]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - kernel/workqueue.c
workqueue: set delayed_work->timer function on initialization
[mirror_ubuntu-focal-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
3270476a 186 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 187
25511a47 188 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
189} ____cacheline_aligned_in_smp;
190
1da177e4 191/*
502ca9d8 192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
1da177e4
LT
195 */
196struct cpu_workqueue_struct {
bd7bdd43 197 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 198 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
1e19ffc6 203 int nr_active; /* L: nr of active works */
a0a1a5fd 204 int max_active; /* L: max active works */
1e19ffc6 205 struct list_head delayed_works; /* L: delayed works */
0f900049 206};
1da177e4 207
73f53c4a
TH
208/*
209 * Structure used to wait for workqueue flush.
210 */
211struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215};
216
f2e005aa
TH
217/*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221#ifdef CONFIG_SMP
222typedef cpumask_var_t mayday_mask_t;
223#define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 227#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
228#define free_mayday_mask(mask) free_cpumask_var((mask))
229#else
230typedef unsigned long mayday_mask_t;
231#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234#define alloc_mayday_mask(maskp, gfp) true
235#define free_mayday_mask(mask) do { } while (0)
236#endif
1da177e4
LT
237
238/*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242struct workqueue_struct {
9c5a2ba7 243 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
4690c4ab 249 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
f2e005aa 259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
260 struct worker *rescuer; /* I: rescue worker */
261
9c5a2ba7 262 int nr_drainers; /* W: drain in progress */
dcd989cb 263 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
b196be89 267 char name[]; /* I: workqueue name */
1da177e4
LT
268};
269
d320c038
TH
270struct workqueue_struct *system_wq __read_mostly;
271struct workqueue_struct *system_long_wq __read_mostly;
272struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 273struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 274struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 275struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
276EXPORT_SYMBOL_GPL(system_wq);
277EXPORT_SYMBOL_GPL(system_long_wq);
278EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 279EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 280EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 281EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 282
97bd2347
TH
283#define CREATE_TRACE_POINTS
284#include <trace/events/workqueue.h>
285
4ce62e9e 286#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 289
db7bccf4
TH
290#define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
f3421797
TH
294static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296{
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307}
308
309static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311{
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313}
314
09884951
TH
315/*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
f3421797
TH
328#define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333#define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338#define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
dc186ad7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345static struct debug_obj_descr work_debug_descr;
346
99777288
SG
347static void *work_debug_hint(void *addr)
348{
349 return ((struct work_struct *) addr)->func;
350}
351
dc186ad7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356static int work_fixup_init(void *addr, enum debug_obj_state state)
357{
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375static int work_fixup_activate(void *addr, enum debug_obj_state state)
376{
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
22df02bb 387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401}
402
403/*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407static int work_fixup_free(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
99777288 423 .debug_hint = work_debug_hint,
dc186ad7
TG
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427};
428
429static inline void debug_work_activate(struct work_struct *work)
430{
431 debug_object_activate(work, &work_debug_descr);
432}
433
434static inline void debug_work_deactivate(struct work_struct *work)
435{
436 debug_object_deactivate(work, &work_debug_descr);
437}
438
439void __init_work(struct work_struct *work, int onstack)
440{
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445}
446EXPORT_SYMBOL_GPL(__init_work);
447
448void destroy_work_on_stack(struct work_struct *work)
449{
450 debug_object_free(work, &work_debug_descr);
451}
452EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454#else
455static inline void debug_work_activate(struct work_struct *work) { }
456static inline void debug_work_deactivate(struct work_struct *work) { }
457#endif
458
95402b38
GS
459/* Serializes the accesses to the list of workqueues. */
460static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 461static LIST_HEAD(workqueues);
a0a1a5fd 462static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 463
e22bee78
TH
464/*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
8b03ae3c 469static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 470static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 471
f3421797
TH
472/*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
478static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480};
f3421797 481
c34056a3 482static int worker_thread(void *__worker);
1da177e4 483
3270476a
TH
484static int worker_pool_pri(struct worker_pool *pool)
485{
486 return pool - pool->gcwq->pools;
487}
488
8b03ae3c
TH
489static struct global_cwq *get_gcwq(unsigned int cpu)
490{
f3421797
TH
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
8b03ae3c
TH
495}
496
63d95a91 497static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 498{
63d95a91 499 int cpu = pool->gcwq->cpu;
3270476a 500 int idx = worker_pool_pri(pool);
63d95a91 501
f3421797 502 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 503 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 504 else
4ce62e9e 505 return &unbound_pool_nr_running[idx];
e22bee78
TH
506}
507
1537663f
TH
508static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
b1f4ec17 510{
f3421797 511 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 512 if (likely(cpu < nr_cpu_ids))
f3421797 513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
e120153d
TH
536 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
537 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
538 * cleared and the work data contains the cpu number it was last on.
7a22ad75 539 *
8930caba
TH
540 * set_work_cwq(), set_work_cpu_and_clear_pending() and clear_work_data()
541 * can be used to set the cwq, cpu or clear work->data. These functions
542 * should only be called while the work is owned - ie. while the PENDING
543 * bit is set.
7a22ad75
TH
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546 * corresponding to a work. gcwq is available once the work has been
547 * queued anywhere after initialization. cwq is available only from
548 * queueing until execution starts.
14441960 549 */
7a22ad75
TH
550static inline void set_work_data(struct work_struct *work, unsigned long data,
551 unsigned long flags)
365970a1 552{
4594bf15 553 BUG_ON(!work_pending(work));
7a22ad75
TH
554 atomic_long_set(&work->data, data | flags | work_static(work));
555}
365970a1 556
7a22ad75
TH
557static void set_work_cwq(struct work_struct *work,
558 struct cpu_workqueue_struct *cwq,
559 unsigned long extra_flags)
560{
561 set_work_data(work, (unsigned long)cwq,
e120153d 562 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
563}
564
8930caba
TH
565static void set_work_cpu_and_clear_pending(struct work_struct *work,
566 unsigned int cpu)
7a22ad75 567{
8930caba 568 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, 0);
7a22ad75 569}
f756d5e2 570
7a22ad75 571static void clear_work_data(struct work_struct *work)
1da177e4 572{
7a22ad75 573 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
574}
575
7a22ad75 576static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 577{
e120153d 578 unsigned long data = atomic_long_read(&work->data);
7a22ad75 579
e120153d
TH
580 if (data & WORK_STRUCT_CWQ)
581 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
582 else
583 return NULL;
4d707b9f
ON
584}
585
7a22ad75 586static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
589 unsigned int cpu;
590
e120153d
TH
591 if (data & WORK_STRUCT_CWQ)
592 return ((struct cpu_workqueue_struct *)
bd7bdd43 593 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75
TH
594
595 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 596 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
597 return NULL;
598
f3421797 599 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 600 return get_gcwq(cpu);
b1f4ec17
ON
601}
602
e22bee78 603/*
3270476a
TH
604 * Policy functions. These define the policies on how the global worker
605 * pools are managed. Unless noted otherwise, these functions assume that
606 * they're being called with gcwq->lock held.
e22bee78
TH
607 */
608
63d95a91 609static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 610{
3270476a 611 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
612}
613
4594bf15 614/*
e22bee78
TH
615 * Need to wake up a worker? Called from anything but currently
616 * running workers.
974271c4
TH
617 *
618 * Note that, because unbound workers never contribute to nr_running, this
619 * function will always return %true for unbound gcwq as long as the
620 * worklist isn't empty.
4594bf15 621 */
63d95a91 622static bool need_more_worker(struct worker_pool *pool)
365970a1 623{
63d95a91 624 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 625}
4594bf15 626
e22bee78 627/* Can I start working? Called from busy but !running workers. */
63d95a91 628static bool may_start_working(struct worker_pool *pool)
e22bee78 629{
63d95a91 630 return pool->nr_idle;
e22bee78
TH
631}
632
633/* Do I need to keep working? Called from currently running workers. */
63d95a91 634static bool keep_working(struct worker_pool *pool)
e22bee78 635{
63d95a91 636 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 637
3270476a 638 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
639}
640
641/* Do we need a new worker? Called from manager. */
63d95a91 642static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 643{
63d95a91 644 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 645}
365970a1 646
e22bee78 647/* Do I need to be the manager? */
63d95a91 648static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 649{
63d95a91 650 return need_to_create_worker(pool) ||
11ebea50 651 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
652}
653
654/* Do we have too many workers and should some go away? */
63d95a91 655static bool too_many_workers(struct worker_pool *pool)
e22bee78 656{
60373152 657 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
658 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
659 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
660
661 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
662}
663
4d707b9f 664/*
e22bee78
TH
665 * Wake up functions.
666 */
667
7e11629d 668/* Return the first worker. Safe with preemption disabled */
63d95a91 669static struct worker *first_worker(struct worker_pool *pool)
7e11629d 670{
63d95a91 671 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
672 return NULL;
673
63d95a91 674 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
675}
676
677/**
678 * wake_up_worker - wake up an idle worker
63d95a91 679 * @pool: worker pool to wake worker from
7e11629d 680 *
63d95a91 681 * Wake up the first idle worker of @pool.
7e11629d
TH
682 *
683 * CONTEXT:
684 * spin_lock_irq(gcwq->lock).
685 */
63d95a91 686static void wake_up_worker(struct worker_pool *pool)
7e11629d 687{
63d95a91 688 struct worker *worker = first_worker(pool);
7e11629d
TH
689
690 if (likely(worker))
691 wake_up_process(worker->task);
692}
693
d302f017 694/**
e22bee78
TH
695 * wq_worker_waking_up - a worker is waking up
696 * @task: task waking up
697 * @cpu: CPU @task is waking up to
698 *
699 * This function is called during try_to_wake_up() when a worker is
700 * being awoken.
701 *
702 * CONTEXT:
703 * spin_lock_irq(rq->lock)
704 */
705void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
706{
707 struct worker *worker = kthread_data(task);
708
2d64672e 709 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 710 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
711}
712
713/**
714 * wq_worker_sleeping - a worker is going to sleep
715 * @task: task going to sleep
716 * @cpu: CPU in question, must be the current CPU number
717 *
718 * This function is called during schedule() when a busy worker is
719 * going to sleep. Worker on the same cpu can be woken up by
720 * returning pointer to its task.
721 *
722 * CONTEXT:
723 * spin_lock_irq(rq->lock)
724 *
725 * RETURNS:
726 * Worker task on @cpu to wake up, %NULL if none.
727 */
728struct task_struct *wq_worker_sleeping(struct task_struct *task,
729 unsigned int cpu)
730{
731 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 732 struct worker_pool *pool = worker->pool;
63d95a91 733 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 734
2d64672e 735 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
736 return NULL;
737
738 /* this can only happen on the local cpu */
739 BUG_ON(cpu != raw_smp_processor_id());
740
741 /*
742 * The counterpart of the following dec_and_test, implied mb,
743 * worklist not empty test sequence is in insert_work().
744 * Please read comment there.
745 *
628c78e7
TH
746 * NOT_RUNNING is clear. This means that we're bound to and
747 * running on the local cpu w/ rq lock held and preemption
748 * disabled, which in turn means that none else could be
749 * manipulating idle_list, so dereferencing idle_list without gcwq
750 * lock is safe.
e22bee78 751 */
bd7bdd43 752 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 753 to_wakeup = first_worker(pool);
e22bee78
TH
754 return to_wakeup ? to_wakeup->task : NULL;
755}
756
757/**
758 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 759 * @worker: self
d302f017
TH
760 * @flags: flags to set
761 * @wakeup: wakeup an idle worker if necessary
762 *
e22bee78
TH
763 * Set @flags in @worker->flags and adjust nr_running accordingly. If
764 * nr_running becomes zero and @wakeup is %true, an idle worker is
765 * woken up.
d302f017 766 *
cb444766
TH
767 * CONTEXT:
768 * spin_lock_irq(gcwq->lock)
d302f017
TH
769 */
770static inline void worker_set_flags(struct worker *worker, unsigned int flags,
771 bool wakeup)
772{
bd7bdd43 773 struct worker_pool *pool = worker->pool;
e22bee78 774
cb444766
TH
775 WARN_ON_ONCE(worker->task != current);
776
e22bee78
TH
777 /*
778 * If transitioning into NOT_RUNNING, adjust nr_running and
779 * wake up an idle worker as necessary if requested by
780 * @wakeup.
781 */
782 if ((flags & WORKER_NOT_RUNNING) &&
783 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 784 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
785
786 if (wakeup) {
787 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 788 !list_empty(&pool->worklist))
63d95a91 789 wake_up_worker(pool);
e22bee78
TH
790 } else
791 atomic_dec(nr_running);
792 }
793
d302f017
TH
794 worker->flags |= flags;
795}
796
797/**
e22bee78 798 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 799 * @worker: self
d302f017
TH
800 * @flags: flags to clear
801 *
e22bee78 802 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 803 *
cb444766
TH
804 * CONTEXT:
805 * spin_lock_irq(gcwq->lock)
d302f017
TH
806 */
807static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
808{
63d95a91 809 struct worker_pool *pool = worker->pool;
e22bee78
TH
810 unsigned int oflags = worker->flags;
811
cb444766
TH
812 WARN_ON_ONCE(worker->task != current);
813
d302f017 814 worker->flags &= ~flags;
e22bee78 815
42c025f3
TH
816 /*
817 * If transitioning out of NOT_RUNNING, increment nr_running. Note
818 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
819 * of multiple flags, not a single flag.
820 */
e22bee78
TH
821 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
822 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 823 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
824}
825
c8e55f36
TH
826/**
827 * busy_worker_head - return the busy hash head for a work
828 * @gcwq: gcwq of interest
829 * @work: work to be hashed
830 *
831 * Return hash head of @gcwq for @work.
832 *
833 * CONTEXT:
834 * spin_lock_irq(gcwq->lock).
835 *
836 * RETURNS:
837 * Pointer to the hash head.
