]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/workqueue.c
workqueue: update sysfs interface to reflect NUMA awareness and a kernel param to...
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
e22bee78 49
ea138446 50#include "workqueue_internal.h"
1da177e4 51
c8e55f36 52enum {
24647570
TH
53 /*
54 * worker_pool flags
bc2ae0f5 55 *
24647570 56 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
57 * While associated (!DISASSOCIATED), all workers are bound to the
58 * CPU and none has %WORKER_UNBOUND set and concurrency management
59 * is in effect.
60 *
61 * While DISASSOCIATED, the cpu may be offline and all workers have
62 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 63 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 64 *
bc3a1afc
TH
65 * Note that DISASSOCIATED should be flipped only while holding
66 * manager_mutex to avoid changing binding state while
24647570 67 * create_worker() is in progress.
bc2ae0f5 68 */
11ebea50 69 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 70 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 71 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 72
c8e55f36
TH
73 /* worker flags */
74 WORKER_STARTED = 1 << 0, /* started */
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 77 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 81
a9ab775b
TH
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 84
e34cdddb 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 86
29c91e99 87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 89
e22bee78
TH
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
3233cdbd
TH
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
e22bee78
TH
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
101 * all cpus. Give -20.
102 */
103 RESCUER_NICE_LEVEL = -20,
3270476a 104 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
105
106 WQ_NAME_LEN = 24,
c8e55f36 107};
1da177e4
LT
108
109/*
4690c4ab
TH
110 * Structure fields follow one of the following exclusion rules.
111 *
e41e704b
TH
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
4690c4ab 114 *
e22bee78
TH
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
d565ed63 118 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 119 *
d565ed63
TH
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 124 *
822d8405
TH
125 * MG: pool->manager_mutex and pool->lock protected. Writes require both
126 * locks. Reads can happen under either lock.
127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
3c25a55d
LJ
132 * WQ: wq->mutex protected.
133 *
b5927605 134 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
135 *
136 * MD: wq_mayday_lock protected.
1da177e4 137 */
1da177e4 138
2eaebdb3 139/* struct worker is defined in workqueue_internal.h */
c34056a3 140
bd7bdd43 141struct worker_pool {
d565ed63 142 spinlock_t lock; /* the pool lock */
d84ff051 143 int cpu; /* I: the associated cpu */
f3f90ad4 144 int node; /* I: the associated node ID */
9daf9e67 145 int id; /* I: pool ID */
11ebea50 146 unsigned int flags; /* X: flags */
bd7bdd43
TH
147
148 struct list_head worklist; /* L: list of pending works */
149 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
150
151 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
152 int nr_idle; /* L: currently idle ones */
153
154 struct list_head idle_list; /* X: list of idle workers */
155 struct timer_list idle_timer; /* L: worker idle timeout */
156 struct timer_list mayday_timer; /* L: SOS timer for workers */
157
c5aa87bb 158 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
159 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
160 /* L: hash of busy workers */
161
bc3a1afc 162 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 163 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 164 struct mutex manager_mutex; /* manager exclusion */
822d8405 165 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 166
7a4e344c 167 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
168 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
169 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 170
e19e397a
TH
171 /*
172 * The current concurrency level. As it's likely to be accessed
173 * from other CPUs during try_to_wake_up(), put it in a separate
174 * cacheline.
175 */
176 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
177
178 /*
179 * Destruction of pool is sched-RCU protected to allow dereferences
180 * from get_work_pool().
181 */
182 struct rcu_head rcu;
8b03ae3c
TH
183} ____cacheline_aligned_in_smp;
184
1da177e4 185/*
112202d9
TH
186 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
187 * of work_struct->data are used for flags and the remaining high bits
188 * point to the pwq; thus, pwqs need to be aligned at two's power of the
189 * number of flag bits.
1da177e4 190 */
112202d9 191struct pool_workqueue {
bd7bdd43 192 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 193 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
194 int work_color; /* L: current color */
195 int flush_color; /* L: flushing color */
8864b4e5 196 int refcnt; /* L: reference count */
73f53c4a
TH
197 int nr_in_flight[WORK_NR_COLORS];
198 /* L: nr of in_flight works */
1e19ffc6 199 int nr_active; /* L: nr of active works */
a0a1a5fd 200 int max_active; /* L: max active works */
1e19ffc6 201 struct list_head delayed_works; /* L: delayed works */
3c25a55d 202 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 203 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
204
205 /*
206 * Release of unbound pwq is punted to system_wq. See put_pwq()
207 * and pwq_unbound_release_workfn() for details. pool_workqueue
208 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 209 * determined without grabbing wq->mutex.
8864b4e5
TH
210 */
211 struct work_struct unbound_release_work;
212 struct rcu_head rcu;
e904e6c2 213} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 214
73f53c4a
TH
215/*
216 * Structure used to wait for workqueue flush.
217 */
218struct wq_flusher {
3c25a55d
LJ
219 struct list_head list; /* WQ: list of flushers */
220 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
221 struct completion done; /* flush completion */
222};
223
226223ab
TH
224struct wq_device;
225
1da177e4 226/*
c5aa87bb
TH
227 * The externally visible workqueue. It relays the issued work items to
228 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
229 */
230struct workqueue_struct {
3c25a55d 231 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 232 struct list_head list; /* PL: list of all workqueues */
73f53c4a 233
3c25a55d
LJ
234 struct mutex mutex; /* protects this wq */
235 int work_color; /* WQ: current work color */
236 int flush_color; /* WQ: current flush color */
112202d9 237 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
238 struct wq_flusher *first_flusher; /* WQ: first flusher */
239 struct list_head flusher_queue; /* WQ: flush waiters */
240 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 241
2e109a28 242 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
243 struct worker *rescuer; /* I: rescue worker */
244
87fc741e 245 int nr_drainers; /* WQ: drain in progress */
a357fc03 246 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 247
6029a918 248 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 249 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 250
226223ab
TH
251#ifdef CONFIG_SYSFS
252 struct wq_device *wq_dev; /* I: for sysfs interface */
253#endif
4e6045f1 254#ifdef CONFIG_LOCKDEP
4690c4ab 255 struct lockdep_map lockdep_map;
4e6045f1 256#endif
ecf6881f 257 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
258
259 /* hot fields used during command issue, aligned to cacheline */
260 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
261 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 262 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
263};
264
e904e6c2
TH
265static struct kmem_cache *pwq_cache;
266
bce90380
TH
267static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
268static cpumask_var_t *wq_numa_possible_cpumask;
269 /* possible CPUs of each node */
270
d55262c4
TH
271static bool wq_disable_numa;
272module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273
bce90380
TH
274static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
275
4c16bd32
TH
276/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
277static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
278
68e13a67 279static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 280static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 281
68e13a67
LJ
282static LIST_HEAD(workqueues); /* PL: list of all workqueues */
283static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
284
285/* the per-cpu worker pools */
286static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
287 cpu_worker_pools);
288
68e13a67 289static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 290
68e13a67 291/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
292static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
293
c5aa87bb 294/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
295static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
296
d320c038 297struct workqueue_struct *system_wq __read_mostly;
d320c038 298EXPORT_SYMBOL_GPL(system_wq);
044c782c 299struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 300EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 301struct workqueue_struct *system_long_wq __read_mostly;
d320c038 302EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 303struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 304EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 305struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 306EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 307
7d19c5ce
TH
308static int worker_thread(void *__worker);
309static void copy_workqueue_attrs(struct workqueue_attrs *to,
310 const struct workqueue_attrs *from);
311
97bd2347
TH
312#define CREATE_TRACE_POINTS
313#include <trace/events/workqueue.h>
314
68e13a67 315#define assert_rcu_or_pool_mutex() \
5bcab335 316 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
317 lockdep_is_held(&wq_pool_mutex), \
318 "sched RCU or wq_pool_mutex should be held")
5bcab335 319
b09f4fd3 320#define assert_rcu_or_wq_mutex(wq) \
76af4d93 321 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 322 lockdep_is_held(&wq->mutex), \
b09f4fd3 323 "sched RCU or wq->mutex should be held")
76af4d93 324
822d8405
TH
325#ifdef CONFIG_LOCKDEP
326#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
327 WARN_ONCE(debug_locks && \
328 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
329 !lockdep_is_held(&(pool)->lock), \
330 "pool->manager_mutex or ->lock should be held")
331#else
332#define assert_manager_or_pool_lock(pool) do { } while (0)
333#endif
334
f02ae73a
TH
335#define for_each_cpu_worker_pool(pool, cpu) \
336 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
337 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 338 (pool)++)
4ce62e9e 339
17116969
TH
340/**
341 * for_each_pool - iterate through all worker_pools in the system
342 * @pool: iteration cursor
611c92a0 343 * @pi: integer used for iteration
fa1b54e6 344 *
68e13a67
LJ
345 * This must be called either with wq_pool_mutex held or sched RCU read
346 * locked. If the pool needs to be used beyond the locking in effect, the
347 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
348 *
349 * The if/else clause exists only for the lockdep assertion and can be
350 * ignored.
17116969 351 */
611c92a0
TH
352#define for_each_pool(pool, pi) \
353 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 354 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 355 else
17116969 356
822d8405
TH
357/**
358 * for_each_pool_worker - iterate through all workers of a worker_pool
359 * @worker: iteration cursor
360 * @wi: integer used for iteration
361 * @pool: worker_pool to iterate workers of
362 *
363 * This must be called with either @pool->manager_mutex or ->lock held.
364 *
365 * The if/else clause exists only for the lockdep assertion and can be
366 * ignored.
367 */
368#define for_each_pool_worker(worker, wi, pool) \
369 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
370 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
371 else
372
49e3cf44
TH
373/**
374 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
375 * @pwq: iteration cursor
376 * @wq: the target workqueue
76af4d93 377 *
b09f4fd3 378 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
379 * If the pwq needs to be used beyond the locking in effect, the caller is
380 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
381 *
382 * The if/else clause exists only for the lockdep assertion and can be
383 * ignored.
49e3cf44
TH
384 */
385#define for_each_pwq(pwq, wq) \
76af4d93 386 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 387 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 388 else
f3421797 389
dc186ad7
TG
390#ifdef CONFIG_DEBUG_OBJECTS_WORK
391
392static struct debug_obj_descr work_debug_descr;
393
99777288
SG
394static void *work_debug_hint(void *addr)
395{
396 return ((struct work_struct *) addr)->func;
397}
398
dc186ad7
TG
399/*
400 * fixup_init is called when:
401 * - an active object is initialized
402 */
403static int work_fixup_init(void *addr, enum debug_obj_state state)
404{
405 struct work_struct *work = addr;
406
407 switch (state) {
408 case ODEBUG_STATE_ACTIVE:
409 cancel_work_sync(work);
410 debug_object_init(work, &work_debug_descr);
411 return 1;
412 default:
413 return 0;
414 }
415}
416
417/*
418 * fixup_activate is called when:
419 * - an active object is activated
420 * - an unknown object is activated (might be a statically initialized object)
421 */
422static int work_fixup_activate(void *addr, enum debug_obj_state state)
423{
424 struct work_struct *work = addr;
425
426 switch (state) {
427
428 case ODEBUG_STATE_NOTAVAILABLE:
429 /*
430 * This is not really a fixup. The work struct was
431 * statically initialized. We just make sure that it
432 * is tracked in the object tracker.
433 */
22df02bb 434 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
435 debug_object_init(work, &work_debug_descr);
436 debug_object_activate(work, &work_debug_descr);
437 return 0;
438 }
439 WARN_ON_ONCE(1);
440 return 0;
441
442 case ODEBUG_STATE_ACTIVE:
443 WARN_ON(1);
444
445 default:
446 return 0;
447 }
448}
449
450/*
451 * fixup_free is called when:
452 * - an active object is freed
453 */
454static int work_fixup_free(void *addr, enum debug_obj_state state)
455{
456 struct work_struct *work = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 cancel_work_sync(work);
461 debug_object_free(work, &work_debug_descr);
462 return 1;
463 default:
464 return 0;
465 }
466}
467
468static struct debug_obj_descr work_debug_descr = {
469 .name = "work_struct",
99777288 470 .debug_hint = work_debug_hint,
dc186ad7
TG
471 .fixup_init = work_fixup_init,
472 .fixup_activate = work_fixup_activate,
473 .fixup_free = work_fixup_free,
474};
475
476static inline void debug_work_activate(struct work_struct *work)
477{
478 debug_object_activate(work, &work_debug_descr);
479}
480
481static inline void debug_work_deactivate(struct work_struct *work)
482{
483 debug_object_deactivate(work, &work_debug_descr);
484}
485
486void __init_work(struct work_struct *work, int onstack)
487{
488 if (onstack)
489 debug_object_init_on_stack(work, &work_debug_descr);
490 else
491 debug_object_init(work, &work_debug_descr);
492}
493EXPORT_SYMBOL_GPL(__init_work);
494
495void destroy_work_on_stack(struct work_struct *work)
496{
497 debug_object_free(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(destroy_work_on_stack);
500
501#else
502static inline void debug_work_activate(struct work_struct *work) { }
503static inline void debug_work_deactivate(struct work_struct *work) { }
504#endif
505
9daf9e67
TH
506/* allocate ID and assign it to @pool */
507static int worker_pool_assign_id(struct worker_pool *pool)
508{
509 int ret;
510
68e13a67 511 lockdep_assert_held(&wq_pool_mutex);
5bcab335 512
fa1b54e6
TH
513 do {
514 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
515 return -ENOMEM;
fa1b54e6 516 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
fa1b54e6 517 } while (ret == -EAGAIN);
9daf9e67 518
fa1b54e6 519 return ret;
7c3eed5c
TH
520}
521
df2d5ae4
TH
522/**
523 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
524 * @wq: the target workqueue
525 * @node: the node ID
526 *
527 * This must be called either with pwq_lock held or sched RCU read locked.
528 * If the pwq needs to be used beyond the locking in effect, the caller is
529 * responsible for guaranteeing that the pwq stays online.
530 */
531static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
532 int node)
533{
534 assert_rcu_or_wq_mutex(wq);
535 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
536}
537
73f53c4a
TH
538static unsigned int work_color_to_flags(int color)
539{
540 return color << WORK_STRUCT_COLOR_SHIFT;
541}
542
543static int get_work_color(struct work_struct *work)
544{
545 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
546 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
547}
548
549static int work_next_color(int color)
550{
551 return (color + 1) % WORK_NR_COLORS;
552}
1da177e4 553
14441960 554/*
112202d9
TH
555 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
556 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 557 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 558 *
112202d9
TH
559 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
560 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
561 * work->data. These functions should only be called while the work is
562 * owned - ie. while the PENDING bit is set.
7a22ad75 563 *
112202d9 564 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 565 * corresponding to a work. Pool is available once the work has been
112202d9 566 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 567 * available only while the work item is queued.
7a22ad75 568 *
bbb68dfa
TH
569 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
570 * canceled. While being canceled, a work item may have its PENDING set
571 * but stay off timer and worklist for arbitrarily long and nobody should
572 * try to steal the PENDING bit.
14441960 573 */
7a22ad75
TH
574static inline void set_work_data(struct work_struct *work, unsigned long data,
575 unsigned long flags)
365970a1 576{
6183c009 577 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
578 atomic_long_set(&work->data, data | flags | work_static(work));
579}
365970a1 580
112202d9 581static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
582 unsigned long extra_flags)
583{
112202d9
TH
584 set_work_data(work, (unsigned long)pwq,
585 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
586}
587
4468a00f
LJ
588static void set_work_pool_and_keep_pending(struct work_struct *work,
589 int pool_id)
590{
591 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
592 WORK_STRUCT_PENDING);
593}
594
7c3eed5c
TH
595static void set_work_pool_and_clear_pending(struct work_struct *work,
596 int pool_id)
7a22ad75 597{
23657bb1
TH
598 /*
599 * The following wmb is paired with the implied mb in
600 * test_and_set_bit(PENDING) and ensures all updates to @work made
601 * here are visible to and precede any updates by the next PENDING
602 * owner.
603 */
604 smp_wmb();
7c3eed5c 605 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 606}
f756d5e2 607
7a22ad75 608static void clear_work_data(struct work_struct *work)
1da177e4 609{
7c3eed5c
TH
610 smp_wmb(); /* see set_work_pool_and_clear_pending() */
611 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
612}
613
112202d9 614static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 615{
e120153d 616 unsigned long data = atomic_long_read(&work->data);
7a22ad75 617
112202d9 618 if (data & WORK_STRUCT_PWQ)
e120153d
TH
619 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
620 else
621 return NULL;
4d707b9f
ON
622}
623
7c3eed5c
TH
624/**
625 * get_work_pool - return the worker_pool a given work was associated with
626 * @work: the work item of interest
627 *
628 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 629 *
68e13a67
LJ
630 * Pools are created and destroyed under wq_pool_mutex, and allows read
631 * access under sched-RCU read lock. As such, this function should be
632 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
633 *
634 * All fields of the returned pool are accessible as long as the above
635 * mentioned locking is in effect. If the returned pool needs to be used
636 * beyond the critical section, the caller is responsible for ensuring the
637 * returned pool is and stays online.
7c3eed5c
TH
638 */
639static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 640{
e120153d 641 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 642 int pool_id;
7a22ad75 643
68e13a67 644 assert_rcu_or_pool_mutex();
fa1b54e6 645
112202d9
TH
646 if (data & WORK_STRUCT_PWQ)
647 return ((struct pool_workqueue *)
7c3eed5c 648 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 649
7c3eed5c
TH
650 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
651 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
652 return NULL;
653
fa1b54e6 654 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
655}
656
657/**
658 * get_work_pool_id - return the worker pool ID a given work is associated with
659 * @work: the work item of interest
660 *
661 * Return the worker_pool ID @work was last associated with.
662 * %WORK_OFFQ_POOL_NONE if none.
663 */
664static int get_work_pool_id(struct work_struct *work)
665{
54d5b7d0
LJ
666 unsigned long data = atomic_long_read(&work->data);
667
112202d9
TH
668 if (data & WORK_STRUCT_PWQ)
669 return ((struct pool_workqueue *)
54d5b7d0 670 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 671
54d5b7d0 672 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
673}
674
bbb68dfa
TH
675static void mark_work_canceling(struct work_struct *work)
676{
7c3eed5c 677 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 678
7c3eed5c
TH
679 pool_id <<= WORK_OFFQ_POOL_SHIFT;
680 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
681}
682
683static bool work_is_canceling(struct work_struct *work)
684{
685 unsigned long data = atomic_long_read(&work->data);
686
112202d9 687 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
688}
689
e22bee78 690/*
3270476a
TH
691 * Policy functions. These define the policies on how the global worker
692 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 693 * they're being called with pool->lock held.
e22bee78
TH
694 */
695
63d95a91 696static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 697{
e19e397a 698 return !atomic_read(&pool->nr_running);
a848e3b6
ON
699}
700
4594bf15 701/*
e22bee78
TH
702 * Need to wake up a worker? Called from anything but currently
703 * running workers.
974271c4
TH
704 *
705 * Note that, because unbound workers never contribute to nr_running, this
706026c2 706 * function will always return %true for unbound pools as long as the
974271c4 707 * worklist isn't empty.
