]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/workqueue.c
workqueue: Document (some) memory-ordering properties of {queue,schedule}_work()
[mirror_ubuntu-jammy-kernel.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 70 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
1258fae7 127 * A: wq_pool_attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
24acfb71 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 136 * RCU for reads.
5b95e1af 137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
24acfb71 140 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
d565ed63 148 spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43 156 struct list_head worklist; /* L: list of pending works */
ea1abd61 157
5826cc8f
LJ
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4 170 struct list_head workers; /* A: attached workers */
60f5a4bc 171 struct completion *detach_completion; /* all workers detached */
e19e397a 172
7cda9aae 173 struct ida worker_ida; /* worker IDs for task name */
e19e397a 174
7a4e344c 175 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 178
e19e397a
TH
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
185
186 /*
24acfb71 187 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
8b03ae3c
TH
191} ____cacheline_aligned_in_smp;
192
1da177e4 193/*
112202d9
TH
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
1da177e4 198 */
112202d9 199struct pool_workqueue {
bd7bdd43 200 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 201 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
8864b4e5 204 int refcnt; /* L: reference count */
73f53c4a
TH
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
1e19ffc6 207 int nr_active; /* L: nr of active works */
a0a1a5fd 208 int max_active; /* L: max active works */
1e19ffc6 209 struct list_head delayed_works; /* L: delayed works */
3c25a55d 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 211 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 216 * itself is also RCU protected so that the first pwq can be
b09f4fd3 217 * determined without grabbing wq->mutex.
8864b4e5
TH
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
e904e6c2 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 222
73f53c4a
TH
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
3c25a55d
LJ
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
229 struct completion done; /* flush completion */
230};
231
226223ab
TH
232struct wq_device;
233
1da177e4 234/*
c5aa87bb
TH
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
237 */
238struct workqueue_struct {
3c25a55d 239 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 240 struct list_head list; /* PR: list of all workqueues */
73f53c4a 241
3c25a55d
LJ
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
112202d9 245 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 249
2e109a28 250 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 251 struct worker *rescuer; /* MD: rescue worker */
e22bee78 252
87fc741e 253 int nr_drainers; /* WQ: drain in progress */
a357fc03 254 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 255
5b95e1af
LJ
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 258
226223ab
TH
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
4e6045f1 262#ifdef CONFIG_LOCKDEP
669de8bd
BVA
263 char *lock_name;
264 struct lock_class_key key;
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad 269 /*
24acfb71
TG
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 305
e2dca7ad 306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 307static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 308
ef557180
MG
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 314
f303fccb
TH
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
7d19c5ce 327/* the per-cpu worker pools */
25528213 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 329
68e13a67 330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 331
68e13a67 332/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
c5aa87bb 335/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
8a2b7538
TH
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
d320c038 341struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 342EXPORT_SYMBOL(system_wq);
044c782c 343struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 344EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 345struct workqueue_struct *system_long_wq __read_mostly;
d320c038 346EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 347struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 348EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 349struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 350EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 355
7d19c5ce 356static int worker_thread(void *__worker);
6ba94429 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 358static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 359
97bd2347
TH
360#define CREATE_TRACE_POINTS
361#include <trace/events/workqueue.h>
362
68e13a67 363#define assert_rcu_or_pool_mutex() \
24acfb71 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 365 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 366 "RCU or wq_pool_mutex should be held")
5bcab335 367
5b95e1af 368#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 372 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 373
f02ae73a
TH
374#define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 377 (pool)++)
4ce62e9e 378
17116969
TH
379/**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
611c92a0 382 * @pi: integer used for iteration
fa1b54e6 383 *
24acfb71 384 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
17116969 390 */
611c92a0
TH
391#define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 394 else
17116969 395
822d8405
TH
396/**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
822d8405
TH
399 * @pool: worker_pool to iterate workers of
400 *
1258fae7 401 * This must be called with wq_pool_attach_mutex.
822d8405
TH
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
da028469
LJ
406#define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
409 else
410
49e3cf44
TH
411/**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
76af4d93 415 *
24acfb71 416 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
49e3cf44
TH
422 */
423#define for_each_pwq(pwq, wq) \
49e9d1a9 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 425 lockdep_is_held(&(wq->mutex)))
f3421797 426
dc186ad7
TG
427#ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429static struct debug_obj_descr work_debug_descr;
430
99777288
SG
431static void *work_debug_hint(void *addr)
432{
433 return ((struct work_struct *) addr)->func;
434}
435
b9fdac7f
CD
436static bool work_is_static_object(void *addr)
437{
438 struct work_struct *work = addr;
439
440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441}
442
dc186ad7
TG
443/*
444 * fixup_init is called when:
445 * - an active object is initialized
446 */
02a982a6 447static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
448{
449 struct work_struct *work = addr;
450
451 switch (state) {
452 case ODEBUG_STATE_ACTIVE:
453 cancel_work_sync(work);
454 debug_object_init(work, &work_debug_descr);
02a982a6 455 return true;
dc186ad7 456 default:
02a982a6 457 return false;
dc186ad7
TG
458 }
459}
460
dc186ad7
TG
461/*
462 * fixup_free is called when:
463 * - an active object is freed
464 */
02a982a6 465static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
466{
467 struct work_struct *work = addr;
468
469 switch (state) {
470 case ODEBUG_STATE_ACTIVE:
471 cancel_work_sync(work);
472 debug_object_free(work, &work_debug_descr);
02a982a6 473 return true;
dc186ad7 474 default:
02a982a6 475 return false;
dc186ad7
TG
476 }
477}
478
479static struct debug_obj_descr work_debug_descr = {
480 .name = "work_struct",
99777288 481 .debug_hint = work_debug_hint,
b9fdac7f 482 .is_static_object = work_is_static_object,
dc186ad7 483 .fixup_init = work_fixup_init,
dc186ad7
TG
484 .fixup_free = work_fixup_free,
485};
486
487static inline void debug_work_activate(struct work_struct *work)
488{
489 debug_object_activate(work, &work_debug_descr);
490}
491
492static inline void debug_work_deactivate(struct work_struct *work)
493{
494 debug_object_deactivate(work, &work_debug_descr);
495}
496
497void __init_work(struct work_struct *work, int onstack)
498{
499 if (onstack)
500 debug_object_init_on_stack(work, &work_debug_descr);
501 else
502 debug_object_init(work, &work_debug_descr);
503}
504EXPORT_SYMBOL_GPL(__init_work);
505
506void destroy_work_on_stack(struct work_struct *work)
507{
508 debug_object_free(work, &work_debug_descr);
509}
510EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511
ea2e64f2
TG
512void destroy_delayed_work_on_stack(struct delayed_work *work)
513{
514 destroy_timer_on_stack(&work->timer);
515 debug_object_free(&work->work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518
dc186ad7
TG
519#else
520static inline void debug_work_activate(struct work_struct *work) { }
521static inline void debug_work_deactivate(struct work_struct *work) { }
522#endif
523
4e8b22bd
LB
524/**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
9daf9e67
TH
531static int worker_pool_assign_id(struct worker_pool *pool)
532{
533 int ret;
534
68e13a67 535 lockdep_assert_held(&wq_pool_mutex);
5bcab335 536
4e8b22bd
LB
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
229641a6 539 if (ret >= 0) {
e68035fb 540 pool->id = ret;
229641a6
TH
541 return 0;
542 }
fa1b54e6 543 return ret;
7c3eed5c
TH
544}
545
df2d5ae4
TH
546/**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
24acfb71 551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 552 * read locked.
df2d5ae4
TH
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
555 *
556 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
557 */
558static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 int node)
560{
5b95e1af 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
562
563 /*
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
568 */
569 if (unlikely(node == NUMA_NO_NODE))
570 return wq->dfl_pwq;
571
df2d5ae4
TH
572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573}
574
73f53c4a
TH
575static unsigned int work_color_to_flags(int color)
576{
577 return color << WORK_STRUCT_COLOR_SHIFT;
578}
579
580static int get_work_color(struct work_struct *work)
581{
582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
584}
585
586static int work_next_color(int color)
587{
588 return (color + 1) % WORK_NR_COLORS;
589}
1da177e4 590
14441960 591/*
112202d9
TH
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 594 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 595 *
112202d9
TH
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
7a22ad75 600 *
112202d9 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 602 * corresponding to a work. Pool is available once the work has been
112202d9 603 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 604 * available only while the work item is queued.
7a22ad75 605 *
bbb68dfa
TH
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
14441960 610 */
7a22ad75
TH
611static inline void set_work_data(struct work_struct *work, unsigned long data,
612 unsigned long flags)
365970a1 613{
6183c009 614 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
615 atomic_long_set(&work->data, data | flags | work_static(work));
616}
365970a1 617
112202d9 618static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
619 unsigned long extra_flags)
620{
112202d9
TH
621 set_work_data(work, (unsigned long)pwq,
622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
623}
624
4468a00f
LJ
625static void set_work_pool_and_keep_pending(struct work_struct *work,
626 int pool_id)
627{
628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 WORK_STRUCT_PENDING);
630}
631
7c3eed5c
TH
632static void set_work_pool_and_clear_pending(struct work_struct *work,
633 int pool_id)
7a22ad75 634{
23657bb1
TH
635 /*
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
639 * owner.
640 */
641 smp_wmb();
7c3eed5c 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
643 /*
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
8bdc6201 647 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
648 * the same @work. E.g. consider this case:
649 *
650 * CPU#0 CPU#1
651 * ---------------------------- --------------------------------
652 *
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
658 * 6 smp_mb()
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
661 * }
662 *
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
670 */
671 smp_mb();
7a22ad75 672}
f756d5e2 673
7a22ad75 674static void clear_work_data(struct work_struct *work)
1da177e4 675{
7c3eed5c
TH
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
678}
679
112202d9 680static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 681{
e120153d 682 unsigned long data = atomic_long_read(&work->data);
7a22ad75 683
112202d9 684 if (data & WORK_STRUCT_PWQ)
e120153d
TH
685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 else
687 return NULL;
4d707b9f
ON
688}
689
7c3eed5c
TH
690/**
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
693 *
68e13a67 694 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
695 * access under RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
697 *
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
d185af30
YB
702 *
703 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
704 */
705static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 706{
e120153d 707 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 708 int pool_id;
7a22ad75 709
68e13a67 710 assert_rcu_or_pool_mutex();
fa1b54e6 711
112202d9
TH
712 if (data & WORK_STRUCT_PWQ)
713 return ((struct pool_workqueue *)
7c3eed5c 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 715
7c3eed5c
TH
716 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
718 return NULL;
719
fa1b54e6 720 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
721}
722
723/**
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
726 *
d185af30 727 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
728 * %WORK_OFFQ_POOL_NONE if none.
729 */
730static int get_work_pool_id(struct work_struct *work)
731{
54d5b7d0
LJ
732 unsigned long data = atomic_long_read(&work->data);
733
112202d9
TH
734 if (data & WORK_STRUCT_PWQ)
735 return ((struct pool_workqueue *)
54d5b7d0 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 737
54d5b7d0 738 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
739}
740
bbb68dfa
TH
741static void mark_work_canceling(struct work_struct *work)
742{
7c3eed5c 743 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 744
7c3eed5c
TH
745 pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
747}
748
749static bool work_is_canceling(struct work_struct *work)
750{
751 unsigned long data = atomic_long_read(&work->data);
752
112202d9 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
754}
755
e22bee78 756/*
3270476a
TH
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 759 * they're being called with pool->lock held.
e22bee78
TH
760 */
761
63d95a91 762static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 763{
e19e397a 764 return !atomic_read(&pool->nr_running);
a848e3b6
ON
765}
766
4594bf15 767/*
e22bee78
TH
768 * Need to wake up a worker? Called from anything but currently
769 * running workers.
974271c4
TH
770 *
771 * Note that, because unbound workers never contribute to nr_running, this
706026c2 772 * function will always return %true for unbound pools as long as the
974271c4 773 * worklist isn't empty.
4594bf15 774 */
63d95a91 775static bool need_more_worker(struct worker_pool *pool)
365970a1 776{
63d95a91 777 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 778}
4594bf15 779
e22bee78 780/* Can I start working? Called from busy but !running workers. */
63d95a91 781static bool may_start_working(struct worker_pool *pool)
e22bee78 782{
63d95a91 783 return pool->nr_idle;
e22bee78
TH
784}
785
786/* Do I need to keep working? Called from currently running workers. */
63d95a91 787static bool keep_working(struct worker_pool *pool)
e22bee78 788{
e19e397a
TH
789 return !list_empty(&pool->worklist) &&
790 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
791}
792
793/* Do we need a new worker? Called from manager. */
63d95a91 794static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 795{
63d95a91 796 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 797}
365970a1 798
e22bee78 799/* Do we have too many workers and should some go away? */
63d95a91 800static bool too_many_workers(struct worker_pool *pool)
e22bee78 801{
692b4825 802 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
805
806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
807}
808
4d707b9f 809/*
e22bee78
TH
810 * Wake up functions.
811 */
812
1037de36
LJ
813/* Return the first idle worker. Safe with preemption disabled */
814static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 815{
63d95a91 816 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
817 return NULL;
818
63d95a91 819 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
820}
821
822/**
823 * wake_up_worker - wake up an idle worker
63d95a91 824 * @pool: worker pool to wake worker from
7e11629d 825 *
63d95a91 826 * Wake up the first idle worker of @pool.
7e11629d
TH
827 *
828 * CONTEXT:
d565ed63 829 * spin_lock_irq(pool->lock).
7e11629d 830 */
63d95a91 831static void wake_up_worker(struct worker_pool *pool)
7e11629d 832{
1037de36 833 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
834
835 if (likely(worker))
836 wake_up_process(worker->task);
837}
838
d302f017 839/**
6d25be57 840 * wq_worker_running - a worker is running again
e22bee78 841 * @task: task waking up
e22bee78 842 *
6d25be57 843 * This function is called when a worker returns from schedule()
e22bee78 844 */
6d25be57 845void wq_worker_running(struct task_struct *task)
e22bee78
TH
846{
847 struct worker *worker = kthread_data(task);
848
6d25be57
TG
849 if (!worker->sleeping)
850 return;
851 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 852 atomic_inc(&worker->pool->nr_running);
6d25be57 853 worker->sleeping = 0;
e22bee78
TH
854}
855
856/**
857 * wq_worker_sleeping - a worker is going to sleep
858 * @task: task going to sleep
e22bee78 859 *
6d25be57
TG
860 * This function is called from schedule() when a busy worker is
861 * going to sleep.
e22bee78 862 */
6d25be57 863void wq_worker_sleeping(struct task_struct *task)
e22bee78 864{
6d25be57 865 struct worker *next, *worker = kthread_data(task);
111c225a 866 struct worker_pool *pool;
e22bee78 867
111c225a
TH
868 /*
869 * Rescuers, which may not have all the fields set up like normal
870 * workers, also reach here, let's not access anything before
871 * checking NOT_RUNNING.
872 */
2d64672e 873 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 874 return;
e22bee78 875
111c225a 876 pool = worker->pool;
111c225a 877
6d25be57
TG
878 if (WARN_ON_ONCE(worker->sleeping))
879 return;
880
881 worker->sleeping = 1;
882 spin_lock_irq(&pool->lock);
e22bee78
TH
883
884 /*
885 * The counterpart of the following dec_and_test, implied mb,
886 * worklist not empty test sequence is in insert_work().
887 * Please read comment there.
888 *
628c78e7
TH
889 * NOT_RUNNING is clear. This means that we're bound to and
890 * running on the local cpu w/ rq lock held and preemption
891 * disabled, which in turn means that none else could be
d565ed63 892 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 893 * lock is safe.
e22bee78 894 */
e19e397a 895 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
896 !list_empty(&pool->worklist)) {
897 next = first_idle_worker(pool);
898 if (next)
899 wake_up_process(next->task);
900 }
901 spin_unlock_irq(&pool->lock);
e22bee78
TH
902}
903
1b69ac6b
JW
904/**
905 * wq_worker_last_func - retrieve worker's last work function
8194fe94 906 * @task: Task to retrieve last work function of.
1b69ac6b
JW
907 *
908 * Determine the last function a worker executed. This is called from
909 * the scheduler to get a worker's last known identity.
910 *
911 * CONTEXT:
912 * spin_lock_irq(rq->lock)
913 *
4b047002
JW
914 * This function is called during schedule() when a kworker is going
915 * to sleep. It's used by psi to identify aggregation workers during
916 * dequeuing, to allow periodic aggregation to shut-off when that
917 * worker is the last task in the system or cgroup to go to sleep.
918 *
919 * As this function doesn't involve any workqueue-related locking, it
920 * only returns stable values when called from inside the scheduler's
921 * queuing and dequeuing paths, when @task, which must be a kworker,
922 * is guaranteed to not be processing any works.
923 *
1b69ac6b
JW
924 * Return:
925 * The last work function %current executed as a worker, NULL if it
926 * hasn't executed any work yet.
927 */
928work_func_t wq_worker_last_func(struct task_struct *task)
929{
930 struct worker *worker = kthread_data(task);
931
932 return worker->last_func;
933}
934
e22bee78
TH
935/**
936 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 937 * @worker: self
d302f017 938 * @flags: flags to set
d302f017 939 *
228f1d00 940 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 941 *
cb444766 942 * CONTEXT:
d565ed63 943 * spin_lock_irq(pool->lock)
d302f017 944 */
228f1d00 945static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 946{
bd7bdd43 947 struct worker_pool *pool = worker->pool;
e22bee78 948
cb444766
TH
949 WARN_ON_ONCE(worker->task != current);
950
228f1d00 951 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
952 if ((flags & WORKER_NOT_RUNNING) &&
953 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 954 atomic_dec(&pool->nr_running);
e22bee78
TH
955 }
956
d302f017
TH
957 worker->flags |= flags;
958}
959
960/**
e22bee78 961 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 962 * @worker: self
d302f017
TH
963 * @flags: flags to clear
964 *
e22bee78 965 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 966 *
cb444766 967 * CONTEXT:
d565ed63 968 * spin_lock_irq(pool->lock)
d302f017
TH
969 */
970static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
971{
63d95a91 972 struct worker_pool *pool = worker->pool;
e22bee78
TH
973 unsigned int oflags = worker->flags;
974
cb444766
TH
975 WARN_ON_ONCE(worker->task != current);
976
d302f017 977 worker->flags &= ~flags;
e22bee78 978
42c025f3
TH
979 /*
980 * If transitioning out of NOT_RUNNING, increment nr_running. Note
981 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
982 * of multiple flags, not a single flag.
983 */
e22bee78
TH
984 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
985 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 986 atomic_inc(&pool->nr_running);
d302f017
TH
987}
988
8cca0eea
TH
989/**
990 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 991 * @pool: pool of interest
8cca0eea
TH
992 * @work: work to find worker for
993 *
c9e7cf27
TH
994 * Find a worker which is executing @work on @pool by searching
995 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
996 * to match, its current execution should match the address of @work and
997 * its work function. This is to avoid unwanted dependency between
998 * unrelated work executions through a work item being recycled while still
999 * being executed.
1000 *
1001 * This is a bit tricky. A work item may be freed once its execution
1002 * starts and nothing prevents the freed area from being recycled for
1003 * another work item. If the same work item address ends up being reused
1004 * before the original execution finishes, workqueue will identify the
1005 * recycled work item as currently executing and make it wait until the
1006 * current execution finishes, introducing an unwanted dependency.
1007 *
c5aa87bb
TH
1008 * This function checks the work item address and work function to avoid
1009 * false positives. Note that this isn't complete as one may construct a
1010 * work function which can introduce dependency onto itself through a
1011 * recycled work item. Well, if somebody wants to shoot oneself in the
1012 * foot that badly, there's only so much we can do, and if such deadlock
1013 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1014 *
1015 * CONTEXT:
d565ed63 1016 * spin_lock_irq(pool->lock).
8cca0eea 1017 *
d185af30
YB
1018 * Return:
1019 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1020 * otherwise.
4d707b9f 1021 */
c9e7cf27 1022static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1023 struct work_struct *work)
4d707b9f 1024{
42f8570f 1025 struct worker *worker;
42f8570f 1026
b67bfe0d 1027 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1028 (unsigned long)work)
1029 if (worker->current_work == work &&
1030 worker->current_func == work->func)
42f8570f
SL
1031 return worker;
1032
1033 return NULL;
4d707b9f
ON
1034}
1035
bf4ede01
TH
1036/**
1037 * move_linked_works - move linked works to a list
1038 * @work: start of series of works to be scheduled
1039 * @head: target list to append @work to
402dd89d 1040 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1041 *
1042 * Schedule linked works starting from @work to @head. Work series to
1043 * be scheduled starts at @work and includes any consecutive work with
1044 * WORK_STRUCT_LINKED set in its predecessor.
1045 *
1046 * If @nextp is not NULL, it's updated to point to the next work of
1047 * the last scheduled work. This allows move_linked_works() to be
1048 * nested inside outer list_for_each_entry_safe().
1049 *
1050 * CONTEXT:
d565ed63 1051 * spin_lock_irq(pool->lock).
bf4ede01
TH
1052 */
1053static void move_linked_works(struct work_struct *work, struct list_head *head,
1054 struct work_struct **nextp)
1055{
1056 struct work_struct *n;
1057
1058 /*
1059 * Linked worklist will always end before the end of the list,
1060 * use NULL for list head.
1061 */
1062 list_for_each_entry_safe_from(work, n, NULL, entry) {
1063 list_move_tail(&work->entry, head);
1064 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1065 break;
1066 }
1067
1068 /*
1069 * If we're already inside safe list traversal and have moved
1070 * multiple works to the scheduled queue, the next position
1071 * needs to be updated.
1072 */
1073 if (nextp)
1074 *nextp = n;
1075}
1076
8864b4e5
TH
1077/**
1078 * get_pwq - get an extra reference on the specified pool_workqueue
1079 * @pwq: pool_workqueue to get
1080 *
1081 * Obtain an extra reference on @pwq. The caller should guarantee that
1082 * @pwq has positive refcnt and be holding the matching pool->lock.
1083 */
1084static void get_pwq(struct pool_workqueue *pwq)
1085{
1086 lockdep_assert_held(&pwq->pool->lock);
1087 WARN_ON_ONCE(pwq->refcnt <= 0);
1088 pwq->refcnt++;
1089}
1090
1091/**
1092 * put_pwq - put a pool_workqueue reference
1093 * @pwq: pool_workqueue to put
1094 *
1095 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1096 * destruction. The caller should be holding the matching pool->lock.
1097 */
1098static void put_pwq(struct pool_workqueue *pwq)
1099{
1100 lockdep_assert_held(&pwq->pool->lock);
1101 if (likely(--pwq->refcnt))
1102 return;
1103 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1104 return;
1105 /*
1106 * @pwq can't be released under pool->lock, bounce to
1107 * pwq_unbound_release_workfn(). This never recurses on the same
1108 * pool->lock as this path is taken only for unbound workqueues and
1109 * the release work item is scheduled on a per-cpu workqueue. To
1110 * avoid lockdep warning, unbound pool->locks are given lockdep
1111 * subclass of 1 in get_unbound_pool().