838 */
839static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
840 struct work_struct *work)
841{
842 const int base_shift = ilog2(sizeof(struct work_struct));
843 unsigned long v = (unsigned long)work;
844
845 /* simple shift and fold hash, do we need something better? */
846 v >>= base_shift;
847 v += v >> BUSY_WORKER_HASH_ORDER;
848 v &= BUSY_WORKER_HASH_MASK;
849
850 return &gcwq->busy_hash[v];
851}
852
8cca0eea
TH
853/**
854 * __find_worker_executing_work - find worker which is executing a work
855 * @gcwq: gcwq of interest
856 * @bwh: hash head as returned by busy_worker_head()
857 * @work: work to find worker for
858 *
859 * Find a worker which is executing @work on @gcwq. @bwh should be
860 * the hash head obtained by calling busy_worker_head() with the same
861 * work.
862 *
863 * CONTEXT:
864 * spin_lock_irq(gcwq->lock).
865 *
866 * RETURNS:
867 * Pointer to worker which is executing @work if found, NULL
868 * otherwise.
869 */
870static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
871 struct hlist_head *bwh,
872 struct work_struct *work)
873{
874 struct worker *worker;
875 struct hlist_node *tmp;
876
877 hlist_for_each_entry(worker, tmp, bwh, hentry)
878 if (worker->current_work == work)
879 return worker;
880 return NULL;
881}
882
883/**
884 * find_worker_executing_work - find worker which is executing a work
885 * @gcwq: gcwq of interest
886 * @work: work to find worker for
887 *
888 * Find a worker which is executing @work on @gcwq. This function is
889 * identical to __find_worker_executing_work() except that this
890 * function calculates @bwh itself.
891 *
892 * CONTEXT:
893 * spin_lock_irq(gcwq->lock).
894 *
895 * RETURNS:
896 * Pointer to worker which is executing @work if found, NULL
897 * otherwise.
4d707b9f 898 */
8cca0eea
TH
899static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
900 struct work_struct *work)
4d707b9f 901{
8cca0eea
TH
902 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
903 work);
4d707b9f
ON
904}
905
4690c4ab 906/**
7e11629d 907 * insert_work - insert a work into gcwq
4690c4ab
TH
908 * @cwq: cwq @work belongs to
909 * @work: work to insert
910 * @head: insertion point
911 * @extra_flags: extra WORK_STRUCT_* flags to set
912 *
7e11629d
TH
913 * Insert @work which belongs to @cwq into @gcwq after @head.
914 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
915 *
916 * CONTEXT:
8b03ae3c 917 * spin_lock_irq(gcwq->lock).
4690c4ab 918 */
b89deed3 919static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
920 struct work_struct *work, struct list_head *head,
921 unsigned int extra_flags)
b89deed3 922{
63d95a91 923 struct worker_pool *pool = cwq->pool;
e22bee78 924
4690c4ab 925 /* we own @work, set data and link */
7a22ad75 926 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 927
6e84d644
ON
928 /*
929 * Ensure that we get the right work->data if we see the
930 * result of list_add() below, see try_to_grab_pending().
931 */
932 smp_wmb();
4690c4ab 933
1a4d9b0a 934 list_add_tail(&work->entry, head);
e22bee78
TH
935
936 /*
937 * Ensure either worker_sched_deactivated() sees the above
938 * list_add_tail() or we see zero nr_running to avoid workers
939 * lying around lazily while there are works to be processed.
940 */
941 smp_mb();
942
63d95a91
TH
943 if (__need_more_worker(pool))
944 wake_up_worker(pool);
b89deed3
ON
945}
946
c8efcc25
TH
947/*
948 * Test whether @work is being queued from another work executing on the
949 * same workqueue. This is rather expensive and should only be used from
950 * cold paths.
951 */
952static bool is_chained_work(struct workqueue_struct *wq)
953{
954 unsigned long flags;
955 unsigned int cpu;
956
957 for_each_gcwq_cpu(cpu) {
958 struct global_cwq *gcwq = get_gcwq(cpu);
959 struct worker *worker;
960 struct hlist_node *pos;
961 int i;
962
963 spin_lock_irqsave(&gcwq->lock, flags);
964 for_each_busy_worker(worker, i, pos, gcwq) {
965 if (worker->task != current)
966 continue;
967 spin_unlock_irqrestore(&gcwq->lock, flags);
968 /*
969 * I'm @worker, no locking necessary. See if @work
970 * is headed to the same workqueue.
971 */
972 return worker->current_cwq->wq == wq;
973 }
974 spin_unlock_irqrestore(&gcwq->lock, flags);
975 }
976 return false;
977}
978
4690c4ab 979static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
980 struct work_struct *work)
981{
502ca9d8
TH
982 struct global_cwq *gcwq;
983 struct cpu_workqueue_struct *cwq;
1e19ffc6 984 struct list_head *worklist;
8a2e8e5d 985 unsigned int work_flags;
8930caba
TH
986
987 /*
988 * While a work item is PENDING && off queue, a task trying to
989 * steal the PENDING will busy-loop waiting for it to either get
990 * queued or lose PENDING. Grabbing PENDING and queueing should
991 * happen with IRQ disabled.
992 */
993 WARN_ON_ONCE(!irqs_disabled());
1da177e4 994
dc186ad7 995 debug_work_activate(work);
1e19ffc6 996
c8efcc25 997 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 998 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 999 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1000 return;
1001
c7fc77f7
TH
1002 /* determine gcwq to use */
1003 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1004 struct global_cwq *last_gcwq;
1005
c7fc77f7
TH
1006 if (unlikely(cpu == WORK_CPU_UNBOUND))
1007 cpu = raw_smp_processor_id();
1008
18aa9eff
TH
1009 /*
1010 * It's multi cpu. If @wq is non-reentrant and @work
1011 * was previously on a different cpu, it might still
1012 * be running there, in which case the work needs to
1013 * be queued on that cpu to guarantee non-reentrance.
1014 */
502ca9d8 1015 gcwq = get_gcwq(cpu);
18aa9eff
TH
1016 if (wq->flags & WQ_NON_REENTRANT &&
1017 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1018 struct worker *worker;
1019
8930caba 1020 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1021
1022 worker = find_worker_executing_work(last_gcwq, work);
1023
1024 if (worker && worker->current_cwq->wq == wq)
1025 gcwq = last_gcwq;
1026 else {
1027 /* meh... not running there, queue here */
8930caba
TH
1028 spin_unlock(&last_gcwq->lock);
1029 spin_lock(&gcwq->lock);
18aa9eff 1030 }
8930caba
TH
1031 } else {
1032 spin_lock(&gcwq->lock);
1033 }
f3421797
TH
1034 } else {
1035 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1036 spin_lock(&gcwq->lock);
502ca9d8
TH
1037 }
1038
1039 /* gcwq determined, get cwq and queue */
1040 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1041 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1042
f5b2552b 1043 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1044 spin_unlock(&gcwq->lock);
f5b2552b
DC
1045 return;
1046 }
1e19ffc6 1047
73f53c4a 1048 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1049 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1050
1051 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1052 trace_workqueue_activate_work(work);
1e19ffc6 1053 cwq->nr_active++;
3270476a 1054 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1055 } else {
1056 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1057 worklist = &cwq->delayed_works;
8a2e8e5d 1058 }
1e19ffc6 1059
8a2e8e5d 1060 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1061
8930caba 1062 spin_unlock(&gcwq->lock);
1da177e4
LT
1063}
1064
c1a220e7
ZR
1065/**
1066 * queue_work_on - queue work on specific cpu
1067 * @cpu: CPU number to execute work on
1068 * @wq: workqueue to use
1069 * @work: work to queue
1070 *
d4283e93 1071 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1072 *
1073 * We queue the work to a specific CPU, the caller must ensure it
1074 * can't go away.
1075 */
d4283e93
TH
1076bool queue_work_on(int cpu, struct workqueue_struct *wq,
1077 struct work_struct *work)
c1a220e7 1078{
d4283e93 1079 bool ret = false;
8930caba
TH
1080 unsigned long flags;
1081
1082 local_irq_save(flags);
c1a220e7 1083
22df02bb 1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1085 __queue_work(cpu, wq, work);
d4283e93 1086 ret = true;
c1a220e7 1087 }
8930caba
TH
1088
1089 local_irq_restore(flags);
c1a220e7
ZR
1090 return ret;
1091}
1092EXPORT_SYMBOL_GPL(queue_work_on);
1093
0fcb78c2 1094/**
0a13c00e 1095 * queue_work - queue work on a workqueue
0fcb78c2 1096 * @wq: workqueue to use
0a13c00e 1097 * @work: work to queue
0fcb78c2 1098 *
d4283e93 1099 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1100 *
1101 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1102 * it can be processed by another CPU.
0fcb78c2 1103 */
d4283e93 1104bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1105{
d4283e93 1106 bool ret;
1da177e4 1107
0a13c00e
TH
1108 ret = queue_work_on(get_cpu(), wq, work);
1109 put_cpu();
1110
1111 return ret;
1112}
1113EXPORT_SYMBOL_GPL(queue_work);
1114
d8e794df 1115void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1116{
1117 struct delayed_work *dwork = (struct delayed_work *)__data;
1118 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1119
8930caba 1120 local_irq_disable();
0a13c00e 1121 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
8930caba 1122 local_irq_enable();
1da177e4 1123}
d8e794df 1124EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1125
0fcb78c2
REB
1126/**
1127 * queue_delayed_work_on - queue work on specific CPU after delay
1128 * @cpu: CPU number to execute work on
1129 * @wq: workqueue to use
af9997e4 1130 * @dwork: work to queue
0fcb78c2
REB
1131 * @delay: number of jiffies to wait before queueing
1132 *
d4283e93 1133 * Returns %false if @work was already on a queue, %true otherwise.
0fcb78c2 1134 */
d4283e93
TH
1135bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1136 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1137{
52bad64d
DH
1138 struct timer_list *timer = &dwork->timer;
1139 struct work_struct *work = &dwork->work;
d4283e93 1140 bool ret = false;
8930caba
TH
1141 unsigned long flags;
1142
1143 /* read the comment in __queue_work() */
1144 local_irq_save(flags);
7a6bc1cd 1145
22df02bb 1146 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1147 unsigned int lcpu;
7a22ad75 1148
d8e794df
TH
1149 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1150 timer->data != (unsigned long)dwork);
7a6bc1cd
VP
1151 BUG_ON(timer_pending(timer));
1152 BUG_ON(!list_empty(&work->entry));
1153
8a3e77cc
AL
1154 timer_stats_timer_set_start_info(&dwork->timer);
1155
7a22ad75
TH
1156 /*
1157 * This stores cwq for the moment, for the timer_fn.
1158 * Note that the work's gcwq is preserved to allow
1159 * reentrance detection for delayed works.
1160 */
c7fc77f7
TH
1161 if (!(wq->flags & WQ_UNBOUND)) {
1162 struct global_cwq *gcwq = get_work_gcwq(work);
1163
1164 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1165 lcpu = gcwq->cpu;
1166 else
1167 lcpu = raw_smp_processor_id();
1168 } else
1169 lcpu = WORK_CPU_UNBOUND;
1170
7a22ad75 1171 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1172
7a6bc1cd 1173 timer->expires = jiffies + delay;
63bc0362
ON
1174
1175 if (unlikely(cpu >= 0))
1176 add_timer_on(timer, cpu);
1177 else
1178 add_timer(timer);
d4283e93 1179 ret = true;
7a6bc1cd 1180 }
8930caba
TH
1181
1182 local_irq_restore(flags);
7a6bc1cd
VP
1183 return ret;
1184}
ae90dd5d 1185EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1186
0a13c00e
TH
1187/**
1188 * queue_delayed_work - queue work on a workqueue after delay
1189 * @wq: workqueue to use
1190 * @dwork: delayable work to queue
1191 * @delay: number of jiffies to wait before queueing
1192 *
d4283e93 1193 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e 1194 */
d4283e93 1195bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1196 struct delayed_work *dwork, unsigned long delay)
1197{
1198 if (delay == 0)
1199 return queue_work(wq, &dwork->work);
1200
1201 return queue_delayed_work_on(-1, wq, dwork, delay);
1202}
1203EXPORT_SYMBOL_GPL(queue_delayed_work);
1204
c8e55f36
TH
1205/**
1206 * worker_enter_idle - enter idle state
1207 * @worker: worker which is entering idle state
1208 *
1209 * @worker is entering idle state. Update stats and idle timer if
1210 * necessary.
1211 *
1212 * LOCKING:
1213 * spin_lock_irq(gcwq->lock).
1214 */
1215static void worker_enter_idle(struct worker *worker)
1da177e4 1216{
bd7bdd43
TH
1217 struct worker_pool *pool = worker->pool;
1218 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1219
1220 BUG_ON(worker->flags & WORKER_IDLE);
1221 BUG_ON(!list_empty(&worker->entry) &&
1222 (worker->hentry.next || worker->hentry.pprev));
1223
cb444766
TH
1224 /* can't use worker_set_flags(), also called from start_worker() */
1225 worker->flags |= WORKER_IDLE;
bd7bdd43 1226 pool->nr_idle++;
e22bee78 1227 worker->last_active = jiffies;
c8e55f36
TH
1228
1229 /* idle_list is LIFO */
bd7bdd43 1230 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1231
628c78e7
TH
1232 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1233 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1234
544ecf31 1235 /*
628c78e7
TH
1236 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1237 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1238 * nr_running, the warning may trigger spuriously. Check iff
1239 * unbind is not in progress.
544ecf31 1240 */
628c78e7 1241 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1242 pool->nr_workers == pool->nr_idle &&
63d95a91 1243 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1244}
1245
1246/**
1247 * worker_leave_idle - leave idle state
1248 * @worker: worker which is leaving idle state
1249 *
1250 * @worker is leaving idle state. Update stats.
1251 *
1252 * LOCKING:
1253 * spin_lock_irq(gcwq->lock).
1254 */
1255static void worker_leave_idle(struct worker *worker)
1256{
bd7bdd43 1257 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1258
1259 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1260 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1261 pool->nr_idle--;
c8e55f36
TH
1262 list_del_init(&worker->entry);
1263}
1264
e22bee78
TH
1265/**
1266 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1267 * @worker: self
1268 *
1269 * Works which are scheduled while the cpu is online must at least be
1270 * scheduled to a worker which is bound to the cpu so that if they are
1271 * flushed from cpu callbacks while cpu is going down, they are
1272 * guaranteed to execute on the cpu.