4594bf15 708 */
63d95a91 709static bool need_more_worker(struct worker_pool *pool)
365970a1 710{
63d95a91 711 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 712}
4594bf15 713
e22bee78 714/* Can I start working? Called from busy but !running workers. */
63d95a91 715static bool may_start_working(struct worker_pool *pool)
e22bee78 716{
63d95a91 717 return pool->nr_idle;
e22bee78
TH
718}
719
720/* Do I need to keep working? Called from currently running workers. */
63d95a91 721static bool keep_working(struct worker_pool *pool)
e22bee78 722{
e19e397a
TH
723 return !list_empty(&pool->worklist) &&
724 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
725}
726
727/* Do we need a new worker? Called from manager. */
63d95a91 728static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 729{
63d95a91 730 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 731}
365970a1 732
e22bee78 733/* Do I need to be the manager? */
63d95a91 734static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 735{
63d95a91 736 return need_to_create_worker(pool) ||
11ebea50 737 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
738}
739
740/* Do we have too many workers and should some go away? */
63d95a91 741static bool too_many_workers(struct worker_pool *pool)
e22bee78 742{
34a06bd6 743 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
744 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
745 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 746
ea1abd61
LJ
747 /*
748 * nr_idle and idle_list may disagree if idle rebinding is in
749 * progress. Never return %true if idle_list is empty.
750 */
751 if (list_empty(&pool->idle_list))
752 return false;
753
e22bee78 754 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
755}
756
4d707b9f 757/*
e22bee78
TH
758 * Wake up functions.
759 */
760
7e11629d 761/* Return the first worker. Safe with preemption disabled */
63d95a91 762static struct worker *first_worker(struct worker_pool *pool)
7e11629d 763{
63d95a91 764 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
765 return NULL;
766
63d95a91 767 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
768}
769
770/**
771 * wake_up_worker - wake up an idle worker
63d95a91 772 * @pool: worker pool to wake worker from
7e11629d 773 *
63d95a91 774 * Wake up the first idle worker of @pool.
7e11629d
TH
775 *
776 * CONTEXT:
d565ed63 777 * spin_lock_irq(pool->lock).
7e11629d 778 */
63d95a91 779static void wake_up_worker(struct worker_pool *pool)
7e11629d 780{
63d95a91 781 struct worker *worker = first_worker(pool);
7e11629d
TH
782
783 if (likely(worker))
784 wake_up_process(worker->task);
785}
786
d302f017 787/**
e22bee78
TH
788 * wq_worker_waking_up - a worker is waking up
789 * @task: task waking up
790 * @cpu: CPU @task is waking up to
791 *
792 * This function is called during try_to_wake_up() when a worker is
793 * being awoken.
794 *
795 * CONTEXT:
796 * spin_lock_irq(rq->lock)
797 */
d84ff051 798void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
799{
800 struct worker *worker = kthread_data(task);
801
36576000 802 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 803 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 804 atomic_inc(&worker->pool->nr_running);
36576000 805 }
e22bee78
TH
806}
807
808/**
809 * wq_worker_sleeping - a worker is going to sleep
810 * @task: task going to sleep
811 * @cpu: CPU in question, must be the current CPU number
812 *
813 * This function is called during schedule() when a busy worker is
814 * going to sleep. Worker on the same cpu can be woken up by
815 * returning pointer to its task.
816 *
817 * CONTEXT:
818 * spin_lock_irq(rq->lock)
819 *
820 * RETURNS:
821 * Worker task on @cpu to wake up, %NULL if none.
822 */
d84ff051 823struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
824{
825 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 826 struct worker_pool *pool;
e22bee78 827
111c225a
TH
828 /*
829 * Rescuers, which may not have all the fields set up like normal
830 * workers, also reach here, let's not access anything before
831 * checking NOT_RUNNING.
832 */
2d64672e 833 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
834 return NULL;
835
111c225a 836 pool = worker->pool;
111c225a 837
e22bee78 838 /* this can only happen on the local cpu */
6183c009
TH
839 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
840 return NULL;
e22bee78
TH
841
842 /*
843 * The counterpart of the following dec_and_test, implied mb,
844 * worklist not empty test sequence is in insert_work().
845 * Please read comment there.
846 *
628c78e7
TH
847 * NOT_RUNNING is clear. This means that we're bound to and
848 * running on the local cpu w/ rq lock held and preemption
849 * disabled, which in turn means that none else could be
d565ed63 850 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 851 * lock is safe.
e22bee78 852 */
e19e397a
TH
853 if (atomic_dec_and_test(&pool->nr_running) &&
854 !list_empty(&pool->worklist))
63d95a91 855 to_wakeup = first_worker(pool);
e22bee78
TH
856 return to_wakeup ? to_wakeup->task : NULL;
857}
858
859/**
860 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 861 * @worker: self
d302f017
TH
862 * @flags: flags to set
863 * @wakeup: wakeup an idle worker if necessary
864 *
e22bee78
TH
865 * Set @flags in @worker->flags and adjust nr_running accordingly. If
866 * nr_running becomes zero and @wakeup is %true, an idle worker is
867 * woken up.
d302f017 868 *
cb444766 869 * CONTEXT:
d565ed63 870 * spin_lock_irq(pool->lock)
d302f017
TH
871 */
872static inline void worker_set_flags(struct worker *worker, unsigned int flags,
873 bool wakeup)
874{
bd7bdd43 875 struct worker_pool *pool = worker->pool;
e22bee78 876
cb444766
TH
877 WARN_ON_ONCE(worker->task != current);
878
e22bee78
TH
879 /*
880 * If transitioning into NOT_RUNNING, adjust nr_running and
881 * wake up an idle worker as necessary if requested by
882 * @wakeup.
883 */
884 if ((flags & WORKER_NOT_RUNNING) &&
885 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 886 if (wakeup) {
e19e397a 887 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 888 !list_empty(&pool->worklist))
63d95a91 889 wake_up_worker(pool);
e22bee78 890 } else
e19e397a 891 atomic_dec(&pool->nr_running);
e22bee78
TH
892 }
893
d302f017
TH
894 worker->flags |= flags;
895}
896
897/**
e22bee78 898 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 899 * @worker: self
d302f017
TH
900 * @flags: flags to clear
901 *
e22bee78 902 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 903 *
cb444766 904 * CONTEXT:
d565ed63 905 * spin_lock_irq(pool->lock)
d302f017
TH
906 */
907static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
908{
63d95a91 909 struct worker_pool *pool = worker->pool;
e22bee78
TH
910 unsigned int oflags = worker->flags;
911
cb444766
TH
912 WARN_ON_ONCE(worker->task != current);
913
d302f017 914 worker->flags &= ~flags;
e22bee78 915
42c025f3
TH
916 /*
917 * If transitioning out of NOT_RUNNING, increment nr_running. Note
918 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
919 * of multiple flags, not a single flag.
920 */
e22bee78
TH
921 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
922 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 923 atomic_inc(&pool->nr_running);
d302f017
TH
924}
925
8cca0eea
TH
926/**
927 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 928 * @pool: pool of interest
8cca0eea
TH
929 * @work: work to find worker for
930 *
c9e7cf27
TH
931 * Find a worker which is executing @work on @pool by searching
932 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
933 * to match, its current execution should match the address of @work and
934 * its work function. This is to avoid unwanted dependency between
935 * unrelated work executions through a work item being recycled while still
936 * being executed.
937 *
938 * This is a bit tricky. A work item may be freed once its execution
939 * starts and nothing prevents the freed area from being recycled for
940 * another work item. If the same work item address ends up being reused
941 * before the original execution finishes, workqueue will identify the
942 * recycled work item as currently executing and make it wait until the
943 * current execution finishes, introducing an unwanted dependency.
944 *
c5aa87bb
TH
945 * This function checks the work item address and work function to avoid
946 * false positives. Note that this isn't complete as one may construct a
947 * work function which can introduce dependency onto itself through a
948 * recycled work item. Well, if somebody wants to shoot oneself in the
949 * foot that badly, there's only so much we can do, and if such deadlock
950 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
951 *
952 * CONTEXT:
d565ed63 953 * spin_lock_irq(pool->lock).
8cca0eea
TH
954 *
955 * RETURNS:
956 * Pointer to worker which is executing @work if found, NULL
957 * otherwise.
4d707b9f 958 */
c9e7cf27 959static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 960 struct work_struct *work)
4d707b9f 961{
42f8570f 962 struct worker *worker;
42f8570f 963
b67bfe0d 964 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
965 (unsigned long)work)
966 if (worker->current_work == work &&
967 worker->current_func == work->func)
42f8570f
SL
968 return worker;
969
970 return NULL;
4d707b9f
ON
971}
972
bf4ede01
TH
973/**
974 * move_linked_works - move linked works to a list
975 * @work: start of series of works to be scheduled
976 * @head: target list to append @work to
977 * @nextp: out paramter for nested worklist walking
978 *
979 * Schedule linked works starting from @work to @head. Work series to
980 * be scheduled starts at @work and includes any consecutive work with
981 * WORK_STRUCT_LINKED set in its predecessor.
982 *
983 * If @nextp is not NULL, it's updated to point to the next work of
984 * the last scheduled work. This allows move_linked_works() to be
985 * nested inside outer list_for_each_entry_safe().
986 *
987 * CONTEXT:
d565ed63 988 * spin_lock_irq(pool->lock).
bf4ede01
TH
989 */
990static void move_linked_works(struct work_struct *work, struct list_head *head,
991 struct work_struct **nextp)
992{
993 struct work_struct *n;
994
995 /*
996 * Linked worklist will always end before the end of the list,
997 * use NULL for list head.
998 */
999 list_for_each_entry_safe_from(work, n, NULL, entry) {
1000 list_move_tail(&work->entry, head);
1001 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1002 break;
1003 }
1004
1005 /*
1006 * If we're already inside safe list traversal and have moved
1007 * multiple works to the scheduled queue, the next position
1008 * needs to be updated.
1009 */
1010 if (nextp)
1011 *nextp = n;
1012}
1013
8864b4e5
TH
1014/**
1015 * get_pwq - get an extra reference on the specified pool_workqueue
1016 * @pwq: pool_workqueue to get
1017 *
1018 * Obtain an extra reference on @pwq. The caller should guarantee that
1019 * @pwq has positive refcnt and be holding the matching pool->lock.
1020 */
1021static void get_pwq(struct pool_workqueue *pwq)
1022{
1023 lockdep_assert_held(&pwq->pool->lock);
1024 WARN_ON_ONCE(pwq->refcnt <= 0);
1025 pwq->refcnt++;
1026}
1027
1028/**
1029 * put_pwq - put a pool_workqueue reference
1030 * @pwq: pool_workqueue to put
1031 *
1032 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1033 * destruction. The caller should be holding the matching pool->lock.
1034 */
1035static void put_pwq(struct pool_workqueue *pwq)
1036{
1037 lockdep_assert_held(&pwq->pool->lock);
1038 if (likely(--pwq->refcnt))
1039 return;
1040 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1041 return;
1042 /*
1043 * @pwq can't be released under pool->lock, bounce to
1044 * pwq_unbound_release_workfn(). This never recurses on the same
1045 * pool->lock as this path is taken only for unbound workqueues and
1046 * the release work item is scheduled on a per-cpu workqueue. To
1047 * avoid lockdep warning, unbound pool->locks are given lockdep
1048 * subclass of 1 in get_unbound_pool().
1049 */
1050 schedule_work(&pwq->unbound_release_work);
1051}
1052
dce90d47
TH
1053/**
1054 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1055 * @pwq: pool_workqueue to put (can be %NULL)
1056 *
1057 * put_pwq() with locking. This function also allows %NULL @pwq.
1058 */
1059static void put_pwq_unlocked(struct pool_workqueue *pwq)
1060{
1061 if (pwq) {
1062 /*
1063 * As both pwqs and pools are sched-RCU protected, the
1064 * following lock operations are safe.
1065 */
1066 spin_lock_irq(&pwq->pool->lock);
1067 put_pwq(pwq);
1068 spin_unlock_irq(&pwq->pool->lock);
1069 }
1070}
1071
112202d9 1072static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1073{
112202d9 1074 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1075
1076 trace_workqueue_activate_work(work);
112202d9 1077 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1078 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1079 pwq->nr_active++;
bf4ede01
TH
1080}
1081
112202d9 1082static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1083{
112202d9 1084 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1085 struct work_struct, entry);
1086
112202d9 1087 pwq_activate_delayed_work(work);
3aa62497
LJ
1088}
1089
bf4ede01 1090/**
112202d9
TH
1091 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1092 * @pwq: pwq of interest
bf4ede01 1093 * @color: color of work which left the queue
bf4ede01
TH
1094 *
1095 * A work either has completed or is removed from pending queue,
112202d9 1096 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1097 *
1098 * CONTEXT:
d565ed63 1099 * spin_lock_irq(pool->lock).
bf4ede01 1100 */
112202d9 1101static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1102{
8864b4e5 1103 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1104 if (color == WORK_NO_COLOR)
8864b4e5 1105 goto out_put;
bf4ede01 1106
112202d9 1107 pwq->nr_in_flight[color]--;
bf4ede01 1108
112202d9
TH
1109 pwq->nr_active--;
1110 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1111 /* one down, submit a delayed one */
112202d9
TH
1112 if (pwq->nr_active < pwq->max_active)
1113 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1114 }
1115
1116 /* is flush in progress and are we at the flushing tip? */
112202d9 1117 if (likely(pwq->flush_color != color))
8864b4e5 1118 goto out_put;
bf4ede01
TH
1119
1120 /* are there still in-flight works? */
112202d9 1121 if (pwq->nr_in_flight[color])
8864b4e5 1122 goto out_put;
bf4ede01 1123
112202d9
TH
1124 /* this pwq is done, clear flush_color */
1125 pwq->flush_color = -1;
bf4ede01
TH
1126
1127 /*
112202d9 1128 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1129 * will handle the rest.
1130 */
112202d9
TH
1131 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1132 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1133out_put:
1134 put_pwq(pwq);
bf4ede01
TH
1135}
1136
36e227d2 1137/**
bbb68dfa 1138 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1139 * @work: work item to steal
1140 * @is_dwork: @work is a delayed_work
bbb68dfa 1141 * @flags: place to store irq state
36e227d2
TH
1142 *
1143 * Try to grab PENDING bit of @work. This function can handle @work in any
1144 * stable state - idle, on timer or on worklist. Return values are
1145 *
1146 * 1 if @work was pending and we successfully stole PENDING
1147 * 0 if @work was idle and we claimed PENDING
1148 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1149 * -ENOENT if someone else is canceling @work, this state may persist
1150 * for arbitrarily long
36e227d2 1151 *
bbb68dfa 1152 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1153 * interrupted while holding PENDING and @work off queue, irq must be
1154 * disabled on entry. This, combined with delayed_work->timer being
1155 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1156 *
1157 * On successful return, >= 0, irq is disabled and the caller is
1158 * responsible for releasing it using local_irq_restore(*@flags).
1159 *
e0aecdd8 1160 * This function is safe to call from any context including IRQ handler.
bf4ede01 1161 */
bbb68dfa
TH
1162static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1163 unsigned long *flags)
bf4ede01 1164{
d565ed63 1165 struct worker_pool *pool;
112202d9 1166 struct pool_workqueue *pwq;
bf4ede01 1167
bbb68dfa
TH
1168 local_irq_save(*flags);
1169
36e227d2
TH
1170 /* try to steal the timer if it exists */
1171 if (is_dwork) {
1172 struct delayed_work *dwork = to_delayed_work(work);
1173
e0aecdd8
TH
1174 /*
1175 * dwork->timer is irqsafe. If del_timer() fails, it's
1176 * guaranteed that the timer is not queued anywhere and not
1177 * running on the local CPU.
1178 */
36e227d2
TH
1179 if (likely(del_timer(&dwork->timer)))
1180 return 1;
1181 }
1182
1183 /* try to claim PENDING the normal way */
bf4ede01
TH
1184 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1185 return 0;
1186
1187 /*
1188 * The queueing is in progress, or it is already queued. Try to
1189 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1190 */
d565ed63
TH
1191 pool = get_work_pool(work);
1192 if (!pool)
bbb68dfa 1193 goto fail;
bf4ede01 1194
d565ed63 1195 spin_lock(&pool->lock);
0b3dae68 1196 /*
112202d9
TH
1197 * work->data is guaranteed to point to pwq only while the work
1198 * item is queued on pwq->wq, and both updating work->data to point
1199 * to pwq on queueing and to pool on dequeueing are done under
1200 * pwq->pool->lock. This in turn guarantees that, if work->data
1201 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1202 * item is currently queued on that pool.
1203 */
112202d9
TH
1204 pwq = get_work_pwq(work);
1205 if (pwq && pwq->pool == pool) {
16062836
TH
1206 debug_work_deactivate(work);
1207
1208 /*
1209 * A delayed work item cannot be grabbed directly because
1210 * it might have linked NO_COLOR work items which, if left
112202d9 1211 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1212 * management later on and cause stall. Make sure the work
1213 * item is activated before grabbing.
1214 */
1215 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1216 pwq_activate_delayed_work(work);
16062836
TH
1217
1218 list_del_init(&work->entry);
112202d9 1219 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1220
112202d9 1221 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1222 set_work_pool_and_keep_pending(work, pool->id);
1223
1224 spin_unlock(&pool->lock);
1225 return 1;
bf4ede01 1226 }
d565ed63 1227 spin_unlock(&pool->lock);
bbb68dfa
TH
1228fail:
1229 local_irq_restore(*flags);
1230 if (work_is_canceling(work))
1231 return -ENOENT;
1232 cpu_relax();
36e227d2 1233 return -EAGAIN;
bf4ede01
TH
1234}
1235
4690c4ab 1236/**
706026c2 1237 * insert_work - insert a work into a pool
112202d9 1238 * @pwq: pwq @work belongs to
4690c4ab
TH
1239 * @work: work to insert
1240 * @head: insertion point
1241 * @extra_flags: extra WORK_STRUCT_* flags to set
1242 *
112202d9 1243 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1244 * work_struct flags.
4690c4ab
TH
1245 *
1246 * CONTEXT:
d565ed63 1247 * spin_lock_irq(pool->lock).
4690c4ab 1248 */
112202d9
TH
1249static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1250 struct list_head *head, unsigned int extra_flags)
b89deed3 1251{
112202d9 1252 struct worker_pool *pool = pwq->pool;
e22bee78 1253
4690c4ab 1254 /* we own @work, set data and link */
112202d9 1255 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1256 list_add_tail(&work->entry, head);
8864b4e5 1257 get_pwq(pwq);
e22bee78
TH
1258
1259 /*
c5aa87bb
TH
1260 * Ensure either wq_worker_sleeping() sees the above
1261 * list_add_tail() or we see zero nr_running to avoid workers lying
1262 * around lazily while there are works to be processed.
e22bee78
TH
1263 */
1264 smp_mb();
1265
63d95a91
TH
1266 if (__need_more_worker(pool))
1267 wake_up_worker(pool);
b89deed3
ON
1268}
1269
c8efcc25
TH
1270/*
1271 * Test whether @work is being queued from another work executing on the
8d03ecfe 1272 * same workqueue.
c8efcc25
TH
1273 */
1274static bool is_chained_work(struct workqueue_struct *wq)
1275{
8d03ecfe
TH
1276 struct worker *worker;
1277
1278 worker = current_wq_worker();
1279 /*
1280 * Return %true iff I'm a worker execuing a work item on @wq. If
1281 * I'm @worker, it's safe to dereference it without locking.
1282 */
112202d9 1283 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1284}
1285
d84ff051 1286static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1287 struct work_struct *work)
1288{
112202d9 1289 struct pool_workqueue *pwq;
c9178087 1290 struct worker_pool *last_pool;
1e19ffc6 1291 struct list_head *worklist;
8a2e8e5d 1292 unsigned int work_flags;
b75cac93 1293 unsigned int req_cpu = cpu;
8930caba
TH
1294
1295 /*
1296 * While a work item is PENDING && off queue, a task trying to
1297 * steal the PENDING will busy-loop waiting for it to either get
1298 * queued or lose PENDING. Grabbing PENDING and queueing should
1299 * happen with IRQ disabled.