1112 */
1113 schedule_work(&pwq->unbound_release_work);
1114}
1115
dce90d47
TH
1116/**
1117 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1118 * @pwq: pool_workqueue to put (can be %NULL)
1119 *
1120 * put_pwq() with locking. This function also allows %NULL @pwq.
1121 */
1122static void put_pwq_unlocked(struct pool_workqueue *pwq)
1123{
1124 if (pwq) {
1125 /*
24acfb71 1126 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1127 * following lock operations are safe.
1128 */
1129 spin_lock_irq(&pwq->pool->lock);
1130 put_pwq(pwq);
1131 spin_unlock_irq(&pwq->pool->lock);
1132 }
1133}
1134
112202d9 1135static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1136{
112202d9 1137 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1138
1139 trace_workqueue_activate_work(work);
82607adc
TH
1140 if (list_empty(&pwq->pool->worklist))
1141 pwq->pool->watchdog_ts = jiffies;
112202d9 1142 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1143 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1144 pwq->nr_active++;
bf4ede01
TH
1145}
1146
112202d9 1147static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1148{
112202d9 1149 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1150 struct work_struct, entry);
1151
112202d9 1152 pwq_activate_delayed_work(work);
3aa62497
LJ
1153}
1154
bf4ede01 1155/**
112202d9
TH
1156 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1157 * @pwq: pwq of interest
bf4ede01 1158 * @color: color of work which left the queue
bf4ede01
TH
1159 *
1160 * A work either has completed or is removed from pending queue,
112202d9 1161 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1162 *
1163 * CONTEXT:
d565ed63 1164 * spin_lock_irq(pool->lock).
bf4ede01 1165 */
112202d9 1166static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1167{
8864b4e5 1168 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1169 if (color == WORK_NO_COLOR)
8864b4e5 1170 goto out_put;
bf4ede01 1171
112202d9 1172 pwq->nr_in_flight[color]--;
bf4ede01 1173
112202d9
TH
1174 pwq->nr_active--;
1175 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1176 /* one down, submit a delayed one */
112202d9
TH
1177 if (pwq->nr_active < pwq->max_active)
1178 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1179 }
1180
1181 /* is flush in progress and are we at the flushing tip? */
112202d9 1182 if (likely(pwq->flush_color != color))
8864b4e5 1183 goto out_put;
bf4ede01
TH
1184
1185 /* are there still in-flight works? */
112202d9 1186 if (pwq->nr_in_flight[color])
8864b4e5 1187 goto out_put;
bf4ede01 1188
112202d9
TH
1189 /* this pwq is done, clear flush_color */
1190 pwq->flush_color = -1;
bf4ede01
TH
1191
1192 /*
112202d9 1193 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1194 * will handle the rest.
1195 */
112202d9
TH
1196 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1197 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1198out_put:
1199 put_pwq(pwq);
bf4ede01
TH
1200}
1201
36e227d2 1202/**
bbb68dfa 1203 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1204 * @work: work item to steal
1205 * @is_dwork: @work is a delayed_work
bbb68dfa 1206 * @flags: place to store irq state
36e227d2
TH
1207 *
1208 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1209 * stable state - idle, on timer or on worklist.
36e227d2 1210 *
d185af30 1211 * Return:
36e227d2
TH
1212 * 1 if @work was pending and we successfully stole PENDING
1213 * 0 if @work was idle and we claimed PENDING
1214 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1215 * -ENOENT if someone else is canceling @work, this state may persist
1216 * for arbitrarily long
36e227d2 1217 *
d185af30 1218 * Note:
bbb68dfa 1219 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1220 * interrupted while holding PENDING and @work off queue, irq must be
1221 * disabled on entry. This, combined with delayed_work->timer being
1222 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1223 *
1224 * On successful return, >= 0, irq is disabled and the caller is
1225 * responsible for releasing it using local_irq_restore(*@flags).
1226 *
e0aecdd8 1227 * This function is safe to call from any context including IRQ handler.
bf4ede01 1228 */
bbb68dfa
TH
1229static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1230 unsigned long *flags)
bf4ede01 1231{
d565ed63 1232 struct worker_pool *pool;
112202d9 1233 struct pool_workqueue *pwq;
bf4ede01 1234
bbb68dfa
TH
1235 local_irq_save(*flags);
1236
36e227d2
TH
1237 /* try to steal the timer if it exists */
1238 if (is_dwork) {
1239 struct delayed_work *dwork = to_delayed_work(work);
1240
e0aecdd8
TH
1241 /*
1242 * dwork->timer is irqsafe. If del_timer() fails, it's
1243 * guaranteed that the timer is not queued anywhere and not
1244 * running on the local CPU.
1245 */
36e227d2
TH
1246 if (likely(del_timer(&dwork->timer)))
1247 return 1;
1248 }
1249
1250 /* try to claim PENDING the normal way */
bf4ede01
TH
1251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1252 return 0;
1253
24acfb71 1254 rcu_read_lock();
bf4ede01
TH
1255 /*
1256 * The queueing is in progress, or it is already queued. Try to
1257 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258 */
d565ed63
TH
1259 pool = get_work_pool(work);
1260 if (!pool)
bbb68dfa 1261 goto fail;
bf4ede01 1262
d565ed63 1263 spin_lock(&pool->lock);
0b3dae68 1264 /*
112202d9
TH
1265 * work->data is guaranteed to point to pwq only while the work
1266 * item is queued on pwq->wq, and both updating work->data to point
1267 * to pwq on queueing and to pool on dequeueing are done under
1268 * pwq->pool->lock. This in turn guarantees that, if work->data
1269 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1270 * item is currently queued on that pool.
1271 */
112202d9
TH
1272 pwq = get_work_pwq(work);
1273 if (pwq && pwq->pool == pool) {
16062836
TH
1274 debug_work_deactivate(work);
1275
1276 /*
1277 * A delayed work item cannot be grabbed directly because
1278 * it might have linked NO_COLOR work items which, if left
112202d9 1279 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1280 * management later on and cause stall. Make sure the work
1281 * item is activated before grabbing.
1282 */
1283 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1284 pwq_activate_delayed_work(work);
16062836
TH
1285
1286 list_del_init(&work->entry);
9c34a704 1287 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1288
112202d9 1289 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1290 set_work_pool_and_keep_pending(work, pool->id);
1291
1292 spin_unlock(&pool->lock);
24acfb71 1293 rcu_read_unlock();
16062836 1294 return 1;
bf4ede01 1295 }
d565ed63 1296 spin_unlock(&pool->lock);
bbb68dfa 1297fail:
24acfb71 1298 rcu_read_unlock();
bbb68dfa
TH
1299 local_irq_restore(*flags);
1300 if (work_is_canceling(work))
1301 return -ENOENT;
1302 cpu_relax();
36e227d2 1303 return -EAGAIN;
bf4ede01
TH
1304}
1305
4690c4ab 1306/**
706026c2 1307 * insert_work - insert a work into a pool
112202d9 1308 * @pwq: pwq @work belongs to
4690c4ab
TH
1309 * @work: work to insert
1310 * @head: insertion point
1311 * @extra_flags: extra WORK_STRUCT_* flags to set
1312 *
112202d9 1313 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1314 * work_struct flags.
4690c4ab
TH
1315 *
1316 * CONTEXT:
d565ed63 1317 * spin_lock_irq(pool->lock).
4690c4ab 1318 */
112202d9
TH
1319static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1320 struct list_head *head, unsigned int extra_flags)
b89deed3 1321{
112202d9 1322 struct worker_pool *pool = pwq->pool;
e22bee78 1323
4690c4ab 1324 /* we own @work, set data and link */
112202d9 1325 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1326 list_add_tail(&work->entry, head);
8864b4e5 1327 get_pwq(pwq);
e22bee78
TH
1328
1329 /*
c5aa87bb
TH
1330 * Ensure either wq_worker_sleeping() sees the above
1331 * list_add_tail() or we see zero nr_running to avoid workers lying
1332 * around lazily while there are works to be processed.
e22bee78
TH
1333 */
1334 smp_mb();
1335
63d95a91
TH
1336 if (__need_more_worker(pool))
1337 wake_up_worker(pool);
b89deed3
ON
1338}
1339
c8efcc25
TH
1340/*
1341 * Test whether @work is being queued from another work executing on the
8d03ecfe 1342 * same workqueue.
c8efcc25
TH
1343 */
1344static bool is_chained_work(struct workqueue_struct *wq)
1345{
8d03ecfe
TH
1346 struct worker *worker;
1347
1348 worker = current_wq_worker();
1349 /*
bf393fd4 1350 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1351 * I'm @worker, it's safe to dereference it without locking.
1352 */
112202d9 1353 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1354}
1355
ef557180
MG
1356/*
1357 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1358 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1359 * avoid perturbing sensitive tasks.
1360 */
1361static int wq_select_unbound_cpu(int cpu)
1362{
f303fccb 1363 static bool printed_dbg_warning;
ef557180
MG
1364 int new_cpu;
1365
f303fccb
TH
1366 if (likely(!wq_debug_force_rr_cpu)) {
1367 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1368 return cpu;
1369 } else if (!printed_dbg_warning) {
1370 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1371 printed_dbg_warning = true;
1372 }
1373
ef557180
MG
1374 if (cpumask_empty(wq_unbound_cpumask))
1375 return cpu;
1376
1377 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1378 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1379 if (unlikely(new_cpu >= nr_cpu_ids)) {
1380 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1381 if (unlikely(new_cpu >= nr_cpu_ids))
1382 return cpu;
1383 }
1384 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1385
1386 return new_cpu;
1387}
1388
d84ff051 1389static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1390 struct work_struct *work)
1391{
112202d9 1392 struct pool_workqueue *pwq;
c9178087 1393 struct worker_pool *last_pool;
1e19ffc6 1394 struct list_head *worklist;
8a2e8e5d 1395 unsigned int work_flags;
b75cac93 1396 unsigned int req_cpu = cpu;
8930caba
TH
1397
1398 /*
1399 * While a work item is PENDING && off queue, a task trying to
1400 * steal the PENDING will busy-loop waiting for it to either get
1401 * queued or lose PENDING. Grabbing PENDING and queueing should
1402 * happen with IRQ disabled.
1403 */
8e8eb730 1404 lockdep_assert_irqs_disabled();
1da177e4 1405
dc186ad7 1406 debug_work_activate(work);
1e19ffc6 1407
9ef28a73 1408 /* if draining, only works from the same workqueue are allowed */
618b01eb 1409 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1410 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1411 return;
24acfb71 1412 rcu_read_lock();
9e8cd2f5 1413retry:
df2d5ae4 1414 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1415 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1416
c9178087 1417 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1418 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1419 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1420 else
1421 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1422
c9178087
TH
1423 /*
1424 * If @work was previously on a different pool, it might still be
1425 * running there, in which case the work needs to be queued on that
1426 * pool to guarantee non-reentrancy.
1427 */
1428 last_pool = get_work_pool(work);
1429 if (last_pool && last_pool != pwq->pool) {
1430 struct worker *worker;
18aa9eff 1431
c9178087 1432 spin_lock(&last_pool->lock);
18aa9eff 1433
c9178087 1434 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1435
c9178087
TH
1436 if (worker && worker->current_pwq->wq == wq) {
1437 pwq = worker->current_pwq;
8930caba 1438 } else {
c9178087
TH
1439 /* meh... not running there, queue here */
1440 spin_unlock(&last_pool->lock);
112202d9 1441 spin_lock(&pwq->pool->lock);
8930caba 1442 }
f3421797 1443 } else {
112202d9 1444 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1445 }
1446
9e8cd2f5
TH
1447 /*
1448 * pwq is determined and locked. For unbound pools, we could have
1449 * raced with pwq release and it could already be dead. If its
1450 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1451 * without another pwq replacing it in the numa_pwq_tbl or while
1452 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1453 * make forward-progress.
1454 */
1455 if (unlikely(!pwq->refcnt)) {
1456 if (wq->flags & WQ_UNBOUND) {
1457 spin_unlock(&pwq->pool->lock);
1458 cpu_relax();
1459 goto retry;
1460 }
1461 /* oops */
1462 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1463 wq->name, cpu);
1464 }
1465
112202d9
TH
1466 /* pwq determined, queue */
1467 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1468
24acfb71
TG
1469 if (WARN_ON(!list_empty(&work->entry)))
1470 goto out;
1e19ffc6 1471
112202d9
TH
1472 pwq->nr_in_flight[pwq->work_color]++;
1473 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1474
112202d9 1475 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1476 trace_workqueue_activate_work(work);
112202d9
TH
1477 pwq->nr_active++;
1478 worklist = &pwq->pool->worklist;
82607adc
TH
1479 if (list_empty(worklist))
1480 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1481 } else {
1482 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1483 worklist = &pwq->delayed_works;
8a2e8e5d 1484 }
1e19ffc6 1485
112202d9 1486 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1487
24acfb71 1488out:
112202d9 1489 spin_unlock(&pwq->pool->lock);
24acfb71 1490 rcu_read_unlock();
1da177e4
LT
1491}
1492
0fcb78c2 1493/**
c1a220e7
ZR
1494 * queue_work_on - queue work on specific cpu
1495 * @cpu: CPU number to execute work on
0fcb78c2
REB
1496 * @wq: workqueue to use
1497 * @work: work to queue
1498 *
c1a220e7
ZR
1499 * We queue the work to a specific CPU, the caller must ensure it
1500 * can't go away.
d185af30
YB
1501 *
1502 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1503 */
d4283e93
TH
1504bool queue_work_on(int cpu, struct workqueue_struct *wq,
1505 struct work_struct *work)
1da177e4 1506{
d4283e93 1507 bool ret = false;
8930caba 1508 unsigned long flags;
ef1ca236 1509
8930caba 1510 local_irq_save(flags);
c1a220e7 1511
22df02bb 1512 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1513 __queue_work(cpu, wq, work);
d4283e93 1514 ret = true;
c1a220e7 1515 }
ef1ca236 1516
8930caba 1517 local_irq_restore(flags);
1da177e4
LT
1518 return ret;
1519}
ad7b1f84 1520EXPORT_SYMBOL(queue_work_on);
1da177e4 1521
8204e0c1
AD
1522/**
1523 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1524 * @node: NUMA node ID that we want to select a CPU from
1525 *
1526 * This function will attempt to find a "random" cpu available on a given
1527 * node. If there are no CPUs available on the given node it will return
1528 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1529 * available CPU if we need to schedule this work.
1530 */
1531static int workqueue_select_cpu_near(int node)
1532{
1533 int cpu;
1534
1535 /* No point in doing this if NUMA isn't enabled for workqueues */
1536 if (!wq_numa_enabled)
1537 return WORK_CPU_UNBOUND;
1538
1539 /* Delay binding to CPU if node is not valid or online */
1540 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1541 return WORK_CPU_UNBOUND;
1542
1543 /* Use local node/cpu if we are already there */
1544 cpu = raw_smp_processor_id();
1545 if (node == cpu_to_node(cpu))
1546 return cpu;
1547
1548 /* Use "random" otherwise know as "first" online CPU of node */
1549 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1550
1551 /* If CPU is valid return that, otherwise just defer */
1552 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1553}
1554
1555/**
1556 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1557 * @node: NUMA node that we are targeting the work for
1558 * @wq: workqueue to use
1559 * @work: work to queue
1560 *
1561 * We queue the work to a "random" CPU within a given NUMA node. The basic
1562 * idea here is to provide a way to somehow associate work with a given
1563 * NUMA node.
1564 *
1565 * This function will only make a best effort attempt at getting this onto
1566 * the right NUMA node. If no node is requested or the requested node is
1567 * offline then we just fall back to standard queue_work behavior.
1568 *
1569 * Currently the "random" CPU ends up being the first available CPU in the
1570 * intersection of cpu_online_mask and the cpumask of the node, unless we
1571 * are running on the node. In that case we just use the current CPU.
1572 *
1573 * Return: %false if @work was already on a queue, %true otherwise.
1574 */
1575bool queue_work_node(int node, struct workqueue_struct *wq,
1576 struct work_struct *work)
1577{
1578 unsigned long flags;
1579 bool ret = false;
1580
1581 /*
1582 * This current implementation is specific to unbound workqueues.
1583 * Specifically we only return the first available CPU for a given
1584 * node instead of cycling through individual CPUs within the node.
1585 *
1586 * If this is used with a per-cpu workqueue then the logic in
1587 * workqueue_select_cpu_near would need to be updated to allow for
1588 * some round robin type logic.
1589 */
1590 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1591
1592 local_irq_save(flags);
1593
1594 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1595 int cpu = workqueue_select_cpu_near(node);
1596
1597 __queue_work(cpu, wq, work);
1598 ret = true;
1599 }
1600
1601 local_irq_restore(flags);
1602 return ret;
1603}
1604EXPORT_SYMBOL_GPL(queue_work_node);
1605
8c20feb6 1606void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1607{
8c20feb6 1608 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1609
e0aecdd8 1610 /* should have been called from irqsafe timer with irq already off */
60c057bc 1611 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1612}
1438ade5 1613EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1614
7beb2edf
TH
1615static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1616 struct delayed_work *dwork, unsigned long delay)
1da177e4 1617{
7beb2edf
TH
1618 struct timer_list *timer = &dwork->timer;
1619 struct work_struct *work = &dwork->work;
7beb2edf 1620
637fdbae 1621 WARN_ON_ONCE(!wq);
841b86f3 1622 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1623 WARN_ON_ONCE(timer_pending(timer));
1624 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1625
8852aac2
TH
1626 /*
1627 * If @delay is 0, queue @dwork->work immediately. This is for
1628 * both optimization and correctness. The earliest @timer can
1629 * expire is on the closest next tick and delayed_work users depend
1630 * on that there's no such delay when @delay is 0.
1631 */
1632 if (!delay) {
1633 __queue_work(cpu, wq, &dwork->work);
1634 return;
1635 }
1636
60c057bc 1637 dwork->wq = wq;
1265057f 1638 dwork->cpu = cpu;
7beb2edf
TH
1639 timer->expires = jiffies + delay;
1640
041bd12e
TH
1641 if (unlikely(cpu != WORK_CPU_UNBOUND))
1642 add_timer_on(timer, cpu);
1643 else
1644 add_timer(timer);
1da177e4
LT
1645}
1646
0fcb78c2
REB
1647/**
1648 * queue_delayed_work_on - queue work on specific CPU after delay
1649 * @cpu: CPU number to execute work on
1650 * @wq: workqueue to use
af9997e4 1651 * @dwork: work to queue
0fcb78c2
REB
1652 * @delay: number of jiffies to wait before queueing
1653 *
d185af30 1654 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1655 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1656 * execution.
0fcb78c2 1657 */
d4283e93
TH
1658bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1659 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1660{
52bad64d 1661 struct work_struct *work = &dwork->work;
d4283e93 1662 bool ret = false;
8930caba 1663 unsigned long flags;
7a6bc1cd 1664
8930caba
TH
1665 /* read the comment in __queue_work() */
1666 local_irq_save(flags);
7a6bc1cd 1667
22df02bb 1668 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1669 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1670 ret = true;
7a6bc1cd 1671 }
8a3e77cc 1672
8930caba 1673 local_irq_restore(flags);
7a6bc1cd
VP
1674 return ret;
1675}
ad7b1f84 1676EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1677
8376fe22
TH
1678/**
1679 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1680 * @cpu: CPU number to execute work on
1681 * @wq: workqueue to use
1682 * @dwork: work to queue
1683 * @delay: number of jiffies to wait before queueing
1684 *
1685 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1686 * modify @dwork's timer so that it expires after @delay. If @delay is
1687 * zero, @work is guaranteed to be scheduled immediately regardless of its
1688 * current state.
1689 *
d185af30 1690 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1691 * pending and its timer was modified.
1692 *
e0aecdd8 1693 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1694 * See try_to_grab_pending() for details.
1695 */
1696bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1697 struct delayed_work *dwork, unsigned long delay)
1698{
1699 unsigned long flags;
1700 int ret;
c7fc77f7 1701
8376fe22
TH
1702 do {
1703 ret = try_to_grab_pending(&dwork->work, true, &flags);
1704 } while (unlikely(ret == -EAGAIN));
63bc0362 1705
8376fe22
TH
1706 if (likely(ret >= 0)) {
1707 __queue_delayed_work(cpu, wq, dwork, delay);
1708 local_irq_restore(flags);
7a6bc1cd 1709 }
8376fe22
TH
1710
1711 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1712 return ret;
1713}
8376fe22
TH
1714EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1715
05f0fe6b
TH
1716static void rcu_work_rcufn(struct rcu_head *rcu)
1717{
1718 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1719
1720 /* read the comment in __queue_work() */
1721 local_irq_disable();
1722 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1723 local_irq_enable();
1724}
1725
1726/**
1727 * queue_rcu_work - queue work after a RCU grace period
1728 * @wq: workqueue to use
1729 * @rwork: work to queue
1730 *
1731 * Return: %false if @rwork was already pending, %true otherwise. Note
1732 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1733 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1734 * execution may happen before a full RCU grace period has passed.
1735 */
1736bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1737{
1738 struct work_struct *work = &rwork->work;
1739
1740 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1741 rwork->wq = wq;
1742 call_rcu(&rwork->rcu, rcu_work_rcufn);
1743 return true;
1744 }
1745
1746 return false;
1747}
1748EXPORT_SYMBOL(queue_rcu_work);
1749
c8e55f36
TH
1750/**
1751 * worker_enter_idle - enter idle state
1752 * @worker: worker which is entering idle state
1753 *
1754 * @worker is entering idle state. Update stats and idle timer if
1755 * necessary.
1756 *
1757 * LOCKING:
d565ed63 1758 * spin_lock_irq(pool->lock).
c8e55f36
TH
1759 */
1760static void worker_enter_idle(struct worker *worker)
1da177e4 1761{
bd7bdd43 1762 struct worker_pool *pool = worker->pool;
c8e55f36 1763
6183c009
TH
1764 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1765 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1766 (worker->hentry.next || worker->hentry.pprev)))
1767 return;
c8e55f36 1768
051e1850 1769 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1770 worker->flags |= WORKER_IDLE;
bd7bdd43 1771 pool->nr_idle++;
e22bee78 1772 worker->last_active = jiffies;
c8e55f36
TH
1773
1774 /* idle_list is LIFO */
bd7bdd43 1775 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1776
628c78e7
TH
1777 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1778 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1779
544ecf31 1780 /*
e8b3f8db 1781 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1782 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1783 * nr_running, the warning may trigger spuriously. Check iff
1784 * unbind is not in progress.
544ecf31 1785 */
24647570 1786 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1787 pool->nr_workers == pool->nr_idle &&
e19e397a 1788 atomic_read(&pool->nr_running));
c8e55f36
TH
1789}
1790
1791/**
1792 * worker_leave_idle - leave idle state
1793 * @worker: worker which is leaving idle state
1794 *
1795 * @worker is leaving idle state. Update stats.
