3168 * ->no_numa as it is used for both pool and wq attrs. Instead,
3169 * get_unbound_pool() explicitly clears ->no_numa after copying.
3170 */
3171 to->no_numa = from->no_numa;
226223ab
TH
3172}
3173
6ba94429
FW
3174/* hash value of the content of @attr */
3175static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3176{
6ba94429 3177 u32 hash = 0;
226223ab 3178
6ba94429
FW
3179 hash = jhash_1word(attrs->nice, hash);
3180 hash = jhash(cpumask_bits(attrs->cpumask),
3181 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3182 return hash;
226223ab 3183}
226223ab 3184
6ba94429
FW
3185/* content equality test */
3186static bool wqattrs_equal(const struct workqueue_attrs *a,
3187 const struct workqueue_attrs *b)
226223ab 3188{
6ba94429
FW
3189 if (a->nice != b->nice)
3190 return false;
3191 if (!cpumask_equal(a->cpumask, b->cpumask))
3192 return false;
3193 return true;
226223ab
TH
3194}
3195
6ba94429
FW
3196/**
3197 * init_worker_pool - initialize a newly zalloc'd worker_pool
3198 * @pool: worker_pool to initialize
3199 *
402dd89d 3200 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3201 *
3202 * Return: 0 on success, -errno on failure. Even on failure, all fields
3203 * inside @pool proper are initialized and put_unbound_pool() can be called
3204 * on @pool safely to release it.
3205 */
3206static int init_worker_pool(struct worker_pool *pool)
226223ab 3207{
6ba94429
FW
3208 spin_lock_init(&pool->lock);
3209 pool->id = -1;
3210 pool->cpu = -1;
3211 pool->node = NUMA_NO_NODE;
3212 pool->flags |= POOL_DISASSOCIATED;
82607adc 3213 pool->watchdog_ts = jiffies;
6ba94429
FW
3214 INIT_LIST_HEAD(&pool->worklist);
3215 INIT_LIST_HEAD(&pool->idle_list);
3216 hash_init(pool->busy_hash);
226223ab 3217
32a6c723 3218 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3219
32a6c723 3220 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3221
6ba94429
FW
3222 mutex_init(&pool->attach_mutex);
3223 INIT_LIST_HEAD(&pool->workers);
226223ab 3224
6ba94429
FW
3225 ida_init(&pool->worker_ida);
3226 INIT_HLIST_NODE(&pool->hash_node);
3227 pool->refcnt = 1;
226223ab 3228
6ba94429
FW
3229 /* shouldn't fail above this point */
3230 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3231 if (!pool->attrs)
3232 return -ENOMEM;
3233 return 0;
226223ab
TH
3234}
3235
6ba94429 3236static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3237{
6ba94429
FW
3238 struct workqueue_struct *wq =
3239 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3240
6ba94429
FW
3241 if (!(wq->flags & WQ_UNBOUND))
3242 free_percpu(wq->cpu_pwqs);
226223ab 3243 else
6ba94429 3244 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3245
6ba94429
FW
3246 kfree(wq->rescuer);
3247 kfree(wq);
226223ab
TH
3248}
3249
6ba94429 3250static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3251{
6ba94429 3252 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3253
6ba94429
FW
3254 ida_destroy(&pool->worker_ida);
3255 free_workqueue_attrs(pool->attrs);
3256 kfree(pool);
226223ab
TH
3257}
3258
6ba94429
FW
3259/**
3260 * put_unbound_pool - put a worker_pool
3261 * @pool: worker_pool to put
3262 *
3263 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3264 * safe manner. get_unbound_pool() calls this function on its failure path
3265 * and this function should be able to release pools which went through,
3266 * successfully or not, init_worker_pool().
3267 *
3268 * Should be called with wq_pool_mutex held.
3269 */
3270static void put_unbound_pool(struct worker_pool *pool)
226223ab 3271{
6ba94429
FW
3272 DECLARE_COMPLETION_ONSTACK(detach_completion);
3273 struct worker *worker;
226223ab 3274
6ba94429 3275 lockdep_assert_held(&wq_pool_mutex);
226223ab 3276
6ba94429
FW
3277 if (--pool->refcnt)
3278 return;
226223ab 3279
6ba94429
FW
3280 /* sanity checks */
3281 if (WARN_ON(!(pool->cpu < 0)) ||
3282 WARN_ON(!list_empty(&pool->worklist)))
3283 return;
226223ab 3284
6ba94429
FW
3285 /* release id and unhash */
3286 if (pool->id >= 0)
3287 idr_remove(&worker_pool_idr, pool->id);
3288 hash_del(&pool->hash_node);
d55262c4 3289
6ba94429 3290 /*
692b4825
TH
3291 * Become the manager and destroy all workers. This prevents
3292 * @pool's workers from blocking on attach_mutex. We're the last
3293 * manager and @pool gets freed with the flag set.
6ba94429 3294 */
6ba94429 3295 spin_lock_irq(&pool->lock);
692b4825
TH
3296 wait_event_lock_irq(wq_manager_wait,
3297 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3298 pool->flags |= POOL_MANAGER_ACTIVE;
3299
6ba94429
FW
3300 while ((worker = first_idle_worker(pool)))
3301 destroy_worker(worker);
3302 WARN_ON(pool->nr_workers || pool->nr_idle);
3303 spin_unlock_irq(&pool->lock);
d55262c4 3304
6ba94429
FW
3305 mutex_lock(&pool->attach_mutex);
3306 if (!list_empty(&pool->workers))
3307 pool->detach_completion = &detach_completion;
3308 mutex_unlock(&pool->attach_mutex);
226223ab 3309
6ba94429
FW
3310 if (pool->detach_completion)
3311 wait_for_completion(pool->detach_completion);
226223ab 3312
6ba94429
FW
3313 /* shut down the timers */
3314 del_timer_sync(&pool->idle_timer);
3315 del_timer_sync(&pool->mayday_timer);
226223ab 3316
6ba94429
FW
3317 /* sched-RCU protected to allow dereferences from get_work_pool() */
3318 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3319}
3320
3321/**
6ba94429
FW
3322 * get_unbound_pool - get a worker_pool with the specified attributes
3323 * @attrs: the attributes of the worker_pool to get
226223ab 3324 *
6ba94429
FW
3325 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3326 * reference count and return it. If there already is a matching
3327 * worker_pool, it will be used; otherwise, this function attempts to
3328 * create a new one.
226223ab 3329 *
6ba94429 3330 * Should be called with wq_pool_mutex held.
226223ab 3331 *
6ba94429
FW
3332 * Return: On success, a worker_pool with the same attributes as @attrs.
3333 * On failure, %NULL.
226223ab 3334 */
6ba94429 3335static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3336{
6ba94429
FW
3337 u32 hash = wqattrs_hash(attrs);
3338 struct worker_pool *pool;
3339 int node;
e2273584 3340 int target_node = NUMA_NO_NODE;
226223ab 3341
6ba94429 3342 lockdep_assert_held(&wq_pool_mutex);
226223ab 3343
6ba94429
FW
3344 /* do we already have a matching pool? */
3345 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3346 if (wqattrs_equal(pool->attrs, attrs)) {
3347 pool->refcnt++;
3348 return pool;
3349 }
3350 }
226223ab 3351
e2273584
XP
3352 /* if cpumask is contained inside a NUMA node, we belong to that node */
3353 if (wq_numa_enabled) {
3354 for_each_node(node) {
3355 if (cpumask_subset(attrs->cpumask,
3356 wq_numa_possible_cpumask[node])) {
3357 target_node = node;
3358 break;
3359 }
3360 }
3361 }
3362
6ba94429 3363 /* nope, create a new one */
e2273584 3364 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3365 if (!pool || init_worker_pool(pool) < 0)
3366 goto fail;
3367
3368 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3369 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3370 pool->node = target_node;
226223ab
TH
3371
3372 /*
6ba94429
FW
3373 * no_numa isn't a worker_pool attribute, always clear it. See
3374 * 'struct workqueue_attrs' comments for detail.
226223ab 3375 */
6ba94429 3376 pool->attrs->no_numa = false;
226223ab 3377
6ba94429
FW
3378 if (worker_pool_assign_id(pool) < 0)
3379 goto fail;
226223ab 3380
6ba94429 3381 /* create and start the initial worker */
3347fa09 3382 if (wq_online && !create_worker(pool))
6ba94429 3383 goto fail;
226223ab 3384
6ba94429
FW
3385 /* install */
3386 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3387
6ba94429
FW
3388 return pool;
3389fail:
3390 if (pool)
3391 put_unbound_pool(pool);
3392 return NULL;
226223ab 3393}
226223ab 3394
6ba94429 3395static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3396{
6ba94429
FW
3397 kmem_cache_free(pwq_cache,
3398 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3399}
3400
6ba94429
FW
3401/*
3402 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3403 * and needs to be destroyed.
7a4e344c 3404 */
6ba94429 3405static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3406{
6ba94429
FW
3407 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3408 unbound_release_work);
3409 struct workqueue_struct *wq = pwq->wq;
3410 struct worker_pool *pool = pwq->pool;
3411 bool is_last;
7a4e344c 3412
6ba94429
FW
3413 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3414 return;
7a4e344c 3415
6ba94429
FW
3416 mutex_lock(&wq->mutex);
3417 list_del_rcu(&pwq->pwqs_node);
3418 is_last = list_empty(&wq->pwqs);
3419 mutex_unlock(&wq->mutex);
3420
3421 mutex_lock(&wq_pool_mutex);
3422 put_unbound_pool(pool);
3423 mutex_unlock(&wq_pool_mutex);
3424
3425 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3426
2865a8fb 3427 /*
6ba94429
FW
3428 * If we're the last pwq going away, @wq is already dead and no one
3429 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3430 */
6ba94429
FW
3431 if (is_last)
3432 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3433}
3434
7a4e344c 3435/**
6ba94429
FW
3436 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3437 * @pwq: target pool_workqueue
d185af30 3438 *
6ba94429
FW
3439 * If @pwq isn't freezing, set @pwq->max_active to the associated
3440 * workqueue's saved_max_active and activate delayed work items
3441 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3442 */
6ba94429 3443static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3444{
6ba94429
FW
3445 struct workqueue_struct *wq = pwq->wq;
3446 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3447 unsigned long flags;
4e1a1f9a 3448
6ba94429
FW
3449 /* for @wq->saved_max_active */
3450 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3451
6ba94429
FW
3452 /* fast exit for non-freezable wqs */
3453 if (!freezable && pwq->max_active == wq->saved_max_active)
3454 return;
7a4e344c 3455
3347fa09
TH
3456 /* this function can be called during early boot w/ irq disabled */
3457 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3458
6ba94429
FW
3459 /*
3460 * During [un]freezing, the caller is responsible for ensuring that
3461 * this function is called at least once after @workqueue_freezing
3462 * is updated and visible.