1273 *
1274 * This function is to be used by rogue workers and rescuers to bind
1275 * themselves to the target cpu and may race with cpu going down or
1276 * coming online. kthread_bind() can't be used because it may put the
1277 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1278 * verbatim as it's best effort and blocking and gcwq may be
1279 * [dis]associated in the meantime.
1280 *
f2d5a0ee
TH
1281 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1282 * binding against %GCWQ_DISASSOCIATED which is set during
1283 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1284 * enters idle state or fetches works without dropping lock, it can
1285 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1286 *
1287 * CONTEXT:
1288 * Might sleep. Called without any lock but returns with gcwq->lock
1289 * held.
1290 *
1291 * RETURNS:
1292 * %true if the associated gcwq is online (@worker is successfully
1293 * bound), %false if offline.
1294 */
1295static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1296__acquires(&gcwq->lock)
e22bee78 1297{
bd7bdd43 1298 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1299 struct task_struct *task = worker->task;
1300
1301 while (true) {
4e6045f1 1302 /*
e22bee78
TH
1303 * The following call may fail, succeed or succeed
1304 * without actually migrating the task to the cpu if
1305 * it races with cpu hotunplug operation. Verify
1306 * against GCWQ_DISASSOCIATED.
4e6045f1 1307 */
f3421797
TH
1308 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1309 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1310
1311 spin_lock_irq(&gcwq->lock);
1312 if (gcwq->flags & GCWQ_DISASSOCIATED)
1313 return false;
1314 if (task_cpu(task) == gcwq->cpu &&
1315 cpumask_equal(&current->cpus_allowed,
1316 get_cpu_mask(gcwq->cpu)))
1317 return true;
1318 spin_unlock_irq(&gcwq->lock);
1319
5035b20f
TH
1320 /*
1321 * We've raced with CPU hot[un]plug. Give it a breather
1322 * and retry migration. cond_resched() is required here;
1323 * otherwise, we might deadlock against cpu_stop trying to
1324 * bring down the CPU on non-preemptive kernel.
1325 */
e22bee78 1326 cpu_relax();
5035b20f 1327 cond_resched();
e22bee78
TH
1328 }
1329}
1330
25511a47
TH
1331struct idle_rebind {
1332 int cnt; /* # workers to be rebound */
1333 struct completion done; /* all workers rebound */
1334};
1335
1336/*
1337 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1338 * happen synchronously for idle workers. worker_thread() will test
1339 * %WORKER_REBIND before leaving idle and call this function.
1340 */
1341static void idle_worker_rebind(struct worker *worker)
1342{
1343 struct global_cwq *gcwq = worker->pool->gcwq;
1344
1345 /* CPU must be online at this point */
1346 WARN_ON(!worker_maybe_bind_and_lock(worker));
1347 if (!--worker->idle_rebind->cnt)
1348 complete(&worker->idle_rebind->done);
1349 spin_unlock_irq(&worker->pool->gcwq->lock);
1350
1351 /* we did our part, wait for rebind_workers() to finish up */
1352 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1353}
1354
e22bee78 1355/*
25511a47 1356 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1357 * the associated cpu which is coming back online. This is scheduled by
1358 * cpu up but can race with other cpu hotplug operations and may be
1359 * executed twice without intervening cpu down.
e22bee78 1360 */
25511a47 1361static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1362{
1363 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1364 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1365
1366 if (worker_maybe_bind_and_lock(worker))
1367 worker_clr_flags(worker, WORKER_REBIND);
1368
1369 spin_unlock_irq(&gcwq->lock);
1370}
1371
25511a47
TH
1372/**
1373 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1374 * @gcwq: gcwq of interest
1375 *
1376 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1377 * is different for idle and busy ones.
1378 *
1379 * The idle ones should be rebound synchronously and idle rebinding should
1380 * be complete before any worker starts executing work items with
1381 * concurrency management enabled; otherwise, scheduler may oops trying to
1382 * wake up non-local idle worker from wq_worker_sleeping().
1383 *
1384 * This is achieved by repeatedly requesting rebinding until all idle
1385 * workers are known to have been rebound under @gcwq->lock and holding all
1386 * idle workers from becoming busy until idle rebinding is complete.
1387 *
1388 * Once idle workers are rebound, busy workers can be rebound as they
1389 * finish executing their current work items. Queueing the rebind work at
1390 * the head of their scheduled lists is enough. Note that nr_running will
1391 * be properbly bumped as busy workers rebind.
1392 *
1393 * On return, all workers are guaranteed to either be bound or have rebind
1394 * work item scheduled.
1395 */
1396static void rebind_workers(struct global_cwq *gcwq)
1397 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1398{
1399 struct idle_rebind idle_rebind;
1400 struct worker_pool *pool;
1401 struct worker *worker;
1402 struct hlist_node *pos;
1403 int i;
1404
1405 lockdep_assert_held(&gcwq->lock);
1406
1407 for_each_worker_pool(pool, gcwq)
1408 lockdep_assert_held(&pool->manager_mutex);
1409
1410 /*
1411 * Rebind idle workers. Interlocked both ways. We wait for
1412 * workers to rebind via @idle_rebind.done. Workers will wait for
1413 * us to finish up by watching %WORKER_REBIND.
1414 */
1415 init_completion(&idle_rebind.done);
1416retry:
1417 idle_rebind.cnt = 1;
1418 INIT_COMPLETION(idle_rebind.done);
1419
1420 /* set REBIND and kick idle ones, we'll wait for these later */
1421 for_each_worker_pool(pool, gcwq) {
1422 list_for_each_entry(worker, &pool->idle_list, entry) {
1423 if (worker->flags & WORKER_REBIND)
1424 continue;
1425
1426 /* morph UNBOUND to REBIND */
1427 worker->flags &= ~WORKER_UNBOUND;
1428 worker->flags |= WORKER_REBIND;
1429
1430 idle_rebind.cnt++;
1431 worker->idle_rebind = &idle_rebind;
1432
1433 /* worker_thread() will call idle_worker_rebind() */
1434 wake_up_process(worker->task);
1435 }
1436 }
1437
1438 if (--idle_rebind.cnt) {
1439 spin_unlock_irq(&gcwq->lock);
1440 wait_for_completion(&idle_rebind.done);
1441 spin_lock_irq(&gcwq->lock);
1442 /* busy ones might have become idle while waiting, retry */
1443 goto retry;
1444 }
1445
1446 /*
1447 * All idle workers are rebound and waiting for %WORKER_REBIND to
1448 * be cleared inside idle_worker_rebind(). Clear and release.
1449 * Clearing %WORKER_REBIND from this foreign context is safe
1450 * because these workers are still guaranteed to be idle.
1451 */
1452 for_each_worker_pool(pool, gcwq)
1453 list_for_each_entry(worker, &pool->idle_list, entry)
1454 worker->flags &= ~WORKER_REBIND;
1455
1456 wake_up_all(&gcwq->rebind_hold);
1457
1458 /* rebind busy workers */
1459 for_each_busy_worker(worker, i, pos, gcwq) {
1460 struct work_struct *rebind_work = &worker->rebind_work;
1461
1462 /* morph UNBOUND to REBIND */
1463 worker->flags &= ~WORKER_UNBOUND;
1464 worker->flags |= WORKER_REBIND;
1465
1466 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1467 work_data_bits(rebind_work)))
1468 continue;
1469
1470 /* wq doesn't matter, use the default one */
1471 debug_work_activate(rebind_work);
1472 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1473 worker->scheduled.next,
1474 work_color_to_flags(WORK_NO_COLOR));
1475 }
1476}
1477
c34056a3
TH
1478static struct worker *alloc_worker(void)
1479{
1480 struct worker *worker;
1481
1482 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1483 if (worker) {
1484 INIT_LIST_HEAD(&worker->entry);
affee4b2 1485 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1486 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1487 /* on creation a worker is in !idle && prep state */
1488 worker->flags = WORKER_PREP;
c8e55f36 1489 }
c34056a3
TH
1490 return worker;
1491}
1492
1493/**
1494 * create_worker - create a new workqueue worker
63d95a91 1495 * @pool: pool the new worker will belong to
c34056a3 1496 *
63d95a91 1497 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1498 * can be started by calling start_worker() or destroyed using
1499 * destroy_worker().
1500 *
1501 * CONTEXT:
1502 * Might sleep. Does GFP_KERNEL allocations.
1503 *
1504 * RETURNS:
1505 * Pointer to the newly created worker.
1506 */
bc2ae0f5 1507static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1508{
63d95a91 1509 struct global_cwq *gcwq = pool->gcwq;
3270476a 1510 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1511 struct worker *worker = NULL;
f3421797 1512 int id = -1;
c34056a3 1513
8b03ae3c 1514 spin_lock_irq(&gcwq->lock);
bd7bdd43 1515 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1516 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1517 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1518 goto fail;
8b03ae3c 1519 spin_lock_irq(&gcwq->lock);
c34056a3 1520 }
8b03ae3c 1521 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1522
1523 worker = alloc_worker();
1524 if (!worker)
1525 goto fail;
1526
bd7bdd43 1527 worker->pool = pool;
c34056a3
TH
1528 worker->id = id;
1529
bc2ae0f5 1530 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1531 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1532 worker, cpu_to_node(gcwq->cpu),
1533 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1534 else
1535 worker->task = kthread_create(worker_thread, worker,
3270476a 1536 "kworker/u:%d%s", id, pri);
c34056a3
TH
1537 if (IS_ERR(worker->task))
1538 goto fail;
1539
3270476a
TH
1540 if (worker_pool_pri(pool))
1541 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1542
db7bccf4 1543 /*
bc2ae0f5
TH
1544 * Determine CPU binding of the new worker depending on
1545 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1546 * flag remains stable across this function. See the comments
1547 * above the flag definition for details.
1548 *
1549 * As an unbound worker may later become a regular one if CPU comes
1550 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1551 */
bc2ae0f5 1552 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1553 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1554 } else {
db7bccf4 1555 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1556 worker->flags |= WORKER_UNBOUND;
f3421797 1557 }
c34056a3
TH
1558
1559 return worker;
1560fail:
1561 if (id >= 0) {
8b03ae3c 1562 spin_lock_irq(&gcwq->lock);
bd7bdd43 1563 ida_remove(&pool->worker_ida, id);
8b03ae3c 1564 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1565 }
1566 kfree(worker);
1567 return NULL;
1568}
1569
1570/**
1571 * start_worker - start a newly created worker
1572 * @worker: worker to start
1573 *
c8e55f36 1574 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1575 *
1576 * CONTEXT:
8b03ae3c 1577 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1578 */
1579static void start_worker(struct worker *worker)
1580{
cb444766 1581 worker->flags |= WORKER_STARTED;
bd7bdd43 1582 worker->pool->nr_workers++;
c8e55f36 1583 worker_enter_idle(worker);
c34056a3
TH
1584 wake_up_process(worker->task);
1585}
1586
1587/**
1588 * destroy_worker - destroy a workqueue worker
1589 * @worker: worker to be destroyed
1590 *
c8e55f36
TH
1591 * Destroy @worker and adjust @gcwq stats accordingly.
1592 *
1593 * CONTEXT:
1594 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1595 */
1596static void destroy_worker(struct worker *worker)
1597{
bd7bdd43
TH
1598 struct worker_pool *pool = worker->pool;
1599 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1600 int id = worker->id;
1601
1602 /* sanity check frenzy */
1603 BUG_ON(worker->current_work);
affee4b2 1604 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1605
c8e55f36 1606 if (worker->flags & WORKER_STARTED)
bd7bdd43 1607 pool->nr_workers--;
c8e55f36 1608 if (worker->flags & WORKER_IDLE)
bd7bdd43 1609 pool->nr_idle--;
c8e55f36
TH
1610
1611 list_del_init(&worker->entry);
cb444766 1612 worker->flags |= WORKER_DIE;
c8e55f36
TH
1613
1614 spin_unlock_irq(&gcwq->lock);
1615
c34056a3
TH
1616 kthread_stop(worker->task);
1617 kfree(worker);
1618
8b03ae3c 1619 spin_lock_irq(&gcwq->lock);
bd7bdd43 1620 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1621}
1622
63d95a91 1623static void idle_worker_timeout(unsigned long __pool)
e22bee78 1624{
63d95a91
TH
1625 struct worker_pool *pool = (void *)__pool;
1626 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1627
1628 spin_lock_irq(&gcwq->lock);
1629
63d95a91 1630 if (too_many_workers(pool)) {
e22bee78
TH
1631 struct worker *worker;
1632 unsigned long expires;
1633
1634 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1635 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1636 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1637
1638 if (time_before(jiffies, expires))
63d95a91 1639 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1640 else {
1641 /* it's been idle for too long, wake up manager */
11ebea50 1642 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1643 wake_up_worker(pool);
d5abe669 1644 }
e22bee78
TH
1645 }
1646
1647 spin_unlock_irq(&gcwq->lock);
1648}
d5abe669 1649
e22bee78
TH
1650static bool send_mayday(struct work_struct *work)
1651{
1652 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1653 struct workqueue_struct *wq = cwq->wq;
f3421797 1654 unsigned int cpu;
e22bee78
TH
1655
1656 if (!(wq->flags & WQ_RESCUER))
1657 return false;
1658
1659 /* mayday mayday mayday */
bd7bdd43 1660 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1661 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1662 if (cpu == WORK_CPU_UNBOUND)
1663 cpu = 0;
f2e005aa 1664 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1665 wake_up_process(wq->rescuer->task);
1666 return true;
1667}
1668
63d95a91 1669static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1670{
63d95a91
TH
1671 struct worker_pool *pool = (void *)__pool;
1672 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1673 struct work_struct *work;
1674
1675 spin_lock_irq(&gcwq->lock);
1676
63d95a91 1677 if (need_to_create_worker(pool)) {
e22bee78
TH
1678 /*
1679 * We've been trying to create a new worker but
1680 * haven't been successful. We might be hitting an
1681 * allocation deadlock. Send distress signals to
1682 * rescuers.