1796 *
1797 * LOCKING:
d565ed63 1798 * spin_lock_irq(pool->lock).
c8e55f36
TH
1799 */
1800static void worker_leave_idle(struct worker *worker)
1801{
bd7bdd43 1802 struct worker_pool *pool = worker->pool;
c8e55f36 1803
6183c009
TH
1804 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1805 return;
d302f017 1806 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1807 pool->nr_idle--;
c8e55f36
TH
1808 list_del_init(&worker->entry);
1809}
1810
f7537df5 1811static struct worker *alloc_worker(int node)
c34056a3
TH
1812{
1813 struct worker *worker;
1814
f7537df5 1815 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1816 if (worker) {
1817 INIT_LIST_HEAD(&worker->entry);
affee4b2 1818 INIT_LIST_HEAD(&worker->scheduled);
da028469 1819 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1820 /* on creation a worker is in !idle && prep state */
1821 worker->flags = WORKER_PREP;
c8e55f36 1822 }
c34056a3
TH
1823 return worker;
1824}
1825
4736cbf7
LJ
1826/**
1827 * worker_attach_to_pool() - attach a worker to a pool
1828 * @worker: worker to be attached
1829 * @pool: the target pool
1830 *
1831 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1832 * cpu-binding of @worker are kept coordinated with the pool across
1833 * cpu-[un]hotplugs.
1834 */
1835static void worker_attach_to_pool(struct worker *worker,
1836 struct worker_pool *pool)
1837{
1258fae7 1838 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1839
1840 /*
1841 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1842 * online CPUs. It'll be re-applied when any of the CPUs come up.
1843 */
1844 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1845
1846 /*
1258fae7
TH
1847 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1848 * stable across this function. See the comments above the flag
1849 * definition for details.
4736cbf7
LJ
1850 */
1851 if (pool->flags & POOL_DISASSOCIATED)
1852 worker->flags |= WORKER_UNBOUND;
1853
1854 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1855 worker->pool = pool;
4736cbf7 1856
1258fae7 1857 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1858}
1859
60f5a4bc
LJ
1860/**
1861 * worker_detach_from_pool() - detach a worker from its pool
1862 * @worker: worker which is attached to its pool
60f5a4bc 1863 *
4736cbf7
LJ
1864 * Undo the attaching which had been done in worker_attach_to_pool(). The
1865 * caller worker shouldn't access to the pool after detached except it has
1866 * other reference to the pool.
60f5a4bc 1867 */
a2d812a2 1868static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1869{
a2d812a2 1870 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1871 struct completion *detach_completion = NULL;
1872
1258fae7 1873 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1874
da028469 1875 list_del(&worker->node);
a2d812a2
TH
1876 worker->pool = NULL;
1877
da028469 1878 if (list_empty(&pool->workers))
60f5a4bc 1879 detach_completion = pool->detach_completion;
1258fae7 1880 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1881
b62c0751
LJ
1882 /* clear leftover flags without pool->lock after it is detached */
1883 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1884
60f5a4bc
LJ
1885 if (detach_completion)
1886 complete(detach_completion);
1887}
1888
c34056a3
TH
1889/**
1890 * create_worker - create a new workqueue worker
63d95a91 1891 * @pool: pool the new worker will belong to
c34056a3 1892 *
051e1850 1893 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1894 *
1895 * CONTEXT:
1896 * Might sleep. Does GFP_KERNEL allocations.
1897 *
d185af30 1898 * Return:
c34056a3
TH
1899 * Pointer to the newly created worker.
1900 */
bc2ae0f5 1901static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1902{
c34056a3 1903 struct worker *worker = NULL;
f3421797 1904 int id = -1;
e3c916a4 1905 char id_buf[16];
c34056a3 1906
7cda9aae
LJ
1907 /* ID is needed to determine kthread name */
1908 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1909 if (id < 0)
1910 goto fail;
c34056a3 1911
f7537df5 1912 worker = alloc_worker(pool->node);
c34056a3
TH
1913 if (!worker)
1914 goto fail;
1915
c34056a3
TH
1916 worker->id = id;
1917
29c91e99 1918 if (pool->cpu >= 0)
e3c916a4
TH
1919 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1920 pool->attrs->nice < 0 ? "H" : "");
f3421797 1921 else
e3c916a4
TH
1922 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1923
f3f90ad4 1924 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1925 "kworker/%s", id_buf);
c34056a3
TH
1926 if (IS_ERR(worker->task))
1927 goto fail;
1928
91151228 1929 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1930 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1931
da028469 1932 /* successful, attach the worker to the pool */
4736cbf7 1933 worker_attach_to_pool(worker, pool);
822d8405 1934
051e1850
LJ
1935 /* start the newly created worker */
1936 spin_lock_irq(&pool->lock);
1937 worker->pool->nr_workers++;
1938 worker_enter_idle(worker);
1939 wake_up_process(worker->task);
1940 spin_unlock_irq(&pool->lock);
1941
c34056a3 1942 return worker;
822d8405 1943
c34056a3 1944fail:
9625ab17 1945 if (id >= 0)
7cda9aae 1946 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1947 kfree(worker);
1948 return NULL;
1949}
1950
c34056a3
TH
1951/**
1952 * destroy_worker - destroy a workqueue worker
1953 * @worker: worker to be destroyed
1954 *
73eb7fe7
LJ
1955 * Destroy @worker and adjust @pool stats accordingly. The worker should
1956 * be idle.
c8e55f36
TH
1957 *
1958 * CONTEXT:
60f5a4bc 1959 * spin_lock_irq(pool->lock).
c34056a3
TH
1960 */
1961static void destroy_worker(struct worker *worker)
1962{
bd7bdd43 1963 struct worker_pool *pool = worker->pool;
c34056a3 1964
cd549687
TH
1965 lockdep_assert_held(&pool->lock);
1966
c34056a3 1967 /* sanity check frenzy */
6183c009 1968 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1969 WARN_ON(!list_empty(&worker->scheduled)) ||
1970 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1971 return;
c34056a3 1972
73eb7fe7
LJ
1973 pool->nr_workers--;
1974 pool->nr_idle--;
5bdfff96 1975
c8e55f36 1976 list_del_init(&worker->entry);
cb444766 1977 worker->flags |= WORKER_DIE;
60f5a4bc 1978 wake_up_process(worker->task);
c34056a3
TH
1979}
1980
32a6c723 1981static void idle_worker_timeout(struct timer_list *t)
e22bee78 1982{
32a6c723 1983 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1984
d565ed63 1985 spin_lock_irq(&pool->lock);
e22bee78 1986
3347fc9f 1987 while (too_many_workers(pool)) {
e22bee78
TH
1988 struct worker *worker;
1989 unsigned long expires;
1990
1991 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1992 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1993 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1994
3347fc9f 1995 if (time_before(jiffies, expires)) {
63d95a91 1996 mod_timer(&pool->idle_timer, expires);
3347fc9f 1997 break;
d5abe669 1998 }
3347fc9f
LJ
1999
2000 destroy_worker(worker);
e22bee78
TH
2001 }
2002
d565ed63 2003 spin_unlock_irq(&pool->lock);
e22bee78 2004}
d5abe669 2005
493a1724 2006static void send_mayday(struct work_struct *work)
e22bee78 2007{
112202d9
TH
2008 struct pool_workqueue *pwq = get_work_pwq(work);
2009 struct workqueue_struct *wq = pwq->wq;
493a1724 2010
2e109a28 2011 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2012
493008a8 2013 if (!wq->rescuer)
493a1724 2014 return;
e22bee78
TH
2015
2016 /* mayday mayday mayday */
493a1724 2017 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2018 /*
2019 * If @pwq is for an unbound wq, its base ref may be put at
2020 * any time due to an attribute change. Pin @pwq until the
2021 * rescuer is done with it.
2022 */
2023 get_pwq(pwq);
493a1724 2024 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2025 wake_up_process(wq->rescuer->task);
493a1724 2026 }
e22bee78
TH
2027}
2028
32a6c723 2029static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2030{
32a6c723 2031 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2032 struct work_struct *work;
2033
b2d82909
TH
2034 spin_lock_irq(&pool->lock);
2035 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2036
63d95a91 2037 if (need_to_create_worker(pool)) {
e22bee78
TH
2038 /*
2039 * We've been trying to create a new worker but
2040 * haven't been successful. We might be hitting an
2041 * allocation deadlock. Send distress signals to
2042 * rescuers.
2043 */
63d95a91 2044 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2045 send_mayday(work);
1da177e4 2046 }
e22bee78 2047
b2d82909
TH
2048 spin_unlock(&wq_mayday_lock);
2049 spin_unlock_irq(&pool->lock);
e22bee78 2050
63d95a91 2051 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2052}
2053
e22bee78
TH
2054/**
2055 * maybe_create_worker - create a new worker if necessary
63d95a91 2056 * @pool: pool to create a new worker for
e22bee78 2057 *
63d95a91 2058 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2059 * have at least one idle worker on return from this function. If
2060 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2061 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2062 * possible allocation deadlock.
2063 *
c5aa87bb
TH
2064 * On return, need_to_create_worker() is guaranteed to be %false and
2065 * may_start_working() %true.
e22bee78
TH
2066 *
2067 * LOCKING:
d565ed63 2068 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2069 * multiple times. Does GFP_KERNEL allocations. Called only from
2070 * manager.
e22bee78 2071 */
29187a9e 2072static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2073__releases(&pool->lock)
2074__acquires(&pool->lock)
1da177e4 2075{
e22bee78 2076restart:
d565ed63 2077 spin_unlock_irq(&pool->lock);
9f9c2364 2078
e22bee78 2079 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2080 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2081
2082 while (true) {
051e1850 2083 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2084 break;
1da177e4 2085
e212f361 2086 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2087
63d95a91 2088 if (!need_to_create_worker(pool))
e22bee78
TH
2089 break;
2090 }
2091
63d95a91 2092 del_timer_sync(&pool->mayday_timer);
d565ed63 2093 spin_lock_irq(&pool->lock);
051e1850
LJ
2094 /*
2095 * This is necessary even after a new worker was just successfully
2096 * created as @pool->lock was dropped and the new worker might have
2097 * already become busy.
2098 */
63d95a91 2099 if (need_to_create_worker(pool))
e22bee78 2100 goto restart;
e22bee78
TH
2101}
2102
73f53c4a 2103/**
e22bee78
TH
2104 * manage_workers - manage worker pool
2105 * @worker: self
73f53c4a 2106 *
706026c2 2107 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2108 * to. At any given time, there can be only zero or one manager per
706026c2 2109 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2110 *
2111 * The caller can safely start processing works on false return. On
2112 * true return, it's guaranteed that need_to_create_worker() is false
2113 * and may_start_working() is true.
73f53c4a
TH
2114 *
2115 * CONTEXT:
d565ed63 2116 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2117 * multiple times. Does GFP_KERNEL allocations.
2118 *
d185af30 2119 * Return:
29187a9e
TH
2120 * %false if the pool doesn't need management and the caller can safely
2121 * start processing works, %true if management function was performed and
2122 * the conditions that the caller verified before calling the function may
2123 * no longer be true.
73f53c4a 2124 */
e22bee78 2125static bool manage_workers(struct worker *worker)
73f53c4a 2126{
63d95a91 2127 struct worker_pool *pool = worker->pool;
73f53c4a 2128
692b4825 2129 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2130 return false;
692b4825
TH
2131
2132 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2133 pool->manager = worker;
1e19ffc6 2134
29187a9e 2135 maybe_create_worker(pool);
e22bee78 2136
2607d7a6 2137 pool->manager = NULL;
692b4825
TH
2138 pool->flags &= ~POOL_MANAGER_ACTIVE;
2139 wake_up(&wq_manager_wait);
29187a9e 2140 return true;
73f53c4a
TH
2141}
2142
a62428c0
TH
2143/**
2144 * process_one_work - process single work
c34056a3 2145 * @worker: self
a62428c0
TH
2146 * @work: work to process
2147 *
2148 * Process @work. This function contains all the logics necessary to
2149 * process a single work including synchronization against and
2150 * interaction with other workers on the same cpu, queueing and
2151 * flushing. As long as context requirement is met, any worker can
2152 * call this function to process a work.
2153 *
2154 * CONTEXT:
d565ed63 2155 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2156 */
c34056a3 2157static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2158__releases(&pool->lock)
2159__acquires(&pool->lock)
a62428c0 2160{
112202d9 2161 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2162 struct worker_pool *pool = worker->pool;
112202d9 2163 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2164 int work_color;
7e11629d 2165 struct worker *collision;
a62428c0
TH
2166#ifdef CONFIG_LOCKDEP
2167 /*
2168 * It is permissible to free the struct work_struct from
2169 * inside the function that is called from it, this we need to
2170 * take into account for lockdep too. To avoid bogus "held
2171 * lock freed" warnings as well as problems when looking into
2172 * work->lockdep_map, make a copy and use that here.
2173 */
4d82a1de
PZ
2174 struct lockdep_map lockdep_map;
2175
2176 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2177#endif
807407c0 2178 /* ensure we're on the correct CPU */
85327af6 2179 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2180 raw_smp_processor_id() != pool->cpu);
25511a47 2181
7e11629d
TH
2182 /*
2183 * A single work shouldn't be executed concurrently by
2184 * multiple workers on a single cpu. Check whether anyone is
2185 * already processing the work. If so, defer the work to the
2186 * currently executing one.
2187 */
c9e7cf27 2188 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2189 if (unlikely(collision)) {
2190 move_linked_works(work, &collision->scheduled, NULL);
2191 return;
2192 }
2193
8930caba 2194 /* claim and dequeue */
a62428c0 2195 debug_work_deactivate(work);
c9e7cf27 2196 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2197 worker->current_work = work;
a2c1c57b 2198 worker->current_func = work->func;
112202d9 2199 worker->current_pwq = pwq;
73f53c4a 2200 work_color = get_work_color(work);
7a22ad75 2201
8bf89593
TH
2202 /*
2203 * Record wq name for cmdline and debug reporting, may get
2204 * overridden through set_worker_desc().
2205 */
2206 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2207
a62428c0
TH
2208 list_del_init(&work->entry);
2209
fb0e7beb 2210 /*
228f1d00
LJ
2211 * CPU intensive works don't participate in concurrency management.
2212 * They're the scheduler's responsibility. This takes @worker out
2213 * of concurrency management and the next code block will chain
2214 * execution of the pending work items.
fb0e7beb
TH
2215 */
2216 if (unlikely(cpu_intensive))
228f1d00 2217 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2218
974271c4 2219 /*
a489a03e
LJ
2220 * Wake up another worker if necessary. The condition is always
2221 * false for normal per-cpu workers since nr_running would always
2222 * be >= 1 at this point. This is used to chain execution of the
2223 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2224 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2225 */
a489a03e 2226 if (need_more_worker(pool))
63d95a91 2227 wake_up_worker(pool);
974271c4 2228
8930caba 2229 /*
7c3eed5c 2230 * Record the last pool and clear PENDING which should be the last
d565ed63 2231 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2232 * PENDING and queued state changes happen together while IRQ is
2233 * disabled.
8930caba 2234 */
7c3eed5c 2235 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2236
d565ed63 2237 spin_unlock_irq(&pool->lock);
a62428c0 2238
a1d14934 2239 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2240 lock_map_acquire(&lockdep_map);
e6f3faa7 2241 /*
f52be570
PZ
2242 * Strictly speaking we should mark the invariant state without holding
2243 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2244 *
2245 * However, that would result in:
2246 *
2247 * A(W1)
2248 * WFC(C)
2249 * A(W1)
2250 * C(C)
2251 *
2252 * Which would create W1->C->W1 dependencies, even though there is no
2253 * actual deadlock possible. There are two solutions, using a
2254 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2255 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2256 * these locks.
2257 *
2258 * AFAICT there is no possible deadlock scenario between the
2259 * flush_work() and complete() primitives (except for single-threaded
2260 * workqueues), so hiding them isn't a problem.
2261 */
f52be570 2262 lockdep_invariant_state(true);
e36c886a 2263 trace_workqueue_execute_start(work);
a2c1c57b 2264 worker->current_func(work);
e36c886a
AV
2265 /*
2266 * While we must be careful to not use "work" after this, the trace
2267 * point will only record its address.
2268 */
1c5da0ec 2269 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2270 lock_map_release(&lockdep_map);
112202d9 2271 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2272
2273 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2274 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2275 " last function: %ps\n",
a2c1c57b
TH
2276 current->comm, preempt_count(), task_pid_nr(current),
2277 worker->current_func);
a62428c0
TH
2278 debug_show_held_locks(current);
2279 dump_stack();
2280 }
2281
b22ce278 2282 /*
025f50f3 2283 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2284 * kernels, where a requeueing work item waiting for something to
2285 * happen could deadlock with stop_machine as such work item could
2286 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2287 * stop_machine. At the same time, report a quiescent RCU state so
2288 * the same condition doesn't freeze RCU.
b22ce278 2289 */
a7e6425e 2290 cond_resched();
b22ce278 2291
d565ed63 2292 spin_lock_irq(&pool->lock);
a62428c0 2293
fb0e7beb
TH
2294 /* clear cpu intensive status */
2295 if (unlikely(cpu_intensive))
2296 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2297
1b69ac6b
JW
2298 /* tag the worker for identification in schedule() */
2299 worker->last_func = worker->current_func;
2300
a62428c0 2301 /* we're done with it, release */
42f8570f 2302 hash_del(&worker->hentry);
c34056a3 2303 worker->current_work = NULL;
a2c1c57b 2304 worker->current_func = NULL;
112202d9
TH
2305 worker->current_pwq = NULL;
2306 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2307}
2308
affee4b2
TH
2309/**
2310 * process_scheduled_works - process scheduled works
2311 * @worker: self
2312 *
2313 * Process all scheduled works. Please note that the scheduled list
2314 * may change while processing a work, so this function repeatedly
2315 * fetches a work from the top and executes it.
2316 *
2317 * CONTEXT:
d565ed63 2318 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2319 * multiple times.
2320 */
2321static void process_scheduled_works(struct worker *worker)
1da177e4 2322{
affee4b2
TH
2323 while (!list_empty(&worker->scheduled)) {
2324 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2325 struct work_struct, entry);
c34056a3 2326 process_one_work(worker, work);
1da177e4 2327 }
1da177e4
LT
2328}
2329
197f6acc
TH
2330static void set_pf_worker(bool val)
2331{
2332 mutex_lock(&wq_pool_attach_mutex);
2333 if (val)
2334 current->flags |= PF_WQ_WORKER;
2335 else
2336 current->flags &= ~PF_WQ_WORKER;
2337 mutex_unlock(&wq_pool_attach_mutex);
2338}
2339
4690c4ab
TH
2340/**
2341 * worker_thread - the worker thread function
c34056a3 2342 * @__worker: self
4690c4ab 2343 *
c5aa87bb
TH
2344 * The worker thread function. All workers belong to a worker_pool -
2345 * either a per-cpu one or dynamic unbound one. These workers process all
2346 * work items regardless of their specific target workqueue. The only
2347 * exception is work items which belong to workqueues with a rescuer which
2348 * will be explained in rescuer_thread().
d185af30
YB
2349 *
2350 * Return: 0
4690c4ab 2351 */
c34056a3 2352static int worker_thread(void *__worker)
1da177e4 2353{
c34056a3 2354 struct worker *worker = __worker;
bd7bdd43 2355 struct worker_pool *pool = worker->pool;
1da177e4 2356
e22bee78 2357 /* tell the scheduler that this is a workqueue worker */
197f6acc 2358 set_pf_worker(true);
c8e55f36 2359woke_up:
d565ed63 2360 spin_lock_irq(&pool->lock);
1da177e4 2361
a9ab775b
TH
2362 /* am I supposed to die? */
2363 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2364 spin_unlock_irq(&pool->lock);
a9ab775b 2365 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2366 set_pf_worker(false);
60f5a4bc
LJ
2367
2368 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2369 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2370 worker_detach_from_pool(worker);
60f5a4bc 2371 kfree(worker);
a9ab775b 2372 return 0;
c8e55f36 2373 }
affee4b2 2374
c8e55f36 2375 worker_leave_idle(worker);
db7bccf4 2376recheck:
e22bee78 2377 /* no more worker necessary? */
63d95a91 2378 if (!need_more_worker(pool))
e22bee78
TH
2379 goto sleep;
2380
2381 /* do we need to manage? */
63d95a91 2382 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2383 goto recheck;
2384
c8e55f36
TH
2385 /*
2386 * ->scheduled list can only be filled while a worker is
2387 * preparing to process a work or actually processing it.
2388 * Make sure nobody diddled with it while I was sleeping.
2389 */
6183c009 2390 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2391
e22bee78 2392 /*
a9ab775b
TH
2393 * Finish PREP stage. We're guaranteed to have at least one idle
2394 * worker or that someone else has already assumed the manager
2395 * role. This is where @worker starts participating in concurrency
2396 * management if applicable and concurrency management is restored
2397 * after being rebound. See rebind_workers() for details.
e22bee78 2398 */
a9ab775b 2399 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2400
2401 do {
c8e55f36 2402 struct work_struct *work =
bd7bdd43 2403 list_first_entry(&pool->worklist,
c8e55f36
TH
2404 struct work_struct, entry);
2405
82607adc
TH
2406 pool->watchdog_ts = jiffies;
2407
c8e55f36
TH
2408 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2409 /* optimization path, not strictly necessary */
2410 process_one_work(worker, work);
2411 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2412 process_scheduled_works(worker);
c8e55f36
TH
2413 } else {
2414 move_linked_works(work, &worker->scheduled, NULL);
2415 process_scheduled_works(worker);
affee4b2 2416 }
63d95a91 2417 } while (keep_working(pool));
e22bee78 2418
228f1d00 2419 worker_set_flags(worker, WORKER_PREP);
d313dd85 2420sleep:
c8e55f36 2421 /*
d565ed63
TH
2422 * pool->lock is held and there's no work to process and no need to
2423 * manage, sleep. Workers are woken up only while holding
2424 * pool->lock or from local cpu, so setting the current state
2425 * before releasing pool->lock is enough to prevent losing any
2426 * event.
c8e55f36
TH
2427 */
2428 worker_enter_idle(worker);
c5a94a61 2429 __set_current_state(TASK_IDLE);
d565ed63 2430 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2431 schedule();
2432 goto woke_up;
1da177e4
LT
2433}
2434
e22bee78
TH
2435/**
2436 * rescuer_thread - the rescuer thread function
111c225a 2437 * @__rescuer: self
e22bee78
TH
2438 *
2439 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2440 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2441 *
706026c2 2442 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2443 * worker which uses GFP_KERNEL allocation which has slight chance of
2444 * developing into deadlock if some works currently on the same queue
2445 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2446 * the problem rescuer solves.
2447 *
706026c2
TH
2448 * When such condition is possible, the pool summons rescuers of all
2449 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2450 * those works so that forward progress can be guaranteed.
2451 *
2452 * This should happen rarely.
d185af30
YB
2453 *
2454 * Return: 0
e22bee78 2455 */
111c225a 2456static int rescuer_thread(void *__rescuer)
e22bee78 2457{
111c225a
TH
2458 struct worker *rescuer = __rescuer;
2459 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2460 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2461 bool should_stop;
e22bee78
TH
2462
2463 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2464
2465 /*
2466 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2467 * doesn't participate in concurrency management.
