]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/workqueue.c
workqueue: make workqueue->name[] fixed len
[mirror_ubuntu-eoan-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
e22bee78 48
ea138446 49#include "workqueue_internal.h"
1da177e4 50
c8e55f36 51enum {
24647570
TH
52 /*
53 * worker_pool flags
bc2ae0f5 54 *
24647570 55 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
56 * While associated (!DISASSOCIATED), all workers are bound to the
57 * CPU and none has %WORKER_UNBOUND set and concurrency management
58 * is in effect.
59 *
60 * While DISASSOCIATED, the cpu may be offline and all workers have
61 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 62 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 63 *
bc3a1afc
TH
64 * Note that DISASSOCIATED should be flipped only while holding
65 * manager_mutex to avoid changing binding state while
24647570 66 * create_worker() is in progress.
bc2ae0f5 67 */
11ebea50 68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 69 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 70 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 71
c8e55f36
TH
72 /* worker flags */
73 WORKER_STARTED = 1 << 0, /* started */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
3270476a 103 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
822d8405
TH
124 * MG: pool->manager_mutex and pool->lock protected. Writes require both
125 * locks. Reads can happen under either lock.
126 *
68e13a67 127 * PL: wq_pool_mutex protected.
5bcab335 128 *
68e13a67 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 130 *
3c25a55d
LJ
131 * WQ: wq->mutex protected.
132 *
b5927605 133 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
134 *
135 * MD: wq_mayday_lock protected.
1da177e4 136 */
1da177e4 137
2eaebdb3 138/* struct worker is defined in workqueue_internal.h */
c34056a3 139
bd7bdd43 140struct worker_pool {
d565ed63 141 spinlock_t lock; /* the pool lock */
d84ff051 142 int cpu; /* I: the associated cpu */
f3f90ad4 143 int node; /* I: the associated node ID */
9daf9e67 144 int id; /* I: pool ID */
11ebea50 145 unsigned int flags; /* X: flags */
bd7bdd43
TH
146
147 struct list_head worklist; /* L: list of pending works */
148 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
149
150 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
151 int nr_idle; /* L: currently idle ones */
152
153 struct list_head idle_list; /* X: list of idle workers */
154 struct timer_list idle_timer; /* L: worker idle timeout */
155 struct timer_list mayday_timer; /* L: SOS timer for workers */
156
c5aa87bb 157 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
159 /* L: hash of busy workers */
160
bc3a1afc 161 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 162 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 163 struct mutex manager_mutex; /* manager exclusion */
822d8405 164 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 165
7a4e344c 166 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
167 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
168 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 169
e19e397a
TH
170 /*
171 * The current concurrency level. As it's likely to be accessed
172 * from other CPUs during try_to_wake_up(), put it in a separate
173 * cacheline.
174 */
175 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
176
177 /*
178 * Destruction of pool is sched-RCU protected to allow dereferences
179 * from get_work_pool().
180 */
181 struct rcu_head rcu;
8b03ae3c
TH
182} ____cacheline_aligned_in_smp;
183
1da177e4 184/*
112202d9
TH
185 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
186 * of work_struct->data are used for flags and the remaining high bits
187 * point to the pwq; thus, pwqs need to be aligned at two's power of the
188 * number of flag bits.
1da177e4 189 */
112202d9 190struct pool_workqueue {
bd7bdd43 191 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 192 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
193 int work_color; /* L: current color */
194 int flush_color; /* L: flushing color */
8864b4e5 195 int refcnt; /* L: reference count */
73f53c4a
TH
196 int nr_in_flight[WORK_NR_COLORS];
197 /* L: nr of in_flight works */
1e19ffc6 198 int nr_active; /* L: nr of active works */
a0a1a5fd 199 int max_active; /* L: max active works */
1e19ffc6 200 struct list_head delayed_works; /* L: delayed works */
3c25a55d 201 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 202 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
203
204 /*
205 * Release of unbound pwq is punted to system_wq. See put_pwq()
206 * and pwq_unbound_release_workfn() for details. pool_workqueue
207 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 208 * determined without grabbing wq->mutex.
8864b4e5
TH
209 */
210 struct work_struct unbound_release_work;
211 struct rcu_head rcu;
e904e6c2 212} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 213
73f53c4a
TH
214/*
215 * Structure used to wait for workqueue flush.
216 */
217struct wq_flusher {
3c25a55d
LJ
218 struct list_head list; /* WQ: list of flushers */
219 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
220 struct completion done; /* flush completion */
221};
222
226223ab
TH
223struct wq_device;
224
1da177e4 225/*
c5aa87bb
TH
226 * The externally visible workqueue. It relays the issued work items to
227 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
228 */
229struct workqueue_struct {
87fc741e 230 unsigned int flags; /* WQ: WQ_* flags */
420c0ddb 231 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918
TH
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250
226223ab
TH
251#ifdef CONFIG_SYSFS
252 struct wq_device *wq_dev; /* I: for sysfs interface */
253#endif
4e6045f1 254#ifdef CONFIG_LOCKDEP
4690c4ab 255 struct lockdep_map lockdep_map;
4e6045f1 256#endif
ecf6881f 257 char name[WQ_NAME_LEN]; /* I: workqueue name */
1da177e4
LT
258};
259
e904e6c2
TH
260static struct kmem_cache *pwq_cache;
261
bce90380
TH
262static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
263static cpumask_var_t *wq_numa_possible_cpumask;
264 /* possible CPUs of each node */
265
266static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
267
68e13a67 268static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 269static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 270
68e13a67
LJ
271static LIST_HEAD(workqueues); /* PL: list of all workqueues */
272static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
273
274/* the per-cpu worker pools */
275static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
276 cpu_worker_pools);
277
68e13a67 278static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 279
68e13a67 280/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
281static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
282
c5aa87bb 283/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
284static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
285
d320c038 286struct workqueue_struct *system_wq __read_mostly;
d320c038 287EXPORT_SYMBOL_GPL(system_wq);
044c782c 288struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 289EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 290struct workqueue_struct *system_long_wq __read_mostly;
d320c038 291EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 292struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 293EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 294struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 295EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 296
7d19c5ce
TH
297static int worker_thread(void *__worker);
298static void copy_workqueue_attrs(struct workqueue_attrs *to,
299 const struct workqueue_attrs *from);
300
97bd2347
TH
301#define CREATE_TRACE_POINTS
302#include <trace/events/workqueue.h>
303
68e13a67 304#define assert_rcu_or_pool_mutex() \
5bcab335 305 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
306 lockdep_is_held(&wq_pool_mutex), \
307 "sched RCU or wq_pool_mutex should be held")
5bcab335 308
b09f4fd3 309#define assert_rcu_or_wq_mutex(wq) \
76af4d93 310 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 311 lockdep_is_held(&wq->mutex), \
b09f4fd3 312 "sched RCU or wq->mutex should be held")
76af4d93 313
822d8405
TH
314#ifdef CONFIG_LOCKDEP
315#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
316 WARN_ONCE(debug_locks && \
317 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
318 !lockdep_is_held(&(pool)->lock), \
319 "pool->manager_mutex or ->lock should be held")
320#else
321#define assert_manager_or_pool_lock(pool) do { } while (0)
322#endif
323
f02ae73a
TH
324#define for_each_cpu_worker_pool(pool, cpu) \
325 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
326 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 327 (pool)++)
4ce62e9e 328
17116969
TH
329/**
330 * for_each_pool - iterate through all worker_pools in the system
331 * @pool: iteration cursor
611c92a0 332 * @pi: integer used for iteration
fa1b54e6 333 *
68e13a67
LJ
334 * This must be called either with wq_pool_mutex held or sched RCU read
335 * locked. If the pool needs to be used beyond the locking in effect, the
336 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
337 *
338 * The if/else clause exists only for the lockdep assertion and can be
339 * ignored.
17116969 340 */
611c92a0
TH
341#define for_each_pool(pool, pi) \
342 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 343 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 344 else
17116969 345
822d8405
TH
346/**
347 * for_each_pool_worker - iterate through all workers of a worker_pool
348 * @worker: iteration cursor
349 * @wi: integer used for iteration
350 * @pool: worker_pool to iterate workers of
351 *
352 * This must be called with either @pool->manager_mutex or ->lock held.
353 *
354 * The if/else clause exists only for the lockdep assertion and can be
355 * ignored.
356 */
357#define for_each_pool_worker(worker, wi, pool) \
358 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
359 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
360 else
361
49e3cf44
TH
362/**
363 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
364 * @pwq: iteration cursor
365 * @wq: the target workqueue
76af4d93 366 *
b09f4fd3 367 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
368 * If the pwq needs to be used beyond the locking in effect, the caller is
369 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
49e3cf44
TH
373 */
374#define for_each_pwq(pwq, wq) \
76af4d93 375 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 376 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 377 else
f3421797 378
dc186ad7
TG
379#ifdef CONFIG_DEBUG_OBJECTS_WORK
380
381static struct debug_obj_descr work_debug_descr;
382
99777288
SG
383static void *work_debug_hint(void *addr)
384{
385 return ((struct work_struct *) addr)->func;
386}
387
dc186ad7
TG
388/*
389 * fixup_init is called when:
390 * - an active object is initialized
391 */
392static int work_fixup_init(void *addr, enum debug_obj_state state)
393{
394 struct work_struct *work = addr;
395
396 switch (state) {
397 case ODEBUG_STATE_ACTIVE:
398 cancel_work_sync(work);
399 debug_object_init(work, &work_debug_descr);
400 return 1;
401 default:
402 return 0;
403 }
404}
405
406/*
407 * fixup_activate is called when:
408 * - an active object is activated
409 * - an unknown object is activated (might be a statically initialized object)
410 */
411static int work_fixup_activate(void *addr, enum debug_obj_state state)
412{
413 struct work_struct *work = addr;
414
415 switch (state) {
416
417 case ODEBUG_STATE_NOTAVAILABLE:
418 /*
419 * This is not really a fixup. The work struct was
420 * statically initialized. We just make sure that it
421 * is tracked in the object tracker.