1683 */
63d95a91 1684 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1685 send_mayday(work);
1da177e4 1686 }
e22bee78
TH
1687
1688 spin_unlock_irq(&gcwq->lock);
1689
63d95a91 1690 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1691}
1692
e22bee78
TH
1693/**
1694 * maybe_create_worker - create a new worker if necessary
63d95a91 1695 * @pool: pool to create a new worker for
e22bee78 1696 *
63d95a91 1697 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1698 * have at least one idle worker on return from this function. If
1699 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1700 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1701 * possible allocation deadlock.
1702 *
1703 * On return, need_to_create_worker() is guaranteed to be false and
1704 * may_start_working() true.
1705 *
1706 * LOCKING:
1707 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1708 * multiple times. Does GFP_KERNEL allocations. Called only from
1709 * manager.
1710 *
1711 * RETURNS:
1712 * false if no action was taken and gcwq->lock stayed locked, true
1713 * otherwise.
1714 */
63d95a91 1715static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1716__releases(&gcwq->lock)
1717__acquires(&gcwq->lock)
1da177e4 1718{
63d95a91
TH
1719 struct global_cwq *gcwq = pool->gcwq;
1720
1721 if (!need_to_create_worker(pool))
e22bee78
TH
1722 return false;
1723restart:
9f9c2364
TH
1724 spin_unlock_irq(&gcwq->lock);
1725
e22bee78 1726 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1727 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1728
1729 while (true) {
1730 struct worker *worker;
1731
bc2ae0f5 1732 worker = create_worker(pool);
e22bee78 1733 if (worker) {
63d95a91 1734 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1735 spin_lock_irq(&gcwq->lock);
1736 start_worker(worker);
63d95a91 1737 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1738 return true;
1739 }
1740
63d95a91 1741 if (!need_to_create_worker(pool))
e22bee78 1742 break;
1da177e4 1743
e22bee78
TH
1744 __set_current_state(TASK_INTERRUPTIBLE);
1745 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1746
63d95a91 1747 if (!need_to_create_worker(pool))
e22bee78
TH
1748 break;
1749 }
1750
63d95a91 1751 del_timer_sync(&pool->mayday_timer);
e22bee78 1752 spin_lock_irq(&gcwq->lock);
63d95a91 1753 if (need_to_create_worker(pool))
e22bee78
TH
1754 goto restart;
1755 return true;
1756}
1757
1758/**
1759 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1760 * @pool: pool to destroy workers for
e22bee78 1761 *
63d95a91 1762 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1763 * IDLE_WORKER_TIMEOUT.
1764 *
1765 * LOCKING:
1766 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1767 * multiple times. Called only from manager.
1768 *
1769 * RETURNS:
1770 * false if no action was taken and gcwq->lock stayed locked, true
1771 * otherwise.
1772 */
63d95a91 1773static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1774{
1775 bool ret = false;
1da177e4 1776
63d95a91 1777 while (too_many_workers(pool)) {
e22bee78
TH
1778 struct worker *worker;
1779 unsigned long expires;
3af24433 1780
63d95a91 1781 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1782 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1783
e22bee78 1784 if (time_before(jiffies, expires)) {
63d95a91 1785 mod_timer(&pool->idle_timer, expires);
3af24433 1786 break;
e22bee78 1787 }
1da177e4 1788
e22bee78
TH
1789 destroy_worker(worker);
1790 ret = true;
1da177e4 1791 }
3af24433 1792
e22bee78
TH
1793 return ret;
1794}
1795
1796/**
1797 * manage_workers - manage worker pool
1798 * @worker: self
1799 *
1800 * Assume the manager role and manage gcwq worker pool @worker belongs
1801 * to. At any given time, there can be only zero or one manager per
1802 * gcwq. The exclusion is handled automatically by this function.
1803 *
1804 * The caller can safely start processing works on false return. On
1805 * true return, it's guaranteed that need_to_create_worker() is false
1806 * and may_start_working() is true.
1807 *
1808 * CONTEXT:
1809 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1810 * multiple times. Does GFP_KERNEL allocations.
1811 *
1812 * RETURNS:
1813 * false if no action was taken and gcwq->lock stayed locked, true if
1814 * some action was taken.
1815 */
1816static bool manage_workers(struct worker *worker)
1817{
63d95a91 1818 struct worker_pool *pool = worker->pool;
e22bee78
TH
1819 bool ret = false;
1820
60373152 1821 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
1822 return ret;
1823
11ebea50 1824 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
1825
1826 /*
1827 * Destroy and then create so that may_start_working() is true
1828 * on return.
1829 */
63d95a91
TH
1830 ret |= maybe_destroy_workers(pool);
1831 ret |= maybe_create_worker(pool);
e22bee78 1832
60373152 1833 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
1834 return ret;
1835}
1836
affee4b2
TH
1837/**
1838 * move_linked_works - move linked works to a list
1839 * @work: start of series of works to be scheduled
1840 * @head: target list to append @work to
1841 * @nextp: out paramter for nested worklist walking
1842 *
1843 * Schedule linked works starting from @work to @head. Work series to
1844 * be scheduled starts at @work and includes any consecutive work with
1845 * WORK_STRUCT_LINKED set in its predecessor.
1846 *
1847 * If @nextp is not NULL, it's updated to point to the next work of
1848 * the last scheduled work. This allows move_linked_works() to be
1849 * nested inside outer list_for_each_entry_safe().
1850 *
1851 * CONTEXT:
8b03ae3c 1852 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1853 */
1854static void move_linked_works(struct work_struct *work, struct list_head *head,
1855 struct work_struct **nextp)
1856{
1857 struct work_struct *n;
1858
1859 /*
1860 * Linked worklist will always end before the end of the list,
1861 * use NULL for list head.
1862 */
1863 list_for_each_entry_safe_from(work, n, NULL, entry) {
1864 list_move_tail(&work->entry, head);
1865 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1866 break;
1867 }
1868
1869 /*
1870 * If we're already inside safe list traversal and have moved
1871 * multiple works to the scheduled queue, the next position
1872 * needs to be updated.
1873 */
1874 if (nextp)
1875 *nextp = n;
1876}
1877
1e19ffc6
TH
1878static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1879{
1880 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1881 struct work_struct, entry);
1882
cdadf009 1883 trace_workqueue_activate_work(work);
3270476a 1884 move_linked_works(work, &cwq->pool->worklist, NULL);
8a2e8e5d 1885 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1886 cwq->nr_active++;
1887}
1888
73f53c4a
TH
1889/**
1890 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1891 * @cwq: cwq of interest
1892 * @color: color of work which left the queue
8a2e8e5d 1893 * @delayed: for a delayed work
73f53c4a
TH
1894 *
1895 * A work either has completed or is removed from pending queue,
1896 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1897 *
1898 * CONTEXT:
8b03ae3c 1899 * spin_lock_irq(gcwq->lock).
73f53c4a 1900 */
8a2e8e5d
TH
1901static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1902 bool delayed)
73f53c4a
TH
1903{
1904 /* ignore uncolored works */
1905 if (color == WORK_NO_COLOR)
1906 return;
1907
1908 cwq->nr_in_flight[color]--;
1e19ffc6 1909
8a2e8e5d
TH
1910 if (!delayed) {
1911 cwq->nr_active--;
1912 if (!list_empty(&cwq->delayed_works)) {
1913 /* one down, submit a delayed one */
1914 if (cwq->nr_active < cwq->max_active)
1915 cwq_activate_first_delayed(cwq);
1916 }
502ca9d8 1917 }
73f53c4a
TH
1918
1919 /* is flush in progress and are we at the flushing tip? */
1920 if (likely(cwq->flush_color != color))
1921 return;
1922
1923 /* are there still in-flight works? */
1924 if (cwq->nr_in_flight[color])
1925 return;
1926
1927 /* this cwq is done, clear flush_color */
1928 cwq->flush_color = -1;
1929
1930 /*
1931 * If this was the last cwq, wake up the first flusher. It
1932 * will handle the rest.
1933 */
1934 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1935 complete(&cwq->wq->first_flusher->done);
1936}
1937
a62428c0
TH
1938/**
1939 * process_one_work - process single work
c34056a3 1940 * @worker: self
a62428c0
TH
1941 * @work: work to process
1942 *
1943 * Process @work. This function contains all the logics necessary to
1944 * process a single work including synchronization against and
1945 * interaction with other workers on the same cpu, queueing and
1946 * flushing. As long as context requirement is met, any worker can
1947 * call this function to process a work.
1948 *
1949 * CONTEXT:
8b03ae3c 1950 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1951 */
c34056a3 1952static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1953__releases(&gcwq->lock)
1954__acquires(&gcwq->lock)
a62428c0 1955{
7e11629d 1956 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
1957 struct worker_pool *pool = worker->pool;
1958 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 1959 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1960 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1961 work_func_t f = work->func;
73f53c4a 1962 int work_color;
7e11629d 1963 struct worker *collision;
a62428c0
TH
1964#ifdef CONFIG_LOCKDEP
1965 /*
1966 * It is permissible to free the struct work_struct from
1967 * inside the function that is called from it, this we need to
1968 * take into account for lockdep too. To avoid bogus "held
1969 * lock freed" warnings as well as problems when looking into
1970 * work->lockdep_map, make a copy and use that here.
1971 */
4d82a1de
PZ
1972 struct lockdep_map lockdep_map;
1973
1974 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1975#endif
6fec10a1
TH
1976 /*
1977 * Ensure we're on the correct CPU. DISASSOCIATED test is
1978 * necessary to avoid spurious warnings from rescuers servicing the
1979 * unbound or a disassociated gcwq.
1980 */
25511a47 1981 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 1982 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
1983 raw_smp_processor_id() != gcwq->cpu);
1984
7e11629d
TH
1985 /*
1986 * A single work shouldn't be executed concurrently by
1987 * multiple workers on a single cpu. Check whether anyone is
1988 * already processing the work. If so, defer the work to the
1989 * currently executing one.
1990 */
1991 collision = __find_worker_executing_work(gcwq, bwh, work);
1992 if (unlikely(collision)) {
1993 move_linked_works(work, &collision->scheduled, NULL);
1994 return;
1995 }
1996
8930caba 1997 /* claim and dequeue */
a62428c0 1998 debug_work_deactivate(work);
c8e55f36 1999 hlist_add_head(&worker->hentry, bwh);
c34056a3 2000 worker->current_work = work;
8cca0eea 2001 worker->current_cwq = cwq;
73f53c4a 2002 work_color = get_work_color(work);
7a22ad75 2003
a62428c0
TH
2004 list_del_init(&work->entry);
2005
fb0e7beb
TH
2006 /*
2007 * CPU intensive works don't participate in concurrency
2008 * management. They're the scheduler's responsibility.
2009 */
2010 if (unlikely(cpu_intensive))
2011 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2012
974271c4
TH
2013 /*
2014 * Unbound gcwq isn't concurrency managed and work items should be
2015 * executed ASAP. Wake up another worker if necessary.
2016 */
63d95a91
TH
2017 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2018 wake_up_worker(pool);
974271c4 2019
8930caba
TH
2020 /*
2021 * Record the last CPU and clear PENDING. The following wmb is
2022 * paired with the implied mb in test_and_set_bit(PENDING) and
2023 * ensures all updates to @work made here are visible to and
2024 * precede any updates by the next PENDING owner. Also, clear
2025 * PENDING inside @gcwq->lock so that PENDING and queued state
2026 * changes happen together while IRQ is disabled.
2027 */
2028 smp_wmb();
2029 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2030
8930caba 2031 spin_unlock_irq(&gcwq->lock);
959d1af8 2032
e159489b 2033 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2034 lock_map_acquire(&lockdep_map);
e36c886a 2035 trace_workqueue_execute_start(work);
a62428c0 2036 f(work);
e36c886a
AV
2037 /*
2038 * While we must be careful to not use "work" after this, the trace
2039 * point will only record its address.
2040 */
2041 trace_workqueue_execute_end(work);
a62428c0
TH
2042 lock_map_release(&lockdep_map);
2043 lock_map_release(&cwq->wq->lockdep_map);
2044
2045 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2046 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2047 "%s/0x%08x/%d\n",
2048 current->comm, preempt_count(), task_pid_nr(current));
2049 printk(KERN_ERR " last function: ");
2050 print_symbol("%s\n", (unsigned long)f);
2051 debug_show_held_locks(current);
2052 dump_stack();
2053 }
2054
8b03ae3c 2055 spin_lock_irq(&gcwq->lock);
a62428c0 2056
fb0e7beb
TH
2057 /* clear cpu intensive status */
2058 if (unlikely(cpu_intensive))
2059 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2060
a62428c0 2061 /* we're done with it, release */
c8e55f36 2062 hlist_del_init(&worker->hentry);
c34056a3 2063 worker->current_work = NULL;
8cca0eea 2064 worker->current_cwq = NULL;
8a2e8e5d 2065 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2066}
2067
affee4b2
TH
2068/**
2069 * process_scheduled_works - process scheduled works
2070 * @worker: self
2071 *
2072 * Process all scheduled works. Please note that the scheduled list
2073 * may change while processing a work, so this function repeatedly
2074 * fetches a work from the top and executes it.
2075 *
2076 * CONTEXT:
8b03ae3c 2077 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2078 * multiple times.
2079 */
2080static void process_scheduled_works(struct worker *worker)
1da177e4 2081{
affee4b2
TH
2082 while (!list_empty(&worker->scheduled)) {
2083 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2084 struct work_struct, entry);
c34056a3 2085 process_one_work(worker, work);
1da177e4 2086 }
1da177e4
LT
2087}
2088
4690c4ab
TH
2089/**
2090 * worker_thread - the worker thread function
c34056a3 2091 * @__worker: self
4690c4ab 2092 *
e22bee78
TH
2093 * The gcwq worker thread function. There's a single dynamic pool of
2094 * these per each cpu. These workers process all works regardless of
2095 * their specific target workqueue. The only exception is works which
2096 * belong to workqueues with a rescuer which will be explained in
2097 * rescuer_thread().
