]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/workqueue.c
workqueue: separate iteration role from worker_idr
[mirror_ubuntu-eoan-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36 74 /* worker flags */
c8e55f36
TH
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 77 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 81
a9ab775b
TH
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 84
e34cdddb 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 86
29c91e99 87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 89
e22bee78
TH
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
3233cdbd
TH
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
e22bee78
TH
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
101 * all cpus. Give -20.
102 */
103 RESCUER_NICE_LEVEL = -20,
3270476a 104 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
105
106 WQ_NAME_LEN = 24,
c8e55f36 107};
1da177e4
LT
108
109/*
4690c4ab
TH
110 * Structure fields follow one of the following exclusion rules.
111 *
e41e704b
TH
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
4690c4ab 114 *
e22bee78
TH
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
d565ed63 118 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 119 *
d565ed63
TH
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 124 *
9625ab17 125 * M: pool->manager_mutex protected.
822d8405 126 *
68e13a67 127 * PL: wq_pool_mutex protected.
5bcab335 128 *
68e13a67 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 130 *
3c25a55d
LJ
131 * WQ: wq->mutex protected.
132 *
b5927605 133 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
134 *
135 * MD: wq_mayday_lock protected.
1da177e4 136 */
1da177e4 137
2eaebdb3 138/* struct worker is defined in workqueue_internal.h */
c34056a3 139
bd7bdd43 140struct worker_pool {
d565ed63 141 spinlock_t lock; /* the pool lock */
d84ff051 142 int cpu; /* I: the associated cpu */
f3f90ad4 143 int node; /* I: the associated node ID */
9daf9e67 144 int id; /* I: pool ID */
11ebea50 145 unsigned int flags; /* X: flags */
bd7bdd43
TH
146
147 struct list_head worklist; /* L: list of pending works */
148 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
149
150 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
151 int nr_idle; /* L: currently idle ones */
152
153 struct list_head idle_list; /* X: list of idle workers */
154 struct timer_list idle_timer; /* L: worker idle timeout */
155 struct timer_list mayday_timer; /* L: SOS timer for workers */
156
c5aa87bb 157 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
159 /* L: hash of busy workers */
160
bc3a1afc 161 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 162 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 163 struct mutex manager_mutex; /* manager exclusion */
da028469
LJ
164 struct idr worker_idr; /* M: worker IDs */
165 struct list_head workers; /* M: attached workers */
60f5a4bc 166 struct completion *detach_completion; /* all workers detached */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
8a2b7538
TH
307/* I: attributes used when instantiating ordered pools on demand */
308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
d320c038 310struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 311EXPORT_SYMBOL(system_wq);
044c782c 312struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 313EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 314struct workqueue_struct *system_long_wq __read_mostly;
d320c038 315EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 316struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 317EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 318struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 319EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
320struct workqueue_struct *system_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 324
7d19c5ce
TH
325static int worker_thread(void *__worker);
326static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
97bd2347
TH
329#define CREATE_TRACE_POINTS
330#include <trace/events/workqueue.h>
331
68e13a67 332#define assert_rcu_or_pool_mutex() \
5bcab335 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
5bcab335 336
b09f4fd3 337#define assert_rcu_or_wq_mutex(wq) \
76af4d93 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 339 lockdep_is_held(&wq->mutex), \
b09f4fd3 340 "sched RCU or wq->mutex should be held")
76af4d93 341
f02ae73a
TH
342#define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 345 (pool)++)
4ce62e9e 346
17116969
TH
347/**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
611c92a0 350 * @pi: integer used for iteration
fa1b54e6 351 *
68e13a67
LJ
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
17116969 358 */
611c92a0
TH
359#define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 362 else
17116969 363
822d8405
TH
364/**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
822d8405
TH
367 * @pool: worker_pool to iterate workers of
368 *
9625ab17 369 * This must be called with @pool->manager_mutex.
822d8405
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
da028469
LJ
374#define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
9625ab17 376 if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
822d8405
TH
377 else
378
49e3cf44
TH
379/**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
76af4d93 383 *
b09f4fd3 384 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
49e3cf44
TH
390 */
391#define for_each_pwq(pwq, wq) \
76af4d93 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 394 else
f3421797 395
dc186ad7
TG
396#ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398static struct debug_obj_descr work_debug_descr;
399
99777288
SG
400static void *work_debug_hint(void *addr)
401{
402 return ((struct work_struct *) addr)->func;
403}
404
dc186ad7
TG
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409static int work_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int work_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
22df02bb 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454}
455
456/*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460static int work_fixup_free(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472}
473
474static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
99777288 476 .debug_hint = work_debug_hint,
dc186ad7
TG
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480};
481
482static inline void debug_work_activate(struct work_struct *work)
483{
484 debug_object_activate(work, &work_debug_descr);
485}
486
487static inline void debug_work_deactivate(struct work_struct *work)
488{
489 debug_object_deactivate(work, &work_debug_descr);
490}
491
492void __init_work(struct work_struct *work, int onstack)
493{
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(__init_work);
500
501void destroy_work_on_stack(struct work_struct *work)
502{
503 debug_object_free(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
ea2e64f2
TG
507void destroy_delayed_work_on_stack(struct delayed_work *work)
508{
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
dc186ad7
TG
514#else
515static inline void debug_work_activate(struct work_struct *work) { }
516static inline void debug_work_deactivate(struct work_struct *work) { }
517#endif
518
4e8b22bd
LB
519/**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
9daf9e67
TH
526static int worker_pool_assign_id(struct worker_pool *pool)
527{
528 int ret;
529
68e13a67 530 lockdep_assert_held(&wq_pool_mutex);
5bcab335 531
4e8b22bd
LB
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
229641a6 534 if (ret >= 0) {
e68035fb 535 pool->id = ret;
229641a6
TH
536 return 0;
537 }
fa1b54e6 538 return ret;
7c3eed5c
TH
539}
540
df2d5ae4
TH
541/**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
549 *
550 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
551 */
552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554{
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557}
558
73f53c4a
TH
559static unsigned int work_color_to_flags(int color)
560{
561 return color << WORK_STRUCT_COLOR_SHIFT;
562}
563
564static int get_work_color(struct work_struct *work)
565{
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568}
569
570static int work_next_color(int color)
571{
572 return (color + 1) % WORK_NR_COLORS;
573}
1da177e4 574
14441960 575/*
112202d9
TH
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 578 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 579 *
112202d9
TH
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
7a22ad75 584 *
112202d9 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 586 * corresponding to a work. Pool is available once the work has been
112202d9 587 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 588 * available only while the work item is queued.
7a22ad75 589 *
bbb68dfa
TH
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
14441960 594 */
7a22ad75
TH
595static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
365970a1 597{
6183c009 598 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
599 atomic_long_set(&work->data, data | flags | work_static(work));
600}
365970a1 601
112202d9 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
603 unsigned long extra_flags)
604{
112202d9
TH
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
607}
608
4468a00f
LJ
609static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611{
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614}
615
7c3eed5c
TH
616static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
7a22ad75 618{
23657bb1
TH
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
7c3eed5c 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 627}
f756d5e2 628
7a22ad75 629static void clear_work_data(struct work_struct *work)
1da177e4 630{
7c3eed5c
TH
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
633}
634
112202d9 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 636{
e120153d 637 unsigned long data = atomic_long_read(&work->data);
7a22ad75 638
112202d9 639 if (data & WORK_STRUCT_PWQ)
e120153d
TH
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
4d707b9f
ON
643}
644
7c3eed5c
TH
645/**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
68e13a67
LJ
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
d185af30
YB
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
659 */
660static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 663 int pool_id;
7a22ad75 664
68e13a67 665 assert_rcu_or_pool_mutex();
fa1b54e6 666
112202d9
TH
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
7c3eed5c 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 670
7c3eed5c
TH
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
673 return NULL;
674
fa1b54e6 675 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
676}
677
678/**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
d185af30 682 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685static int get_work_pool_id(struct work_struct *work)
686{
54d5b7d0
LJ
687 unsigned long data = atomic_long_read(&work->data);
688
112202d9
TH
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
54d5b7d0 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 692
54d5b7d0 693 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
694}
695
bbb68dfa
TH
696static void mark_work_canceling(struct work_struct *work)
697{
7c3eed5c 698 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 699
7c3eed5c
TH
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
702}
703
704static bool work_is_canceling(struct work_struct *work)
705{
706 unsigned long data = atomic_long_read(&work->data);
707
112202d9 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
709}
710
e22bee78 711/*
3270476a
TH
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 714 * they're being called with pool->lock held.
e22bee78
TH
715 */
716
63d95a91 717static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 718{
e19e397a 719 return !atomic_read(&pool->nr_running);
a848e3b6
ON
720}
721
4594bf15 722/*
e22bee78
TH
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
974271c4
TH
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
706026c2 727 * function will always return %true for unbound pools as long as the
974271c4 728 * worklist isn't empty.
4594bf15 729 */
63d95a91 730static bool need_more_worker(struct worker_pool *pool)
365970a1 731{
63d95a91 732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 733}
4594bf15 734
e22bee78 735/* Can I start working? Called from busy but !running workers. */
63d95a91 736static bool may_start_working(struct worker_pool *pool)
e22bee78 737{
63d95a91 738 return pool->nr_idle;
e22bee78
TH
739}
740
741/* Do I need to keep working? Called from currently running workers. */
63d95a91 742static bool keep_working(struct worker_pool *pool)
e22bee78 743{
e19e397a
TH
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
746}
747
748/* Do we need a new worker? Called from manager. */
63d95a91 749static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 750{
63d95a91 751 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 752}
365970a1 753
e22bee78 754/* Do we have too many workers and should some go away? */
63d95a91 755static bool too_many_workers(struct worker_pool *pool)
e22bee78 756{
34a06bd6 757 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 760
ea1abd61
LJ
761 /*
762 * nr_idle and idle_list may disagree if idle rebinding is in
763 * progress. Never return %true if idle_list is empty.
764 */
765 if (list_empty(&pool->idle_list))
766 return false;
767
e22bee78 768 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
769}
770
4d707b9f 771/*
e22bee78
TH
772 * Wake up functions.
773 */
774
7e11629d 775/* Return the first worker. Safe with preemption disabled */
63d95a91 776static struct worker *first_worker(struct worker_pool *pool)
7e11629d 777{
63d95a91 778 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
779 return NULL;
780
63d95a91 781 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
782}
783
784/**
785 * wake_up_worker - wake up an idle worker
63d95a91 786 * @pool: worker pool to wake worker from
7e11629d 787 *
63d95a91 788 * Wake up the first idle worker of @pool.
7e11629d
TH
789 *
790 * CONTEXT:
d565ed63 791 * spin_lock_irq(pool->lock).
7e11629d 792 */
63d95a91 793static void wake_up_worker(struct worker_pool *pool)
7e11629d 794{
63d95a91 795 struct worker *worker = first_worker(pool);
7e11629d
TH
796
797 if (likely(worker))
798 wake_up_process(worker->task);
799}
800
d302f017 801/**
e22bee78
TH
802 * wq_worker_waking_up - a worker is waking up
803 * @task: task waking up
804 * @cpu: CPU @task is waking up to
805 *
806 * This function is called during try_to_wake_up() when a worker is
807 * being awoken.
808 *
809 * CONTEXT:
810 * spin_lock_irq(rq->lock)
811 */
d84ff051 812void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
813{
814 struct worker *worker = kthread_data(task);
815
36576000 816 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 817 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 818 atomic_inc(&worker->pool->nr_running);
36576000 819 }
e22bee78
TH
820}
821
822/**
823 * wq_worker_sleeping - a worker is going to sleep
824 * @task: task going to sleep
825 * @cpu: CPU in question, must be the current CPU number
826 *
827 * This function is called during schedule() when a busy worker is
828 * going to sleep. Worker on the same cpu can be woken up by
829 * returning pointer to its task.
830 *
831 * CONTEXT:
832 * spin_lock_irq(rq->lock)
833 *
d185af30 834 * Return:
e22bee78
TH
835 * Worker task on @cpu to wake up, %NULL if none.
836 */
d84ff051 837struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
838{
839 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 840 struct worker_pool *pool;
e22bee78 841
111c225a
TH
842 /*
843 * Rescuers, which may not have all the fields set up like normal
844 * workers, also reach here, let's not access anything before
845 * checking NOT_RUNNING.
846 */
2d64672e 847 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
848 return NULL;
849
111c225a 850 pool = worker->pool;
111c225a 851
e22bee78 852 /* this can only happen on the local cpu */
6183c009
TH
853 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
854 return NULL;
e22bee78
TH
855
856 /*
857 * The counterpart of the following dec_and_test, implied mb,
858 * worklist not empty test sequence is in insert_work().
859 * Please read comment there.
860 *
628c78e7
TH
861 * NOT_RUNNING is clear. This means that we're bound to and
862 * running on the local cpu w/ rq lock held and preemption
863 * disabled, which in turn means that none else could be
d565ed63 864 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 865 * lock is safe.
e22bee78 866 */
e19e397a
TH
867 if (atomic_dec_and_test(&pool->nr_running) &&
868 !list_empty(&pool->worklist))
63d95a91 869 to_wakeup = first_worker(pool);
e22bee78
TH
870 return to_wakeup ? to_wakeup->task : NULL;
871}
872
873/**
874 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 875 * @worker: self
d302f017
TH
876 * @flags: flags to set
877 * @wakeup: wakeup an idle worker if necessary
878 *
e22bee78
TH
879 * Set @flags in @worker->flags and adjust nr_running accordingly. If
880 * nr_running becomes zero and @wakeup is %true, an idle worker is
881 * woken up.
d302f017 882 *
cb444766 883 * CONTEXT:
d565ed63 884 * spin_lock_irq(pool->lock)
d302f017
TH
885 */
886static inline void worker_set_flags(struct worker *worker, unsigned int flags,
887 bool wakeup)
888{
bd7bdd43 889 struct worker_pool *pool = worker->pool;
e22bee78 890
cb444766
TH
891 WARN_ON_ONCE(worker->task != current);
892
e22bee78
TH
893 /*
894 * If transitioning into NOT_RUNNING, adjust nr_running and
895 * wake up an idle worker as necessary if requested by
896 * @wakeup.
897 */
898 if ((flags & WORKER_NOT_RUNNING) &&
899 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 900 if (wakeup) {
e19e397a 901 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 902 !list_empty(&pool->worklist))
63d95a91 903 wake_up_worker(pool);
e22bee78 904 } else
e19e397a 905 atomic_dec(&pool->nr_running);
e22bee78
TH
906 }
907
d302f017
TH
908 worker->flags |= flags;
909}
910
911/**
e22bee78 912 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 913 * @worker: self
d302f017
TH
914 * @flags: flags to clear
915 *
e22bee78 916 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 917 *
cb444766 918 * CONTEXT:
d565ed63 919 * spin_lock_irq(pool->lock)
d302f017
TH
920 */
921static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
922{
63d95a91 923 struct worker_pool *pool = worker->pool;
e22bee78
TH
924 unsigned int oflags = worker->flags;
925
cb444766
TH
926 WARN_ON_ONCE(worker->task != current);
927
d302f017 928 worker->flags &= ~flags;
e22bee78 929
42c025f3
TH
930 /*
931 * If transitioning out of NOT_RUNNING, increment nr_running. Note
932 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
933 * of multiple flags, not a single flag.
934 */
e22bee78
TH
935 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
936 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 937 atomic_inc(&pool->nr_running);
d302f017
TH
938}
939
8cca0eea
TH
940/**
941 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 942 * @pool: pool of interest
8cca0eea
TH
943 * @work: work to find worker for
944 *
c9e7cf27
TH
945 * Find a worker which is executing @work on @pool by searching
946 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
947 * to match, its current execution should match the address of @work and
948 * its work function. This is to avoid unwanted dependency between
949 * unrelated work executions through a work item being recycled while still
950 * being executed.
951 *
952 * This is a bit tricky. A work item may be freed once its execution
953 * starts and nothing prevents the freed area from being recycled for
954 * another work item. If the same work item address ends up being reused
955 * before the original execution finishes, workqueue will identify the
956 * recycled work item as currently executing and make it wait until the
957 * current execution finishes, introducing an unwanted dependency.
958 *
c5aa87bb
TH
959 * This function checks the work item address and work function to avoid
960 * false positives. Note that this isn't complete as one may construct a
961 * work function which can introduce dependency onto itself through a
962 * recycled work item. Well, if somebody wants to shoot oneself in the
963 * foot that badly, there's only so much we can do, and if such deadlock
964 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
965 *
966 * CONTEXT:
d565ed63 967 * spin_lock_irq(pool->lock).
8cca0eea 968 *
d185af30
YB
969 * Return:
970 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 971 * otherwise.
4d707b9f 972 */
c9e7cf27 973static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 974 struct work_struct *work)
4d707b9f 975{
42f8570f 976 struct worker *worker;
42f8570f 977
b67bfe0d 978 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
979 (unsigned long)work)
980 if (worker->current_work == work &&
981 worker->current_func == work->func)
42f8570f
SL
982 return worker;
983
984 return NULL;
4d707b9f
ON
985}
986
bf4ede01
TH
987/**
988 * move_linked_works - move linked works to a list
989 * @work: start of series of works to be scheduled
990 * @head: target list to append @work to
991 * @nextp: out paramter for nested worklist walking
992 *
993 * Schedule linked works starting from @work to @head. Work series to
994 * be scheduled starts at @work and includes any consecutive work with
995 * WORK_STRUCT_LINKED set in its predecessor.
996 *
997 * If @nextp is not NULL, it's updated to point to the next work of
998 * the last scheduled work. This allows move_linked_works() to be
999 * nested inside outer list_for_each_entry_safe().
1000 *
1001 * CONTEXT:
d565ed63 1002 * spin_lock_irq(pool->lock).
bf4ede01
TH
1003 */
1004static void move_linked_works(struct work_struct *work, struct list_head *head,
1005 struct work_struct **nextp)
1006{
1007 struct work_struct *n;
1008
1009 /*
1010 * Linked worklist will always end before the end of the list,
1011 * use NULL for list head.
1012 */
1013 list_for_each_entry_safe_from(work, n, NULL, entry) {
1014 list_move_tail(&work->entry, head);
1015 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1016 break;
1017 }
1018
1019 /*
1020 * If we're already inside safe list traversal and have moved
1021 * multiple works to the scheduled queue, the next position
1022 * needs to be updated.
1023 */
1024 if (nextp)
1025 *nextp = n;
1026}
1027
8864b4e5
TH
1028/**
1029 * get_pwq - get an extra reference on the specified pool_workqueue
1030 * @pwq: pool_workqueue to get
1031 *
1032 * Obtain an extra reference on @pwq. The caller should guarantee that
1033 * @pwq has positive refcnt and be holding the matching pool->lock.
1034 */
1035static void get_pwq(struct pool_workqueue *pwq)
1036{
1037 lockdep_assert_held(&pwq->pool->lock);
1038 WARN_ON_ONCE(pwq->refcnt <= 0);
1039 pwq->refcnt++;
1040}
1041
1042/**
1043 * put_pwq - put a pool_workqueue reference
1044 * @pwq: pool_workqueue to put
1045 *
1046 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1047 * destruction. The caller should be holding the matching pool->lock.