422 */
22df02bb 423 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
424 debug_object_init(work, &work_debug_descr);
425 debug_object_activate(work, &work_debug_descr);
426 return 0;
427 }
428 WARN_ON_ONCE(1);
429 return 0;
430
431 case ODEBUG_STATE_ACTIVE:
432 WARN_ON(1);
433
434 default:
435 return 0;
436 }
437}
438
439/*
440 * fixup_free is called when:
441 * - an active object is freed
442 */
443static int work_fixup_free(void *addr, enum debug_obj_state state)
444{
445 struct work_struct *work = addr;
446
447 switch (state) {
448 case ODEBUG_STATE_ACTIVE:
449 cancel_work_sync(work);
450 debug_object_free(work, &work_debug_descr);
451 return 1;
452 default:
453 return 0;
454 }
455}
456
457static struct debug_obj_descr work_debug_descr = {
458 .name = "work_struct",
99777288 459 .debug_hint = work_debug_hint,
dc186ad7
TG
460 .fixup_init = work_fixup_init,
461 .fixup_activate = work_fixup_activate,
462 .fixup_free = work_fixup_free,
463};
464
465static inline void debug_work_activate(struct work_struct *work)
466{
467 debug_object_activate(work, &work_debug_descr);
468}
469
470static inline void debug_work_deactivate(struct work_struct *work)
471{
472 debug_object_deactivate(work, &work_debug_descr);
473}
474
475void __init_work(struct work_struct *work, int onstack)
476{
477 if (onstack)
478 debug_object_init_on_stack(work, &work_debug_descr);
479 else
480 debug_object_init(work, &work_debug_descr);
481}
482EXPORT_SYMBOL_GPL(__init_work);
483
484void destroy_work_on_stack(struct work_struct *work)
485{
486 debug_object_free(work, &work_debug_descr);
487}
488EXPORT_SYMBOL_GPL(destroy_work_on_stack);
489
490#else
491static inline void debug_work_activate(struct work_struct *work) { }
492static inline void debug_work_deactivate(struct work_struct *work) { }
493#endif
494
9daf9e67
TH
495/* allocate ID and assign it to @pool */
496static int worker_pool_assign_id(struct worker_pool *pool)
497{
498 int ret;
499
68e13a67 500 lockdep_assert_held(&wq_pool_mutex);
5bcab335 501
fa1b54e6
TH
502 do {
503 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
504 return -ENOMEM;
fa1b54e6 505 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
fa1b54e6 506 } while (ret == -EAGAIN);
9daf9e67 507
fa1b54e6 508 return ret;
7c3eed5c
TH
509}
510
76af4d93
TH
511/**
512 * first_pwq - return the first pool_workqueue of the specified workqueue
513 * @wq: the target workqueue
514 *
b09f4fd3 515 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
516 * If the pwq needs to be used beyond the locking in effect, the caller is
517 * responsible for guaranteeing that the pwq stays online.
76af4d93 518 */
7fb98ea7 519static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 520{
b09f4fd3 521 assert_rcu_or_wq_mutex(wq);
76af4d93
TH
522 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
523 pwqs_node);
b1f4ec17
ON
524}
525
73f53c4a
TH
526static unsigned int work_color_to_flags(int color)
527{
528 return color << WORK_STRUCT_COLOR_SHIFT;
529}
530
531static int get_work_color(struct work_struct *work)
532{
533 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
534 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
535}
536
537static int work_next_color(int color)
538{
539 return (color + 1) % WORK_NR_COLORS;
540}
1da177e4 541
14441960 542/*
112202d9
TH
543 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
544 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 545 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 546 *
112202d9
TH
547 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
548 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
549 * work->data. These functions should only be called while the work is
550 * owned - ie. while the PENDING bit is set.
7a22ad75 551 *
112202d9 552 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 553 * corresponding to a work. Pool is available once the work has been
112202d9 554 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 555 * available only while the work item is queued.
7a22ad75 556 *
bbb68dfa
TH
557 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
558 * canceled. While being canceled, a work item may have its PENDING set
559 * but stay off timer and worklist for arbitrarily long and nobody should
560 * try to steal the PENDING bit.
14441960 561 */
7a22ad75
TH
562static inline void set_work_data(struct work_struct *work, unsigned long data,
563 unsigned long flags)
365970a1 564{
6183c009 565 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
566 atomic_long_set(&work->data, data | flags | work_static(work));
567}
365970a1 568
112202d9 569static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
570 unsigned long extra_flags)
571{
112202d9
TH
572 set_work_data(work, (unsigned long)pwq,
573 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
574}
575
4468a00f
LJ
576static void set_work_pool_and_keep_pending(struct work_struct *work,
577 int pool_id)
578{
579 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
580 WORK_STRUCT_PENDING);
581}
582
7c3eed5c
TH
583static void set_work_pool_and_clear_pending(struct work_struct *work,
584 int pool_id)
7a22ad75 585{
23657bb1
TH
586 /*
587 * The following wmb is paired with the implied mb in
588 * test_and_set_bit(PENDING) and ensures all updates to @work made
589 * here are visible to and precede any updates by the next PENDING
590 * owner.
591 */
592 smp_wmb();
7c3eed5c 593 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 594}
f756d5e2 595
7a22ad75 596static void clear_work_data(struct work_struct *work)
1da177e4 597{
7c3eed5c
TH
598 smp_wmb(); /* see set_work_pool_and_clear_pending() */
599 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
600}
601
112202d9 602static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 603{
e120153d 604 unsigned long data = atomic_long_read(&work->data);
7a22ad75 605
112202d9 606 if (data & WORK_STRUCT_PWQ)
e120153d
TH
607 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
608 else
609 return NULL;
4d707b9f
ON
610}
611
7c3eed5c
TH
612/**
613 * get_work_pool - return the worker_pool a given work was associated with
614 * @work: the work item of interest
615 *
616 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 617 *
68e13a67
LJ
618 * Pools are created and destroyed under wq_pool_mutex, and allows read
619 * access under sched-RCU read lock. As such, this function should be
620 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
621 *
622 * All fields of the returned pool are accessible as long as the above
623 * mentioned locking is in effect. If the returned pool needs to be used
624 * beyond the critical section, the caller is responsible for ensuring the
625 * returned pool is and stays online.
7c3eed5c
TH
626 */
627static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 628{
e120153d 629 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 630 int pool_id;
7a22ad75 631
68e13a67 632 assert_rcu_or_pool_mutex();
fa1b54e6 633
112202d9
TH
634 if (data & WORK_STRUCT_PWQ)
635 return ((struct pool_workqueue *)
7c3eed5c 636 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 637
7c3eed5c
TH
638 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
639 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
640 return NULL;
641
fa1b54e6 642 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
643}
644
645/**
646 * get_work_pool_id - return the worker pool ID a given work is associated with
647 * @work: the work item of interest
648 *
649 * Return the worker_pool ID @work was last associated with.
650 * %WORK_OFFQ_POOL_NONE if none.
651 */
652static int get_work_pool_id(struct work_struct *work)
653{
54d5b7d0
LJ
654 unsigned long data = atomic_long_read(&work->data);
655
112202d9
TH
656 if (data & WORK_STRUCT_PWQ)
657 return ((struct pool_workqueue *)
54d5b7d0 658 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 659
54d5b7d0 660 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
661}
662
bbb68dfa
TH
663static void mark_work_canceling(struct work_struct *work)
664{
7c3eed5c 665 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 666
7c3eed5c
TH
667 pool_id <<= WORK_OFFQ_POOL_SHIFT;
668 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
669}
670
671static bool work_is_canceling(struct work_struct *work)
672{
673 unsigned long data = atomic_long_read(&work->data);
674
112202d9 675 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
676}
677
e22bee78 678/*
3270476a
TH
679 * Policy functions. These define the policies on how the global worker
680 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 681 * they're being called with pool->lock held.
e22bee78
TH
682 */
683
63d95a91 684static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 685{
e19e397a 686 return !atomic_read(&pool->nr_running);
a848e3b6
ON
687}
688
4594bf15 689/*
e22bee78
TH
690 * Need to wake up a worker? Called from anything but currently
691 * running workers.
974271c4
TH
692 *
693 * Note that, because unbound workers never contribute to nr_running, this
706026c2 694 * function will always return %true for unbound pools as long as the
974271c4 695 * worklist isn't empty.
4594bf15 696 */
63d95a91 697static bool need_more_worker(struct worker_pool *pool)
365970a1 698{
63d95a91 699 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 700}
4594bf15 701
e22bee78 702/* Can I start working? Called from busy but !running workers. */
63d95a91 703static bool may_start_working(struct worker_pool *pool)
e22bee78 704{
63d95a91 705 return pool->nr_idle;
e22bee78
TH
706}
707
708/* Do I need to keep working? Called from currently running workers. */
63d95a91 709static bool keep_working(struct worker_pool *pool)
e22bee78 710{
e19e397a
TH
711 return !list_empty(&pool->worklist) &&
712 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
713}
714
715/* Do we need a new worker? Called from manager. */
63d95a91 716static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 717{
63d95a91 718 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 719}
365970a1 720
e22bee78 721/* Do I need to be the manager? */
63d95a91 722static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 723{
63d95a91 724 return need_to_create_worker(pool) ||
11ebea50 725 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
726}
727
728/* Do we have too many workers and should some go away? */
63d95a91 729static bool too_many_workers(struct worker_pool *pool)
e22bee78 730{
34a06bd6 731 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
732 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
733 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 734
ea1abd61
LJ
735 /*
736 * nr_idle and idle_list may disagree if idle rebinding is in
737 * progress. Never return %true if idle_list is empty.