3463 */
3464 if (!freezable || !workqueue_freezing) {
3465 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3466
6ba94429
FW
3467 while (!list_empty(&pwq->delayed_works) &&
3468 pwq->nr_active < pwq->max_active)
3469 pwq_activate_first_delayed(pwq);
e2dca7ad 3470
6ba94429
FW
3471 /*
3472 * Need to kick a worker after thawed or an unbound wq's
3473 * max_active is bumped. It's a slow path. Do it always.
3474 */
3475 wake_up_worker(pwq->pool);
3476 } else {
3477 pwq->max_active = 0;
3478 }
e2dca7ad 3479
3347fa09 3480 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3481}
3482
6ba94429
FW
3483/* initialize newly alloced @pwq which is associated with @wq and @pool */
3484static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3485 struct worker_pool *pool)
29c91e99 3486{
6ba94429 3487 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3488
6ba94429
FW
3489 memset(pwq, 0, sizeof(*pwq));
3490
3491 pwq->pool = pool;
3492 pwq->wq = wq;
3493 pwq->flush_color = -1;
3494 pwq->refcnt = 1;
3495 INIT_LIST_HEAD(&pwq->delayed_works);
3496 INIT_LIST_HEAD(&pwq->pwqs_node);
3497 INIT_LIST_HEAD(&pwq->mayday_node);
3498 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3499}
3500
6ba94429
FW
3501/* sync @pwq with the current state of its associated wq and link it */
3502static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3503{
6ba94429 3504 struct workqueue_struct *wq = pwq->wq;
29c91e99 3505
6ba94429 3506 lockdep_assert_held(&wq->mutex);
a892cacc 3507
6ba94429
FW
3508 /* may be called multiple times, ignore if already linked */
3509 if (!list_empty(&pwq->pwqs_node))
29c91e99 3510 return;
29c91e99 3511
6ba94429
FW
3512 /* set the matching work_color */
3513 pwq->work_color = wq->work_color;
29c91e99 3514
6ba94429
FW
3515 /* sync max_active to the current setting */
3516 pwq_adjust_max_active(pwq);
29c91e99 3517
6ba94429
FW
3518 /* link in @pwq */
3519 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3520}
29c91e99 3521
6ba94429
FW
3522/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3523static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3524 const struct workqueue_attrs *attrs)
3525{
3526 struct worker_pool *pool;
3527 struct pool_workqueue *pwq;
60f5a4bc 3528
6ba94429 3529 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3530
6ba94429
FW
3531 pool = get_unbound_pool(attrs);
3532 if (!pool)
3533 return NULL;
60f5a4bc 3534
6ba94429
FW
3535 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3536 if (!pwq) {
3537 put_unbound_pool(pool);
3538 return NULL;
3539 }
29c91e99 3540
6ba94429
FW
3541 init_pwq(pwq, wq, pool);
3542 return pwq;
3543}
29c91e99 3544
29c91e99 3545/**
30186c6f 3546 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3547 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3548 * @node: the target NUMA node
3549 * @cpu_going_down: if >= 0, the CPU to consider as offline
3550 * @cpumask: outarg, the resulting cpumask
29c91e99 3551 *
6ba94429
FW
3552 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3553 * @cpu_going_down is >= 0, that cpu is considered offline during
3554 * calculation. The result is stored in @cpumask.
a892cacc 3555 *
6ba94429
FW
3556 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3557 * enabled and @node has online CPUs requested by @attrs, the returned
3558 * cpumask is the intersection of the possible CPUs of @node and
3559 * @attrs->cpumask.
d185af30 3560 *
6ba94429
FW
3561 * The caller is responsible for ensuring that the cpumask of @node stays
3562 * stable.
3563 *
3564 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3565 * %false if equal.
29c91e99 3566 */
6ba94429
FW
3567static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3568 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3569{
6ba94429
FW
3570 if (!wq_numa_enabled || attrs->no_numa)
3571 goto use_dfl;
29c91e99 3572
6ba94429
FW
3573 /* does @node have any online CPUs @attrs wants? */
3574 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3575 if (cpu_going_down >= 0)
3576 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3577
6ba94429
FW
3578 if (cpumask_empty(cpumask))
3579 goto use_dfl;
4c16bd32
TH
3580
3581 /* yeap, return possible CPUs in @node that @attrs wants */
3582 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3583
3584 if (cpumask_empty(cpumask)) {
3585 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3586 "possible intersect\n");
3587 return false;
3588 }
3589
4c16bd32
TH
3590 return !cpumask_equal(cpumask, attrs->cpumask);
3591
3592use_dfl:
3593 cpumask_copy(cpumask, attrs->cpumask);
3594 return false;
3595}
3596
1befcf30
TH
3597/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3598static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3599 int node,
3600 struct pool_workqueue *pwq)
3601{
3602 struct pool_workqueue *old_pwq;
3603
5b95e1af 3604 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3605 lockdep_assert_held(&wq->mutex);
3606
3607 /* link_pwq() can handle duplicate calls */
3608 link_pwq(pwq);
3609
3610 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3611 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3612 return old_pwq;
3613}
3614
2d5f0764
LJ
3615/* context to store the prepared attrs & pwqs before applying */
3616struct apply_wqattrs_ctx {
3617 struct workqueue_struct *wq; /* target workqueue */
3618 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3619 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3620 struct pool_workqueue *dfl_pwq;
3621 struct pool_workqueue *pwq_tbl[];
3622};
3623
3624/* free the resources after success or abort */
3625static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3626{
3627 if (ctx) {
3628 int node;
3629
3630 for_each_node(node)
3631 put_pwq_unlocked(ctx->pwq_tbl[node]);
3632 put_pwq_unlocked(ctx->dfl_pwq);
3633
3634 free_workqueue_attrs(ctx->attrs);
3635
3636 kfree(ctx);
3637 }
3638}
3639
3640/* allocate the attrs and pwqs for later installation */
3641static struct apply_wqattrs_ctx *
3642apply_wqattrs_prepare(struct workqueue_struct *wq,
3643 const struct workqueue_attrs *attrs)
9e8cd2f5 3644{
2d5f0764 3645 struct apply_wqattrs_ctx *ctx;
4c16bd32 3646 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3647 int node;
9e8cd2f5 3648
2d5f0764 3649 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3650
2d5f0764
LJ
3651 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3652 GFP_KERNEL);
8719dcea 3653
13e2e556 3654 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3655 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3656 if (!ctx || !new_attrs || !tmp_attrs)
3657 goto out_free;
13e2e556 3658
042f7df1
LJ
3659 /*
3660 * Calculate the attrs of the default pwq.
3661 * If the user configured cpumask doesn't overlap with the
3662 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3663 */
13e2e556 3664 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3665 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3666 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3667 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3668
4c16bd32
TH
3669 /*
3670 * We may create multiple pwqs with differing cpumasks. Make a
3671 * copy of @new_attrs which will be modified and used to obtain
3672 * pools.
3673 */
3674 copy_workqueue_attrs(tmp_attrs, new_attrs);
3675
4c16bd32
TH
3676 /*
3677 * If something goes wrong during CPU up/down, we'll fall back to
3678 * the default pwq covering whole @attrs->cpumask. Always create
3679 * it even if we don't use it immediately.
3680 */
2d5f0764
LJ
3681 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3682 if (!ctx->dfl_pwq)
3683 goto out_free;
4c16bd32
TH
3684
3685 for_each_node(node) {
042f7df1 3686 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3687 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3688 if (!ctx->pwq_tbl[node])
3689 goto out_free;
4c16bd32 3690 } else {
2d5f0764
LJ
3691 ctx->dfl_pwq->refcnt++;
3692 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3693 }
3694 }
3695
042f7df1
LJ
3696 /* save the user configured attrs and sanitize it. */
3697 copy_workqueue_attrs(new_attrs, attrs);
3698 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3699 ctx->attrs = new_attrs;
042f7df1 3700
2d5f0764
LJ
3701 ctx->wq = wq;
3702 free_workqueue_attrs(tmp_attrs);
3703 return ctx;
3704
3705out_free:
3706 free_workqueue_attrs(tmp_attrs);
3707 free_workqueue_attrs(new_attrs);
3708 apply_wqattrs_cleanup(ctx);
3709 return NULL;
3710}
3711
3712/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3713static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3714{
3715 int node;
9e8cd2f5 3716
4c16bd32 3717 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3718 mutex_lock(&ctx->wq->mutex);
a892cacc 3719
2d5f0764 3720 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3721
3722 /* save the previous pwq and install the new one */
f147f29e 3723 for_each_node(node)
2d5f0764
LJ
3724 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3725 ctx->pwq_tbl[node]);
4c16bd32
TH
3726
3727 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3728 link_pwq(ctx->dfl_pwq);
3729 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3730
2d5f0764
LJ
3731 mutex_unlock(&ctx->wq->mutex);
3732}
9e8cd2f5 3733
a0111cf6
LJ
3734static void apply_wqattrs_lock(void)
3735{
3736 /* CPUs should stay stable across pwq creations and installations */
3737 get_online_cpus();
3738 mutex_lock(&wq_pool_mutex);
3739}
3740
3741static void apply_wqattrs_unlock(void)
3742{
3743 mutex_unlock(&wq_pool_mutex);
3744 put_online_cpus();
3745}
3746
3747static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3748 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3749{
3750 struct apply_wqattrs_ctx *ctx;
4c16bd32 3751
2d5f0764
LJ
3752 /* only unbound workqueues can change attributes */
3753 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3754 return -EINVAL;
13e2e556 3755
2d5f0764 3756 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3757 if (!list_empty(&wq->pwqs)) {
3758 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3759 return -EINVAL;
3760
3761 wq->flags &= ~__WQ_ORDERED;
3762 }
2d5f0764 3763
2d5f0764 3764 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3765 if (!ctx)
3766 return -ENOMEM;
2d5f0764
LJ
3767
3768 /* the ctx has been prepared successfully, let's commit it */
6201171e 3769 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3770 apply_wqattrs_cleanup(ctx);
3771
6201171e 3772 return 0;
9e8cd2f5
TH
3773}
3774
a0111cf6
LJ
3775/**
3776 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3777 * @wq: the target workqueue
3778 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3779 *
3780 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3781 * machines, this function maps a separate pwq to each NUMA node with
3782 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3783 * NUMA node it was issued on. Older pwqs are released as in-flight work
3784 * items finish. Note that a work item which repeatedly requeues itself
3785 * back-to-back will stay on its current pwq.