4690c4ab 2098 */
c34056a3 2099static int worker_thread(void *__worker)
1da177e4 2100{
c34056a3 2101 struct worker *worker = __worker;
bd7bdd43
TH
2102 struct worker_pool *pool = worker->pool;
2103 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2104
e22bee78
TH
2105 /* tell the scheduler that this is a workqueue worker */
2106 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2107woke_up:
c8e55f36 2108 spin_lock_irq(&gcwq->lock);
1da177e4 2109
25511a47
TH
2110 /*
2111 * DIE can be set only while idle and REBIND set while busy has
2112 * @worker->rebind_work scheduled. Checking here is enough.
2113 */
2114 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2115 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2116
2117 if (worker->flags & WORKER_DIE) {
2118 worker->task->flags &= ~PF_WQ_WORKER;
2119 return 0;
2120 }
2121
2122 idle_worker_rebind(worker);
2123 goto woke_up;
c8e55f36 2124 }
affee4b2 2125
c8e55f36 2126 worker_leave_idle(worker);
db7bccf4 2127recheck:
e22bee78 2128 /* no more worker necessary? */
63d95a91 2129 if (!need_more_worker(pool))
e22bee78
TH
2130 goto sleep;
2131
2132 /* do we need to manage? */
63d95a91 2133 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2134 goto recheck;
2135
c8e55f36
TH
2136 /*
2137 * ->scheduled list can only be filled while a worker is
2138 * preparing to process a work or actually processing it.
2139 * Make sure nobody diddled with it while I was sleeping.
2140 */
2141 BUG_ON(!list_empty(&worker->scheduled));
2142
e22bee78
TH
2143 /*
2144 * When control reaches this point, we're guaranteed to have
2145 * at least one idle worker or that someone else has already
2146 * assumed the manager role.
2147 */
2148 worker_clr_flags(worker, WORKER_PREP);
2149
2150 do {
c8e55f36 2151 struct work_struct *work =
bd7bdd43 2152 list_first_entry(&pool->worklist,
c8e55f36
TH
2153 struct work_struct, entry);
2154
2155 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2156 /* optimization path, not strictly necessary */
2157 process_one_work(worker, work);
2158 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2159 process_scheduled_works(worker);
c8e55f36
TH
2160 } else {
2161 move_linked_works(work, &worker->scheduled, NULL);
2162 process_scheduled_works(worker);
affee4b2 2163 }
63d95a91 2164 } while (keep_working(pool));
e22bee78
TH
2165
2166 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2167sleep:
63d95a91 2168 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2169 goto recheck;
d313dd85 2170
c8e55f36 2171 /*
e22bee78
TH
2172 * gcwq->lock is held and there's no work to process and no
2173 * need to manage, sleep. Workers are woken up only while
2174 * holding gcwq->lock or from local cpu, so setting the
2175 * current state before releasing gcwq->lock is enough to
2176 * prevent losing any event.
c8e55f36
TH
2177 */
2178 worker_enter_idle(worker);
2179 __set_current_state(TASK_INTERRUPTIBLE);
2180 spin_unlock_irq(&gcwq->lock);
2181 schedule();
2182 goto woke_up;
1da177e4
LT
2183}
2184
e22bee78
TH
2185/**
2186 * rescuer_thread - the rescuer thread function
2187 * @__wq: the associated workqueue
2188 *
2189 * Workqueue rescuer thread function. There's one rescuer for each
2190 * workqueue which has WQ_RESCUER set.
2191 *
2192 * Regular work processing on a gcwq may block trying to create a new
2193 * worker which uses GFP_KERNEL allocation which has slight chance of
2194 * developing into deadlock if some works currently on the same queue
2195 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2196 * the problem rescuer solves.
2197 *
2198 * When such condition is possible, the gcwq summons rescuers of all
2199 * workqueues which have works queued on the gcwq and let them process
2200 * those works so that forward progress can be guaranteed.
2201 *
2202 * This should happen rarely.
2203 */
2204static int rescuer_thread(void *__wq)
2205{
2206 struct workqueue_struct *wq = __wq;
2207 struct worker *rescuer = wq->rescuer;
2208 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2209 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2210 unsigned int cpu;
2211
2212 set_user_nice(current, RESCUER_NICE_LEVEL);
2213repeat:
2214 set_current_state(TASK_INTERRUPTIBLE);
2215
2216 if (kthread_should_stop())
2217 return 0;
2218
f3421797
TH
2219 /*
2220 * See whether any cpu is asking for help. Unbounded
2221 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2222 */
f2e005aa 2223 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2224 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2225 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2226 struct worker_pool *pool = cwq->pool;
2227 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2228 struct work_struct *work, *n;
2229
2230 __set_current_state(TASK_RUNNING);
f2e005aa 2231 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2232
2233 /* migrate to the target cpu if possible */
bd7bdd43 2234 rescuer->pool = pool;
e22bee78
TH
2235 worker_maybe_bind_and_lock(rescuer);
2236
2237 /*
2238 * Slurp in all works issued via this workqueue and
2239 * process'em.
2240 */
2241 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2242 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2243 if (get_work_cwq(work) == cwq)
2244 move_linked_works(work, scheduled, &n);
2245
2246 process_scheduled_works(rescuer);
7576958a
TH
2247
2248 /*
2249 * Leave this gcwq. If keep_working() is %true, notify a
2250 * regular worker; otherwise, we end up with 0 concurrency
2251 * and stalling the execution.
2252 */
63d95a91
TH
2253 if (keep_working(pool))
2254 wake_up_worker(pool);
7576958a 2255
e22bee78
TH
2256 spin_unlock_irq(&gcwq->lock);
2257 }
2258
2259 schedule();
2260 goto repeat;
1da177e4
LT
2261}
2262
fc2e4d70
ON
2263struct wq_barrier {
2264 struct work_struct work;
2265 struct completion done;
2266};
2267
2268static void wq_barrier_func(struct work_struct *work)
2269{
2270 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2271 complete(&barr->done);
2272}
2273
4690c4ab
TH
2274/**
2275 * insert_wq_barrier - insert a barrier work
2276 * @cwq: cwq to insert barrier into
2277 * @barr: wq_barrier to insert
affee4b2
TH
2278 * @target: target work to attach @barr to
2279 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2280 *
affee4b2
TH
2281 * @barr is linked to @target such that @barr is completed only after
2282 * @target finishes execution. Please note that the ordering
2283 * guarantee is observed only with respect to @target and on the local
2284 * cpu.
2285 *
2286 * Currently, a queued barrier can't be canceled. This is because
2287 * try_to_grab_pending() can't determine whether the work to be
2288 * grabbed is at the head of the queue and thus can't clear LINKED
2289 * flag of the previous work while there must be a valid next work
2290 * after a work with LINKED flag set.
2291 *
2292 * Note that when @worker is non-NULL, @target may be modified
2293 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2294 *
2295 * CONTEXT:
8b03ae3c 2296 * spin_lock_irq(gcwq->lock).
4690c4ab 2297 */
83c22520 2298static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2299 struct wq_barrier *barr,
2300 struct work_struct *target, struct worker *worker)
fc2e4d70 2301{
affee4b2
TH
2302 struct list_head *head;
2303 unsigned int linked = 0;
2304
dc186ad7 2305 /*
8b03ae3c 2306 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2307 * as we know for sure that this will not trigger any of the
2308 * checks and call back into the fixup functions where we
2309 * might deadlock.
2310 */
ca1cab37 2311 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2312 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2313 init_completion(&barr->done);
83c22520 2314
affee4b2
TH
2315 /*
2316 * If @target is currently being executed, schedule the
2317 * barrier to the worker; otherwise, put it after @target.
2318 */
2319 if (worker)
2320 head = worker->scheduled.next;
2321 else {
2322 unsigned long *bits = work_data_bits(target);
2323
2324 head = target->entry.next;
2325 /* there can already be other linked works, inherit and set */
2326 linked = *bits & WORK_STRUCT_LINKED;
2327 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2328 }
2329
dc186ad7 2330 debug_work_activate(&barr->work);
affee4b2
TH
2331 insert_work(cwq, &barr->work, head,
2332 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2333}
2334
73f53c4a
TH
2335/**
2336 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2337 * @wq: workqueue being flushed
2338 * @flush_color: new flush color, < 0 for no-op
2339 * @work_color: new work color, < 0 for no-op
2340 *
2341 * Prepare cwqs for workqueue flushing.
2342 *
2343 * If @flush_color is non-negative, flush_color on all cwqs should be
2344 * -1. If no cwq has in-flight commands at the specified color, all
2345 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2346 * has in flight commands, its cwq->flush_color is set to
2347 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2348 * wakeup logic is armed and %true is returned.
2349 *
2350 * The caller should have initialized @wq->first_flusher prior to
2351 * calling this function with non-negative @flush_color. If
2352 * @flush_color is negative, no flush color update is done and %false
2353 * is returned.
2354 *
2355 * If @work_color is non-negative, all cwqs should have the same
2356 * work_color which is previous to @work_color and all will be
2357 * advanced to @work_color.
2358 *
2359 * CONTEXT:
2360 * mutex_lock(wq->flush_mutex).
2361 *
2362 * RETURNS:
2363 * %true if @flush_color >= 0 and there's something to flush. %false
2364 * otherwise.
2365 */
2366static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2367 int flush_color, int work_color)
1da177e4 2368{
73f53c4a
TH
2369 bool wait = false;
2370 unsigned int cpu;
1da177e4 2371
73f53c4a
TH
2372 if (flush_color >= 0) {
2373 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2374 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2375 }
2355b70f 2376
f3421797 2377 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2378 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2379 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2380
8b03ae3c 2381 spin_lock_irq(&gcwq->lock);
83c22520 2382
73f53c4a
TH
2383 if (flush_color >= 0) {
2384 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2385
73f53c4a
TH
2386 if (cwq->nr_in_flight[flush_color]) {
2387 cwq->flush_color = flush_color;
2388 atomic_inc(&wq->nr_cwqs_to_flush);
2389 wait = true;
2390 }
2391 }
1da177e4 2392
73f53c4a
TH
2393 if (work_color >= 0) {
2394 BUG_ON(work_color != work_next_color(cwq->work_color));
2395 cwq->work_color = work_color;
2396 }
1da177e4 2397
8b03ae3c 2398 spin_unlock_irq(&gcwq->lock);
1da177e4 2399 }
2355b70f 2400
73f53c4a
TH
2401 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2402 complete(&wq->first_flusher->done);
14441960 2403
73f53c4a 2404 return wait;
1da177e4
LT
2405}
2406
0fcb78c2 2407/**
1da177e4 2408 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2409 * @wq: workqueue to flush
1da177e4
LT
2410 *
2411 * Forces execution of the workqueue and blocks until its completion.
2412 * This is typically used in driver shutdown handlers.
2413 *
fc2e4d70
ON
2414 * We sleep until all works which were queued on entry have been handled,
2415 * but we are not livelocked by new incoming ones.
1da177e4 2416 */
7ad5b3a5 2417void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2418{
73f53c4a
TH
2419 struct wq_flusher this_flusher = {
2420 .list = LIST_HEAD_INIT(this_flusher.list),
2421 .flush_color = -1,
2422 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2423 };
2424 int next_color;
1da177e4 2425
3295f0ef
IM
2426 lock_map_acquire(&wq->lockdep_map);
2427 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2428
2429 mutex_lock(&wq->flush_mutex);
2430
2431 /*
2432 * Start-to-wait phase
2433 */
2434 next_color = work_next_color(wq->work_color);
2435
2436 if (next_color != wq->flush_color) {
2437 /*
2438 * Color space is not full. The current work_color
2439 * becomes our flush_color and work_color is advanced
2440 * by one.
2441 */
2442 BUG_ON(!list_empty(&wq->flusher_overflow));
2443 this_flusher.flush_color = wq->work_color;
2444 wq->work_color = next_color;
2445
2446 if (!wq->first_flusher) {
2447 /* no flush in progress, become the first flusher */
2448 BUG_ON(wq->flush_color != this_flusher.flush_color);
2449
2450 wq->first_flusher = &this_flusher;
2451
2452 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2453 wq->work_color)) {
2454 /* nothing to flush, done */
2455 wq->flush_color = next_color;
2456 wq->first_flusher = NULL;
2457 goto out_unlock;
2458 }
2459 } else {
2460 /* wait in queue */
2461 BUG_ON(wq->flush_color == this_flusher.flush_color);
2462 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2463 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2464 }
2465 } else {
2466 /*
2467 * Oops, color space is full, wait on overflow queue.
2468 * The next flush completion will assign us
2469 * flush_color and transfer to flusher_queue.
2470 */
2471 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2472 }
2473
2474 mutex_unlock(&wq->flush_mutex);
2475
2476 wait_for_completion(&this_flusher.done);
2477
2478 /*
2479 * Wake-up-and-cascade phase
2480 *
2481 * First flushers are responsible for cascading flushes and
2482 * handling overflow. Non-first flushers can simply return.
2483 */
2484 if (wq->first_flusher != &this_flusher)
2485 return;
2486
2487 mutex_lock(&wq->flush_mutex);
2488
4ce48b37
TH
2489 /* we might have raced, check again with mutex held */
2490 if (wq->first_flusher != &this_flusher)
2491 goto out_unlock;
2492
73f53c4a
TH
2493 wq->first_flusher = NULL;
2494
2495 BUG_ON(!list_empty(&this_flusher.list));
2496 BUG_ON(wq->flush_color != this_flusher.flush_color);
2497
2498 while (true) {
2499 struct wq_flusher *next, *tmp;
2500
2501 /* complete all the flushers sharing the current flush color */
2502 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2503 if (next->flush_color != wq->flush_color)
2504 break;
2505 list_del_init(&next->list);
2506 complete(&next->done);
2507 }
2508
2509 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2510 wq->flush_color != work_next_color(wq->work_color));
2511
2512 /* this flush_color is finished, advance by one */
2513 wq->flush_color = work_next_color(wq->flush_color);
2514
2515 /* one color has been freed, handle overflow queue */
2516 if (!list_empty(&wq->flusher_overflow)) {
2517 /*
2518 * Assign the same color to all overflowed
2519 * flushers, advance work_color and append to
2520 * flusher_queue. This is the start-to-wait
2521 * phase for these overflowed flushers.