1048 */
1049static void put_pwq(struct pool_workqueue *pwq)
1050{
1051 lockdep_assert_held(&pwq->pool->lock);
1052 if (likely(--pwq->refcnt))
1053 return;
1054 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1055 return;
1056 /*
1057 * @pwq can't be released under pool->lock, bounce to
1058 * pwq_unbound_release_workfn(). This never recurses on the same
1059 * pool->lock as this path is taken only for unbound workqueues and
1060 * the release work item is scheduled on a per-cpu workqueue. To
1061 * avoid lockdep warning, unbound pool->locks are given lockdep
1062 * subclass of 1 in get_unbound_pool().
1063 */
1064 schedule_work(&pwq->unbound_release_work);
1065}
1066
dce90d47
TH
1067/**
1068 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1069 * @pwq: pool_workqueue to put (can be %NULL)
1070 *
1071 * put_pwq() with locking. This function also allows %NULL @pwq.
1072 */
1073static void put_pwq_unlocked(struct pool_workqueue *pwq)
1074{
1075 if (pwq) {
1076 /*
1077 * As both pwqs and pools are sched-RCU protected, the
1078 * following lock operations are safe.
1079 */
1080 spin_lock_irq(&pwq->pool->lock);
1081 put_pwq(pwq);
1082 spin_unlock_irq(&pwq->pool->lock);
1083 }
1084}
1085
112202d9 1086static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1087{
112202d9 1088 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1089
1090 trace_workqueue_activate_work(work);
112202d9 1091 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1092 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1093 pwq->nr_active++;
bf4ede01
TH
1094}
1095
112202d9 1096static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1097{
112202d9 1098 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1099 struct work_struct, entry);
1100
112202d9 1101 pwq_activate_delayed_work(work);
3aa62497
LJ
1102}
1103
bf4ede01 1104/**
112202d9
TH
1105 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1106 * @pwq: pwq of interest
bf4ede01 1107 * @color: color of work which left the queue
bf4ede01
TH
1108 *
1109 * A work either has completed or is removed from pending queue,
112202d9 1110 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1111 *
1112 * CONTEXT:
d565ed63 1113 * spin_lock_irq(pool->lock).
bf4ede01 1114 */
112202d9 1115static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1116{
8864b4e5 1117 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1118 if (color == WORK_NO_COLOR)
8864b4e5 1119 goto out_put;
bf4ede01 1120
112202d9 1121 pwq->nr_in_flight[color]--;
bf4ede01 1122
112202d9
TH
1123 pwq->nr_active--;
1124 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1125 /* one down, submit a delayed one */
112202d9
TH
1126 if (pwq->nr_active < pwq->max_active)
1127 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1128 }
1129
1130 /* is flush in progress and are we at the flushing tip? */
112202d9 1131 if (likely(pwq->flush_color != color))
8864b4e5 1132 goto out_put;
bf4ede01
TH
1133
1134 /* are there still in-flight works? */
112202d9 1135 if (pwq->nr_in_flight[color])
8864b4e5 1136 goto out_put;
bf4ede01 1137
112202d9
TH
1138 /* this pwq is done, clear flush_color */
1139 pwq->flush_color = -1;
bf4ede01
TH
1140
1141 /*
112202d9 1142 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1143 * will handle the rest.
1144 */
112202d9
TH
1145 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1146 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1147out_put:
1148 put_pwq(pwq);
bf4ede01
TH
1149}
1150
36e227d2 1151/**
bbb68dfa 1152 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1153 * @work: work item to steal
1154 * @is_dwork: @work is a delayed_work
bbb68dfa 1155 * @flags: place to store irq state
36e227d2
TH
1156 *
1157 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1158 * stable state - idle, on timer or on worklist.
36e227d2 1159 *
d185af30 1160 * Return:
36e227d2
TH
1161 * 1 if @work was pending and we successfully stole PENDING
1162 * 0 if @work was idle and we claimed PENDING
1163 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1164 * -ENOENT if someone else is canceling @work, this state may persist
1165 * for arbitrarily long
36e227d2 1166 *
d185af30 1167 * Note:
bbb68dfa 1168 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1169 * interrupted while holding PENDING and @work off queue, irq must be
1170 * disabled on entry. This, combined with delayed_work->timer being
1171 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1172 *
1173 * On successful return, >= 0, irq is disabled and the caller is
1174 * responsible for releasing it using local_irq_restore(*@flags).
1175 *
e0aecdd8 1176 * This function is safe to call from any context including IRQ handler.
bf4ede01 1177 */
bbb68dfa
TH
1178static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1179 unsigned long *flags)
bf4ede01 1180{
d565ed63 1181 struct worker_pool *pool;
112202d9 1182 struct pool_workqueue *pwq;
bf4ede01 1183
bbb68dfa
TH
1184 local_irq_save(*flags);
1185
36e227d2
TH
1186 /* try to steal the timer if it exists */
1187 if (is_dwork) {
1188 struct delayed_work *dwork = to_delayed_work(work);
1189
e0aecdd8
TH
1190 /*
1191 * dwork->timer is irqsafe. If del_timer() fails, it's
1192 * guaranteed that the timer is not queued anywhere and not
1193 * running on the local CPU.
1194 */
36e227d2
TH
1195 if (likely(del_timer(&dwork->timer)))
1196 return 1;
1197 }
1198
1199 /* try to claim PENDING the normal way */
bf4ede01
TH
1200 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1201 return 0;
1202
1203 /*
1204 * The queueing is in progress, or it is already queued. Try to
1205 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1206 */
d565ed63
TH
1207 pool = get_work_pool(work);
1208 if (!pool)
bbb68dfa 1209 goto fail;
bf4ede01 1210
d565ed63 1211 spin_lock(&pool->lock);
0b3dae68 1212 /*
112202d9
TH
1213 * work->data is guaranteed to point to pwq only while the work
1214 * item is queued on pwq->wq, and both updating work->data to point
1215 * to pwq on queueing and to pool on dequeueing are done under
1216 * pwq->pool->lock. This in turn guarantees that, if work->data
1217 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1218 * item is currently queued on that pool.
1219 */
112202d9
TH
1220 pwq = get_work_pwq(work);
1221 if (pwq && pwq->pool == pool) {
16062836
TH
1222 debug_work_deactivate(work);
1223
1224 /*
1225 * A delayed work item cannot be grabbed directly because
1226 * it might have linked NO_COLOR work items which, if left
112202d9 1227 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1228 * management later on and cause stall. Make sure the work
1229 * item is activated before grabbing.
1230 */
1231 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1232 pwq_activate_delayed_work(work);
16062836
TH
1233
1234 list_del_init(&work->entry);
112202d9 1235 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1236
112202d9 1237 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1238 set_work_pool_and_keep_pending(work, pool->id);
1239
1240 spin_unlock(&pool->lock);
1241 return 1;
bf4ede01 1242 }
d565ed63 1243 spin_unlock(&pool->lock);
bbb68dfa
TH
1244fail:
1245 local_irq_restore(*flags);
1246 if (work_is_canceling(work))
1247 return -ENOENT;
1248 cpu_relax();
36e227d2 1249 return -EAGAIN;
bf4ede01
TH
1250}
1251
4690c4ab 1252/**
706026c2 1253 * insert_work - insert a work into a pool
112202d9 1254 * @pwq: pwq @work belongs to
4690c4ab
TH
1255 * @work: work to insert
1256 * @head: insertion point
1257 * @extra_flags: extra WORK_STRUCT_* flags to set
1258 *
112202d9 1259 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1260 * work_struct flags.
4690c4ab
TH
1261 *
1262 * CONTEXT:
d565ed63 1263 * spin_lock_irq(pool->lock).
4690c4ab 1264 */
112202d9
TH
1265static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1266 struct list_head *head, unsigned int extra_flags)
b89deed3 1267{
112202d9 1268 struct worker_pool *pool = pwq->pool;
e22bee78 1269
4690c4ab 1270 /* we own @work, set data and link */
112202d9 1271 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1272 list_add_tail(&work->entry, head);
8864b4e5 1273 get_pwq(pwq);
e22bee78
TH
1274
1275 /*
c5aa87bb
TH
1276 * Ensure either wq_worker_sleeping() sees the above
1277 * list_add_tail() or we see zero nr_running to avoid workers lying
1278 * around lazily while there are works to be processed.
e22bee78
TH
1279 */
1280 smp_mb();
1281
63d95a91
TH
1282 if (__need_more_worker(pool))
1283 wake_up_worker(pool);
b89deed3
ON
1284}
1285
c8efcc25
TH
1286/*
1287 * Test whether @work is being queued from another work executing on the
8d03ecfe 1288 * same workqueue.
c8efcc25
TH
1289 */
1290static bool is_chained_work(struct workqueue_struct *wq)
1291{
8d03ecfe
TH
1292 struct worker *worker;
1293
1294 worker = current_wq_worker();
1295 /*
1296 * Return %true iff I'm a worker execuing a work item on @wq. If
1297 * I'm @worker, it's safe to dereference it without locking.
1298 */
112202d9 1299 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1300}
1301
d84ff051 1302static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1303 struct work_struct *work)
1304{
112202d9 1305 struct pool_workqueue *pwq;
c9178087 1306 struct worker_pool *last_pool;
1e19ffc6 1307 struct list_head *worklist;
8a2e8e5d 1308 unsigned int work_flags;
b75cac93 1309 unsigned int req_cpu = cpu;
8930caba
TH
1310
1311 /*
1312 * While a work item is PENDING && off queue, a task trying to
1313 * steal the PENDING will busy-loop waiting for it to either get
1314 * queued or lose PENDING. Grabbing PENDING and queueing should
1315 * happen with IRQ disabled.
1316 */
1317 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1318
dc186ad7 1319 debug_work_activate(work);
1e19ffc6 1320
9ef28a73 1321 /* if draining, only works from the same workqueue are allowed */
618b01eb 1322 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1323 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1324 return;
9e8cd2f5 1325retry:
df2d5ae4
TH
1326 if (req_cpu == WORK_CPU_UNBOUND)
1327 cpu = raw_smp_processor_id();
1328
c9178087 1329 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1330 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1331 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1332 else
1333 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1334
c9178087
TH
1335 /*
1336 * If @work was previously on a different pool, it might still be
1337 * running there, in which case the work needs to be queued on that
1338 * pool to guarantee non-reentrancy.
1339 */
1340 last_pool = get_work_pool(work);
1341 if (last_pool && last_pool != pwq->pool) {
1342 struct worker *worker;
18aa9eff 1343
c9178087 1344 spin_lock(&last_pool->lock);
18aa9eff 1345
c9178087 1346 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1347
c9178087
TH
1348 if (worker && worker->current_pwq->wq == wq) {
1349 pwq = worker->current_pwq;
8930caba 1350 } else {
c9178087
TH
1351 /* meh... not running there, queue here */
1352 spin_unlock(&last_pool->lock);
112202d9 1353 spin_lock(&pwq->pool->lock);
8930caba 1354 }
f3421797 1355 } else {
112202d9 1356 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1357 }
1358
9e8cd2f5
TH
1359 /*
1360 * pwq is determined and locked. For unbound pools, we could have
1361 * raced with pwq release and it could already be dead. If its
1362 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1363 * without another pwq replacing it in the numa_pwq_tbl or while
1364 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1365 * make forward-progress.
1366 */
1367 if (unlikely(!pwq->refcnt)) {
1368 if (wq->flags & WQ_UNBOUND) {
1369 spin_unlock(&pwq->pool->lock);
1370 cpu_relax();
1371 goto retry;
1372 }
1373 /* oops */
1374 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1375 wq->name, cpu);
1376 }
1377
112202d9
TH
1378 /* pwq determined, queue */
1379 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1380
f5b2552b 1381 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1382 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1383 return;
1384 }
1e19ffc6 1385
112202d9
TH
1386 pwq->nr_in_flight[pwq->work_color]++;
1387 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1388
112202d9 1389 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1390 trace_workqueue_activate_work(work);
112202d9
TH
1391 pwq->nr_active++;
1392 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1393 } else {
1394 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1395 worklist = &pwq->delayed_works;
8a2e8e5d 1396 }
1e19ffc6 1397
112202d9 1398 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1399
112202d9 1400 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1401}
1402
0fcb78c2 1403/**
c1a220e7
ZR
1404 * queue_work_on - queue work on specific cpu
1405 * @cpu: CPU number to execute work on
0fcb78c2
REB
1406 * @wq: workqueue to use
1407 * @work: work to queue
1408 *
c1a220e7
ZR
1409 * We queue the work to a specific CPU, the caller must ensure it
1410 * can't go away.
d185af30
YB
1411 *
1412 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1413 */
d4283e93
TH
1414bool queue_work_on(int cpu, struct workqueue_struct *wq,
1415 struct work_struct *work)
1da177e4 1416{
d4283e93 1417 bool ret = false;
8930caba 1418 unsigned long flags;
ef1ca236 1419
8930caba 1420 local_irq_save(flags);
c1a220e7 1421
22df02bb 1422 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1423 __queue_work(cpu, wq, work);
d4283e93 1424 ret = true;
c1a220e7 1425 }
ef1ca236 1426
8930caba 1427 local_irq_restore(flags);
1da177e4
LT
1428 return ret;
1429}
ad7b1f84 1430EXPORT_SYMBOL(queue_work_on);
1da177e4 1431
d8e794df 1432void delayed_work_timer_fn(unsigned long __data)
1da177e4 1433{
52bad64d 1434 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1435
e0aecdd8 1436 /* should have been called from irqsafe timer with irq already off */
60c057bc 1437 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1438}
1438ade5 1439EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1440
7beb2edf
TH
1441static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1442 struct delayed_work *dwork, unsigned long delay)
1da177e4 1443{
7beb2edf
TH
1444 struct timer_list *timer = &dwork->timer;
1445 struct work_struct *work = &dwork->work;
7beb2edf
TH
1446
1447 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1448 timer->data != (unsigned long)dwork);
fc4b514f
TH
1449 WARN_ON_ONCE(timer_pending(timer));
1450 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1451
8852aac2
TH
1452 /*
1453 * If @delay is 0, queue @dwork->work immediately. This is for
1454 * both optimization and correctness. The earliest @timer can
1455 * expire is on the closest next tick and delayed_work users depend
1456 * on that there's no such delay when @delay is 0.
1457 */
1458 if (!delay) {
1459 __queue_work(cpu, wq, &dwork->work);
1460 return;
1461 }
1462
7beb2edf 1463 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1464
60c057bc 1465 dwork->wq = wq;
1265057f 1466 dwork->cpu = cpu;
7beb2edf
TH
1467 timer->expires = jiffies + delay;
1468
1469 if (unlikely(cpu != WORK_CPU_UNBOUND))
1470 add_timer_on(timer, cpu);
1471 else
1472 add_timer(timer);
1da177e4
LT
1473}
1474
0fcb78c2
REB
1475/**
1476 * queue_delayed_work_on - queue work on specific CPU after delay
1477 * @cpu: CPU number to execute work on
1478 * @wq: workqueue to use
af9997e4 1479 * @dwork: work to queue
0fcb78c2
REB
1480 * @delay: number of jiffies to wait before queueing
1481 *
d185af30 1482 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1483 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1484 * execution.
0fcb78c2 1485 */
d4283e93
TH
1486bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1487 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1488{
52bad64d 1489 struct work_struct *work = &dwork->work;
d4283e93 1490 bool ret = false;
8930caba 1491 unsigned long flags;
7a6bc1cd 1492
8930caba
TH
1493 /* read the comment in __queue_work() */
1494 local_irq_save(flags);
7a6bc1cd 1495
22df02bb 1496 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1497 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1498 ret = true;
7a6bc1cd 1499 }
8a3e77cc 1500
8930caba 1501 local_irq_restore(flags);
7a6bc1cd
VP
1502 return ret;
1503}
ad7b1f84 1504EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1505
8376fe22
TH
1506/**
1507 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1508 * @cpu: CPU number to execute work on
1509 * @wq: workqueue to use
1510 * @dwork: work to queue
1511 * @delay: number of jiffies to wait before queueing
1512 *
1513 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1514 * modify @dwork's timer so that it expires after @delay. If @delay is
1515 * zero, @work is guaranteed to be scheduled immediately regardless of its
1516 * current state.
1517 *
d185af30 1518 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1519 * pending and its timer was modified.
1520 *
e0aecdd8 1521 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1522 * See try_to_grab_pending() for details.
1523 */
1524bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1525 struct delayed_work *dwork, unsigned long delay)
1526{
1527 unsigned long flags;
1528 int ret;
c7fc77f7 1529
8376fe22
TH
1530 do {
1531 ret = try_to_grab_pending(&dwork->work, true, &flags);
1532 } while (unlikely(ret == -EAGAIN));
63bc0362 1533
8376fe22
TH
1534 if (likely(ret >= 0)) {
1535 __queue_delayed_work(cpu, wq, dwork, delay);
1536 local_irq_restore(flags);
7a6bc1cd 1537 }
8376fe22
TH
1538
1539 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1540 return ret;
1541}
8376fe22
TH
1542EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1543
c8e55f36
TH
1544/**
1545 * worker_enter_idle - enter idle state
1546 * @worker: worker which is entering idle state
1547 *
1548 * @worker is entering idle state. Update stats and idle timer if
1549 * necessary.
1550 *
1551 * LOCKING:
d565ed63 1552 * spin_lock_irq(pool->lock).
c8e55f36
TH
1553 */
1554static void worker_enter_idle(struct worker *worker)
1da177e4 1555{
bd7bdd43 1556 struct worker_pool *pool = worker->pool;
c8e55f36 1557
6183c009
TH
1558 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1559 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1560 (worker->hentry.next || worker->hentry.pprev)))
1561 return;
c8e55f36 1562
cb444766
TH
1563 /* can't use worker_set_flags(), also called from start_worker() */
1564 worker->flags |= WORKER_IDLE;
bd7bdd43 1565 pool->nr_idle++;
e22bee78 1566 worker->last_active = jiffies;
c8e55f36
TH
1567
1568 /* idle_list is LIFO */
bd7bdd43 1569 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1570
628c78e7
TH
1571 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1572 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1573
544ecf31 1574 /*
706026c2 1575 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1576 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1577 * nr_running, the warning may trigger spuriously. Check iff
1578 * unbind is not in progress.
544ecf31 1579 */
24647570 1580 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1581 pool->nr_workers == pool->nr_idle &&
e19e397a 1582 atomic_read(&pool->nr_running));
c8e55f36
TH
1583}
1584
1585/**
1586 * worker_leave_idle - leave idle state
1587 * @worker: worker which is leaving idle state
1588 *
1589 * @worker is leaving idle state. Update stats.
1590 *
1591 * LOCKING:
d565ed63 1592 * spin_lock_irq(pool->lock).
c8e55f36
TH
1593 */
1594static void worker_leave_idle(struct worker *worker)
1595{
bd7bdd43 1596 struct worker_pool *pool = worker->pool;
c8e55f36 1597
6183c009
TH
1598 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1599 return;
d302f017 1600 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1601 pool->nr_idle--;
c8e55f36
TH
1602 list_del_init(&worker->entry);
1603}
1604
e22bee78 1605/**
f36dc67b
LJ
1606 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1607 * @pool: target worker_pool
1608 *
1609 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1610 *
1611 * Works which are scheduled while the cpu is online must at least be
1612 * scheduled to a worker which is bound to the cpu so that if they are
1613 * flushed from cpu callbacks while cpu is going down, they are
1614 * guaranteed to execute on the cpu.