3786 *
3787 * Performs GFP_KERNEL allocations.
3788 *
3789 * Return: 0 on success and -errno on failure.
3790 */
3791int apply_workqueue_attrs(struct workqueue_struct *wq,
3792 const struct workqueue_attrs *attrs)
3793{
3794 int ret;
3795
3796 apply_wqattrs_lock();
3797 ret = apply_workqueue_attrs_locked(wq, attrs);
3798 apply_wqattrs_unlock();
3799
3800 return ret;
3801}
6106c0f8 3802EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 3803
4c16bd32
TH
3804/**
3805 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3806 * @wq: the target workqueue
3807 * @cpu: the CPU coming up or going down
3808 * @online: whether @cpu is coming up or going down
3809 *
3810 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3811 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3812 * @wq accordingly.
3813 *
3814 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3815 * falls back to @wq->dfl_pwq which may not be optimal but is always
3816 * correct.
3817 *
3818 * Note that when the last allowed CPU of a NUMA node goes offline for a
3819 * workqueue with a cpumask spanning multiple nodes, the workers which were
3820 * already executing the work items for the workqueue will lose their CPU
3821 * affinity and may execute on any CPU. This is similar to how per-cpu
3822 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3823 * affinity, it's the user's responsibility to flush the work item from
3824 * CPU_DOWN_PREPARE.
3825 */
3826static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3827 bool online)
3828{
3829 int node = cpu_to_node(cpu);
3830 int cpu_off = online ? -1 : cpu;
3831 struct pool_workqueue *old_pwq = NULL, *pwq;
3832 struct workqueue_attrs *target_attrs;
3833 cpumask_t *cpumask;
3834
3835 lockdep_assert_held(&wq_pool_mutex);
3836
f7142ed4
LJ
3837 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3838 wq->unbound_attrs->no_numa)
4c16bd32
TH
3839 return;
3840
3841 /*
3842 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3843 * Let's use a preallocated one. The following buf is protected by
3844 * CPU hotplug exclusion.
3845 */
3846 target_attrs = wq_update_unbound_numa_attrs_buf;
3847 cpumask = target_attrs->cpumask;
3848
4c16bd32
TH
3849 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3850 pwq = unbound_pwq_by_node(wq, node);
3851
3852 /*
3853 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3854 * different from the default pwq's, we need to compare it to @pwq's
3855 * and create a new one if they don't match. If the target cpumask
3856 * equals the default pwq's, the default pwq should be used.
4c16bd32 3857 */
042f7df1 3858 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3859 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3860 return;
4c16bd32 3861 } else {
534a3fbb 3862 goto use_dfl_pwq;
4c16bd32
TH
3863 }
3864
4c16bd32
TH
3865 /* create a new pwq */
3866 pwq = alloc_unbound_pwq(wq, target_attrs);
3867 if (!pwq) {
2d916033
FF
3868 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3869 wq->name);
77f300b1 3870 goto use_dfl_pwq;
4c16bd32
TH
3871 }
3872
f7142ed4 3873 /* Install the new pwq. */
4c16bd32
TH
3874 mutex_lock(&wq->mutex);
3875 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3876 goto out_unlock;
3877
3878use_dfl_pwq:
f7142ed4 3879 mutex_lock(&wq->mutex);
4c16bd32
TH
3880 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3881 get_pwq(wq->dfl_pwq);
3882 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3883 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3884out_unlock:
3885 mutex_unlock(&wq->mutex);
3886 put_pwq_unlocked(old_pwq);
3887}
3888
30cdf249 3889static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3890{
49e3cf44 3891 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3892 int cpu, ret;
30cdf249
TH
3893
3894 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3895 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3896 if (!wq->cpu_pwqs)
30cdf249
TH
3897 return -ENOMEM;
3898
3899 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3900 struct pool_workqueue *pwq =
3901 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3902 struct worker_pool *cpu_pools =
f02ae73a 3903 per_cpu(cpu_worker_pools, cpu);
f3421797 3904
f147f29e
TH
3905 init_pwq(pwq, wq, &cpu_pools[highpri]);
3906
3907 mutex_lock(&wq->mutex);
1befcf30 3908 link_pwq(pwq);
f147f29e 3909 mutex_unlock(&wq->mutex);
30cdf249 3910 }
9e8cd2f5 3911 return 0;
8a2b7538
TH
3912 } else if (wq->flags & __WQ_ORDERED) {
3913 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3914 /* there should only be single pwq for ordering guarantee */
3915 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3916 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3917 "ordering guarantee broken for workqueue %s\n", wq->name);
3918 return ret;
30cdf249 3919 } else {
9e8cd2f5 3920 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3921 }
0f900049
TH
3922}
3923
f3421797
TH
3924static int wq_clamp_max_active(int max_active, unsigned int flags,
3925 const char *name)
b71ab8c2 3926{
f3421797
TH
3927 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3928
3929 if (max_active < 1 || max_active > lim)
044c782c
VI
3930 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3931 max_active, name, 1, lim);
b71ab8c2 3932
f3421797 3933 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3934}
3935
983c7515
TH
3936/*
3937 * Workqueues which may be used during memory reclaim should have a rescuer
3938 * to guarantee forward progress.
3939 */
3940static int init_rescuer(struct workqueue_struct *wq)
3941{
3942 struct worker *rescuer;
3943 int ret;
3944
3945 if (!(wq->flags & WQ_MEM_RECLAIM))
3946 return 0;
3947
3948 rescuer = alloc_worker(NUMA_NO_NODE);
3949 if (!rescuer)
3950 return -ENOMEM;
3951
3952 rescuer->rescue_wq = wq;
3953 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
3954 ret = PTR_ERR_OR_ZERO(rescuer->task);
3955 if (ret) {
3956 kfree(rescuer);
3957 return ret;
3958 }
3959
3960 wq->rescuer = rescuer;
3961 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3962 wake_up_process(rescuer->task);
3963
3964 return 0;
3965}
3966
b196be89 3967struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3968 unsigned int flags,
3969 int max_active,
3970 struct lock_class_key *key,
b196be89 3971 const char *lock_name, ...)
1da177e4 3972{
df2d5ae4 3973 size_t tbl_size = 0;
ecf6881f 3974 va_list args;
1da177e4 3975 struct workqueue_struct *wq;
49e3cf44 3976 struct pool_workqueue *pwq;
b196be89 3977
5c0338c6
TH
3978 /*
3979 * Unbound && max_active == 1 used to imply ordered, which is no
3980 * longer the case on NUMA machines due to per-node pools. While
3981 * alloc_ordered_workqueue() is the right way to create an ordered
3982 * workqueue, keep the previous behavior to avoid subtle breakages
3983 * on NUMA.
3984 */
3985 if ((flags & WQ_UNBOUND) && max_active == 1)
3986 flags |= __WQ_ORDERED;
3987
cee22a15
VK
3988 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3989 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3990 flags |= WQ_UNBOUND;
3991
ecf6881f 3992 /* allocate wq and format name */
df2d5ae4 3993 if (flags & WQ_UNBOUND)
ddcb57e2 3994 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3995
3996 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3997 if (!wq)
d2c1d404 3998 return NULL;
b196be89 3999
6029a918
TH
4000 if (flags & WQ_UNBOUND) {
4001 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4002 if (!wq->unbound_attrs)
4003 goto err_free_wq;
4004 }
4005
ecf6881f
TH
4006 va_start(args, lock_name);
4007 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4008 va_end(args);
1da177e4 4009
d320c038 4010 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4011 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4012
b196be89 4013 /* init wq */
97e37d7b 4014 wq->flags = flags;
a0a1a5fd 4015 wq->saved_max_active = max_active;
3c25a55d 4016 mutex_init(&wq->mutex);
112202d9 4017 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4018 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4019 INIT_LIST_HEAD(&wq->flusher_queue);
4020 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4021 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4022
eb13ba87 4023 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4024 INIT_LIST_HEAD(&wq->list);
3af24433 4025
30cdf249 4026 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4027 goto err_free_wq;
1537663f 4028
40c17f75 4029 if (wq_online && init_rescuer(wq) < 0)
983c7515 4030 goto err_destroy;
3af24433 4031
226223ab
TH
4032 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4033 goto err_destroy;
4034
a0a1a5fd 4035 /*
68e13a67
LJ
4036 * wq_pool_mutex protects global freeze state and workqueues list.
4037 * Grab it, adjust max_active and add the new @wq to workqueues
4038 * list.
a0a1a5fd 4039 */
68e13a67 4040 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4041
a357fc03 4042 mutex_lock(&wq->mutex);
699ce097
TH
4043 for_each_pwq(pwq, wq)
4044 pwq_adjust_max_active(pwq);
a357fc03 4045 mutex_unlock(&wq->mutex);
a0a1a5fd 4046
e2dca7ad 4047 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4048
68e13a67 4049 mutex_unlock(&wq_pool_mutex);
1537663f 4050
3af24433 4051 return wq;
d2c1d404
TH
4052
4053err_free_wq:
6029a918 4054 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4055 kfree(wq);
4056 return NULL;
4057err_destroy:
4058 destroy_workqueue(wq);
4690c4ab 4059 return NULL;
3af24433 4060}
d320c038 4061EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4062
3af24433
ON
4063/**
4064 * destroy_workqueue - safely terminate a workqueue
4065 * @wq: target workqueue
4066 *
4067 * Safely destroy a workqueue. All work currently pending will be done first.