738 */
739 if (list_empty(&pool->idle_list))
740 return false;
741
e22bee78 742 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
743}
744
4d707b9f 745/*
e22bee78
TH
746 * Wake up functions.
747 */
748
7e11629d 749/* Return the first worker. Safe with preemption disabled */
63d95a91 750static struct worker *first_worker(struct worker_pool *pool)
7e11629d 751{
63d95a91 752 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
753 return NULL;
754
63d95a91 755 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
756}
757
758/**
759 * wake_up_worker - wake up an idle worker
63d95a91 760 * @pool: worker pool to wake worker from
7e11629d 761 *
63d95a91 762 * Wake up the first idle worker of @pool.
7e11629d
TH
763 *
764 * CONTEXT:
d565ed63 765 * spin_lock_irq(pool->lock).
7e11629d 766 */
63d95a91 767static void wake_up_worker(struct worker_pool *pool)
7e11629d 768{
63d95a91 769 struct worker *worker = first_worker(pool);
7e11629d
TH
770
771 if (likely(worker))
772 wake_up_process(worker->task);
773}
774
d302f017 775/**
e22bee78
TH
776 * wq_worker_waking_up - a worker is waking up
777 * @task: task waking up
778 * @cpu: CPU @task is waking up to
779 *
780 * This function is called during try_to_wake_up() when a worker is
781 * being awoken.
782 *
783 * CONTEXT:
784 * spin_lock_irq(rq->lock)
785 */
d84ff051 786void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
787{
788 struct worker *worker = kthread_data(task);
789
36576000 790 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 791 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 792 atomic_inc(&worker->pool->nr_running);
36576000 793 }
e22bee78
TH
794}
795
796/**
797 * wq_worker_sleeping - a worker is going to sleep
798 * @task: task going to sleep
799 * @cpu: CPU in question, must be the current CPU number
800 *
801 * This function is called during schedule() when a busy worker is
802 * going to sleep. Worker on the same cpu can be woken up by
803 * returning pointer to its task.
804 *
805 * CONTEXT:
806 * spin_lock_irq(rq->lock)
807 *
808 * RETURNS:
809 * Worker task on @cpu to wake up, %NULL if none.
810 */
d84ff051 811struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
812{
813 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 814 struct worker_pool *pool;
e22bee78 815
111c225a
TH
816 /*
817 * Rescuers, which may not have all the fields set up like normal
818 * workers, also reach here, let's not access anything before
819 * checking NOT_RUNNING.
820 */
2d64672e 821 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
822 return NULL;
823
111c225a 824 pool = worker->pool;
111c225a 825
e22bee78 826 /* this can only happen on the local cpu */
6183c009
TH
827 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
828 return NULL;
e22bee78
TH
829
830 /*
831 * The counterpart of the following dec_and_test, implied mb,
832 * worklist not empty test sequence is in insert_work().
833 * Please read comment there.
834 *
628c78e7
TH
835 * NOT_RUNNING is clear. This means that we're bound to and
836 * running on the local cpu w/ rq lock held and preemption
837 * disabled, which in turn means that none else could be
d565ed63 838 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 839 * lock is safe.
e22bee78 840 */
e19e397a
TH
841 if (atomic_dec_and_test(&pool->nr_running) &&
842 !list_empty(&pool->worklist))
63d95a91 843 to_wakeup = first_worker(pool);
e22bee78
TH
844 return to_wakeup ? to_wakeup->task : NULL;
845}
846
847/**
848 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 849 * @worker: self
d302f017
TH
850 * @flags: flags to set
851 * @wakeup: wakeup an idle worker if necessary
852 *
e22bee78
TH
853 * Set @flags in @worker->flags and adjust nr_running accordingly. If
854 * nr_running becomes zero and @wakeup is %true, an idle worker is
855 * woken up.
d302f017 856 *
cb444766 857 * CONTEXT:
d565ed63 858 * spin_lock_irq(pool->lock)
d302f017
TH
859 */
860static inline void worker_set_flags(struct worker *worker, unsigned int flags,
861 bool wakeup)
862{
bd7bdd43 863 struct worker_pool *pool = worker->pool;
e22bee78 864
cb444766
TH
865 WARN_ON_ONCE(worker->task != current);
866
e22bee78
TH
867 /*
868 * If transitioning into NOT_RUNNING, adjust nr_running and
869 * wake up an idle worker as necessary if requested by
870 * @wakeup.
871 */
872 if ((flags & WORKER_NOT_RUNNING) &&
873 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 874 if (wakeup) {
e19e397a 875 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 876 !list_empty(&pool->worklist))
63d95a91 877 wake_up_worker(pool);
e22bee78 878 } else
e19e397a 879 atomic_dec(&pool->nr_running);
e22bee78
TH
880 }
881
d302f017
TH
882 worker->flags |= flags;
883}
884
885/**
e22bee78 886 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 887 * @worker: self
d302f017
TH
888 * @flags: flags to clear
889 *
e22bee78 890 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 891 *
cb444766 892 * CONTEXT:
d565ed63 893 * spin_lock_irq(pool->lock)
d302f017
TH
894 */
895static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
896{
63d95a91 897 struct worker_pool *pool = worker->pool;
e22bee78
TH
898 unsigned int oflags = worker->flags;
899
cb444766
TH
900 WARN_ON_ONCE(worker->task != current);
901
d302f017 902 worker->flags &= ~flags;
e22bee78 903
42c025f3
TH
904 /*
905 * If transitioning out of NOT_RUNNING, increment nr_running. Note
906 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
907 * of multiple flags, not a single flag.
908 */
e22bee78
TH
909 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
910 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 911 atomic_inc(&pool->nr_running);
d302f017
TH
912}
913
8cca0eea
TH
914/**
915 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 916 * @pool: pool of interest
8cca0eea
TH
917 * @work: work to find worker for
918 *
c9e7cf27
TH
919 * Find a worker which is executing @work on @pool by searching
920 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
921 * to match, its current execution should match the address of @work and
922 * its work function. This is to avoid unwanted dependency between
923 * unrelated work executions through a work item being recycled while still
924 * being executed.
925 *
926 * This is a bit tricky. A work item may be freed once its execution
927 * starts and nothing prevents the freed area from being recycled for
928 * another work item. If the same work item address ends up being reused
929 * before the original execution finishes, workqueue will identify the
930 * recycled work item as currently executing and make it wait until the
931 * current execution finishes, introducing an unwanted dependency.
932 *
c5aa87bb
TH
933 * This function checks the work item address and work function to avoid
934 * false positives. Note that this isn't complete as one may construct a
935 * work function which can introduce dependency onto itself through a
936 * recycled work item. Well, if somebody wants to shoot oneself in the
937 * foot that badly, there's only so much we can do, and if such deadlock
938 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
939 *
940 * CONTEXT:
d565ed63 941 * spin_lock_irq(pool->lock).
8cca0eea
TH
942 *
943 * RETURNS:
944 * Pointer to worker which is executing @work if found, NULL
945 * otherwise.
4d707b9f 946 */
c9e7cf27 947static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 948 struct work_struct *work)
4d707b9f 949{
42f8570f 950 struct worker *worker;
42f8570f 951
b67bfe0d 952 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
953 (unsigned long)work)
954 if (worker->current_work == work &&
955 worker->current_func == work->func)
42f8570f
SL
956 return worker;
957
958 return NULL;
4d707b9f
ON
959}
960
bf4ede01
TH
961/**
962 * move_linked_works - move linked works to a list
963 * @work: start of series of works to be scheduled
964 * @head: target list to append @work to
965 * @nextp: out paramter for nested worklist walking
966 *
967 * Schedule linked works starting from @work to @head. Work series to
968 * be scheduled starts at @work and includes any consecutive work with
969 * WORK_STRUCT_LINKED set in its predecessor.
970 *
971 * If @nextp is not NULL, it's updated to point to the next work of
972 * the last scheduled work. This allows move_linked_works() to be
973 * nested inside outer list_for_each_entry_safe().
974 *
975 * CONTEXT:
d565ed63 976 * spin_lock_irq(pool->lock).
bf4ede01
TH
977 */
978static void move_linked_works(struct work_struct *work, struct list_head *head,
979 struct work_struct **nextp)
980{
981 struct work_struct *n;
982
983 /*
984 * Linked worklist will always end before the end of the list,
985 * use NULL for list head.
986 */
987 list_for_each_entry_safe_from(work, n, NULL, entry) {
988 list_move_tail(&work->entry, head);
989 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
990 break;
991 }
992
993 /*
994 * If we're already inside safe list traversal and have moved
995 * multiple works to the scheduled queue, the next position
996 * needs to be updated.
997 */
998 if (nextp)
999 *nextp = n;
1000}
1001
8864b4e5
TH
1002/**
1003 * get_pwq - get an extra reference on the specified pool_workqueue
1004 * @pwq: pool_workqueue to get
1005 *
1006 * Obtain an extra reference on @pwq. The caller should guarantee that
1007 * @pwq has positive refcnt and be holding the matching pool->lock.
1008 */
1009static void get_pwq(struct pool_workqueue *pwq)
1010{
1011 lockdep_assert_held(&pwq->pool->lock);
1012 WARN_ON_ONCE(pwq->refcnt <= 0);
1013 pwq->refcnt++;
1014}
1015
1016/**
1017 * put_pwq - put a pool_workqueue reference
1018 * @pwq: pool_workqueue to put
1019 *
1020 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1021 * destruction. The caller should be holding the matching pool->lock.