2522 */
2523 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2524 tmp->flush_color = wq->work_color;
2525
2526 wq->work_color = work_next_color(wq->work_color);
2527
2528 list_splice_tail_init(&wq->flusher_overflow,
2529 &wq->flusher_queue);
2530 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2531 }
2532
2533 if (list_empty(&wq->flusher_queue)) {
2534 BUG_ON(wq->flush_color != wq->work_color);
2535 break;
2536 }
2537
2538 /*
2539 * Need to flush more colors. Make the next flusher
2540 * the new first flusher and arm cwqs.
2541 */
2542 BUG_ON(wq->flush_color == wq->work_color);
2543 BUG_ON(wq->flush_color != next->flush_color);
2544
2545 list_del_init(&next->list);
2546 wq->first_flusher = next;
2547
2548 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2549 break;
2550
2551 /*
2552 * Meh... this color is already done, clear first
2553 * flusher and repeat cascading.
2554 */
2555 wq->first_flusher = NULL;
2556 }
2557
2558out_unlock:
2559 mutex_unlock(&wq->flush_mutex);
1da177e4 2560}
ae90dd5d 2561EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2562
9c5a2ba7
TH
2563/**
2564 * drain_workqueue - drain a workqueue
2565 * @wq: workqueue to drain
2566 *
2567 * Wait until the workqueue becomes empty. While draining is in progress,
2568 * only chain queueing is allowed. IOW, only currently pending or running
2569 * work items on @wq can queue further work items on it. @wq is flushed
2570 * repeatedly until it becomes empty. The number of flushing is detemined
2571 * by the depth of chaining and should be relatively short. Whine if it
2572 * takes too long.
2573 */
2574void drain_workqueue(struct workqueue_struct *wq)
2575{
2576 unsigned int flush_cnt = 0;
2577 unsigned int cpu;
2578
2579 /*
2580 * __queue_work() needs to test whether there are drainers, is much
2581 * hotter than drain_workqueue() and already looks at @wq->flags.
2582 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2583 */
2584 spin_lock(&workqueue_lock);
2585 if (!wq->nr_drainers++)
2586 wq->flags |= WQ_DRAINING;
2587 spin_unlock(&workqueue_lock);
2588reflush:
2589 flush_workqueue(wq);
2590
2591 for_each_cwq_cpu(cpu, wq) {
2592 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2593 bool drained;
9c5a2ba7 2594
bd7bdd43 2595 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2596 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2597 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2598
2599 if (drained)
9c5a2ba7
TH
2600 continue;
2601
2602 if (++flush_cnt == 10 ||
2603 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2604 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2605 wq->name, flush_cnt);
2606 goto reflush;
2607 }
2608
2609 spin_lock(&workqueue_lock);
2610 if (!--wq->nr_drainers)
2611 wq->flags &= ~WQ_DRAINING;
2612 spin_unlock(&workqueue_lock);
2613}
2614EXPORT_SYMBOL_GPL(drain_workqueue);
2615
baf59022
TH
2616static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2617 bool wait_executing)
db700897 2618{
affee4b2 2619 struct worker *worker = NULL;
8b03ae3c 2620 struct global_cwq *gcwq;
db700897 2621 struct cpu_workqueue_struct *cwq;
db700897
ON
2622
2623 might_sleep();
7a22ad75
TH
2624 gcwq = get_work_gcwq(work);
2625 if (!gcwq)
baf59022 2626 return false;
db700897 2627
8b03ae3c 2628 spin_lock_irq(&gcwq->lock);
db700897
ON
2629 if (!list_empty(&work->entry)) {
2630 /*
2631 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2632 * If it was re-queued to a different gcwq under us, we
2633 * are not going to wait.
db700897
ON
2634 */
2635 smp_rmb();
7a22ad75 2636 cwq = get_work_cwq(work);
bd7bdd43 2637 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2638 goto already_gone;
baf59022 2639 } else if (wait_executing) {
7a22ad75 2640 worker = find_worker_executing_work(gcwq, work);
affee4b2 2641 if (!worker)
4690c4ab 2642 goto already_gone;
7a22ad75 2643 cwq = worker->current_cwq;
baf59022
TH
2644 } else
2645 goto already_gone;
db700897 2646
baf59022 2647 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2648 spin_unlock_irq(&gcwq->lock);
7a22ad75 2649
e159489b
TH
2650 /*
2651 * If @max_active is 1 or rescuer is in use, flushing another work
2652 * item on the same workqueue may lead to deadlock. Make sure the
2653 * flusher is not running on the same workqueue by verifying write
2654 * access.
2655 */
2656 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2657 lock_map_acquire(&cwq->wq->lockdep_map);
2658 else
2659 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2660 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2661
401a8d04 2662 return true;
4690c4ab 2663already_gone:
8b03ae3c 2664 spin_unlock_irq(&gcwq->lock);
401a8d04 2665 return false;
db700897 2666}
baf59022
TH
2667
2668/**
2669 * flush_work - wait for a work to finish executing the last queueing instance
2670 * @work: the work to flush
2671 *
2672 * Wait until @work has finished execution. This function considers
2673 * only the last queueing instance of @work. If @work has been
2674 * enqueued across different CPUs on a non-reentrant workqueue or on
2675 * multiple workqueues, @work might still be executing on return on
2676 * some of the CPUs from earlier queueing.
2677 *
2678 * If @work was queued only on a non-reentrant, ordered or unbound
2679 * workqueue, @work is guaranteed to be idle on return if it hasn't
2680 * been requeued since flush started.
2681 *
2682 * RETURNS:
2683 * %true if flush_work() waited for the work to finish execution,
2684 * %false if it was already idle.
2685 */
2686bool flush_work(struct work_struct *work)
2687{
2688 struct wq_barrier barr;
2689
0976dfc1
SB
2690 lock_map_acquire(&work->lockdep_map);
2691 lock_map_release(&work->lockdep_map);
2692
baf59022
TH
2693 if (start_flush_work(work, &barr, true)) {
2694 wait_for_completion(&barr.done);
2695 destroy_work_on_stack(&barr.work);
2696 return true;
2697 } else
2698 return false;
2699}
db700897
ON
2700EXPORT_SYMBOL_GPL(flush_work);
2701
401a8d04
TH
2702static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2703{
2704 struct wq_barrier barr;
2705 struct worker *worker;
2706
2707 spin_lock_irq(&gcwq->lock);
2708
2709 worker = find_worker_executing_work(gcwq, work);
2710 if (unlikely(worker))
2711 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2712
2713 spin_unlock_irq(&gcwq->lock);
2714
2715 if (unlikely(worker)) {
2716 wait_for_completion(&barr.done);
2717 destroy_work_on_stack(&barr.work);
2718 return true;
2719 } else
2720 return false;
2721}
2722
2723static bool wait_on_work(struct work_struct *work)
2724{
2725 bool ret = false;
2726 int cpu;
2727
2728 might_sleep();
2729
2730 lock_map_acquire(&work->lockdep_map);
2731 lock_map_release(&work->lockdep_map);
2732
2733 for_each_gcwq_cpu(cpu)
2734 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2735 return ret;
2736}
2737
09383498
TH
2738/**
2739 * flush_work_sync - wait until a work has finished execution
2740 * @work: the work to flush
2741 *
2742 * Wait until @work has finished execution. On return, it's
2743 * guaranteed that all queueing instances of @work which happened
2744 * before this function is called are finished. In other words, if
2745 * @work hasn't been requeued since this function was called, @work is
2746 * guaranteed to be idle on return.
2747 *
2748 * RETURNS:
2749 * %true if flush_work_sync() waited for the work to finish execution,
2750 * %false if it was already idle.
2751 */
2752bool flush_work_sync(struct work_struct *work)
2753{
2754 struct wq_barrier barr;
2755 bool pending, waited;
2756
2757 /* we'll wait for executions separately, queue barr only if pending */
2758 pending = start_flush_work(work, &barr, false);
2759
2760 /* wait for executions to finish */
2761 waited = wait_on_work(work);
2762
2763 /* wait for the pending one */
2764 if (pending) {
2765 wait_for_completion(&barr.done);
2766 destroy_work_on_stack(&barr.work);
2767 }
2768
2769 return pending || waited;
2770}
2771EXPORT_SYMBOL_GPL(flush_work_sync);
2772
6e84d644 2773/*
1f1f642e 2774 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2775 * so this work can't be re-armed in any way.
2776 */
2777static int try_to_grab_pending(struct work_struct *work)
2778{
8b03ae3c 2779 struct global_cwq *gcwq;
1f1f642e 2780 int ret = -1;
6e84d644 2781
22df02bb 2782 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2783 return 0;
6e84d644
ON
2784
2785 /*
2786 * The queueing is in progress, or it is already queued. Try to
2787 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2788 */
7a22ad75
TH
2789 gcwq = get_work_gcwq(work);
2790 if (!gcwq)
6e84d644
ON
2791 return ret;
2792
8b03ae3c 2793 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2794 if (!list_empty(&work->entry)) {
2795 /*
7a22ad75 2796 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2797 * In that case we must see the new value after rmb(), see
2798 * insert_work()->wmb().
2799 */
2800 smp_rmb();
7a22ad75 2801 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2802 debug_work_deactivate(work);
6e84d644 2803 list_del_init(&work->entry);
7a22ad75 2804 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2805 get_work_color(work),
2806 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2807 ret = 1;
2808 }
2809 }
8b03ae3c 2810 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2811
2812 return ret;
2813}
2814
401a8d04 2815static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2816 struct timer_list* timer)
2817{
2818 int ret;
2819
2820 do {
2821 ret = (timer && likely(del_timer(timer)));
2822 if (!ret)
2823 ret = try_to_grab_pending(work);
2824 wait_on_work(work);
2825 } while (unlikely(ret < 0));
2826
7a22ad75 2827 clear_work_data(work);
1f1f642e
ON
2828 return ret;
2829}
2830
6e84d644 2831/**
401a8d04
TH
2832 * cancel_work_sync - cancel a work and wait for it to finish
2833 * @work: the work to cancel
6e84d644 2834 *
401a8d04
TH
2835 * Cancel @work and wait for its execution to finish. This function
2836 * can be used even if the work re-queues itself or migrates to
2837 * another workqueue. On return from this function, @work is
2838 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2839 *
401a8d04
TH
2840 * cancel_work_sync(&delayed_work->work) must not be used for
2841 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2842 *
401a8d04 2843 * The caller must ensure that the workqueue on which @work was last
6e84d644 2844 * queued can't be destroyed before this function returns.
401a8d04
TH
2845 *
2846 * RETURNS:
2847 * %true if @work was pending, %false otherwise.
6e84d644 2848 */
401a8d04 2849bool cancel_work_sync(struct work_struct *work)
6e84d644 2850{
1f1f642e 2851 return __cancel_work_timer(work, NULL);
b89deed3 2852}
28e53bdd 2853EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2854
6e84d644 2855/**
401a8d04
TH
2856 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2857 * @dwork: the delayed work to flush
6e84d644 2858 *
401a8d04
TH
2859 * Delayed timer is cancelled and the pending work is queued for
2860 * immediate execution. Like flush_work(), this function only
2861 * considers the last queueing instance of @dwork.
1f1f642e 2862 *
401a8d04
TH
2863 * RETURNS:
2864 * %true if flush_work() waited for the work to finish execution,
2865 * %false if it was already idle.
6e84d644 2866 */
401a8d04
TH
2867bool flush_delayed_work(struct delayed_work *dwork)
2868{
8930caba 2869 local_irq_disable();
401a8d04
TH
2870 if (del_timer_sync(&dwork->timer))
2871 __queue_work(raw_smp_processor_id(),
2872 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2873 local_irq_enable();
401a8d04
TH
2874 return flush_work(&dwork->work);
2875}
2876EXPORT_SYMBOL(flush_delayed_work);
2877
09383498
TH
2878/**
2879 * flush_delayed_work_sync - wait for a dwork to finish
2880 * @dwork: the delayed work to flush
2881 *
2882 * Delayed timer is cancelled and the pending work is queued for
2883 * execution immediately. Other than timer handling, its behavior
2884 * is identical to flush_work_sync().
2885 *
2886 * RETURNS:
2887 * %true if flush_work_sync() waited for the work to finish execution,
2888 * %false if it was already idle.
2889 */
2890bool flush_delayed_work_sync(struct delayed_work *dwork)
2891{
8930caba 2892 local_irq_disable();
09383498
TH
2893 if (del_timer_sync(&dwork->timer))
2894 __queue_work(raw_smp_processor_id(),
2895 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2896 local_irq_enable();
09383498
TH
2897 return flush_work_sync(&dwork->work);
2898}
2899EXPORT_SYMBOL(flush_delayed_work_sync);
2900
401a8d04
TH
2901/**
2902 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2903 * @dwork: the delayed work cancel
2904 *
2905 * This is cancel_work_sync() for delayed works.
2906 *
2907 * RETURNS:
2908 * %true if @dwork was pending, %false otherwise.
2909 */
2910bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2911{
1f1f642e 2912 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2913}
f5a421a4 2914EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2915
d4283e93 2916/**
0a13c00e
TH
2917 * schedule_work_on - put work task on a specific cpu
2918 * @cpu: cpu to put the work task on
2919 * @work: job to be done
2920 *
2921 * This puts a job on a specific cpu
2922 */
d4283e93 2923bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
2924{
2925 return queue_work_on(cpu, system_wq, work);
2926}
2927EXPORT_SYMBOL(schedule_work_on);
2928
0fcb78c2
REB
2929/**
2930 * schedule_work - put work task in global workqueue
2931 * @work: job to be done
2932 *
d4283e93
TH
2933 * Returns %false if @work was already on the kernel-global workqueue and
2934 * %true otherwise.
5b0f437d
BVA
2935 *
2936 * This puts a job in the kernel-global workqueue if it was not already
2937 * queued and leaves it in the same position on the kernel-global
2938 * workqueue otherwise.