4068 */
4069void destroy_workqueue(struct workqueue_struct *wq)
4070{
49e3cf44 4071 struct pool_workqueue *pwq;
4c16bd32 4072 int node;
3af24433 4073
9c5a2ba7
TH
4074 /* drain it before proceeding with destruction */
4075 drain_workqueue(wq);
c8efcc25 4076
6183c009 4077 /* sanity checks */
b09f4fd3 4078 mutex_lock(&wq->mutex);
49e3cf44 4079 for_each_pwq(pwq, wq) {
6183c009
TH
4080 int i;
4081
76af4d93
TH
4082 for (i = 0; i < WORK_NR_COLORS; i++) {
4083 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4084 mutex_unlock(&wq->mutex);
fa07fb6a 4085 show_workqueue_state();
6183c009 4086 return;
76af4d93
TH
4087 }
4088 }
4089
5c529597 4090 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4091 WARN_ON(pwq->nr_active) ||
76af4d93 4092 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4093 mutex_unlock(&wq->mutex);
fa07fb6a 4094 show_workqueue_state();
6183c009 4095 return;
76af4d93 4096 }
6183c009 4097 }
b09f4fd3 4098 mutex_unlock(&wq->mutex);
6183c009 4099
a0a1a5fd
TH
4100 /*
4101 * wq list is used to freeze wq, remove from list after
4102 * flushing is complete in case freeze races us.
4103 */
68e13a67 4104 mutex_lock(&wq_pool_mutex);
e2dca7ad 4105 list_del_rcu(&wq->list);
68e13a67 4106 mutex_unlock(&wq_pool_mutex);
3af24433 4107
226223ab
TH
4108 workqueue_sysfs_unregister(wq);
4109
e2dca7ad 4110 if (wq->rescuer)
e22bee78 4111 kthread_stop(wq->rescuer->task);
e22bee78 4112
8864b4e5
TH
4113 if (!(wq->flags & WQ_UNBOUND)) {
4114 /*
4115 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4116 * schedule RCU free.
8864b4e5 4117 */
e2dca7ad 4118 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4119 } else {
4120 /*
4121 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4122 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4123 * @wq will be freed when the last pwq is released.
8864b4e5 4124 */
4c16bd32
TH
4125 for_each_node(node) {
4126 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4127 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4128 put_pwq_unlocked(pwq);
4129 }
4130
4131 /*
4132 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4133 * put. Don't access it afterwards.
4134 */
4135 pwq = wq->dfl_pwq;
4136 wq->dfl_pwq = NULL;
dce90d47 4137 put_pwq_unlocked(pwq);
29c91e99 4138 }
3af24433
ON
4139}
4140EXPORT_SYMBOL_GPL(destroy_workqueue);
4141
dcd989cb
TH
4142/**
4143 * workqueue_set_max_active - adjust max_active of a workqueue
4144 * @wq: target workqueue
4145 * @max_active: new max_active value.
4146 *
4147 * Set max_active of @wq to @max_active.
4148 *
4149 * CONTEXT:
4150 * Don't call from IRQ context.
4151 */
4152void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4153{
49e3cf44 4154 struct pool_workqueue *pwq;
dcd989cb 4155
8719dcea 4156 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4157 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4158 return;
4159
f3421797 4160 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4161
a357fc03 4162 mutex_lock(&wq->mutex);
dcd989cb 4163
0a94efb5 4164 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4165 wq->saved_max_active = max_active;
4166
699ce097
TH
4167 for_each_pwq(pwq, wq)
4168 pwq_adjust_max_active(pwq);
93981800 4169
a357fc03 4170 mutex_unlock(&wq->mutex);
15316ba8 4171}
dcd989cb 4172EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4173
27d4ee03
LW
4174/**
4175 * current_work - retrieve %current task's work struct
4176 *
4177 * Determine if %current task is a workqueue worker and what it's working on.
4178 * Useful to find out the context that the %current task is running in.
4179 *
4180 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4181 */
4182struct work_struct *current_work(void)
4183{
4184 struct worker *worker = current_wq_worker();
4185
4186 return worker ? worker->current_work : NULL;
4187}
4188EXPORT_SYMBOL(current_work);
4189
e6267616
TH
4190/**
4191 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4192 *
4193 * Determine whether %current is a workqueue rescuer. Can be used from
4194 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4195 *
4196 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4197 */
4198bool current_is_workqueue_rescuer(void)
4199{
4200 struct worker *worker = current_wq_worker();
4201
6a092dfd 4202 return worker && worker->rescue_wq;
e6267616
TH
4203}
4204
eef6a7d5 4205/**
dcd989cb
TH
4206 * workqueue_congested - test whether a workqueue is congested
4207 * @cpu: CPU in question
4208 * @wq: target workqueue
eef6a7d5 4209 *
dcd989cb
TH
4210 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4211 * no synchronization around this function and the test result is
4212 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4213 *
d3251859
TH
4214 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4215 * Note that both per-cpu and unbound workqueues may be associated with
4216 * multiple pool_workqueues which have separate congested states. A
4217 * workqueue being congested on one CPU doesn't mean the workqueue is also
4218 * contested on other CPUs / NUMA nodes.
4219 *
d185af30 4220 * Return:
dcd989cb 4221 * %true if congested, %false otherwise.
eef6a7d5 4222 */
d84ff051 4223bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4224{
7fb98ea7 4225 struct pool_workqueue *pwq;
76af4d93
TH
4226 bool ret;
4227
88109453 4228 rcu_read_lock_sched();
7fb98ea7 4229
d3251859
TH
4230 if (cpu == WORK_CPU_UNBOUND)
4231 cpu = smp_processor_id();
4232
7fb98ea7
TH
4233 if (!(wq->flags & WQ_UNBOUND))
4234 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4235 else
df2d5ae4 4236 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4237
76af4d93 4238 ret = !list_empty(&pwq->delayed_works);
88109453 4239 rcu_read_unlock_sched();
76af4d93
TH
4240
4241 return ret;
1da177e4 4242}
dcd989cb 4243EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4244
dcd989cb
TH
4245/**
4246 * work_busy - test whether a work is currently pending or running
4247 * @work: the work to be tested
4248 *
4249 * Test whether @work is currently pending or running. There is no
4250 * synchronization around this function and the test result is
4251 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4252 *
d185af30 4253 * Return:
dcd989cb
TH
4254 * OR'd bitmask of WORK_BUSY_* bits.
4255 */
4256unsigned int work_busy(struct work_struct *work)
1da177e4 4257{
fa1b54e6 4258 struct worker_pool *pool;
dcd989cb
TH
4259 unsigned long flags;
4260 unsigned int ret = 0;
1da177e4 4261
dcd989cb
TH
4262 if (work_pending(work))
4263 ret |= WORK_BUSY_PENDING;
1da177e4 4264
fa1b54e6
TH
4265 local_irq_save(flags);
4266 pool = get_work_pool(work);
038366c5 4267 if (pool) {
fa1b54e6 4268 spin_lock(&pool->lock);
038366c5
LJ
4269 if (find_worker_executing_work(pool, work))
4270 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4271 spin_unlock(&pool->lock);
038366c5 4272 }
fa1b54e6 4273 local_irq_restore(flags);
1da177e4 4274
dcd989cb 4275 return ret;
1da177e4 4276}
dcd989cb 4277EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4278
3d1cb205
TH
4279/**
4280 * set_worker_desc - set description for the current work item
4281 * @fmt: printf-style format string
4282 * @...: arguments for the format string
4283 *
4284 * This function can be called by a running work function to describe what
4285 * the work item is about. If the worker task gets dumped, this
4286 * information will be printed out together to help debugging. The
4287 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4288 */
4289void set_worker_desc(const char *fmt, ...)
4290{
4291 struct worker *worker = current_wq_worker();
4292 va_list args;
4293
4294 if (worker) {
4295 va_start(args, fmt);
4296 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4297 va_end(args);
4298 worker->desc_valid = true;
4299 }
4300}
4301
4302/**
4303 * print_worker_info - print out worker information and description
4304 * @log_lvl: the log level to use when printing
4305 * @task: target task
4306 *
4307 * If @task is a worker and currently executing a work item, print out the
4308 * name of the workqueue being serviced and worker description set with
4309 * set_worker_desc() by the currently executing work item.
4310 *
4311 * This function can be safely called on any task as long as the
4312 * task_struct itself is accessible. While safe, this function isn't
4313 * synchronized and may print out mixups or garbages of limited length.
4314 */
4315void print_worker_info(const char *log_lvl, struct task_struct *task)
4316{
4317 work_func_t *fn = NULL;
4318 char name[WQ_NAME_LEN] = { };
4319 char desc[WORKER_DESC_LEN] = { };
4320 struct pool_workqueue *pwq = NULL;
4321 struct workqueue_struct *wq = NULL;
4322 bool desc_valid = false;
4323 struct worker *worker;
4324
4325 if (!(task->flags & PF_WQ_WORKER))
4326 return;
4327
4328 /*
4329 * This function is called without any synchronization and @task
4330 * could be in any state. Be careful with dereferences.
4331 */
e700591a 4332 worker = kthread_probe_data(task);
3d1cb205
TH
4333
4334 /*
4335 * Carefully copy the associated workqueue's workfn and name. Keep
4336 * the original last '\0' in case the original contains garbage.