2468 */
197f6acc 2469 set_pf_worker(true);
e22bee78 2470repeat:
c5a94a61 2471 set_current_state(TASK_IDLE);
e22bee78 2472
4d595b86
LJ
2473 /*
2474 * By the time the rescuer is requested to stop, the workqueue
2475 * shouldn't have any work pending, but @wq->maydays may still have
2476 * pwq(s) queued. This can happen by non-rescuer workers consuming
2477 * all the work items before the rescuer got to them. Go through
2478 * @wq->maydays processing before acting on should_stop so that the
2479 * list is always empty on exit.
2480 */
2481 should_stop = kthread_should_stop();
e22bee78 2482
493a1724 2483 /* see whether any pwq is asking for help */
2e109a28 2484 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2485
2486 while (!list_empty(&wq->maydays)) {
2487 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2488 struct pool_workqueue, mayday_node);
112202d9 2489 struct worker_pool *pool = pwq->pool;
e22bee78 2490 struct work_struct *work, *n;
82607adc 2491 bool first = true;
e22bee78
TH
2492
2493 __set_current_state(TASK_RUNNING);
493a1724
TH
2494 list_del_init(&pwq->mayday_node);
2495
2e109a28 2496 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2497
51697d39
LJ
2498 worker_attach_to_pool(rescuer, pool);
2499
2500 spin_lock_irq(&pool->lock);
e22bee78
TH
2501
2502 /*
2503 * Slurp in all works issued via this workqueue and
2504 * process'em.
2505 */
0479c8c5 2506 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2507 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2508 if (get_work_pwq(work) == pwq) {
2509 if (first)
2510 pool->watchdog_ts = jiffies;
e22bee78 2511 move_linked_works(work, scheduled, &n);
82607adc
TH
2512 }
2513 first = false;
2514 }
e22bee78 2515
008847f6
N
2516 if (!list_empty(scheduled)) {
2517 process_scheduled_works(rescuer);
2518
2519 /*
2520 * The above execution of rescued work items could
2521 * have created more to rescue through
2522 * pwq_activate_first_delayed() or chained
2523 * queueing. Let's put @pwq back on mayday list so
2524 * that such back-to-back work items, which may be
2525 * being used to relieve memory pressure, don't
2526 * incur MAYDAY_INTERVAL delay inbetween.
2527 */
2528 if (need_to_create_worker(pool)) {
2529 spin_lock(&wq_mayday_lock);
e66b39af
TH
2530 /*
2531 * Queue iff we aren't racing destruction
2532 * and somebody else hasn't queued it already.
2533 */
2534 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2535 get_pwq(pwq);
2536 list_add_tail(&pwq->mayday_node, &wq->maydays);
2537 }
008847f6
N
2538 spin_unlock(&wq_mayday_lock);
2539 }
2540 }
7576958a 2541
77668c8b
LJ
2542 /*
2543 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2544 * go away while we're still attached to it.
77668c8b
LJ
2545 */
2546 put_pwq(pwq);
2547
7576958a 2548 /*
d8ca83e6 2549 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2550 * regular worker; otherwise, we end up with 0 concurrency
2551 * and stalling the execution.
2552 */
d8ca83e6 2553 if (need_more_worker(pool))
63d95a91 2554 wake_up_worker(pool);
7576958a 2555
13b1d625
LJ
2556 spin_unlock_irq(&pool->lock);
2557
a2d812a2 2558 worker_detach_from_pool(rescuer);
13b1d625
LJ
2559
2560 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2561 }
2562
2e109a28 2563 spin_unlock_irq(&wq_mayday_lock);
493a1724 2564
4d595b86
LJ
2565 if (should_stop) {
2566 __set_current_state(TASK_RUNNING);
197f6acc 2567 set_pf_worker(false);
4d595b86
LJ
2568 return 0;
2569 }
2570
111c225a
TH
2571 /* rescuers should never participate in concurrency management */
2572 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2573 schedule();
2574 goto repeat;
1da177e4
LT
2575}
2576
fca839c0
TH
2577/**
2578 * check_flush_dependency - check for flush dependency sanity
2579 * @target_wq: workqueue being flushed
2580 * @target_work: work item being flushed (NULL for workqueue flushes)
2581 *
2582 * %current is trying to flush the whole @target_wq or @target_work on it.
2583 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2584 * reclaiming memory or running on a workqueue which doesn't have
2585 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2586 * a deadlock.
2587 */
2588static void check_flush_dependency(struct workqueue_struct *target_wq,
2589 struct work_struct *target_work)
2590{
2591 work_func_t target_func = target_work ? target_work->func : NULL;
2592 struct worker *worker;
2593
2594 if (target_wq->flags & WQ_MEM_RECLAIM)
2595 return;
2596
2597 worker = current_wq_worker();
2598
2599 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2600 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2601 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2602 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2603 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2604 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2605 worker->current_pwq->wq->name, worker->current_func,
2606 target_wq->name, target_func);
2607}
2608
fc2e4d70
ON
2609struct wq_barrier {
2610 struct work_struct work;
2611 struct completion done;
2607d7a6 2612 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2613};
2614
2615static void wq_barrier_func(struct work_struct *work)
2616{
2617 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2618 complete(&barr->done);
2619}
2620
4690c4ab
TH
2621/**
2622 * insert_wq_barrier - insert a barrier work
112202d9 2623 * @pwq: pwq to insert barrier into
4690c4ab 2624 * @barr: wq_barrier to insert
affee4b2
TH
2625 * @target: target work to attach @barr to
2626 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2627 *
affee4b2
TH
2628 * @barr is linked to @target such that @barr is completed only after
2629 * @target finishes execution. Please note that the ordering
2630 * guarantee is observed only with respect to @target and on the local
2631 * cpu.
2632 *
2633 * Currently, a queued barrier can't be canceled. This is because
2634 * try_to_grab_pending() can't determine whether the work to be
2635 * grabbed is at the head of the queue and thus can't clear LINKED
2636 * flag of the previous work while there must be a valid next work
2637 * after a work with LINKED flag set.
2638 *
2639 * Note that when @worker is non-NULL, @target may be modified
112202d9 2640 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2641 *
2642 * CONTEXT:
d565ed63 2643 * spin_lock_irq(pool->lock).
4690c4ab 2644 */
112202d9 2645static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2646 struct wq_barrier *barr,
2647 struct work_struct *target, struct worker *worker)
fc2e4d70 2648{
affee4b2
TH
2649 struct list_head *head;
2650 unsigned int linked = 0;
2651
dc186ad7 2652 /*
d565ed63 2653 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2654 * as we know for sure that this will not trigger any of the
2655 * checks and call back into the fixup functions where we
2656 * might deadlock.
2657 */
ca1cab37 2658 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2659 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2660
fd1a5b04
BP
2661 init_completion_map(&barr->done, &target->lockdep_map);
2662
2607d7a6 2663 barr->task = current;
83c22520 2664
affee4b2
TH
2665 /*
2666 * If @target is currently being executed, schedule the
2667 * barrier to the worker; otherwise, put it after @target.
2668 */
2669 if (worker)
2670 head = worker->scheduled.next;
2671 else {
2672 unsigned long *bits = work_data_bits(target);
2673
2674 head = target->entry.next;
2675 /* there can already be other linked works, inherit and set */
2676 linked = *bits & WORK_STRUCT_LINKED;
2677 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2678 }
2679
dc186ad7 2680 debug_work_activate(&barr->work);
112202d9 2681 insert_work(pwq, &barr->work, head,
affee4b2 2682 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2683}
2684
73f53c4a 2685/**
112202d9 2686 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2687 * @wq: workqueue being flushed
2688 * @flush_color: new flush color, < 0 for no-op
2689 * @work_color: new work color, < 0 for no-op
2690 *
112202d9 2691 * Prepare pwqs for workqueue flushing.
73f53c4a 2692 *
112202d9
TH
2693 * If @flush_color is non-negative, flush_color on all pwqs should be
2694 * -1. If no pwq has in-flight commands at the specified color, all
2695 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2696 * has in flight commands, its pwq->flush_color is set to
2697 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2698 * wakeup logic is armed and %true is returned.
2699 *
2700 * The caller should have initialized @wq->first_flusher prior to
2701 * calling this function with non-negative @flush_color. If
2702 * @flush_color is negative, no flush color update is done and %false
2703 * is returned.
2704 *
112202d9 2705 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2706 * work_color which is previous to @work_color and all will be
2707 * advanced to @work_color.
2708 *
2709 * CONTEXT:
3c25a55d 2710 * mutex_lock(wq->mutex).
73f53c4a 2711 *
d185af30 2712 * Return:
73f53c4a
TH
2713 * %true if @flush_color >= 0 and there's something to flush. %false
2714 * otherwise.
2715 */
112202d9 2716static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2717 int flush_color, int work_color)
1da177e4 2718{
73f53c4a 2719 bool wait = false;
49e3cf44 2720 struct pool_workqueue *pwq;
1da177e4 2721
73f53c4a 2722 if (flush_color >= 0) {
6183c009 2723 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2724 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2725 }
2355b70f 2726
49e3cf44 2727 for_each_pwq(pwq, wq) {
112202d9 2728 struct worker_pool *pool = pwq->pool;
fc2e4d70 2729
b09f4fd3 2730 spin_lock_irq(&pool->lock);
83c22520 2731
73f53c4a 2732 if (flush_color >= 0) {
6183c009 2733 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2734
112202d9
TH
2735 if (pwq->nr_in_flight[flush_color]) {
2736 pwq->flush_color = flush_color;
2737 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2738 wait = true;
2739 }
2740 }
1da177e4 2741
73f53c4a 2742 if (work_color >= 0) {
6183c009 2743 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2744 pwq->work_color = work_color;
73f53c4a 2745 }
1da177e4 2746
b09f4fd3 2747 spin_unlock_irq(&pool->lock);
1da177e4 2748 }
2355b70f 2749
112202d9 2750 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2751 complete(&wq->first_flusher->done);
14441960 2752
73f53c4a 2753 return wait;
1da177e4
LT
2754}
2755
0fcb78c2 2756/**
1da177e4 2757 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2758 * @wq: workqueue to flush
1da177e4 2759 *
c5aa87bb
TH
2760 * This function sleeps until all work items which were queued on entry
2761 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2762 */
7ad5b3a5 2763void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2764{
73f53c4a
TH
2765 struct wq_flusher this_flusher = {
2766 .list = LIST_HEAD_INIT(this_flusher.list),
2767 .flush_color = -1,
fd1a5b04 2768 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2769 };
2770 int next_color;
1da177e4 2771
3347fa09
TH
2772 if (WARN_ON(!wq_online))
2773 return;
2774
87915adc
JB
2775 lock_map_acquire(&wq->lockdep_map);
2776 lock_map_release(&wq->lockdep_map);
2777
3c25a55d 2778 mutex_lock(&wq->mutex);
73f53c4a
TH
2779
2780 /*
2781 * Start-to-wait phase
2782 */
2783 next_color = work_next_color(wq->work_color);
2784
2785 if (next_color != wq->flush_color) {
2786 /*
2787 * Color space is not full. The current work_color
2788 * becomes our flush_color and work_color is advanced
2789 * by one.
2790 */
6183c009 2791 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2792 this_flusher.flush_color = wq->work_color;
2793 wq->work_color = next_color;
2794
2795 if (!wq->first_flusher) {
2796 /* no flush in progress, become the first flusher */
6183c009 2797 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2798
2799 wq->first_flusher = &this_flusher;
2800
112202d9 2801 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2802 wq->work_color)) {
2803 /* nothing to flush, done */
2804 wq->flush_color = next_color;
2805 wq->first_flusher = NULL;
2806 goto out_unlock;
2807 }
2808 } else {
2809 /* wait in queue */
6183c009 2810 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2811 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2812 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2813 }
2814 } else {
2815 /*
2816 * Oops, color space is full, wait on overflow queue.
2817 * The next flush completion will assign us
2818 * flush_color and transfer to flusher_queue.
2819 */
2820 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2821 }
2822
fca839c0
TH
2823 check_flush_dependency(wq, NULL);
2824
3c25a55d 2825 mutex_unlock(&wq->mutex);
73f53c4a
TH
2826
2827 wait_for_completion(&this_flusher.done);
2828
2829 /*
2830 * Wake-up-and-cascade phase
2831 *
2832 * First flushers are responsible for cascading flushes and
2833 * handling overflow. Non-first flushers can simply return.
2834 */
2835 if (wq->first_flusher != &this_flusher)
2836 return;
2837
3c25a55d 2838 mutex_lock(&wq->mutex);
73f53c4a 2839
4ce48b37
TH
2840 /* we might have raced, check again with mutex held */
2841 if (wq->first_flusher != &this_flusher)
2842 goto out_unlock;
2843
73f53c4a
TH
2844 wq->first_flusher = NULL;
2845
6183c009
TH
2846 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2847 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2848
2849 while (true) {
2850 struct wq_flusher *next, *tmp;
2851
2852 /* complete all the flushers sharing the current flush color */
2853 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2854 if (next->flush_color != wq->flush_color)
2855 break;
2856 list_del_init(&next->list);
2857 complete(&next->done);
2858 }
2859
6183c009
TH
2860 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2861 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2862
2863 /* this flush_color is finished, advance by one */
2864 wq->flush_color = work_next_color(wq->flush_color);
2865
2866 /* one color has been freed, handle overflow queue */
2867 if (!list_empty(&wq->flusher_overflow)) {
2868 /*
2869 * Assign the same color to all overflowed
2870 * flushers, advance work_color and append to
2871 * flusher_queue. This is the start-to-wait
2872 * phase for these overflowed flushers.
2873 */
2874 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2875 tmp->flush_color = wq->work_color;
2876
2877 wq->work_color = work_next_color(wq->work_color);
2878
2879 list_splice_tail_init(&wq->flusher_overflow,
2880 &wq->flusher_queue);
112202d9 2881 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2882 }
2883
2884 if (list_empty(&wq->flusher_queue)) {
6183c009 2885 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2886 break;
2887 }
2888
2889 /*
2890 * Need to flush more colors. Make the next flusher
112202d9 2891 * the new first flusher and arm pwqs.
73f53c4a 2892 */
6183c009
TH
2893 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2894 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2895
2896 list_del_init(&next->list);
2897 wq->first_flusher = next;
2898
112202d9 2899 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2900 break;
2901
2902 /*
2903 * Meh... this color is already done, clear first
2904 * flusher and repeat cascading.
2905 */
2906 wq->first_flusher = NULL;
2907 }
2908
2909out_unlock:
3c25a55d 2910 mutex_unlock(&wq->mutex);
1da177e4 2911}
1dadafa8 2912EXPORT_SYMBOL(flush_workqueue);
1da177e4 2913
9c5a2ba7
TH
2914/**
2915 * drain_workqueue - drain a workqueue
2916 * @wq: workqueue to drain
2917 *
2918 * Wait until the workqueue becomes empty. While draining is in progress,
2919 * only chain queueing is allowed. IOW, only currently pending or running
2920 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2921 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2922 * by the depth of chaining and should be relatively short. Whine if it
2923 * takes too long.
2924 */
2925void drain_workqueue(struct workqueue_struct *wq)
2926{
2927 unsigned int flush_cnt = 0;
49e3cf44 2928 struct pool_workqueue *pwq;
9c5a2ba7
TH
2929
2930 /*
2931 * __queue_work() needs to test whether there are drainers, is much
2932 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2933 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2934 */
87fc741e 2935 mutex_lock(&wq->mutex);
9c5a2ba7 2936 if (!wq->nr_drainers++)
618b01eb 2937 wq->flags |= __WQ_DRAINING;
87fc741e 2938 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2939reflush:
2940 flush_workqueue(wq);
2941
b09f4fd3 2942 mutex_lock(&wq->mutex);
76af4d93 2943
49e3cf44 2944 for_each_pwq(pwq, wq) {
fa2563e4 2945 bool drained;
9c5a2ba7 2946
b09f4fd3 2947 spin_lock_irq(&pwq->pool->lock);
112202d9 2948 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2949 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2950
2951 if (drained)
9c5a2ba7
TH
2952 continue;
2953
2954 if (++flush_cnt == 10 ||
2955 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2956 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2957 wq->name, flush_cnt);
76af4d93 2958
b09f4fd3 2959 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2960 goto reflush;
2961 }
2962
9c5a2ba7 2963 if (!--wq->nr_drainers)
618b01eb 2964 wq->flags &= ~__WQ_DRAINING;
87fc741e 2965 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2966}
2967EXPORT_SYMBOL_GPL(drain_workqueue);
2968
d6e89786
JB
2969static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2970 bool from_cancel)
db700897 2971{
affee4b2 2972 struct worker *worker = NULL;
c9e7cf27 2973 struct worker_pool *pool;
112202d9 2974 struct pool_workqueue *pwq;
db700897
ON
2975
2976 might_sleep();
fa1b54e6 2977
24acfb71 2978 rcu_read_lock();
c9e7cf27 2979 pool = get_work_pool(work);
fa1b54e6 2980 if (!pool) {
24acfb71 2981 rcu_read_unlock();
baf59022 2982 return false;
fa1b54e6 2983 }
db700897 2984
24acfb71 2985 spin_lock_irq(&pool->lock);
0b3dae68 2986 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2987 pwq = get_work_pwq(work);
2988 if (pwq) {
2989 if (unlikely(pwq->pool != pool))
4690c4ab 2990 goto already_gone;
606a5020 2991 } else {
c9e7cf27 2992 worker = find_worker_executing_work(pool, work);
affee4b2 2993 if (!worker)
4690c4ab 2994 goto already_gone;
112202d9 2995 pwq = worker->current_pwq;
606a5020 2996 }
db700897 2997
fca839c0
TH
2998 check_flush_dependency(pwq->wq, work);
2999
112202d9 3000 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3001 spin_unlock_irq(&pool->lock);
7a22ad75 3002
e159489b 3003 /*
a1d14934
PZ
3004 * Force a lock recursion deadlock when using flush_work() inside a
3005 * single-threaded or rescuer equipped workqueue.
3006 *
3007 * For single threaded workqueues the deadlock happens when the work
3008 * is after the work issuing the flush_work(). For rescuer equipped
3009 * workqueues the deadlock happens when the rescuer stalls, blocking
3010 * forward progress.
e159489b 3011 */
d6e89786
JB
3012 if (!from_cancel &&
3013 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3014 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3015 lock_map_release(&pwq->wq->lockdep_map);
3016 }
24acfb71 3017 rcu_read_unlock();
401a8d04 3018 return true;
4690c4ab 3019already_gone:
d565ed63 3020 spin_unlock_irq(&pool->lock);
24acfb71 3021 rcu_read_unlock();
401a8d04 3022 return false;
db700897 3023}
baf59022 3024
d6e89786
JB
3025static bool __flush_work(struct work_struct *work, bool from_cancel)
3026{
3027 struct wq_barrier barr;
3028
3029 if (WARN_ON(!wq_online))
3030 return false;
3031
4d43d395
TH
3032 if (WARN_ON(!work->func))
3033 return false;
3034
87915adc
JB
3035 if (!from_cancel) {
3036 lock_map_acquire(&work->lockdep_map);
3037 lock_map_release(&work->lockdep_map);
3038 }
3039
d6e89786
JB
3040 if (start_flush_work(work, &barr, from_cancel)) {
3041 wait_for_completion(&barr.done);
3042 destroy_work_on_stack(&barr.work);
3043 return true;
3044 } else {
3045 return false;
3046 }
3047}
3048
baf59022
TH
3049/**
3050 * flush_work - wait for a work to finish executing the last queueing instance
3051 * @work: the work to flush
3052 *
606a5020
TH
3053 * Wait until @work has finished execution. @work is guaranteed to be idle
3054 * on return if it hasn't been requeued since flush started.
baf59022 3055 *
d185af30 3056 * Return:
baf59022
TH
3057 * %true if flush_work() waited for the work to finish execution,
3058 * %false if it was already idle.
3059 */
3060bool flush_work(struct work_struct *work)
3061{
d6e89786 3062 return __flush_work(work, false);
6e84d644 3063}
606a5020 3064EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3065
8603e1b3 3066struct cwt_wait {
ac6424b9 3067 wait_queue_entry_t wait;
8603e1b3
TH
3068 struct work_struct *work;
3069};
3070
ac6424b9 3071static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3072{
3073 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3074
3075 if (cwait->work != key)
3076 return 0;
3077 return autoremove_wake_function(wait, mode, sync, key);
3078}
3079
36e227d2 3080static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3081{
8603e1b3 3082 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3083 unsigned long flags;
1f1f642e
ON
3084 int ret;
3085
3086 do {
bbb68dfa
TH
3087 ret = try_to_grab_pending(work, is_dwork, &flags);
3088 /*
8603e1b3
TH
3089 * If someone else is already canceling, wait for it to
3090 * finish. flush_work() doesn't work for PREEMPT_NONE
3091 * because we may get scheduled between @work's completion
3092 * and the other canceling task resuming and clearing
3093 * CANCELING - flush_work() will return false immediately
3094 * as @work is no longer busy, try_to_grab_pending() will
3095 * return -ENOENT as @work is still being canceled and the
3096 * other canceling task won't be able to clear CANCELING as
3097 * we're hogging the CPU.
3098 *
3099 * Let's wait for completion using a waitqueue. As this
3100 * may lead to the thundering herd problem, use a custom
3101 * wake function which matches @work along with exclusive
3102 * wait and wakeup.
bbb68dfa 3103 */
8603e1b3
TH
3104 if (unlikely(ret == -ENOENT)) {
3105 struct cwt_wait cwait;
3106
3107 init_wait(&cwait.wait);
3108 cwait.wait.func = cwt_wakefn;
3109 cwait.work = work;
3110
3111 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3112 TASK_UNINTERRUPTIBLE);
3113 if (work_is_canceling(work))
3114 schedule();
3115 finish_wait(&cancel_waitq, &cwait.wait);
3116 }
1f1f642e
ON
3117 } while (unlikely(ret < 0));
3118
bbb68dfa
TH
3119 /* tell other tasks trying to grab @work to back off */
3120 mark_work_canceling(work);
3121 local_irq_restore(flags);
3122
3347fa09
TH
3123 /*
3124 * This allows canceling during early boot. We know that @work
3125 * isn't executing.
3126 */
3127 if (wq_online)
d6e89786 3128 __flush_work(work, true);
3347fa09 3129
7a22ad75 3130 clear_work_data(work);
8603e1b3
TH
3131
3132 /*
3133 * Paired with prepare_to_wait() above so that either
3134 * waitqueue_active() is visible here or !work_is_canceling() is
3135 * visible there.