1300 */
1301 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1302
dc186ad7 1303 debug_work_activate(work);
1e19ffc6 1304
c8efcc25 1305 /* if dying, only works from the same workqueue are allowed */
618b01eb 1306 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1307 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1308 return;
9e8cd2f5 1309retry:
df2d5ae4
TH
1310 if (req_cpu == WORK_CPU_UNBOUND)
1311 cpu = raw_smp_processor_id();
1312
c9178087 1313 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1314 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1315 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1316 else
1317 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1318
c9178087
TH
1319 /*
1320 * If @work was previously on a different pool, it might still be
1321 * running there, in which case the work needs to be queued on that
1322 * pool to guarantee non-reentrancy.
1323 */
1324 last_pool = get_work_pool(work);
1325 if (last_pool && last_pool != pwq->pool) {
1326 struct worker *worker;
18aa9eff 1327
c9178087 1328 spin_lock(&last_pool->lock);
18aa9eff 1329
c9178087 1330 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1331
c9178087
TH
1332 if (worker && worker->current_pwq->wq == wq) {
1333 pwq = worker->current_pwq;
8930caba 1334 } else {
c9178087
TH
1335 /* meh... not running there, queue here */
1336 spin_unlock(&last_pool->lock);
112202d9 1337 spin_lock(&pwq->pool->lock);
8930caba 1338 }
f3421797 1339 } else {
112202d9 1340 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1341 }
1342
9e8cd2f5
TH
1343 /*
1344 * pwq is determined and locked. For unbound pools, we could have
1345 * raced with pwq release and it could already be dead. If its
1346 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1347 * without another pwq replacing it in the numa_pwq_tbl or while
1348 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1349 * make forward-progress.
1350 */
1351 if (unlikely(!pwq->refcnt)) {
1352 if (wq->flags & WQ_UNBOUND) {
1353 spin_unlock(&pwq->pool->lock);
1354 cpu_relax();
1355 goto retry;
1356 }
1357 /* oops */
1358 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1359 wq->name, cpu);
1360 }
1361
112202d9
TH
1362 /* pwq determined, queue */
1363 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1364
f5b2552b 1365 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1366 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1367 return;
1368 }
1e19ffc6 1369
112202d9
TH
1370 pwq->nr_in_flight[pwq->work_color]++;
1371 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1372
112202d9 1373 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1374 trace_workqueue_activate_work(work);
112202d9
TH
1375 pwq->nr_active++;
1376 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1377 } else {
1378 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1379 worklist = &pwq->delayed_works;
8a2e8e5d 1380 }
1e19ffc6 1381
112202d9 1382 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1383
112202d9 1384 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1385}
1386
0fcb78c2 1387/**
c1a220e7
ZR
1388 * queue_work_on - queue work on specific cpu
1389 * @cpu: CPU number to execute work on
0fcb78c2
REB
1390 * @wq: workqueue to use
1391 * @work: work to queue
1392 *
d4283e93 1393 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1394 *
c1a220e7
ZR
1395 * We queue the work to a specific CPU, the caller must ensure it
1396 * can't go away.
1da177e4 1397 */
d4283e93
TH
1398bool queue_work_on(int cpu, struct workqueue_struct *wq,
1399 struct work_struct *work)
1da177e4 1400{
d4283e93 1401 bool ret = false;
8930caba 1402 unsigned long flags;
ef1ca236 1403
8930caba 1404 local_irq_save(flags);
c1a220e7 1405
22df02bb 1406 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1407 __queue_work(cpu, wq, work);
d4283e93 1408 ret = true;
c1a220e7 1409 }
ef1ca236 1410
8930caba 1411 local_irq_restore(flags);
1da177e4
LT
1412 return ret;
1413}
c1a220e7 1414EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1415
d8e794df 1416void delayed_work_timer_fn(unsigned long __data)
1da177e4 1417{
52bad64d 1418 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1419
e0aecdd8 1420 /* should have been called from irqsafe timer with irq already off */
60c057bc 1421 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1422}
1438ade5 1423EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1424
7beb2edf
TH
1425static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1426 struct delayed_work *dwork, unsigned long delay)
1da177e4 1427{
7beb2edf
TH
1428 struct timer_list *timer = &dwork->timer;
1429 struct work_struct *work = &dwork->work;
7beb2edf
TH
1430
1431 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1432 timer->data != (unsigned long)dwork);
fc4b514f
TH
1433 WARN_ON_ONCE(timer_pending(timer));
1434 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1435
8852aac2
TH
1436 /*
1437 * If @delay is 0, queue @dwork->work immediately. This is for
1438 * both optimization and correctness. The earliest @timer can
1439 * expire is on the closest next tick and delayed_work users depend
1440 * on that there's no such delay when @delay is 0.
1441 */
1442 if (!delay) {
1443 __queue_work(cpu, wq, &dwork->work);
1444 return;
1445 }
1446
7beb2edf 1447 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1448
60c057bc 1449 dwork->wq = wq;
1265057f 1450 dwork->cpu = cpu;
7beb2edf
TH
1451 timer->expires = jiffies + delay;
1452
1453 if (unlikely(cpu != WORK_CPU_UNBOUND))
1454 add_timer_on(timer, cpu);
1455 else
1456 add_timer(timer);
1da177e4
LT
1457}
1458
0fcb78c2
REB
1459/**
1460 * queue_delayed_work_on - queue work on specific CPU after delay
1461 * @cpu: CPU number to execute work on
1462 * @wq: workqueue to use
af9997e4 1463 * @dwork: work to queue
0fcb78c2
REB
1464 * @delay: number of jiffies to wait before queueing
1465 *
715f1300
TH
1466 * Returns %false if @work was already on a queue, %true otherwise. If
1467 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1468 * execution.
0fcb78c2 1469 */
d4283e93
TH
1470bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1471 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1472{
52bad64d 1473 struct work_struct *work = &dwork->work;
d4283e93 1474 bool ret = false;
8930caba 1475 unsigned long flags;
7a6bc1cd 1476
8930caba
TH
1477 /* read the comment in __queue_work() */
1478 local_irq_save(flags);
7a6bc1cd 1479
22df02bb 1480 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1481 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1482 ret = true;
7a6bc1cd 1483 }
8a3e77cc 1484
8930caba 1485 local_irq_restore(flags);
7a6bc1cd
VP
1486 return ret;
1487}
ae90dd5d 1488EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1489
8376fe22
TH
1490/**
1491 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1492 * @cpu: CPU number to execute work on
1493 * @wq: workqueue to use
1494 * @dwork: work to queue
1495 * @delay: number of jiffies to wait before queueing
1496 *
1497 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1498 * modify @dwork's timer so that it expires after @delay. If @delay is
1499 * zero, @work is guaranteed to be scheduled immediately regardless of its
1500 * current state.
1501 *
1502 * Returns %false if @dwork was idle and queued, %true if @dwork was
1503 * pending and its timer was modified.
1504 *
e0aecdd8 1505 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1506 * See try_to_grab_pending() for details.
1507 */
1508bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1509 struct delayed_work *dwork, unsigned long delay)
1510{
1511 unsigned long flags;
1512 int ret;
c7fc77f7 1513
8376fe22
TH
1514 do {
1515 ret = try_to_grab_pending(&dwork->work, true, &flags);
1516 } while (unlikely(ret == -EAGAIN));
63bc0362 1517
8376fe22
TH
1518 if (likely(ret >= 0)) {
1519 __queue_delayed_work(cpu, wq, dwork, delay);
1520 local_irq_restore(flags);
7a6bc1cd 1521 }
8376fe22
TH
1522
1523 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1524 return ret;
1525}
8376fe22
TH
1526EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1527
c8e55f36
TH
1528/**
1529 * worker_enter_idle - enter idle state
1530 * @worker: worker which is entering idle state
1531 *
1532 * @worker is entering idle state. Update stats and idle timer if
1533 * necessary.
1534 *
1535 * LOCKING:
d565ed63 1536 * spin_lock_irq(pool->lock).
c8e55f36
TH
1537 */
1538static void worker_enter_idle(struct worker *worker)
1da177e4 1539{
bd7bdd43 1540 struct worker_pool *pool = worker->pool;
c8e55f36 1541
6183c009
TH
1542 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1543 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1544 (worker->hentry.next || worker->hentry.pprev)))
1545 return;
c8e55f36 1546
cb444766
TH
1547 /* can't use worker_set_flags(), also called from start_worker() */
1548 worker->flags |= WORKER_IDLE;
bd7bdd43 1549 pool->nr_idle++;
e22bee78 1550 worker->last_active = jiffies;
c8e55f36
TH
1551
1552 /* idle_list is LIFO */
bd7bdd43 1553 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1554
628c78e7
TH
1555 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1556 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1557
544ecf31 1558 /*
706026c2 1559 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1560 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1561 * nr_running, the warning may trigger spuriously. Check iff
1562 * unbind is not in progress.
544ecf31 1563 */
24647570 1564 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1565 pool->nr_workers == pool->nr_idle &&
e19e397a 1566 atomic_read(&pool->nr_running));
c8e55f36
TH
1567}
1568
1569/**
1570 * worker_leave_idle - leave idle state
1571 * @worker: worker which is leaving idle state
1572 *
1573 * @worker is leaving idle state. Update stats.
1574 *
1575 * LOCKING:
d565ed63 1576 * spin_lock_irq(pool->lock).
c8e55f36
TH
1577 */
1578static void worker_leave_idle(struct worker *worker)
1579{
bd7bdd43 1580 struct worker_pool *pool = worker->pool;
c8e55f36 1581
6183c009
TH
1582 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1583 return;
d302f017 1584 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1585 pool->nr_idle--;
c8e55f36
TH
1586 list_del_init(&worker->entry);
1587}
1588
e22bee78 1589/**
f36dc67b
LJ
1590 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1591 * @pool: target worker_pool
1592 *
1593 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1594 *
1595 * Works which are scheduled while the cpu is online must at least be
1596 * scheduled to a worker which is bound to the cpu so that if they are
1597 * flushed from cpu callbacks while cpu is going down, they are
1598 * guaranteed to execute on the cpu.
1599 *
f5faa077 1600 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1601 * themselves to the target cpu and may race with cpu going down or
1602 * coming online. kthread_bind() can't be used because it may put the
1603 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1604 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1605 * [dis]associated in the meantime.
1606 *
706026c2 1607 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1608 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1609 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1610 * enters idle state or fetches works without dropping lock, it can
1611 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1612 *
1613 * CONTEXT:
d565ed63 1614 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1615 * held.
1616 *
1617 * RETURNS:
706026c2 1618 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1619 * bound), %false if offline.
1620 */
f36dc67b 1621static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1622__acquires(&pool->lock)
e22bee78 1623{
e22bee78 1624 while (true) {
4e6045f1 1625 /*
e22bee78
TH
1626 * The following call may fail, succeed or succeed
1627 * without actually migrating the task to the cpu if
1628 * it races with cpu hotunplug operation. Verify
24647570 1629 * against POOL_DISASSOCIATED.
4e6045f1 1630 */
24647570 1631 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1632 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1633
d565ed63 1634 spin_lock_irq(&pool->lock);
24647570 1635 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1636 return false;
f5faa077 1637 if (task_cpu(current) == pool->cpu &&
7a4e344c 1638 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1639 return true;
d565ed63 1640 spin_unlock_irq(&pool->lock);
e22bee78 1641
5035b20f
TH
1642 /*
1643 * We've raced with CPU hot[un]plug. Give it a breather
1644 * and retry migration. cond_resched() is required here;
1645 * otherwise, we might deadlock against cpu_stop trying to
1646 * bring down the CPU on non-preemptive kernel.
1647 */
e22bee78 1648 cpu_relax();
5035b20f 1649 cond_resched();
e22bee78
TH
1650 }
1651}
1652
c34056a3
TH
1653static struct worker *alloc_worker(void)
1654{
1655 struct worker *worker;
1656
1657 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1658 if (worker) {
1659 INIT_LIST_HEAD(&worker->entry);
affee4b2 1660 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1661 /* on creation a worker is in !idle && prep state */
1662 worker->flags = WORKER_PREP;
c8e55f36 1663 }
c34056a3
TH
1664 return worker;
1665}
1666
1667/**
1668 * create_worker - create a new workqueue worker
63d95a91 1669 * @pool: pool the new worker will belong to
c34056a3 1670 *
63d95a91 1671 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1672 * can be started by calling start_worker() or destroyed using
1673 * destroy_worker().
1674 *
1675 * CONTEXT:
1676 * Might sleep. Does GFP_KERNEL allocations.
1677 *
1678 * RETURNS:
1679 * Pointer to the newly created worker.
1680 */
bc2ae0f5 1681static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1682{
c34056a3 1683 struct worker *worker = NULL;
f3421797 1684 int id = -1;
e3c916a4 1685 char id_buf[16];
c34056a3 1686
cd549687
TH
1687 lockdep_assert_held(&pool->manager_mutex);
1688
822d8405
TH
1689 /*
1690 * ID is needed to determine kthread name. Allocate ID first
1691 * without installing the pointer.
1692 */
1693 idr_preload(GFP_KERNEL);
d565ed63 1694 spin_lock_irq(&pool->lock);
822d8405
TH
1695
1696 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1697
d565ed63 1698 spin_unlock_irq(&pool->lock);
822d8405
TH
1699 idr_preload_end();
1700 if (id < 0)
1701 goto fail;
c34056a3
TH
1702
1703 worker = alloc_worker();
1704 if (!worker)
1705 goto fail;
1706
bd7bdd43 1707 worker->pool = pool;
c34056a3
TH
1708 worker->id = id;
1709
29c91e99 1710 if (pool->cpu >= 0)
e3c916a4
TH
1711 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1712 pool->attrs->nice < 0 ? "H" : "");
f3421797 1713 else
e3c916a4
TH
1714 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1715
f3f90ad4 1716 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1717 "kworker/%s", id_buf);
c34056a3
TH
1718 if (IS_ERR(worker->task))
1719 goto fail;
1720
c5aa87bb
TH
1721 /*
1722 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723 * online CPUs. It'll be re-applied when any of the CPUs come up.
1724 */
7a4e344c
TH
1725 set_user_nice(worker->task, pool->attrs->nice);
1726 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1727
14a40ffc
TH
1728 /* prevent userland from meddling with cpumask of workqueue workers */
1729 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1730
1731 /*
1732 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1733 * remains stable across this function. See the comments above the
1734 * flag definition for details.
1735 */
1736 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1737 worker->flags |= WORKER_UNBOUND;
c34056a3 1738
822d8405
TH
1739 /* successful, commit the pointer to idr */
1740 spin_lock_irq(&pool->lock);
1741 idr_replace(&pool->worker_idr, worker, worker->id);
1742 spin_unlock_irq(&pool->lock);
1743
c34056a3 1744 return worker;
822d8405 1745
c34056a3
TH
1746fail:
1747 if (id >= 0) {
d565ed63 1748 spin_lock_irq(&pool->lock);
822d8405 1749 idr_remove(&pool->worker_idr, id);
d565ed63 1750 spin_unlock_irq(&pool->lock);
c34056a3
TH
1751 }
1752 kfree(worker);
1753 return NULL;
1754}
1755
1756/**
1757 * start_worker - start a newly created worker
1758 * @worker: worker to start
1759 *
706026c2 1760 * Make the pool aware of @worker and start it.
c34056a3
TH
1761 *
1762 * CONTEXT:
d565ed63 1763 * spin_lock_irq(pool->lock).
c34056a3
TH
1764 */
1765static void start_worker(struct worker *worker)
1766{
cb444766 1767 worker->flags |= WORKER_STARTED;
bd7bdd43 1768 worker->pool->nr_workers++;
c8e55f36 1769 worker_enter_idle(worker);
c34056a3
TH
1770 wake_up_process(worker->task);
1771}
1772
ebf44d16
TH
1773/**
1774 * create_and_start_worker - create and start a worker for a pool
1775 * @pool: the target pool
1776 *
cd549687 1777 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1778 */
1779static int create_and_start_worker(struct worker_pool *pool)
1780{
1781 struct worker *worker;
1782
cd549687
TH
1783 mutex_lock(&pool->manager_mutex);
1784
ebf44d16
TH
1785 worker = create_worker(pool);
1786 if (worker) {
1787 spin_lock_irq(&pool->lock);
1788 start_worker(worker);
1789 spin_unlock_irq(&pool->lock);
1790 }
1791
cd549687
TH
1792 mutex_unlock(&pool->manager_mutex);
1793
ebf44d16
TH
1794 return worker ? 0 : -ENOMEM;
1795}
1796
c34056a3
TH
1797/**
1798 * destroy_worker - destroy a workqueue worker
1799 * @worker: worker to be destroyed
1800 *
706026c2 1801 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1802 *
1803 * CONTEXT:
d565ed63 1804 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1805 */
1806static void destroy_worker(struct worker *worker)
1807{
bd7bdd43 1808 struct worker_pool *pool = worker->pool;
c34056a3 1809
cd549687
TH
1810 lockdep_assert_held(&pool->manager_mutex);
1811 lockdep_assert_held(&pool->lock);
1812
c34056a3 1813 /* sanity check frenzy */
6183c009
TH
1814 if (WARN_ON(worker->current_work) ||
1815 WARN_ON(!list_empty(&worker->scheduled)))
1816 return;
c34056a3 1817
c8e55f36 1818 if (worker->flags & WORKER_STARTED)
bd7bdd43 1819 pool->nr_workers--;
c8e55f36 1820 if (worker->flags & WORKER_IDLE)
bd7bdd43 1821 pool->nr_idle--;
c8e55f36
TH
1822
1823 list_del_init(&worker->entry);
cb444766 1824 worker->flags |= WORKER_DIE;
c8e55f36 1825
822d8405
TH
1826 idr_remove(&pool->worker_idr, worker->id);
1827
d565ed63 1828 spin_unlock_irq(&pool->lock);
c8e55f36 1829
c34056a3
TH
1830 kthread_stop(worker->task);
1831 kfree(worker);
1832
d565ed63 1833 spin_lock_irq(&pool->lock);
c34056a3
TH
1834}
1835
63d95a91 1836static void idle_worker_timeout(unsigned long __pool)
e22bee78 1837{
63d95a91 1838 struct worker_pool *pool = (void *)__pool;
e22bee78 1839
d565ed63 1840 spin_lock_irq(&pool->lock);
e22bee78 1841
63d95a91 1842 if (too_many_workers(pool)) {
e22bee78
TH
1843 struct worker *worker;
1844 unsigned long expires;
1845
1846 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
1850 if (time_before(jiffies, expires))
63d95a91 1851 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1852 else {
1853 /* it's been idle for too long, wake up manager */
11ebea50 1854 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1855 wake_up_worker(pool);
d5abe669 1856 }
e22bee78
TH
1857 }
1858
d565ed63 1859 spin_unlock_irq(&pool->lock);
e22bee78 1860}
d5abe669 1861
493a1724 1862static void send_mayday(struct work_struct *work)
e22bee78 1863{
112202d9
TH
1864 struct pool_workqueue *pwq = get_work_pwq(work);
1865 struct workqueue_struct *wq = pwq->wq;
493a1724 1866
2e109a28 1867 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1868
493008a8 1869 if (!wq->rescuer)
493a1724 1870 return;
e22bee78
TH
1871
1872 /* mayday mayday mayday */
493a1724
TH
1873 if (list_empty(&pwq->mayday_node)) {
1874 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1875 wake_up_process(wq->rescuer->task);
493a1724 1876 }
e22bee78
TH
1877}
1878
706026c2 1879static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1880{
63d95a91 1881 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1882 struct work_struct *work;
1883
2e109a28 1884 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1885 spin_lock(&pool->lock);
e22bee78 1886
63d95a91 1887 if (need_to_create_worker(pool)) {
e22bee78
TH
1888 /*
1889 * We've been trying to create a new worker but
1890 * haven't been successful. We might be hitting an
1891 * allocation deadlock. Send distress signals to
1892 * rescuers.