4337 */
4338 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4339 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4340 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4341 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4342
4343 /* copy worker description */
4344 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4345 if (desc_valid)
4346 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4347
4348 if (fn || name[0] || desc[0]) {
4349 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4350 if (desc[0])
4351 pr_cont(" (%s)", desc);
4352 pr_cont("\n");
4353 }
4354}
4355
3494fc30
TH
4356static void pr_cont_pool_info(struct worker_pool *pool)
4357{
4358 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4359 if (pool->node != NUMA_NO_NODE)
4360 pr_cont(" node=%d", pool->node);
4361 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4362}
4363
4364static void pr_cont_work(bool comma, struct work_struct *work)
4365{
4366 if (work->func == wq_barrier_func) {
4367 struct wq_barrier *barr;
4368
4369 barr = container_of(work, struct wq_barrier, work);
4370
4371 pr_cont("%s BAR(%d)", comma ? "," : "",
4372 task_pid_nr(barr->task));
4373 } else {
4374 pr_cont("%s %pf", comma ? "," : "", work->func);
4375 }
4376}
4377
4378static void show_pwq(struct pool_workqueue *pwq)
4379{
4380 struct worker_pool *pool = pwq->pool;
4381 struct work_struct *work;
4382 struct worker *worker;
4383 bool has_in_flight = false, has_pending = false;
4384 int bkt;
4385
4386 pr_info(" pwq %d:", pool->id);
4387 pr_cont_pool_info(pool);
4388
4389 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4390 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4391
4392 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4393 if (worker->current_pwq == pwq) {
4394 has_in_flight = true;
4395 break;
4396 }
4397 }
4398 if (has_in_flight) {
4399 bool comma = false;
4400
4401 pr_info(" in-flight:");
4402 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4403 if (worker->current_pwq != pwq)
4404 continue;
4405
4406 pr_cont("%s %d%s:%pf", comma ? "," : "",
4407 task_pid_nr(worker->task),
4408 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4409 worker->current_func);
4410 list_for_each_entry(work, &worker->scheduled, entry)
4411 pr_cont_work(false, work);
4412 comma = true;
4413 }
4414 pr_cont("\n");
4415 }
4416
4417 list_for_each_entry(work, &pool->worklist, entry) {
4418 if (get_work_pwq(work) == pwq) {
4419 has_pending = true;
4420 break;
4421 }
4422 }
4423 if (has_pending) {
4424 bool comma = false;
4425
4426 pr_info(" pending:");
4427 list_for_each_entry(work, &pool->worklist, entry) {
4428 if (get_work_pwq(work) != pwq)
4429 continue;
4430
4431 pr_cont_work(comma, work);
4432 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4433 }
4434 pr_cont("\n");
4435 }
4436
4437 if (!list_empty(&pwq->delayed_works)) {
4438 bool comma = false;
4439
4440 pr_info(" delayed:");
4441 list_for_each_entry(work, &pwq->delayed_works, entry) {
4442 pr_cont_work(comma, work);
4443 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4444 }
4445 pr_cont("\n");
4446 }
4447}
4448
4449/**
4450 * show_workqueue_state - dump workqueue state
4451 *
7b776af6
RL
4452 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4453 * all busy workqueues and pools.
3494fc30
TH
4454 */
4455void show_workqueue_state(void)
4456{
4457 struct workqueue_struct *wq;
4458 struct worker_pool *pool;
4459 unsigned long flags;
4460 int pi;
4461
4462 rcu_read_lock_sched();
4463
4464 pr_info("Showing busy workqueues and worker pools:\n");
4465
4466 list_for_each_entry_rcu(wq, &workqueues, list) {
4467 struct pool_workqueue *pwq;
4468 bool idle = true;
4469
4470 for_each_pwq(pwq, wq) {
4471 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4472 idle = false;
4473 break;
4474 }
4475 }
4476 if (idle)
4477 continue;
4478
4479 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4480
4481 for_each_pwq(pwq, wq) {
4482 spin_lock_irqsave(&pwq->pool->lock, flags);
4483 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4484 show_pwq(pwq);
4485 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4486 /*
4487 * We could be printing a lot from atomic context, e.g.
4488 * sysrq-t -> show_workqueue_state(). Avoid triggering
4489 * hard lockup.
4490 */
4491 touch_nmi_watchdog();
3494fc30
TH
4492 }
4493 }
4494
4495 for_each_pool(pool, pi) {
4496 struct worker *worker;
4497 bool first = true;
4498
4499 spin_lock_irqsave(&pool->lock, flags);
4500 if (pool->nr_workers == pool->nr_idle)
4501 goto next_pool;
4502
4503 pr_info("pool %d:", pool->id);
4504 pr_cont_pool_info(pool);
82607adc
TH
4505 pr_cont(" hung=%us workers=%d",
4506 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4507 pool->nr_workers);
3494fc30
TH
4508 if (pool->manager)
4509 pr_cont(" manager: %d",
4510 task_pid_nr(pool->manager->task));
4511 list_for_each_entry(worker, &pool->idle_list, entry) {
4512 pr_cont(" %s%d", first ? "idle: " : "",
4513 task_pid_nr(worker->task));
4514 first = false;
4515 }
4516 pr_cont("\n");
4517 next_pool:
4518 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4519 /*
4520 * We could be printing a lot from atomic context, e.g.
4521 * sysrq-t -> show_workqueue_state(). Avoid triggering
4522 * hard lockup.
4523 */
4524 touch_nmi_watchdog();
3494fc30
TH
4525 }
4526
4527 rcu_read_unlock_sched();
4528}
4529
db7bccf4
TH
4530/*
4531 * CPU hotplug.
4532 *
e22bee78 4533 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4534 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4535 * pool which make migrating pending and scheduled works very
e22bee78 4536 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4537 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4538 * blocked draining impractical.
4539 *
24647570 4540 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4541 * running as an unbound one and allowing it to be reattached later if the
4542 * cpu comes back online.
db7bccf4 4543 */
1da177e4 4544
e8b3f8db 4545static void unbind_workers(int cpu)
3af24433 4546{
4ce62e9e 4547 struct worker_pool *pool;
db7bccf4 4548 struct worker *worker;
3af24433 4549
f02ae73a 4550 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4551 mutex_lock(&pool->attach_mutex);
94cf58bb 4552 spin_lock_irq(&pool->lock);
3af24433 4553
94cf58bb 4554 /*
92f9c5c4 4555 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4556 * unbound and set DISASSOCIATED. Before this, all workers
4557 * except for the ones which are still executing works from
4558 * before the last CPU down must be on the cpu. After
4559 * this, they may become diasporas.
4560 */
da028469 4561 for_each_pool_worker(worker, pool)
c9e7cf27 4562 worker->flags |= WORKER_UNBOUND;
06ba38a9 4563
24647570 4564 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4565
94cf58bb 4566 spin_unlock_irq(&pool->lock);
92f9c5c4 4567 mutex_unlock(&pool->attach_mutex);
628c78e7 4568
eb283428
LJ
4569 /*
4570 * Call schedule() so that we cross rq->lock and thus can
4571 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4572 * This is necessary as scheduler callbacks may be invoked
4573 * from other cpus.
4574 */
4575 schedule();
06ba38a9 4576
eb283428
LJ
4577 /*
4578 * Sched callbacks are disabled now. Zap nr_running.
4579 * After this, nr_running stays zero and need_more_worker()
4580 * and keep_working() are always true as long as the
4581 * worklist is not empty. This pool now behaves as an
4582 * unbound (in terms of concurrency management) pool which
4583 * are served by workers tied to the pool.
4584 */
e19e397a 4585 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4586
4587 /*
4588 * With concurrency management just turned off, a busy
4589 * worker blocking could lead to lengthy stalls. Kick off
4590 * unbound chain execution of currently pending work items.
4591 */
4592 spin_lock_irq(&pool->lock);
4593 wake_up_worker(pool);
4594 spin_unlock_irq(&pool->lock);
4595 }
3af24433 4596}
3af24433 4597
bd7c089e
TH
4598/**
4599 * rebind_workers - rebind all workers of a pool to the associated CPU
4600 * @pool: pool of interest
4601 *
a9ab775b 4602 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4603 */
4604static void rebind_workers(struct worker_pool *pool)
4605{
a9ab775b 4606 struct worker *worker;
bd7c089e 4607
92f9c5c4 4608 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4609
a9ab775b
TH
4610 /*
4611 * Restore CPU affinity of all workers. As all idle workers should
4612 * be on the run-queue of the associated CPU before any local
402dd89d 4613 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4614 * of all workers first and then clear UNBOUND. As we're called
4615 * from CPU_ONLINE, the following shouldn't fail.
4616 */
da028469 4617 for_each_pool_worker(worker, pool)
a9ab775b
TH
4618 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4619 pool->attrs->cpumask) < 0);
bd7c089e 4620
a9ab775b 4621 spin_lock_irq(&pool->lock);
f7c17d26 4622
3de5e884 4623 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4624
da028469 4625 for_each_pool_worker(worker, pool) {
a9ab775b 4626 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4627
4628 /*
a9ab775b
TH
4629 * A bound idle worker should actually be on the runqueue
4630 * of the associated CPU for local wake-ups targeting it to
4631 * work. Kick all idle workers so that they migrate to the
4632 * associated CPU. Doing this in the same loop as
4633 * replacing UNBOUND with REBOUND is safe as no worker will
4634 * be bound before @pool->lock is released.
bd7c089e 4635 */
a9ab775b
TH
4636 if (worker_flags & WORKER_IDLE)
4637 wake_up_process(worker->task);
bd7c089e 4638
a9ab775b
TH
4639 /*
4640 * We want to clear UNBOUND but can't directly call
4641 * worker_clr_flags() or adjust nr_running. Atomically
4642 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4643 * @worker will clear REBOUND using worker_clr_flags() when
4644 * it initiates the next execution cycle thus restoring
4645 * concurrency management. Note that when or whether
4646 * @worker clears REBOUND doesn't affect correctness.
4647 *
c95491ed 4648 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b
TH
4649 * tested without holding any lock in
4650 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4651 * fail incorrectly leading to premature concurrency
4652 * management operations.
4653 */
4654 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4655 worker_flags |= WORKER_REBOUND;
4656 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4657 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4658 }
a9ab775b
TH
4659
4660 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4661}
4662
7dbc725e
TH
4663/**
4664 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4665 * @pool: unbound pool of interest
4666 * @cpu: the CPU which is coming up
4667 *
4668 * An unbound pool may end up with a cpumask which doesn't have any online
4669 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4670 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4671 * online CPU before, cpus_allowed of all its workers should be restored.