3136 */
3137 smp_mb();
3138 if (waitqueue_active(&cancel_waitq))
3139 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3140
1f1f642e
ON
3141 return ret;
3142}
3143
6e84d644 3144/**
401a8d04
TH
3145 * cancel_work_sync - cancel a work and wait for it to finish
3146 * @work: the work to cancel
6e84d644 3147 *
401a8d04
TH
3148 * Cancel @work and wait for its execution to finish. This function
3149 * can be used even if the work re-queues itself or migrates to
3150 * another workqueue. On return from this function, @work is
3151 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3152 *
401a8d04
TH
3153 * cancel_work_sync(&delayed_work->work) must not be used for
3154 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3155 *
401a8d04 3156 * The caller must ensure that the workqueue on which @work was last
6e84d644 3157 * queued can't be destroyed before this function returns.
401a8d04 3158 *
d185af30 3159 * Return:
401a8d04 3160 * %true if @work was pending, %false otherwise.
6e84d644 3161 */
401a8d04 3162bool cancel_work_sync(struct work_struct *work)
6e84d644 3163{
36e227d2 3164 return __cancel_work_timer(work, false);
b89deed3 3165}
28e53bdd 3166EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3167
6e84d644 3168/**
401a8d04
TH
3169 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3170 * @dwork: the delayed work to flush
6e84d644 3171 *
401a8d04
TH
3172 * Delayed timer is cancelled and the pending work is queued for
3173 * immediate execution. Like flush_work(), this function only
3174 * considers the last queueing instance of @dwork.
1f1f642e 3175 *
d185af30 3176 * Return:
401a8d04
TH
3177 * %true if flush_work() waited for the work to finish execution,
3178 * %false if it was already idle.
6e84d644 3179 */
401a8d04
TH
3180bool flush_delayed_work(struct delayed_work *dwork)
3181{
8930caba 3182 local_irq_disable();
401a8d04 3183 if (del_timer_sync(&dwork->timer))
60c057bc 3184 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3185 local_irq_enable();
401a8d04
TH
3186 return flush_work(&dwork->work);
3187}
3188EXPORT_SYMBOL(flush_delayed_work);
3189
05f0fe6b
TH
3190/**
3191 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3192 * @rwork: the rcu work to flush
3193 *
3194 * Return:
3195 * %true if flush_rcu_work() waited for the work to finish execution,
3196 * %false if it was already idle.
3197 */
3198bool flush_rcu_work(struct rcu_work *rwork)
3199{
3200 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3201 rcu_barrier();
3202 flush_work(&rwork->work);
3203 return true;
3204 } else {
3205 return flush_work(&rwork->work);
3206 }
3207}
3208EXPORT_SYMBOL(flush_rcu_work);
3209
f72b8792
JA
3210static bool __cancel_work(struct work_struct *work, bool is_dwork)
3211{
3212 unsigned long flags;
3213 int ret;
3214
3215 do {
3216 ret = try_to_grab_pending(work, is_dwork, &flags);
3217 } while (unlikely(ret == -EAGAIN));
3218
3219 if (unlikely(ret < 0))
3220 return false;
3221
3222 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3223 local_irq_restore(flags);
3224 return ret;
3225}
3226
09383498 3227/**
57b30ae7
TH
3228 * cancel_delayed_work - cancel a delayed work
3229 * @dwork: delayed_work to cancel
09383498 3230 *
d185af30
YB
3231 * Kill off a pending delayed_work.
3232 *
3233 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3234 * pending.
3235 *
3236 * Note:
3237 * The work callback function may still be running on return, unless
3238 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3239 * use cancel_delayed_work_sync() to wait on it.
09383498 3240 *
57b30ae7 3241 * This function is safe to call from any context including IRQ handler.
09383498 3242 */
57b30ae7 3243bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3244{
f72b8792 3245 return __cancel_work(&dwork->work, true);
09383498 3246}
57b30ae7 3247EXPORT_SYMBOL(cancel_delayed_work);
09383498 3248
401a8d04
TH
3249/**
3250 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3251 * @dwork: the delayed work cancel
3252 *
3253 * This is cancel_work_sync() for delayed works.
3254 *
d185af30 3255 * Return:
401a8d04
TH
3256 * %true if @dwork was pending, %false otherwise.
3257 */
3258bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3259{
36e227d2 3260 return __cancel_work_timer(&dwork->work, true);
6e84d644 3261}
f5a421a4 3262EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3263
b6136773 3264/**
31ddd871 3265 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3266 * @func: the function to call
b6136773 3267 *
31ddd871
TH
3268 * schedule_on_each_cpu() executes @func on each online CPU using the
3269 * system workqueue and blocks until all CPUs have completed.
b6136773 3270 * schedule_on_each_cpu() is very slow.
31ddd871 3271 *
d185af30 3272 * Return:
31ddd871 3273 * 0 on success, -errno on failure.
b6136773 3274 */
65f27f38 3275int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3276{
3277 int cpu;
38f51568 3278 struct work_struct __percpu *works;
15316ba8 3279
b6136773
AM
3280 works = alloc_percpu(struct work_struct);
3281 if (!works)
15316ba8 3282 return -ENOMEM;
b6136773 3283
93981800
TH
3284 get_online_cpus();
3285
15316ba8 3286 for_each_online_cpu(cpu) {
9bfb1839
IM
3287 struct work_struct *work = per_cpu_ptr(works, cpu);
3288
3289 INIT_WORK(work, func);
b71ab8c2 3290 schedule_work_on(cpu, work);
65a64464 3291 }
93981800
TH
3292
3293 for_each_online_cpu(cpu)
3294 flush_work(per_cpu_ptr(works, cpu));
3295
95402b38 3296 put_online_cpus();
b6136773 3297 free_percpu(works);
15316ba8
CL
3298 return 0;
3299}
3300
1fa44eca
JB
3301/**
3302 * execute_in_process_context - reliably execute the routine with user context
3303 * @fn: the function to execute
1fa44eca
JB
3304 * @ew: guaranteed storage for the execute work structure (must
3305 * be available when the work executes)
3306 *
3307 * Executes the function immediately if process context is available,
3308 * otherwise schedules the function for delayed execution.
3309 *
d185af30 3310 * Return: 0 - function was executed
1fa44eca
JB
3311 * 1 - function was scheduled for execution
3312 */
65f27f38 3313int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3314{
3315 if (!in_interrupt()) {
65f27f38 3316 fn(&ew->work);
1fa44eca
JB
3317 return 0;
3318 }
3319
65f27f38 3320 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3321 schedule_work(&ew->work);
3322
3323 return 1;
3324}
3325EXPORT_SYMBOL_GPL(execute_in_process_context);
3326
6ba94429
FW
3327/**
3328 * free_workqueue_attrs - free a workqueue_attrs
3329 * @attrs: workqueue_attrs to free
226223ab 3330 *
6ba94429 3331 * Undo alloc_workqueue_attrs().
226223ab 3332 */
513c98d0 3333void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3334{
6ba94429
FW
3335 if (attrs) {
3336 free_cpumask_var(attrs->cpumask);
3337 kfree(attrs);
3338 }
226223ab
TH
3339}
3340
6ba94429
FW
3341/**
3342 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3343 *
3344 * Allocate a new workqueue_attrs, initialize with default settings and
3345 * return it.
3346 *
3347 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3348 */
513c98d0 3349struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3350{
6ba94429 3351 struct workqueue_attrs *attrs;
226223ab 3352
be69d00d 3353 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3354 if (!attrs)
3355 goto fail;
be69d00d 3356 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3357 goto fail;
3358
3359 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3360 return attrs;
3361fail:
3362 free_workqueue_attrs(attrs);
3363 return NULL;
226223ab
TH
3364}
3365
6ba94429
FW
3366static void copy_workqueue_attrs(struct workqueue_attrs *to,
3367 const struct workqueue_attrs *from)
226223ab 3368{
6ba94429
FW
3369 to->nice = from->nice;
3370 cpumask_copy(to->cpumask, from->cpumask);
3371 /*
3372 * Unlike hash and equality test, this function doesn't ignore
3373 * ->no_numa as it is used for both pool and wq attrs. Instead,
3374 * get_unbound_pool() explicitly clears ->no_numa after copying.
3375 */
3376 to->no_numa = from->no_numa;
226223ab
TH
3377}
3378
6ba94429
FW
3379/* hash value of the content of @attr */
3380static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3381{
6ba94429 3382 u32 hash = 0;
226223ab 3383
6ba94429
FW
3384 hash = jhash_1word(attrs->nice, hash);
3385 hash = jhash(cpumask_bits(attrs->cpumask),
3386 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3387 return hash;
226223ab 3388}
226223ab 3389
6ba94429
FW
3390/* content equality test */
3391static bool wqattrs_equal(const struct workqueue_attrs *a,
3392 const struct workqueue_attrs *b)
226223ab 3393{
6ba94429
FW
3394 if (a->nice != b->nice)
3395 return false;
3396 if (!cpumask_equal(a->cpumask, b->cpumask))
3397 return false;
3398 return true;
226223ab
TH
3399}
3400
6ba94429
FW
3401/**
3402 * init_worker_pool - initialize a newly zalloc'd worker_pool
3403 * @pool: worker_pool to initialize
3404 *
402dd89d 3405 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3406 *
3407 * Return: 0 on success, -errno on failure. Even on failure, all fields
3408 * inside @pool proper are initialized and put_unbound_pool() can be called
3409 * on @pool safely to release it.
3410 */
3411static int init_worker_pool(struct worker_pool *pool)
226223ab 3412{
6ba94429
FW
3413 spin_lock_init(&pool->lock);
3414 pool->id = -1;
3415 pool->cpu = -1;
3416 pool->node = NUMA_NO_NODE;
3417 pool->flags |= POOL_DISASSOCIATED;
82607adc 3418 pool->watchdog_ts = jiffies;
6ba94429
FW
3419 INIT_LIST_HEAD(&pool->worklist);
3420 INIT_LIST_HEAD(&pool->idle_list);
3421 hash_init(pool->busy_hash);
226223ab 3422
32a6c723 3423 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3424
32a6c723 3425 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3426
6ba94429 3427 INIT_LIST_HEAD(&pool->workers);
226223ab 3428
6ba94429
FW
3429 ida_init(&pool->worker_ida);
3430 INIT_HLIST_NODE(&pool->hash_node);
3431 pool->refcnt = 1;
226223ab 3432
6ba94429 3433 /* shouldn't fail above this point */
be69d00d 3434 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3435 if (!pool->attrs)
3436 return -ENOMEM;
3437 return 0;
226223ab
TH
3438}
3439
669de8bd
BVA
3440#ifdef CONFIG_LOCKDEP
3441static void wq_init_lockdep(struct workqueue_struct *wq)
3442{
3443 char *lock_name;
3444
3445 lockdep_register_key(&wq->key);
3446 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3447 if (!lock_name)
3448 lock_name = wq->name;
69a106c0
QC
3449
3450 wq->lock_name = lock_name;
669de8bd
BVA
3451 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3452}
3453
3454static void wq_unregister_lockdep(struct workqueue_struct *wq)
3455{
3456 lockdep_unregister_key(&wq->key);
3457}
3458
3459static void wq_free_lockdep(struct workqueue_struct *wq)
3460{
3461 if (wq->lock_name != wq->name)
3462 kfree(wq->lock_name);
3463}
3464#else
3465static void wq_init_lockdep(struct workqueue_struct *wq)
3466{
3467}
3468
3469static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470{
3471}
3472
3473static void wq_free_lockdep(struct workqueue_struct *wq)
3474{
3475}
3476#endif
3477
6ba94429 3478static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3479{
6ba94429
FW
3480 struct workqueue_struct *wq =
3481 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3482
669de8bd
BVA
3483 wq_free_lockdep(wq);
3484
6ba94429
FW
3485 if (!(wq->flags & WQ_UNBOUND))
3486 free_percpu(wq->cpu_pwqs);
226223ab 3487 else
6ba94429 3488 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3489
6ba94429
FW
3490 kfree(wq->rescuer);
3491 kfree(wq);
226223ab
TH
3492}
3493
6ba94429 3494static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3495{
6ba94429 3496 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3497
6ba94429
FW
3498 ida_destroy(&pool->worker_ida);
3499 free_workqueue_attrs(pool->attrs);
3500 kfree(pool);
226223ab
TH
3501}
3502
6ba94429
FW
3503/**
3504 * put_unbound_pool - put a worker_pool
3505 * @pool: worker_pool to put
3506 *
24acfb71 3507 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3508 * safe manner. get_unbound_pool() calls this function on its failure path
3509 * and this function should be able to release pools which went through,
3510 * successfully or not, init_worker_pool().
3511 *
3512 * Should be called with wq_pool_mutex held.
3513 */
3514static void put_unbound_pool(struct worker_pool *pool)
226223ab 3515{
6ba94429
FW
3516 DECLARE_COMPLETION_ONSTACK(detach_completion);
3517 struct worker *worker;
226223ab 3518
6ba94429 3519 lockdep_assert_held(&wq_pool_mutex);
226223ab 3520
6ba94429
FW
3521 if (--pool->refcnt)
3522 return;
226223ab 3523
6ba94429
FW
3524 /* sanity checks */
3525 if (WARN_ON(!(pool->cpu < 0)) ||
3526 WARN_ON(!list_empty(&pool->worklist)))
3527 return;
226223ab 3528
6ba94429
FW
3529 /* release id and unhash */
3530 if (pool->id >= 0)
3531 idr_remove(&worker_pool_idr, pool->id);
3532 hash_del(&pool->hash_node);
d55262c4 3533
6ba94429 3534 /*
692b4825
TH
3535 * Become the manager and destroy all workers. This prevents
3536 * @pool's workers from blocking on attach_mutex. We're the last
3537 * manager and @pool gets freed with the flag set.
6ba94429 3538 */
6ba94429 3539 spin_lock_irq(&pool->lock);
692b4825
TH
3540 wait_event_lock_irq(wq_manager_wait,
3541 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3542 pool->flags |= POOL_MANAGER_ACTIVE;
3543
6ba94429
FW
3544 while ((worker = first_idle_worker(pool)))
3545 destroy_worker(worker);
3546 WARN_ON(pool->nr_workers || pool->nr_idle);
3547 spin_unlock_irq(&pool->lock);
d55262c4 3548
1258fae7 3549 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3550 if (!list_empty(&pool->workers))
3551 pool->detach_completion = &detach_completion;
1258fae7 3552 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3553
6ba94429
FW
3554 if (pool->detach_completion)
3555 wait_for_completion(pool->detach_completion);
226223ab 3556
6ba94429
FW
3557 /* shut down the timers */
3558 del_timer_sync(&pool->idle_timer);
3559 del_timer_sync(&pool->mayday_timer);
226223ab 3560
24acfb71 3561 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3562 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3563}
3564
3565/**
6ba94429
FW
3566 * get_unbound_pool - get a worker_pool with the specified attributes
3567 * @attrs: the attributes of the worker_pool to get
226223ab 3568 *
6ba94429
FW
3569 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3570 * reference count and return it. If there already is a matching
3571 * worker_pool, it will be used; otherwise, this function attempts to
3572 * create a new one.
226223ab 3573 *
6ba94429 3574 * Should be called with wq_pool_mutex held.
226223ab 3575 *
6ba94429
FW
3576 * Return: On success, a worker_pool with the same attributes as @attrs.
3577 * On failure, %NULL.
226223ab 3578 */
6ba94429 3579static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3580{
6ba94429
FW
3581 u32 hash = wqattrs_hash(attrs);
3582 struct worker_pool *pool;
3583 int node;
e2273584 3584 int target_node = NUMA_NO_NODE;
226223ab 3585
6ba94429 3586 lockdep_assert_held(&wq_pool_mutex);
226223ab 3587
6ba94429
FW
3588 /* do we already have a matching pool? */
3589 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3590 if (wqattrs_equal(pool->attrs, attrs)) {
3591 pool->refcnt++;
3592 return pool;
3593 }
3594 }
226223ab 3595
e2273584
XP
3596 /* if cpumask is contained inside a NUMA node, we belong to that node */
3597 if (wq_numa_enabled) {
3598 for_each_node(node) {
3599 if (cpumask_subset(attrs->cpumask,
3600 wq_numa_possible_cpumask[node])) {
3601 target_node = node;
3602 break;
3603 }
3604 }
3605 }
3606
6ba94429 3607 /* nope, create a new one */
e2273584 3608 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3609 if (!pool || init_worker_pool(pool) < 0)
3610 goto fail;
3611
3612 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3613 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3614 pool->node = target_node;
226223ab
TH
3615
3616 /*
6ba94429
FW
3617 * no_numa isn't a worker_pool attribute, always clear it. See
3618 * 'struct workqueue_attrs' comments for detail.
226223ab 3619 */
6ba94429 3620 pool->attrs->no_numa = false;
226223ab 3621
6ba94429
FW
3622 if (worker_pool_assign_id(pool) < 0)
3623 goto fail;
226223ab 3624
6ba94429 3625 /* create and start the initial worker */
3347fa09 3626 if (wq_online && !create_worker(pool))
6ba94429 3627 goto fail;
226223ab 3628
6ba94429
FW
3629 /* install */
3630 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3631
6ba94429
FW
3632 return pool;
3633fail:
3634 if (pool)
3635 put_unbound_pool(pool);
3636 return NULL;
226223ab 3637}
226223ab 3638
6ba94429 3639static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3640{
6ba94429
FW
3641 kmem_cache_free(pwq_cache,
3642 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3643}
3644
6ba94429
FW
3645/*
3646 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3647 * and needs to be destroyed.
7a4e344c 3648 */
6ba94429 3649static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3650{
6ba94429
FW
3651 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3652 unbound_release_work);
3653 struct workqueue_struct *wq = pwq->wq;
3654 struct worker_pool *pool = pwq->pool;
3655 bool is_last;
7a4e344c 3656
6ba94429
FW
3657 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3658 return;
7a4e344c 3659
6ba94429
FW
3660 mutex_lock(&wq->mutex);
3661 list_del_rcu(&pwq->pwqs_node);
3662 is_last = list_empty(&wq->pwqs);
3663 mutex_unlock(&wq->mutex);
3664
3665 mutex_lock(&wq_pool_mutex);
3666 put_unbound_pool(pool);
3667 mutex_unlock(&wq_pool_mutex);
3668
25b00775 3669 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3670
2865a8fb 3671 /*
6ba94429
FW
3672 * If we're the last pwq going away, @wq is already dead and no one
3673 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3674 */
669de8bd
BVA
3675 if (is_last) {
3676 wq_unregister_lockdep(wq);
25b00775 3677 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3678 }
29c91e99
TH
3679}
3680
7a4e344c 3681/**
6ba94429
FW
3682 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3683 * @pwq: target pool_workqueue
d185af30 3684 *
6ba94429
FW
3685 * If @pwq isn't freezing, set @pwq->max_active to the associated
3686 * workqueue's saved_max_active and activate delayed work items
3687 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3688 */
6ba94429 3689static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3690{
6ba94429
FW
3691 struct workqueue_struct *wq = pwq->wq;
3692 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3693 unsigned long flags;
4e1a1f9a 3694
6ba94429
FW
3695 /* for @wq->saved_max_active */
3696 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3697
6ba94429
FW
3698 /* fast exit for non-freezable wqs */
3699 if (!freezable && pwq->max_active == wq->saved_max_active)
3700 return;
7a4e344c 3701
3347fa09
TH
3702 /* this function can be called during early boot w/ irq disabled */
3703 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3704
6ba94429
FW
3705 /*
3706 * During [un]freezing, the caller is responsible for ensuring that
3707 * this function is called at least once after @workqueue_freezing
3708 * is updated and visible.
3709 */
3710 if (!freezable || !workqueue_freezing) {
3711 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3712
6ba94429
FW
3713 while (!list_empty(&pwq->delayed_works) &&
3714 pwq->nr_active < pwq->max_active)
3715 pwq_activate_first_delayed(pwq);
e2dca7ad 3716
6ba94429
FW
3717 /*
3718 * Need to kick a worker after thawed or an unbound wq's
3719 * max_active is bumped. It's a slow path. Do it always.
3720 */
3721 wake_up_worker(pwq->pool);
3722 } else {
3723 pwq->max_active = 0;
3724 }
e2dca7ad 3725
3347fa09 3726 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3727}
3728
6ba94429
FW
3729/* initialize newly alloced @pwq which is associated with @wq and @pool */
3730static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3731 struct worker_pool *pool)
29c91e99 3732{
6ba94429 3733 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3734
6ba94429
FW
3735 memset(pwq, 0, sizeof(*pwq));
3736
3737 pwq->pool = pool;
3738 pwq->wq = wq;
3739 pwq->flush_color = -1;
3740 pwq->refcnt = 1;
3741 INIT_LIST_HEAD(&pwq->delayed_works);
3742 INIT_LIST_HEAD(&pwq->pwqs_node);
3743 INIT_LIST_HEAD(&pwq->mayday_node);
3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3745}
3746
6ba94429
FW
3747/* sync @pwq with the current state of its associated wq and link it */
3748static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3749{
6ba94429 3750 struct workqueue_struct *wq = pwq->wq;
29c91e99 3751
6ba94429 3752 lockdep_assert_held(&wq->mutex);
a892cacc 3753
6ba94429
FW
3754 /* may be called multiple times, ignore if already linked */
3755 if (!list_empty(&pwq->pwqs_node))
29c91e99 3756 return;
29c91e99 3757
6ba94429
FW
3758 /* set the matching work_color */
3759 pwq->work_color = wq->work_color;
29c91e99 3760
6ba94429
FW
3761 /* sync max_active to the current setting */
3762 pwq_adjust_max_active(pwq);
29c91e99 3763
6ba94429
FW
3764 /* link in @pwq */
3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3766}
29c91e99 3767
6ba94429
FW
3768/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 const struct workqueue_attrs *attrs)
3771{
3772 struct worker_pool *pool;
3773 struct pool_workqueue *pwq;
60f5a4bc 3774
6ba94429 3775 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3776
6ba94429
FW
3777 pool = get_unbound_pool(attrs);
3778 if (!pool)
3779 return NULL;
60f5a4bc 3780
6ba94429
FW
3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3782 if (!pwq) {
3783 put_unbound_pool(pool);
3784 return NULL;
3785 }
29c91e99 3786
6ba94429
FW
3787 init_pwq(pwq, wq, pool);
3788 return pwq;
3789}
29c91e99 3790
29c91e99 3791/**
30186c6f 3792 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3793 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3794 * @node: the target NUMA node
3795 * @cpu_going_down: if >= 0, the CPU to consider as offline
3796 * @cpumask: outarg, the resulting cpumask
29c91e99 3797 *
6ba94429
FW
3798 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3799 * @cpu_going_down is >= 0, that cpu is considered offline during
3800 * calculation. The result is stored in @cpumask.
a892cacc 3801 *
6ba94429
FW
3802 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3803 * enabled and @node has online CPUs requested by @attrs, the returned
3804 * cpumask is the intersection of the possible CPUs of @node and
3805 * @attrs->cpumask.
d185af30 3806 *
6ba94429
FW
3807 * The caller is responsible for ensuring that the cpumask of @node stays
3808 * stable.
3809 *
3810 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3811 * %false if equal.