1893 */
63d95a91 1894 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1895 send_mayday(work);
1da177e4 1896 }
e22bee78 1897
493a1724 1898 spin_unlock(&pool->lock);
2e109a28 1899 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1900
63d95a91 1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1902}
1903
e22bee78
TH
1904/**
1905 * maybe_create_worker - create a new worker if necessary
63d95a91 1906 * @pool: pool to create a new worker for
e22bee78 1907 *
63d95a91 1908 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1909 * have at least one idle worker on return from this function. If
1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1911 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1912 * possible allocation deadlock.
1913 *
c5aa87bb
TH
1914 * On return, need_to_create_worker() is guaranteed to be %false and
1915 * may_start_working() %true.
e22bee78
TH
1916 *
1917 * LOCKING:
d565ed63 1918 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1919 * multiple times. Does GFP_KERNEL allocations. Called only from
1920 * manager.
1921 *
1922 * RETURNS:
c5aa87bb 1923 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1924 * otherwise.
1925 */
63d95a91 1926static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1927__releases(&pool->lock)
1928__acquires(&pool->lock)
1da177e4 1929{
63d95a91 1930 if (!need_to_create_worker(pool))
e22bee78
TH
1931 return false;
1932restart:
d565ed63 1933 spin_unlock_irq(&pool->lock);
9f9c2364 1934
e22bee78 1935 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1936 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1937
1938 while (true) {
1939 struct worker *worker;
1940
bc2ae0f5 1941 worker = create_worker(pool);
e22bee78 1942 if (worker) {
63d95a91 1943 del_timer_sync(&pool->mayday_timer);
d565ed63 1944 spin_lock_irq(&pool->lock);
e22bee78 1945 start_worker(worker);
6183c009
TH
1946 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1947 goto restart;
e22bee78
TH
1948 return true;
1949 }
1950
63d95a91 1951 if (!need_to_create_worker(pool))
e22bee78 1952 break;
1da177e4 1953
e22bee78
TH
1954 __set_current_state(TASK_INTERRUPTIBLE);
1955 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1956
63d95a91 1957 if (!need_to_create_worker(pool))
e22bee78
TH
1958 break;
1959 }
1960
63d95a91 1961 del_timer_sync(&pool->mayday_timer);
d565ed63 1962 spin_lock_irq(&pool->lock);
63d95a91 1963 if (need_to_create_worker(pool))
e22bee78
TH
1964 goto restart;
1965 return true;
1966}
1967
1968/**
1969 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1970 * @pool: pool to destroy workers for
e22bee78 1971 *
63d95a91 1972 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1973 * IDLE_WORKER_TIMEOUT.
1974 *
1975 * LOCKING:
d565ed63 1976 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1977 * multiple times. Called only from manager.
1978 *
1979 * RETURNS:
c5aa87bb 1980 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1981 * otherwise.
1982 */
63d95a91 1983static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1984{
1985 bool ret = false;
1da177e4 1986
63d95a91 1987 while (too_many_workers(pool)) {
e22bee78
TH
1988 struct worker *worker;
1989 unsigned long expires;
3af24433 1990
63d95a91 1991 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1992 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1993
e22bee78 1994 if (time_before(jiffies, expires)) {
63d95a91 1995 mod_timer(&pool->idle_timer, expires);
3af24433 1996 break;
e22bee78 1997 }
1da177e4 1998
e22bee78
TH
1999 destroy_worker(worker);
2000 ret = true;
1da177e4 2001 }
1e19ffc6 2002
e22bee78 2003 return ret;
1e19ffc6
TH
2004}
2005
73f53c4a 2006/**
e22bee78
TH
2007 * manage_workers - manage worker pool
2008 * @worker: self
73f53c4a 2009 *
706026c2 2010 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2011 * to. At any given time, there can be only zero or one manager per
706026c2 2012 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2013 *
2014 * The caller can safely start processing works on false return. On
2015 * true return, it's guaranteed that need_to_create_worker() is false
2016 * and may_start_working() is true.
73f53c4a
TH
2017 *
2018 * CONTEXT:
d565ed63 2019 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2020 * multiple times. Does GFP_KERNEL allocations.
2021 *
2022 * RETURNS:
d565ed63
TH
2023 * spin_lock_irq(pool->lock) which may be released and regrabbed
2024 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2025 */
e22bee78 2026static bool manage_workers(struct worker *worker)
73f53c4a 2027{
63d95a91 2028 struct worker_pool *pool = worker->pool;
e22bee78 2029 bool ret = false;
73f53c4a 2030
bc3a1afc
TH
2031 /*
2032 * Managership is governed by two mutexes - manager_arb and
2033 * manager_mutex. manager_arb handles arbitration of manager role.
2034 * Anyone who successfully grabs manager_arb wins the arbitration
2035 * and becomes the manager. mutex_trylock() on pool->manager_arb
2036 * failure while holding pool->lock reliably indicates that someone
2037 * else is managing the pool and the worker which failed trylock
2038 * can proceed to executing work items. This means that anyone
2039 * grabbing manager_arb is responsible for actually performing
2040 * manager duties. If manager_arb is grabbed and released without
2041 * actual management, the pool may stall indefinitely.
2042 *
2043 * manager_mutex is used for exclusion of actual management
2044 * operations. The holder of manager_mutex can be sure that none
2045 * of management operations, including creation and destruction of
2046 * workers, won't take place until the mutex is released. Because
2047 * manager_mutex doesn't interfere with manager role arbitration,
2048 * it is guaranteed that the pool's management, while may be
2049 * delayed, won't be disturbed by someone else grabbing
2050 * manager_mutex.
2051 */
34a06bd6 2052 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2053 return ret;
1e19ffc6 2054
ee378aa4 2055 /*
bc3a1afc
TH
2056 * With manager arbitration won, manager_mutex would be free in
2057 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2058 */
bc3a1afc 2059 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2060 spin_unlock_irq(&pool->lock);
bc3a1afc 2061 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2062 ret = true;
2063 }
73f53c4a 2064
11ebea50 2065 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2066
2067 /*
e22bee78
TH
2068 * Destroy and then create so that may_start_working() is true
2069 * on return.
73f53c4a 2070 */
63d95a91
TH
2071 ret |= maybe_destroy_workers(pool);
2072 ret |= maybe_create_worker(pool);
e22bee78 2073
bc3a1afc 2074 mutex_unlock(&pool->manager_mutex);
34a06bd6 2075 mutex_unlock(&pool->manager_arb);
e22bee78 2076 return ret;
73f53c4a
TH
2077}
2078
a62428c0
TH
2079/**
2080 * process_one_work - process single work
c34056a3 2081 * @worker: self
a62428c0
TH
2082 * @work: work to process
2083 *
2084 * Process @work. This function contains all the logics necessary to
2085 * process a single work including synchronization against and
2086 * interaction with other workers on the same cpu, queueing and
2087 * flushing. As long as context requirement is met, any worker can
2088 * call this function to process a work.
2089 *
2090 * CONTEXT:
d565ed63 2091 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2092 */
c34056a3 2093static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2094__releases(&pool->lock)
2095__acquires(&pool->lock)
a62428c0 2096{
112202d9 2097 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2098 struct worker_pool *pool = worker->pool;
112202d9 2099 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2100 int work_color;
7e11629d 2101 struct worker *collision;
a62428c0
TH
2102#ifdef CONFIG_LOCKDEP
2103 /*
2104 * It is permissible to free the struct work_struct from
2105 * inside the function that is called from it, this we need to
2106 * take into account for lockdep too. To avoid bogus "held
2107 * lock freed" warnings as well as problems when looking into
2108 * work->lockdep_map, make a copy and use that here.
2109 */
4d82a1de
PZ
2110 struct lockdep_map lockdep_map;
2111
2112 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2113#endif
6fec10a1
TH
2114 /*
2115 * Ensure we're on the correct CPU. DISASSOCIATED test is
2116 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2117 * unbound or a disassociated pool.
6fec10a1 2118 */
5f7dabfd 2119 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2120 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2121 raw_smp_processor_id() != pool->cpu);
25511a47 2122
7e11629d
TH
2123 /*
2124 * A single work shouldn't be executed concurrently by
2125 * multiple workers on a single cpu. Check whether anyone is
2126 * already processing the work. If so, defer the work to the
2127 * currently executing one.
2128 */
c9e7cf27 2129 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2130 if (unlikely(collision)) {
2131 move_linked_works(work, &collision->scheduled, NULL);
2132 return;
2133 }
2134
8930caba 2135 /* claim and dequeue */
a62428c0 2136 debug_work_deactivate(work);
c9e7cf27 2137 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2138 worker->current_work = work;
a2c1c57b 2139 worker->current_func = work->func;
112202d9 2140 worker->current_pwq = pwq;
73f53c4a 2141 work_color = get_work_color(work);
7a22ad75 2142
a62428c0
TH
2143 list_del_init(&work->entry);
2144
fb0e7beb
TH
2145 /*
2146 * CPU intensive works don't participate in concurrency
2147 * management. They're the scheduler's responsibility.
2148 */
2149 if (unlikely(cpu_intensive))
2150 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2151
974271c4 2152 /*
d565ed63 2153 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2154 * executed ASAP. Wake up another worker if necessary.
2155 */
63d95a91
TH
2156 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2157 wake_up_worker(pool);
974271c4 2158
8930caba 2159 /*
7c3eed5c 2160 * Record the last pool and clear PENDING which should be the last
d565ed63 2161 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2162 * PENDING and queued state changes happen together while IRQ is
2163 * disabled.
8930caba 2164 */
7c3eed5c 2165 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2166
d565ed63 2167 spin_unlock_irq(&pool->lock);
a62428c0 2168
112202d9 2169 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2170 lock_map_acquire(&lockdep_map);
e36c886a 2171 trace_workqueue_execute_start(work);
a2c1c57b 2172 worker->current_func(work);
e36c886a
AV
2173 /*
2174 * While we must be careful to not use "work" after this, the trace
2175 * point will only record its address.
2176 */
2177 trace_workqueue_execute_end(work);
a62428c0 2178 lock_map_release(&lockdep_map);
112202d9 2179 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2180
2181 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2182 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2183 " last function: %pf\n",
a2c1c57b
TH
2184 current->comm, preempt_count(), task_pid_nr(current),
2185 worker->current_func);
a62428c0
TH
2186 debug_show_held_locks(current);
2187 dump_stack();
2188 }
2189
d565ed63 2190 spin_lock_irq(&pool->lock);
a62428c0 2191
fb0e7beb
TH
2192 /* clear cpu intensive status */
2193 if (unlikely(cpu_intensive))
2194 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2195
a62428c0 2196 /* we're done with it, release */
42f8570f 2197 hash_del(&worker->hentry);
c34056a3 2198 worker->current_work = NULL;
a2c1c57b 2199 worker->current_func = NULL;
112202d9
TH
2200 worker->current_pwq = NULL;
2201 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2202}
2203
affee4b2
TH
2204/**
2205 * process_scheduled_works - process scheduled works
2206 * @worker: self
2207 *
2208 * Process all scheduled works. Please note that the scheduled list
2209 * may change while processing a work, so this function repeatedly
2210 * fetches a work from the top and executes it.
2211 *
2212 * CONTEXT:
d565ed63 2213 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2214 * multiple times.
2215 */
2216static void process_scheduled_works(struct worker *worker)
1da177e4 2217{
affee4b2
TH
2218 while (!list_empty(&worker->scheduled)) {
2219 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2220 struct work_struct, entry);
c34056a3 2221 process_one_work(worker, work);
1da177e4 2222 }
1da177e4
LT
2223}
2224
4690c4ab
TH
2225/**
2226 * worker_thread - the worker thread function
c34056a3 2227 * @__worker: self
4690c4ab 2228 *
c5aa87bb
TH
2229 * The worker thread function. All workers belong to a worker_pool -
2230 * either a per-cpu one or dynamic unbound one. These workers process all
2231 * work items regardless of their specific target workqueue. The only
2232 * exception is work items which belong to workqueues with a rescuer which
2233 * will be explained in rescuer_thread().
4690c4ab 2234 */
c34056a3 2235static int worker_thread(void *__worker)
1da177e4 2236{
c34056a3 2237 struct worker *worker = __worker;
bd7bdd43 2238 struct worker_pool *pool = worker->pool;
1da177e4 2239
e22bee78
TH
2240 /* tell the scheduler that this is a workqueue worker */
2241 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2242woke_up:
d565ed63 2243 spin_lock_irq(&pool->lock);
1da177e4 2244
a9ab775b
TH
2245 /* am I supposed to die? */
2246 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2247 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2248 WARN_ON_ONCE(!list_empty(&worker->entry));
2249 worker->task->flags &= ~PF_WQ_WORKER;
2250 return 0;
c8e55f36 2251 }
affee4b2 2252
c8e55f36 2253 worker_leave_idle(worker);
db7bccf4 2254recheck:
e22bee78 2255 /* no more worker necessary? */
63d95a91 2256 if (!need_more_worker(pool))
e22bee78
TH
2257 goto sleep;
2258
2259 /* do we need to manage? */
63d95a91 2260 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2261 goto recheck;
2262
c8e55f36
TH
2263 /*
2264 * ->scheduled list can only be filled while a worker is
2265 * preparing to process a work or actually processing it.
2266 * Make sure nobody diddled with it while I was sleeping.
2267 */
6183c009 2268 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2269
e22bee78 2270 /*
a9ab775b
TH
2271 * Finish PREP stage. We're guaranteed to have at least one idle
2272 * worker or that someone else has already assumed the manager
2273 * role. This is where @worker starts participating in concurrency
2274 * management if applicable and concurrency management is restored
2275 * after being rebound. See rebind_workers() for details.
e22bee78 2276 */
a9ab775b 2277 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2278
2279 do {
c8e55f36 2280 struct work_struct *work =
bd7bdd43 2281 list_first_entry(&pool->worklist,
c8e55f36
TH
2282 struct work_struct, entry);
2283
2284 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2285 /* optimization path, not strictly necessary */
2286 process_one_work(worker, work);
2287 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2288 process_scheduled_works(worker);
c8e55f36
TH
2289 } else {
2290 move_linked_works(work, &worker->scheduled, NULL);
2291 process_scheduled_works(worker);
affee4b2 2292 }
63d95a91 2293 } while (keep_working(pool));
e22bee78
TH
2294
2295 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2296sleep:
63d95a91 2297 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2298 goto recheck;
d313dd85 2299
c8e55f36 2300 /*
d565ed63
TH
2301 * pool->lock is held and there's no work to process and no need to
2302 * manage, sleep. Workers are woken up only while holding
2303 * pool->lock or from local cpu, so setting the current state
2304 * before releasing pool->lock is enough to prevent losing any
2305 * event.
c8e55f36
TH
2306 */
2307 worker_enter_idle(worker);
2308 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2309 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2310 schedule();
2311 goto woke_up;
1da177e4
LT
2312}
2313
e22bee78
TH
2314/**
2315 * rescuer_thread - the rescuer thread function
111c225a 2316 * @__rescuer: self
e22bee78
TH
2317 *
2318 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2319 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2320 *
706026c2 2321 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2322 * worker which uses GFP_KERNEL allocation which has slight chance of
2323 * developing into deadlock if some works currently on the same queue
2324 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2325 * the problem rescuer solves.
2326 *
706026c2
TH
2327 * When such condition is possible, the pool summons rescuers of all
2328 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2329 * those works so that forward progress can be guaranteed.
2330 *
2331 * This should happen rarely.
2332 */
111c225a 2333static int rescuer_thread(void *__rescuer)
e22bee78 2334{
111c225a
TH
2335 struct worker *rescuer = __rescuer;
2336 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2337 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2338
2339 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2340
2341 /*
2342 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2343 * doesn't participate in concurrency management.
2344 */
2345 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2346repeat:
2347 set_current_state(TASK_INTERRUPTIBLE);
2348
412d32e6
MG
2349 if (kthread_should_stop()) {
2350 __set_current_state(TASK_RUNNING);
111c225a 2351 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2352 return 0;
412d32e6 2353 }
e22bee78 2354
493a1724 2355 /* see whether any pwq is asking for help */
2e109a28 2356 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2357
2358 while (!list_empty(&wq->maydays)) {
2359 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2360 struct pool_workqueue, mayday_node);
112202d9 2361 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2362 struct work_struct *work, *n;
2363
2364 __set_current_state(TASK_RUNNING);
493a1724
TH
2365 list_del_init(&pwq->mayday_node);
2366
2e109a28 2367 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2368
2369 /* migrate to the target cpu if possible */
f36dc67b 2370 worker_maybe_bind_and_lock(pool);
b3104104 2371 rescuer->pool = pool;
e22bee78
TH
2372
2373 /*
2374 * Slurp in all works issued via this workqueue and
2375 * process'em.
2376 */
6183c009 2377 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2378 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2379 if (get_work_pwq(work) == pwq)
e22bee78
TH
2380 move_linked_works(work, scheduled, &n);
2381
2382 process_scheduled_works(rescuer);
7576958a
TH
2383
2384 /*
d565ed63 2385 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2386 * regular worker; otherwise, we end up with 0 concurrency
2387 * and stalling the execution.
2388 */
63d95a91
TH
2389 if (keep_working(pool))
2390 wake_up_worker(pool);
7576958a 2391
b3104104 2392 rescuer->pool = NULL;
493a1724 2393 spin_unlock(&pool->lock);
2e109a28 2394 spin_lock(&wq_mayday_lock);
e22bee78
TH
2395 }
2396
2e109a28 2397 spin_unlock_irq(&wq_mayday_lock);
493a1724 2398
111c225a
TH
2399 /* rescuers should never participate in concurrency management */
2400 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2401 schedule();
2402 goto repeat;
1da177e4
LT
2403}
2404
fc2e4d70
ON
2405struct wq_barrier {
2406 struct work_struct work;
2407 struct completion done;
2408};
2409
2410static void wq_barrier_func(struct work_struct *work)
2411{
2412 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2413 complete(&barr->done);
2414}
2415
4690c4ab
TH
2416/**
2417 * insert_wq_barrier - insert a barrier work
112202d9 2418 * @pwq: pwq to insert barrier into
4690c4ab 2419 * @barr: wq_barrier to insert
affee4b2
TH
2420 * @target: target work to attach @barr to
2421 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2422 *
affee4b2
TH
2423 * @barr is linked to @target such that @barr is completed only after
2424 * @target finishes execution. Please note that the ordering
2425 * guarantee is observed only with respect to @target and on the local
2426 * cpu.
2427 *
2428 * Currently, a queued barrier can't be canceled. This is because
2429 * try_to_grab_pending() can't determine whether the work to be
2430 * grabbed is at the head of the queue and thus can't clear LINKED
2431 * flag of the previous work while there must be a valid next work
2432 * after a work with LINKED flag set.
2433 *
2434 * Note that when @worker is non-NULL, @target may be modified
112202d9 2435 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2436 *
2437 * CONTEXT:
d565ed63 2438 * spin_lock_irq(pool->lock).
4690c4ab 2439 */
112202d9 2440static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2441 struct wq_barrier *barr,
2442 struct work_struct *target, struct worker *worker)
fc2e4d70 2443{
affee4b2
TH
2444 struct list_head *head;
2445 unsigned int linked = 0;
2446
dc186ad7 2447 /*
d565ed63 2448 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2449 * as we know for sure that this will not trigger any of the
2450 * checks and call back into the fixup functions where we
2451 * might deadlock.
2452 */
ca1cab37 2453 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2454 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2455 init_completion(&barr->done);
83c22520 2456
affee4b2
TH
2457 /*
2458 * If @target is currently being executed, schedule the
2459 * barrier to the worker; otherwise, put it after @target.