4672 */
4673static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4674{
4675 static cpumask_t cpumask;
4676 struct worker *worker;
7dbc725e 4677
92f9c5c4 4678 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4679
4680 /* is @cpu allowed for @pool? */
4681 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4682 return;
4683
7dbc725e 4684 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4685
4686 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4687 for_each_pool_worker(worker, pool)
d945b5e9 4688 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4689}
4690
7ee681b2
TG
4691int workqueue_prepare_cpu(unsigned int cpu)
4692{
4693 struct worker_pool *pool;
4694
4695 for_each_cpu_worker_pool(pool, cpu) {
4696 if (pool->nr_workers)
4697 continue;
4698 if (!create_worker(pool))
4699 return -ENOMEM;
4700 }
4701 return 0;
4702}
4703
4704int workqueue_online_cpu(unsigned int cpu)
3af24433 4705{
4ce62e9e 4706 struct worker_pool *pool;
4c16bd32 4707 struct workqueue_struct *wq;
7dbc725e 4708 int pi;
3ce63377 4709
7ee681b2 4710 mutex_lock(&wq_pool_mutex);
7dbc725e 4711
7ee681b2
TG
4712 for_each_pool(pool, pi) {
4713 mutex_lock(&pool->attach_mutex);
94cf58bb 4714
7ee681b2
TG
4715 if (pool->cpu == cpu)
4716 rebind_workers(pool);
4717 else if (pool->cpu < 0)
4718 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4719
7ee681b2
TG
4720 mutex_unlock(&pool->attach_mutex);
4721 }
6ba94429 4722
7ee681b2
TG
4723 /* update NUMA affinity of unbound workqueues */
4724 list_for_each_entry(wq, &workqueues, list)
4725 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4726
7ee681b2
TG
4727 mutex_unlock(&wq_pool_mutex);
4728 return 0;
6ba94429
FW
4729}
4730
7ee681b2 4731int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4732{
6ba94429
FW
4733 struct workqueue_struct *wq;
4734
7ee681b2 4735 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
4736 if (WARN_ON(cpu != smp_processor_id()))
4737 return -1;
4738
4739 unbind_workers(cpu);
7ee681b2
TG
4740
4741 /* update NUMA affinity of unbound workqueues */
4742 mutex_lock(&wq_pool_mutex);
4743 list_for_each_entry(wq, &workqueues, list)
4744 wq_update_unbound_numa(wq, cpu, false);
4745 mutex_unlock(&wq_pool_mutex);
4746
7ee681b2 4747 return 0;
6ba94429
FW
4748}
4749
4750#ifdef CONFIG_SMP
4751
4752struct work_for_cpu {
4753 struct work_struct work;
4754 long (*fn)(void *);
4755 void *arg;
4756 long ret;
4757};
4758
4759static void work_for_cpu_fn(struct work_struct *work)
4760{
4761 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4762
4763 wfc->ret = wfc->fn(wfc->arg);
4764}
4765
4766/**
22aceb31 4767 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4768 * @cpu: the cpu to run on
4769 * @fn: the function to run
4770 * @arg: the function arg
4771 *
4772 * It is up to the caller to ensure that the cpu doesn't go offline.
4773 * The caller must not hold any locks which would prevent @fn from completing.
4774 *
4775 * Return: The value @fn returns.
4776 */
4777long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4778{
4779 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4780
4781 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4782 schedule_work_on(cpu, &wfc.work);
4783 flush_work(&wfc.work);
4784 destroy_work_on_stack(&wfc.work);
4785 return wfc.ret;
4786}
4787EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4788
4789/**
4790 * work_on_cpu_safe - run a function in thread context on a particular cpu
4791 * @cpu: the cpu to run on
4792 * @fn: the function to run
4793 * @arg: the function argument
4794 *
4795 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4796 * any locks which would prevent @fn from completing.
4797 *
4798 * Return: The value @fn returns.
4799 */
4800long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4801{
4802 long ret = -ENODEV;
4803
4804 get_online_cpus();
4805 if (cpu_online(cpu))
4806 ret = work_on_cpu(cpu, fn, arg);
4807 put_online_cpus();
4808 return ret;
4809}
4810EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4811#endif /* CONFIG_SMP */
4812
4813#ifdef CONFIG_FREEZER
4814
4815/**
4816 * freeze_workqueues_begin - begin freezing workqueues
4817 *
4818 * Start freezing workqueues. After this function returns, all freezable
4819 * workqueues will queue new works to their delayed_works list instead of
4820 * pool->worklist.
4821 *
4822 * CONTEXT:
4823 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4824 */
4825void freeze_workqueues_begin(void)
4826{
4827 struct workqueue_struct *wq;
4828 struct pool_workqueue *pwq;
4829
4830 mutex_lock(&wq_pool_mutex);
4831
4832 WARN_ON_ONCE(workqueue_freezing);
4833 workqueue_freezing = true;
4834
4835 list_for_each_entry(wq, &workqueues, list) {
4836 mutex_lock(&wq->mutex);
4837 for_each_pwq(pwq, wq)
4838 pwq_adjust_max_active(pwq);
4839 mutex_unlock(&wq->mutex);
4840 }
4841
4842 mutex_unlock(&wq_pool_mutex);
4843}
4844
4845/**
4846 * freeze_workqueues_busy - are freezable workqueues still busy?
4847 *
4848 * Check whether freezing is complete. This function must be called
4849 * between freeze_workqueues_begin() and thaw_workqueues().
4850 *
4851 * CONTEXT:
4852 * Grabs and releases wq_pool_mutex.
4853 *
4854 * Return:
4855 * %true if some freezable workqueues are still busy. %false if freezing
4856 * is complete.
4857 */
4858bool freeze_workqueues_busy(void)
4859{
4860 bool busy = false;
4861 struct workqueue_struct *wq;
4862 struct pool_workqueue *pwq;
4863
4864 mutex_lock(&wq_pool_mutex);
4865
4866 WARN_ON_ONCE(!workqueue_freezing);
4867
4868 list_for_each_entry(wq, &workqueues, list) {
4869 if (!(wq->flags & WQ_FREEZABLE))
4870 continue;
4871 /*
4872 * nr_active is monotonically decreasing. It's safe
4873 * to peek without lock.
4874 */
4875 rcu_read_lock_sched();
4876 for_each_pwq(pwq, wq) {
4877 WARN_ON_ONCE(pwq->nr_active < 0);
4878 if (pwq->nr_active) {
4879 busy = true;
4880 rcu_read_unlock_sched();
4881 goto out_unlock;
4882 }
4883 }
4884 rcu_read_unlock_sched();
4885 }
4886out_unlock:
4887 mutex_unlock(&wq_pool_mutex);
4888 return busy;
4889}
4890
4891/**
4892 * thaw_workqueues - thaw workqueues
4893 *
4894 * Thaw workqueues. Normal queueing is restored and all collected
4895 * frozen works are transferred to their respective pool worklists.
4896 *
4897 * CONTEXT:
4898 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4899 */
4900void thaw_workqueues(void)
4901{
4902 struct workqueue_struct *wq;
4903 struct pool_workqueue *pwq;
4904
4905 mutex_lock(&wq_pool_mutex);
4906
4907 if (!workqueue_freezing)
4908 goto out_unlock;
4909
4910 workqueue_freezing = false;
4911
4912 /* restore max_active and repopulate worklist */
4913 list_for_each_entry(wq, &workqueues, list) {
4914 mutex_lock(&wq->mutex);
4915 for_each_pwq(pwq, wq)
4916 pwq_adjust_max_active(pwq);
4917 mutex_unlock(&wq->mutex);
4918 }
4919
4920out_unlock:
4921 mutex_unlock(&wq_pool_mutex);
4922}
4923#endif /* CONFIG_FREEZER */
4924
042f7df1
LJ
4925static int workqueue_apply_unbound_cpumask(void)
4926{
4927 LIST_HEAD(ctxs);
4928 int ret = 0;
4929 struct workqueue_struct *wq;
4930 struct apply_wqattrs_ctx *ctx, *n;
4931
4932 lockdep_assert_held(&wq_pool_mutex);
4933
4934 list_for_each_entry(wq, &workqueues, list) {
4935 if (!(wq->flags & WQ_UNBOUND))
4936 continue;
4937 /* creating multiple pwqs breaks ordering guarantee */
4938 if (wq->flags & __WQ_ORDERED)
4939 continue;
4940
4941 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4942 if (!ctx) {
4943 ret = -ENOMEM;
4944 break;
4945 }
4946
4947 list_add_tail(&ctx->list, &ctxs);
4948 }
4949
4950 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4951 if (!ret)
4952 apply_wqattrs_commit(ctx);
4953 apply_wqattrs_cleanup(ctx);
4954 }
4955
4956 return ret;
4957}
4958
4959/**
4960 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4961 * @cpumask: the cpumask to set
4962 *
4963 * The low-level workqueues cpumask is a global cpumask that limits
4964 * the affinity of all unbound workqueues. This function check the @cpumask
4965 * and apply it to all unbound workqueues and updates all pwqs of them.
4966 *
4967 * Retun: 0 - Success
4968 * -EINVAL - Invalid @cpumask
4969 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4970 */
4971int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4972{
4973 int ret = -EINVAL;
4974 cpumask_var_t saved_cpumask;
4975
4976 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4977 return -ENOMEM;
4978
c98a9805
TS
4979 /*
4980 * Not excluding isolated cpus on purpose.
4981 * If the user wishes to include them, we allow that.
4982 */
042f7df1
LJ
4983 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4984 if (!cpumask_empty(cpumask)) {
a0111cf6 4985 apply_wqattrs_lock();
042f7df1
LJ
4986
4987 /* save the old wq_unbound_cpumask. */
4988 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4989
4990 /* update wq_unbound_cpumask at first and apply it to wqs. */
4991 cpumask_copy(wq_unbound_cpumask, cpumask);
4992 ret = workqueue_apply_unbound_cpumask();
4993
4994 /* restore the wq_unbound_cpumask when failed. */
4995 if (ret < 0)
4996 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4997
a0111cf6 4998 apply_wqattrs_unlock();
042f7df1 4999 }
042f7df1
LJ
5000
5001 free_cpumask_var(saved_cpumask);
5002 return ret;
5003}
5004
6ba94429
FW
5005#ifdef CONFIG_SYSFS
5006/*
5007 * Workqueues with WQ_SYSFS flag set is visible to userland via
5008 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5009 * following attributes.
5010 *
5011 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5012 * max_active RW int : maximum number of in-flight work items
5013 *
5014 * Unbound workqueues have the following extra attributes.