29c91e99 3812 */
6ba94429
FW
3813static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3814 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3815{
6ba94429
FW
3816 if (!wq_numa_enabled || attrs->no_numa)
3817 goto use_dfl;
29c91e99 3818
6ba94429
FW
3819 /* does @node have any online CPUs @attrs wants? */
3820 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3821 if (cpu_going_down >= 0)
3822 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3823
6ba94429
FW
3824 if (cpumask_empty(cpumask))
3825 goto use_dfl;
4c16bd32
TH
3826
3827 /* yeap, return possible CPUs in @node that @attrs wants */
3828 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3829
3830 if (cpumask_empty(cpumask)) {
3831 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3832 "possible intersect\n");
3833 return false;
3834 }
3835
4c16bd32
TH
3836 return !cpumask_equal(cpumask, attrs->cpumask);
3837
3838use_dfl:
3839 cpumask_copy(cpumask, attrs->cpumask);
3840 return false;
3841}
3842
1befcf30
TH
3843/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3844static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3845 int node,
3846 struct pool_workqueue *pwq)
3847{
3848 struct pool_workqueue *old_pwq;
3849
5b95e1af 3850 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3851 lockdep_assert_held(&wq->mutex);
3852
3853 /* link_pwq() can handle duplicate calls */
3854 link_pwq(pwq);
3855
3856 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3857 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3858 return old_pwq;
3859}
3860
2d5f0764
LJ
3861/* context to store the prepared attrs & pwqs before applying */
3862struct apply_wqattrs_ctx {
3863 struct workqueue_struct *wq; /* target workqueue */
3864 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3865 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3866 struct pool_workqueue *dfl_pwq;
3867 struct pool_workqueue *pwq_tbl[];
3868};
3869
3870/* free the resources after success or abort */
3871static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3872{
3873 if (ctx) {
3874 int node;
3875
3876 for_each_node(node)
3877 put_pwq_unlocked(ctx->pwq_tbl[node]);
3878 put_pwq_unlocked(ctx->dfl_pwq);
3879
3880 free_workqueue_attrs(ctx->attrs);
3881
3882 kfree(ctx);
3883 }
3884}
3885
3886/* allocate the attrs and pwqs for later installation */
3887static struct apply_wqattrs_ctx *
3888apply_wqattrs_prepare(struct workqueue_struct *wq,
3889 const struct workqueue_attrs *attrs)
9e8cd2f5 3890{
2d5f0764 3891 struct apply_wqattrs_ctx *ctx;
4c16bd32 3892 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3893 int node;
9e8cd2f5 3894
2d5f0764 3895 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3896
acafe7e3 3897 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3898
be69d00d
TG
3899 new_attrs = alloc_workqueue_attrs();
3900 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3901 if (!ctx || !new_attrs || !tmp_attrs)
3902 goto out_free;
13e2e556 3903
042f7df1
LJ
3904 /*
3905 * Calculate the attrs of the default pwq.
3906 * If the user configured cpumask doesn't overlap with the
3907 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3908 */
13e2e556 3909 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3910 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3911 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3912 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3913
4c16bd32
TH
3914 /*
3915 * We may create multiple pwqs with differing cpumasks. Make a
3916 * copy of @new_attrs which will be modified and used to obtain
3917 * pools.
3918 */
3919 copy_workqueue_attrs(tmp_attrs, new_attrs);
3920
4c16bd32
TH
3921 /*
3922 * If something goes wrong during CPU up/down, we'll fall back to
3923 * the default pwq covering whole @attrs->cpumask. Always create
3924 * it even if we don't use it immediately.
3925 */
2d5f0764
LJ
3926 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3927 if (!ctx->dfl_pwq)
3928 goto out_free;
4c16bd32
TH
3929
3930 for_each_node(node) {
042f7df1 3931 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3932 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3933 if (!ctx->pwq_tbl[node])
3934 goto out_free;
4c16bd32 3935 } else {
2d5f0764
LJ
3936 ctx->dfl_pwq->refcnt++;
3937 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3938 }
3939 }
3940
042f7df1
LJ
3941 /* save the user configured attrs and sanitize it. */
3942 copy_workqueue_attrs(new_attrs, attrs);
3943 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3944 ctx->attrs = new_attrs;
042f7df1 3945
2d5f0764
LJ
3946 ctx->wq = wq;
3947 free_workqueue_attrs(tmp_attrs);
3948 return ctx;
3949
3950out_free:
3951 free_workqueue_attrs(tmp_attrs);
3952 free_workqueue_attrs(new_attrs);
3953 apply_wqattrs_cleanup(ctx);
3954 return NULL;
3955}
3956
3957/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3958static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3959{
3960 int node;
9e8cd2f5 3961
4c16bd32 3962 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3963 mutex_lock(&ctx->wq->mutex);
a892cacc 3964
2d5f0764 3965 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3966
3967 /* save the previous pwq and install the new one */
f147f29e 3968 for_each_node(node)
2d5f0764
LJ
3969 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3970 ctx->pwq_tbl[node]);
4c16bd32
TH
3971
3972 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3973 link_pwq(ctx->dfl_pwq);
3974 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3975
2d5f0764
LJ
3976 mutex_unlock(&ctx->wq->mutex);
3977}
9e8cd2f5 3978
a0111cf6
LJ
3979static void apply_wqattrs_lock(void)
3980{
3981 /* CPUs should stay stable across pwq creations and installations */
3982 get_online_cpus();
3983 mutex_lock(&wq_pool_mutex);
3984}
3985
3986static void apply_wqattrs_unlock(void)
3987{
3988 mutex_unlock(&wq_pool_mutex);
3989 put_online_cpus();
3990}
3991
3992static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3993 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3994{
3995 struct apply_wqattrs_ctx *ctx;
4c16bd32 3996
2d5f0764
LJ
3997 /* only unbound workqueues can change attributes */
3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3999 return -EINVAL;
13e2e556 4000
2d5f0764 4001 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4002 if (!list_empty(&wq->pwqs)) {
4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4004 return -EINVAL;
4005
4006 wq->flags &= ~__WQ_ORDERED;
4007 }
2d5f0764 4008
2d5f0764 4009 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4010 if (!ctx)
4011 return -ENOMEM;
2d5f0764
LJ
4012
4013 /* the ctx has been prepared successfully, let's commit it */
6201171e 4014 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4015 apply_wqattrs_cleanup(ctx);
4016
6201171e 4017 return 0;
9e8cd2f5
TH
4018}
4019
a0111cf6
LJ
4020/**
4021 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4022 * @wq: the target workqueue
4023 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4024 *
4025 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4026 * machines, this function maps a separate pwq to each NUMA node with
4027 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4028 * NUMA node it was issued on. Older pwqs are released as in-flight work
4029 * items finish. Note that a work item which repeatedly requeues itself
4030 * back-to-back will stay on its current pwq.
4031 *
4032 * Performs GFP_KERNEL allocations.
4033 *
509b3204
DJ
4034 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4035 *
a0111cf6
LJ
4036 * Return: 0 on success and -errno on failure.
4037 */
513c98d0 4038int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4039 const struct workqueue_attrs *attrs)
4040{
4041 int ret;
4042
509b3204
DJ
4043 lockdep_assert_cpus_held();
4044
4045 mutex_lock(&wq_pool_mutex);
a0111cf6 4046 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4047 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4048
4049 return ret;
4050}
4051
4c16bd32
TH
4052/**
4053 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4054 * @wq: the target workqueue
4055 * @cpu: the CPU coming up or going down
4056 * @online: whether @cpu is coming up or going down
4057 *
4058 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4059 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4060 * @wq accordingly.
4061 *
4062 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4063 * falls back to @wq->dfl_pwq which may not be optimal but is always
4064 * correct.
4065 *
4066 * Note that when the last allowed CPU of a NUMA node goes offline for a
4067 * workqueue with a cpumask spanning multiple nodes, the workers which were
4068 * already executing the work items for the workqueue will lose their CPU
4069 * affinity and may execute on any CPU. This is similar to how per-cpu
4070 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4071 * affinity, it's the user's responsibility to flush the work item from
4072 * CPU_DOWN_PREPARE.
4073 */
4074static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4075 bool online)
4076{
4077 int node = cpu_to_node(cpu);
4078 int cpu_off = online ? -1 : cpu;
4079 struct pool_workqueue *old_pwq = NULL, *pwq;
4080 struct workqueue_attrs *target_attrs;
4081 cpumask_t *cpumask;
4082
4083 lockdep_assert_held(&wq_pool_mutex);
4084
f7142ed4
LJ
4085 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4086 wq->unbound_attrs->no_numa)
4c16bd32
TH
4087 return;
4088
4089 /*
4090 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4091 * Let's use a preallocated one. The following buf is protected by
4092 * CPU hotplug exclusion.
4093 */
4094 target_attrs = wq_update_unbound_numa_attrs_buf;
4095 cpumask = target_attrs->cpumask;
4096
4c16bd32
TH
4097 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4098 pwq = unbound_pwq_by_node(wq, node);
4099
4100 /*
4101 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4102 * different from the default pwq's, we need to compare it to @pwq's
4103 * and create a new one if they don't match. If the target cpumask
4104 * equals the default pwq's, the default pwq should be used.
4c16bd32 4105 */
042f7df1 4106 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4107 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4108 return;
4c16bd32 4109 } else {
534a3fbb 4110 goto use_dfl_pwq;
4c16bd32
TH
4111 }
4112
4c16bd32
TH
4113 /* create a new pwq */
4114 pwq = alloc_unbound_pwq(wq, target_attrs);
4115 if (!pwq) {
2d916033
FF
4116 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4117 wq->name);
77f300b1 4118 goto use_dfl_pwq;
4c16bd32
TH
4119 }
4120
f7142ed4 4121 /* Install the new pwq. */
4c16bd32
TH
4122 mutex_lock(&wq->mutex);
4123 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4124 goto out_unlock;
4125
4126use_dfl_pwq:
f7142ed4 4127 mutex_lock(&wq->mutex);
4c16bd32
TH
4128 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4129 get_pwq(wq->dfl_pwq);
4130 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4131 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4132out_unlock:
4133 mutex_unlock(&wq->mutex);
4134 put_pwq_unlocked(old_pwq);
4135}
4136
30cdf249 4137static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4138{
49e3cf44 4139 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4140 int cpu, ret;
30cdf249
TH
4141
4142 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4143 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4144 if (!wq->cpu_pwqs)
30cdf249
TH
4145 return -ENOMEM;
4146
4147 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4148 struct pool_workqueue *pwq =
4149 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4150 struct worker_pool *cpu_pools =
f02ae73a 4151 per_cpu(cpu_worker_pools, cpu);
f3421797 4152
f147f29e
TH
4153 init_pwq(pwq, wq, &cpu_pools[highpri]);
4154
4155 mutex_lock(&wq->mutex);
1befcf30 4156 link_pwq(pwq);
f147f29e 4157 mutex_unlock(&wq->mutex);
30cdf249 4158 }
9e8cd2f5 4159 return 0;
509b3204
DJ
4160 }
4161
4162 get_online_cpus();
4163 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4164 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4165 /* there should only be single pwq for ordering guarantee */
4166 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4167 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4168 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4169 } else {
509b3204 4170 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4171 }
509b3204
DJ
4172 put_online_cpus();
4173
4174 return ret;
0f900049
TH
4175}
4176
f3421797
TH
4177static int wq_clamp_max_active(int max_active, unsigned int flags,
4178 const char *name)
b71ab8c2 4179{
f3421797
TH
4180 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4181
4182 if (max_active < 1 || max_active > lim)
044c782c
VI
4183 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4184 max_active, name, 1, lim);
b71ab8c2 4185
f3421797 4186 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4187}
4188
983c7515
TH
4189/*
4190 * Workqueues which may be used during memory reclaim should have a rescuer
4191 * to guarantee forward progress.
4192 */
4193static int init_rescuer(struct workqueue_struct *wq)
4194{
4195 struct worker *rescuer;
4196 int ret;
4197
4198 if (!(wq->flags & WQ_MEM_RECLAIM))
4199 return 0;
4200
4201 rescuer = alloc_worker(NUMA_NO_NODE);
4202 if (!rescuer)
4203 return -ENOMEM;
4204
4205 rescuer->rescue_wq = wq;
4206 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4207 ret = PTR_ERR_OR_ZERO(rescuer->task);
4208 if (ret) {
4209 kfree(rescuer);
4210 return ret;
4211 }
4212
4213 wq->rescuer = rescuer;
4214 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4215 wake_up_process(rescuer->task);
4216
4217 return 0;
4218}
4219
a2775bbc 4220__printf(1, 4)
669de8bd
BVA
4221struct workqueue_struct *alloc_workqueue(const char *fmt,
4222 unsigned int flags,
4223 int max_active, ...)
1da177e4 4224{
df2d5ae4 4225 size_t tbl_size = 0;
ecf6881f 4226 va_list args;
1da177e4 4227 struct workqueue_struct *wq;
49e3cf44 4228 struct pool_workqueue *pwq;
b196be89 4229
5c0338c6
TH
4230 /*
4231 * Unbound && max_active == 1 used to imply ordered, which is no
4232 * longer the case on NUMA machines due to per-node pools. While
4233 * alloc_ordered_workqueue() is the right way to create an ordered
4234 * workqueue, keep the previous behavior to avoid subtle breakages
4235 * on NUMA.
4236 */
4237 if ((flags & WQ_UNBOUND) && max_active == 1)
4238 flags |= __WQ_ORDERED;
4239
cee22a15
VK
4240 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4241 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4242 flags |= WQ_UNBOUND;
4243
ecf6881f 4244 /* allocate wq and format name */
df2d5ae4 4245 if (flags & WQ_UNBOUND)
ddcb57e2 4246 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4247
4248 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4249 if (!wq)
d2c1d404 4250 return NULL;
b196be89 4251
6029a918 4252 if (flags & WQ_UNBOUND) {
be69d00d 4253 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4254 if (!wq->unbound_attrs)
4255 goto err_free_wq;
4256 }
4257
669de8bd 4258 va_start(args, max_active);
ecf6881f 4259 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4260 va_end(args);
1da177e4 4261
d320c038 4262 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4263 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4264
b196be89 4265 /* init wq */
97e37d7b 4266 wq->flags = flags;
a0a1a5fd 4267 wq->saved_max_active = max_active;
3c25a55d 4268 mutex_init(&wq->mutex);
112202d9 4269 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4270 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4271 INIT_LIST_HEAD(&wq->flusher_queue);
4272 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4273 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4274
669de8bd 4275 wq_init_lockdep(wq);
cce1a165 4276 INIT_LIST_HEAD(&wq->list);
3af24433 4277
30cdf249 4278 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4279 goto err_unreg_lockdep;
1537663f 4280
40c17f75 4281 if (wq_online && init_rescuer(wq) < 0)
983c7515 4282 goto err_destroy;
3af24433 4283
226223ab
TH
4284 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4285 goto err_destroy;
4286
a0a1a5fd 4287 /*
68e13a67
LJ
4288 * wq_pool_mutex protects global freeze state and workqueues list.
4289 * Grab it, adjust max_active and add the new @wq to workqueues
4290 * list.
a0a1a5fd 4291 */
68e13a67 4292 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4293
a357fc03 4294 mutex_lock(&wq->mutex);
699ce097
TH
4295 for_each_pwq(pwq, wq)
4296 pwq_adjust_max_active(pwq);
a357fc03 4297 mutex_unlock(&wq->mutex);
a0a1a5fd 4298
e2dca7ad 4299 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4300
68e13a67 4301 mutex_unlock(&wq_pool_mutex);
1537663f 4302
3af24433 4303 return wq;
d2c1d404 4304
82efcab3 4305err_unreg_lockdep:
009bb421
BVA
4306 wq_unregister_lockdep(wq);
4307 wq_free_lockdep(wq);
82efcab3 4308err_free_wq:
6029a918 4309 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4310 kfree(wq);
4311 return NULL;
4312err_destroy:
4313 destroy_workqueue(wq);
4690c4ab 4314 return NULL;
3af24433 4315}
669de8bd 4316EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4317
c29eb853
TH
4318static bool pwq_busy(struct pool_workqueue *pwq)
4319{
4320 int i;
4321
4322 for (i = 0; i < WORK_NR_COLORS; i++)
4323 if (pwq->nr_in_flight[i])
4324 return true;
4325
4326 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4327 return true;
4328 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4329 return true;
4330
4331 return false;
4332}
4333
3af24433
ON
4334/**
4335 * destroy_workqueue - safely terminate a workqueue
4336 * @wq: target workqueue
4337 *
4338 * Safely destroy a workqueue. All work currently pending will be done first.
4339 */
4340void destroy_workqueue(struct workqueue_struct *wq)
4341{
49e3cf44 4342 struct pool_workqueue *pwq;
4c16bd32 4343 int node;
3af24433 4344
def98c84
TH
4345 /*
4346 * Remove it from sysfs first so that sanity check failure doesn't
4347 * lead to sysfs name conflicts.
4348 */
4349 workqueue_sysfs_unregister(wq);
4350
9c5a2ba7
TH
4351 /* drain it before proceeding with destruction */
4352 drain_workqueue(wq);
c8efcc25 4353
def98c84
TH
4354 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4355 if (wq->rescuer) {
4356 struct worker *rescuer = wq->rescuer;
4357
4358 /* this prevents new queueing */
4359 spin_lock_irq(&wq_mayday_lock);
4360 wq->rescuer = NULL;
4361 spin_unlock_irq(&wq_mayday_lock);
4362
4363 /* rescuer will empty maydays list before exiting */
4364 kthread_stop(rescuer->task);
8efe1223 4365 kfree(rescuer);
def98c84
TH
4366 }
4367
c29eb853
TH
4368 /*
4369 * Sanity checks - grab all the locks so that we wait for all
4370 * in-flight operations which may do put_pwq().
4371 */
4372 mutex_lock(&wq_pool_mutex);
b09f4fd3 4373 mutex_lock(&wq->mutex);
49e3cf44 4374 for_each_pwq(pwq, wq) {
c29eb853
TH
4375 spin_lock_irq(&pwq->pool->lock);
4376 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4377 pr_warn("%s: %s has the following busy pwq\n",
4378 __func__, wq->name);
c29eb853
TH
4379 show_pwq(pwq);
4380 spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4381 mutex_unlock(&wq->mutex);
c29eb853 4382 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4383 show_workqueue_state();
6183c009 4384 return;
76af4d93 4385 }
c29eb853 4386 spin_unlock_irq(&pwq->pool->lock);
6183c009 4387 }
b09f4fd3 4388 mutex_unlock(&wq->mutex);
c29eb853 4389 mutex_unlock(&wq_pool_mutex);
6183c009 4390
a0a1a5fd
TH
4391 /*
4392 * wq list is used to freeze wq, remove from list after
4393 * flushing is complete in case freeze races us.
4394 */
68e13a67 4395 mutex_lock(&wq_pool_mutex);
e2dca7ad 4396 list_del_rcu(&wq->list);
68e13a67 4397 mutex_unlock(&wq_pool_mutex);
3af24433 4398
8864b4e5 4399 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4400 wq_unregister_lockdep(wq);
8864b4e5
TH
4401 /*
4402 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4403 * schedule RCU free.
8864b4e5 4404 */
25b00775 4405 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4406 } else {
4407 /*
4408 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4409 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4410 * @wq will be freed when the last pwq is released.
8864b4e5 4411 */
4c16bd32
TH
4412 for_each_node(node) {
4413 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4414 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4415 put_pwq_unlocked(pwq);
4416 }
4417
4418 /*
4419 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4420 * put. Don't access it afterwards.
4421 */
4422 pwq = wq->dfl_pwq;
4423 wq->dfl_pwq = NULL;
dce90d47 4424 put_pwq_unlocked(pwq);
29c91e99 4425 }
3af24433
ON
4426}
4427EXPORT_SYMBOL_GPL(destroy_workqueue);
4428
dcd989cb
TH
4429/**
4430 * workqueue_set_max_active - adjust max_active of a workqueue
4431 * @wq: target workqueue
4432 * @max_active: new max_active value.
4433 *
4434 * Set max_active of @wq to @max_active.
4435 *
4436 * CONTEXT:
4437 * Don't call from IRQ context.
4438 */
4439void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4440{
49e3cf44 4441 struct pool_workqueue *pwq;
dcd989cb 4442
8719dcea 4443 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4444 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4445 return;
4446
f3421797 4447 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4448
a357fc03 4449 mutex_lock(&wq->mutex);
dcd989cb 4450
0a94efb5 4451 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4452 wq->saved_max_active = max_active;
4453
699ce097
TH
4454 for_each_pwq(pwq, wq)
4455 pwq_adjust_max_active(pwq);
93981800 4456
a357fc03 4457 mutex_unlock(&wq->mutex);
15316ba8 4458}
dcd989cb 4459EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4460
27d4ee03
LW
4461/**
4462 * current_work - retrieve %current task's work struct
4463 *
4464 * Determine if %current task is a workqueue worker and what it's working on.
4465 * Useful to find out the context that the %current task is running in.
4466 *
4467 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4468 */
4469struct work_struct *current_work(void)
4470{
4471 struct worker *worker = current_wq_worker();
4472
4473 return worker ? worker->current_work : NULL;
4474}
4475EXPORT_SYMBOL(current_work);
4476
e6267616
TH
4477/**
4478 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4479 *
4480 * Determine whether %current is a workqueue rescuer. Can be used from
4481 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4482 *
4483 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4484 */
4485bool current_is_workqueue_rescuer(void)
4486{
4487 struct worker *worker = current_wq_worker();
4488
6a092dfd 4489 return worker && worker->rescue_wq;
e6267616
TH
4490}
4491
eef6a7d5 4492/**
dcd989cb
TH
4493 * workqueue_congested - test whether a workqueue is congested
4494 * @cpu: CPU in question
4495 * @wq: target workqueue
eef6a7d5 4496 *
dcd989cb
TH
4497 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4498 * no synchronization around this function and the test result is
4499 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4500 *
d3251859
TH
4501 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4502 * Note that both per-cpu and unbound workqueues may be associated with
4503 * multiple pool_workqueues which have separate congested states. A
4504 * workqueue being congested on one CPU doesn't mean the workqueue is also
4505 * contested on other CPUs / NUMA nodes.
4506 *
d185af30 4507 * Return:
dcd989cb 4508 * %true if congested, %false otherwise.
eef6a7d5 4509 */
d84ff051 4510bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4511{
7fb98ea7 4512 struct pool_workqueue *pwq;
76af4d93
TH
4513 bool ret;
4514
24acfb71
TG
4515 rcu_read_lock();
4516 preempt_disable();
7fb98ea7 4517
d3251859
TH
4518 if (cpu == WORK_CPU_UNBOUND)
4519 cpu = smp_processor_id();
4520
7fb98ea7
TH
4521 if (!(wq->flags & WQ_UNBOUND))
4522 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4523 else
df2d5ae4 4524 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4525
76af4d93 4526 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4527 preempt_enable();
4528 rcu_read_unlock();
76af4d93
TH
4529
4530 return ret;
1da177e4 4531}
dcd989cb 4532EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4533
dcd989cb
TH
4534/**
4535 * work_busy - test whether a work is currently pending or running
4536 * @work: the work to be tested
4537 *
4538 * Test whether @work is currently pending or running. There is no
4539 * synchronization around this function and the test result is
4540 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4541 *
d185af30 4542 * Return:
dcd989cb
TH
4543 * OR'd bitmask of WORK_BUSY_* bits.