1022 */
1023static void put_pwq(struct pool_workqueue *pwq)
1024{
1025 lockdep_assert_held(&pwq->pool->lock);
1026 if (likely(--pwq->refcnt))
1027 return;
1028 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1029 return;
1030 /*
1031 * @pwq can't be released under pool->lock, bounce to
1032 * pwq_unbound_release_workfn(). This never recurses on the same
1033 * pool->lock as this path is taken only for unbound workqueues and
1034 * the release work item is scheduled on a per-cpu workqueue. To
1035 * avoid lockdep warning, unbound pool->locks are given lockdep
1036 * subclass of 1 in get_unbound_pool().
1037 */
1038 schedule_work(&pwq->unbound_release_work);
1039}
1040
112202d9 1041static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1042{
112202d9 1043 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1044
1045 trace_workqueue_activate_work(work);
112202d9 1046 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1047 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1048 pwq->nr_active++;
bf4ede01
TH
1049}
1050
112202d9 1051static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1052{
112202d9 1053 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1054 struct work_struct, entry);
1055
112202d9 1056 pwq_activate_delayed_work(work);
3aa62497
LJ
1057}
1058
bf4ede01 1059/**
112202d9
TH
1060 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1061 * @pwq: pwq of interest
bf4ede01 1062 * @color: color of work which left the queue
bf4ede01
TH
1063 *
1064 * A work either has completed or is removed from pending queue,
112202d9 1065 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1066 *
1067 * CONTEXT:
d565ed63 1068 * spin_lock_irq(pool->lock).
bf4ede01 1069 */
112202d9 1070static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1071{
8864b4e5 1072 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1073 if (color == WORK_NO_COLOR)
8864b4e5 1074 goto out_put;
bf4ede01 1075
112202d9 1076 pwq->nr_in_flight[color]--;
bf4ede01 1077
112202d9
TH
1078 pwq->nr_active--;
1079 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1080 /* one down, submit a delayed one */
112202d9
TH
1081 if (pwq->nr_active < pwq->max_active)
1082 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1083 }
1084
1085 /* is flush in progress and are we at the flushing tip? */
112202d9 1086 if (likely(pwq->flush_color != color))
8864b4e5 1087 goto out_put;
bf4ede01
TH
1088
1089 /* are there still in-flight works? */
112202d9 1090 if (pwq->nr_in_flight[color])
8864b4e5 1091 goto out_put;
bf4ede01 1092
112202d9
TH
1093 /* this pwq is done, clear flush_color */
1094 pwq->flush_color = -1;
bf4ede01
TH
1095
1096 /*
112202d9 1097 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1098 * will handle the rest.
1099 */
112202d9
TH
1100 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1101 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1102out_put:
1103 put_pwq(pwq);
bf4ede01
TH
1104}
1105
36e227d2 1106/**
bbb68dfa 1107 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1108 * @work: work item to steal
1109 * @is_dwork: @work is a delayed_work
bbb68dfa 1110 * @flags: place to store irq state
36e227d2
TH
1111 *
1112 * Try to grab PENDING bit of @work. This function can handle @work in any
1113 * stable state - idle, on timer or on worklist. Return values are
1114 *
1115 * 1 if @work was pending and we successfully stole PENDING
1116 * 0 if @work was idle and we claimed PENDING
1117 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1118 * -ENOENT if someone else is canceling @work, this state may persist
1119 * for arbitrarily long
36e227d2 1120 *
bbb68dfa 1121 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1122 * interrupted while holding PENDING and @work off queue, irq must be
1123 * disabled on entry. This, combined with delayed_work->timer being
1124 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1125 *
1126 * On successful return, >= 0, irq is disabled and the caller is
1127 * responsible for releasing it using local_irq_restore(*@flags).
1128 *
e0aecdd8 1129 * This function is safe to call from any context including IRQ handler.
bf4ede01 1130 */
bbb68dfa
TH
1131static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1132 unsigned long *flags)
bf4ede01 1133{
d565ed63 1134 struct worker_pool *pool;
112202d9 1135 struct pool_workqueue *pwq;
bf4ede01 1136
bbb68dfa
TH
1137 local_irq_save(*flags);
1138
36e227d2
TH
1139 /* try to steal the timer if it exists */
1140 if (is_dwork) {
1141 struct delayed_work *dwork = to_delayed_work(work);
1142
e0aecdd8
TH
1143 /*
1144 * dwork->timer is irqsafe. If del_timer() fails, it's
1145 * guaranteed that the timer is not queued anywhere and not
1146 * running on the local CPU.
1147 */
36e227d2
TH
1148 if (likely(del_timer(&dwork->timer)))
1149 return 1;
1150 }
1151
1152 /* try to claim PENDING the normal way */
bf4ede01
TH
1153 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1154 return 0;
1155
1156 /*
1157 * The queueing is in progress, or it is already queued. Try to
1158 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1159 */
d565ed63
TH
1160 pool = get_work_pool(work);
1161 if (!pool)
bbb68dfa 1162 goto fail;
bf4ede01 1163
d565ed63 1164 spin_lock(&pool->lock);
0b3dae68 1165 /*
112202d9
TH
1166 * work->data is guaranteed to point to pwq only while the work
1167 * item is queued on pwq->wq, and both updating work->data to point
1168 * to pwq on queueing and to pool on dequeueing are done under
1169 * pwq->pool->lock. This in turn guarantees that, if work->data
1170 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1171 * item is currently queued on that pool.
1172 */
112202d9
TH
1173 pwq = get_work_pwq(work);
1174 if (pwq && pwq->pool == pool) {
16062836
TH
1175 debug_work_deactivate(work);
1176
1177 /*
1178 * A delayed work item cannot be grabbed directly because
1179 * it might have linked NO_COLOR work items which, if left
112202d9 1180 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1181 * management later on and cause stall. Make sure the work
1182 * item is activated before grabbing.
1183 */
1184 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1185 pwq_activate_delayed_work(work);
16062836
TH
1186
1187 list_del_init(&work->entry);
112202d9 1188 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1189
112202d9 1190 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1191 set_work_pool_and_keep_pending(work, pool->id);
1192
1193 spin_unlock(&pool->lock);
1194 return 1;
bf4ede01 1195 }
d565ed63 1196 spin_unlock(&pool->lock);
bbb68dfa
TH
1197fail:
1198 local_irq_restore(*flags);
1199 if (work_is_canceling(work))
1200 return -ENOENT;
1201 cpu_relax();
36e227d2 1202 return -EAGAIN;
bf4ede01
TH
1203}
1204
4690c4ab 1205/**
706026c2 1206 * insert_work - insert a work into a pool
112202d9 1207 * @pwq: pwq @work belongs to
4690c4ab
TH
1208 * @work: work to insert
1209 * @head: insertion point
1210 * @extra_flags: extra WORK_STRUCT_* flags to set
1211 *
112202d9 1212 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1213 * work_struct flags.
4690c4ab
TH
1214 *
1215 * CONTEXT:
d565ed63 1216 * spin_lock_irq(pool->lock).
4690c4ab 1217 */
112202d9
TH
1218static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1219 struct list_head *head, unsigned int extra_flags)
b89deed3 1220{
112202d9 1221 struct worker_pool *pool = pwq->pool;
e22bee78 1222
4690c4ab 1223 /* we own @work, set data and link */
112202d9 1224 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1225 list_add_tail(&work->entry, head);
8864b4e5 1226 get_pwq(pwq);
e22bee78
TH
1227
1228 /*
c5aa87bb
TH
1229 * Ensure either wq_worker_sleeping() sees the above
1230 * list_add_tail() or we see zero nr_running to avoid workers lying
1231 * around lazily while there are works to be processed.
e22bee78
TH
1232 */
1233 smp_mb();
1234
63d95a91
TH
1235 if (__need_more_worker(pool))
1236 wake_up_worker(pool);
b89deed3
ON
1237}
1238
c8efcc25
TH
1239/*
1240 * Test whether @work is being queued from another work executing on the
8d03ecfe 1241 * same workqueue.
c8efcc25
TH
1242 */
1243static bool is_chained_work(struct workqueue_struct *wq)
1244{
8d03ecfe
TH
1245 struct worker *worker;
1246
1247 worker = current_wq_worker();
1248 /*
1249 * Return %true iff I'm a worker execuing a work item on @wq. If
1250 * I'm @worker, it's safe to dereference it without locking.
1251 */
112202d9 1252 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1253}
1254
d84ff051 1255static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1256 struct work_struct *work)
1257{
112202d9 1258 struct pool_workqueue *pwq;
c9178087 1259 struct worker_pool *last_pool;
1e19ffc6 1260 struct list_head *worklist;
8a2e8e5d 1261 unsigned int work_flags;
b75cac93 1262 unsigned int req_cpu = cpu;
8930caba
TH
1263
1264 /*
1265 * While a work item is PENDING && off queue, a task trying to
1266 * steal the PENDING will busy-loop waiting for it to either get
1267 * queued or lose PENDING. Grabbing PENDING and queueing should
1268 * happen with IRQ disabled.
1269 */
1270 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1271
dc186ad7 1272 debug_work_activate(work);
1e19ffc6 1273
c8efcc25 1274 /* if dying, only works from the same workqueue are allowed */
618b01eb 1275 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1276 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1277 return;
9e8cd2f5 1278retry:
c9178087 1279 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1280 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1281 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1282 cpu = raw_smp_processor_id();
7fb98ea7 1283 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1284 } else {
1285 pwq = first_pwq(wq);
1286 }
dbf2576e 1287
c9178087
TH
1288 /*
1289 * If @work was previously on a different pool, it might still be
1290 * running there, in which case the work needs to be queued on that
1291 * pool to guarantee non-reentrancy.