2460 */
2461 if (worker)
2462 head = worker->scheduled.next;
2463 else {
2464 unsigned long *bits = work_data_bits(target);
2465
2466 head = target->entry.next;
2467 /* there can already be other linked works, inherit and set */
2468 linked = *bits & WORK_STRUCT_LINKED;
2469 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2470 }
2471
dc186ad7 2472 debug_work_activate(&barr->work);
112202d9 2473 insert_work(pwq, &barr->work, head,
affee4b2 2474 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2475}
2476
73f53c4a 2477/**
112202d9 2478 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2479 * @wq: workqueue being flushed
2480 * @flush_color: new flush color, < 0 for no-op
2481 * @work_color: new work color, < 0 for no-op
2482 *
112202d9 2483 * Prepare pwqs for workqueue flushing.
73f53c4a 2484 *
112202d9
TH
2485 * If @flush_color is non-negative, flush_color on all pwqs should be
2486 * -1. If no pwq has in-flight commands at the specified color, all
2487 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2488 * has in flight commands, its pwq->flush_color is set to
2489 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2490 * wakeup logic is armed and %true is returned.
2491 *
2492 * The caller should have initialized @wq->first_flusher prior to
2493 * calling this function with non-negative @flush_color. If
2494 * @flush_color is negative, no flush color update is done and %false
2495 * is returned.
2496 *
112202d9 2497 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2498 * work_color which is previous to @work_color and all will be
2499 * advanced to @work_color.
2500 *
2501 * CONTEXT:
3c25a55d 2502 * mutex_lock(wq->mutex).
73f53c4a
TH
2503 *
2504 * RETURNS:
2505 * %true if @flush_color >= 0 and there's something to flush. %false
2506 * otherwise.
2507 */
112202d9 2508static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2509 int flush_color, int work_color)
1da177e4 2510{
73f53c4a 2511 bool wait = false;
49e3cf44 2512 struct pool_workqueue *pwq;
1da177e4 2513
73f53c4a 2514 if (flush_color >= 0) {
6183c009 2515 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2516 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2517 }
2355b70f 2518
49e3cf44 2519 for_each_pwq(pwq, wq) {
112202d9 2520 struct worker_pool *pool = pwq->pool;
fc2e4d70 2521
b09f4fd3 2522 spin_lock_irq(&pool->lock);
83c22520 2523
73f53c4a 2524 if (flush_color >= 0) {
6183c009 2525 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2526
112202d9
TH
2527 if (pwq->nr_in_flight[flush_color]) {
2528 pwq->flush_color = flush_color;
2529 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2530 wait = true;
2531 }
2532 }
1da177e4 2533
73f53c4a 2534 if (work_color >= 0) {
6183c009 2535 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2536 pwq->work_color = work_color;
73f53c4a 2537 }
1da177e4 2538
b09f4fd3 2539 spin_unlock_irq(&pool->lock);
1da177e4 2540 }
2355b70f 2541
112202d9 2542 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2543 complete(&wq->first_flusher->done);
14441960 2544
73f53c4a 2545 return wait;
1da177e4
LT
2546}
2547
0fcb78c2 2548/**
1da177e4 2549 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2550 * @wq: workqueue to flush
1da177e4 2551 *
c5aa87bb
TH
2552 * This function sleeps until all work items which were queued on entry
2553 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2554 */
7ad5b3a5 2555void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2556{
73f53c4a
TH
2557 struct wq_flusher this_flusher = {
2558 .list = LIST_HEAD_INIT(this_flusher.list),
2559 .flush_color = -1,
2560 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2561 };
2562 int next_color;
1da177e4 2563
3295f0ef
IM
2564 lock_map_acquire(&wq->lockdep_map);
2565 lock_map_release(&wq->lockdep_map);
73f53c4a 2566
3c25a55d 2567 mutex_lock(&wq->mutex);
73f53c4a
TH
2568
2569 /*
2570 * Start-to-wait phase
2571 */
2572 next_color = work_next_color(wq->work_color);
2573
2574 if (next_color != wq->flush_color) {
2575 /*
2576 * Color space is not full. The current work_color
2577 * becomes our flush_color and work_color is advanced
2578 * by one.
2579 */
6183c009 2580 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2581 this_flusher.flush_color = wq->work_color;
2582 wq->work_color = next_color;
2583
2584 if (!wq->first_flusher) {
2585 /* no flush in progress, become the first flusher */
6183c009 2586 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2587
2588 wq->first_flusher = &this_flusher;
2589
112202d9 2590 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2591 wq->work_color)) {
2592 /* nothing to flush, done */
2593 wq->flush_color = next_color;
2594 wq->first_flusher = NULL;
2595 goto out_unlock;
2596 }
2597 } else {
2598 /* wait in queue */
6183c009 2599 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2600 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2601 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2602 }
2603 } else {
2604 /*
2605 * Oops, color space is full, wait on overflow queue.
2606 * The next flush completion will assign us
2607 * flush_color and transfer to flusher_queue.
2608 */
2609 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2610 }
2611
3c25a55d 2612 mutex_unlock(&wq->mutex);
73f53c4a
TH
2613
2614 wait_for_completion(&this_flusher.done);
2615
2616 /*
2617 * Wake-up-and-cascade phase
2618 *
2619 * First flushers are responsible for cascading flushes and
2620 * handling overflow. Non-first flushers can simply return.
2621 */
2622 if (wq->first_flusher != &this_flusher)
2623 return;
2624
3c25a55d 2625 mutex_lock(&wq->mutex);
73f53c4a 2626
4ce48b37
TH
2627 /* we might have raced, check again with mutex held */
2628 if (wq->first_flusher != &this_flusher)
2629 goto out_unlock;
2630
73f53c4a
TH
2631 wq->first_flusher = NULL;
2632
6183c009
TH
2633 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2634 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2635
2636 while (true) {
2637 struct wq_flusher *next, *tmp;
2638
2639 /* complete all the flushers sharing the current flush color */
2640 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2641 if (next->flush_color != wq->flush_color)
2642 break;
2643 list_del_init(&next->list);
2644 complete(&next->done);
2645 }
2646
6183c009
TH
2647 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2648 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2649
2650 /* this flush_color is finished, advance by one */
2651 wq->flush_color = work_next_color(wq->flush_color);
2652
2653 /* one color has been freed, handle overflow queue */
2654 if (!list_empty(&wq->flusher_overflow)) {
2655 /*
2656 * Assign the same color to all overflowed
2657 * flushers, advance work_color and append to
2658 * flusher_queue. This is the start-to-wait
2659 * phase for these overflowed flushers.
2660 */
2661 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2662 tmp->flush_color = wq->work_color;
2663
2664 wq->work_color = work_next_color(wq->work_color);
2665
2666 list_splice_tail_init(&wq->flusher_overflow,
2667 &wq->flusher_queue);
112202d9 2668 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2669 }
2670
2671 if (list_empty(&wq->flusher_queue)) {
6183c009 2672 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2673 break;
2674 }
2675
2676 /*
2677 * Need to flush more colors. Make the next flusher
112202d9 2678 * the new first flusher and arm pwqs.
73f53c4a 2679 */
6183c009
TH
2680 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2681 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2682
2683 list_del_init(&next->list);
2684 wq->first_flusher = next;
2685
112202d9 2686 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2687 break;
2688
2689 /*
2690 * Meh... this color is already done, clear first
2691 * flusher and repeat cascading.
2692 */
2693 wq->first_flusher = NULL;
2694 }
2695
2696out_unlock:
3c25a55d 2697 mutex_unlock(&wq->mutex);
1da177e4 2698}
ae90dd5d 2699EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2700
9c5a2ba7
TH
2701/**
2702 * drain_workqueue - drain a workqueue
2703 * @wq: workqueue to drain
2704 *
2705 * Wait until the workqueue becomes empty. While draining is in progress,
2706 * only chain queueing is allowed. IOW, only currently pending or running
2707 * work items on @wq can queue further work items on it. @wq is flushed
2708 * repeatedly until it becomes empty. The number of flushing is detemined
2709 * by the depth of chaining and should be relatively short. Whine if it
2710 * takes too long.
2711 */
2712void drain_workqueue(struct workqueue_struct *wq)
2713{
2714 unsigned int flush_cnt = 0;
49e3cf44 2715 struct pool_workqueue *pwq;
9c5a2ba7
TH
2716
2717 /*
2718 * __queue_work() needs to test whether there are drainers, is much
2719 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2720 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2721 */
87fc741e 2722 mutex_lock(&wq->mutex);
9c5a2ba7 2723 if (!wq->nr_drainers++)
618b01eb 2724 wq->flags |= __WQ_DRAINING;
87fc741e 2725 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2726reflush:
2727 flush_workqueue(wq);
2728
b09f4fd3 2729 mutex_lock(&wq->mutex);
76af4d93 2730
49e3cf44 2731 for_each_pwq(pwq, wq) {
fa2563e4 2732 bool drained;
9c5a2ba7 2733
b09f4fd3 2734 spin_lock_irq(&pwq->pool->lock);
112202d9 2735 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2736 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2737
2738 if (drained)
9c5a2ba7
TH
2739 continue;
2740
2741 if (++flush_cnt == 10 ||
2742 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2743 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2744 wq->name, flush_cnt);
76af4d93 2745
b09f4fd3 2746 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2747 goto reflush;
2748 }
2749
9c5a2ba7 2750 if (!--wq->nr_drainers)
618b01eb 2751 wq->flags &= ~__WQ_DRAINING;
87fc741e 2752 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2753}
2754EXPORT_SYMBOL_GPL(drain_workqueue);
2755
606a5020 2756static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2757{
affee4b2 2758 struct worker *worker = NULL;
c9e7cf27 2759 struct worker_pool *pool;
112202d9 2760 struct pool_workqueue *pwq;
db700897
ON
2761
2762 might_sleep();
fa1b54e6
TH
2763
2764 local_irq_disable();
c9e7cf27 2765 pool = get_work_pool(work);
fa1b54e6
TH
2766 if (!pool) {
2767 local_irq_enable();
baf59022 2768 return false;
fa1b54e6 2769 }
db700897 2770
fa1b54e6 2771 spin_lock(&pool->lock);
0b3dae68 2772 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2773 pwq = get_work_pwq(work);
2774 if (pwq) {
2775 if (unlikely(pwq->pool != pool))
4690c4ab 2776 goto already_gone;
606a5020 2777 } else {
c9e7cf27 2778 worker = find_worker_executing_work(pool, work);
affee4b2 2779 if (!worker)
4690c4ab 2780 goto already_gone;
112202d9 2781 pwq = worker->current_pwq;
606a5020 2782 }
db700897 2783
112202d9 2784 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2785 spin_unlock_irq(&pool->lock);
7a22ad75 2786
e159489b
TH
2787 /*
2788 * If @max_active is 1 or rescuer is in use, flushing another work
2789 * item on the same workqueue may lead to deadlock. Make sure the
2790 * flusher is not running on the same workqueue by verifying write
2791 * access.
2792 */
493008a8 2793 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2794 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2795 else
112202d9
TH
2796 lock_map_acquire_read(&pwq->wq->lockdep_map);
2797 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2798
401a8d04 2799 return true;
4690c4ab 2800already_gone:
d565ed63 2801 spin_unlock_irq(&pool->lock);
401a8d04 2802 return false;
db700897 2803}
baf59022
TH
2804
2805/**
2806 * flush_work - wait for a work to finish executing the last queueing instance
2807 * @work: the work to flush
2808 *
606a5020
TH
2809 * Wait until @work has finished execution. @work is guaranteed to be idle
2810 * on return if it hasn't been requeued since flush started.
baf59022
TH
2811 *
2812 * RETURNS:
2813 * %true if flush_work() waited for the work to finish execution,
2814 * %false if it was already idle.
2815 */
2816bool flush_work(struct work_struct *work)
2817{
2818 struct wq_barrier barr;
2819
0976dfc1
SB
2820 lock_map_acquire(&work->lockdep_map);
2821 lock_map_release(&work->lockdep_map);
2822
606a5020 2823 if (start_flush_work(work, &barr)) {
401a8d04
TH
2824 wait_for_completion(&barr.done);
2825 destroy_work_on_stack(&barr.work);
2826 return true;
606a5020 2827 } else {
401a8d04 2828 return false;
6e84d644 2829 }
6e84d644 2830}
606a5020 2831EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2832
36e227d2 2833static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2834{
bbb68dfa 2835 unsigned long flags;
1f1f642e
ON
2836 int ret;
2837
2838 do {
bbb68dfa
TH
2839 ret = try_to_grab_pending(work, is_dwork, &flags);
2840 /*
2841 * If someone else is canceling, wait for the same event it
2842 * would be waiting for before retrying.
2843 */
2844 if (unlikely(ret == -ENOENT))
606a5020 2845 flush_work(work);
1f1f642e
ON
2846 } while (unlikely(ret < 0));
2847
bbb68dfa
TH
2848 /* tell other tasks trying to grab @work to back off */
2849 mark_work_canceling(work);
2850 local_irq_restore(flags);
2851
606a5020 2852 flush_work(work);
7a22ad75 2853 clear_work_data(work);
1f1f642e
ON
2854 return ret;
2855}
2856
6e84d644 2857/**
401a8d04
TH
2858 * cancel_work_sync - cancel a work and wait for it to finish
2859 * @work: the work to cancel
6e84d644 2860 *
401a8d04
TH
2861 * Cancel @work and wait for its execution to finish. This function
2862 * can be used even if the work re-queues itself or migrates to
2863 * another workqueue. On return from this function, @work is
2864 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2865 *
401a8d04
TH
2866 * cancel_work_sync(&delayed_work->work) must not be used for
2867 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2868 *
401a8d04 2869 * The caller must ensure that the workqueue on which @work was last
6e84d644 2870 * queued can't be destroyed before this function returns.
401a8d04
TH
2871 *
2872 * RETURNS:
2873 * %true if @work was pending, %false otherwise.
6e84d644 2874 */
401a8d04 2875bool cancel_work_sync(struct work_struct *work)
6e84d644 2876{
36e227d2 2877 return __cancel_work_timer(work, false);
b89deed3 2878}
28e53bdd 2879EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2880
6e84d644 2881/**
401a8d04
TH
2882 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2883 * @dwork: the delayed work to flush
6e84d644 2884 *
401a8d04
TH
2885 * Delayed timer is cancelled and the pending work is queued for
2886 * immediate execution. Like flush_work(), this function only
2887 * considers the last queueing instance of @dwork.
1f1f642e 2888 *
401a8d04
TH
2889 * RETURNS:
2890 * %true if flush_work() waited for the work to finish execution,
2891 * %false if it was already idle.
6e84d644 2892 */
401a8d04
TH
2893bool flush_delayed_work(struct delayed_work *dwork)
2894{
8930caba 2895 local_irq_disable();
401a8d04 2896 if (del_timer_sync(&dwork->timer))
60c057bc 2897 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2898 local_irq_enable();
401a8d04
TH
2899 return flush_work(&dwork->work);
2900}
2901EXPORT_SYMBOL(flush_delayed_work);
2902
09383498 2903/**
57b30ae7
TH
2904 * cancel_delayed_work - cancel a delayed work
2905 * @dwork: delayed_work to cancel
09383498 2906 *
57b30ae7
TH
2907 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2908 * and canceled; %false if wasn't pending. Note that the work callback
2909 * function may still be running on return, unless it returns %true and the
2910 * work doesn't re-arm itself. Explicitly flush or use
2911 * cancel_delayed_work_sync() to wait on it.
09383498 2912 *
57b30ae7 2913 * This function is safe to call from any context including IRQ handler.
09383498 2914 */
57b30ae7 2915bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2916{
57b30ae7
TH
2917 unsigned long flags;
2918 int ret;
2919
2920 do {
2921 ret = try_to_grab_pending(&dwork->work, true, &flags);
2922 } while (unlikely(ret == -EAGAIN));
2923
2924 if (unlikely(ret < 0))
2925 return false;
2926
7c3eed5c
TH
2927 set_work_pool_and_clear_pending(&dwork->work,
2928 get_work_pool_id(&dwork->work));
57b30ae7 2929 local_irq_restore(flags);
c0158ca6 2930 return ret;
09383498 2931}
57b30ae7 2932EXPORT_SYMBOL(cancel_delayed_work);
09383498 2933
401a8d04
TH
2934/**
2935 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2936 * @dwork: the delayed work cancel
2937 *
2938 * This is cancel_work_sync() for delayed works.
2939 *
2940 * RETURNS:
2941 * %true if @dwork was pending, %false otherwise.
2942 */
2943bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2944{
36e227d2 2945 return __cancel_work_timer(&dwork->work, true);
6e84d644 2946}
f5a421a4 2947EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2948
b6136773 2949/**
31ddd871 2950 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2951 * @func: the function to call
b6136773 2952 *
31ddd871
TH
2953 * schedule_on_each_cpu() executes @func on each online CPU using the
2954 * system workqueue and blocks until all CPUs have completed.
b6136773 2955 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2956 *
2957 * RETURNS:
2958 * 0 on success, -errno on failure.
b6136773 2959 */
65f27f38 2960int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2961{
2962 int cpu;
38f51568 2963 struct work_struct __percpu *works;
15316ba8 2964
b6136773
AM
2965 works = alloc_percpu(struct work_struct);
2966 if (!works)
15316ba8 2967 return -ENOMEM;
b6136773 2968
93981800
TH
2969 get_online_cpus();
2970
15316ba8 2971 for_each_online_cpu(cpu) {
9bfb1839
IM
2972 struct work_struct *work = per_cpu_ptr(works, cpu);
2973
2974 INIT_WORK(work, func);
b71ab8c2 2975 schedule_work_on(cpu, work);
65a64464 2976 }
93981800
TH
2977
2978 for_each_online_cpu(cpu)
2979 flush_work(per_cpu_ptr(works, cpu));
2980
95402b38 2981 put_online_cpus();
b6136773 2982 free_percpu(works);
15316ba8
CL
2983 return 0;
2984}
2985
eef6a7d5
AS
2986/**
2987 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2988 *
2989 * Forces execution of the kernel-global workqueue and blocks until its
2990 * completion.
2991 *
2992 * Think twice before calling this function! It's very easy to get into
2993 * trouble if you don't take great care. Either of the following situations
2994 * will lead to deadlock:
2995 *
2996 * One of the work items currently on the workqueue needs to acquire
2997 * a lock held by your code or its caller.
2998 *
2999 * Your code is running in the context of a work routine.
3000 *
3001 * They will be detected by lockdep when they occur, but the first might not
3002 * occur very often. It depends on what work items are on the workqueue and
3003 * what locks they need, which you have no control over.
3004 *
3005 * In most situations flushing the entire workqueue is overkill; you merely
3006 * need to know that a particular work item isn't queued and isn't running.
3007 * In such cases you should use cancel_delayed_work_sync() or
3008 * cancel_work_sync() instead.
3009 */
1da177e4
LT
3010void flush_scheduled_work(void)
3011{
d320c038 3012 flush_workqueue(system_wq);
1da177e4 3013}
ae90dd5d 3014EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3015
1fa44eca
JB
3016/**
3017 * execute_in_process_context - reliably execute the routine with user context
3018 * @fn: the function to execute
1fa44eca
JB
3019 * @ew: guaranteed storage for the execute work structure (must
3020 * be available when the work executes)
3021 *
3022 * Executes the function immediately if process context is available,
3023 * otherwise schedules the function for delayed execution.
3024 *
3025 * Returns: 0 - function was executed
3026 * 1 - function was scheduled for execution
3027 */
65f27f38 3028int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3029{
3030 if (!in_interrupt()) {
65f27f38 3031 fn(&ew->work);
1fa44eca
JB
3032 return 0;
3033 }
3034
65f27f38 3035 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3036 schedule_work(&ew->work);
3037
3038 return 1;
3039}
3040EXPORT_SYMBOL_GPL(execute_in_process_context);
3041
226223ab
TH
3042#ifdef CONFIG_SYSFS
3043/*
3044 * Workqueues with WQ_SYSFS flag set is visible to userland via
3045 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3046 * following attributes.