4544 */
4545unsigned int work_busy(struct work_struct *work)
1da177e4 4546{
fa1b54e6 4547 struct worker_pool *pool;
dcd989cb
TH
4548 unsigned long flags;
4549 unsigned int ret = 0;
1da177e4 4550
dcd989cb
TH
4551 if (work_pending(work))
4552 ret |= WORK_BUSY_PENDING;
1da177e4 4553
24acfb71 4554 rcu_read_lock();
fa1b54e6 4555 pool = get_work_pool(work);
038366c5 4556 if (pool) {
24acfb71 4557 spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4558 if (find_worker_executing_work(pool, work))
4559 ret |= WORK_BUSY_RUNNING;
24acfb71 4560 spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4561 }
24acfb71 4562 rcu_read_unlock();
1da177e4 4563
dcd989cb 4564 return ret;
1da177e4 4565}
dcd989cb 4566EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4567
3d1cb205
TH
4568/**
4569 * set_worker_desc - set description for the current work item
4570 * @fmt: printf-style format string
4571 * @...: arguments for the format string
4572 *
4573 * This function can be called by a running work function to describe what
4574 * the work item is about. If the worker task gets dumped, this
4575 * information will be printed out together to help debugging. The
4576 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4577 */
4578void set_worker_desc(const char *fmt, ...)
4579{
4580 struct worker *worker = current_wq_worker();
4581 va_list args;
4582
4583 if (worker) {
4584 va_start(args, fmt);
4585 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4586 va_end(args);
3d1cb205
TH
4587 }
4588}
5c750d58 4589EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4590
4591/**
4592 * print_worker_info - print out worker information and description
4593 * @log_lvl: the log level to use when printing
4594 * @task: target task
4595 *
4596 * If @task is a worker and currently executing a work item, print out the
4597 * name of the workqueue being serviced and worker description set with
4598 * set_worker_desc() by the currently executing work item.
4599 *
4600 * This function can be safely called on any task as long as the
4601 * task_struct itself is accessible. While safe, this function isn't
4602 * synchronized and may print out mixups or garbages of limited length.
4603 */
4604void print_worker_info(const char *log_lvl, struct task_struct *task)
4605{
4606 work_func_t *fn = NULL;
4607 char name[WQ_NAME_LEN] = { };
4608 char desc[WORKER_DESC_LEN] = { };
4609 struct pool_workqueue *pwq = NULL;
4610 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4611 struct worker *worker;
4612
4613 if (!(task->flags & PF_WQ_WORKER))
4614 return;
4615
4616 /*
4617 * This function is called without any synchronization and @task
4618 * could be in any state. Be careful with dereferences.
4619 */
e700591a 4620 worker = kthread_probe_data(task);
3d1cb205
TH
4621
4622 /*
8bf89593
TH
4623 * Carefully copy the associated workqueue's workfn, name and desc.
4624 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4625 */
4626 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4627 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4628 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4629 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4630 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4631
4632 if (fn || name[0] || desc[0]) {
d75f773c 4633 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4634 if (strcmp(name, desc))
3d1cb205
TH
4635 pr_cont(" (%s)", desc);
4636 pr_cont("\n");
4637 }
4638}
4639
3494fc30
TH
4640static void pr_cont_pool_info(struct worker_pool *pool)
4641{
4642 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4643 if (pool->node != NUMA_NO_NODE)
4644 pr_cont(" node=%d", pool->node);
4645 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4646}
4647
4648static void pr_cont_work(bool comma, struct work_struct *work)
4649{
4650 if (work->func == wq_barrier_func) {
4651 struct wq_barrier *barr;
4652
4653 barr = container_of(work, struct wq_barrier, work);
4654
4655 pr_cont("%s BAR(%d)", comma ? "," : "",
4656 task_pid_nr(barr->task));
4657 } else {
d75f773c 4658 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4659 }
4660}
4661
4662static void show_pwq(struct pool_workqueue *pwq)
4663{
4664 struct worker_pool *pool = pwq->pool;
4665 struct work_struct *work;
4666 struct worker *worker;
4667 bool has_in_flight = false, has_pending = false;
4668 int bkt;
4669
4670 pr_info(" pwq %d:", pool->id);
4671 pr_cont_pool_info(pool);
4672
e66b39af
TH
4673 pr_cont(" active=%d/%d refcnt=%d%s\n",
4674 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4675 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4676
4677 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4678 if (worker->current_pwq == pwq) {
4679 has_in_flight = true;
4680 break;
4681 }
4682 }
4683 if (has_in_flight) {
4684 bool comma = false;
4685
4686 pr_info(" in-flight:");
4687 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4688 if (worker->current_pwq != pwq)
4689 continue;
4690
d75f773c 4691 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4692 task_pid_nr(worker->task),
30ae2fc0 4693 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4694 worker->current_func);
4695 list_for_each_entry(work, &worker->scheduled, entry)
4696 pr_cont_work(false, work);
4697 comma = true;
4698 }
4699 pr_cont("\n");
4700 }
4701
4702 list_for_each_entry(work, &pool->worklist, entry) {
4703 if (get_work_pwq(work) == pwq) {
4704 has_pending = true;
4705 break;
4706 }
4707 }
4708 if (has_pending) {
4709 bool comma = false;
4710
4711 pr_info(" pending:");
4712 list_for_each_entry(work, &pool->worklist, entry) {
4713 if (get_work_pwq(work) != pwq)
4714 continue;
4715
4716 pr_cont_work(comma, work);
4717 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4718 }
4719 pr_cont("\n");
4720 }
4721
4722 if (!list_empty(&pwq->delayed_works)) {
4723 bool comma = false;
4724
4725 pr_info(" delayed:");
4726 list_for_each_entry(work, &pwq->delayed_works, entry) {
4727 pr_cont_work(comma, work);
4728 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4729 }
4730 pr_cont("\n");
4731 }
4732}
4733
4734/**
4735 * show_workqueue_state - dump workqueue state
4736 *
7b776af6
RL
4737 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4738 * all busy workqueues and pools.
3494fc30
TH
4739 */
4740void show_workqueue_state(void)
4741{
4742 struct workqueue_struct *wq;
4743 struct worker_pool *pool;
4744 unsigned long flags;
4745 int pi;
4746
24acfb71 4747 rcu_read_lock();
3494fc30
TH
4748
4749 pr_info("Showing busy workqueues and worker pools:\n");
4750
4751 list_for_each_entry_rcu(wq, &workqueues, list) {
4752 struct pool_workqueue *pwq;
4753 bool idle = true;
4754
4755 for_each_pwq(pwq, wq) {
4756 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4757 idle = false;
4758 break;
4759 }
4760 }
4761 if (idle)
4762 continue;
4763
4764 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4765
4766 for_each_pwq(pwq, wq) {
4767 spin_lock_irqsave(&pwq->pool->lock, flags);
4768 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4769 show_pwq(pwq);
4770 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4771 /*
4772 * We could be printing a lot from atomic context, e.g.
4773 * sysrq-t -> show_workqueue_state(). Avoid triggering
4774 * hard lockup.
4775 */
4776 touch_nmi_watchdog();
3494fc30
TH
4777 }
4778 }
4779
4780 for_each_pool(pool, pi) {
4781 struct worker *worker;
4782 bool first = true;
4783
4784 spin_lock_irqsave(&pool->lock, flags);
4785 if (pool->nr_workers == pool->nr_idle)
4786 goto next_pool;
4787
4788 pr_info("pool %d:", pool->id);
4789 pr_cont_pool_info(pool);
82607adc
TH
4790 pr_cont(" hung=%us workers=%d",
4791 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4792 pool->nr_workers);
3494fc30
TH
4793 if (pool->manager)
4794 pr_cont(" manager: %d",
4795 task_pid_nr(pool->manager->task));
4796 list_for_each_entry(worker, &pool->idle_list, entry) {
4797 pr_cont(" %s%d", first ? "idle: " : "",
4798 task_pid_nr(worker->task));
4799 first = false;
4800 }
4801 pr_cont("\n");
4802 next_pool:
4803 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4804 /*
4805 * We could be printing a lot from atomic context, e.g.
4806 * sysrq-t -> show_workqueue_state(). Avoid triggering
4807 * hard lockup.
4808 */
4809 touch_nmi_watchdog();
3494fc30
TH
4810 }
4811
24acfb71 4812 rcu_read_unlock();
3494fc30
TH
4813}
4814
6b59808b
TH
4815/* used to show worker information through /proc/PID/{comm,stat,status} */
4816void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4817{
6b59808b
TH
4818 int off;
4819
4820 /* always show the actual comm */
4821 off = strscpy(buf, task->comm, size);
4822 if (off < 0)
4823 return;
4824
197f6acc 4825 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4826 mutex_lock(&wq_pool_attach_mutex);
4827
197f6acc
TH
4828 if (task->flags & PF_WQ_WORKER) {
4829 struct worker *worker = kthread_data(task);
4830 struct worker_pool *pool = worker->pool;
6b59808b 4831
197f6acc
TH
4832 if (pool) {
4833 spin_lock_irq(&pool->lock);
4834 /*
4835 * ->desc tracks information (wq name or
4836 * set_worker_desc()) for the latest execution. If
4837 * current, prepend '+', otherwise '-'.
4838 */
4839 if (worker->desc[0] != '\0') {
4840 if (worker->current_work)
4841 scnprintf(buf + off, size - off, "+%s",
4842 worker->desc);
4843 else
4844 scnprintf(buf + off, size - off, "-%s",
4845 worker->desc);
4846 }
4847 spin_unlock_irq(&pool->lock);
6b59808b 4848 }
6b59808b
TH
4849 }
4850
4851 mutex_unlock(&wq_pool_attach_mutex);
4852}
4853
66448bc2
MM
4854#ifdef CONFIG_SMP
4855
db7bccf4
TH
4856/*
4857 * CPU hotplug.
4858 *
e22bee78 4859 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4860 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4861 * pool which make migrating pending and scheduled works very
e22bee78 4862 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4863 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4864 * blocked draining impractical.
4865 *
24647570 4866 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4867 * running as an unbound one and allowing it to be reattached later if the
4868 * cpu comes back online.
db7bccf4 4869 */
1da177e4 4870
e8b3f8db 4871static void unbind_workers(int cpu)
3af24433 4872{
4ce62e9e 4873 struct worker_pool *pool;
db7bccf4 4874 struct worker *worker;
3af24433 4875
f02ae73a 4876 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4877 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4878 spin_lock_irq(&pool->lock);
3af24433 4879
94cf58bb 4880 /*
92f9c5c4 4881 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4882 * unbound and set DISASSOCIATED. Before this, all workers
4883 * except for the ones which are still executing works from
4884 * before the last CPU down must be on the cpu. After
4885 * this, they may become diasporas.
4886 */
da028469 4887 for_each_pool_worker(worker, pool)
c9e7cf27 4888 worker->flags |= WORKER_UNBOUND;
06ba38a9 4889
24647570 4890 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4891
94cf58bb 4892 spin_unlock_irq(&pool->lock);
1258fae7 4893 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4894
eb283428
LJ
4895 /*
4896 * Call schedule() so that we cross rq->lock and thus can
4897 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4898 * This is necessary as scheduler callbacks may be invoked
4899 * from other cpus.
4900 */
4901 schedule();
06ba38a9 4902
eb283428
LJ
4903 /*
4904 * Sched callbacks are disabled now. Zap nr_running.
4905 * After this, nr_running stays zero and need_more_worker()
4906 * and keep_working() are always true as long as the
4907 * worklist is not empty. This pool now behaves as an
4908 * unbound (in terms of concurrency management) pool which
4909 * are served by workers tied to the pool.
4910 */
e19e397a 4911 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4912
4913 /*
4914 * With concurrency management just turned off, a busy
4915 * worker blocking could lead to lengthy stalls. Kick off
4916 * unbound chain execution of currently pending work items.
4917 */
4918 spin_lock_irq(&pool->lock);
4919 wake_up_worker(pool);
4920 spin_unlock_irq(&pool->lock);
4921 }
3af24433 4922}
3af24433 4923
bd7c089e
TH
4924/**
4925 * rebind_workers - rebind all workers of a pool to the associated CPU
4926 * @pool: pool of interest
4927 *
a9ab775b 4928 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4929 */
4930static void rebind_workers(struct worker_pool *pool)
4931{
a9ab775b 4932 struct worker *worker;
bd7c089e 4933
1258fae7 4934 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4935
a9ab775b
TH
4936 /*
4937 * Restore CPU affinity of all workers. As all idle workers should
4938 * be on the run-queue of the associated CPU before any local
402dd89d 4939 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4940 * of all workers first and then clear UNBOUND. As we're called
4941 * from CPU_ONLINE, the following shouldn't fail.
4942 */
da028469 4943 for_each_pool_worker(worker, pool)
a9ab775b
TH
4944 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4945 pool->attrs->cpumask) < 0);
bd7c089e 4946
a9ab775b 4947 spin_lock_irq(&pool->lock);
f7c17d26 4948
3de5e884 4949 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4950
da028469 4951 for_each_pool_worker(worker, pool) {
a9ab775b 4952 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4953
4954 /*
a9ab775b
TH
4955 * A bound idle worker should actually be on the runqueue
4956 * of the associated CPU for local wake-ups targeting it to
4957 * work. Kick all idle workers so that they migrate to the
4958 * associated CPU. Doing this in the same loop as
4959 * replacing UNBOUND with REBOUND is safe as no worker will
4960 * be bound before @pool->lock is released.
bd7c089e 4961 */
a9ab775b
TH
4962 if (worker_flags & WORKER_IDLE)
4963 wake_up_process(worker->task);
bd7c089e 4964
a9ab775b
TH
4965 /*
4966 * We want to clear UNBOUND but can't directly call
4967 * worker_clr_flags() or adjust nr_running. Atomically
4968 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4969 * @worker will clear REBOUND using worker_clr_flags() when
4970 * it initiates the next execution cycle thus restoring
4971 * concurrency management. Note that when or whether
4972 * @worker clears REBOUND doesn't affect correctness.
4973 *
c95491ed 4974 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 4975 * tested without holding any lock in
6d25be57 4976 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
4977 * fail incorrectly leading to premature concurrency
4978 * management operations.
4979 */
4980 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4981 worker_flags |= WORKER_REBOUND;
4982 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4983 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4984 }
a9ab775b
TH
4985
4986 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4987}
4988
7dbc725e
TH
4989/**
4990 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4991 * @pool: unbound pool of interest
4992 * @cpu: the CPU which is coming up
4993 *
4994 * An unbound pool may end up with a cpumask which doesn't have any online
4995 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4996 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4997 * online CPU before, cpus_allowed of all its workers should be restored.
4998 */
4999static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5000{
5001 static cpumask_t cpumask;
5002 struct worker *worker;
7dbc725e 5003
1258fae7 5004 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5005
5006 /* is @cpu allowed for @pool? */
5007 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5008 return;
5009
7dbc725e 5010 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5011
5012 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5013 for_each_pool_worker(worker, pool)
d945b5e9 5014 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5015}
5016
7ee681b2
TG
5017int workqueue_prepare_cpu(unsigned int cpu)
5018{
5019 struct worker_pool *pool;
5020
5021 for_each_cpu_worker_pool(pool, cpu) {
5022 if (pool->nr_workers)
5023 continue;
5024 if (!create_worker(pool))
5025 return -ENOMEM;
5026 }
5027 return 0;
5028}
5029
5030int workqueue_online_cpu(unsigned int cpu)
3af24433 5031{
4ce62e9e 5032 struct worker_pool *pool;
4c16bd32 5033 struct workqueue_struct *wq;
7dbc725e 5034 int pi;
3ce63377 5035
7ee681b2 5036 mutex_lock(&wq_pool_mutex);
7dbc725e 5037
7ee681b2 5038 for_each_pool(pool, pi) {
1258fae7 5039 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5040
7ee681b2
TG
5041 if (pool->cpu == cpu)
5042 rebind_workers(pool);
5043 else if (pool->cpu < 0)
5044 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5045
1258fae7 5046 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5047 }
6ba94429 5048
7ee681b2
TG
5049 /* update NUMA affinity of unbound workqueues */
5050 list_for_each_entry(wq, &workqueues, list)
5051 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5052
7ee681b2
TG
5053 mutex_unlock(&wq_pool_mutex);
5054 return 0;
6ba94429
FW
5055}
5056
7ee681b2 5057int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5058{
6ba94429
FW
5059 struct workqueue_struct *wq;
5060
7ee681b2 5061 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5062 if (WARN_ON(cpu != smp_processor_id()))
5063 return -1;
5064
5065 unbind_workers(cpu);
7ee681b2
TG
5066
5067 /* update NUMA affinity of unbound workqueues */
5068 mutex_lock(&wq_pool_mutex);
5069 list_for_each_entry(wq, &workqueues, list)
5070 wq_update_unbound_numa(wq, cpu, false);
5071 mutex_unlock(&wq_pool_mutex);
5072
7ee681b2 5073 return 0;
6ba94429
FW
5074}
5075
6ba94429
FW
5076struct work_for_cpu {
5077 struct work_struct work;
5078 long (*fn)(void *);
5079 void *arg;
5080 long ret;
5081};
5082
5083static void work_for_cpu_fn(struct work_struct *work)
5084{
5085 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5086
5087 wfc->ret = wfc->fn(wfc->arg);
5088}
5089
5090/**
22aceb31 5091 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5092 * @cpu: the cpu to run on
5093 * @fn: the function to run
5094 * @arg: the function arg
5095 *
5096 * It is up to the caller to ensure that the cpu doesn't go offline.
5097 * The caller must not hold any locks which would prevent @fn from completing.
5098 *
5099 * Return: The value @fn returns.
5100 */
5101long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5102{
5103 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5104
5105 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5106 schedule_work_on(cpu, &wfc.work);
5107 flush_work(&wfc.work);
5108 destroy_work_on_stack(&wfc.work);
5109 return wfc.ret;
5110}
5111EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5112
5113/**
5114 * work_on_cpu_safe - run a function in thread context on a particular cpu
5115 * @cpu: the cpu to run on
5116 * @fn: the function to run
5117 * @arg: the function argument
5118 *
5119 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5120 * any locks which would prevent @fn from completing.
5121 *
5122 * Return: The value @fn returns.
5123 */
5124long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5125{
5126 long ret = -ENODEV;
5127
5128 get_online_cpus();
5129 if (cpu_online(cpu))
5130 ret = work_on_cpu(cpu, fn, arg);
5131 put_online_cpus();
5132 return ret;
5133}
5134EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5135#endif /* CONFIG_SMP */
5136
5137#ifdef CONFIG_FREEZER
5138
5139/**
5140 * freeze_workqueues_begin - begin freezing workqueues
5141 *
5142 * Start freezing workqueues. After this function returns, all freezable
5143 * workqueues will queue new works to their delayed_works list instead of
5144 * pool->worklist.
5145 *
5146 * CONTEXT:
5147 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5148 */
5149void freeze_workqueues_begin(void)
5150{
5151 struct workqueue_struct *wq;
5152 struct pool_workqueue *pwq;
5153
5154 mutex_lock(&wq_pool_mutex);
5155
5156 WARN_ON_ONCE(workqueue_freezing);
5157 workqueue_freezing = true;
5158
5159 list_for_each_entry(wq, &workqueues, list) {
5160 mutex_lock(&wq->mutex);
5161 for_each_pwq(pwq, wq)
5162 pwq_adjust_max_active(pwq);
5163 mutex_unlock(&wq->mutex);
5164 }
5165
5166 mutex_unlock(&wq_pool_mutex);
5167}
5168
5169/**
5170 * freeze_workqueues_busy - are freezable workqueues still busy?
5171 *
5172 * Check whether freezing is complete. This function must be called
5173 * between freeze_workqueues_begin() and thaw_workqueues().
5174 *
5175 * CONTEXT:
5176 * Grabs and releases wq_pool_mutex.
5177 *
5178 * Return:
5179 * %true if some freezable workqueues are still busy. %false if freezing
5180 * is complete.
5181 */
5182bool freeze_workqueues_busy(void)
5183{
5184 bool busy = false;
5185 struct workqueue_struct *wq;
5186 struct pool_workqueue *pwq;
5187
5188 mutex_lock(&wq_pool_mutex);
5189
5190 WARN_ON_ONCE(!workqueue_freezing);
5191
5192 list_for_each_entry(wq, &workqueues, list) {
5193 if (!(wq->flags & WQ_FREEZABLE))
5194 continue;
5195 /*
5196 * nr_active is monotonically decreasing. It's safe
5197 * to peek without lock.
5198 */
24acfb71 5199 rcu_read_lock();
6ba94429
FW
5200 for_each_pwq(pwq, wq) {
5201 WARN_ON_ONCE(pwq->nr_active < 0);
5202 if (pwq->nr_active) {
5203 busy = true;
24acfb71 5204 rcu_read_unlock();
6ba94429
FW
5205 goto out_unlock;
5206 }
5207 }
24acfb71 5208 rcu_read_unlock();
6ba94429
FW
5209 }
5210out_unlock:
5211 mutex_unlock(&wq_pool_mutex);
5212 return busy;
5213}
5214
5215/**
5216 * thaw_workqueues - thaw workqueues
5217 *
5218 * Thaw workqueues. Normal queueing is restored and all collected
5219 * frozen works are transferred to their respective pool worklists.
5220 *
5221 * CONTEXT:
5222 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5223 */
5224void thaw_workqueues(void)
5225{
5226 struct workqueue_struct *wq;
5227 struct pool_workqueue *pwq;
5228
5229 mutex_lock(&wq_pool_mutex);
5230
5231 if (!workqueue_freezing)
5232 goto out_unlock;
5233
5234 workqueue_freezing = false;
5235
5236 /* restore max_active and repopulate worklist */
5237 list_for_each_entry(wq, &workqueues, list) {
5238 mutex_lock(&wq->mutex);
5239 for_each_pwq(pwq, wq)
5240 pwq_adjust_max_active(pwq);
5241 mutex_unlock(&wq->mutex);
5242 }
5243
5244out_unlock:
5245 mutex_unlock(&wq_pool_mutex);
5246}
5247#endif /* CONFIG_FREEZER */
5248
042f7df1
LJ
5249static int workqueue_apply_unbound_cpumask(void)
5250{
5251 LIST_HEAD(ctxs);
5252 int ret = 0;
5253 struct workqueue_struct *wq;
5254 struct apply_wqattrs_ctx *ctx, *n;
5255
5256 lockdep_assert_held(&wq_pool_mutex);
5257
5258 list_for_each_entry(wq, &workqueues, list) {
5259 if (!(wq->flags & WQ_UNBOUND))
5260 continue;
5261 /* creating multiple pwqs breaks ordering guarantee */
5262 if (wq->flags & __WQ_ORDERED)
5263 continue;
5264
5265 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5266 if (!ctx) {
5267 ret = -ENOMEM;
5268 break;
5269 }
5270
5271 list_add_tail(&ctx->list, &ctxs);
5272 }
5273
5274 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5275 if (!ret)
5276 apply_wqattrs_commit(ctx);
5277 apply_wqattrs_cleanup(ctx);
5278 }
5279
5280 return ret;
5281}
5282
5283/**
5284 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5285 * @cpumask: the cpumask to set
5286 *
5287 * The low-level workqueues cpumask is a global cpumask that limits
5288 * the affinity of all unbound workqueues. This function check the @cpumask
5289 * and apply it to all unbound workqueues and updates all pwqs of them.