1292 */
1293 last_pool = get_work_pool(work);
1294 if (last_pool && last_pool != pwq->pool) {
1295 struct worker *worker;
18aa9eff 1296
c9178087 1297 spin_lock(&last_pool->lock);
18aa9eff 1298
c9178087 1299 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1300
c9178087
TH
1301 if (worker && worker->current_pwq->wq == wq) {
1302 pwq = worker->current_pwq;
8930caba 1303 } else {
c9178087
TH
1304 /* meh... not running there, queue here */
1305 spin_unlock(&last_pool->lock);
112202d9 1306 spin_lock(&pwq->pool->lock);
8930caba 1307 }
f3421797 1308 } else {
112202d9 1309 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1310 }
1311
9e8cd2f5
TH
1312 /*
1313 * pwq is determined and locked. For unbound pools, we could have
1314 * raced with pwq release and it could already be dead. If its
1315 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1316 * without another pwq replacing it as the first pwq or while a
1317 * work item is executing on it, so the retying is guaranteed to
1318 * make forward-progress.
1319 */
1320 if (unlikely(!pwq->refcnt)) {
1321 if (wq->flags & WQ_UNBOUND) {
1322 spin_unlock(&pwq->pool->lock);
1323 cpu_relax();
1324 goto retry;
1325 }
1326 /* oops */
1327 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1328 wq->name, cpu);
1329 }
1330
112202d9
TH
1331 /* pwq determined, queue */
1332 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1333
f5b2552b 1334 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1335 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1336 return;
1337 }
1e19ffc6 1338
112202d9
TH
1339 pwq->nr_in_flight[pwq->work_color]++;
1340 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1341
112202d9 1342 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1343 trace_workqueue_activate_work(work);
112202d9
TH
1344 pwq->nr_active++;
1345 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1346 } else {
1347 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1348 worklist = &pwq->delayed_works;
8a2e8e5d 1349 }
1e19ffc6 1350
112202d9 1351 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1352
112202d9 1353 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1354}
1355
0fcb78c2 1356/**
c1a220e7
ZR
1357 * queue_work_on - queue work on specific cpu
1358 * @cpu: CPU number to execute work on
0fcb78c2
REB
1359 * @wq: workqueue to use
1360 * @work: work to queue
1361 *
d4283e93 1362 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1363 *
c1a220e7
ZR
1364 * We queue the work to a specific CPU, the caller must ensure it
1365 * can't go away.
1da177e4 1366 */
d4283e93
TH
1367bool queue_work_on(int cpu, struct workqueue_struct *wq,
1368 struct work_struct *work)
1da177e4 1369{
d4283e93 1370 bool ret = false;
8930caba 1371 unsigned long flags;
ef1ca236 1372
8930caba 1373 local_irq_save(flags);
c1a220e7 1374
22df02bb 1375 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1376 __queue_work(cpu, wq, work);
d4283e93 1377 ret = true;
c1a220e7 1378 }
ef1ca236 1379
8930caba 1380 local_irq_restore(flags);
1da177e4
LT
1381 return ret;
1382}
c1a220e7 1383EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1384
d8e794df 1385void delayed_work_timer_fn(unsigned long __data)
1da177e4 1386{
52bad64d 1387 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1388
e0aecdd8 1389 /* should have been called from irqsafe timer with irq already off */
60c057bc 1390 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1391}
1438ade5 1392EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1393
7beb2edf
TH
1394static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1395 struct delayed_work *dwork, unsigned long delay)
1da177e4 1396{
7beb2edf
TH
1397 struct timer_list *timer = &dwork->timer;
1398 struct work_struct *work = &dwork->work;
7beb2edf
TH
1399
1400 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1401 timer->data != (unsigned long)dwork);
fc4b514f
TH
1402 WARN_ON_ONCE(timer_pending(timer));
1403 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1404
8852aac2
TH
1405 /*
1406 * If @delay is 0, queue @dwork->work immediately. This is for
1407 * both optimization and correctness. The earliest @timer can
1408 * expire is on the closest next tick and delayed_work users depend
1409 * on that there's no such delay when @delay is 0.
1410 */
1411 if (!delay) {
1412 __queue_work(cpu, wq, &dwork->work);
1413 return;
1414 }
1415
7beb2edf 1416 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1417
60c057bc 1418 dwork->wq = wq;
1265057f 1419 dwork->cpu = cpu;
7beb2edf
TH
1420 timer->expires = jiffies + delay;
1421
1422 if (unlikely(cpu != WORK_CPU_UNBOUND))
1423 add_timer_on(timer, cpu);
1424 else
1425 add_timer(timer);
1da177e4
LT
1426}
1427
0fcb78c2
REB
1428/**
1429 * queue_delayed_work_on - queue work on specific CPU after delay
1430 * @cpu: CPU number to execute work on
1431 * @wq: workqueue to use
af9997e4 1432 * @dwork: work to queue
0fcb78c2
REB
1433 * @delay: number of jiffies to wait before queueing
1434 *
715f1300
TH
1435 * Returns %false if @work was already on a queue, %true otherwise. If
1436 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1437 * execution.
0fcb78c2 1438 */
d4283e93
TH
1439bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1440 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1441{
52bad64d 1442 struct work_struct *work = &dwork->work;
d4283e93 1443 bool ret = false;
8930caba 1444 unsigned long flags;
7a6bc1cd 1445
8930caba
TH
1446 /* read the comment in __queue_work() */
1447 local_irq_save(flags);
7a6bc1cd 1448
22df02bb 1449 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1450 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1451 ret = true;
7a6bc1cd 1452 }
8a3e77cc 1453
8930caba 1454 local_irq_restore(flags);
7a6bc1cd
VP
1455 return ret;
1456}
ae90dd5d 1457EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1458
8376fe22
TH
1459/**
1460 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1461 * @cpu: CPU number to execute work on
1462 * @wq: workqueue to use
1463 * @dwork: work to queue
1464 * @delay: number of jiffies to wait before queueing
1465 *
1466 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1467 * modify @dwork's timer so that it expires after @delay. If @delay is
1468 * zero, @work is guaranteed to be scheduled immediately regardless of its
1469 * current state.
1470 *
1471 * Returns %false if @dwork was idle and queued, %true if @dwork was
1472 * pending and its timer was modified.
1473 *
e0aecdd8 1474 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1475 * See try_to_grab_pending() for details.
1476 */
1477bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1478 struct delayed_work *dwork, unsigned long delay)
1479{
1480 unsigned long flags;
1481 int ret;
c7fc77f7 1482
8376fe22
TH
1483 do {
1484 ret = try_to_grab_pending(&dwork->work, true, &flags);
1485 } while (unlikely(ret == -EAGAIN));
63bc0362 1486
8376fe22
TH
1487 if (likely(ret >= 0)) {
1488 __queue_delayed_work(cpu, wq, dwork, delay);
1489 local_irq_restore(flags);
7a6bc1cd 1490 }
8376fe22
TH
1491
1492 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1493 return ret;
1494}
8376fe22
TH
1495EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1496
c8e55f36
TH
1497/**
1498 * worker_enter_idle - enter idle state
1499 * @worker: worker which is entering idle state
1500 *
1501 * @worker is entering idle state. Update stats and idle timer if
1502 * necessary.
1503 *
1504 * LOCKING:
d565ed63 1505 * spin_lock_irq(pool->lock).
c8e55f36
TH
1506 */
1507static void worker_enter_idle(struct worker *worker)
1da177e4 1508{
bd7bdd43 1509 struct worker_pool *pool = worker->pool;
c8e55f36 1510
6183c009
TH
1511 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1512 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1513 (worker->hentry.next || worker->hentry.pprev)))
1514 return;
c8e55f36 1515
cb444766
TH
1516 /* can't use worker_set_flags(), also called from start_worker() */
1517 worker->flags |= WORKER_IDLE;
bd7bdd43 1518 pool->nr_idle++;
e22bee78 1519 worker->last_active = jiffies;
c8e55f36
TH
1520
1521 /* idle_list is LIFO */
bd7bdd43 1522 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1523
628c78e7
TH
1524 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1525 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1526
544ecf31 1527 /*
706026c2 1528 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1529 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1530 * nr_running, the warning may trigger spuriously. Check iff
1531 * unbind is not in progress.
544ecf31 1532 */
24647570 1533 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1534 pool->nr_workers == pool->nr_idle &&
e19e397a 1535 atomic_read(&pool->nr_running));
c8e55f36
TH
1536}
1537
1538/**
1539 * worker_leave_idle - leave idle state
1540 * @worker: worker which is leaving idle state
1541 *
1542 * @worker is leaving idle state. Update stats.
1543 *
1544 * LOCKING:
d565ed63 1545 * spin_lock_irq(pool->lock).
c8e55f36
TH
1546 */
1547static void worker_leave_idle(struct worker *worker)
1548{
bd7bdd43 1549 struct worker_pool *pool = worker->pool;
c8e55f36 1550
6183c009
TH
1551 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1552 return;
d302f017 1553 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1554 pool->nr_idle--;
c8e55f36
TH
1555 list_del_init(&worker->entry);
1556}
1557
e22bee78 1558/**
f36dc67b
LJ
1559 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1560 * @pool: target worker_pool
1561 *
1562 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1563 *
1564 * Works which are scheduled while the cpu is online must at least be
1565 * scheduled to a worker which is bound to the cpu so that if they are
1566 * flushed from cpu callbacks while cpu is going down, they are
1567 * guaranteed to execute on the cpu.
1568 *
f5faa077 1569 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1570 * themselves to the target cpu and may race with cpu going down or
1571 * coming online. kthread_bind() can't be used because it may put the
1572 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1573 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1574 * [dis]associated in the meantime.
1575 *
706026c2 1576 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1577 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1578 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1579 * enters idle state or fetches works without dropping lock, it can
1580 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1581 *
1582 * CONTEXT:
d565ed63 1583 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1584 * held.
1585 *
1586 * RETURNS:
706026c2 1587 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1588 * bound), %false if offline.