5015 *
9a19b463 5016 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5017 * nice RW int : nice value of the workers
5018 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5019 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5020 */
5021struct wq_device {
5022 struct workqueue_struct *wq;
5023 struct device dev;
5024};
5025
5026static struct workqueue_struct *dev_to_wq(struct device *dev)
5027{
5028 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5029
5030 return wq_dev->wq;
5031}
5032
5033static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5034 char *buf)
5035{
5036 struct workqueue_struct *wq = dev_to_wq(dev);
5037
5038 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5039}
5040static DEVICE_ATTR_RO(per_cpu);
5041
5042static ssize_t max_active_show(struct device *dev,
5043 struct device_attribute *attr, char *buf)
5044{
5045 struct workqueue_struct *wq = dev_to_wq(dev);
5046
5047 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5048}
5049
5050static ssize_t max_active_store(struct device *dev,
5051 struct device_attribute *attr, const char *buf,
5052 size_t count)
5053{
5054 struct workqueue_struct *wq = dev_to_wq(dev);
5055 int val;
5056
5057 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5058 return -EINVAL;
5059
5060 workqueue_set_max_active(wq, val);
5061 return count;
5062}
5063static DEVICE_ATTR_RW(max_active);
5064
5065static struct attribute *wq_sysfs_attrs[] = {
5066 &dev_attr_per_cpu.attr,
5067 &dev_attr_max_active.attr,
5068 NULL,
5069};
5070ATTRIBUTE_GROUPS(wq_sysfs);
5071
5072static ssize_t wq_pool_ids_show(struct device *dev,
5073 struct device_attribute *attr, char *buf)
5074{
5075 struct workqueue_struct *wq = dev_to_wq(dev);
5076 const char *delim = "";
5077 int node, written = 0;
5078
5079 rcu_read_lock_sched();
5080 for_each_node(node) {
5081 written += scnprintf(buf + written, PAGE_SIZE - written,
5082 "%s%d:%d", delim, node,
5083 unbound_pwq_by_node(wq, node)->pool->id);
5084 delim = " ";
5085 }
5086 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5087 rcu_read_unlock_sched();
5088
5089 return written;
5090}
5091
5092static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5093 char *buf)
5094{
5095 struct workqueue_struct *wq = dev_to_wq(dev);
5096 int written;
5097
5098 mutex_lock(&wq->mutex);
5099 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5100 mutex_unlock(&wq->mutex);
5101
5102 return written;
5103}
5104
5105/* prepare workqueue_attrs for sysfs store operations */
5106static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5107{
5108 struct workqueue_attrs *attrs;
5109
899a94fe
LJ
5110 lockdep_assert_held(&wq_pool_mutex);
5111
6ba94429
FW
5112 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5113 if (!attrs)
5114 return NULL;
5115
6ba94429 5116 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5117 return attrs;
5118}
5119
5120static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5121 const char *buf, size_t count)
5122{
5123 struct workqueue_struct *wq = dev_to_wq(dev);
5124 struct workqueue_attrs *attrs;
d4d3e257
LJ
5125 int ret = -ENOMEM;
5126
5127 apply_wqattrs_lock();
6ba94429
FW
5128
5129 attrs = wq_sysfs_prep_attrs(wq);
5130 if (!attrs)
d4d3e257 5131 goto out_unlock;
6ba94429
FW
5132
5133 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5134 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5135 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5136 else
5137 ret = -EINVAL;
5138
d4d3e257
LJ
5139out_unlock:
5140 apply_wqattrs_unlock();
6ba94429
FW
5141 free_workqueue_attrs(attrs);
5142 return ret ?: count;
5143}
5144
5145static ssize_t wq_cpumask_show(struct device *dev,
5146 struct device_attribute *attr, char *buf)
5147{
5148 struct workqueue_struct *wq = dev_to_wq(dev);
5149 int written;
5150
5151 mutex_lock(&wq->mutex);
5152 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5153 cpumask_pr_args(wq->unbound_attrs->cpumask));
5154 mutex_unlock(&wq->mutex);
5155 return written;
5156}
5157
5158static ssize_t wq_cpumask_store(struct device *dev,
5159 struct device_attribute *attr,
5160 const char *buf, size_t count)
5161{
5162 struct workqueue_struct *wq = dev_to_wq(dev);
5163 struct workqueue_attrs *attrs;
d4d3e257
LJ
5164 int ret = -ENOMEM;
5165
5166 apply_wqattrs_lock();
6ba94429
FW
5167
5168 attrs = wq_sysfs_prep_attrs(wq);
5169 if (!attrs)
d4d3e257 5170 goto out_unlock;
6ba94429
FW
5171
5172 ret = cpumask_parse(buf, attrs->cpumask);
5173 if (!ret)
d4d3e257 5174 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5175
d4d3e257
LJ
5176out_unlock:
5177 apply_wqattrs_unlock();
6ba94429
FW
5178 free_workqueue_attrs(attrs);
5179 return ret ?: count;
5180}
5181
5182static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5183 char *buf)
5184{
5185 struct workqueue_struct *wq = dev_to_wq(dev);
5186 int written;
7dbc725e 5187
6ba94429
FW
5188 mutex_lock(&wq->mutex);
5189 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5190 !wq->unbound_attrs->no_numa);
5191 mutex_unlock(&wq->mutex);
4c16bd32 5192
6ba94429 5193 return written;
65758202
TH
5194}
5195
6ba94429
FW
5196static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5197 const char *buf, size_t count)
65758202 5198{
6ba94429
FW
5199 struct workqueue_struct *wq = dev_to_wq(dev);
5200 struct workqueue_attrs *attrs;
d4d3e257
LJ
5201 int v, ret = -ENOMEM;
5202
5203 apply_wqattrs_lock();
4c16bd32 5204
6ba94429
FW
5205 attrs = wq_sysfs_prep_attrs(wq);
5206 if (!attrs)
d4d3e257 5207 goto out_unlock;
4c16bd32 5208
6ba94429
FW
5209 ret = -EINVAL;
5210 if (sscanf(buf, "%d", &v) == 1) {
5211 attrs->no_numa = !v;
d4d3e257 5212 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5213 }
6ba94429 5214
d4d3e257
LJ
5215out_unlock:
5216 apply_wqattrs_unlock();
6ba94429
FW
5217 free_workqueue_attrs(attrs);
5218 return ret ?: count;
65758202
TH
5219}
5220
6ba94429
FW
5221static struct device_attribute wq_sysfs_unbound_attrs[] = {
5222 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5223 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5224 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5225 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5226 __ATTR_NULL,
5227};
8ccad40d 5228
6ba94429
FW
5229static struct bus_type wq_subsys = {
5230 .name = "workqueue",
5231 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5232};
5233
b05a7928
FW
5234static ssize_t wq_unbound_cpumask_show(struct device *dev,
5235 struct device_attribute *attr, char *buf)
5236{
5237 int written;
5238
042f7df1 5239 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5240 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5241 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5242 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5243
5244 return written;
5245}
5246
042f7df1
LJ
5247static ssize_t wq_unbound_cpumask_store(struct device *dev,
5248 struct device_attribute *attr, const char *buf, size_t count)
5249{
5250 cpumask_var_t cpumask;
5251 int ret;
5252
5253 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5254 return -ENOMEM;
5255
5256 ret = cpumask_parse(buf, cpumask);
5257 if (!ret)
5258 ret = workqueue_set_unbound_cpumask(cpumask);
5259
5260 free_cpumask_var(cpumask);
5261 return ret ? ret : count;
5262}
5263
b05a7928 5264static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5265 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5266 wq_unbound_cpumask_store);
b05a7928 5267
6ba94429 5268static int __init wq_sysfs_init(void)
2d3854a3 5269{
b05a7928
FW
5270 int err;
5271
5272 err = subsys_virtual_register(&wq_subsys, NULL);
5273 if (err)
5274 return err;
5275
5276 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5277}
6ba94429 5278core_initcall(wq_sysfs_init);
2d3854a3 5279
6ba94429 5280static void wq_device_release(struct device *dev)
2d3854a3 5281{
6ba94429 5282 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5283
6ba94429 5284 kfree(wq_dev);
2d3854a3 5285}
a0a1a5fd
TH
5286
5287/**
6ba94429
FW
5288 * workqueue_sysfs_register - make a workqueue visible in sysfs
5289 * @wq: the workqueue to register
a0a1a5fd 5290 *
6ba94429
FW
5291 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5292 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5293 * which is the preferred method.
a0a1a5fd 5294 *
6ba94429
FW
5295 * Workqueue user should use this function directly iff it wants to apply
5296 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5297 * apply_workqueue_attrs() may race against userland updating the
5298 * attributes.
5299 *
5300 * Return: 0 on success, -errno on failure.
a0a1a5fd 5301 */
6ba94429 5302int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5303{
6ba94429
FW
5304 struct wq_device *wq_dev;
5305 int ret;
a0a1a5fd 5306
6ba94429 5307 /*
402dd89d 5308 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5309 * attributes breaks ordering guarantee. Disallow exposing ordered
5310 * workqueues.
5311 */
0a94efb5 5312 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5313 return -EINVAL;
a0a1a5fd 5314
6ba94429
FW
5315 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5316 if (!wq_dev)
5317 return -ENOMEM;
5bcab335 5318
6ba94429
FW
5319 wq_dev->wq = wq;
5320 wq_dev->dev.bus = &wq_subsys;
6ba94429 5321 wq_dev->dev.release = wq_device_release;
23217b44 5322 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5323
6ba94429
FW
5324 /*
5325 * unbound_attrs are created separately. Suppress uevent until
5326 * everything is ready.
5327 */
5328 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5329
6ba94429
FW
5330 ret = device_register(&wq_dev->dev);
5331 if (ret) {
537f4146 5332 put_device(&wq_dev->dev);
6ba94429
FW
5333 wq->wq_dev = NULL;
5334 return ret;
5335 }
a0a1a5fd 5336
6ba94429
FW
5337 if (wq->flags & WQ_UNBOUND) {
5338 struct device_attribute *attr;
a0a1a5fd 5339
6ba94429
FW
5340 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5341 ret = device_create_file(&wq_dev->dev, attr);
5342 if (ret) {
5343 device_unregister(&wq_dev->dev);
5344 wq->wq_dev = NULL;
5345 return ret;
a0a1a5fd
TH
5346 }
5347 }
5348 }
6ba94429
FW
5349
5350 dev_set_uevent_suppress(&wq_dev->dev, false);
5351 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5352 return 0;
a0a1a5fd
TH
5353}
5354
5355/**
6ba94429
FW
5356 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5357 * @wq: the workqueue to unregister
a0a1a5fd 5358 *
6ba94429 5359 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5360 */
6ba94429 5361static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5362{
6ba94429 5363 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5364
6ba94429
FW
5365 if (!wq->wq_dev)
5366 return;
a0a1a5fd 5367
6ba94429
FW
5368 wq->wq_dev = NULL;
5369 device_unregister(&wq_dev->dev);
a0a1a5fd 5370}
6ba94429
FW
5371#else /* CONFIG_SYSFS */
5372static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5373#endif /* CONFIG_SYSFS */
a0a1a5fd 5374
82607adc
TH
5375/*
5376 * Workqueue watchdog.