1615 *
f5faa077 1616 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1617 * themselves to the target cpu and may race with cpu going down or
1618 * coming online. kthread_bind() can't be used because it may put the
1619 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1620 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1621 * [dis]associated in the meantime.
1622 *
706026c2 1623 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1624 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1625 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1626 * enters idle state or fetches works without dropping lock, it can
1627 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1628 *
1629 * CONTEXT:
d565ed63 1630 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1631 * held.
1632 *
d185af30 1633 * Return:
706026c2 1634 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1635 * bound), %false if offline.
1636 */
f36dc67b 1637static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1638__acquires(&pool->lock)
e22bee78 1639{
e22bee78 1640 while (true) {
4e6045f1 1641 /*
e22bee78
TH
1642 * The following call may fail, succeed or succeed
1643 * without actually migrating the task to the cpu if
1644 * it races with cpu hotunplug operation. Verify
24647570 1645 * against POOL_DISASSOCIATED.
4e6045f1 1646 */
24647570 1647 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1648 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1649
d565ed63 1650 spin_lock_irq(&pool->lock);
24647570 1651 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1652 return false;
f5faa077 1653 if (task_cpu(current) == pool->cpu &&
7a4e344c 1654 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1655 return true;
d565ed63 1656 spin_unlock_irq(&pool->lock);
e22bee78 1657
5035b20f
TH
1658 /*
1659 * We've raced with CPU hot[un]plug. Give it a breather
1660 * and retry migration. cond_resched() is required here;
1661 * otherwise, we might deadlock against cpu_stop trying to
1662 * bring down the CPU on non-preemptive kernel.
1663 */
e22bee78 1664 cpu_relax();
5035b20f 1665 cond_resched();
e22bee78
TH
1666 }
1667}
1668
c34056a3
TH
1669static struct worker *alloc_worker(void)
1670{
1671 struct worker *worker;
1672
1673 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1674 if (worker) {
1675 INIT_LIST_HEAD(&worker->entry);
affee4b2 1676 INIT_LIST_HEAD(&worker->scheduled);
da028469 1677 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1678 /* on creation a worker is in !idle && prep state */
1679 worker->flags = WORKER_PREP;
c8e55f36 1680 }
c34056a3
TH
1681 return worker;
1682}
1683
60f5a4bc
LJ
1684/**
1685 * worker_detach_from_pool() - detach a worker from its pool
1686 * @worker: worker which is attached to its pool
1687 * @pool: the pool @worker is attached to
1688 *
1689 * Undo the attaching which had been done in create_worker(). The caller
1690 * worker shouldn't access to the pool after detached except it has other
1691 * reference to the pool.
1692 */
1693static void worker_detach_from_pool(struct worker *worker,
1694 struct worker_pool *pool)
1695{
1696 struct completion *detach_completion = NULL;
1697
1698 mutex_lock(&pool->manager_mutex);
1699 idr_remove(&pool->worker_idr, worker->id);
da028469
LJ
1700 list_del(&worker->node);
1701 if (list_empty(&pool->workers))
60f5a4bc
LJ
1702 detach_completion = pool->detach_completion;
1703 mutex_unlock(&pool->manager_mutex);
1704
1705 if (detach_completion)
1706 complete(detach_completion);
1707}
1708
c34056a3
TH
1709/**
1710 * create_worker - create a new workqueue worker
63d95a91 1711 * @pool: pool the new worker will belong to
c34056a3 1712 *
73eb7fe7
LJ
1713 * Create a new worker which is attached to @pool. The new worker must be
1714 * started by start_worker().
c34056a3
TH
1715 *
1716 * CONTEXT:
1717 * Might sleep. Does GFP_KERNEL allocations.
1718 *
d185af30 1719 * Return:
c34056a3
TH
1720 * Pointer to the newly created worker.
1721 */
bc2ae0f5 1722static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1723{
c34056a3 1724 struct worker *worker = NULL;
f3421797 1725 int id = -1;
e3c916a4 1726 char id_buf[16];
c34056a3 1727
cd549687
TH
1728 lockdep_assert_held(&pool->manager_mutex);
1729
822d8405
TH
1730 /*
1731 * ID is needed to determine kthread name. Allocate ID first
1732 * without installing the pointer.
1733 */
9625ab17 1734 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
822d8405
TH
1735 if (id < 0)
1736 goto fail;
c34056a3
TH
1737
1738 worker = alloc_worker();
1739 if (!worker)
1740 goto fail;
1741
bd7bdd43 1742 worker->pool = pool;
c34056a3
TH
1743 worker->id = id;
1744
29c91e99 1745 if (pool->cpu >= 0)
e3c916a4
TH
1746 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747 pool->attrs->nice < 0 ? "H" : "");
f3421797 1748 else
e3c916a4
TH
1749 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750
f3f90ad4 1751 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1752 "kworker/%s", id_buf);
c34056a3
TH
1753 if (IS_ERR(worker->task))
1754 goto fail;
1755
91151228
ON
1756 set_user_nice(worker->task, pool->attrs->nice);
1757
1758 /* prevent userland from meddling with cpumask of workqueue workers */
1759 worker->task->flags |= PF_NO_SETAFFINITY;
1760
c5aa87bb
TH
1761 /*
1762 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763 * online CPUs. It'll be re-applied when any of the CPUs come up.
1764 */
7a4e344c 1765 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1766
7a4e344c
TH
1767 /*
1768 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769 * remains stable across this function. See the comments above the
1770 * flag definition for details.
1771 */
1772 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1773 worker->flags |= WORKER_UNBOUND;
c34056a3 1774
822d8405 1775 /* successful, commit the pointer to idr */
822d8405 1776 idr_replace(&pool->worker_idr, worker, worker->id);
da028469
LJ
1777 /* successful, attach the worker to the pool */
1778 list_add_tail(&worker->node, &pool->workers);
822d8405 1779
c34056a3 1780 return worker;
822d8405 1781
c34056a3 1782fail:
9625ab17 1783 if (id >= 0)
822d8405 1784 idr_remove(&pool->worker_idr, id);
c34056a3
TH
1785 kfree(worker);
1786 return NULL;
1787}
1788
1789/**
1790 * start_worker - start a newly created worker
1791 * @worker: worker to start
1792 *
706026c2 1793 * Make the pool aware of @worker and start it.
c34056a3
TH
1794 *
1795 * CONTEXT:
d565ed63 1796 * spin_lock_irq(pool->lock).
c34056a3
TH
1797 */
1798static void start_worker(struct worker *worker)
1799{
bd7bdd43 1800 worker->pool->nr_workers++;
c8e55f36 1801 worker_enter_idle(worker);
c34056a3
TH
1802 wake_up_process(worker->task);
1803}
1804
ebf44d16
TH
1805/**
1806 * create_and_start_worker - create and start a worker for a pool
1807 * @pool: the target pool
1808 *
cd549687 1809 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1810 *
1811 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1812 */
1813static int create_and_start_worker(struct worker_pool *pool)
1814{
1815 struct worker *worker;
1816
cd549687
TH
1817 mutex_lock(&pool->manager_mutex);
1818
ebf44d16
TH
1819 worker = create_worker(pool);
1820 if (worker) {
1821 spin_lock_irq(&pool->lock);
1822 start_worker(worker);
1823 spin_unlock_irq(&pool->lock);
1824 }
1825
cd549687
TH
1826 mutex_unlock(&pool->manager_mutex);
1827
ebf44d16
TH
1828 return worker ? 0 : -ENOMEM;
1829}
1830
c34056a3
TH
1831/**
1832 * destroy_worker - destroy a workqueue worker
1833 * @worker: worker to be destroyed
1834 *
73eb7fe7
LJ
1835 * Destroy @worker and adjust @pool stats accordingly. The worker should
1836 * be idle.
c8e55f36
TH
1837 *
1838 * CONTEXT:
60f5a4bc 1839 * spin_lock_irq(pool->lock).
c34056a3
TH
1840 */
1841static void destroy_worker(struct worker *worker)
1842{
bd7bdd43 1843 struct worker_pool *pool = worker->pool;
c34056a3 1844
cd549687
TH
1845 lockdep_assert_held(&pool->lock);
1846
c34056a3 1847 /* sanity check frenzy */
6183c009 1848 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1849 WARN_ON(!list_empty(&worker->scheduled)) ||
1850 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1851 return;
c34056a3 1852
73eb7fe7
LJ
1853 pool->nr_workers--;
1854 pool->nr_idle--;
c8e55f36
TH
1855
1856 list_del_init(&worker->entry);
cb444766 1857 worker->flags |= WORKER_DIE;
60f5a4bc 1858 wake_up_process(worker->task);
c34056a3
TH
1859}
1860
63d95a91 1861static void idle_worker_timeout(unsigned long __pool)
e22bee78 1862{
63d95a91 1863 struct worker_pool *pool = (void *)__pool;
e22bee78 1864
d565ed63 1865 spin_lock_irq(&pool->lock);
e22bee78 1866
3347fc9f 1867 while (too_many_workers(pool)) {
e22bee78
TH
1868 struct worker *worker;
1869 unsigned long expires;
1870
1871 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1872 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1873 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1874
3347fc9f 1875 if (time_before(jiffies, expires)) {
63d95a91 1876 mod_timer(&pool->idle_timer, expires);
3347fc9f 1877 break;
d5abe669 1878 }
3347fc9f
LJ
1879
1880 destroy_worker(worker);
e22bee78
TH
1881 }
1882
d565ed63 1883 spin_unlock_irq(&pool->lock);
e22bee78 1884}
d5abe669 1885
493a1724 1886static void send_mayday(struct work_struct *work)
e22bee78 1887{
112202d9
TH
1888 struct pool_workqueue *pwq = get_work_pwq(work);
1889 struct workqueue_struct *wq = pwq->wq;
493a1724 1890
2e109a28 1891 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1892
493008a8 1893 if (!wq->rescuer)
493a1724 1894 return;
e22bee78
TH
1895
1896 /* mayday mayday mayday */
493a1724 1897 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1898 /*
1899 * If @pwq is for an unbound wq, its base ref may be put at
1900 * any time due to an attribute change. Pin @pwq until the
1901 * rescuer is done with it.
1902 */
1903 get_pwq(pwq);
493a1724 1904 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1905 wake_up_process(wq->rescuer->task);
493a1724 1906 }
e22bee78
TH
1907}
1908
706026c2 1909static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1910{
63d95a91 1911 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1912 struct work_struct *work;
1913
2e109a28 1914 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1915 spin_lock(&pool->lock);
e22bee78 1916
63d95a91 1917 if (need_to_create_worker(pool)) {
e22bee78
TH
1918 /*
1919 * We've been trying to create a new worker but
1920 * haven't been successful. We might be hitting an
1921 * allocation deadlock. Send distress signals to
1922 * rescuers.
1923 */
63d95a91 1924 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1925 send_mayday(work);
1da177e4 1926 }
e22bee78 1927
493a1724 1928 spin_unlock(&pool->lock);
2e109a28 1929 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1930
63d95a91 1931 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1932}
1933
e22bee78
TH
1934/**
1935 * maybe_create_worker - create a new worker if necessary
63d95a91 1936 * @pool: pool to create a new worker for
e22bee78 1937 *
63d95a91 1938 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1939 * have at least one idle worker on return from this function. If
1940 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1941 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1942 * possible allocation deadlock.
1943 *
c5aa87bb
TH
1944 * On return, need_to_create_worker() is guaranteed to be %false and
1945 * may_start_working() %true.
e22bee78
TH
1946 *
1947 * LOCKING:
d565ed63 1948 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1949 * multiple times. Does GFP_KERNEL allocations. Called only from
1950 * manager.
1951 *
d185af30 1952 * Return:
c5aa87bb 1953 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1954 * otherwise.
1955 */
63d95a91 1956static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1957__releases(&pool->lock)
1958__acquires(&pool->lock)
1da177e4 1959{
63d95a91 1960 if (!need_to_create_worker(pool))
e22bee78
TH
1961 return false;
1962restart:
d565ed63 1963 spin_unlock_irq(&pool->lock);
9f9c2364 1964
e22bee78 1965 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1966 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1967
1968 while (true) {
1969 struct worker *worker;
1970
bc2ae0f5 1971 worker = create_worker(pool);
e22bee78 1972 if (worker) {
63d95a91 1973 del_timer_sync(&pool->mayday_timer);
d565ed63 1974 spin_lock_irq(&pool->lock);
e22bee78 1975 start_worker(worker);
6183c009
TH
1976 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1977 goto restart;
e22bee78
TH
1978 return true;
1979 }
1980
63d95a91 1981 if (!need_to_create_worker(pool))
e22bee78 1982 break;
1da177e4 1983
e22bee78
TH
1984 __set_current_state(TASK_INTERRUPTIBLE);
1985 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1986
63d95a91 1987 if (!need_to_create_worker(pool))
e22bee78
TH
1988 break;
1989 }
1990
63d95a91 1991 del_timer_sync(&pool->mayday_timer);
d565ed63 1992 spin_lock_irq(&pool->lock);
63d95a91 1993 if (need_to_create_worker(pool))
e22bee78
TH
1994 goto restart;
1995 return true;
1996}
1997
73f53c4a 1998/**
e22bee78
TH
1999 * manage_workers - manage worker pool
2000 * @worker: self
73f53c4a 2001 *
706026c2 2002 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2003 * to. At any given time, there can be only zero or one manager per
706026c2 2004 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2005 *
2006 * The caller can safely start processing works on false return. On
2007 * true return, it's guaranteed that need_to_create_worker() is false
2008 * and may_start_working() is true.
73f53c4a
TH
2009 *
2010 * CONTEXT:
d565ed63 2011 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2012 * multiple times. Does GFP_KERNEL allocations.
2013 *
d185af30 2014 * Return:
2d498db9
L
2015 * %false if the pool don't need management and the caller can safely start
2016 * processing works, %true indicates that the function released pool->lock
2017 * and reacquired it to perform some management function and that the
2018 * conditions that the caller verified while holding the lock before
2019 * calling the function might no longer be true.
73f53c4a 2020 */
e22bee78 2021static bool manage_workers(struct worker *worker)
73f53c4a 2022{
63d95a91 2023 struct worker_pool *pool = worker->pool;
e22bee78 2024 bool ret = false;
73f53c4a 2025
bc3a1afc
TH
2026 /*
2027 * Managership is governed by two mutexes - manager_arb and
2028 * manager_mutex. manager_arb handles arbitration of manager role.
2029 * Anyone who successfully grabs manager_arb wins the arbitration
2030 * and becomes the manager. mutex_trylock() on pool->manager_arb
2031 * failure while holding pool->lock reliably indicates that someone
2032 * else is managing the pool and the worker which failed trylock
2033 * can proceed to executing work items. This means that anyone
2034 * grabbing manager_arb is responsible for actually performing
2035 * manager duties. If manager_arb is grabbed and released without
2036 * actual management, the pool may stall indefinitely.
2037 *
2038 * manager_mutex is used for exclusion of actual management
2039 * operations. The holder of manager_mutex can be sure that none
2040 * of management operations, including creation and destruction of
2041 * workers, won't take place until the mutex is released. Because
2042 * manager_mutex doesn't interfere with manager role arbitration,
2043 * it is guaranteed that the pool's management, while may be
2044 * delayed, won't be disturbed by someone else grabbing
2045 * manager_mutex.
2046 */
34a06bd6 2047 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2048 return ret;
1e19ffc6 2049
ee378aa4 2050 /*
bc3a1afc
TH
2051 * With manager arbitration won, manager_mutex would be free in
2052 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2053 */
bc3a1afc 2054 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2055 spin_unlock_irq(&pool->lock);
bc3a1afc 2056 mutex_lock(&pool->manager_mutex);
8f174b11 2057 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2058 ret = true;
2059 }
73f53c4a 2060
63d95a91 2061 ret |= maybe_create_worker(pool);
e22bee78 2062
bc3a1afc 2063 mutex_unlock(&pool->manager_mutex);
34a06bd6 2064 mutex_unlock(&pool->manager_arb);
e22bee78 2065 return ret;
73f53c4a
TH
2066}
2067
a62428c0
TH
2068/**
2069 * process_one_work - process single work
c34056a3 2070 * @worker: self
a62428c0
TH
2071 * @work: work to process
2072 *
2073 * Process @work. This function contains all the logics necessary to
2074 * process a single work including synchronization against and
2075 * interaction with other workers on the same cpu, queueing and
2076 * flushing. As long as context requirement is met, any worker can
2077 * call this function to process a work.
2078 *
2079 * CONTEXT:
d565ed63 2080 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2081 */
c34056a3 2082static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2083__releases(&pool->lock)
2084__acquires(&pool->lock)
a62428c0 2085{
112202d9 2086 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2087 struct worker_pool *pool = worker->pool;
112202d9 2088 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2089 int work_color;
7e11629d 2090 struct worker *collision;
a62428c0
TH
2091#ifdef CONFIG_LOCKDEP
2092 /*
2093 * It is permissible to free the struct work_struct from
2094 * inside the function that is called from it, this we need to
2095 * take into account for lockdep too. To avoid bogus "held
2096 * lock freed" warnings as well as problems when looking into
2097 * work->lockdep_map, make a copy and use that here.
2098 */
4d82a1de
PZ
2099 struct lockdep_map lockdep_map;
2100
2101 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2102#endif
6fec10a1
TH
2103 /*
2104 * Ensure we're on the correct CPU. DISASSOCIATED test is
2105 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2106 * unbound or a disassociated pool.
6fec10a1 2107 */
5f7dabfd 2108 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2109 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2110 raw_smp_processor_id() != pool->cpu);
25511a47 2111
7e11629d
TH
2112 /*
2113 * A single work shouldn't be executed concurrently by
2114 * multiple workers on a single cpu. Check whether anyone is
2115 * already processing the work. If so, defer the work to the
2116 * currently executing one.
2117 */
c9e7cf27 2118 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2119 if (unlikely(collision)) {
2120 move_linked_works(work, &collision->scheduled, NULL);
2121 return;
2122 }
2123
8930caba 2124 /* claim and dequeue */
a62428c0 2125 debug_work_deactivate(work);
c9e7cf27 2126 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2127 worker->current_work = work;
a2c1c57b 2128 worker->current_func = work->func;
112202d9 2129 worker->current_pwq = pwq;
73f53c4a 2130 work_color = get_work_color(work);
7a22ad75 2131
a62428c0
TH
2132 list_del_init(&work->entry);
2133
fb0e7beb
TH
2134 /*
2135 * CPU intensive works don't participate in concurrency
2136 * management. They're the scheduler's responsibility.
2137 */
2138 if (unlikely(cpu_intensive))
2139 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2140
974271c4 2141 /*
d565ed63 2142 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2143 * executed ASAP. Wake up another worker if necessary.
2144 */
63d95a91
TH
2145 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2146 wake_up_worker(pool);
974271c4 2147
8930caba 2148 /*
7c3eed5c 2149 * Record the last pool and clear PENDING which should be the last
d565ed63 2150 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2151 * PENDING and queued state changes happen together while IRQ is
2152 * disabled.