0fcb78c2 2939 */
d4283e93 2940bool schedule_work(struct work_struct *work)
1da177e4 2941{
d320c038 2942 return queue_work(system_wq, work);
1da177e4 2943}
ae90dd5d 2944EXPORT_SYMBOL(schedule_work);
1da177e4 2945
0a13c00e
TH
2946/**
2947 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2948 * @cpu: cpu to use
2949 * @dwork: job to be done
2950 * @delay: number of jiffies to wait
c1a220e7 2951 *
0a13c00e
TH
2952 * After waiting for a given time this puts a job in the kernel-global
2953 * workqueue on the specified CPU.
c1a220e7 2954 */
d4283e93
TH
2955bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2956 unsigned long delay)
c1a220e7 2957{
0a13c00e 2958 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 2959}
0a13c00e 2960EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 2961
0fcb78c2
REB
2962/**
2963 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2964 * @dwork: job to be done
2965 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2966 *
2967 * After waiting for a given time this puts a job in the kernel-global
2968 * workqueue.
2969 */
d4283e93 2970bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2971{
d320c038 2972 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2973}
ae90dd5d 2974EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2975
b6136773 2976/**
31ddd871 2977 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2978 * @func: the function to call
b6136773 2979 *
31ddd871
TH
2980 * schedule_on_each_cpu() executes @func on each online CPU using the
2981 * system workqueue and blocks until all CPUs have completed.
b6136773 2982 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2983 *
2984 * RETURNS:
2985 * 0 on success, -errno on failure.
b6136773 2986 */
65f27f38 2987int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2988{
2989 int cpu;
38f51568 2990 struct work_struct __percpu *works;
15316ba8 2991
b6136773
AM
2992 works = alloc_percpu(struct work_struct);
2993 if (!works)
15316ba8 2994 return -ENOMEM;
b6136773 2995
93981800
TH
2996 get_online_cpus();
2997
15316ba8 2998 for_each_online_cpu(cpu) {
9bfb1839
IM
2999 struct work_struct *work = per_cpu_ptr(works, cpu);
3000
3001 INIT_WORK(work, func);
b71ab8c2 3002 schedule_work_on(cpu, work);
65a64464 3003 }
93981800
TH
3004
3005 for_each_online_cpu(cpu)
3006 flush_work(per_cpu_ptr(works, cpu));
3007
95402b38 3008 put_online_cpus();
b6136773 3009 free_percpu(works);
15316ba8
CL
3010 return 0;
3011}
3012
eef6a7d5
AS
3013/**
3014 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3015 *
3016 * Forces execution of the kernel-global workqueue and blocks until its
3017 * completion.
3018 *
3019 * Think twice before calling this function! It's very easy to get into
3020 * trouble if you don't take great care. Either of the following situations
3021 * will lead to deadlock:
3022 *
3023 * One of the work items currently on the workqueue needs to acquire
3024 * a lock held by your code or its caller.
3025 *
3026 * Your code is running in the context of a work routine.
3027 *
3028 * They will be detected by lockdep when they occur, but the first might not
3029 * occur very often. It depends on what work items are on the workqueue and
3030 * what locks they need, which you have no control over.
3031 *
3032 * In most situations flushing the entire workqueue is overkill; you merely
3033 * need to know that a particular work item isn't queued and isn't running.
3034 * In such cases you should use cancel_delayed_work_sync() or
3035 * cancel_work_sync() instead.
3036 */
1da177e4
LT
3037void flush_scheduled_work(void)
3038{
d320c038 3039 flush_workqueue(system_wq);
1da177e4 3040}
ae90dd5d 3041EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3042
1fa44eca
JB
3043/**
3044 * execute_in_process_context - reliably execute the routine with user context
3045 * @fn: the function to execute
1fa44eca
JB
3046 * @ew: guaranteed storage for the execute work structure (must
3047 * be available when the work executes)
3048 *
3049 * Executes the function immediately if process context is available,
3050 * otherwise schedules the function for delayed execution.
3051 *
3052 * Returns: 0 - function was executed
3053 * 1 - function was scheduled for execution
3054 */
65f27f38 3055int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3056{
3057 if (!in_interrupt()) {
65f27f38 3058 fn(&ew->work);
1fa44eca
JB
3059 return 0;
3060 }
3061
65f27f38 3062 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3063 schedule_work(&ew->work);
3064
3065 return 1;
3066}
3067EXPORT_SYMBOL_GPL(execute_in_process_context);
3068
1da177e4
LT
3069int keventd_up(void)
3070{
d320c038 3071 return system_wq != NULL;
1da177e4
LT
3072}
3073
bdbc5dd7 3074static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3075{
65a64464 3076 /*
0f900049
TH
3077 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3078 * Make sure that the alignment isn't lower than that of
3079 * unsigned long long.
65a64464 3080 */
0f900049
TH
3081 const size_t size = sizeof(struct cpu_workqueue_struct);
3082 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3083 __alignof__(unsigned long long));
65a64464 3084
e06ffa1e 3085 if (!(wq->flags & WQ_UNBOUND))
f3421797 3086 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3087 else {
f3421797
TH
3088 void *ptr;
3089
3090 /*
3091 * Allocate enough room to align cwq and put an extra
3092 * pointer at the end pointing back to the originally
3093 * allocated pointer which will be used for free.
3094 */
3095 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3096 if (ptr) {
3097 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3098 *(void **)(wq->cpu_wq.single + 1) = ptr;
3099 }
bdbc5dd7 3100 }
f3421797 3101
0415b00d 3102 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3103 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3104 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3105}
3106
bdbc5dd7 3107static void free_cwqs(struct workqueue_struct *wq)
0f900049 3108{
e06ffa1e 3109 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3110 free_percpu(wq->cpu_wq.pcpu);
3111 else if (wq->cpu_wq.single) {
3112 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3113 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3114 }
0f900049
TH
3115}
3116
f3421797
TH
3117static int wq_clamp_max_active(int max_active, unsigned int flags,
3118 const char *name)
b71ab8c2 3119{
f3421797
TH
3120 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3121
3122 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3123 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3124 "is out of range, clamping between %d and %d\n",
f3421797 3125 max_active, name, 1, lim);
b71ab8c2 3126
f3421797 3127 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3128}
3129
b196be89 3130struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3131 unsigned int flags,
3132 int max_active,
3133 struct lock_class_key *key,
b196be89 3134 const char *lock_name, ...)
1da177e4 3135{
b196be89 3136 va_list args, args1;
1da177e4 3137 struct workqueue_struct *wq;
c34056a3 3138 unsigned int cpu;
b196be89
TH
3139 size_t namelen;
3140
3141 /* determine namelen, allocate wq and format name */
3142 va_start(args, lock_name);
3143 va_copy(args1, args);
3144 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3145
3146 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3147 if (!wq)
3148 goto err;
3149
3150 vsnprintf(wq->name, namelen, fmt, args1);
3151 va_end(args);
3152 va_end(args1);
1da177e4 3153
6370a6ad
TH
3154 /*
3155 * Workqueues which may be used during memory reclaim should
3156 * have a rescuer to guarantee forward progress.
3157 */
3158 if (flags & WQ_MEM_RECLAIM)
3159 flags |= WQ_RESCUER;
3160
d320c038 3161 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3162 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3163
b196be89 3164 /* init wq */
97e37d7b 3165 wq->flags = flags;
a0a1a5fd 3166 wq->saved_max_active = max_active;
73f53c4a
TH
3167 mutex_init(&wq->flush_mutex);
3168 atomic_set(&wq->nr_cwqs_to_flush, 0);
3169 INIT_LIST_HEAD(&wq->flusher_queue);
3170 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3171
eb13ba87 3172 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3173 INIT_LIST_HEAD(&wq->list);
3af24433 3174
bdbc5dd7
TH
3175 if (alloc_cwqs(wq) < 0)
3176 goto err;
3177
f3421797 3178 for_each_cwq_cpu(cpu, wq) {
1537663f 3179 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3180 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3181 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3182
0f900049 3183 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3184 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3185 cwq->wq = wq;
73f53c4a 3186 cwq->flush_color = -1;
1e19ffc6 3187 cwq->max_active = max_active;
1e19ffc6 3188 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3189 }
1537663f 3190
e22bee78
TH
3191 if (flags & WQ_RESCUER) {
3192 struct worker *rescuer;
3193
f2e005aa 3194 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3195 goto err;
3196
3197 wq->rescuer = rescuer = alloc_worker();
3198 if (!rescuer)
3199 goto err;
3200
b196be89
TH
3201 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3202 wq->name);
e22bee78
TH
3203 if (IS_ERR(rescuer->task))
3204 goto err;
3205
e22bee78
TH
3206 rescuer->task->flags |= PF_THREAD_BOUND;
3207 wake_up_process(rescuer->task);
3af24433
ON
3208 }
3209
a0a1a5fd
TH
3210 /*
3211 * workqueue_lock protects global freeze state and workqueues
3212 * list. Grab it, set max_active accordingly and add the new
3213 * workqueue to workqueues list.
3214 */
1537663f 3215 spin_lock(&workqueue_lock);
a0a1a5fd 3216
58a69cb4 3217 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3218 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3219 get_cwq(cpu, wq)->max_active = 0;
3220
1537663f 3221 list_add(&wq->list, &workqueues);
a0a1a5fd 3222
1537663f
TH
3223 spin_unlock(&workqueue_lock);
3224
3af24433 3225 return wq;
4690c4ab
TH
3226err:
3227 if (wq) {
bdbc5dd7 3228 free_cwqs(wq);
f2e005aa 3229 free_mayday_mask(wq->mayday_mask);
e22bee78 3230 kfree(wq->rescuer);
4690c4ab
TH
3231 kfree(wq);
3232 }
3233 return NULL;
3af24433 3234}
d320c038 3235EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3236
3af24433
ON
3237/**
3238 * destroy_workqueue - safely terminate a workqueue
3239 * @wq: target workqueue
3240 *
3241 * Safely destroy a workqueue. All work currently pending will be done first.
3242 */
3243void destroy_workqueue(struct workqueue_struct *wq)
3244{
c8e55f36 3245 unsigned int cpu;
3af24433 3246
9c5a2ba7
TH
3247 /* drain it before proceeding with destruction */
3248 drain_workqueue(wq);
c8efcc25 3249
a0a1a5fd
TH
3250 /*
3251 * wq list is used to freeze wq, remove from list after
3252 * flushing is complete in case freeze races us.
3253 */
95402b38 3254 spin_lock(&workqueue_lock);
b1f4ec17 3255 list_del(&wq->list);
95402b38 3256 spin_unlock(&workqueue_lock);
3af24433 3257
e22bee78 3258 /* sanity check */
f3421797 3259 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3260 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3261 int i;
3262
73f53c4a
TH
3263 for (i = 0; i < WORK_NR_COLORS; i++)
3264 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3265 BUG_ON(cwq->nr_active);
3266 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3267 }
9b41ea72 3268
e22bee78
TH
3269 if (wq->flags & WQ_RESCUER) {
3270 kthread_stop(wq->rescuer->task);
f2e005aa 3271 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3272 kfree(wq->rescuer);
e22bee78
TH
3273 }
3274
bdbc5dd7 3275 free_cwqs(wq);
3af24433
ON
3276 kfree(wq);
3277}
3278EXPORT_SYMBOL_GPL(destroy_workqueue);
3279
dcd989cb
TH
3280/**
3281 * workqueue_set_max_active - adjust max_active of a workqueue
3282 * @wq: target workqueue
3283 * @max_active: new max_active value.
3284 *
3285 * Set max_active of @wq to @max_active.
3286 *
3287 * CONTEXT:
3288 * Don't call from IRQ context.
3289 */
3290void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3291{
3292 unsigned int cpu;
3293
f3421797 3294 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3295
3296 spin_lock(&workqueue_lock);
3297
3298 wq->saved_max_active = max_active;
3299
f3421797 3300 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3301 struct global_cwq *gcwq = get_gcwq(cpu);
3302
3303 spin_lock_irq(&gcwq->lock);
3304
58a69cb4 3305 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3306 !(gcwq->flags & GCWQ_FREEZING))
3307 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3308
dcd989cb 3309 spin_unlock_irq(&gcwq->lock);
65a64464 3310 }
93981800 3311
dcd989cb 3312 spin_unlock(&workqueue_lock);
15316ba8 3313}
dcd989cb 3314EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3315
eef6a7d5 3316/**
dcd989cb
TH
3317 * workqueue_congested - test whether a workqueue is congested
3318 * @cpu: CPU in question
3319 * @wq: target workqueue
eef6a7d5 3320 *
dcd989cb
TH
3321 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3322 * no synchronization around this function and the test result is
3323 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3324 *
dcd989cb
TH
3325 * RETURNS:
3326 * %true if congested, %false otherwise.
eef6a7d5 3327 */
dcd989cb 3328bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3329{
dcd989cb
TH
3330 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3331
3332 return !list_empty(&cwq->delayed_works);
1da177e4 3333}
dcd989cb 3334EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3335
1fa44eca 3336/**
dcd989cb
TH
3337 * work_cpu - return the last known associated cpu for @work
3338 * @work: the work of interest
1fa44eca 3339 *
dcd989cb 3340 * RETURNS:
bdbc5dd7 3341 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3342 */
dcd989cb 3343unsigned int work_cpu(struct work_struct *work)
1fa44eca 3344{
dcd989cb 3345 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3346
bdbc5dd7 3347 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3348}
dcd989cb 3349EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3350
dcd989cb
TH
3351/**
3352 * work_busy - test whether a work is currently pending or running
3353 * @work: the work to be tested
3354 *
3355 * Test whether @work is currently pending or running. There is no
3356 * synchronization around this function and the test result is
3357 * unreliable and only useful as advisory hints or for debugging.
3358 * Especially for reentrant wqs, the pending state might hide the
3359 * running state.
3360 *
3361 * RETURNS:
3362 * OR'd bitmask of WORK_BUSY_* bits.