5290 *
5291 * Retun: 0 - Success
5292 * -EINVAL - Invalid @cpumask
5293 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5294 */
5295int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5296{
5297 int ret = -EINVAL;
5298 cpumask_var_t saved_cpumask;
5299
5300 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5301 return -ENOMEM;
5302
c98a9805
TS
5303 /*
5304 * Not excluding isolated cpus on purpose.
5305 * If the user wishes to include them, we allow that.
5306 */
042f7df1
LJ
5307 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5308 if (!cpumask_empty(cpumask)) {
a0111cf6 5309 apply_wqattrs_lock();
042f7df1
LJ
5310
5311 /* save the old wq_unbound_cpumask. */
5312 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5313
5314 /* update wq_unbound_cpumask at first and apply it to wqs. */
5315 cpumask_copy(wq_unbound_cpumask, cpumask);
5316 ret = workqueue_apply_unbound_cpumask();
5317
5318 /* restore the wq_unbound_cpumask when failed. */
5319 if (ret < 0)
5320 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5321
a0111cf6 5322 apply_wqattrs_unlock();
042f7df1 5323 }
042f7df1
LJ
5324
5325 free_cpumask_var(saved_cpumask);
5326 return ret;
5327}
5328
6ba94429
FW
5329#ifdef CONFIG_SYSFS
5330/*
5331 * Workqueues with WQ_SYSFS flag set is visible to userland via
5332 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5333 * following attributes.
5334 *
5335 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5336 * max_active RW int : maximum number of in-flight work items
5337 *
5338 * Unbound workqueues have the following extra attributes.
5339 *
9a19b463 5340 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5341 * nice RW int : nice value of the workers
5342 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5343 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5344 */
5345struct wq_device {
5346 struct workqueue_struct *wq;
5347 struct device dev;
5348};
5349
5350static struct workqueue_struct *dev_to_wq(struct device *dev)
5351{
5352 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5353
5354 return wq_dev->wq;
5355}
5356
5357static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5358 char *buf)
5359{
5360 struct workqueue_struct *wq = dev_to_wq(dev);
5361
5362 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5363}
5364static DEVICE_ATTR_RO(per_cpu);
5365
5366static ssize_t max_active_show(struct device *dev,
5367 struct device_attribute *attr, char *buf)
5368{
5369 struct workqueue_struct *wq = dev_to_wq(dev);
5370
5371 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5372}
5373
5374static ssize_t max_active_store(struct device *dev,
5375 struct device_attribute *attr, const char *buf,
5376 size_t count)
5377{
5378 struct workqueue_struct *wq = dev_to_wq(dev);
5379 int val;
5380
5381 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5382 return -EINVAL;
5383
5384 workqueue_set_max_active(wq, val);
5385 return count;
5386}
5387static DEVICE_ATTR_RW(max_active);
5388
5389static struct attribute *wq_sysfs_attrs[] = {
5390 &dev_attr_per_cpu.attr,
5391 &dev_attr_max_active.attr,
5392 NULL,
5393};
5394ATTRIBUTE_GROUPS(wq_sysfs);
5395
5396static ssize_t wq_pool_ids_show(struct device *dev,
5397 struct device_attribute *attr, char *buf)
5398{
5399 struct workqueue_struct *wq = dev_to_wq(dev);
5400 const char *delim = "";
5401 int node, written = 0;
5402
24acfb71
TG
5403 get_online_cpus();
5404 rcu_read_lock();
6ba94429
FW
5405 for_each_node(node) {
5406 written += scnprintf(buf + written, PAGE_SIZE - written,
5407 "%s%d:%d", delim, node,
5408 unbound_pwq_by_node(wq, node)->pool->id);
5409 delim = " ";
5410 }
5411 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5412 rcu_read_unlock();
5413 put_online_cpus();
6ba94429
FW
5414
5415 return written;
5416}
5417
5418static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5419 char *buf)
5420{
5421 struct workqueue_struct *wq = dev_to_wq(dev);
5422 int written;
5423
5424 mutex_lock(&wq->mutex);
5425 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5426 mutex_unlock(&wq->mutex);
5427
5428 return written;
5429}
5430
5431/* prepare workqueue_attrs for sysfs store operations */
5432static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5433{
5434 struct workqueue_attrs *attrs;
5435
899a94fe
LJ
5436 lockdep_assert_held(&wq_pool_mutex);
5437
be69d00d 5438 attrs = alloc_workqueue_attrs();
6ba94429
FW
5439 if (!attrs)
5440 return NULL;
5441
6ba94429 5442 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5443 return attrs;
5444}
5445
5446static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5447 const char *buf, size_t count)
5448{
5449 struct workqueue_struct *wq = dev_to_wq(dev);
5450 struct workqueue_attrs *attrs;
d4d3e257
LJ
5451 int ret = -ENOMEM;
5452
5453 apply_wqattrs_lock();
6ba94429
FW
5454
5455 attrs = wq_sysfs_prep_attrs(wq);
5456 if (!attrs)
d4d3e257 5457 goto out_unlock;
6ba94429
FW
5458
5459 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5460 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5461 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5462 else
5463 ret = -EINVAL;
5464
d4d3e257
LJ
5465out_unlock:
5466 apply_wqattrs_unlock();
6ba94429
FW
5467 free_workqueue_attrs(attrs);
5468 return ret ?: count;
5469}
5470
5471static ssize_t wq_cpumask_show(struct device *dev,
5472 struct device_attribute *attr, char *buf)
5473{
5474 struct workqueue_struct *wq = dev_to_wq(dev);
5475 int written;
5476
5477 mutex_lock(&wq->mutex);
5478 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5479 cpumask_pr_args(wq->unbound_attrs->cpumask));
5480 mutex_unlock(&wq->mutex);
5481 return written;
5482}
5483
5484static ssize_t wq_cpumask_store(struct device *dev,
5485 struct device_attribute *attr,
5486 const char *buf, size_t count)
5487{
5488 struct workqueue_struct *wq = dev_to_wq(dev);
5489 struct workqueue_attrs *attrs;
d4d3e257
LJ
5490 int ret = -ENOMEM;
5491
5492 apply_wqattrs_lock();
6ba94429
FW
5493
5494 attrs = wq_sysfs_prep_attrs(wq);
5495 if (!attrs)
d4d3e257 5496 goto out_unlock;
6ba94429
FW
5497
5498 ret = cpumask_parse(buf, attrs->cpumask);
5499 if (!ret)
d4d3e257 5500 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5501
d4d3e257
LJ
5502out_unlock:
5503 apply_wqattrs_unlock();
6ba94429
FW
5504 free_workqueue_attrs(attrs);
5505 return ret ?: count;
5506}
5507
5508static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5509 char *buf)
5510{
5511 struct workqueue_struct *wq = dev_to_wq(dev);
5512 int written;
7dbc725e 5513
6ba94429
FW
5514 mutex_lock(&wq->mutex);
5515 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5516 !wq->unbound_attrs->no_numa);
5517 mutex_unlock(&wq->mutex);
4c16bd32 5518
6ba94429 5519 return written;
65758202
TH
5520}
5521
6ba94429
FW
5522static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5523 const char *buf, size_t count)
65758202 5524{
6ba94429
FW
5525 struct workqueue_struct *wq = dev_to_wq(dev);
5526 struct workqueue_attrs *attrs;
d4d3e257
LJ
5527 int v, ret = -ENOMEM;
5528
5529 apply_wqattrs_lock();
4c16bd32 5530
6ba94429
FW
5531 attrs = wq_sysfs_prep_attrs(wq);
5532 if (!attrs)
d4d3e257 5533 goto out_unlock;
4c16bd32 5534
6ba94429
FW
5535 ret = -EINVAL;
5536 if (sscanf(buf, "%d", &v) == 1) {
5537 attrs->no_numa = !v;
d4d3e257 5538 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5539 }
6ba94429 5540
d4d3e257
LJ
5541out_unlock:
5542 apply_wqattrs_unlock();
6ba94429
FW
5543 free_workqueue_attrs(attrs);
5544 return ret ?: count;
65758202
TH
5545}
5546
6ba94429
FW
5547static struct device_attribute wq_sysfs_unbound_attrs[] = {
5548 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5549 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5550 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5551 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5552 __ATTR_NULL,
5553};
8ccad40d 5554
6ba94429
FW
5555static struct bus_type wq_subsys = {
5556 .name = "workqueue",
5557 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5558};
5559
b05a7928
FW
5560static ssize_t wq_unbound_cpumask_show(struct device *dev,
5561 struct device_attribute *attr, char *buf)
5562{
5563 int written;
5564
042f7df1 5565 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5566 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5567 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5568 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5569
5570 return written;
5571}
5572
042f7df1
LJ
5573static ssize_t wq_unbound_cpumask_store(struct device *dev,
5574 struct device_attribute *attr, const char *buf, size_t count)
5575{
5576 cpumask_var_t cpumask;
5577 int ret;
5578
5579 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5580 return -ENOMEM;
5581
5582 ret = cpumask_parse(buf, cpumask);
5583 if (!ret)
5584 ret = workqueue_set_unbound_cpumask(cpumask);
5585
5586 free_cpumask_var(cpumask);
5587 return ret ? ret : count;
5588}
5589
b05a7928 5590static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5591 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5592 wq_unbound_cpumask_store);
b05a7928 5593
6ba94429 5594static int __init wq_sysfs_init(void)
2d3854a3 5595{
b05a7928
FW
5596 int err;
5597
5598 err = subsys_virtual_register(&wq_subsys, NULL);
5599 if (err)
5600 return err;
5601
5602 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5603}
6ba94429 5604core_initcall(wq_sysfs_init);
2d3854a3 5605
6ba94429 5606static void wq_device_release(struct device *dev)
2d3854a3 5607{
6ba94429 5608 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5609
6ba94429 5610 kfree(wq_dev);
2d3854a3 5611}
a0a1a5fd
TH
5612
5613/**
6ba94429
FW
5614 * workqueue_sysfs_register - make a workqueue visible in sysfs
5615 * @wq: the workqueue to register
a0a1a5fd 5616 *
6ba94429
FW
5617 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5618 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5619 * which is the preferred method.
a0a1a5fd 5620 *
6ba94429
FW
5621 * Workqueue user should use this function directly iff it wants to apply
5622 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5623 * apply_workqueue_attrs() may race against userland updating the
5624 * attributes.
5625 *
5626 * Return: 0 on success, -errno on failure.
a0a1a5fd 5627 */
6ba94429 5628int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5629{
6ba94429
FW
5630 struct wq_device *wq_dev;
5631 int ret;
a0a1a5fd 5632
6ba94429 5633 /*
402dd89d 5634 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5635 * attributes breaks ordering guarantee. Disallow exposing ordered
5636 * workqueues.
5637 */
0a94efb5 5638 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5639 return -EINVAL;
a0a1a5fd 5640
6ba94429
FW
5641 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5642 if (!wq_dev)
5643 return -ENOMEM;
5bcab335 5644
6ba94429
FW
5645 wq_dev->wq = wq;
5646 wq_dev->dev.bus = &wq_subsys;
6ba94429 5647 wq_dev->dev.release = wq_device_release;
23217b44 5648 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5649
6ba94429
FW
5650 /*
5651 * unbound_attrs are created separately. Suppress uevent until
5652 * everything is ready.
5653 */
5654 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5655
6ba94429
FW
5656 ret = device_register(&wq_dev->dev);
5657 if (ret) {
537f4146 5658 put_device(&wq_dev->dev);
6ba94429
FW
5659 wq->wq_dev = NULL;
5660 return ret;
5661 }
a0a1a5fd 5662
6ba94429
FW
5663 if (wq->flags & WQ_UNBOUND) {
5664 struct device_attribute *attr;
a0a1a5fd 5665
6ba94429
FW
5666 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5667 ret = device_create_file(&wq_dev->dev, attr);
5668 if (ret) {
5669 device_unregister(&wq_dev->dev);
5670 wq->wq_dev = NULL;
5671 return ret;
a0a1a5fd
TH
5672 }
5673 }
5674 }
6ba94429
FW
5675
5676 dev_set_uevent_suppress(&wq_dev->dev, false);
5677 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5678 return 0;
a0a1a5fd
TH
5679}
5680
5681/**
6ba94429
FW
5682 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5683 * @wq: the workqueue to unregister
a0a1a5fd 5684 *
6ba94429 5685 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5686 */
6ba94429 5687static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5688{
6ba94429 5689 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5690
6ba94429
FW
5691 if (!wq->wq_dev)
5692 return;
a0a1a5fd 5693
6ba94429
FW
5694 wq->wq_dev = NULL;
5695 device_unregister(&wq_dev->dev);
a0a1a5fd 5696}
6ba94429
FW
5697#else /* CONFIG_SYSFS */
5698static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5699#endif /* CONFIG_SYSFS */
a0a1a5fd 5700
82607adc
TH
5701/*
5702 * Workqueue watchdog.
5703 *
5704 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5705 * flush dependency, a concurrency managed work item which stays RUNNING
5706 * indefinitely. Workqueue stalls can be very difficult to debug as the
5707 * usual warning mechanisms don't trigger and internal workqueue state is
5708 * largely opaque.
5709 *
5710 * Workqueue watchdog monitors all worker pools periodically and dumps
5711 * state if some pools failed to make forward progress for a while where
5712 * forward progress is defined as the first item on ->worklist changing.
5713 *
5714 * This mechanism is controlled through the kernel parameter
5715 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5716 * corresponding sysfs parameter file.
5717 */
5718#ifdef CONFIG_WQ_WATCHDOG
5719
82607adc 5720static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5721static struct timer_list wq_watchdog_timer;
82607adc
TH
5722
5723static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5724static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5725
5726static void wq_watchdog_reset_touched(void)
5727{
5728 int cpu;
5729
5730 wq_watchdog_touched = jiffies;
5731 for_each_possible_cpu(cpu)
5732 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5733}
5734
5cd79d6a 5735static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5736{
5737 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5738 bool lockup_detected = false;
5739 struct worker_pool *pool;
5740 int pi;
5741
5742 if (!thresh)
5743 return;
5744
5745 rcu_read_lock();
5746
5747 for_each_pool(pool, pi) {
5748 unsigned long pool_ts, touched, ts;
5749
5750 if (list_empty(&pool->worklist))
5751 continue;
5752
5753 /* get the latest of pool and touched timestamps */
5754 pool_ts = READ_ONCE(pool->watchdog_ts);
5755 touched = READ_ONCE(wq_watchdog_touched);
5756
5757 if (time_after(pool_ts, touched))
5758 ts = pool_ts;
5759 else
5760 ts = touched;
5761
5762 if (pool->cpu >= 0) {
5763 unsigned long cpu_touched =
5764 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5765 pool->cpu));
5766 if (time_after(cpu_touched, ts))
5767 ts = cpu_touched;
5768 }
5769
5770 /* did we stall? */
5771 if (time_after(jiffies, ts + thresh)) {
5772 lockup_detected = true;
5773 pr_emerg("BUG: workqueue lockup - pool");
5774 pr_cont_pool_info(pool);
5775 pr_cont(" stuck for %us!\n",
5776 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5777 }
5778 }
5779
5780 rcu_read_unlock();
5781
5782 if (lockup_detected)
5783 show_workqueue_state();
5784
5785 wq_watchdog_reset_touched();
5786 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5787}
5788
cb9d7fd5 5789notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5790{
5791 if (cpu >= 0)
5792 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5793 else
5794 wq_watchdog_touched = jiffies;
5795}
5796
5797static void wq_watchdog_set_thresh(unsigned long thresh)
5798{
5799 wq_watchdog_thresh = 0;
5800 del_timer_sync(&wq_watchdog_timer);
5801
5802 if (thresh) {
5803 wq_watchdog_thresh = thresh;
5804 wq_watchdog_reset_touched();
5805 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5806 }
5807}
5808
5809static int wq_watchdog_param_set_thresh(const char *val,
5810 const struct kernel_param *kp)
5811{
5812 unsigned long thresh;
5813 int ret;
5814
5815 ret = kstrtoul(val, 0, &thresh);
5816 if (ret)
5817 return ret;
5818
5819 if (system_wq)
5820 wq_watchdog_set_thresh(thresh);
5821 else
5822 wq_watchdog_thresh = thresh;
5823
5824 return 0;
5825}
5826
5827static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5828 .set = wq_watchdog_param_set_thresh,
5829 .get = param_get_ulong,
5830};
5831
5832module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5833 0644);
5834
5835static void wq_watchdog_init(void)
5836{
5cd79d6a 5837 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5838 wq_watchdog_set_thresh(wq_watchdog_thresh);
5839}
5840
5841#else /* CONFIG_WQ_WATCHDOG */
5842
5843static inline void wq_watchdog_init(void) { }
5844
5845#endif /* CONFIG_WQ_WATCHDOG */
5846
bce90380
TH
5847static void __init wq_numa_init(void)
5848{
5849 cpumask_var_t *tbl;
5850 int node, cpu;
5851
bce90380
TH
5852 if (num_possible_nodes() <= 1)
5853 return;
5854
d55262c4
TH
5855 if (wq_disable_numa) {
5856 pr_info("workqueue: NUMA affinity support disabled\n");
5857 return;
5858 }
5859
be69d00d 5860 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5861 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5862
bce90380
TH
5863 /*
5864 * We want masks of possible CPUs of each node which isn't readily
5865 * available. Build one from cpu_to_node() which should have been
5866 * fully initialized by now.
5867 */
6396bb22 5868 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5869 BUG_ON(!tbl);
5870
5871 for_each_node(node)
5a6024f1 5872 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5873 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5874
5875 for_each_possible_cpu(cpu) {
5876 node = cpu_to_node(cpu);
5877 if (WARN_ON(node == NUMA_NO_NODE)) {
5878 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5879 /* happens iff arch is bonkers, let's just proceed */
5880 return;
5881 }
5882 cpumask_set_cpu(cpu, tbl[node]);
5883 }
5884
5885 wq_numa_possible_cpumask = tbl;
5886 wq_numa_enabled = true;
5887}
5888
3347fa09
TH
5889/**
5890 * workqueue_init_early - early init for workqueue subsystem
5891 *
5892 * This is the first half of two-staged workqueue subsystem initialization
5893 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5894 * idr are up. It sets up all the data structures and system workqueues
5895 * and allows early boot code to create workqueues and queue/cancel work
5896 * items. Actual work item execution starts only after kthreads can be
5897 * created and scheduled right before early initcalls.
5898 */
5899int __init workqueue_init_early(void)
1da177e4 5900{
7a4e344c 5901 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5902 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5903 int i, cpu;
c34056a3 5904
e904e6c2
TH
5905 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5906
b05a7928 5907 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5908 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5909
e904e6c2
TH
5910 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5911
706026c2 5912 /* initialize CPU pools */
29c91e99 5913 for_each_possible_cpu(cpu) {
4ce62e9e 5914 struct worker_pool *pool;
8b03ae3c 5915
7a4e344c 5916 i = 0;
f02ae73a 5917 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5918 BUG_ON(init_worker_pool(pool));
ec22ca5e 5919 pool->cpu = cpu;
29c91e99 5920 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5921 pool->attrs->nice = std_nice[i++];
f3f90ad4 5922 pool->node = cpu_to_node(cpu);
7a4e344c 5923
9daf9e67 5924 /* alloc pool ID */
68e13a67 5925 mutex_lock(&wq_pool_mutex);
9daf9e67 5926 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5927 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5928 }
8b03ae3c
TH
5929 }
5930
8a2b7538 5931 /* create default unbound and ordered wq attrs */
29c91e99
TH
5932 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5933 struct workqueue_attrs *attrs;
5934
be69d00d 5935 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 5936 attrs->nice = std_nice[i];
29c91e99 5937 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5938
5939 /*
5940 * An ordered wq should have only one pwq as ordering is
5941 * guaranteed by max_active which is enforced by pwqs.
5942 * Turn off NUMA so that dfl_pwq is used for all nodes.
5943 */
be69d00d 5944 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
5945 attrs->nice = std_nice[i];
5946 attrs->no_numa = true;
5947 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5948 }
5949
d320c038 5950 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5951 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5952 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5953 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5954 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5955 system_freezable_wq = alloc_workqueue("events_freezable",
5956 WQ_FREEZABLE, 0);
0668106c
VK
5957 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5958 WQ_POWER_EFFICIENT, 0);
5959 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5960 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5961 0);
1aabe902 5962 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5963 !system_unbound_wq || !system_freezable_wq ||
5964 !system_power_efficient_wq ||
5965 !system_freezable_power_efficient_wq);
82607adc 5966
3347fa09
TH
5967 return 0;
5968}
5969
5970/**
5971 * workqueue_init - bring workqueue subsystem fully online
5972 *
5973 * This is the latter half of two-staged workqueue subsystem initialization
5974 * and invoked as soon as kthreads can be created and scheduled.
5975 * Workqueues have been created and work items queued on them, but there
5976 * are no kworkers executing the work items yet. Populate the worker pools
5977 * with the initial workers and enable future kworker creations.
5978 */
5979int __init workqueue_init(void)
5980{
2186d9f9 5981 struct workqueue_struct *wq;
3347fa09
TH
5982 struct worker_pool *pool;
5983 int cpu, bkt;
5984
2186d9f9
TH
5985 /*
5986 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5987 * CPU to node mapping may not be available that early on some
5988 * archs such as power and arm64. As per-cpu pools created
5989 * previously could be missing node hint and unbound pools NUMA
5990 * affinity, fix them up.
40c17f75
TH
5991 *
5992 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5993 */
5994 wq_numa_init();
5995
5996 mutex_lock(&wq_pool_mutex);
5997
5998 for_each_possible_cpu(cpu) {
5999 for_each_cpu_worker_pool(pool, cpu) {
6000 pool->node = cpu_to_node(cpu);
6001 }
6002 }
6003
40c17f75 6004 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6005 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6006 WARN(init_rescuer(wq),
6007 "workqueue: failed to create early rescuer for %s",
6008 wq->name);
6009 }
2186d9f9
TH
6010
6011 mutex_unlock(&wq_pool_mutex);
6012
3347fa09
TH
6013 /* create the initial workers */
6014 for_each_online_cpu(cpu) {
6015 for_each_cpu_worker_pool(pool, cpu) {
6016 pool->flags &= ~POOL_DISASSOCIATED;
6017 BUG_ON(!create_worker(pool));
6018 }
6019 }
6020
6021 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6022 BUG_ON(!create_worker(pool));
6023
6024 wq_online = true;
82607adc
TH
6025 wq_watchdog_init();
6026
6ee0578b 6027 return 0;
1da177e4 6028}