3047 *
3048 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3049 * max_active RW int : maximum number of in-flight work items
3050 *
3051 * Unbound workqueues have the following extra attributes.
3052 *
3053 * id RO int : the associated pool ID
3054 * nice RW int : nice value of the workers
3055 * cpumask RW mask : bitmask of allowed CPUs for the workers
3056 */
3057struct wq_device {
3058 struct workqueue_struct *wq;
3059 struct device dev;
3060};
3061
3062static struct workqueue_struct *dev_to_wq(struct device *dev)
3063{
3064 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3065
3066 return wq_dev->wq;
3067}
3068
3069static ssize_t wq_per_cpu_show(struct device *dev,
3070 struct device_attribute *attr, char *buf)
3071{
3072 struct workqueue_struct *wq = dev_to_wq(dev);
3073
3074 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3075}
3076
3077static ssize_t wq_max_active_show(struct device *dev,
3078 struct device_attribute *attr, char *buf)
3079{
3080 struct workqueue_struct *wq = dev_to_wq(dev);
3081
3082 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3083}
3084
3085static ssize_t wq_max_active_store(struct device *dev,
3086 struct device_attribute *attr,
3087 const char *buf, size_t count)
3088{
3089 struct workqueue_struct *wq = dev_to_wq(dev);
3090 int val;
3091
3092 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3093 return -EINVAL;
3094
3095 workqueue_set_max_active(wq, val);
3096 return count;
3097}
3098
3099static struct device_attribute wq_sysfs_attrs[] = {
3100 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3101 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3102 __ATTR_NULL,
3103};
3104
d55262c4
TH
3105static ssize_t wq_pool_ids_show(struct device *dev,
3106 struct device_attribute *attr, char *buf)
226223ab
TH
3107{
3108 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3109 const char *delim = "";
3110 int node, written = 0;
226223ab
TH
3111
3112 rcu_read_lock_sched();
d55262c4
TH
3113 for_each_node(node) {
3114 written += scnprintf(buf + written, PAGE_SIZE - written,
3115 "%s%d:%d", delim, node,
3116 unbound_pwq_by_node(wq, node)->pool->id);
3117 delim = " ";
3118 }
3119 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3120 rcu_read_unlock_sched();
3121
3122 return written;
3123}
3124
3125static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3126 char *buf)
3127{
3128 struct workqueue_struct *wq = dev_to_wq(dev);
3129 int written;
3130
6029a918
TH
3131 mutex_lock(&wq->mutex);
3132 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3133 mutex_unlock(&wq->mutex);
226223ab
TH
3134
3135 return written;
3136}
3137
3138/* prepare workqueue_attrs for sysfs store operations */
3139static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3140{
3141 struct workqueue_attrs *attrs;
3142
3143 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3144 if (!attrs)
3145 return NULL;
3146
6029a918
TH
3147 mutex_lock(&wq->mutex);
3148 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3149 mutex_unlock(&wq->mutex);
226223ab
TH
3150 return attrs;
3151}
3152
3153static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3154 const char *buf, size_t count)
3155{
3156 struct workqueue_struct *wq = dev_to_wq(dev);
3157 struct workqueue_attrs *attrs;
3158 int ret;
3159
3160 attrs = wq_sysfs_prep_attrs(wq);
3161 if (!attrs)
3162 return -ENOMEM;
3163
3164 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3165 attrs->nice >= -20 && attrs->nice <= 19)
3166 ret = apply_workqueue_attrs(wq, attrs);
3167 else
3168 ret = -EINVAL;
3169
3170 free_workqueue_attrs(attrs);
3171 return ret ?: count;
3172}
3173
3174static ssize_t wq_cpumask_show(struct device *dev,
3175 struct device_attribute *attr, char *buf)
3176{
3177 struct workqueue_struct *wq = dev_to_wq(dev);
3178 int written;
3179
6029a918
TH
3180 mutex_lock(&wq->mutex);
3181 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3182 mutex_unlock(&wq->mutex);
226223ab
TH
3183
3184 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3185 return written;
3186}
3187
3188static ssize_t wq_cpumask_store(struct device *dev,
3189 struct device_attribute *attr,
3190 const char *buf, size_t count)
3191{
3192 struct workqueue_struct *wq = dev_to_wq(dev);
3193 struct workqueue_attrs *attrs;
3194 int ret;
3195
3196 attrs = wq_sysfs_prep_attrs(wq);
3197 if (!attrs)
3198 return -ENOMEM;
3199
3200 ret = cpumask_parse(buf, attrs->cpumask);
3201 if (!ret)
3202 ret = apply_workqueue_attrs(wq, attrs);
3203
3204 free_workqueue_attrs(attrs);
3205 return ret ?: count;
3206}
3207
d55262c4
TH
3208static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3209 char *buf)
3210{
3211 struct workqueue_struct *wq = dev_to_wq(dev);
3212 int written;
3213
3214 mutex_lock(&wq->mutex);
3215 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3216 !wq->unbound_attrs->no_numa);
3217 mutex_unlock(&wq->mutex);
3218
3219 return written;
3220}
3221
3222static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3223 const char *buf, size_t count)
3224{
3225 struct workqueue_struct *wq = dev_to_wq(dev);
3226 struct workqueue_attrs *attrs;
3227 int v, ret;
3228
3229 attrs = wq_sysfs_prep_attrs(wq);
3230 if (!attrs)
3231 return -ENOMEM;
3232
3233 ret = -EINVAL;
3234 if (sscanf(buf, "%d", &v) == 1) {
3235 attrs->no_numa = !v;
3236 ret = apply_workqueue_attrs(wq, attrs);
3237 }
3238
3239 free_workqueue_attrs(attrs);
3240 return ret ?: count;
3241}
3242
226223ab 3243static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3244 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3245 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3246 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3247 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3248 __ATTR_NULL,
3249};
3250
3251static struct bus_type wq_subsys = {
3252 .name = "workqueue",
3253 .dev_attrs = wq_sysfs_attrs,
3254};
3255
3256static int __init wq_sysfs_init(void)
3257{
3258 return subsys_virtual_register(&wq_subsys, NULL);
3259}
3260core_initcall(wq_sysfs_init);
3261
3262static void wq_device_release(struct device *dev)
3263{
3264 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3265
3266 kfree(wq_dev);
3267}
3268
3269/**
3270 * workqueue_sysfs_register - make a workqueue visible in sysfs
3271 * @wq: the workqueue to register
3272 *
3273 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3274 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3275 * which is the preferred method.
3276 *
3277 * Workqueue user should use this function directly iff it wants to apply
3278 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3279 * apply_workqueue_attrs() may race against userland updating the
3280 * attributes.
3281 *
3282 * Returns 0 on success, -errno on failure.
3283 */
3284int workqueue_sysfs_register(struct workqueue_struct *wq)
3285{
3286 struct wq_device *wq_dev;
3287 int ret;
3288
3289 /*
3290 * Adjusting max_active or creating new pwqs by applyting
3291 * attributes breaks ordering guarantee. Disallow exposing ordered
3292 * workqueues.
3293 */
3294 if (WARN_ON(wq->flags & __WQ_ORDERED))
3295 return -EINVAL;
3296
3297 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3298 if (!wq_dev)
3299 return -ENOMEM;
3300
3301 wq_dev->wq = wq;
3302 wq_dev->dev.bus = &wq_subsys;
3303 wq_dev->dev.init_name = wq->name;
3304 wq_dev->dev.release = wq_device_release;
3305
3306 /*
3307 * unbound_attrs are created separately. Suppress uevent until
3308 * everything is ready.
3309 */
3310 dev_set_uevent_suppress(&wq_dev->dev, true);
3311
3312 ret = device_register(&wq_dev->dev);
3313 if (ret) {
3314 kfree(wq_dev);
3315 wq->wq_dev = NULL;
3316 return ret;
3317 }
3318
3319 if (wq->flags & WQ_UNBOUND) {
3320 struct device_attribute *attr;
3321
3322 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3323 ret = device_create_file(&wq_dev->dev, attr);
3324 if (ret) {
3325 device_unregister(&wq_dev->dev);
3326 wq->wq_dev = NULL;
3327 return ret;
3328 }
3329 }
3330 }
3331
3332 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3333 return 0;
3334}
3335
3336/**
3337 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3338 * @wq: the workqueue to unregister
3339 *
3340 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3341 */
3342static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3343{
3344 struct wq_device *wq_dev = wq->wq_dev;
3345
3346 if (!wq->wq_dev)
3347 return;
3348
3349 wq->wq_dev = NULL;
3350 device_unregister(&wq_dev->dev);
3351}
3352#else /* CONFIG_SYSFS */
3353static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3354#endif /* CONFIG_SYSFS */
3355
7a4e344c
TH
3356/**
3357 * free_workqueue_attrs - free a workqueue_attrs
3358 * @attrs: workqueue_attrs to free
3359 *
3360 * Undo alloc_workqueue_attrs().
3361 */
3362void free_workqueue_attrs(struct workqueue_attrs *attrs)
3363{
3364 if (attrs) {
3365 free_cpumask_var(attrs->cpumask);
3366 kfree(attrs);
3367 }
3368}
3369
3370/**
3371 * alloc_workqueue_attrs - allocate a workqueue_attrs
3372 * @gfp_mask: allocation mask to use
3373 *
3374 * Allocate a new workqueue_attrs, initialize with default settings and
3375 * return it. Returns NULL on failure.
3376 */
3377struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3378{
3379 struct workqueue_attrs *attrs;
3380
3381 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3382 if (!attrs)
3383 goto fail;
3384 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3385 goto fail;
3386
13e2e556 3387 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3388 return attrs;
3389fail:
3390 free_workqueue_attrs(attrs);
3391 return NULL;
3392}
3393
29c91e99
TH
3394static void copy_workqueue_attrs(struct workqueue_attrs *to,
3395 const struct workqueue_attrs *from)
3396{
3397 to->nice = from->nice;
3398 cpumask_copy(to->cpumask, from->cpumask);
3399}
3400
29c91e99
TH
3401/* hash value of the content of @attr */
3402static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3403{
3404 u32 hash = 0;
3405
3406 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3407 hash = jhash(cpumask_bits(attrs->cpumask),
3408 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3409 return hash;
3410}
3411
3412/* content equality test */
3413static bool wqattrs_equal(const struct workqueue_attrs *a,
3414 const struct workqueue_attrs *b)
3415{
3416 if (a->nice != b->nice)
3417 return false;
3418 if (!cpumask_equal(a->cpumask, b->cpumask))
3419 return false;
3420 return true;
3421}
3422
7a4e344c
TH
3423/**
3424 * init_worker_pool - initialize a newly zalloc'd worker_pool
3425 * @pool: worker_pool to initialize
3426 *
3427 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3428 * Returns 0 on success, -errno on failure. Even on failure, all fields
3429 * inside @pool proper are initialized and put_unbound_pool() can be called
3430 * on @pool safely to release it.
7a4e344c
TH
3431 */
3432static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3433{
3434 spin_lock_init(&pool->lock);
29c91e99
TH
3435 pool->id = -1;
3436 pool->cpu = -1;
f3f90ad4 3437 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3438 pool->flags |= POOL_DISASSOCIATED;
3439 INIT_LIST_HEAD(&pool->worklist);
3440 INIT_LIST_HEAD(&pool->idle_list);
3441 hash_init(pool->busy_hash);
3442
3443 init_timer_deferrable(&pool->idle_timer);
3444 pool->idle_timer.function = idle_worker_timeout;
3445 pool->idle_timer.data = (unsigned long)pool;
3446
3447 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3448 (unsigned long)pool);
3449
3450 mutex_init(&pool->manager_arb);
bc3a1afc 3451 mutex_init(&pool->manager_mutex);
822d8405 3452 idr_init(&pool->worker_idr);
7a4e344c 3453
29c91e99
TH
3454 INIT_HLIST_NODE(&pool->hash_node);
3455 pool->refcnt = 1;
3456
3457 /* shouldn't fail above this point */
7a4e344c
TH
3458 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3459 if (!pool->attrs)
3460 return -ENOMEM;
3461 return 0;
4e1a1f9a
TH
3462}
3463
29c91e99
TH
3464static void rcu_free_pool(struct rcu_head *rcu)
3465{
3466 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3467
822d8405 3468 idr_destroy(&pool->worker_idr);
29c91e99
TH
3469 free_workqueue_attrs(pool->attrs);
3470 kfree(pool);
3471}
3472
3473/**
3474 * put_unbound_pool - put a worker_pool
3475 * @pool: worker_pool to put
3476 *
3477 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3478 * safe manner. get_unbound_pool() calls this function on its failure path
3479 * and this function should be able to release pools which went through,
3480 * successfully or not, init_worker_pool().
a892cacc
TH
3481 *
3482 * Should be called with wq_pool_mutex held.
29c91e99
TH
3483 */
3484static void put_unbound_pool(struct worker_pool *pool)
3485{
3486 struct worker *worker;
3487
a892cacc
TH
3488 lockdep_assert_held(&wq_pool_mutex);
3489
3490 if (--pool->refcnt)
29c91e99 3491 return;
29c91e99
TH
3492
3493 /* sanity checks */
3494 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3495 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3496 return;
29c91e99
TH
3497
3498 /* release id and unhash */
3499 if (pool->id >= 0)
3500 idr_remove(&worker_pool_idr, pool->id);
3501 hash_del(&pool->hash_node);
3502
c5aa87bb
TH
3503 /*
3504 * Become the manager and destroy all workers. Grabbing
3505 * manager_arb prevents @pool's workers from blocking on
3506 * manager_mutex.
3507 */
29c91e99 3508 mutex_lock(&pool->manager_arb);
cd549687 3509 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3510 spin_lock_irq(&pool->lock);
3511
3512 while ((worker = first_worker(pool)))
3513 destroy_worker(worker);
3514 WARN_ON(pool->nr_workers || pool->nr_idle);
3515
3516 spin_unlock_irq(&pool->lock);
cd549687 3517 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3518 mutex_unlock(&pool->manager_arb);
3519
3520 /* shut down the timers */
3521 del_timer_sync(&pool->idle_timer);
3522 del_timer_sync(&pool->mayday_timer);
3523
3524 /* sched-RCU protected to allow dereferences from get_work_pool() */
3525 call_rcu_sched(&pool->rcu, rcu_free_pool);
3526}
3527
3528/**
3529 * get_unbound_pool - get a worker_pool with the specified attributes
3530 * @attrs: the attributes of the worker_pool to get
3531 *
3532 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3533 * reference count and return it. If there already is a matching
3534 * worker_pool, it will be used; otherwise, this function attempts to
3535 * create a new one. On failure, returns NULL.
a892cacc
TH
3536 *
3537 * Should be called with wq_pool_mutex held.
29c91e99
TH
3538 */
3539static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3540{
29c91e99
TH
3541 u32 hash = wqattrs_hash(attrs);
3542 struct worker_pool *pool;
f3f90ad4 3543 int node;
29c91e99 3544
a892cacc 3545 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3546
3547 /* do we already have a matching pool? */
29c91e99
TH
3548 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3549 if (wqattrs_equal(pool->attrs, attrs)) {
3550 pool->refcnt++;
3551 goto out_unlock;
3552 }
3553 }
29c91e99
TH
3554
3555 /* nope, create a new one */
3556 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3557 if (!pool || init_worker_pool(pool) < 0)
3558 goto fail;
3559
12ee4fc6
LJ
3560 if (workqueue_freezing)
3561 pool->flags |= POOL_FREEZING;
3562
8864b4e5 3563 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3564 copy_workqueue_attrs(pool->attrs, attrs);
3565
f3f90ad4
TH
3566 /* if cpumask is contained inside a NUMA node, we belong to that node */
3567 if (wq_numa_enabled) {
3568 for_each_node(node) {
3569 if (cpumask_subset(pool->attrs->cpumask,
3570 wq_numa_possible_cpumask[node])) {
3571 pool->node = node;
3572 break;
3573 }
3574 }
3575 }
3576
29c91e99
TH
3577 if (worker_pool_assign_id(pool) < 0)
3578 goto fail;
3579
3580 /* create and start the initial worker */
ebf44d16 3581 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3582 goto fail;
3583
29c91e99 3584 /* install */
29c91e99
TH
3585 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3586out_unlock:
29c91e99
TH
3587 return pool;
3588fail:
29c91e99
TH
3589 if (pool)
3590 put_unbound_pool(pool);
3591 return NULL;
3592}
3593
8864b4e5
TH
3594static void rcu_free_pwq(struct rcu_head *rcu)
3595{
3596 kmem_cache_free(pwq_cache,
3597 container_of(rcu, struct pool_workqueue, rcu));
3598}
3599
3600/*
3601 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3602 * and needs to be destroyed.
3603 */
3604static void pwq_unbound_release_workfn(struct work_struct *work)
3605{
3606 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3607 unbound_release_work);
3608 struct workqueue_struct *wq = pwq->wq;
3609 struct worker_pool *pool = pwq->pool;
bc0caf09 3610 bool is_last;
8864b4e5
TH
3611
3612 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3613 return;
3614
75ccf595 3615 /*
3c25a55d 3616 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3617 * necessary on release but do it anyway. It's easier to verify
3618 * and consistent with the linking path.
3619 */
3c25a55d 3620 mutex_lock(&wq->mutex);
8864b4e5 3621 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3622 is_last = list_empty(&wq->pwqs);
3c25a55d 3623 mutex_unlock(&wq->mutex);
8864b4e5 3624
a892cacc 3625 mutex_lock(&wq_pool_mutex);
8864b4e5 3626 put_unbound_pool(pool);
a892cacc
TH
3627 mutex_unlock(&wq_pool_mutex);
3628
8864b4e5
TH
3629 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3630
3631 /*
3632 * If we're the last pwq going away, @wq is already dead and no one
3633 * is gonna access it anymore. Free it.
3634 */
6029a918
TH
3635 if (is_last) {
3636 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3637 kfree(wq);
6029a918 3638 }
8864b4e5
TH
3639}
3640
0fbd95aa 3641/**
699ce097 3642 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3643 * @pwq: target pool_workqueue
0fbd95aa 3644 *
699ce097
TH
3645 * If @pwq isn't freezing, set @pwq->max_active to the associated
3646 * workqueue's saved_max_active and activate delayed work items
3647 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3648 */
699ce097 3649static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3650{
699ce097
TH
3651 struct workqueue_struct *wq = pwq->wq;
3652 bool freezable = wq->flags & WQ_FREEZABLE;
3653
3654 /* for @wq->saved_max_active */
a357fc03 3655 lockdep_assert_held(&wq->mutex);
699ce097
TH
3656
3657 /* fast exit for non-freezable wqs */
3658 if (!freezable && pwq->max_active == wq->saved_max_active)
3659 return;
3660
a357fc03 3661 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3662
3663 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3664 pwq->max_active = wq->saved_max_active;
0fbd95aa 3665
699ce097
TH
3666 while (!list_empty(&pwq->delayed_works) &&
3667 pwq->nr_active < pwq->max_active)
3668 pwq_activate_first_delayed(pwq);
951a078a
LJ
3669
3670 /*
3671 * Need to kick a worker after thawed or an unbound wq's
3672 * max_active is bumped. It's a slow path. Do it always.