8930caba 2153 */
7c3eed5c 2154 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2155
d565ed63 2156 spin_unlock_irq(&pool->lock);
a62428c0 2157
112202d9 2158 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2159 lock_map_acquire(&lockdep_map);
e36c886a 2160 trace_workqueue_execute_start(work);
a2c1c57b 2161 worker->current_func(work);
e36c886a
AV
2162 /*
2163 * While we must be careful to not use "work" after this, the trace
2164 * point will only record its address.
2165 */
2166 trace_workqueue_execute_end(work);
a62428c0 2167 lock_map_release(&lockdep_map);
112202d9 2168 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2169
2170 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2171 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2172 " last function: %pf\n",
a2c1c57b
TH
2173 current->comm, preempt_count(), task_pid_nr(current),
2174 worker->current_func);
a62428c0
TH
2175 debug_show_held_locks(current);
2176 dump_stack();
2177 }
2178
b22ce278
TH
2179 /*
2180 * The following prevents a kworker from hogging CPU on !PREEMPT
2181 * kernels, where a requeueing work item waiting for something to
2182 * happen could deadlock with stop_machine as such work item could
2183 * indefinitely requeue itself while all other CPUs are trapped in
2184 * stop_machine.
2185 */
2186 cond_resched();
2187
d565ed63 2188 spin_lock_irq(&pool->lock);
a62428c0 2189
fb0e7beb
TH
2190 /* clear cpu intensive status */
2191 if (unlikely(cpu_intensive))
2192 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2193
a62428c0 2194 /* we're done with it, release */
42f8570f 2195 hash_del(&worker->hentry);
c34056a3 2196 worker->current_work = NULL;
a2c1c57b 2197 worker->current_func = NULL;
112202d9 2198 worker->current_pwq = NULL;
3d1cb205 2199 worker->desc_valid = false;
112202d9 2200 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2201}
2202
affee4b2
TH
2203/**
2204 * process_scheduled_works - process scheduled works
2205 * @worker: self
2206 *
2207 * Process all scheduled works. Please note that the scheduled list
2208 * may change while processing a work, so this function repeatedly
2209 * fetches a work from the top and executes it.
2210 *
2211 * CONTEXT:
d565ed63 2212 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2213 * multiple times.
2214 */
2215static void process_scheduled_works(struct worker *worker)
1da177e4 2216{
affee4b2
TH
2217 while (!list_empty(&worker->scheduled)) {
2218 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2219 struct work_struct, entry);
c34056a3 2220 process_one_work(worker, work);
1da177e4 2221 }
1da177e4
LT
2222}
2223
4690c4ab
TH
2224/**
2225 * worker_thread - the worker thread function
c34056a3 2226 * @__worker: self
4690c4ab 2227 *
c5aa87bb
TH
2228 * The worker thread function. All workers belong to a worker_pool -
2229 * either a per-cpu one or dynamic unbound one. These workers process all
2230 * work items regardless of their specific target workqueue. The only
2231 * exception is work items which belong to workqueues with a rescuer which
2232 * will be explained in rescuer_thread().
d185af30
YB
2233 *
2234 * Return: 0
4690c4ab 2235 */
c34056a3 2236static int worker_thread(void *__worker)
1da177e4 2237{
c34056a3 2238 struct worker *worker = __worker;
bd7bdd43 2239 struct worker_pool *pool = worker->pool;
1da177e4 2240
e22bee78
TH
2241 /* tell the scheduler that this is a workqueue worker */
2242 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2243woke_up:
d565ed63 2244 spin_lock_irq(&pool->lock);
1da177e4 2245
a9ab775b
TH
2246 /* am I supposed to die? */
2247 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2248 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2249 WARN_ON_ONCE(!list_empty(&worker->entry));
2250 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2251
2252 set_task_comm(worker->task, "kworker/dying");
2253 worker_detach_from_pool(worker, pool);
2254 kfree(worker);
a9ab775b 2255 return 0;
c8e55f36 2256 }
affee4b2 2257
c8e55f36 2258 worker_leave_idle(worker);
db7bccf4 2259recheck:
e22bee78 2260 /* no more worker necessary? */
63d95a91 2261 if (!need_more_worker(pool))
e22bee78
TH
2262 goto sleep;
2263
2264 /* do we need to manage? */
63d95a91 2265 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2266 goto recheck;
2267
c8e55f36
TH
2268 /*
2269 * ->scheduled list can only be filled while a worker is
2270 * preparing to process a work or actually processing it.
2271 * Make sure nobody diddled with it while I was sleeping.
2272 */
6183c009 2273 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2274
e22bee78 2275 /*
a9ab775b
TH
2276 * Finish PREP stage. We're guaranteed to have at least one idle
2277 * worker or that someone else has already assumed the manager
2278 * role. This is where @worker starts participating in concurrency
2279 * management if applicable and concurrency management is restored
2280 * after being rebound. See rebind_workers() for details.
e22bee78 2281 */
a9ab775b 2282 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2283
2284 do {
c8e55f36 2285 struct work_struct *work =
bd7bdd43 2286 list_first_entry(&pool->worklist,
c8e55f36
TH
2287 struct work_struct, entry);
2288
2289 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2290 /* optimization path, not strictly necessary */
2291 process_one_work(worker, work);
2292 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2293 process_scheduled_works(worker);
c8e55f36
TH
2294 } else {
2295 move_linked_works(work, &worker->scheduled, NULL);
2296 process_scheduled_works(worker);
affee4b2 2297 }
63d95a91 2298 } while (keep_working(pool));
e22bee78
TH
2299
2300 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2301sleep:
c8e55f36 2302 /*
d565ed63
TH
2303 * pool->lock is held and there's no work to process and no need to
2304 * manage, sleep. Workers are woken up only while holding
2305 * pool->lock or from local cpu, so setting the current state
2306 * before releasing pool->lock is enough to prevent losing any
2307 * event.
c8e55f36
TH
2308 */
2309 worker_enter_idle(worker);
2310 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2311 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2312 schedule();
2313 goto woke_up;
1da177e4
LT
2314}
2315
e22bee78
TH
2316/**
2317 * rescuer_thread - the rescuer thread function
111c225a 2318 * @__rescuer: self
e22bee78
TH
2319 *
2320 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2321 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2322 *
706026c2 2323 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2324 * worker which uses GFP_KERNEL allocation which has slight chance of
2325 * developing into deadlock if some works currently on the same queue
2326 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2327 * the problem rescuer solves.
2328 *
706026c2
TH
2329 * When such condition is possible, the pool summons rescuers of all
2330 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2331 * those works so that forward progress can be guaranteed.
2332 *
2333 * This should happen rarely.
d185af30
YB
2334 *
2335 * Return: 0
e22bee78 2336 */
111c225a 2337static int rescuer_thread(void *__rescuer)
e22bee78 2338{
111c225a
TH
2339 struct worker *rescuer = __rescuer;
2340 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2341 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2342 bool should_stop;
e22bee78
TH
2343
2344 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2345
2346 /*
2347 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2348 * doesn't participate in concurrency management.
2349 */
2350 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2351repeat:
2352 set_current_state(TASK_INTERRUPTIBLE);
2353
4d595b86
LJ
2354 /*
2355 * By the time the rescuer is requested to stop, the workqueue
2356 * shouldn't have any work pending, but @wq->maydays may still have
2357 * pwq(s) queued. This can happen by non-rescuer workers consuming
2358 * all the work items before the rescuer got to them. Go through
2359 * @wq->maydays processing before acting on should_stop so that the
2360 * list is always empty on exit.
2361 */
2362 should_stop = kthread_should_stop();
e22bee78 2363
493a1724 2364 /* see whether any pwq is asking for help */
2e109a28 2365 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2366
2367 while (!list_empty(&wq->maydays)) {
2368 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2369 struct pool_workqueue, mayday_node);
112202d9 2370 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2371 struct work_struct *work, *n;
2372
2373 __set_current_state(TASK_RUNNING);
493a1724
TH
2374 list_del_init(&pwq->mayday_node);
2375
2e109a28 2376 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2377
2378 /* migrate to the target cpu if possible */
f36dc67b 2379 worker_maybe_bind_and_lock(pool);
b3104104 2380 rescuer->pool = pool;
e22bee78
TH
2381
2382 /*
2383 * Slurp in all works issued via this workqueue and
2384 * process'em.
2385 */
6183c009 2386 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2387 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2388 if (get_work_pwq(work) == pwq)
e22bee78
TH
2389 move_linked_works(work, scheduled, &n);
2390
2391 process_scheduled_works(rescuer);
7576958a 2392
77668c8b
LJ
2393 /*
2394 * Put the reference grabbed by send_mayday(). @pool won't
2395 * go away while we're holding its lock.
2396 */
2397 put_pwq(pwq);
2398
7576958a 2399 /*
d565ed63 2400 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2401 * regular worker; otherwise, we end up with 0 concurrency
2402 * and stalling the execution.
2403 */
63d95a91
TH
2404 if (keep_working(pool))
2405 wake_up_worker(pool);
7576958a 2406
b3104104 2407 rescuer->pool = NULL;
493a1724 2408 spin_unlock(&pool->lock);
2e109a28 2409 spin_lock(&wq_mayday_lock);
e22bee78
TH
2410 }
2411
2e109a28 2412 spin_unlock_irq(&wq_mayday_lock);
493a1724 2413
4d595b86
LJ
2414 if (should_stop) {
2415 __set_current_state(TASK_RUNNING);
2416 rescuer->task->flags &= ~PF_WQ_WORKER;
2417 return 0;
2418 }
2419
111c225a
TH
2420 /* rescuers should never participate in concurrency management */
2421 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2422 schedule();
2423 goto repeat;
1da177e4
LT
2424}
2425
fc2e4d70
ON
2426struct wq_barrier {
2427 struct work_struct work;
2428 struct completion done;
2429};
2430
2431static void wq_barrier_func(struct work_struct *work)
2432{
2433 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2434 complete(&barr->done);
2435}
2436
4690c4ab
TH
2437/**
2438 * insert_wq_barrier - insert a barrier work
112202d9 2439 * @pwq: pwq to insert barrier into
4690c4ab 2440 * @barr: wq_barrier to insert
affee4b2
TH
2441 * @target: target work to attach @barr to
2442 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2443 *
affee4b2
TH
2444 * @barr is linked to @target such that @barr is completed only after
2445 * @target finishes execution. Please note that the ordering
2446 * guarantee is observed only with respect to @target and on the local
2447 * cpu.
2448 *
2449 * Currently, a queued barrier can't be canceled. This is because
2450 * try_to_grab_pending() can't determine whether the work to be
2451 * grabbed is at the head of the queue and thus can't clear LINKED
2452 * flag of the previous work while there must be a valid next work
2453 * after a work with LINKED flag set.
2454 *
2455 * Note that when @worker is non-NULL, @target may be modified
112202d9 2456 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2457 *
2458 * CONTEXT:
d565ed63 2459 * spin_lock_irq(pool->lock).
4690c4ab 2460 */
112202d9 2461static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2462 struct wq_barrier *barr,
2463 struct work_struct *target, struct worker *worker)
fc2e4d70 2464{
affee4b2
TH
2465 struct list_head *head;
2466 unsigned int linked = 0;
2467
dc186ad7 2468 /*
d565ed63 2469 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2470 * as we know for sure that this will not trigger any of the
2471 * checks and call back into the fixup functions where we
2472 * might deadlock.
2473 */
ca1cab37 2474 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2475 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2476 init_completion(&barr->done);
83c22520 2477
affee4b2
TH
2478 /*
2479 * If @target is currently being executed, schedule the
2480 * barrier to the worker; otherwise, put it after @target.
2481 */
2482 if (worker)
2483 head = worker->scheduled.next;
2484 else {
2485 unsigned long *bits = work_data_bits(target);
2486
2487 head = target->entry.next;
2488 /* there can already be other linked works, inherit and set */
2489 linked = *bits & WORK_STRUCT_LINKED;
2490 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2491 }
2492
dc186ad7 2493 debug_work_activate(&barr->work);
112202d9 2494 insert_work(pwq, &barr->work, head,
affee4b2 2495 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2496}
2497
73f53c4a 2498/**
112202d9 2499 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2500 * @wq: workqueue being flushed
2501 * @flush_color: new flush color, < 0 for no-op
2502 * @work_color: new work color, < 0 for no-op
2503 *
112202d9 2504 * Prepare pwqs for workqueue flushing.
73f53c4a 2505 *
112202d9
TH
2506 * If @flush_color is non-negative, flush_color on all pwqs should be
2507 * -1. If no pwq has in-flight commands at the specified color, all
2508 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2509 * has in flight commands, its pwq->flush_color is set to
2510 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2511 * wakeup logic is armed and %true is returned.
2512 *
2513 * The caller should have initialized @wq->first_flusher prior to
2514 * calling this function with non-negative @flush_color. If
2515 * @flush_color is negative, no flush color update is done and %false
2516 * is returned.
2517 *
112202d9 2518 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2519 * work_color which is previous to @work_color and all will be
2520 * advanced to @work_color.
2521 *
2522 * CONTEXT:
3c25a55d 2523 * mutex_lock(wq->mutex).
73f53c4a 2524 *
d185af30 2525 * Return:
73f53c4a
TH
2526 * %true if @flush_color >= 0 and there's something to flush. %false
2527 * otherwise.
2528 */
112202d9 2529static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2530 int flush_color, int work_color)
1da177e4 2531{
73f53c4a 2532 bool wait = false;
49e3cf44 2533 struct pool_workqueue *pwq;
1da177e4 2534
73f53c4a 2535 if (flush_color >= 0) {
6183c009 2536 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2537 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2538 }
2355b70f 2539
49e3cf44 2540 for_each_pwq(pwq, wq) {
112202d9 2541 struct worker_pool *pool = pwq->pool;
fc2e4d70 2542
b09f4fd3 2543 spin_lock_irq(&pool->lock);
83c22520 2544
73f53c4a 2545 if (flush_color >= 0) {
6183c009 2546 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2547
112202d9
TH
2548 if (pwq->nr_in_flight[flush_color]) {
2549 pwq->flush_color = flush_color;
2550 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2551 wait = true;
2552 }
2553 }
1da177e4 2554
73f53c4a 2555 if (work_color >= 0) {
6183c009 2556 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2557 pwq->work_color = work_color;
73f53c4a 2558 }
1da177e4 2559
b09f4fd3 2560 spin_unlock_irq(&pool->lock);
1da177e4 2561 }
2355b70f 2562
112202d9 2563 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2564 complete(&wq->first_flusher->done);
14441960 2565
73f53c4a 2566 return wait;
1da177e4
LT
2567}
2568
0fcb78c2 2569/**
1da177e4 2570 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2571 * @wq: workqueue to flush
1da177e4 2572 *
c5aa87bb
TH
2573 * This function sleeps until all work items which were queued on entry
2574 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2575 */
7ad5b3a5 2576void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2577{
73f53c4a
TH
2578 struct wq_flusher this_flusher = {
2579 .list = LIST_HEAD_INIT(this_flusher.list),
2580 .flush_color = -1,
2581 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2582 };
2583 int next_color;
1da177e4 2584
3295f0ef
IM
2585 lock_map_acquire(&wq->lockdep_map);
2586 lock_map_release(&wq->lockdep_map);
73f53c4a 2587
3c25a55d 2588 mutex_lock(&wq->mutex);
73f53c4a
TH
2589
2590 /*
2591 * Start-to-wait phase
2592 */
2593 next_color = work_next_color(wq->work_color);
2594
2595 if (next_color != wq->flush_color) {
2596 /*
2597 * Color space is not full. The current work_color
2598 * becomes our flush_color and work_color is advanced
2599 * by one.
2600 */
6183c009 2601 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2602 this_flusher.flush_color = wq->work_color;
2603 wq->work_color = next_color;
2604
2605 if (!wq->first_flusher) {
2606 /* no flush in progress, become the first flusher */
6183c009 2607 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2608
2609 wq->first_flusher = &this_flusher;
2610
112202d9 2611 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2612 wq->work_color)) {
2613 /* nothing to flush, done */
2614 wq->flush_color = next_color;
2615 wq->first_flusher = NULL;
2616 goto out_unlock;
2617 }
2618 } else {
2619 /* wait in queue */
6183c009 2620 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2621 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2622 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2623 }
2624 } else {
2625 /*
2626 * Oops, color space is full, wait on overflow queue.
2627 * The next flush completion will assign us
2628 * flush_color and transfer to flusher_queue.
2629 */
2630 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2631 }
2632
3c25a55d 2633 mutex_unlock(&wq->mutex);
73f53c4a
TH
2634
2635 wait_for_completion(&this_flusher.done);
2636
2637 /*
2638 * Wake-up-and-cascade phase
2639 *
2640 * First flushers are responsible for cascading flushes and
2641 * handling overflow. Non-first flushers can simply return.
2642 */
2643 if (wq->first_flusher != &this_flusher)
2644 return;
2645
3c25a55d 2646 mutex_lock(&wq->mutex);
73f53c4a 2647
4ce48b37
TH
2648 /* we might have raced, check again with mutex held */
2649 if (wq->first_flusher != &this_flusher)
2650 goto out_unlock;
2651
73f53c4a
TH
2652 wq->first_flusher = NULL;
2653
6183c009
TH
2654 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2655 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2656
2657 while (true) {
2658 struct wq_flusher *next, *tmp;
2659
2660 /* complete all the flushers sharing the current flush color */
2661 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2662 if (next->flush_color != wq->flush_color)
2663 break;
2664 list_del_init(&next->list);
2665 complete(&next->done);
2666 }
2667
6183c009
TH
2668 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2669 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2670
2671 /* this flush_color is finished, advance by one */
2672 wq->flush_color = work_next_color(wq->flush_color);
2673
2674 /* one color has been freed, handle overflow queue */
2675 if (!list_empty(&wq->flusher_overflow)) {
2676 /*
2677 * Assign the same color to all overflowed
2678 * flushers, advance work_color and append to
2679 * flusher_queue. This is the start-to-wait
2680 * phase for these overflowed flushers.
2681 */
2682 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2683 tmp->flush_color = wq->work_color;
2684
2685 wq->work_color = work_next_color(wq->work_color);
2686
2687 list_splice_tail_init(&wq->flusher_overflow,
2688 &wq->flusher_queue);
112202d9 2689 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2690 }
2691
2692 if (list_empty(&wq->flusher_queue)) {
6183c009 2693 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2694 break;
2695 }
2696
2697 /*
2698 * Need to flush more colors. Make the next flusher
112202d9 2699 * the new first flusher and arm pwqs.
73f53c4a 2700 */
6183c009
TH
2701 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2702 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2703
2704 list_del_init(&next->list);
2705 wq->first_flusher = next;
2706
112202d9 2707 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2708 break;
2709
2710 /*
2711 * Meh... this color is already done, clear first
2712 * flusher and repeat cascading.
2713 */
2714 wq->first_flusher = NULL;
2715 }
2716
2717out_unlock:
3c25a55d 2718 mutex_unlock(&wq->mutex);
1da177e4 2719}
ae90dd5d 2720EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2721
9c5a2ba7
TH
2722/**
2723 * drain_workqueue - drain a workqueue
2724 * @wq: workqueue to drain
2725 *
2726 * Wait until the workqueue becomes empty. While draining is in progress,
2727 * only chain queueing is allowed. IOW, only currently pending or running
2728 * work items on @wq can queue further work items on it. @wq is flushed
2729 * repeatedly until it becomes empty. The number of flushing is detemined
2730 * by the depth of chaining and should be relatively short. Whine if it
2731 * takes too long.