1589 */
f36dc67b 1590static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1591__acquires(&pool->lock)
e22bee78 1592{
e22bee78 1593 while (true) {
4e6045f1 1594 /*
e22bee78
TH
1595 * The following call may fail, succeed or succeed
1596 * without actually migrating the task to the cpu if
1597 * it races with cpu hotunplug operation. Verify
24647570 1598 * against POOL_DISASSOCIATED.
4e6045f1 1599 */
24647570 1600 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1601 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1602
d565ed63 1603 spin_lock_irq(&pool->lock);
24647570 1604 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1605 return false;
f5faa077 1606 if (task_cpu(current) == pool->cpu &&
7a4e344c 1607 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1608 return true;
d565ed63 1609 spin_unlock_irq(&pool->lock);
e22bee78 1610
5035b20f
TH
1611 /*
1612 * We've raced with CPU hot[un]plug. Give it a breather
1613 * and retry migration. cond_resched() is required here;
1614 * otherwise, we might deadlock against cpu_stop trying to
1615 * bring down the CPU on non-preemptive kernel.
1616 */
e22bee78 1617 cpu_relax();
5035b20f 1618 cond_resched();
e22bee78
TH
1619 }
1620}
1621
c34056a3
TH
1622static struct worker *alloc_worker(void)
1623{
1624 struct worker *worker;
1625
1626 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1627 if (worker) {
1628 INIT_LIST_HEAD(&worker->entry);
affee4b2 1629 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1630 /* on creation a worker is in !idle && prep state */
1631 worker->flags = WORKER_PREP;
c8e55f36 1632 }
c34056a3
TH
1633 return worker;
1634}
1635
1636/**
1637 * create_worker - create a new workqueue worker
63d95a91 1638 * @pool: pool the new worker will belong to
c34056a3 1639 *
63d95a91 1640 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1641 * can be started by calling start_worker() or destroyed using
1642 * destroy_worker().
1643 *
1644 * CONTEXT:
1645 * Might sleep. Does GFP_KERNEL allocations.
1646 *
1647 * RETURNS:
1648 * Pointer to the newly created worker.
1649 */
bc2ae0f5 1650static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1651{
c34056a3 1652 struct worker *worker = NULL;
f3421797 1653 int id = -1;
e3c916a4 1654 char id_buf[16];
c34056a3 1655
cd549687
TH
1656 lockdep_assert_held(&pool->manager_mutex);
1657
822d8405
TH
1658 /*
1659 * ID is needed to determine kthread name. Allocate ID first
1660 * without installing the pointer.
1661 */
1662 idr_preload(GFP_KERNEL);
d565ed63 1663 spin_lock_irq(&pool->lock);
822d8405
TH
1664
1665 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1666
d565ed63 1667 spin_unlock_irq(&pool->lock);
822d8405
TH
1668 idr_preload_end();
1669 if (id < 0)
1670 goto fail;
c34056a3
TH
1671
1672 worker = alloc_worker();
1673 if (!worker)
1674 goto fail;
1675
bd7bdd43 1676 worker->pool = pool;
c34056a3
TH
1677 worker->id = id;
1678
29c91e99 1679 if (pool->cpu >= 0)
e3c916a4
TH
1680 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1681 pool->attrs->nice < 0 ? "H" : "");
f3421797 1682 else
e3c916a4
TH
1683 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1684
f3f90ad4 1685 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1686 "kworker/%s", id_buf);
c34056a3
TH
1687 if (IS_ERR(worker->task))
1688 goto fail;
1689
c5aa87bb
TH
1690 /*
1691 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1692 * online CPUs. It'll be re-applied when any of the CPUs come up.
1693 */
7a4e344c
TH
1694 set_user_nice(worker->task, pool->attrs->nice);
1695 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1696
14a40ffc
TH
1697 /* prevent userland from meddling with cpumask of workqueue workers */
1698 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1699
1700 /*
1701 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1702 * remains stable across this function. See the comments above the
1703 * flag definition for details.
1704 */
1705 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1706 worker->flags |= WORKER_UNBOUND;
c34056a3 1707
822d8405
TH
1708 /* successful, commit the pointer to idr */
1709 spin_lock_irq(&pool->lock);
1710 idr_replace(&pool->worker_idr, worker, worker->id);
1711 spin_unlock_irq(&pool->lock);
1712
c34056a3 1713 return worker;
822d8405 1714
c34056a3
TH
1715fail:
1716 if (id >= 0) {
d565ed63 1717 spin_lock_irq(&pool->lock);
822d8405 1718 idr_remove(&pool->worker_idr, id);
d565ed63 1719 spin_unlock_irq(&pool->lock);
c34056a3
TH
1720 }
1721 kfree(worker);
1722 return NULL;
1723}
1724
1725/**
1726 * start_worker - start a newly created worker
1727 * @worker: worker to start
1728 *
706026c2 1729 * Make the pool aware of @worker and start it.
c34056a3
TH
1730 *
1731 * CONTEXT:
d565ed63 1732 * spin_lock_irq(pool->lock).
c34056a3
TH
1733 */
1734static void start_worker(struct worker *worker)
1735{
cb444766 1736 worker->flags |= WORKER_STARTED;
bd7bdd43 1737 worker->pool->nr_workers++;
c8e55f36 1738 worker_enter_idle(worker);
c34056a3
TH
1739 wake_up_process(worker->task);
1740}
1741
ebf44d16
TH
1742/**
1743 * create_and_start_worker - create and start a worker for a pool
1744 * @pool: the target pool
1745 *
cd549687 1746 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1747 */
1748static int create_and_start_worker(struct worker_pool *pool)
1749{
1750 struct worker *worker;
1751
cd549687
TH
1752 mutex_lock(&pool->manager_mutex);
1753
ebf44d16
TH
1754 worker = create_worker(pool);
1755 if (worker) {
1756 spin_lock_irq(&pool->lock);
1757 start_worker(worker);
1758 spin_unlock_irq(&pool->lock);
1759 }
1760
cd549687
TH
1761 mutex_unlock(&pool->manager_mutex);
1762
ebf44d16
TH
1763 return worker ? 0 : -ENOMEM;
1764}
1765
c34056a3
TH
1766/**
1767 * destroy_worker - destroy a workqueue worker
1768 * @worker: worker to be destroyed
1769 *
706026c2 1770 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1771 *
1772 * CONTEXT:
d565ed63 1773 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1774 */
1775static void destroy_worker(struct worker *worker)
1776{
bd7bdd43 1777 struct worker_pool *pool = worker->pool;
c34056a3 1778
cd549687
TH
1779 lockdep_assert_held(&pool->manager_mutex);
1780 lockdep_assert_held(&pool->lock);
1781
c34056a3 1782 /* sanity check frenzy */
6183c009
TH
1783 if (WARN_ON(worker->current_work) ||
1784 WARN_ON(!list_empty(&worker->scheduled)))
1785 return;
c34056a3 1786
c8e55f36 1787 if (worker->flags & WORKER_STARTED)
bd7bdd43 1788 pool->nr_workers--;
c8e55f36 1789 if (worker->flags & WORKER_IDLE)
bd7bdd43 1790 pool->nr_idle--;
c8e55f36
TH
1791
1792 list_del_init(&worker->entry);
cb444766 1793 worker->flags |= WORKER_DIE;
c8e55f36 1794
822d8405
TH
1795 idr_remove(&pool->worker_idr, worker->id);
1796
d565ed63 1797 spin_unlock_irq(&pool->lock);
c8e55f36 1798
c34056a3
TH
1799 kthread_stop(worker->task);
1800 kfree(worker);
1801
d565ed63 1802 spin_lock_irq(&pool->lock);
c34056a3
TH
1803}
1804
63d95a91 1805static void idle_worker_timeout(unsigned long __pool)
e22bee78 1806{
63d95a91 1807 struct worker_pool *pool = (void *)__pool;
e22bee78 1808
d565ed63 1809 spin_lock_irq(&pool->lock);
e22bee78 1810
63d95a91 1811 if (too_many_workers(pool)) {
e22bee78
TH
1812 struct worker *worker;
1813 unsigned long expires;
1814
1815 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1816 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1817 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1818
1819 if (time_before(jiffies, expires))
63d95a91 1820 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1821 else {
1822 /* it's been idle for too long, wake up manager */
11ebea50 1823 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1824 wake_up_worker(pool);
d5abe669 1825 }
e22bee78
TH
1826 }
1827
d565ed63 1828 spin_unlock_irq(&pool->lock);
e22bee78 1829}
d5abe669 1830
493a1724 1831static void send_mayday(struct work_struct *work)
e22bee78 1832{
112202d9
TH
1833 struct pool_workqueue *pwq = get_work_pwq(work);
1834 struct workqueue_struct *wq = pwq->wq;
493a1724 1835
2e109a28 1836 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1837
493008a8 1838 if (!wq->rescuer)
493a1724 1839 return;
e22bee78
TH
1840
1841 /* mayday mayday mayday */
493a1724
TH
1842 if (list_empty(&pwq->mayday_node)) {
1843 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1844 wake_up_process(wq->rescuer->task);
493a1724 1845 }
e22bee78
TH
1846}
1847
706026c2 1848static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1849{
63d95a91 1850 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1851 struct work_struct *work;
1852
2e109a28 1853 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1854 spin_lock(&pool->lock);
e22bee78 1855
63d95a91 1856 if (need_to_create_worker(pool)) {
e22bee78
TH
1857 /*
1858 * We've been trying to create a new worker but
1859 * haven't been successful. We might be hitting an
1860 * allocation deadlock. Send distress signals to
1861 * rescuers.
1862 */
63d95a91 1863 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1864 send_mayday(work);
1da177e4 1865 }
e22bee78 1866
493a1724 1867 spin_unlock(&pool->lock);
2e109a28 1868 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1869
63d95a91 1870 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1871}
1872
e22bee78
TH
1873/**
1874 * maybe_create_worker - create a new worker if necessary
63d95a91 1875 * @pool: pool to create a new worker for
e22bee78 1876 *
63d95a91 1877 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1878 * have at least one idle worker on return from this function. If
1879 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1880 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1881 * possible allocation deadlock.