3673 */
3674 wake_up_worker(pwq->pool);
699ce097
TH
3675 } else {
3676 pwq->max_active = 0;
3677 }
3678
a357fc03 3679 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3680}
3681
e50aba9a 3682/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3683static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3684 struct worker_pool *pool)
d2c1d404
TH
3685{
3686 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3687
e50aba9a
TH
3688 memset(pwq, 0, sizeof(*pwq));
3689
d2c1d404
TH
3690 pwq->pool = pool;
3691 pwq->wq = wq;
3692 pwq->flush_color = -1;
8864b4e5 3693 pwq->refcnt = 1;
d2c1d404 3694 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3695 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3696 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3697 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3698}
d2c1d404 3699
f147f29e 3700/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3701static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3702{
3703 struct workqueue_struct *wq = pwq->wq;
3704
3705 lockdep_assert_held(&wq->mutex);
75ccf595 3706
1befcf30
TH
3707 /* may be called multiple times, ignore if already linked */
3708 if (!list_empty(&pwq->pwqs_node))
3709 return;
3710
983ca25e
TH
3711 /*
3712 * Set the matching work_color. This is synchronized with
3c25a55d 3713 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3714 */
75ccf595 3715 pwq->work_color = wq->work_color;
983ca25e
TH
3716
3717 /* sync max_active to the current setting */
3718 pwq_adjust_max_active(pwq);
3719
3720 /* link in @pwq */
9e8cd2f5 3721 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3722}
a357fc03 3723
f147f29e
TH
3724/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3725static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3726 const struct workqueue_attrs *attrs)
3727{
3728 struct worker_pool *pool;
3729 struct pool_workqueue *pwq;
3730
3731 lockdep_assert_held(&wq_pool_mutex);
3732
3733 pool = get_unbound_pool(attrs);
3734 if (!pool)
3735 return NULL;
3736
e50aba9a 3737 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3738 if (!pwq) {
3739 put_unbound_pool(pool);
3740 return NULL;
df2d5ae4 3741 }
6029a918 3742
f147f29e
TH
3743 init_pwq(pwq, wq, pool);
3744 return pwq;
d2c1d404
TH
3745}
3746
4c16bd32
TH
3747/* undo alloc_unbound_pwq(), used only in the error path */
3748static void free_unbound_pwq(struct pool_workqueue *pwq)
3749{
3750 lockdep_assert_held(&wq_pool_mutex);
3751
3752 if (pwq) {
3753 put_unbound_pool(pwq->pool);
3754 kfree(pwq);
3755 }
3756}
3757
3758/**
3759 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3760 * @attrs: the wq_attrs of interest
3761 * @node: the target NUMA node
3762 * @cpu_going_down: if >= 0, the CPU to consider as offline
3763 * @cpumask: outarg, the resulting cpumask
3764 *
3765 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3766 * @cpu_going_down is >= 0, that cpu is considered offline during
3767 * calculation. The result is stored in @cpumask. This function returns
3768 * %true if the resulting @cpumask is different from @attrs->cpumask,
3769 * %false if equal.
3770 *
3771 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3772 * enabled and @node has online CPUs requested by @attrs, the returned
3773 * cpumask is the intersection of the possible CPUs of @node and
3774 * @attrs->cpumask.
3775 *
3776 * The caller is responsible for ensuring that the cpumask of @node stays
3777 * stable.
3778 */
3779static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3780 int cpu_going_down, cpumask_t *cpumask)
3781{
d55262c4 3782 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3783 goto use_dfl;
3784
3785 /* does @node have any online CPUs @attrs wants? */
3786 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3787 if (cpu_going_down >= 0)
3788 cpumask_clear_cpu(cpu_going_down, cpumask);
3789
3790 if (cpumask_empty(cpumask))
3791 goto use_dfl;
3792
3793 /* yeap, return possible CPUs in @node that @attrs wants */
3794 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3795 return !cpumask_equal(cpumask, attrs->cpumask);
3796
3797use_dfl:
3798 cpumask_copy(cpumask, attrs->cpumask);
3799 return false;
3800}
3801
1befcf30
TH
3802/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3803static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3804 int node,
3805 struct pool_workqueue *pwq)
3806{
3807 struct pool_workqueue *old_pwq;
3808
3809 lockdep_assert_held(&wq->mutex);
3810
3811 /* link_pwq() can handle duplicate calls */
3812 link_pwq(pwq);
3813
3814 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3815 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3816 return old_pwq;
3817}
3818
9e8cd2f5
TH
3819/**
3820 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3821 * @wq: the target workqueue
3822 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3823 *
4c16bd32
TH
3824 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3825 * machines, this function maps a separate pwq to each NUMA node with
3826 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3827 * NUMA node it was issued on. Older pwqs are released as in-flight work
3828 * items finish. Note that a work item which repeatedly requeues itself
3829 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3830 *
3831 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3832 * failure.
3833 */
3834int apply_workqueue_attrs(struct workqueue_struct *wq,
3835 const struct workqueue_attrs *attrs)
3836{
4c16bd32
TH
3837 struct workqueue_attrs *new_attrs, *tmp_attrs;
3838 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3839 int node, ret;
9e8cd2f5 3840
8719dcea 3841 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3842 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3843 return -EINVAL;
3844
8719dcea
TH
3845 /* creating multiple pwqs breaks ordering guarantee */
3846 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3847 return -EINVAL;
3848
4c16bd32 3849 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3850 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3851 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3852 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3853 goto enomem;
3854
4c16bd32 3855 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3856 copy_workqueue_attrs(new_attrs, attrs);
3857 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3858
4c16bd32
TH
3859 /*
3860 * We may create multiple pwqs with differing cpumasks. Make a
3861 * copy of @new_attrs which will be modified and used to obtain
3862 * pools.
3863 */
3864 copy_workqueue_attrs(tmp_attrs, new_attrs);
3865
3866 /*
3867 * CPUs should stay stable across pwq creations and installations.
3868 * Pin CPUs, determine the target cpumask for each node and create
3869 * pwqs accordingly.
3870 */
3871 get_online_cpus();
3872
a892cacc 3873 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3874
3875 /*
3876 * If something goes wrong during CPU up/down, we'll fall back to
3877 * the default pwq covering whole @attrs->cpumask. Always create
3878 * it even if we don't use it immediately.
3879 */
3880 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3881 if (!dfl_pwq)
3882 goto enomem_pwq;
3883
3884 for_each_node(node) {
3885 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3886 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3887 if (!pwq_tbl[node])
3888 goto enomem_pwq;
3889 } else {
3890 dfl_pwq->refcnt++;
3891 pwq_tbl[node] = dfl_pwq;
3892 }
3893 }
3894
f147f29e 3895 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3896
4c16bd32 3897 /* all pwqs have been created successfully, let's install'em */
f147f29e 3898 mutex_lock(&wq->mutex);
a892cacc 3899
f147f29e 3900 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3901
3902 /* save the previous pwq and install the new one */
f147f29e 3903 for_each_node(node)
4c16bd32
TH
3904 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3905
3906 /* @dfl_pwq might not have been used, ensure it's linked */
3907 link_pwq(dfl_pwq);
3908 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3909
3910 mutex_unlock(&wq->mutex);
9e8cd2f5 3911
4c16bd32
TH
3912 /* put the old pwqs */
3913 for_each_node(node)
3914 put_pwq_unlocked(pwq_tbl[node]);
3915 put_pwq_unlocked(dfl_pwq);
3916
3917 put_online_cpus();
4862125b
TH
3918 ret = 0;
3919 /* fall through */
3920out_free:
4c16bd32 3921 free_workqueue_attrs(tmp_attrs);
4862125b 3922 free_workqueue_attrs(new_attrs);
4c16bd32 3923 kfree(pwq_tbl);
4862125b 3924 return ret;
13e2e556 3925
4c16bd32
TH
3926enomem_pwq:
3927 free_unbound_pwq(dfl_pwq);
3928 for_each_node(node)
3929 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3930 free_unbound_pwq(pwq_tbl[node]);
3931 mutex_unlock(&wq_pool_mutex);
3932 put_online_cpus();
13e2e556 3933enomem:
4862125b
TH
3934 ret = -ENOMEM;
3935 goto out_free;
9e8cd2f5
TH
3936}
3937
4c16bd32
TH
3938/**
3939 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3940 * @wq: the target workqueue
3941 * @cpu: the CPU coming up or going down
3942 * @online: whether @cpu is coming up or going down
3943 *
3944 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3945 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3946 * @wq accordingly.
3947 *
3948 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3949 * falls back to @wq->dfl_pwq which may not be optimal but is always
3950 * correct.
3951 *
3952 * Note that when the last allowed CPU of a NUMA node goes offline for a
3953 * workqueue with a cpumask spanning multiple nodes, the workers which were
3954 * already executing the work items for the workqueue will lose their CPU
3955 * affinity and may execute on any CPU. This is similar to how per-cpu
3956 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3957 * affinity, it's the user's responsibility to flush the work item from
3958 * CPU_DOWN_PREPARE.
3959 */
3960static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3961 bool online)
3962{
3963 int node = cpu_to_node(cpu);
3964 int cpu_off = online ? -1 : cpu;
3965 struct pool_workqueue *old_pwq = NULL, *pwq;
3966 struct workqueue_attrs *target_attrs;
3967 cpumask_t *cpumask;
3968
3969 lockdep_assert_held(&wq_pool_mutex);
3970
3971 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3972 return;
3973
3974 /*
3975 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3976 * Let's use a preallocated one. The following buf is protected by
3977 * CPU hotplug exclusion.
3978 */
3979 target_attrs = wq_update_unbound_numa_attrs_buf;
3980 cpumask = target_attrs->cpumask;
3981
3982 mutex_lock(&wq->mutex);
d55262c4
TH
3983 if (wq->unbound_attrs->no_numa)
3984 goto out_unlock;
4c16bd32
TH
3985
3986 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3987 pwq = unbound_pwq_by_node(wq, node);
3988
3989 /*
3990 * Let's determine what needs to be done. If the target cpumask is
3991 * different from wq's, we need to compare it to @pwq's and create
3992 * a new one if they don't match. If the target cpumask equals
3993 * wq's, the default pwq should be used. If @pwq is already the
3994 * default one, nothing to do; otherwise, install the default one.
3995 */
3996 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3997 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3998 goto out_unlock;
3999 } else {
4000 if (pwq == wq->dfl_pwq)
4001 goto out_unlock;
4002 else
4003 goto use_dfl_pwq;
4004 }
4005
4006 mutex_unlock(&wq->mutex);
4007
4008 /* create a new pwq */
4009 pwq = alloc_unbound_pwq(wq, target_attrs);
4010 if (!pwq) {
4011 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4012 wq->name);
4013 goto out_unlock;
4014 }
4015
4016 /*
4017 * Install the new pwq. As this function is called only from CPU
4018 * hotplug callbacks and applying a new attrs is wrapped with
4019 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4020 * inbetween.
4021 */
4022 mutex_lock(&wq->mutex);
4023 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4024 goto out_unlock;
4025
4026use_dfl_pwq:
4027 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4028 get_pwq(wq->dfl_pwq);
4029 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4030 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4031out_unlock:
4032 mutex_unlock(&wq->mutex);
4033 put_pwq_unlocked(old_pwq);
4034}
4035
30cdf249 4036static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4037{
49e3cf44 4038 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
4039 int cpu;
4040
4041 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4042 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4043 if (!wq->cpu_pwqs)
30cdf249
TH
4044 return -ENOMEM;
4045
4046 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4047 struct pool_workqueue *pwq =
4048 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4049 struct worker_pool *cpu_pools =
f02ae73a 4050 per_cpu(cpu_worker_pools, cpu);
f3421797 4051
f147f29e
TH
4052 init_pwq(pwq, wq, &cpu_pools[highpri]);
4053
4054 mutex_lock(&wq->mutex);
1befcf30 4055 link_pwq(pwq);
f147f29e 4056 mutex_unlock(&wq->mutex);
30cdf249 4057 }
9e8cd2f5 4058 return 0;
30cdf249 4059 } else {
9e8cd2f5 4060 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4061 }
0f900049
TH
4062}
4063
f3421797
TH
4064static int wq_clamp_max_active(int max_active, unsigned int flags,
4065 const char *name)
b71ab8c2 4066{
f3421797
TH
4067 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4068
4069 if (max_active < 1 || max_active > lim)
044c782c
VI
4070 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4071 max_active, name, 1, lim);
b71ab8c2 4072
f3421797 4073 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4074}
4075
b196be89 4076struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4077 unsigned int flags,
4078 int max_active,
4079 struct lock_class_key *key,
b196be89 4080 const char *lock_name, ...)
1da177e4 4081{
df2d5ae4 4082 size_t tbl_size = 0;
ecf6881f 4083 va_list args;
1da177e4 4084 struct workqueue_struct *wq;
49e3cf44 4085 struct pool_workqueue *pwq;
b196be89 4086
ecf6881f 4087 /* allocate wq and format name */
df2d5ae4
TH
4088 if (flags & WQ_UNBOUND)
4089 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4090
4091 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4092 if (!wq)
d2c1d404 4093 return NULL;
b196be89 4094
6029a918
TH
4095 if (flags & WQ_UNBOUND) {
4096 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4097 if (!wq->unbound_attrs)
4098 goto err_free_wq;
4099 }
4100
ecf6881f
TH
4101 va_start(args, lock_name);
4102 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4103 va_end(args);
1da177e4 4104
d320c038 4105 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4106 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4107
b196be89 4108 /* init wq */
97e37d7b 4109 wq->flags = flags;
a0a1a5fd 4110 wq->saved_max_active = max_active;
3c25a55d 4111 mutex_init(&wq->mutex);
112202d9 4112 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4113 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4114 INIT_LIST_HEAD(&wq->flusher_queue);
4115 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4116 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4117
eb13ba87 4118 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4119 INIT_LIST_HEAD(&wq->list);
3af24433 4120
30cdf249 4121 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4122 goto err_free_wq;
1537663f 4123
493008a8
TH
4124 /*
4125 * Workqueues which may be used during memory reclaim should
4126 * have a rescuer to guarantee forward progress.
4127 */
4128 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4129 struct worker *rescuer;
4130
d2c1d404 4131 rescuer = alloc_worker();
e22bee78 4132 if (!rescuer)
d2c1d404 4133 goto err_destroy;
e22bee78 4134
111c225a
TH
4135 rescuer->rescue_wq = wq;
4136 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4137 wq->name);
d2c1d404
TH
4138 if (IS_ERR(rescuer->task)) {
4139 kfree(rescuer);
4140 goto err_destroy;
4141 }
e22bee78 4142
d2c1d404 4143 wq->rescuer = rescuer;
14a40ffc 4144 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4145 wake_up_process(rescuer->task);
3af24433
ON
4146 }
4147
226223ab
TH
4148 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4149 goto err_destroy;
4150
a0a1a5fd 4151 /*
68e13a67
LJ
4152 * wq_pool_mutex protects global freeze state and workqueues list.
4153 * Grab it, adjust max_active and add the new @wq to workqueues
4154 * list.
a0a1a5fd 4155 */
68e13a67 4156 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4157
a357fc03 4158 mutex_lock(&wq->mutex);
699ce097
TH
4159 for_each_pwq(pwq, wq)
4160 pwq_adjust_max_active(pwq);
a357fc03 4161 mutex_unlock(&wq->mutex);
a0a1a5fd 4162
1537663f 4163 list_add(&wq->list, &workqueues);
a0a1a5fd 4164
68e13a67 4165 mutex_unlock(&wq_pool_mutex);
1537663f 4166
3af24433 4167 return wq;
d2c1d404
TH
4168
4169err_free_wq:
6029a918 4170 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4171 kfree(wq);
4172 return NULL;
4173err_destroy:
4174 destroy_workqueue(wq);
4690c4ab 4175 return NULL;
3af24433 4176}
d320c038 4177EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4178
3af24433
ON
4179/**
4180 * destroy_workqueue - safely terminate a workqueue
4181 * @wq: target workqueue
4182 *
4183 * Safely destroy a workqueue. All work currently pending will be done first.
4184 */
4185void destroy_workqueue(struct workqueue_struct *wq)
4186{
49e3cf44 4187 struct pool_workqueue *pwq;
4c16bd32 4188 int node;
3af24433 4189
9c5a2ba7
TH
4190 /* drain it before proceeding with destruction */
4191 drain_workqueue(wq);
c8efcc25 4192
6183c009 4193 /* sanity checks */
b09f4fd3 4194 mutex_lock(&wq->mutex);
49e3cf44 4195 for_each_pwq(pwq, wq) {
6183c009
TH
4196 int i;
4197
76af4d93
TH
4198 for (i = 0; i < WORK_NR_COLORS; i++) {
4199 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4200 mutex_unlock(&wq->mutex);
6183c009 4201 return;
76af4d93
TH
4202 }
4203 }
4204
8864b4e5
TH
4205 if (WARN_ON(pwq->refcnt > 1) ||
4206 WARN_ON(pwq->nr_active) ||
76af4d93 4207 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4208 mutex_unlock(&wq->mutex);
6183c009 4209 return;
76af4d93 4210 }
6183c009 4211 }
b09f4fd3 4212 mutex_unlock(&wq->mutex);
6183c009 4213
a0a1a5fd
TH
4214 /*
4215 * wq list is used to freeze wq, remove from list after
4216 * flushing is complete in case freeze races us.
4217 */
68e13a67 4218 mutex_lock(&wq_pool_mutex);
d2c1d404 4219 list_del_init(&wq->list);
68e13a67 4220 mutex_unlock(&wq_pool_mutex);
3af24433 4221
226223ab
TH
4222 workqueue_sysfs_unregister(wq);
4223
493008a8 4224 if (wq->rescuer) {
e22bee78 4225 kthread_stop(wq->rescuer->task);
8d9df9f0 4226 kfree(wq->rescuer);
493008a8 4227 wq->rescuer = NULL;
e22bee78
TH
4228 }
4229
8864b4e5
TH
4230 if (!(wq->flags & WQ_UNBOUND)) {
4231 /*
4232 * The base ref is never dropped on per-cpu pwqs. Directly
4233 * free the pwqs and wq.
4234 */
4235 free_percpu(wq->cpu_pwqs);
4236 kfree(wq);
4237 } else {
4238 /*
4239 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4240 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4241 * @wq will be freed when the last pwq is released.
8864b4e5 4242 */
4c16bd32
TH
4243 for_each_node(node) {
4244 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4245 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4246 put_pwq_unlocked(pwq);
4247 }
4248
4249 /*
4250 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4251 * put. Don't access it afterwards.
4252 */
4253 pwq = wq->dfl_pwq;
4254 wq->dfl_pwq = NULL;
dce90d47 4255 put_pwq_unlocked(pwq);
29c91e99 4256 }
3af24433
ON
4257}
4258EXPORT_SYMBOL_GPL(destroy_workqueue);
4259
dcd989cb
TH
4260/**
4261 * workqueue_set_max_active - adjust max_active of a workqueue
4262 * @wq: target workqueue
4263 * @max_active: new max_active value.
4264 *
4265 * Set max_active of @wq to @max_active.
4266 *
4267 * CONTEXT:
4268 * Don't call from IRQ context.
4269 */
4270void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4271{
49e3cf44 4272 struct pool_workqueue *pwq;
dcd989cb 4273
8719dcea
TH
4274 /* disallow meddling with max_active for ordered workqueues */
4275 if (WARN_ON(wq->flags & __WQ_ORDERED))
4276 return;
4277
f3421797 4278 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4279
a357fc03 4280 mutex_lock(&wq->mutex);
dcd989cb
TH
4281
4282 wq->saved_max_active = max_active;
4283
699ce097
TH
4284 for_each_pwq(pwq, wq)
4285 pwq_adjust_max_active(pwq);
93981800 4286
a357fc03 4287 mutex_unlock(&wq->mutex);
15316ba8 4288}
dcd989cb 4289EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4290
e6267616
TH
4291/**
4292 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4293 *
4294 * Determine whether %current is a workqueue rescuer. Can be used from
4295 * work functions to determine whether it's being run off the rescuer task.