2732 */
2733void drain_workqueue(struct workqueue_struct *wq)
2734{
2735 unsigned int flush_cnt = 0;
49e3cf44 2736 struct pool_workqueue *pwq;
9c5a2ba7
TH
2737
2738 /*
2739 * __queue_work() needs to test whether there are drainers, is much
2740 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2741 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2742 */
87fc741e 2743 mutex_lock(&wq->mutex);
9c5a2ba7 2744 if (!wq->nr_drainers++)
618b01eb 2745 wq->flags |= __WQ_DRAINING;
87fc741e 2746 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2747reflush:
2748 flush_workqueue(wq);
2749
b09f4fd3 2750 mutex_lock(&wq->mutex);
76af4d93 2751
49e3cf44 2752 for_each_pwq(pwq, wq) {
fa2563e4 2753 bool drained;
9c5a2ba7 2754
b09f4fd3 2755 spin_lock_irq(&pwq->pool->lock);
112202d9 2756 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2757 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2758
2759 if (drained)
9c5a2ba7
TH
2760 continue;
2761
2762 if (++flush_cnt == 10 ||
2763 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2764 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2765 wq->name, flush_cnt);
76af4d93 2766
b09f4fd3 2767 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2768 goto reflush;
2769 }
2770
9c5a2ba7 2771 if (!--wq->nr_drainers)
618b01eb 2772 wq->flags &= ~__WQ_DRAINING;
87fc741e 2773 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2774}
2775EXPORT_SYMBOL_GPL(drain_workqueue);
2776
606a5020 2777static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2778{
affee4b2 2779 struct worker *worker = NULL;
c9e7cf27 2780 struct worker_pool *pool;
112202d9 2781 struct pool_workqueue *pwq;
db700897
ON
2782
2783 might_sleep();
fa1b54e6
TH
2784
2785 local_irq_disable();
c9e7cf27 2786 pool = get_work_pool(work);
fa1b54e6
TH
2787 if (!pool) {
2788 local_irq_enable();
baf59022 2789 return false;
fa1b54e6 2790 }
db700897 2791
fa1b54e6 2792 spin_lock(&pool->lock);
0b3dae68 2793 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2794 pwq = get_work_pwq(work);
2795 if (pwq) {
2796 if (unlikely(pwq->pool != pool))
4690c4ab 2797 goto already_gone;
606a5020 2798 } else {
c9e7cf27 2799 worker = find_worker_executing_work(pool, work);
affee4b2 2800 if (!worker)
4690c4ab 2801 goto already_gone;
112202d9 2802 pwq = worker->current_pwq;
606a5020 2803 }
db700897 2804
112202d9 2805 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2806 spin_unlock_irq(&pool->lock);
7a22ad75 2807
e159489b
TH
2808 /*
2809 * If @max_active is 1 or rescuer is in use, flushing another work
2810 * item on the same workqueue may lead to deadlock. Make sure the
2811 * flusher is not running on the same workqueue by verifying write
2812 * access.
2813 */
493008a8 2814 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2815 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2816 else
112202d9
TH
2817 lock_map_acquire_read(&pwq->wq->lockdep_map);
2818 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2819
401a8d04 2820 return true;
4690c4ab 2821already_gone:
d565ed63 2822 spin_unlock_irq(&pool->lock);
401a8d04 2823 return false;
db700897 2824}
baf59022
TH
2825
2826/**
2827 * flush_work - wait for a work to finish executing the last queueing instance
2828 * @work: the work to flush
2829 *
606a5020
TH
2830 * Wait until @work has finished execution. @work is guaranteed to be idle
2831 * on return if it hasn't been requeued since flush started.
baf59022 2832 *
d185af30 2833 * Return:
baf59022
TH
2834 * %true if flush_work() waited for the work to finish execution,
2835 * %false if it was already idle.
2836 */
2837bool flush_work(struct work_struct *work)
2838{
12997d1a
BH
2839 struct wq_barrier barr;
2840
0976dfc1
SB
2841 lock_map_acquire(&work->lockdep_map);
2842 lock_map_release(&work->lockdep_map);
2843
12997d1a
BH
2844 if (start_flush_work(work, &barr)) {
2845 wait_for_completion(&barr.done);
2846 destroy_work_on_stack(&barr.work);
2847 return true;
2848 } else {
2849 return false;
2850 }
6e84d644 2851}
606a5020 2852EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2853
36e227d2 2854static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2855{
bbb68dfa 2856 unsigned long flags;
1f1f642e
ON
2857 int ret;
2858
2859 do {
bbb68dfa
TH
2860 ret = try_to_grab_pending(work, is_dwork, &flags);
2861 /*
2862 * If someone else is canceling, wait for the same event it
2863 * would be waiting for before retrying.
2864 */
2865 if (unlikely(ret == -ENOENT))
606a5020 2866 flush_work(work);
1f1f642e
ON
2867 } while (unlikely(ret < 0));
2868
bbb68dfa
TH
2869 /* tell other tasks trying to grab @work to back off */
2870 mark_work_canceling(work);
2871 local_irq_restore(flags);
2872
606a5020 2873 flush_work(work);
7a22ad75 2874 clear_work_data(work);
1f1f642e
ON
2875 return ret;
2876}
2877
6e84d644 2878/**
401a8d04
TH
2879 * cancel_work_sync - cancel a work and wait for it to finish
2880 * @work: the work to cancel
6e84d644 2881 *
401a8d04
TH
2882 * Cancel @work and wait for its execution to finish. This function
2883 * can be used even if the work re-queues itself or migrates to
2884 * another workqueue. On return from this function, @work is
2885 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2886 *
401a8d04
TH
2887 * cancel_work_sync(&delayed_work->work) must not be used for
2888 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2889 *
401a8d04 2890 * The caller must ensure that the workqueue on which @work was last
6e84d644 2891 * queued can't be destroyed before this function returns.
401a8d04 2892 *
d185af30 2893 * Return:
401a8d04 2894 * %true if @work was pending, %false otherwise.
6e84d644 2895 */
401a8d04 2896bool cancel_work_sync(struct work_struct *work)
6e84d644 2897{
36e227d2 2898 return __cancel_work_timer(work, false);
b89deed3 2899}
28e53bdd 2900EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2901
6e84d644 2902/**
401a8d04
TH
2903 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2904 * @dwork: the delayed work to flush
6e84d644 2905 *
401a8d04
TH
2906 * Delayed timer is cancelled and the pending work is queued for
2907 * immediate execution. Like flush_work(), this function only
2908 * considers the last queueing instance of @dwork.
1f1f642e 2909 *
d185af30 2910 * Return:
401a8d04
TH
2911 * %true if flush_work() waited for the work to finish execution,
2912 * %false if it was already idle.
6e84d644 2913 */
401a8d04
TH
2914bool flush_delayed_work(struct delayed_work *dwork)
2915{
8930caba 2916 local_irq_disable();
401a8d04 2917 if (del_timer_sync(&dwork->timer))
60c057bc 2918 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2919 local_irq_enable();
401a8d04
TH
2920 return flush_work(&dwork->work);
2921}
2922EXPORT_SYMBOL(flush_delayed_work);
2923
09383498 2924/**
57b30ae7
TH
2925 * cancel_delayed_work - cancel a delayed work
2926 * @dwork: delayed_work to cancel
09383498 2927 *
d185af30
YB
2928 * Kill off a pending delayed_work.
2929 *
2930 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2931 * pending.
2932 *
2933 * Note:
2934 * The work callback function may still be running on return, unless
2935 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2936 * use cancel_delayed_work_sync() to wait on it.
09383498 2937 *
57b30ae7 2938 * This function is safe to call from any context including IRQ handler.
09383498 2939 */
57b30ae7 2940bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2941{
57b30ae7
TH
2942 unsigned long flags;
2943 int ret;
2944
2945 do {
2946 ret = try_to_grab_pending(&dwork->work, true, &flags);
2947 } while (unlikely(ret == -EAGAIN));
2948
2949 if (unlikely(ret < 0))
2950 return false;
2951
7c3eed5c
TH
2952 set_work_pool_and_clear_pending(&dwork->work,
2953 get_work_pool_id(&dwork->work));
57b30ae7 2954 local_irq_restore(flags);
c0158ca6 2955 return ret;
09383498 2956}
57b30ae7 2957EXPORT_SYMBOL(cancel_delayed_work);
09383498 2958
401a8d04
TH
2959/**
2960 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2961 * @dwork: the delayed work cancel
2962 *
2963 * This is cancel_work_sync() for delayed works.
2964 *
d185af30 2965 * Return:
401a8d04
TH
2966 * %true if @dwork was pending, %false otherwise.
2967 */
2968bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2969{
36e227d2 2970 return __cancel_work_timer(&dwork->work, true);
6e84d644 2971}
f5a421a4 2972EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2973
b6136773 2974/**
31ddd871 2975 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2976 * @func: the function to call
b6136773 2977 *
31ddd871
TH
2978 * schedule_on_each_cpu() executes @func on each online CPU using the
2979 * system workqueue and blocks until all CPUs have completed.
b6136773 2980 * schedule_on_each_cpu() is very slow.
31ddd871 2981 *
d185af30 2982 * Return:
31ddd871 2983 * 0 on success, -errno on failure.
b6136773 2984 */
65f27f38 2985int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2986{
2987 int cpu;
38f51568 2988 struct work_struct __percpu *works;
15316ba8 2989
b6136773
AM
2990 works = alloc_percpu(struct work_struct);
2991 if (!works)
15316ba8 2992 return -ENOMEM;
b6136773 2993
93981800
TH
2994 get_online_cpus();
2995
15316ba8 2996 for_each_online_cpu(cpu) {
9bfb1839
IM
2997 struct work_struct *work = per_cpu_ptr(works, cpu);
2998
2999 INIT_WORK(work, func);
b71ab8c2 3000 schedule_work_on(cpu, work);
65a64464 3001 }
93981800
TH
3002
3003 for_each_online_cpu(cpu)
3004 flush_work(per_cpu_ptr(works, cpu));
3005
95402b38 3006 put_online_cpus();
b6136773 3007 free_percpu(works);
15316ba8
CL
3008 return 0;
3009}
3010
eef6a7d5
AS
3011/**
3012 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3013 *
3014 * Forces execution of the kernel-global workqueue and blocks until its
3015 * completion.
3016 *
3017 * Think twice before calling this function! It's very easy to get into
3018 * trouble if you don't take great care. Either of the following situations
3019 * will lead to deadlock:
3020 *
3021 * One of the work items currently on the workqueue needs to acquire
3022 * a lock held by your code or its caller.
3023 *
3024 * Your code is running in the context of a work routine.
3025 *
3026 * They will be detected by lockdep when they occur, but the first might not
3027 * occur very often. It depends on what work items are on the workqueue and
3028 * what locks they need, which you have no control over.
3029 *
3030 * In most situations flushing the entire workqueue is overkill; you merely
3031 * need to know that a particular work item isn't queued and isn't running.
3032 * In such cases you should use cancel_delayed_work_sync() or
3033 * cancel_work_sync() instead.
3034 */
1da177e4
LT
3035void flush_scheduled_work(void)
3036{
d320c038 3037 flush_workqueue(system_wq);
1da177e4 3038}
ae90dd5d 3039EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3040
1fa44eca
JB
3041/**
3042 * execute_in_process_context - reliably execute the routine with user context
3043 * @fn: the function to execute
1fa44eca
JB
3044 * @ew: guaranteed storage for the execute work structure (must
3045 * be available when the work executes)
3046 *
3047 * Executes the function immediately if process context is available,
3048 * otherwise schedules the function for delayed execution.
3049 *
d185af30 3050 * Return: 0 - function was executed
1fa44eca
JB
3051 * 1 - function was scheduled for execution
3052 */
65f27f38 3053int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3054{
3055 if (!in_interrupt()) {
65f27f38 3056 fn(&ew->work);
1fa44eca
JB
3057 return 0;
3058 }
3059
65f27f38 3060 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3061 schedule_work(&ew->work);
3062
3063 return 1;
3064}
3065EXPORT_SYMBOL_GPL(execute_in_process_context);
3066
226223ab
TH
3067#ifdef CONFIG_SYSFS
3068/*
3069 * Workqueues with WQ_SYSFS flag set is visible to userland via
3070 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3071 * following attributes.
3072 *
3073 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3074 * max_active RW int : maximum number of in-flight work items
3075 *
3076 * Unbound workqueues have the following extra attributes.
3077 *
3078 * id RO int : the associated pool ID
3079 * nice RW int : nice value of the workers
3080 * cpumask RW mask : bitmask of allowed CPUs for the workers
3081 */
3082struct wq_device {
3083 struct workqueue_struct *wq;
3084 struct device dev;
3085};
3086
3087static struct workqueue_struct *dev_to_wq(struct device *dev)
3088{
3089 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3090
3091 return wq_dev->wq;
3092}
3093
1a6661da
GKH
3094static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3095 char *buf)
226223ab
TH
3096{
3097 struct workqueue_struct *wq = dev_to_wq(dev);
3098
3099 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3100}
1a6661da 3101static DEVICE_ATTR_RO(per_cpu);
226223ab 3102
1a6661da
GKH
3103static ssize_t max_active_show(struct device *dev,
3104 struct device_attribute *attr, char *buf)
226223ab
TH
3105{
3106 struct workqueue_struct *wq = dev_to_wq(dev);
3107
3108 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3109}
3110
1a6661da
GKH
3111static ssize_t max_active_store(struct device *dev,
3112 struct device_attribute *attr, const char *buf,
3113 size_t count)
226223ab
TH
3114{
3115 struct workqueue_struct *wq = dev_to_wq(dev);
3116 int val;
3117
3118 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3119 return -EINVAL;
3120
3121 workqueue_set_max_active(wq, val);
3122 return count;
3123}
1a6661da 3124static DEVICE_ATTR_RW(max_active);
226223ab 3125
1a6661da
GKH
3126static struct attribute *wq_sysfs_attrs[] = {
3127 &dev_attr_per_cpu.attr,
3128 &dev_attr_max_active.attr,
3129 NULL,
226223ab 3130};
1a6661da 3131ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3132
d55262c4
TH
3133static ssize_t wq_pool_ids_show(struct device *dev,
3134 struct device_attribute *attr, char *buf)
226223ab
TH
3135{
3136 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3137 const char *delim = "";
3138 int node, written = 0;
226223ab
TH
3139
3140 rcu_read_lock_sched();
d55262c4
TH
3141 for_each_node(node) {
3142 written += scnprintf(buf + written, PAGE_SIZE - written,
3143 "%s%d:%d", delim, node,
3144 unbound_pwq_by_node(wq, node)->pool->id);
3145 delim = " ";
3146 }
3147 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3148 rcu_read_unlock_sched();
3149
3150 return written;
3151}
3152
3153static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3154 char *buf)
3155{
3156 struct workqueue_struct *wq = dev_to_wq(dev);
3157 int written;
3158
6029a918
TH
3159 mutex_lock(&wq->mutex);
3160 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3161 mutex_unlock(&wq->mutex);
226223ab
TH
3162
3163 return written;
3164}
3165
3166/* prepare workqueue_attrs for sysfs store operations */
3167static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3168{
3169 struct workqueue_attrs *attrs;
3170
3171 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3172 if (!attrs)
3173 return NULL;
3174
6029a918
TH
3175 mutex_lock(&wq->mutex);
3176 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3177 mutex_unlock(&wq->mutex);
226223ab
TH
3178 return attrs;
3179}
3180
3181static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3182 const char *buf, size_t count)
3183{
3184 struct workqueue_struct *wq = dev_to_wq(dev);
3185 struct workqueue_attrs *attrs;
3186 int ret;
3187
3188 attrs = wq_sysfs_prep_attrs(wq);
3189 if (!attrs)
3190 return -ENOMEM;
3191
3192 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3193 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3194 ret = apply_workqueue_attrs(wq, attrs);
3195 else
3196 ret = -EINVAL;
3197
3198 free_workqueue_attrs(attrs);
3199 return ret ?: count;
3200}
3201
3202static ssize_t wq_cpumask_show(struct device *dev,
3203 struct device_attribute *attr, char *buf)
3204{
3205 struct workqueue_struct *wq = dev_to_wq(dev);
3206 int written;
3207
6029a918
TH
3208 mutex_lock(&wq->mutex);
3209 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3210 mutex_unlock(&wq->mutex);
226223ab
TH
3211
3212 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3213 return written;
3214}
3215
3216static ssize_t wq_cpumask_store(struct device *dev,
3217 struct device_attribute *attr,
3218 const char *buf, size_t count)
3219{
3220 struct workqueue_struct *wq = dev_to_wq(dev);
3221 struct workqueue_attrs *attrs;
3222 int ret;
3223
3224 attrs = wq_sysfs_prep_attrs(wq);
3225 if (!attrs)
3226 return -ENOMEM;
3227
3228 ret = cpumask_parse(buf, attrs->cpumask);
3229 if (!ret)
3230 ret = apply_workqueue_attrs(wq, attrs);
3231
3232 free_workqueue_attrs(attrs);
3233 return ret ?: count;
3234}
3235
d55262c4
TH
3236static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3237 char *buf)
3238{
3239 struct workqueue_struct *wq = dev_to_wq(dev);
3240 int written;
3241
3242 mutex_lock(&wq->mutex);
3243 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3244 !wq->unbound_attrs->no_numa);
3245 mutex_unlock(&wq->mutex);
3246
3247 return written;
3248}
3249
3250static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3251 const char *buf, size_t count)
3252{
3253 struct workqueue_struct *wq = dev_to_wq(dev);
3254 struct workqueue_attrs *attrs;
3255 int v, ret;
3256
3257 attrs = wq_sysfs_prep_attrs(wq);
3258 if (!attrs)
3259 return -ENOMEM;
3260
3261 ret = -EINVAL;
3262 if (sscanf(buf, "%d", &v) == 1) {
3263 attrs->no_numa = !v;
3264 ret = apply_workqueue_attrs(wq, attrs);
3265 }
3266
3267 free_workqueue_attrs(attrs);
3268 return ret ?: count;
3269}
3270
226223ab 3271static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3272 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3273 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3274 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3275 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3276 __ATTR_NULL,
3277};
3278
3279static struct bus_type wq_subsys = {
3280 .name = "workqueue",
1a6661da 3281 .dev_groups = wq_sysfs_groups,
226223ab
TH
3282};
3283
3284static int __init wq_sysfs_init(void)
3285{
3286 return subsys_virtual_register(&wq_subsys, NULL);
3287}
3288core_initcall(wq_sysfs_init);
3289
3290static void wq_device_release(struct device *dev)
3291{
3292 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3293
3294 kfree(wq_dev);
3295}
3296
3297/**
3298 * workqueue_sysfs_register - make a workqueue visible in sysfs
3299 * @wq: the workqueue to register
3300 *
3301 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3302 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3303 * which is the preferred method.
3304 *
3305 * Workqueue user should use this function directly iff it wants to apply
3306 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3307 * apply_workqueue_attrs() may race against userland updating the
3308 * attributes.
3309 *
d185af30 3310 * Return: 0 on success, -errno on failure.