1882 *
c5aa87bb
TH
1883 * On return, need_to_create_worker() is guaranteed to be %false and
1884 * may_start_working() %true.
e22bee78
TH
1885 *
1886 * LOCKING:
d565ed63 1887 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1888 * multiple times. Does GFP_KERNEL allocations. Called only from
1889 * manager.
1890 *
1891 * RETURNS:
c5aa87bb 1892 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1893 * otherwise.
1894 */
63d95a91 1895static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1896__releases(&pool->lock)
1897__acquires(&pool->lock)
1da177e4 1898{
63d95a91 1899 if (!need_to_create_worker(pool))
e22bee78
TH
1900 return false;
1901restart:
d565ed63 1902 spin_unlock_irq(&pool->lock);
9f9c2364 1903
e22bee78 1904 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1906
1907 while (true) {
1908 struct worker *worker;
1909
bc2ae0f5 1910 worker = create_worker(pool);
e22bee78 1911 if (worker) {
63d95a91 1912 del_timer_sync(&pool->mayday_timer);
d565ed63 1913 spin_lock_irq(&pool->lock);
e22bee78 1914 start_worker(worker);
6183c009
TH
1915 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1916 goto restart;
e22bee78
TH
1917 return true;
1918 }
1919
63d95a91 1920 if (!need_to_create_worker(pool))
e22bee78 1921 break;
1da177e4 1922
e22bee78
TH
1923 __set_current_state(TASK_INTERRUPTIBLE);
1924 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1925
63d95a91 1926 if (!need_to_create_worker(pool))
e22bee78
TH
1927 break;
1928 }
1929
63d95a91 1930 del_timer_sync(&pool->mayday_timer);
d565ed63 1931 spin_lock_irq(&pool->lock);
63d95a91 1932 if (need_to_create_worker(pool))
e22bee78
TH
1933 goto restart;
1934 return true;
1935}
1936
1937/**
1938 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1939 * @pool: pool to destroy workers for
e22bee78 1940 *
63d95a91 1941 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1942 * IDLE_WORKER_TIMEOUT.
1943 *
1944 * LOCKING:
d565ed63 1945 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1946 * multiple times. Called only from manager.
1947 *
1948 * RETURNS:
c5aa87bb 1949 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1950 * otherwise.
1951 */
63d95a91 1952static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1953{
1954 bool ret = false;
1da177e4 1955
63d95a91 1956 while (too_many_workers(pool)) {
e22bee78
TH
1957 struct worker *worker;
1958 unsigned long expires;
3af24433 1959
63d95a91 1960 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1961 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1962
e22bee78 1963 if (time_before(jiffies, expires)) {
63d95a91 1964 mod_timer(&pool->idle_timer, expires);
3af24433 1965 break;
e22bee78 1966 }
1da177e4 1967
e22bee78
TH
1968 destroy_worker(worker);
1969 ret = true;
1da177e4 1970 }
1e19ffc6 1971
e22bee78 1972 return ret;
1e19ffc6
TH
1973}
1974
73f53c4a 1975/**
e22bee78
TH
1976 * manage_workers - manage worker pool
1977 * @worker: self
73f53c4a 1978 *
706026c2 1979 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1980 * to. At any given time, there can be only zero or one manager per
706026c2 1981 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1982 *
1983 * The caller can safely start processing works on false return. On
1984 * true return, it's guaranteed that need_to_create_worker() is false
1985 * and may_start_working() is true.
73f53c4a
TH
1986 *
1987 * CONTEXT:
d565ed63 1988 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1989 * multiple times. Does GFP_KERNEL allocations.
1990 *
1991 * RETURNS:
d565ed63
TH
1992 * spin_lock_irq(pool->lock) which may be released and regrabbed
1993 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 1994 */
e22bee78 1995static bool manage_workers(struct worker *worker)
73f53c4a 1996{
63d95a91 1997 struct worker_pool *pool = worker->pool;
e22bee78 1998 bool ret = false;
73f53c4a 1999
bc3a1afc
TH
2000 /*
2001 * Managership is governed by two mutexes - manager_arb and
2002 * manager_mutex. manager_arb handles arbitration of manager role.
2003 * Anyone who successfully grabs manager_arb wins the arbitration
2004 * and becomes the manager. mutex_trylock() on pool->manager_arb
2005 * failure while holding pool->lock reliably indicates that someone
2006 * else is managing the pool and the worker which failed trylock
2007 * can proceed to executing work items. This means that anyone
2008 * grabbing manager_arb is responsible for actually performing
2009 * manager duties. If manager_arb is grabbed and released without
2010 * actual management, the pool may stall indefinitely.
2011 *
2012 * manager_mutex is used for exclusion of actual management
2013 * operations. The holder of manager_mutex can be sure that none
2014 * of management operations, including creation and destruction of
2015 * workers, won't take place until the mutex is released. Because
2016 * manager_mutex doesn't interfere with manager role arbitration,
2017 * it is guaranteed that the pool's management, while may be
2018 * delayed, won't be disturbed by someone else grabbing
2019 * manager_mutex.
2020 */
34a06bd6 2021 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2022 return ret;
1e19ffc6 2023
ee378aa4 2024 /*
bc3a1afc
TH
2025 * With manager arbitration won, manager_mutex would be free in
2026 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2027 */
bc3a1afc 2028 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2029 spin_unlock_irq(&pool->lock);
bc3a1afc 2030 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2031 ret = true;
2032 }
73f53c4a 2033
11ebea50 2034 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2035
2036 /*
e22bee78
TH
2037 * Destroy and then create so that may_start_working() is true
2038 * on return.
73f53c4a 2039 */
63d95a91
TH
2040 ret |= maybe_destroy_workers(pool);
2041 ret |= maybe_create_worker(pool);
e22bee78 2042
bc3a1afc 2043 mutex_unlock(&pool->manager_mutex);
34a06bd6 2044 mutex_unlock(&pool->manager_arb);
e22bee78 2045 return ret;
73f53c4a
TH
2046}
2047
a62428c0
TH
2048/**
2049 * process_one_work - process single work
c34056a3 2050 * @worker: self
a62428c0
TH
2051 * @work: work to process
2052 *
2053 * Process @work. This function contains all the logics necessary to
2054 * process a single work including synchronization against and
2055 * interaction with other workers on the same cpu, queueing and
2056 * flushing. As long as context requirement is met, any worker can
2057 * call this function to process a work.
2058 *
2059 * CONTEXT:
d565ed63 2060 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2061 */
c34056a3 2062static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2063__releases(&pool->lock)
2064__acquires(&pool->lock)
a62428c0 2065{
112202d9 2066 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2067 struct worker_pool *pool = worker->pool;
112202d9 2068 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2069 int work_color;
7e11629d 2070 struct worker *collision;
a62428c0
TH
2071#ifdef CONFIG_LOCKDEP
2072 /*
2073 * It is permissible to free the struct work_struct from
2074 * inside the function that is called from it, this we need to
2075 * take into account for lockdep too. To avoid bogus "held
2076 * lock freed" warnings as well as problems when looking into
2077 * work->lockdep_map, make a copy and use that here.
2078 */
4d82a1de
PZ
2079 struct lockdep_map lockdep_map;
2080
2081 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2082#endif
6fec10a1
TH
2083 /*
2084 * Ensure we're on the correct CPU. DISASSOCIATED test is
2085 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2086 * unbound or a disassociated pool.
6fec10a1 2087 */
5f7dabfd 2088 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2089 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2090 raw_smp_processor_id() != pool->cpu);
25511a47 2091
7e11629d
TH
2092 /*
2093 * A single work shouldn't be executed concurrently by
2094 * multiple workers on a single cpu. Check whether anyone is
2095 * already processing the work. If so, defer the work to the
2096 * currently executing one.
2097 */
c9e7cf27 2098 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2099 if (unlikely(collision)) {
2100 move_linked_works(work, &collision->scheduled, NULL);
2101 return;
2102 }
2103
8930caba 2104 /* claim and dequeue */
a62428c0 2105 debug_work_deactivate(work);
c9e7cf27 2106 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2107 worker->current_work = work;
a2c1c57b 2108 worker->current_func = work->func;
112202d9 2109 worker->current_pwq = pwq;
73f53c4a 2110 work_color = get_work_color(work);
7a22ad75 2111
a62428c0
TH
2112 list_del_init(&work->entry);
2113
fb0e7beb
TH
2114 /*
2115 * CPU intensive works don't participate in concurrency
2116 * management. They're the scheduler's responsibility.
2117 */
2118 if (unlikely(cpu_intensive))
2119 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2120
974271c4 2121 /*
d565ed63 2122 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2123 * executed ASAP. Wake up another worker if necessary.
2124 */
63d95a91
TH
2125 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2126 wake_up_worker(pool);
974271c4 2127
8930caba 2128 /*
7c3eed5c 2129 * Record the last pool and clear PENDING which should be the last
d565ed63 2130 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2131 * PENDING and queued state changes happen together while IRQ is
2132 * disabled.
8930caba 2133 */
7c3eed5c 2134 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2135
d565ed63 2136 spin_unlock_irq(&pool->lock);
a62428c0 2137
112202d9 2138 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2139 lock_map_acquire(&lockdep_map);
e36c886a 2140 trace_workqueue_execute_start(work);
a2c1c57b 2141 worker->current_func(work);
e36c886a
AV
2142 /*
2143 * While we must be careful to not use "work" after this, the trace
2144 * point will only record its address.