4296 */
4297bool current_is_workqueue_rescuer(void)
4298{
4299 struct worker *worker = current_wq_worker();
4300
6a092dfd 4301 return worker && worker->rescue_wq;
e6267616
TH
4302}
4303
eef6a7d5 4304/**
dcd989cb
TH
4305 * workqueue_congested - test whether a workqueue is congested
4306 * @cpu: CPU in question
4307 * @wq: target workqueue
eef6a7d5 4308 *
dcd989cb
TH
4309 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4310 * no synchronization around this function and the test result is
4311 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4312 *
dcd989cb
TH
4313 * RETURNS:
4314 * %true if congested, %false otherwise.
eef6a7d5 4315 */
d84ff051 4316bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4317{
7fb98ea7 4318 struct pool_workqueue *pwq;
76af4d93
TH
4319 bool ret;
4320
88109453 4321 rcu_read_lock_sched();
7fb98ea7
TH
4322
4323 if (!(wq->flags & WQ_UNBOUND))
4324 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4325 else
df2d5ae4 4326 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4327
76af4d93 4328 ret = !list_empty(&pwq->delayed_works);
88109453 4329 rcu_read_unlock_sched();
76af4d93
TH
4330
4331 return ret;
1da177e4 4332}
dcd989cb 4333EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4334
dcd989cb
TH
4335/**
4336 * work_busy - test whether a work is currently pending or running
4337 * @work: the work to be tested
4338 *
4339 * Test whether @work is currently pending or running. There is no
4340 * synchronization around this function and the test result is
4341 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4342 *
4343 * RETURNS:
4344 * OR'd bitmask of WORK_BUSY_* bits.
4345 */
4346unsigned int work_busy(struct work_struct *work)
1da177e4 4347{
fa1b54e6 4348 struct worker_pool *pool;
dcd989cb
TH
4349 unsigned long flags;
4350 unsigned int ret = 0;
1da177e4 4351
dcd989cb
TH
4352 if (work_pending(work))
4353 ret |= WORK_BUSY_PENDING;
1da177e4 4354
fa1b54e6
TH
4355 local_irq_save(flags);
4356 pool = get_work_pool(work);
038366c5 4357 if (pool) {
fa1b54e6 4358 spin_lock(&pool->lock);
038366c5
LJ
4359 if (find_worker_executing_work(pool, work))
4360 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4361 spin_unlock(&pool->lock);
038366c5 4362 }
fa1b54e6 4363 local_irq_restore(flags);
1da177e4 4364
dcd989cb 4365 return ret;
1da177e4 4366}
dcd989cb 4367EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4368
db7bccf4
TH
4369/*
4370 * CPU hotplug.
4371 *
e22bee78 4372 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4373 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4374 * pool which make migrating pending and scheduled works very
e22bee78 4375 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4376 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4377 * blocked draining impractical.
4378 *
24647570 4379 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4380 * running as an unbound one and allowing it to be reattached later if the
4381 * cpu comes back online.
db7bccf4 4382 */
1da177e4 4383
706026c2 4384static void wq_unbind_fn(struct work_struct *work)
3af24433 4385{
38db41d9 4386 int cpu = smp_processor_id();
4ce62e9e 4387 struct worker_pool *pool;
db7bccf4 4388 struct worker *worker;
a9ab775b 4389 int wi;
3af24433 4390
f02ae73a 4391 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4392 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4393
bc3a1afc 4394 mutex_lock(&pool->manager_mutex);
94cf58bb 4395 spin_lock_irq(&pool->lock);
3af24433 4396
94cf58bb 4397 /*
bc3a1afc 4398 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4399 * unbound and set DISASSOCIATED. Before this, all workers
4400 * except for the ones which are still executing works from
4401 * before the last CPU down must be on the cpu. After
4402 * this, they may become diasporas.
4403 */
a9ab775b 4404 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4405 worker->flags |= WORKER_UNBOUND;
06ba38a9 4406
24647570 4407 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4408
94cf58bb 4409 spin_unlock_irq(&pool->lock);
bc3a1afc 4410 mutex_unlock(&pool->manager_mutex);
94cf58bb 4411 }
628c78e7 4412
e22bee78 4413 /*
403c821d 4414 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4415 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4416 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4417 */
e22bee78 4418 schedule();
06ba38a9 4419
e22bee78 4420 /*
628c78e7
TH
4421 * Sched callbacks are disabled now. Zap nr_running. After this,
4422 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4423 * are always true as long as the worklist is not empty. Pools on
4424 * @cpu now behave as unbound (in terms of concurrency management)
4425 * pools which are served by workers tied to the CPU.
628c78e7
TH
4426 *
4427 * On return from this function, the current worker would trigger
4428 * unbound chain execution of pending work items if other workers
4429 * didn't already.
e22bee78 4430 */
f02ae73a 4431 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4432 atomic_set(&pool->nr_running, 0);
3af24433 4433}
3af24433 4434
bd7c089e
TH
4435/**
4436 * rebind_workers - rebind all workers of a pool to the associated CPU
4437 * @pool: pool of interest
4438 *
a9ab775b 4439 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4440 */
4441static void rebind_workers(struct worker_pool *pool)
4442{
a9ab775b
TH
4443 struct worker *worker;
4444 int wi;
bd7c089e
TH
4445
4446 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4447
a9ab775b
TH
4448 /*
4449 * Restore CPU affinity of all workers. As all idle workers should
4450 * be on the run-queue of the associated CPU before any local
4451 * wake-ups for concurrency management happen, restore CPU affinty
4452 * of all workers first and then clear UNBOUND. As we're called
4453 * from CPU_ONLINE, the following shouldn't fail.
4454 */
4455 for_each_pool_worker(worker, wi, pool)
4456 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4457 pool->attrs->cpumask) < 0);
bd7c089e 4458
a9ab775b 4459 spin_lock_irq(&pool->lock);
bd7c089e 4460
a9ab775b
TH
4461 for_each_pool_worker(worker, wi, pool) {
4462 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4463
4464 /*
a9ab775b
TH
4465 * A bound idle worker should actually be on the runqueue
4466 * of the associated CPU for local wake-ups targeting it to
4467 * work. Kick all idle workers so that they migrate to the
4468 * associated CPU. Doing this in the same loop as
4469 * replacing UNBOUND with REBOUND is safe as no worker will
4470 * be bound before @pool->lock is released.
bd7c089e 4471 */
a9ab775b
TH
4472 if (worker_flags & WORKER_IDLE)
4473 wake_up_process(worker->task);
bd7c089e 4474
a9ab775b
TH
4475 /*
4476 * We want to clear UNBOUND but can't directly call
4477 * worker_clr_flags() or adjust nr_running. Atomically
4478 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4479 * @worker will clear REBOUND using worker_clr_flags() when
4480 * it initiates the next execution cycle thus restoring
4481 * concurrency management. Note that when or whether
4482 * @worker clears REBOUND doesn't affect correctness.
4483 *
4484 * ACCESS_ONCE() is necessary because @worker->flags may be
4485 * tested without holding any lock in
4486 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4487 * fail incorrectly leading to premature concurrency
4488 * management operations.
4489 */
4490 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4491 worker_flags |= WORKER_REBOUND;
4492 worker_flags &= ~WORKER_UNBOUND;
4493 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4494 }
a9ab775b
TH
4495
4496 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4497}
4498
7dbc725e
TH
4499/**
4500 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4501 * @pool: unbound pool of interest
4502 * @cpu: the CPU which is coming up
4503 *
4504 * An unbound pool may end up with a cpumask which doesn't have any online
4505 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4506 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4507 * online CPU before, cpus_allowed of all its workers should be restored.
4508 */
4509static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4510{
4511 static cpumask_t cpumask;
4512 struct worker *worker;
4513 int wi;
4514
4515 lockdep_assert_held(&pool->manager_mutex);
4516
4517 /* is @cpu allowed for @pool? */
4518 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4519 return;
4520
4521 /* is @cpu the only online CPU? */
4522 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4523 if (cpumask_weight(&cpumask) != 1)
4524 return;
4525
4526 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4527 for_each_pool_worker(worker, wi, pool)
4528 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4529 pool->attrs->cpumask) < 0);
4530}
4531
8db25e78
TH
4532/*
4533 * Workqueues should be brought up before normal priority CPU notifiers.
4534 * This will be registered high priority CPU notifier.
4535 */
9fdf9b73 4536static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4537 unsigned long action,
4538 void *hcpu)
3af24433 4539{
d84ff051 4540 int cpu = (unsigned long)hcpu;
4ce62e9e 4541 struct worker_pool *pool;
4c16bd32 4542 struct workqueue_struct *wq;
7dbc725e 4543 int pi;
3ce63377 4544
8db25e78 4545 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4546 case CPU_UP_PREPARE:
f02ae73a 4547 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4548 if (pool->nr_workers)
4549 continue;
ebf44d16 4550 if (create_and_start_worker(pool) < 0)
3ce63377 4551 return NOTIFY_BAD;
3af24433 4552 }
8db25e78 4553 break;
3af24433 4554
db7bccf4
TH
4555 case CPU_DOWN_FAILED:
4556 case CPU_ONLINE:
68e13a67 4557 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4558
4559 for_each_pool(pool, pi) {
bc3a1afc 4560 mutex_lock(&pool->manager_mutex);
94cf58bb 4561
7dbc725e
TH
4562 if (pool->cpu == cpu) {
4563 spin_lock_irq(&pool->lock);
4564 pool->flags &= ~POOL_DISASSOCIATED;
4565 spin_unlock_irq(&pool->lock);
a9ab775b 4566
7dbc725e
TH
4567 rebind_workers(pool);
4568 } else if (pool->cpu < 0) {
4569 restore_unbound_workers_cpumask(pool, cpu);
4570 }
94cf58bb 4571
bc3a1afc 4572 mutex_unlock(&pool->manager_mutex);
94cf58bb 4573 }
7dbc725e 4574
4c16bd32
TH
4575 /* update NUMA affinity of unbound workqueues */
4576 list_for_each_entry(wq, &workqueues, list)
4577 wq_update_unbound_numa(wq, cpu, true);
4578
68e13a67 4579 mutex_unlock(&wq_pool_mutex);
db7bccf4 4580 break;
00dfcaf7 4581 }
65758202
TH
4582 return NOTIFY_OK;
4583}
4584
4585/*
4586 * Workqueues should be brought down after normal priority CPU notifiers.
4587 * This will be registered as low priority CPU notifier.
4588 */
9fdf9b73 4589static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4590 unsigned long action,
4591 void *hcpu)
4592{
d84ff051 4593 int cpu = (unsigned long)hcpu;
8db25e78 4594 struct work_struct unbind_work;
4c16bd32 4595 struct workqueue_struct *wq;
8db25e78 4596
65758202
TH
4597 switch (action & ~CPU_TASKS_FROZEN) {
4598 case CPU_DOWN_PREPARE:
4c16bd32 4599 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4600 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4601 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4602
4603 /* update NUMA affinity of unbound workqueues */
4604 mutex_lock(&wq_pool_mutex);
4605 list_for_each_entry(wq, &workqueues, list)
4606 wq_update_unbound_numa(wq, cpu, false);
4607 mutex_unlock(&wq_pool_mutex);
4608
4609 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4610 flush_work(&unbind_work);
4611 break;
65758202
TH
4612 }
4613 return NOTIFY_OK;
4614}
4615
2d3854a3 4616#ifdef CONFIG_SMP
8ccad40d 4617
2d3854a3 4618struct work_for_cpu {
ed48ece2 4619 struct work_struct work;
2d3854a3
RR
4620 long (*fn)(void *);
4621 void *arg;
4622 long ret;
4623};
4624
ed48ece2 4625static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4626{
ed48ece2
TH
4627 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4628
2d3854a3
RR
4629 wfc->ret = wfc->fn(wfc->arg);
4630}
4631
4632/**
4633 * work_on_cpu - run a function in user context on a particular cpu
4634 * @cpu: the cpu to run on
4635 * @fn: the function to run
4636 * @arg: the function arg
4637 *
31ad9081
RR
4638 * This will return the value @fn returns.
4639 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4640 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4641 */
d84ff051 4642long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4643{
ed48ece2 4644 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4645
ed48ece2
TH
4646 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4647 schedule_work_on(cpu, &wfc.work);
4648 flush_work(&wfc.work);
2d3854a3
RR
4649 return wfc.ret;
4650}
4651EXPORT_SYMBOL_GPL(work_on_cpu);
4652#endif /* CONFIG_SMP */
4653
a0a1a5fd
TH
4654#ifdef CONFIG_FREEZER
4655
4656/**
4657 * freeze_workqueues_begin - begin freezing workqueues
4658 *
58a69cb4 4659 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4660 * workqueues will queue new works to their delayed_works list instead of
706026c2 4661 * pool->worklist.
a0a1a5fd
TH
4662 *
4663 * CONTEXT:
a357fc03 4664 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4665 */
4666void freeze_workqueues_begin(void)
4667{
17116969 4668 struct worker_pool *pool;
24b8a847
TH
4669 struct workqueue_struct *wq;
4670 struct pool_workqueue *pwq;
611c92a0 4671 int pi;
a0a1a5fd 4672
68e13a67 4673 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4674
6183c009 4675 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4676 workqueue_freezing = true;
4677
24b8a847 4678 /* set FREEZING */
611c92a0 4679 for_each_pool(pool, pi) {
5bcab335 4680 spin_lock_irq(&pool->lock);
17116969
TH
4681 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4682 pool->flags |= POOL_FREEZING;
5bcab335 4683 spin_unlock_irq(&pool->lock);
24b8a847 4684 }
a0a1a5fd 4685
24b8a847 4686 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4687 mutex_lock(&wq->mutex);
699ce097
TH
4688 for_each_pwq(pwq, wq)
4689 pwq_adjust_max_active(pwq);
a357fc03 4690 mutex_unlock(&wq->mutex);
a0a1a5fd 4691 }
5bcab335 4692
68e13a67 4693 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4694}
4695
4696/**
58a69cb4 4697 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4698 *
4699 * Check whether freezing is complete. This function must be called
4700 * between freeze_workqueues_begin() and thaw_workqueues().
4701 *
4702 * CONTEXT:
68e13a67 4703 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4704 *
4705 * RETURNS:
58a69cb4
TH
4706 * %true if some freezable workqueues are still busy. %false if freezing
4707 * is complete.
a0a1a5fd
TH
4708 */
4709bool freeze_workqueues_busy(void)
4710{
a0a1a5fd 4711 bool busy = false;
24b8a847
TH
4712 struct workqueue_struct *wq;
4713 struct pool_workqueue *pwq;
a0a1a5fd 4714
68e13a67 4715 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4716
6183c009 4717 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4718
24b8a847
TH
4719 list_for_each_entry(wq, &workqueues, list) {
4720 if (!(wq->flags & WQ_FREEZABLE))
4721 continue;
a0a1a5fd
TH
4722 /*
4723 * nr_active is monotonically decreasing. It's safe
4724 * to peek without lock.
4725 */
88109453 4726 rcu_read_lock_sched();
24b8a847 4727 for_each_pwq(pwq, wq) {
6183c009 4728 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4729 if (pwq->nr_active) {
a0a1a5fd 4730 busy = true;
88109453 4731 rcu_read_unlock_sched();
a0a1a5fd
TH
4732 goto out_unlock;
4733 }
4734 }
88109453 4735 rcu_read_unlock_sched();
a0a1a5fd
TH
4736 }
4737out_unlock:
68e13a67 4738 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4739 return busy;
4740}
4741
4742/**
4743 * thaw_workqueues - thaw workqueues
4744 *
4745 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4746 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4747 *
4748 * CONTEXT:
a357fc03 4749 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4750 */
4751void thaw_workqueues(void)
4752{
24b8a847
TH
4753 struct workqueue_struct *wq;
4754 struct pool_workqueue *pwq;
4755 struct worker_pool *pool;
611c92a0 4756 int pi;
a0a1a5fd 4757
68e13a67 4758 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4759
4760 if (!workqueue_freezing)
4761 goto out_unlock;
4762
24b8a847 4763 /* clear FREEZING */
611c92a0 4764 for_each_pool(pool, pi) {
5bcab335 4765 spin_lock_irq(&pool->lock);
24b8a847
TH
4766 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4767 pool->flags &= ~POOL_FREEZING;
5bcab335 4768 spin_unlock_irq(&pool->lock);
24b8a847 4769 }
8b03ae3c 4770
24b8a847
TH
4771 /* restore max_active and repopulate worklist */
4772 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4773 mutex_lock(&wq->mutex);
699ce097
TH
4774 for_each_pwq(pwq, wq)
4775 pwq_adjust_max_active(pwq);
a357fc03 4776 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4777 }
4778
4779 workqueue_freezing = false;
4780out_unlock:
68e13a67 4781 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4782}
4783#endif /* CONFIG_FREEZER */
4784
bce90380
TH
4785static void __init wq_numa_init(void)
4786{
4787 cpumask_var_t *tbl;
4788 int node, cpu;
4789
4790 /* determine NUMA pwq table len - highest node id + 1 */
4791 for_each_node(node)
4792 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4793
4794 if (num_possible_nodes() <= 1)
4795 return;
4796
d55262c4
TH
4797 if (wq_disable_numa) {
4798 pr_info("workqueue: NUMA affinity support disabled\n");
4799 return;
4800 }
4801
4c16bd32
TH
4802 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4803 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4804
bce90380
TH
4805 /*
4806 * We want masks of possible CPUs of each node which isn't readily
4807 * available. Build one from cpu_to_node() which should have been
4808 * fully initialized by now.
4809 */
4810 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4811 BUG_ON(!tbl);
4812
4813 for_each_node(node)
4814 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
4815
4816 for_each_possible_cpu(cpu) {
4817 node = cpu_to_node(cpu);
4818 if (WARN_ON(node == NUMA_NO_NODE)) {
4819 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4820 /* happens iff arch is bonkers, let's just proceed */
4821 return;
4822 }
4823 cpumask_set_cpu(cpu, tbl[node]);
4824 }
4825
4826 wq_numa_possible_cpumask = tbl;
4827 wq_numa_enabled = true;
4828}
4829
6ee0578b 4830static int __init init_workqueues(void)
1da177e4 4831{
7a4e344c
TH
4832 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4833 int i, cpu;
c34056a3 4834
7c3eed5c
TH
4835 /* make sure we have enough bits for OFFQ pool ID */
4836 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4837 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4838
e904e6c2
TH
4839 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4840
4841 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4842
65758202 4843 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4844 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4845
bce90380
TH
4846 wq_numa_init();
4847
706026c2 4848 /* initialize CPU pools */
29c91e99 4849 for_each_possible_cpu(cpu) {
4ce62e9e 4850 struct worker_pool *pool;
8b03ae3c 4851
7a4e344c 4852 i = 0;
f02ae73a 4853 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4854 BUG_ON(init_worker_pool(pool));
ec22ca5e 4855 pool->cpu = cpu;
29c91e99 4856 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4857 pool->attrs->nice = std_nice[i++];
f3f90ad4 4858 pool->node = cpu_to_node(cpu);
7a4e344c 4859
9daf9e67 4860 /* alloc pool ID */
68e13a67 4861 mutex_lock(&wq_pool_mutex);
9daf9e67 4862 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4863 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4864 }
8b03ae3c
TH
4865 }
4866
e22bee78 4867 /* create the initial worker */
29c91e99 4868 for_each_online_cpu(cpu) {
4ce62e9e 4869 struct worker_pool *pool;
e22bee78 4870
f02ae73a 4871 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4872 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4873 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4874 }
e22bee78
TH
4875 }
4876
29c91e99
TH
4877 /* create default unbound wq attrs */
4878 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4879 struct workqueue_attrs *attrs;
4880
4881 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4882 attrs->nice = std_nice[i];
29c91e99
TH
4883 unbound_std_wq_attrs[i] = attrs;
4884 }
4885
d320c038 4886 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4887 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4888 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4889 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4890 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4891 system_freezable_wq = alloc_workqueue("events_freezable",
4892 WQ_FREEZABLE, 0);
1aabe902 4893 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4894 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4895 return 0;
1da177e4 4896}
6ee0578b 4897early_initcall(init_workqueues);