226223ab
TH
3311 */
3312int workqueue_sysfs_register(struct workqueue_struct *wq)
3313{
3314 struct wq_device *wq_dev;
3315 int ret;
3316
3317 /*
3318 * Adjusting max_active or creating new pwqs by applyting
3319 * attributes breaks ordering guarantee. Disallow exposing ordered
3320 * workqueues.
3321 */
3322 if (WARN_ON(wq->flags & __WQ_ORDERED))
3323 return -EINVAL;
3324
3325 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3326 if (!wq_dev)
3327 return -ENOMEM;
3328
3329 wq_dev->wq = wq;
3330 wq_dev->dev.bus = &wq_subsys;
3331 wq_dev->dev.init_name = wq->name;
3332 wq_dev->dev.release = wq_device_release;
3333
3334 /*
3335 * unbound_attrs are created separately. Suppress uevent until
3336 * everything is ready.
3337 */
3338 dev_set_uevent_suppress(&wq_dev->dev, true);
3339
3340 ret = device_register(&wq_dev->dev);
3341 if (ret) {
3342 kfree(wq_dev);
3343 wq->wq_dev = NULL;
3344 return ret;
3345 }
3346
3347 if (wq->flags & WQ_UNBOUND) {
3348 struct device_attribute *attr;
3349
3350 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3351 ret = device_create_file(&wq_dev->dev, attr);
3352 if (ret) {
3353 device_unregister(&wq_dev->dev);
3354 wq->wq_dev = NULL;
3355 return ret;
3356 }
3357 }
3358 }
3359
3360 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3361 return 0;
3362}
3363
3364/**
3365 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3366 * @wq: the workqueue to unregister
3367 *
3368 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3369 */
3370static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3371{
3372 struct wq_device *wq_dev = wq->wq_dev;
3373
3374 if (!wq->wq_dev)
3375 return;
3376
3377 wq->wq_dev = NULL;
3378 device_unregister(&wq_dev->dev);
3379}
3380#else /* CONFIG_SYSFS */
3381static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3382#endif /* CONFIG_SYSFS */
3383
7a4e344c
TH
3384/**
3385 * free_workqueue_attrs - free a workqueue_attrs
3386 * @attrs: workqueue_attrs to free
3387 *
3388 * Undo alloc_workqueue_attrs().
3389 */
3390void free_workqueue_attrs(struct workqueue_attrs *attrs)
3391{
3392 if (attrs) {
3393 free_cpumask_var(attrs->cpumask);
3394 kfree(attrs);
3395 }
3396}
3397
3398/**
3399 * alloc_workqueue_attrs - allocate a workqueue_attrs
3400 * @gfp_mask: allocation mask to use
3401 *
3402 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3403 * return it.
3404 *
3405 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3406 */
3407struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3408{
3409 struct workqueue_attrs *attrs;
3410
3411 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3412 if (!attrs)
3413 goto fail;
3414 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3415 goto fail;
3416
13e2e556 3417 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3418 return attrs;
3419fail:
3420 free_workqueue_attrs(attrs);
3421 return NULL;
3422}
3423
29c91e99
TH
3424static void copy_workqueue_attrs(struct workqueue_attrs *to,
3425 const struct workqueue_attrs *from)
3426{
3427 to->nice = from->nice;
3428 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3429 /*
3430 * Unlike hash and equality test, this function doesn't ignore
3431 * ->no_numa as it is used for both pool and wq attrs. Instead,
3432 * get_unbound_pool() explicitly clears ->no_numa after copying.
3433 */
3434 to->no_numa = from->no_numa;
29c91e99
TH
3435}
3436
29c91e99
TH
3437/* hash value of the content of @attr */
3438static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3439{
3440 u32 hash = 0;
3441
3442 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3443 hash = jhash(cpumask_bits(attrs->cpumask),
3444 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3445 return hash;
3446}
3447
3448/* content equality test */
3449static bool wqattrs_equal(const struct workqueue_attrs *a,
3450 const struct workqueue_attrs *b)
3451{
3452 if (a->nice != b->nice)
3453 return false;
3454 if (!cpumask_equal(a->cpumask, b->cpumask))
3455 return false;
3456 return true;
3457}
3458
7a4e344c
TH
3459/**
3460 * init_worker_pool - initialize a newly zalloc'd worker_pool
3461 * @pool: worker_pool to initialize
3462 *
3463 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3464 *
3465 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3466 * inside @pool proper are initialized and put_unbound_pool() can be called
3467 * on @pool safely to release it.
7a4e344c
TH
3468 */
3469static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3470{
3471 spin_lock_init(&pool->lock);
29c91e99
TH
3472 pool->id = -1;
3473 pool->cpu = -1;
f3f90ad4 3474 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3475 pool->flags |= POOL_DISASSOCIATED;
3476 INIT_LIST_HEAD(&pool->worklist);
3477 INIT_LIST_HEAD(&pool->idle_list);
3478 hash_init(pool->busy_hash);
3479
3480 init_timer_deferrable(&pool->idle_timer);
3481 pool->idle_timer.function = idle_worker_timeout;
3482 pool->idle_timer.data = (unsigned long)pool;
3483
3484 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3485 (unsigned long)pool);
3486
3487 mutex_init(&pool->manager_arb);
bc3a1afc 3488 mutex_init(&pool->manager_mutex);
822d8405 3489 idr_init(&pool->worker_idr);
da028469 3490 INIT_LIST_HEAD(&pool->workers);
7a4e344c 3491
29c91e99
TH
3492 INIT_HLIST_NODE(&pool->hash_node);
3493 pool->refcnt = 1;
3494
3495 /* shouldn't fail above this point */
7a4e344c
TH
3496 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3497 if (!pool->attrs)
3498 return -ENOMEM;
3499 return 0;
4e1a1f9a
TH
3500}
3501
29c91e99
TH
3502static void rcu_free_pool(struct rcu_head *rcu)
3503{
3504 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3505
822d8405 3506 idr_destroy(&pool->worker_idr);
29c91e99
TH
3507 free_workqueue_attrs(pool->attrs);
3508 kfree(pool);
3509}
3510
3511/**
3512 * put_unbound_pool - put a worker_pool
3513 * @pool: worker_pool to put
3514 *
3515 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3516 * safe manner. get_unbound_pool() calls this function on its failure path
3517 * and this function should be able to release pools which went through,
3518 * successfully or not, init_worker_pool().
a892cacc
TH
3519 *
3520 * Should be called with wq_pool_mutex held.
29c91e99
TH
3521 */
3522static void put_unbound_pool(struct worker_pool *pool)
3523{
60f5a4bc 3524 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3525 struct worker *worker;
3526
a892cacc
TH
3527 lockdep_assert_held(&wq_pool_mutex);
3528
3529 if (--pool->refcnt)
29c91e99 3530 return;
29c91e99
TH
3531
3532 /* sanity checks */
3533 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3534 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3535 return;
29c91e99
TH
3536
3537 /* release id and unhash */
3538 if (pool->id >= 0)
3539 idr_remove(&worker_pool_idr, pool->id);
3540 hash_del(&pool->hash_node);
3541
c5aa87bb
TH
3542 /*
3543 * Become the manager and destroy all workers. Grabbing
3544 * manager_arb prevents @pool's workers from blocking on
3545 * manager_mutex.
3546 */
29c91e99 3547 mutex_lock(&pool->manager_arb);
29c91e99 3548
60f5a4bc 3549 spin_lock_irq(&pool->lock);
29c91e99
TH
3550 while ((worker = first_worker(pool)))
3551 destroy_worker(worker);
3552 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3553 spin_unlock_irq(&pool->lock);
60f5a4bc
LJ
3554
3555 mutex_lock(&pool->manager_mutex);
da028469 3556 if (!list_empty(&pool->workers))
60f5a4bc 3557 pool->detach_completion = &detach_completion;
cd549687 3558 mutex_unlock(&pool->manager_mutex);
60f5a4bc
LJ
3559
3560 if (pool->detach_completion)
3561 wait_for_completion(pool->detach_completion);
3562
29c91e99
TH
3563 mutex_unlock(&pool->manager_arb);
3564
3565 /* shut down the timers */
3566 del_timer_sync(&pool->idle_timer);
3567 del_timer_sync(&pool->mayday_timer);
3568
3569 /* sched-RCU protected to allow dereferences from get_work_pool() */
3570 call_rcu_sched(&pool->rcu, rcu_free_pool);
3571}
3572
3573/**
3574 * get_unbound_pool - get a worker_pool with the specified attributes
3575 * @attrs: the attributes of the worker_pool to get
3576 *
3577 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3578 * reference count and return it. If there already is a matching
3579 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3580 * create a new one.
a892cacc
TH
3581 *
3582 * Should be called with wq_pool_mutex held.
d185af30
YB
3583 *
3584 * Return: On success, a worker_pool with the same attributes as @attrs.
3585 * On failure, %NULL.
29c91e99
TH
3586 */
3587static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3588{
29c91e99
TH
3589 u32 hash = wqattrs_hash(attrs);
3590 struct worker_pool *pool;
f3f90ad4 3591 int node;
29c91e99 3592
a892cacc 3593 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3594
3595 /* do we already have a matching pool? */
29c91e99
TH
3596 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3597 if (wqattrs_equal(pool->attrs, attrs)) {
3598 pool->refcnt++;
3599 goto out_unlock;
3600 }
3601 }
29c91e99
TH
3602
3603 /* nope, create a new one */
3604 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3605 if (!pool || init_worker_pool(pool) < 0)
3606 goto fail;
3607
12ee4fc6
LJ
3608 if (workqueue_freezing)
3609 pool->flags |= POOL_FREEZING;
3610
8864b4e5 3611 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3612 copy_workqueue_attrs(pool->attrs, attrs);
3613
2865a8fb
SL
3614 /*
3615 * no_numa isn't a worker_pool attribute, always clear it. See
3616 * 'struct workqueue_attrs' comments for detail.
3617 */
3618 pool->attrs->no_numa = false;
3619
f3f90ad4
TH
3620 /* if cpumask is contained inside a NUMA node, we belong to that node */
3621 if (wq_numa_enabled) {
3622 for_each_node(node) {
3623 if (cpumask_subset(pool->attrs->cpumask,
3624 wq_numa_possible_cpumask[node])) {
3625 pool->node = node;
3626 break;
3627 }
3628 }
3629 }
3630
29c91e99
TH
3631 if (worker_pool_assign_id(pool) < 0)
3632 goto fail;
3633
3634 /* create and start the initial worker */
ebf44d16 3635 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3636 goto fail;
3637
29c91e99 3638 /* install */
29c91e99
TH
3639 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3640out_unlock:
29c91e99
TH
3641 return pool;
3642fail:
29c91e99
TH
3643 if (pool)
3644 put_unbound_pool(pool);
3645 return NULL;
3646}
3647
8864b4e5
TH
3648static void rcu_free_pwq(struct rcu_head *rcu)
3649{
3650 kmem_cache_free(pwq_cache,
3651 container_of(rcu, struct pool_workqueue, rcu));
3652}
3653
3654/*
3655 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3656 * and needs to be destroyed.
3657 */
3658static void pwq_unbound_release_workfn(struct work_struct *work)
3659{
3660 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3661 unbound_release_work);
3662 struct workqueue_struct *wq = pwq->wq;
3663 struct worker_pool *pool = pwq->pool;
bc0caf09 3664 bool is_last;
8864b4e5
TH
3665
3666 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3667 return;
3668
75ccf595 3669 /*
3c25a55d 3670 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3671 * necessary on release but do it anyway. It's easier to verify
3672 * and consistent with the linking path.
3673 */
3c25a55d 3674 mutex_lock(&wq->mutex);
8864b4e5 3675 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3676 is_last = list_empty(&wq->pwqs);
3c25a55d 3677 mutex_unlock(&wq->mutex);
8864b4e5 3678
a892cacc 3679 mutex_lock(&wq_pool_mutex);
8864b4e5 3680 put_unbound_pool(pool);
a892cacc
TH
3681 mutex_unlock(&wq_pool_mutex);
3682
8864b4e5
TH
3683 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3684
3685 /*
3686 * If we're the last pwq going away, @wq is already dead and no one
3687 * is gonna access it anymore. Free it.
3688 */
6029a918
TH
3689 if (is_last) {
3690 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3691 kfree(wq);
6029a918 3692 }
8864b4e5
TH
3693}
3694
0fbd95aa 3695/**
699ce097 3696 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3697 * @pwq: target pool_workqueue
0fbd95aa 3698 *
699ce097
TH
3699 * If @pwq isn't freezing, set @pwq->max_active to the associated
3700 * workqueue's saved_max_active and activate delayed work items
3701 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3702 */
699ce097 3703static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3704{
699ce097
TH
3705 struct workqueue_struct *wq = pwq->wq;
3706 bool freezable = wq->flags & WQ_FREEZABLE;
3707
3708 /* for @wq->saved_max_active */
a357fc03 3709 lockdep_assert_held(&wq->mutex);
699ce097
TH
3710
3711 /* fast exit for non-freezable wqs */
3712 if (!freezable && pwq->max_active == wq->saved_max_active)
3713 return;
3714
a357fc03 3715 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3716
3717 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3718 pwq->max_active = wq->saved_max_active;
0fbd95aa 3719
699ce097
TH
3720 while (!list_empty(&pwq->delayed_works) &&
3721 pwq->nr_active < pwq->max_active)
3722 pwq_activate_first_delayed(pwq);
951a078a
LJ
3723
3724 /*
3725 * Need to kick a worker after thawed or an unbound wq's
3726 * max_active is bumped. It's a slow path. Do it always.
3727 */
3728 wake_up_worker(pwq->pool);
699ce097
TH
3729 } else {
3730 pwq->max_active = 0;
3731 }
3732
a357fc03 3733 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3734}
3735
e50aba9a 3736/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3737static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3738 struct worker_pool *pool)
d2c1d404
TH
3739{
3740 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3741
e50aba9a
TH
3742 memset(pwq, 0, sizeof(*pwq));
3743
d2c1d404
TH
3744 pwq->pool = pool;
3745 pwq->wq = wq;
3746 pwq->flush_color = -1;
8864b4e5 3747 pwq->refcnt = 1;
d2c1d404 3748 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3749 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3750 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3751 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3752}
d2c1d404 3753
f147f29e 3754/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3755static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3756{
3757 struct workqueue_struct *wq = pwq->wq;
3758
3759 lockdep_assert_held(&wq->mutex);
75ccf595 3760
1befcf30
TH
3761 /* may be called multiple times, ignore if already linked */
3762 if (!list_empty(&pwq->pwqs_node))
3763 return;
3764
983ca25e
TH
3765 /*
3766 * Set the matching work_color. This is synchronized with
3c25a55d 3767 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3768 */
75ccf595 3769 pwq->work_color = wq->work_color;
983ca25e
TH
3770
3771 /* sync max_active to the current setting */
3772 pwq_adjust_max_active(pwq);
3773
3774 /* link in @pwq */
9e8cd2f5 3775 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3776}
a357fc03 3777
f147f29e
TH
3778/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3779static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3780 const struct workqueue_attrs *attrs)
3781{
3782 struct worker_pool *pool;
3783 struct pool_workqueue *pwq;
3784
3785 lockdep_assert_held(&wq_pool_mutex);
3786
3787 pool = get_unbound_pool(attrs);
3788 if (!pool)
3789 return NULL;
3790
e50aba9a 3791 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3792 if (!pwq) {
3793 put_unbound_pool(pool);
3794 return NULL;
df2d5ae4 3795 }
6029a918 3796
f147f29e
TH
3797 init_pwq(pwq, wq, pool);
3798 return pwq;
d2c1d404
TH
3799}
3800
4c16bd32
TH
3801/* undo alloc_unbound_pwq(), used only in the error path */
3802static void free_unbound_pwq(struct pool_workqueue *pwq)
3803{
3804 lockdep_assert_held(&wq_pool_mutex);
3805
3806 if (pwq) {
3807 put_unbound_pool(pwq->pool);
cece95df 3808 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3809 }
3810}
3811
3812/**
3813 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3814 * @attrs: the wq_attrs of interest
3815 * @node: the target NUMA node
3816 * @cpu_going_down: if >= 0, the CPU to consider as offline
3817 * @cpumask: outarg, the resulting cpumask
3818 *
3819 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3820 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3821 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3822 *
3823 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3824 * enabled and @node has online CPUs requested by @attrs, the returned
3825 * cpumask is the intersection of the possible CPUs of @node and
3826 * @attrs->cpumask.
3827 *
3828 * The caller is responsible for ensuring that the cpumask of @node stays
3829 * stable.
d185af30
YB
3830 *
3831 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3832 * %false if equal.
4c16bd32
TH
3833 */
3834static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3835 int cpu_going_down, cpumask_t *cpumask)
3836{
d55262c4 3837 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3838 goto use_dfl;
3839
3840 /* does @node have any online CPUs @attrs wants? */
3841 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3842 if (cpu_going_down >= 0)
3843 cpumask_clear_cpu(cpu_going_down, cpumask);
3844
3845 if (cpumask_empty(cpumask))
3846 goto use_dfl;
3847
3848 /* yeap, return possible CPUs in @node that @attrs wants */
3849 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3850 return !cpumask_equal(cpumask, attrs->cpumask);
3851
3852use_dfl:
3853 cpumask_copy(cpumask, attrs->cpumask);
3854 return false;
3855}
3856
1befcf30
TH
3857/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3858static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3859 int node,
3860 struct pool_workqueue *pwq)
3861{
3862 struct pool_workqueue *old_pwq;
3863
3864 lockdep_assert_held(&wq->mutex);
3865
3866 /* link_pwq() can handle duplicate calls */
3867 link_pwq(pwq);
3868
3869 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3870 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3871 return old_pwq;
3872}
3873
9e8cd2f5
TH
3874/**
3875 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3876 * @wq: the target workqueue
3877 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3878 *
4c16bd32
TH
3879 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3880 * machines, this function maps a separate pwq to each NUMA node with
3881 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3882 * NUMA node it was issued on. Older pwqs are released as in-flight work
3883 * items finish. Note that a work item which repeatedly requeues itself
3884 * back-to-back will stay on its current pwq.
9e8cd2f5 3885 *
d185af30
YB
3886 * Performs GFP_KERNEL allocations.
3887 *
3888 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3889 */
3890int apply_workqueue_attrs(struct workqueue_struct *wq,
3891 const struct workqueue_attrs *attrs)
3892{
4c16bd32
TH
3893 struct workqueue_attrs *new_attrs, *tmp_attrs;
3894 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3895 int node, ret;
9e8cd2f5 3896
8719dcea 3897 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3898 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3899 return -EINVAL;
3900
8719dcea
TH
3901 /* creating multiple pwqs breaks ordering guarantee */
3902 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3903 return -EINVAL;
3904
4c16bd32 3905 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3906 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3907 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3908 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3909 goto enomem;
3910
4c16bd32 3911 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3912 copy_workqueue_attrs(new_attrs, attrs);
3913 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3914
4c16bd32
TH
3915 /*
3916 * We may create multiple pwqs with differing cpumasks. Make a
3917 * copy of @new_attrs which will be modified and used to obtain
3918 * pools.
3919 */
3920 copy_workqueue_attrs(tmp_attrs, new_attrs);
3921
3922 /*
3923 * CPUs should stay stable across pwq creations and installations.