3363 */
3364unsigned int work_busy(struct work_struct *work)
1da177e4 3365{
dcd989cb
TH
3366 struct global_cwq *gcwq = get_work_gcwq(work);
3367 unsigned long flags;
3368 unsigned int ret = 0;
1da177e4 3369
dcd989cb
TH
3370 if (!gcwq)
3371 return false;
1da177e4 3372
dcd989cb 3373 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3374
dcd989cb
TH
3375 if (work_pending(work))
3376 ret |= WORK_BUSY_PENDING;
3377 if (find_worker_executing_work(gcwq, work))
3378 ret |= WORK_BUSY_RUNNING;
1da177e4 3379
dcd989cb 3380 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3381
dcd989cb 3382 return ret;
1da177e4 3383}
dcd989cb 3384EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3385
db7bccf4
TH
3386/*
3387 * CPU hotplug.
3388 *
e22bee78
TH
3389 * There are two challenges in supporting CPU hotplug. Firstly, there
3390 * are a lot of assumptions on strong associations among work, cwq and
3391 * gcwq which make migrating pending and scheduled works very
3392 * difficult to implement without impacting hot paths. Secondly,
3393 * gcwqs serve mix of short, long and very long running works making
3394 * blocked draining impractical.
3395 *
628c78e7
TH
3396 * This is solved by allowing a gcwq to be disassociated from the CPU
3397 * running as an unbound one and allowing it to be reattached later if the
3398 * cpu comes back online.
db7bccf4 3399 */
1da177e4 3400
60373152 3401/* claim manager positions of all pools */
8db25e78 3402static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3403{
3404 struct worker_pool *pool;
3405
3406 for_each_worker_pool(pool, gcwq)
3407 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3408 spin_lock_irq(&gcwq->lock);
60373152
TH
3409}
3410
3411/* release manager positions */
8db25e78 3412static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3413{
3414 struct worker_pool *pool;
3415
8db25e78 3416 spin_unlock_irq(&gcwq->lock);
60373152
TH
3417 for_each_worker_pool(pool, gcwq)
3418 mutex_unlock(&pool->manager_mutex);
3419}
3420
628c78e7 3421static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3422{
628c78e7 3423 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3424 struct worker_pool *pool;
db7bccf4
TH
3425 struct worker *worker;
3426 struct hlist_node *pos;
3427 int i;
3af24433 3428
db7bccf4
TH
3429 BUG_ON(gcwq->cpu != smp_processor_id());
3430
8db25e78 3431 gcwq_claim_management_and_lock(gcwq);
3af24433 3432
f2d5a0ee
TH
3433 /*
3434 * We've claimed all manager positions. Make all workers unbound
3435 * and set DISASSOCIATED. Before this, all workers except for the
3436 * ones which are still executing works from before the last CPU
3437 * down must be on the cpu. After this, they may become diasporas.
3438 */
60373152 3439 for_each_worker_pool(pool, gcwq)
4ce62e9e 3440 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3441 worker->flags |= WORKER_UNBOUND;
3af24433 3442
db7bccf4 3443 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3444 worker->flags |= WORKER_UNBOUND;
06ba38a9 3445
f2d5a0ee
TH
3446 gcwq->flags |= GCWQ_DISASSOCIATED;
3447
8db25e78 3448 gcwq_release_management_and_unlock(gcwq);
628c78e7 3449
e22bee78 3450 /*
403c821d 3451 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3452 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3453 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3454 */
e22bee78 3455 schedule();
06ba38a9 3456
e22bee78 3457 /*
628c78e7
TH
3458 * Sched callbacks are disabled now. Zap nr_running. After this,
3459 * nr_running stays zero and need_more_worker() and keep_working()
3460 * are always true as long as the worklist is not empty. @gcwq now
3461 * behaves as unbound (in terms of concurrency management) gcwq
3462 * which is served by workers tied to the CPU.
3463 *
3464 * On return from this function, the current worker would trigger
3465 * unbound chain execution of pending work items if other workers
3466 * didn't already.
e22bee78 3467 */
4ce62e9e
TH
3468 for_each_worker_pool(pool, gcwq)
3469 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3470}
3af24433 3471
8db25e78
TH
3472/*
3473 * Workqueues should be brought up before normal priority CPU notifiers.
3474 * This will be registered high priority CPU notifier.
3475 */
3476static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3477 unsigned long action,
3478 void *hcpu)
3af24433
ON
3479{
3480 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3481 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3482 struct worker_pool *pool;
3ce63377 3483
8db25e78 3484 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3485 case CPU_UP_PREPARE:
4ce62e9e 3486 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3487 struct worker *worker;
3488
3489 if (pool->nr_workers)
3490 continue;
3491
3492 worker = create_worker(pool);
3493 if (!worker)
3494 return NOTIFY_BAD;
3495
3496 spin_lock_irq(&gcwq->lock);
3497 start_worker(worker);
3498 spin_unlock_irq(&gcwq->lock);
3af24433 3499 }
8db25e78 3500 break;
3af24433 3501
db7bccf4
TH
3502 case CPU_DOWN_FAILED:
3503 case CPU_ONLINE:
8db25e78 3504 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3505 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3506 rebind_workers(gcwq);
8db25e78 3507 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3508 break;
00dfcaf7 3509 }
65758202
TH
3510 return NOTIFY_OK;
3511}
3512
3513/*
3514 * Workqueues should be brought down after normal priority CPU notifiers.
3515 * This will be registered as low priority CPU notifier.
3516 */
3517static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3518 unsigned long action,
3519 void *hcpu)
3520{
8db25e78
TH
3521 unsigned int cpu = (unsigned long)hcpu;
3522 struct work_struct unbind_work;
3523
65758202
TH
3524 switch (action & ~CPU_TASKS_FROZEN) {
3525 case CPU_DOWN_PREPARE:
8db25e78
TH
3526 /* unbinding should happen on the local CPU */
3527 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3528 schedule_work_on(cpu, &unbind_work);
3529 flush_work(&unbind_work);
3530 break;
65758202
TH
3531 }
3532 return NOTIFY_OK;
3533}
3534
2d3854a3 3535#ifdef CONFIG_SMP
8ccad40d 3536
2d3854a3 3537struct work_for_cpu {
6b44003e 3538 struct completion completion;
2d3854a3
RR
3539 long (*fn)(void *);
3540 void *arg;
3541 long ret;
3542};
3543
6b44003e 3544static int do_work_for_cpu(void *_wfc)
2d3854a3 3545{
6b44003e 3546 struct work_for_cpu *wfc = _wfc;
2d3854a3 3547 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3548 complete(&wfc->completion);
3549 return 0;
2d3854a3
RR
3550}
3551
3552/**
3553 * work_on_cpu - run a function in user context on a particular cpu
3554 * @cpu: the cpu to run on
3555 * @fn: the function to run
3556 * @arg: the function arg
3557 *
31ad9081
RR
3558 * This will return the value @fn returns.
3559 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3560 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3561 */
3562long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3563{
6b44003e
AM
3564 struct task_struct *sub_thread;
3565 struct work_for_cpu wfc = {
3566 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3567 .fn = fn,
3568 .arg = arg,
3569 };
3570
3571 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3572 if (IS_ERR(sub_thread))
3573 return PTR_ERR(sub_thread);
3574 kthread_bind(sub_thread, cpu);
3575 wake_up_process(sub_thread);
3576 wait_for_completion(&wfc.completion);
2d3854a3
RR
3577 return wfc.ret;
3578}
3579EXPORT_SYMBOL_GPL(work_on_cpu);
3580#endif /* CONFIG_SMP */
3581
a0a1a5fd
TH
3582#ifdef CONFIG_FREEZER
3583
3584/**
3585 * freeze_workqueues_begin - begin freezing workqueues
3586 *
58a69cb4
TH
3587 * Start freezing workqueues. After this function returns, all freezable
3588 * workqueues will queue new works to their frozen_works list instead of
3589 * gcwq->worklist.
a0a1a5fd
TH
3590 *
3591 * CONTEXT:
8b03ae3c 3592 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3593 */
3594void freeze_workqueues_begin(void)
3595{
a0a1a5fd
TH
3596 unsigned int cpu;
3597
3598 spin_lock(&workqueue_lock);
3599
3600 BUG_ON(workqueue_freezing);
3601 workqueue_freezing = true;
3602
f3421797 3603 for_each_gcwq_cpu(cpu) {
8b03ae3c 3604 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3605 struct workqueue_struct *wq;
8b03ae3c
TH
3606
3607 spin_lock_irq(&gcwq->lock);
3608
db7bccf4
TH
3609 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3610 gcwq->flags |= GCWQ_FREEZING;
3611
a0a1a5fd
TH
3612 list_for_each_entry(wq, &workqueues, list) {
3613 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3614
58a69cb4 3615 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3616 cwq->max_active = 0;
a0a1a5fd 3617 }
8b03ae3c
TH
3618
3619 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3620 }
3621
3622 spin_unlock(&workqueue_lock);
3623}
3624
3625/**
58a69cb4 3626 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3627 *
3628 * Check whether freezing is complete. This function must be called
3629 * between freeze_workqueues_begin() and thaw_workqueues().
3630 *
3631 * CONTEXT:
3632 * Grabs and releases workqueue_lock.
3633 *
3634 * RETURNS:
58a69cb4
TH
3635 * %true if some freezable workqueues are still busy. %false if freezing
3636 * is complete.
a0a1a5fd
TH
3637 */
3638bool freeze_workqueues_busy(void)
3639{
a0a1a5fd
TH
3640 unsigned int cpu;
3641 bool busy = false;
3642
3643 spin_lock(&workqueue_lock);
3644
3645 BUG_ON(!workqueue_freezing);
3646
f3421797 3647 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3648 struct workqueue_struct *wq;
a0a1a5fd
TH
3649 /*
3650 * nr_active is monotonically decreasing. It's safe
3651 * to peek without lock.
3652 */
3653 list_for_each_entry(wq, &workqueues, list) {
3654 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3655
58a69cb4 3656 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3657 continue;
3658
3659 BUG_ON(cwq->nr_active < 0);
3660 if (cwq->nr_active) {
3661 busy = true;
3662 goto out_unlock;
3663 }
3664 }
3665 }
3666out_unlock:
3667 spin_unlock(&workqueue_lock);
3668 return busy;
3669}
3670
3671/**
3672 * thaw_workqueues - thaw workqueues
3673 *
3674 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3675 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3676 *
3677 * CONTEXT:
8b03ae3c 3678 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3679 */
3680void thaw_workqueues(void)
3681{
a0a1a5fd
TH
3682 unsigned int cpu;
3683
3684 spin_lock(&workqueue_lock);
3685
3686 if (!workqueue_freezing)
3687 goto out_unlock;
3688
f3421797 3689 for_each_gcwq_cpu(cpu) {
8b03ae3c 3690 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3691 struct worker_pool *pool;
bdbc5dd7 3692 struct workqueue_struct *wq;
8b03ae3c
TH
3693
3694 spin_lock_irq(&gcwq->lock);
3695
db7bccf4
TH
3696 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3697 gcwq->flags &= ~GCWQ_FREEZING;
3698
a0a1a5fd
TH
3699 list_for_each_entry(wq, &workqueues, list) {
3700 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3701
58a69cb4 3702 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3703 continue;
3704
a0a1a5fd
TH
3705 /* restore max_active and repopulate worklist */
3706 cwq->max_active = wq->saved_max_active;
3707
3708 while (!list_empty(&cwq->delayed_works) &&
3709 cwq->nr_active < cwq->max_active)
3710 cwq_activate_first_delayed(cwq);
a0a1a5fd 3711 }
8b03ae3c 3712
4ce62e9e
TH
3713 for_each_worker_pool(pool, gcwq)
3714 wake_up_worker(pool);
e22bee78 3715
8b03ae3c 3716 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3717 }
3718
3719 workqueue_freezing = false;
3720out_unlock:
3721 spin_unlock(&workqueue_lock);
3722}
3723#endif /* CONFIG_FREEZER */
3724
6ee0578b 3725static int __init init_workqueues(void)
1da177e4 3726{
c34056a3 3727 unsigned int cpu;
c8e55f36 3728 int i;
c34056a3 3729
65758202
TH
3730 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3731 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3732
3733 /* initialize gcwqs */
f3421797 3734 for_each_gcwq_cpu(cpu) {
8b03ae3c 3735 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3736 struct worker_pool *pool;
8b03ae3c
TH
3737
3738 spin_lock_init(&gcwq->lock);
3739 gcwq->cpu = cpu;
477a3c33 3740 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3741
c8e55f36
TH
3742 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3743 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3744
4ce62e9e
TH
3745 for_each_worker_pool(pool, gcwq) {
3746 pool->gcwq = gcwq;
3747 INIT_LIST_HEAD(&pool->worklist);
3748 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3749
4ce62e9e
TH
3750 init_timer_deferrable(&pool->idle_timer);
3751 pool->idle_timer.function = idle_worker_timeout;
3752 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3753
4ce62e9e
TH
3754 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3755 (unsigned long)pool);
3756
60373152 3757 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3758 ida_init(&pool->worker_ida);
3759 }
db7bccf4 3760
25511a47 3761 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3762 }
3763
e22bee78 3764 /* create the initial worker */
f3421797 3765 for_each_online_gcwq_cpu(cpu) {
e22bee78 3766 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3767 struct worker_pool *pool;
e22bee78 3768
477a3c33
TH
3769 if (cpu != WORK_CPU_UNBOUND)
3770 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3771
3772 for_each_worker_pool(pool, gcwq) {
3773 struct worker *worker;
3774
bc2ae0f5 3775 worker = create_worker(pool);
4ce62e9e
TH
3776 BUG_ON(!worker);
3777 spin_lock_irq(&gcwq->lock);
3778 start_worker(worker);
3779 spin_unlock_irq(&gcwq->lock);
3780 }
e22bee78
TH
3781 }
3782
d320c038
TH
3783 system_wq = alloc_workqueue("events", 0, 0);
3784 system_long_wq = alloc_workqueue("events_long", 0, 0);
3785 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3786 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3787 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3788 system_freezable_wq = alloc_workqueue("events_freezable",
3789 WQ_FREEZABLE, 0);
62d3c543
AS
3790 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3791 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3792 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3793 !system_unbound_wq || !system_freezable_wq ||
3794 !system_nrt_freezable_wq);
6ee0578b 3795 return 0;
1da177e4 3796}
6ee0578b 3797early_initcall(init_workqueues);