5377 *
5378 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5379 * flush dependency, a concurrency managed work item which stays RUNNING
5380 * indefinitely. Workqueue stalls can be very difficult to debug as the
5381 * usual warning mechanisms don't trigger and internal workqueue state is
5382 * largely opaque.
5383 *
5384 * Workqueue watchdog monitors all worker pools periodically and dumps
5385 * state if some pools failed to make forward progress for a while where
5386 * forward progress is defined as the first item on ->worklist changing.
5387 *
5388 * This mechanism is controlled through the kernel parameter
5389 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5390 * corresponding sysfs parameter file.
5391 */
5392#ifdef CONFIG_WQ_WATCHDOG
5393
82607adc 5394static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5395static struct timer_list wq_watchdog_timer;
82607adc
TH
5396
5397static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5398static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5399
5400static void wq_watchdog_reset_touched(void)
5401{
5402 int cpu;
5403
5404 wq_watchdog_touched = jiffies;
5405 for_each_possible_cpu(cpu)
5406 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5407}
5408
5cd79d6a 5409static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5410{
5411 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5412 bool lockup_detected = false;
5413 struct worker_pool *pool;
5414 int pi;
5415
5416 if (!thresh)
5417 return;
5418
5419 rcu_read_lock();
5420
5421 for_each_pool(pool, pi) {
5422 unsigned long pool_ts, touched, ts;
5423
5424 if (list_empty(&pool->worklist))
5425 continue;
5426
5427 /* get the latest of pool and touched timestamps */
5428 pool_ts = READ_ONCE(pool->watchdog_ts);
5429 touched = READ_ONCE(wq_watchdog_touched);
5430
5431 if (time_after(pool_ts, touched))
5432 ts = pool_ts;
5433 else
5434 ts = touched;
5435
5436 if (pool->cpu >= 0) {
5437 unsigned long cpu_touched =
5438 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5439 pool->cpu));
5440 if (time_after(cpu_touched, ts))
5441 ts = cpu_touched;
5442 }
5443
5444 /* did we stall? */
5445 if (time_after(jiffies, ts + thresh)) {
5446 lockup_detected = true;
5447 pr_emerg("BUG: workqueue lockup - pool");
5448 pr_cont_pool_info(pool);
5449 pr_cont(" stuck for %us!\n",
5450 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5451 }
5452 }
5453
5454 rcu_read_unlock();
5455
5456 if (lockup_detected)
5457 show_workqueue_state();
5458
5459 wq_watchdog_reset_touched();
5460 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5461}
5462
5463void wq_watchdog_touch(int cpu)
5464{
5465 if (cpu >= 0)
5466 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5467 else
5468 wq_watchdog_touched = jiffies;
5469}
5470
5471static void wq_watchdog_set_thresh(unsigned long thresh)
5472{
5473 wq_watchdog_thresh = 0;
5474 del_timer_sync(&wq_watchdog_timer);
5475
5476 if (thresh) {
5477 wq_watchdog_thresh = thresh;
5478 wq_watchdog_reset_touched();
5479 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5480 }
5481}
5482
5483static int wq_watchdog_param_set_thresh(const char *val,
5484 const struct kernel_param *kp)
5485{
5486 unsigned long thresh;
5487 int ret;
5488
5489 ret = kstrtoul(val, 0, &thresh);
5490 if (ret)
5491 return ret;
5492
5493 if (system_wq)
5494 wq_watchdog_set_thresh(thresh);
5495 else
5496 wq_watchdog_thresh = thresh;
5497
5498 return 0;
5499}
5500
5501static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5502 .set = wq_watchdog_param_set_thresh,
5503 .get = param_get_ulong,
5504};
5505
5506module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5507 0644);
5508
5509static void wq_watchdog_init(void)
5510{
5cd79d6a 5511 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5512 wq_watchdog_set_thresh(wq_watchdog_thresh);
5513}
5514
5515#else /* CONFIG_WQ_WATCHDOG */
5516
5517static inline void wq_watchdog_init(void) { }
5518
5519#endif /* CONFIG_WQ_WATCHDOG */
5520
bce90380
TH
5521static void __init wq_numa_init(void)
5522{
5523 cpumask_var_t *tbl;
5524 int node, cpu;
5525
bce90380
TH
5526 if (num_possible_nodes() <= 1)
5527 return;
5528
d55262c4
TH
5529 if (wq_disable_numa) {
5530 pr_info("workqueue: NUMA affinity support disabled\n");
5531 return;
5532 }
5533
4c16bd32
TH
5534 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5535 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5536
bce90380
TH
5537 /*
5538 * We want masks of possible CPUs of each node which isn't readily
5539 * available. Build one from cpu_to_node() which should have been
5540 * fully initialized by now.
5541 */
ddcb57e2 5542 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5543 BUG_ON(!tbl);
5544
5545 for_each_node(node)
5a6024f1 5546 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5547 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5548
5549 for_each_possible_cpu(cpu) {
5550 node = cpu_to_node(cpu);
5551 if (WARN_ON(node == NUMA_NO_NODE)) {
5552 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5553 /* happens iff arch is bonkers, let's just proceed */
5554 return;
5555 }
5556 cpumask_set_cpu(cpu, tbl[node]);
5557 }
5558
5559 wq_numa_possible_cpumask = tbl;
5560 wq_numa_enabled = true;
5561}
5562
3347fa09
TH
5563/**
5564 * workqueue_init_early - early init for workqueue subsystem
5565 *
5566 * This is the first half of two-staged workqueue subsystem initialization
5567 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5568 * idr are up. It sets up all the data structures and system workqueues
5569 * and allows early boot code to create workqueues and queue/cancel work
5570 * items. Actual work item execution starts only after kthreads can be
5571 * created and scheduled right before early initcalls.
5572 */
5573int __init workqueue_init_early(void)
1da177e4 5574{
7a4e344c
TH
5575 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5576 int i, cpu;
c34056a3 5577
e904e6c2
TH
5578 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5579
b05a7928 5580 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
c98a9805 5581 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
b05a7928 5582
e904e6c2
TH
5583 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5584
706026c2 5585 /* initialize CPU pools */
29c91e99 5586 for_each_possible_cpu(cpu) {
4ce62e9e 5587 struct worker_pool *pool;
8b03ae3c 5588
7a4e344c 5589 i = 0;
f02ae73a 5590 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5591 BUG_ON(init_worker_pool(pool));
ec22ca5e 5592 pool->cpu = cpu;
29c91e99 5593 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5594 pool->attrs->nice = std_nice[i++];
f3f90ad4 5595 pool->node = cpu_to_node(cpu);
7a4e344c 5596
9daf9e67 5597 /* alloc pool ID */
68e13a67 5598 mutex_lock(&wq_pool_mutex);
9daf9e67 5599 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5600 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5601 }
8b03ae3c
TH
5602 }
5603
8a2b7538 5604 /* create default unbound and ordered wq attrs */
29c91e99
TH
5605 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5606 struct workqueue_attrs *attrs;
5607
5608 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5609 attrs->nice = std_nice[i];
29c91e99 5610 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5611
5612 /*
5613 * An ordered wq should have only one pwq as ordering is
5614 * guaranteed by max_active which is enforced by pwqs.
5615 * Turn off NUMA so that dfl_pwq is used for all nodes.
5616 */
5617 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5618 attrs->nice = std_nice[i];
5619 attrs->no_numa = true;
5620 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5621 }
5622
d320c038 5623 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5624 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5625 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5626 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5627 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5628 system_freezable_wq = alloc_workqueue("events_freezable",
5629 WQ_FREEZABLE, 0);
0668106c
VK
5630 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5631 WQ_POWER_EFFICIENT, 0);
5632 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5633 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5634 0);
1aabe902 5635 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5636 !system_unbound_wq || !system_freezable_wq ||
5637 !system_power_efficient_wq ||
5638 !system_freezable_power_efficient_wq);
82607adc 5639
3347fa09
TH
5640 return 0;
5641}
5642
5643/**
5644 * workqueue_init - bring workqueue subsystem fully online
5645 *
5646 * This is the latter half of two-staged workqueue subsystem initialization
5647 * and invoked as soon as kthreads can be created and scheduled.
5648 * Workqueues have been created and work items queued on them, but there
5649 * are no kworkers executing the work items yet. Populate the worker pools
5650 * with the initial workers and enable future kworker creations.
5651 */
5652int __init workqueue_init(void)
5653{
2186d9f9 5654 struct workqueue_struct *wq;
3347fa09
TH
5655 struct worker_pool *pool;
5656 int cpu, bkt;
5657
2186d9f9
TH
5658 /*
5659 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5660 * CPU to node mapping may not be available that early on some
5661 * archs such as power and arm64. As per-cpu pools created
5662 * previously could be missing node hint and unbound pools NUMA
5663 * affinity, fix them up.
40c17f75
TH
5664 *
5665 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5666 */
5667 wq_numa_init();
5668
5669 mutex_lock(&wq_pool_mutex);
5670
5671 for_each_possible_cpu(cpu) {
5672 for_each_cpu_worker_pool(pool, cpu) {
5673 pool->node = cpu_to_node(cpu);
5674 }
5675 }
5676
40c17f75 5677 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5678 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5679 WARN(init_rescuer(wq),
5680 "workqueue: failed to create early rescuer for %s",
5681 wq->name);
5682 }
2186d9f9
TH
5683
5684 mutex_unlock(&wq_pool_mutex);
5685
3347fa09
TH
5686 /* create the initial workers */
5687 for_each_online_cpu(cpu) {
5688 for_each_cpu_worker_pool(pool, cpu) {
5689 pool->flags &= ~POOL_DISASSOCIATED;
5690 BUG_ON(!create_worker(pool));
5691 }
5692 }
5693
5694 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5695 BUG_ON(!create_worker(pool));
5696
5697 wq_online = true;
82607adc
TH
5698 wq_watchdog_init();
5699
6ee0578b 5700 return 0;
1da177e4 5701}