3924 * Pin CPUs, determine the target cpumask for each node and create
3925 * pwqs accordingly.
3926 */
3927 get_online_cpus();
3928
a892cacc 3929 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3930
3931 /*
3932 * If something goes wrong during CPU up/down, we'll fall back to
3933 * the default pwq covering whole @attrs->cpumask. Always create
3934 * it even if we don't use it immediately.
3935 */
3936 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3937 if (!dfl_pwq)
3938 goto enomem_pwq;
3939
3940 for_each_node(node) {
3941 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3942 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3943 if (!pwq_tbl[node])
3944 goto enomem_pwq;
3945 } else {
3946 dfl_pwq->refcnt++;
3947 pwq_tbl[node] = dfl_pwq;
3948 }
3949 }
3950
f147f29e 3951 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3952
4c16bd32 3953 /* all pwqs have been created successfully, let's install'em */
f147f29e 3954 mutex_lock(&wq->mutex);
a892cacc 3955
f147f29e 3956 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3957
3958 /* save the previous pwq and install the new one */
f147f29e 3959 for_each_node(node)
4c16bd32
TH
3960 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3961
3962 /* @dfl_pwq might not have been used, ensure it's linked */
3963 link_pwq(dfl_pwq);
3964 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3965
3966 mutex_unlock(&wq->mutex);
9e8cd2f5 3967
4c16bd32
TH
3968 /* put the old pwqs */
3969 for_each_node(node)
3970 put_pwq_unlocked(pwq_tbl[node]);
3971 put_pwq_unlocked(dfl_pwq);
3972
3973 put_online_cpus();
4862125b
TH
3974 ret = 0;
3975 /* fall through */
3976out_free:
4c16bd32 3977 free_workqueue_attrs(tmp_attrs);
4862125b 3978 free_workqueue_attrs(new_attrs);
4c16bd32 3979 kfree(pwq_tbl);
4862125b 3980 return ret;
13e2e556 3981
4c16bd32
TH
3982enomem_pwq:
3983 free_unbound_pwq(dfl_pwq);
3984 for_each_node(node)
3985 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3986 free_unbound_pwq(pwq_tbl[node]);
3987 mutex_unlock(&wq_pool_mutex);
3988 put_online_cpus();
13e2e556 3989enomem:
4862125b
TH
3990 ret = -ENOMEM;
3991 goto out_free;
9e8cd2f5
TH
3992}
3993
4c16bd32
TH
3994/**
3995 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3996 * @wq: the target workqueue
3997 * @cpu: the CPU coming up or going down
3998 * @online: whether @cpu is coming up or going down
3999 *
4000 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4001 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4002 * @wq accordingly.
4003 *
4004 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4005 * falls back to @wq->dfl_pwq which may not be optimal but is always
4006 * correct.
4007 *
4008 * Note that when the last allowed CPU of a NUMA node goes offline for a
4009 * workqueue with a cpumask spanning multiple nodes, the workers which were
4010 * already executing the work items for the workqueue will lose their CPU
4011 * affinity and may execute on any CPU. This is similar to how per-cpu
4012 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4013 * affinity, it's the user's responsibility to flush the work item from
4014 * CPU_DOWN_PREPARE.
4015 */
4016static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4017 bool online)
4018{
4019 int node = cpu_to_node(cpu);
4020 int cpu_off = online ? -1 : cpu;
4021 struct pool_workqueue *old_pwq = NULL, *pwq;
4022 struct workqueue_attrs *target_attrs;
4023 cpumask_t *cpumask;
4024
4025 lockdep_assert_held(&wq_pool_mutex);
4026
4027 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4028 return;
4029
4030 /*
4031 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4032 * Let's use a preallocated one. The following buf is protected by
4033 * CPU hotplug exclusion.
4034 */
4035 target_attrs = wq_update_unbound_numa_attrs_buf;
4036 cpumask = target_attrs->cpumask;
4037
4038 mutex_lock(&wq->mutex);
d55262c4
TH
4039 if (wq->unbound_attrs->no_numa)
4040 goto out_unlock;
4c16bd32
TH
4041
4042 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4043 pwq = unbound_pwq_by_node(wq, node);
4044
4045 /*
4046 * Let's determine what needs to be done. If the target cpumask is
4047 * different from wq's, we need to compare it to @pwq's and create
4048 * a new one if they don't match. If the target cpumask equals
534a3fbb 4049 * wq's, the default pwq should be used.
4c16bd32
TH
4050 */
4051 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4052 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4053 goto out_unlock;
4054 } else {
534a3fbb 4055 goto use_dfl_pwq;
4c16bd32
TH
4056 }
4057
4058 mutex_unlock(&wq->mutex);
4059
4060 /* create a new pwq */
4061 pwq = alloc_unbound_pwq(wq, target_attrs);
4062 if (!pwq) {
2d916033
FF
4063 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4064 wq->name);
77f300b1
DY
4065 mutex_lock(&wq->mutex);
4066 goto use_dfl_pwq;
4c16bd32
TH
4067 }
4068
4069 /*
4070 * Install the new pwq. As this function is called only from CPU
4071 * hotplug callbacks and applying a new attrs is wrapped with
4072 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4073 * inbetween.
4074 */
4075 mutex_lock(&wq->mutex);
4076 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4077 goto out_unlock;
4078
4079use_dfl_pwq:
4080 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4081 get_pwq(wq->dfl_pwq);
4082 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4083 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4084out_unlock:
4085 mutex_unlock(&wq->mutex);
4086 put_pwq_unlocked(old_pwq);
4087}
4088
30cdf249 4089static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4090{
49e3cf44 4091 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4092 int cpu, ret;
30cdf249
TH
4093
4094 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4095 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4096 if (!wq->cpu_pwqs)
30cdf249
TH
4097 return -ENOMEM;
4098
4099 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4100 struct pool_workqueue *pwq =
4101 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4102 struct worker_pool *cpu_pools =
f02ae73a 4103 per_cpu(cpu_worker_pools, cpu);
f3421797 4104
f147f29e
TH
4105 init_pwq(pwq, wq, &cpu_pools[highpri]);
4106
4107 mutex_lock(&wq->mutex);
1befcf30 4108 link_pwq(pwq);
f147f29e 4109 mutex_unlock(&wq->mutex);
30cdf249 4110 }
9e8cd2f5 4111 return 0;
8a2b7538
TH
4112 } else if (wq->flags & __WQ_ORDERED) {
4113 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4114 /* there should only be single pwq for ordering guarantee */
4115 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4116 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4117 "ordering guarantee broken for workqueue %s\n", wq->name);
4118 return ret;
30cdf249 4119 } else {
9e8cd2f5 4120 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4121 }
0f900049
TH
4122}
4123
f3421797
TH
4124static int wq_clamp_max_active(int max_active, unsigned int flags,
4125 const char *name)
b71ab8c2 4126{
f3421797
TH
4127 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4128
4129 if (max_active < 1 || max_active > lim)
044c782c
VI
4130 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4131 max_active, name, 1, lim);
b71ab8c2 4132
f3421797 4133 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4134}
4135
b196be89 4136struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4137 unsigned int flags,
4138 int max_active,
4139 struct lock_class_key *key,
b196be89 4140 const char *lock_name, ...)
1da177e4 4141{
df2d5ae4 4142 size_t tbl_size = 0;
ecf6881f 4143 va_list args;
1da177e4 4144 struct workqueue_struct *wq;
49e3cf44 4145 struct pool_workqueue *pwq;
b196be89 4146
cee22a15
VK
4147 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4148 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4149 flags |= WQ_UNBOUND;
4150
ecf6881f 4151 /* allocate wq and format name */
df2d5ae4
TH
4152 if (flags & WQ_UNBOUND)
4153 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4154
4155 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4156 if (!wq)
d2c1d404 4157 return NULL;
b196be89 4158
6029a918
TH
4159 if (flags & WQ_UNBOUND) {
4160 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4161 if (!wq->unbound_attrs)
4162 goto err_free_wq;
4163 }
4164
ecf6881f
TH
4165 va_start(args, lock_name);
4166 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4167 va_end(args);
1da177e4 4168
d320c038 4169 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4170 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4171
b196be89 4172 /* init wq */
97e37d7b 4173 wq->flags = flags;
a0a1a5fd 4174 wq->saved_max_active = max_active;
3c25a55d 4175 mutex_init(&wq->mutex);
112202d9 4176 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4177 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4178 INIT_LIST_HEAD(&wq->flusher_queue);
4179 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4180 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4181
eb13ba87 4182 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4183 INIT_LIST_HEAD(&wq->list);
3af24433 4184
30cdf249 4185 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4186 goto err_free_wq;
1537663f 4187
493008a8
TH
4188 /*
4189 * Workqueues which may be used during memory reclaim should
4190 * have a rescuer to guarantee forward progress.
4191 */
4192 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4193 struct worker *rescuer;
4194
d2c1d404 4195 rescuer = alloc_worker();
e22bee78 4196 if (!rescuer)
d2c1d404 4197 goto err_destroy;
e22bee78 4198
111c225a
TH
4199 rescuer->rescue_wq = wq;
4200 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4201 wq->name);
d2c1d404
TH
4202 if (IS_ERR(rescuer->task)) {
4203 kfree(rescuer);
4204 goto err_destroy;
4205 }
e22bee78 4206
d2c1d404 4207 wq->rescuer = rescuer;
14a40ffc 4208 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4209 wake_up_process(rescuer->task);
3af24433
ON
4210 }
4211
226223ab
TH
4212 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4213 goto err_destroy;
4214
a0a1a5fd 4215 /*
68e13a67
LJ
4216 * wq_pool_mutex protects global freeze state and workqueues list.
4217 * Grab it, adjust max_active and add the new @wq to workqueues
4218 * list.
a0a1a5fd 4219 */
68e13a67 4220 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4221
a357fc03 4222 mutex_lock(&wq->mutex);
699ce097
TH
4223 for_each_pwq(pwq, wq)
4224 pwq_adjust_max_active(pwq);
a357fc03 4225 mutex_unlock(&wq->mutex);
a0a1a5fd 4226
1537663f 4227 list_add(&wq->list, &workqueues);
a0a1a5fd 4228
68e13a67 4229 mutex_unlock(&wq_pool_mutex);
1537663f 4230
3af24433 4231 return wq;
d2c1d404
TH
4232
4233err_free_wq:
6029a918 4234 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4235 kfree(wq);
4236 return NULL;
4237err_destroy:
4238 destroy_workqueue(wq);
4690c4ab 4239 return NULL;
3af24433 4240}
d320c038 4241EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4242
3af24433
ON
4243/**
4244 * destroy_workqueue - safely terminate a workqueue
4245 * @wq: target workqueue
4246 *
4247 * Safely destroy a workqueue. All work currently pending will be done first.
4248 */
4249void destroy_workqueue(struct workqueue_struct *wq)
4250{
49e3cf44 4251 struct pool_workqueue *pwq;
4c16bd32 4252 int node;
3af24433 4253
9c5a2ba7
TH
4254 /* drain it before proceeding with destruction */
4255 drain_workqueue(wq);
c8efcc25 4256
6183c009 4257 /* sanity checks */
b09f4fd3 4258 mutex_lock(&wq->mutex);
49e3cf44 4259 for_each_pwq(pwq, wq) {
6183c009
TH
4260 int i;
4261
76af4d93
TH
4262 for (i = 0; i < WORK_NR_COLORS; i++) {
4263 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4264 mutex_unlock(&wq->mutex);
6183c009 4265 return;
76af4d93
TH
4266 }
4267 }
4268
5c529597 4269 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4270 WARN_ON(pwq->nr_active) ||
76af4d93 4271 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4272 mutex_unlock(&wq->mutex);
6183c009 4273 return;
76af4d93 4274 }
6183c009 4275 }
b09f4fd3 4276 mutex_unlock(&wq->mutex);
6183c009 4277
a0a1a5fd
TH
4278 /*
4279 * wq list is used to freeze wq, remove from list after
4280 * flushing is complete in case freeze races us.
4281 */
68e13a67 4282 mutex_lock(&wq_pool_mutex);
d2c1d404 4283 list_del_init(&wq->list);
68e13a67 4284 mutex_unlock(&wq_pool_mutex);
3af24433 4285
226223ab
TH
4286 workqueue_sysfs_unregister(wq);
4287
493008a8 4288 if (wq->rescuer) {
e22bee78 4289 kthread_stop(wq->rescuer->task);
8d9df9f0 4290 kfree(wq->rescuer);
493008a8 4291 wq->rescuer = NULL;
e22bee78
TH
4292 }
4293
8864b4e5
TH
4294 if (!(wq->flags & WQ_UNBOUND)) {
4295 /*
4296 * The base ref is never dropped on per-cpu pwqs. Directly
4297 * free the pwqs and wq.
4298 */
4299 free_percpu(wq->cpu_pwqs);
4300 kfree(wq);
4301 } else {
4302 /*
4303 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4304 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4305 * @wq will be freed when the last pwq is released.
8864b4e5 4306 */
4c16bd32
TH
4307 for_each_node(node) {
4308 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4309 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4310 put_pwq_unlocked(pwq);
4311 }
4312
4313 /*
4314 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4315 * put. Don't access it afterwards.
4316 */
4317 pwq = wq->dfl_pwq;
4318 wq->dfl_pwq = NULL;
dce90d47 4319 put_pwq_unlocked(pwq);
29c91e99 4320 }
3af24433
ON
4321}
4322EXPORT_SYMBOL_GPL(destroy_workqueue);
4323
dcd989cb
TH
4324/**
4325 * workqueue_set_max_active - adjust max_active of a workqueue
4326 * @wq: target workqueue
4327 * @max_active: new max_active value.
4328 *
4329 * Set max_active of @wq to @max_active.
4330 *
4331 * CONTEXT:
4332 * Don't call from IRQ context.
4333 */
4334void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4335{
49e3cf44 4336 struct pool_workqueue *pwq;
dcd989cb 4337
8719dcea
TH
4338 /* disallow meddling with max_active for ordered workqueues */
4339 if (WARN_ON(wq->flags & __WQ_ORDERED))
4340 return;
4341
f3421797 4342 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4343
a357fc03 4344 mutex_lock(&wq->mutex);
dcd989cb
TH
4345
4346 wq->saved_max_active = max_active;
4347
699ce097
TH
4348 for_each_pwq(pwq, wq)
4349 pwq_adjust_max_active(pwq);
93981800 4350
a357fc03 4351 mutex_unlock(&wq->mutex);
15316ba8 4352}
dcd989cb 4353EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4354
e6267616
TH
4355/**
4356 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4357 *
4358 * Determine whether %current is a workqueue rescuer. Can be used from
4359 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4360 *
4361 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4362 */
4363bool current_is_workqueue_rescuer(void)
4364{
4365 struct worker *worker = current_wq_worker();
4366
6a092dfd 4367 return worker && worker->rescue_wq;
e6267616
TH
4368}
4369
eef6a7d5 4370/**
dcd989cb
TH
4371 * workqueue_congested - test whether a workqueue is congested
4372 * @cpu: CPU in question
4373 * @wq: target workqueue
eef6a7d5 4374 *
dcd989cb
TH
4375 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4376 * no synchronization around this function and the test result is
4377 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4378 *
d3251859
TH
4379 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4380 * Note that both per-cpu and unbound workqueues may be associated with
4381 * multiple pool_workqueues which have separate congested states. A
4382 * workqueue being congested on one CPU doesn't mean the workqueue is also
4383 * contested on other CPUs / NUMA nodes.
4384 *
d185af30 4385 * Return:
dcd989cb 4386 * %true if congested, %false otherwise.
eef6a7d5 4387 */
d84ff051 4388bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4389{
7fb98ea7 4390 struct pool_workqueue *pwq;
76af4d93
TH
4391 bool ret;
4392
88109453 4393 rcu_read_lock_sched();
7fb98ea7 4394
d3251859
TH
4395 if (cpu == WORK_CPU_UNBOUND)
4396 cpu = smp_processor_id();
4397
7fb98ea7
TH
4398 if (!(wq->flags & WQ_UNBOUND))
4399 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4400 else
df2d5ae4 4401 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4402
76af4d93 4403 ret = !list_empty(&pwq->delayed_works);
88109453 4404 rcu_read_unlock_sched();
76af4d93
TH
4405
4406 return ret;
1da177e4 4407}
dcd989cb 4408EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4409
dcd989cb
TH
4410/**
4411 * work_busy - test whether a work is currently pending or running
4412 * @work: the work to be tested
4413 *
4414 * Test whether @work is currently pending or running. There is no
4415 * synchronization around this function and the test result is
4416 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4417 *
d185af30 4418 * Return:
dcd989cb
TH
4419 * OR'd bitmask of WORK_BUSY_* bits.
4420 */
4421unsigned int work_busy(struct work_struct *work)
1da177e4 4422{
fa1b54e6 4423 struct worker_pool *pool;
dcd989cb
TH
4424 unsigned long flags;
4425 unsigned int ret = 0;
1da177e4 4426
dcd989cb
TH
4427 if (work_pending(work))
4428 ret |= WORK_BUSY_PENDING;
1da177e4 4429
fa1b54e6
TH
4430 local_irq_save(flags);
4431 pool = get_work_pool(work);
038366c5 4432 if (pool) {
fa1b54e6 4433 spin_lock(&pool->lock);
038366c5
LJ
4434 if (find_worker_executing_work(pool, work))
4435 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4436 spin_unlock(&pool->lock);
038366c5 4437 }
fa1b54e6 4438 local_irq_restore(flags);
1da177e4 4439
dcd989cb 4440 return ret;
1da177e4 4441}
dcd989cb 4442EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4443
3d1cb205
TH
4444/**
4445 * set_worker_desc - set description for the current work item
4446 * @fmt: printf-style format string
4447 * @...: arguments for the format string
4448 *
4449 * This function can be called by a running work function to describe what
4450 * the work item is about. If the worker task gets dumped, this
4451 * information will be printed out together to help debugging. The
4452 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4453 */
4454void set_worker_desc(const char *fmt, ...)
4455{
4456 struct worker *worker = current_wq_worker();
4457 va_list args;
4458
4459 if (worker) {
4460 va_start(args, fmt);
4461 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4462 va_end(args);
4463 worker->desc_valid = true;
4464 }
4465}
4466
4467/**
4468 * print_worker_info - print out worker information and description
4469 * @log_lvl: the log level to use when printing
4470 * @task: target task
4471 *
4472 * If @task is a worker and currently executing a work item, print out the
4473 * name of the workqueue being serviced and worker description set with
4474 * set_worker_desc() by the currently executing work item.
4475 *
4476 * This function can be safely called on any task as long as the
4477 * task_struct itself is accessible. While safe, this function isn't
4478 * synchronized and may print out mixups or garbages of limited length.
4479 */
4480void print_worker_info(const char *log_lvl, struct task_struct *task)
4481{
4482 work_func_t *fn = NULL;
4483 char name[WQ_NAME_LEN] = { };
4484 char desc[WORKER_DESC_LEN] = { };
4485 struct pool_workqueue *pwq = NULL;
4486 struct workqueue_struct *wq = NULL;
4487 bool desc_valid = false;
4488 struct worker *worker;
4489
4490 if (!(task->flags & PF_WQ_WORKER))
4491 return;
4492
4493 /*
4494 * This function is called without any synchronization and @task
4495 * could be in any state. Be careful with dereferences.
4496 */
4497 worker = probe_kthread_data(task);
4498
4499 /*
4500 * Carefully copy the associated workqueue's workfn and name. Keep
4501 * the original last '\0' in case the original contains garbage.
4502 */
4503 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4504 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4505 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4506 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4507
4508 /* copy worker description */
4509 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4510 if (desc_valid)
4511 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4512
4513 if (fn || name[0] || desc[0]) {
2d916033 4514 pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
3d1cb205
TH
4515 if (desc[0])
4516 pr_cont(" (%s)", desc);
4517 pr_cont("\n");
4518 }
4519}
4520
db7bccf4
TH
4521/*
4522 * CPU hotplug.
4523 *
e22bee78 4524 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4525 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4526 * pool which make migrating pending and scheduled works very
e22bee78 4527 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4528 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4529 * blocked draining impractical.
4530 *
24647570 4531 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4532 * running as an unbound one and allowing it to be reattached later if the
4533 * cpu comes back online.
db7bccf4 4534 */
1da177e4 4535
706026c2 4536static void wq_unbind_fn(struct work_struct *work)
3af24433 4537{
38db41d9 4538 int cpu = smp_processor_id();
4ce62e9e 4539 struct worker_pool *pool;
db7bccf4 4540 struct worker *worker;
3af24433 4541
f02ae73a 4542 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4543 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4544
bc3a1afc 4545 mutex_lock(&pool->manager_mutex);
94cf58bb 4546 spin_lock_irq(&pool->lock);
3af24433 4547
94cf58bb 4548 /*
bc3a1afc 4549 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4550 * unbound and set DISASSOCIATED. Before this, all workers
4551 * except for the ones which are still executing works from
4552 * before the last CPU down must be on the cpu. After
4553 * this, they may become diasporas.
4554 */
da028469 4555 for_each_pool_worker(worker, pool)
c9e7cf27 4556 worker->flags |= WORKER_UNBOUND;
06ba38a9 4557
24647570 4558 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4559
94cf58bb 4560 spin_unlock_irq(&pool->lock);
bc3a1afc 4561 mutex_unlock(&pool->manager_mutex);
628c78e7 4562
eb283428
LJ
4563 /*
4564 * Call schedule() so that we cross rq->lock and thus can
4565 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4566 * This is necessary as scheduler callbacks may be invoked
4567 * from other cpus.
4568 */
4569 schedule();
06ba38a9 4570
eb283428
LJ
4571 /*
4572 * Sched callbacks are disabled now. Zap nr_running.
4573 * After this, nr_running stays zero and need_more_worker()
4574 * and keep_working() are always true as long as the
4575 * worklist is not empty. This pool now behaves as an
4576 * unbound (in terms of concurrency management) pool which
4577 * are served by workers tied to the pool.
4578 */
e19e397a 4579 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4580
4581 /*
4582 * With concurrency management just turned off, a busy
4583 * worker blocking could lead to lengthy stalls. Kick off
4584 * unbound chain execution of currently pending work items.
4585 */
4586 spin_lock_irq(&pool->lock);
4587 wake_up_worker(pool);
4588 spin_unlock_irq(&pool->lock);
4589 }
3af24433 4590}
3af24433 4591
bd7c089e
TH
4592/**
4593 * rebind_workers - rebind all workers of a pool to the associated CPU
4594 * @pool: pool of interest
4595 *
a9ab775b 4596 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4597 */
4598static void rebind_workers(struct worker_pool *pool)
4599{
a9ab775b 4600 struct worker *worker;
bd7c089e
TH
4601
4602 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4603
a9ab775b
TH
4604 /*
4605 * Restore CPU affinity of all workers. As all idle workers should
4606 * be on the run-queue of the associated CPU before any local
4607 * wake-ups for concurrency management happen, restore CPU affinty
4608 * of all workers first and then clear UNBOUND. As we're called
4609 * from CPU_ONLINE, the following shouldn't fail.
4610 */
da028469 4611 for_each_pool_worker(worker, pool)
a9ab775b
TH
4612 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4613 pool->attrs->cpumask) < 0);
bd7c089e 4614
a9ab775b 4615 spin_lock_irq(&pool->lock);
bd7c089e 4616
da028469 4617 for_each_pool_worker(worker, pool) {
a9ab775b 4618 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4619
4620 /*
a9ab775b
TH
4621 * A bound idle worker should actually be on the runqueue
4622 * of the associated CPU for local wake-ups targeting it to
4623 * work. Kick all idle workers so that they migrate to the
4624 * associated CPU. Doing this in the same loop as
4625 * replacing UNBOUND with REBOUND is safe as no worker will
4626 * be bound before @pool->lock is released.
bd7c089e 4627 */
a9ab775b
TH
4628 if (worker_flags & WORKER_IDLE)
4629 wake_up_process(worker->task);
bd7c089e 4630
a9ab775b
TH
4631 /*
4632 * We want to clear UNBOUND but can't directly call
4633 * worker_clr_flags() or adjust nr_running. Atomically
4634 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4635 * @worker will clear REBOUND using worker_clr_flags() when
4636 * it initiates the next execution cycle thus restoring
4637 * concurrency management. Note that when or whether
4638 * @worker clears REBOUND doesn't affect correctness.
4639 *
4640 * ACCESS_ONCE() is necessary because @worker->flags may be
4641 * tested without holding any lock in
4642 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4643 * fail incorrectly leading to premature concurrency
4644 * management operations.
4645 */
4646 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4647 worker_flags |= WORKER_REBOUND;
4648 worker_flags &= ~WORKER_UNBOUND;
4649 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4650 }
a9ab775b
TH
4651
4652 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4653}
4654
7dbc725e
TH
4655/**
4656 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4657 * @pool: unbound pool of interest
4658 * @cpu: the CPU which is coming up
4659 *
4660 * An unbound pool may end up with a cpumask which doesn't have any online
4661 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4662 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4663 * online CPU before, cpus_allowed of all its workers should be restored.
4664 */
4665static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4666{
4667 static cpumask_t cpumask;
4668 struct worker *worker;
7dbc725e
TH
4669
4670 lockdep_assert_held(&pool->manager_mutex);
4671
4672 /* is @cpu allowed for @pool? */
4673 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4674 return;
4675
4676 /* is @cpu the only online CPU? */
4677 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4678 if (cpumask_weight(&cpumask) != 1)
4679 return;
4680
4681 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4682 for_each_pool_worker(worker, pool)
7dbc725e
TH
4683 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4684 pool->attrs->cpumask) < 0);
4685}
4686
8db25e78
TH
4687/*
4688 * Workqueues should be brought up before normal priority CPU notifiers.
4689 * This will be registered high priority CPU notifier.
4690 */
0db0628d 4691static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4692 unsigned long action,
4693 void *hcpu)
3af24433 4694{
d84ff051 4695 int cpu = (unsigned long)hcpu;
4ce62e9e 4696 struct worker_pool *pool;
4c16bd32 4697 struct workqueue_struct *wq;
7dbc725e 4698 int pi;
3ce63377 4699
8db25e78 4700 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4701 case CPU_UP_PREPARE:
f02ae73a 4702 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4703 if (pool->nr_workers)
4704 continue;
ebf44d16 4705 if (create_and_start_worker(pool) < 0)
3ce63377 4706 return NOTIFY_BAD;
3af24433 4707 }
8db25e78 4708 break;
3af24433 4709
db7bccf4
TH
4710 case CPU_DOWN_FAILED:
4711 case CPU_ONLINE:
68e13a67 4712 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4713
4714 for_each_pool(pool, pi) {
bc3a1afc 4715 mutex_lock(&pool->manager_mutex);
94cf58bb 4716
7dbc725e
TH
4717 if (pool->cpu == cpu) {
4718 spin_lock_irq(&pool->lock);
4719 pool->flags &= ~POOL_DISASSOCIATED;
4720 spin_unlock_irq(&pool->lock);
a9ab775b 4721
7dbc725e
TH
4722 rebind_workers(pool);
4723 } else if (pool->cpu < 0) {
4724 restore_unbound_workers_cpumask(pool, cpu);
4725 }
94cf58bb 4726
bc3a1afc 4727 mutex_unlock(&pool->manager_mutex);
94cf58bb 4728 }
7dbc725e 4729
4c16bd32
TH
4730 /* update NUMA affinity of unbound workqueues */
4731 list_for_each_entry(wq, &workqueues, list)
4732 wq_update_unbound_numa(wq, cpu, true);
4733
68e13a67 4734 mutex_unlock(&wq_pool_mutex);
db7bccf4 4735 break;
00dfcaf7 4736 }
65758202
TH
4737 return NOTIFY_OK;
4738}
4739
4740/*
4741 * Workqueues should be brought down after normal priority CPU notifiers.
4742 * This will be registered as low priority CPU notifier.
4743 */
0db0628d 4744static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4745 unsigned long action,
4746 void *hcpu)
4747{
d84ff051 4748 int cpu = (unsigned long)hcpu;
8db25e78 4749 struct work_struct unbind_work;
4c16bd32 4750 struct workqueue_struct *wq;
8db25e78 4751
65758202
TH
4752 switch (action & ~CPU_TASKS_FROZEN) {
4753 case CPU_DOWN_PREPARE:
4c16bd32 4754 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4755 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4756 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4757
4758 /* update NUMA affinity of unbound workqueues */
4759 mutex_lock(&wq_pool_mutex);
4760 list_for_each_entry(wq, &workqueues, list)
4761 wq_update_unbound_numa(wq, cpu, false);
4762 mutex_unlock(&wq_pool_mutex);
4763
4764 /* wait for per-cpu unbinding to finish */
8db25e78 4765 flush_work(&unbind_work);
440a1136 4766 destroy_work_on_stack(&unbind_work);
8db25e78 4767 break;
65758202
TH
4768 }
4769 return NOTIFY_OK;
4770}
4771
2d3854a3 4772#ifdef CONFIG_SMP
8ccad40d 4773
2d3854a3 4774struct work_for_cpu {
ed48ece2 4775 struct work_struct work;
2d3854a3
RR
4776 long (*fn)(void *);
4777 void *arg;
4778 long ret;
4779};
4780
ed48ece2 4781static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4782{
ed48ece2
TH
4783 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4784
2d3854a3
RR
4785 wfc->ret = wfc->fn(wfc->arg);
4786}
4787
4788/**
4789 * work_on_cpu - run a function in user context on a particular cpu
4790 * @cpu: the cpu to run on
4791 * @fn: the function to run
4792 * @arg: the function arg
4793 *
31ad9081 4794 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4795 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4796 *
4797 * Return: The value @fn returns.
2d3854a3 4798 */
d84ff051 4799long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4800{
ed48ece2 4801 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4802
ed48ece2
TH
4803 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4804 schedule_work_on(cpu, &wfc.work);
12997d1a 4805 flush_work(&wfc.work);
440a1136 4806 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4807 return wfc.ret;
4808}
4809EXPORT_SYMBOL_GPL(work_on_cpu);
4810#endif /* CONFIG_SMP */
4811
a0a1a5fd
TH
4812#ifdef CONFIG_FREEZER
4813
4814/**
4815 * freeze_workqueues_begin - begin freezing workqueues
4816 *
58a69cb4 4817 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4818 * workqueues will queue new works to their delayed_works list instead of
706026c2 4819 * pool->worklist.
a0a1a5fd
TH
4820 *
4821 * CONTEXT:
a357fc03 4822 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4823 */
4824void freeze_workqueues_begin(void)
4825{
17116969 4826 struct worker_pool *pool;
24b8a847
TH
4827 struct workqueue_struct *wq;
4828 struct pool_workqueue *pwq;
611c92a0 4829 int pi;
a0a1a5fd 4830
68e13a67 4831 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4832
6183c009 4833 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4834 workqueue_freezing = true;
4835
24b8a847 4836 /* set FREEZING */
611c92a0 4837 for_each_pool(pool, pi) {
5bcab335 4838 spin_lock_irq(&pool->lock);
17116969
TH
4839 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4840 pool->flags |= POOL_FREEZING;
5bcab335 4841 spin_unlock_irq(&pool->lock);
24b8a847 4842 }
a0a1a5fd 4843
24b8a847 4844 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4845 mutex_lock(&wq->mutex);
699ce097
TH
4846 for_each_pwq(pwq, wq)
4847 pwq_adjust_max_active(pwq);
a357fc03 4848 mutex_unlock(&wq->mutex);
a0a1a5fd 4849 }
5bcab335 4850
68e13a67 4851 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4852}
4853
4854/**
58a69cb4 4855 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4856 *
4857 * Check whether freezing is complete. This function must be called
4858 * between freeze_workqueues_begin() and thaw_workqueues().
4859 *
4860 * CONTEXT:
68e13a67 4861 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4862 *
d185af30 4863 * Return:
58a69cb4
TH
4864 * %true if some freezable workqueues are still busy. %false if freezing
4865 * is complete.
a0a1a5fd
TH
4866 */
4867bool freeze_workqueues_busy(void)
4868{
a0a1a5fd 4869 bool busy = false;
24b8a847
TH
4870 struct workqueue_struct *wq;
4871 struct pool_workqueue *pwq;
a0a1a5fd 4872
68e13a67 4873 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4874
6183c009 4875 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4876
24b8a847
TH
4877 list_for_each_entry(wq, &workqueues, list) {
4878 if (!(wq->flags & WQ_FREEZABLE))
4879 continue;
a0a1a5fd
TH
4880 /*
4881 * nr_active is monotonically decreasing. It's safe
4882 * to peek without lock.
4883 */
88109453 4884 rcu_read_lock_sched();
24b8a847 4885 for_each_pwq(pwq, wq) {
6183c009 4886 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4887 if (pwq->nr_active) {
a0a1a5fd 4888 busy = true;
88109453 4889 rcu_read_unlock_sched();
a0a1a5fd
TH
4890 goto out_unlock;
4891 }
4892 }
88109453 4893 rcu_read_unlock_sched();
a0a1a5fd
TH
4894 }
4895out_unlock:
68e13a67 4896 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4897 return busy;
4898}
4899
4900/**
4901 * thaw_workqueues - thaw workqueues
4902 *
4903 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4904 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4905 *
4906 * CONTEXT:
a357fc03 4907 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4908 */
4909void thaw_workqueues(void)
4910{
24b8a847
TH
4911 struct workqueue_struct *wq;
4912 struct pool_workqueue *pwq;
4913 struct worker_pool *pool;
611c92a0 4914 int pi;
a0a1a5fd 4915
68e13a67 4916 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4917
4918 if (!workqueue_freezing)
4919 goto out_unlock;
4920
24b8a847 4921 /* clear FREEZING */
611c92a0 4922 for_each_pool(pool, pi) {
5bcab335 4923 spin_lock_irq(&pool->lock);
24b8a847
TH
4924 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4925 pool->flags &= ~POOL_FREEZING;
5bcab335 4926 spin_unlock_irq(&pool->lock);
24b8a847 4927 }
8b03ae3c 4928
24b8a847
TH
4929 /* restore max_active and repopulate worklist */
4930 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4931 mutex_lock(&wq->mutex);
699ce097
TH
4932 for_each_pwq(pwq, wq)
4933 pwq_adjust_max_active(pwq);
a357fc03 4934 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4935 }
4936
4937 workqueue_freezing = false;
4938out_unlock:
68e13a67 4939 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4940}
4941#endif /* CONFIG_FREEZER */
4942
bce90380
TH
4943static void __init wq_numa_init(void)
4944{
4945 cpumask_var_t *tbl;
4946 int node, cpu;
4947
4948 /* determine NUMA pwq table len - highest node id + 1 */
4949 for_each_node(node)
4950 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4951
4952 if (num_possible_nodes() <= 1)
4953 return;
4954
d55262c4
TH
4955 if (wq_disable_numa) {
4956 pr_info("workqueue: NUMA affinity support disabled\n");
4957 return;
4958 }
4959
4c16bd32
TH
4960 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4961 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4962
bce90380
TH
4963 /*
4964 * We want masks of possible CPUs of each node which isn't readily
4965 * available. Build one from cpu_to_node() which should have been
4966 * fully initialized by now.
4967 */
4968 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4969 BUG_ON(!tbl);
4970
4971 for_each_node(node)
1be0c25d
TH
4972 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4973 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4974
4975 for_each_possible_cpu(cpu) {
4976 node = cpu_to_node(cpu);
4977 if (WARN_ON(node == NUMA_NO_NODE)) {
4978 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4979 /* happens iff arch is bonkers, let's just proceed */
4980 return;
4981 }
4982 cpumask_set_cpu(cpu, tbl[node]);
4983 }
4984
4985 wq_numa_possible_cpumask = tbl;
4986 wq_numa_enabled = true;
4987}
4988
6ee0578b 4989static int __init init_workqueues(void)
1da177e4 4990{
7a4e344c
TH
4991 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4992 int i, cpu;
c34056a3 4993
e904e6c2
TH
4994 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4995
4996 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4997
65758202 4998 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4999 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5000
bce90380
TH
5001 wq_numa_init();
5002
706026c2 5003 /* initialize CPU pools */
29c91e99 5004 for_each_possible_cpu(cpu) {
4ce62e9e 5005 struct worker_pool *pool;
8b03ae3c 5006
7a4e344c 5007 i = 0;
f02ae73a 5008 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5009 BUG_ON(init_worker_pool(pool));
ec22ca5e 5010 pool->cpu = cpu;
29c91e99 5011 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5012 pool->attrs->nice = std_nice[i++];
f3f90ad4 5013 pool->node = cpu_to_node(cpu);
7a4e344c 5014
9daf9e67 5015 /* alloc pool ID */
68e13a67 5016 mutex_lock(&wq_pool_mutex);
9daf9e67 5017 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5018 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5019 }
8b03ae3c
TH
5020 }
5021
e22bee78 5022 /* create the initial worker */
29c91e99 5023 for_each_online_cpu(cpu) {
4ce62e9e 5024 struct worker_pool *pool;
e22bee78 5025
f02ae73a 5026 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5027 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5028 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5029 }
e22bee78
TH
5030 }
5031
8a2b7538 5032 /* create default unbound and ordered wq attrs */
29c91e99
TH
5033 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5034 struct workqueue_attrs *attrs;
5035
5036 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5037 attrs->nice = std_nice[i];
29c91e99 5038 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5039
5040 /*
5041 * An ordered wq should have only one pwq as ordering is
5042 * guaranteed by max_active which is enforced by pwqs.
5043 * Turn off NUMA so that dfl_pwq is used for all nodes.
5044 */
5045 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5046 attrs->nice = std_nice[i];
5047 attrs->no_numa = true;
5048 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5049 }
5050
d320c038 5051 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5052 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5053 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5054 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5055 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5056 system_freezable_wq = alloc_workqueue("events_freezable",
5057 WQ_FREEZABLE, 0);
0668106c
VK
5058 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5059 WQ_POWER_EFFICIENT, 0);
5060 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5061 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5062 0);
1aabe902 5063 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5064 !system_unbound_wq || !system_freezable_wq ||
5065 !system_power_efficient_wq ||
5066 !system_freezable_power_efficient_wq);
6ee0578b 5067 return 0;
1da177e4 5068}
6ee0578b 5069early_initcall(init_workqueues);