2145 */
2146 trace_workqueue_execute_end(work);
a62428c0 2147 lock_map_release(&lockdep_map);
112202d9 2148 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2149
2150 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2151 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2152 " last function: %pf\n",
a2c1c57b
TH
2153 current->comm, preempt_count(), task_pid_nr(current),
2154 worker->current_func);
a62428c0
TH
2155 debug_show_held_locks(current);
2156 dump_stack();
2157 }
2158
d565ed63 2159 spin_lock_irq(&pool->lock);
a62428c0 2160
fb0e7beb
TH
2161 /* clear cpu intensive status */
2162 if (unlikely(cpu_intensive))
2163 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2164
a62428c0 2165 /* we're done with it, release */
42f8570f 2166 hash_del(&worker->hentry);
c34056a3 2167 worker->current_work = NULL;
a2c1c57b 2168 worker->current_func = NULL;
112202d9
TH
2169 worker->current_pwq = NULL;
2170 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2171}
2172
affee4b2
TH
2173/**
2174 * process_scheduled_works - process scheduled works
2175 * @worker: self
2176 *
2177 * Process all scheduled works. Please note that the scheduled list
2178 * may change while processing a work, so this function repeatedly
2179 * fetches a work from the top and executes it.
2180 *
2181 * CONTEXT:
d565ed63 2182 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2183 * multiple times.
2184 */
2185static void process_scheduled_works(struct worker *worker)
1da177e4 2186{
affee4b2
TH
2187 while (!list_empty(&worker->scheduled)) {
2188 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2189 struct work_struct, entry);
c34056a3 2190 process_one_work(worker, work);
1da177e4 2191 }
1da177e4
LT
2192}
2193
4690c4ab
TH
2194/**
2195 * worker_thread - the worker thread function
c34056a3 2196 * @__worker: self
4690c4ab 2197 *
c5aa87bb
TH
2198 * The worker thread function. All workers belong to a worker_pool -
2199 * either a per-cpu one or dynamic unbound one. These workers process all
2200 * work items regardless of their specific target workqueue. The only
2201 * exception is work items which belong to workqueues with a rescuer which
2202 * will be explained in rescuer_thread().
4690c4ab 2203 */
c34056a3 2204static int worker_thread(void *__worker)
1da177e4 2205{
c34056a3 2206 struct worker *worker = __worker;
bd7bdd43 2207 struct worker_pool *pool = worker->pool;
1da177e4 2208
e22bee78
TH
2209 /* tell the scheduler that this is a workqueue worker */
2210 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2211woke_up:
d565ed63 2212 spin_lock_irq(&pool->lock);
1da177e4 2213
a9ab775b
TH
2214 /* am I supposed to die? */
2215 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2216 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2217 WARN_ON_ONCE(!list_empty(&worker->entry));
2218 worker->task->flags &= ~PF_WQ_WORKER;
2219 return 0;
c8e55f36 2220 }
affee4b2 2221
c8e55f36 2222 worker_leave_idle(worker);
db7bccf4 2223recheck:
e22bee78 2224 /* no more worker necessary? */
63d95a91 2225 if (!need_more_worker(pool))
e22bee78
TH
2226 goto sleep;
2227
2228 /* do we need to manage? */
63d95a91 2229 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2230 goto recheck;
2231
c8e55f36
TH
2232 /*
2233 * ->scheduled list can only be filled while a worker is
2234 * preparing to process a work or actually processing it.
2235 * Make sure nobody diddled with it while I was sleeping.
2236 */
6183c009 2237 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2238
e22bee78 2239 /*
a9ab775b
TH
2240 * Finish PREP stage. We're guaranteed to have at least one idle
2241 * worker or that someone else has already assumed the manager
2242 * role. This is where @worker starts participating in concurrency
2243 * management if applicable and concurrency management is restored
2244 * after being rebound. See rebind_workers() for details.
e22bee78 2245 */
a9ab775b 2246 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2247
2248 do {
c8e55f36 2249 struct work_struct *work =
bd7bdd43 2250 list_first_entry(&pool->worklist,
c8e55f36
TH
2251 struct work_struct, entry);
2252
2253 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2254 /* optimization path, not strictly necessary */
2255 process_one_work(worker, work);
2256 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2257 process_scheduled_works(worker);
c8e55f36
TH
2258 } else {
2259 move_linked_works(work, &worker->scheduled, NULL);
2260 process_scheduled_works(worker);
affee4b2 2261 }
63d95a91 2262 } while (keep_working(pool));
e22bee78
TH
2263
2264 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2265sleep:
63d95a91 2266 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2267 goto recheck;
d313dd85 2268
c8e55f36 2269 /*
d565ed63
TH
2270 * pool->lock is held and there's no work to process and no need to
2271 * manage, sleep. Workers are woken up only while holding
2272 * pool->lock or from local cpu, so setting the current state
2273 * before releasing pool->lock is enough to prevent losing any
2274 * event.
c8e55f36
TH
2275 */
2276 worker_enter_idle(worker);
2277 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2278 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2279 schedule();
2280 goto woke_up;
1da177e4
LT
2281}
2282
e22bee78
TH
2283/**
2284 * rescuer_thread - the rescuer thread function
111c225a 2285 * @__rescuer: self
e22bee78
TH
2286 *
2287 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2288 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2289 *
706026c2 2290 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2291 * worker which uses GFP_KERNEL allocation which has slight chance of
2292 * developing into deadlock if some works currently on the same queue
2293 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2294 * the problem rescuer solves.
2295 *
706026c2
TH
2296 * When such condition is possible, the pool summons rescuers of all
2297 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2298 * those works so that forward progress can be guaranteed.
2299 *
2300 * This should happen rarely.
2301 */
111c225a 2302static int rescuer_thread(void *__rescuer)
e22bee78 2303{
111c225a
TH
2304 struct worker *rescuer = __rescuer;
2305 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2306 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2307
2308 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2309
2310 /*
2311 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2312 * doesn't participate in concurrency management.
2313 */
2314 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2315repeat:
2316 set_current_state(TASK_INTERRUPTIBLE);
2317
412d32e6
MG
2318 if (kthread_should_stop()) {
2319 __set_current_state(TASK_RUNNING);
111c225a 2320 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2321 return 0;
412d32e6 2322 }
e22bee78 2323
493a1724 2324 /* see whether any pwq is asking for help */
2e109a28 2325 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2326
2327 while (!list_empty(&wq->maydays)) {
2328 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2329 struct pool_workqueue, mayday_node);
112202d9 2330 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2331 struct work_struct *work, *n;
2332
2333 __set_current_state(TASK_RUNNING);
493a1724
TH
2334 list_del_init(&pwq->mayday_node);
2335
2e109a28 2336 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2337
2338 /* migrate to the target cpu if possible */
f36dc67b 2339 worker_maybe_bind_and_lock(pool);
b3104104 2340 rescuer->pool = pool;
e22bee78
TH
2341
2342 /*
2343 * Slurp in all works issued via this workqueue and
2344 * process'em.
2345 */
6183c009 2346 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2347 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2348 if (get_work_pwq(work) == pwq)
e22bee78
TH
2349 move_linked_works(work, scheduled, &n);
2350
2351 process_scheduled_works(rescuer);
7576958a
TH
2352
2353 /*
d565ed63 2354 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2355 * regular worker; otherwise, we end up with 0 concurrency
2356 * and stalling the execution.
2357 */
63d95a91
TH
2358 if (keep_working(pool))
2359 wake_up_worker(pool);
7576958a 2360
b3104104 2361 rescuer->pool = NULL;
493a1724 2362 spin_unlock(&pool->lock);
2e109a28 2363 spin_lock(&wq_mayday_lock);
e22bee78
TH
2364 }
2365
2e109a28 2366 spin_unlock_irq(&wq_mayday_lock);
493a1724 2367
111c225a
TH
2368 /* rescuers should never participate in concurrency management */
2369 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2370 schedule();
2371 goto repeat;
1da177e4
LT
2372}
2373
fc2e4d70
ON
2374struct wq_barrier {
2375 struct work_struct work;
2376 struct completion done;
2377};
2378
2379static void wq_barrier_func(struct work_struct *work)
2380{
2381 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2382 complete(&barr->done);
2383}
2384
4690c4ab
TH
2385/**
2386 * insert_wq_barrier - insert a barrier work
112202d9 2387 * @pwq: pwq to insert barrier into
4690c4ab 2388 * @barr: wq_barrier to insert
affee4b2
TH
2389 * @target: target work to attach @barr to
2390 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2391 *
affee4b2
TH
2392 * @barr is linked to @target such that @barr is completed only after
2393 * @target finishes execution. Please note that the ordering
2394 * guarantee is observed only with respect to @target and on the local
2395 * cpu.
2396 *
2397 * Currently, a queued barrier can't be canceled. This is because
2398 * try_to_grab_pending() can't determine whether the work to be
2399 * grabbed is at the head of the queue and thus can't clear LINKED
2400 * flag of the previous work while there must be a valid next work
2401 * after a work with LINKED flag set.
2402 *
2403 * Note that when @worker is non-NULL, @target may be modified
112202d9 2404 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2405 *
2406 * CONTEXT:
d565ed63 2407 * spin_lock_irq(pool->lock).
4690c4ab 2408 */
112202d9 2409static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2410 struct wq_barrier *barr,
2411 struct work_struct *target, struct worker *worker)
fc2e4d70 2412{
affee4b2
TH
2413 struct list_head *head;
2414 unsigned int linked = 0;
2415
dc186ad7 2416 /*
d565ed63 2417 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2418 * as we know for sure that this will not trigger any of the
2419 * checks and call back into the fixup functions where we
2420 * might deadlock.
2421 */
ca1cab37 2422 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2423 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2424 init_completion(&barr->done);
83c22520 2425
affee4b2
TH
2426 /*
2427 * If @target is currently being executed, schedule the
2428 * barrier to the worker; otherwise, put it after @target.
2429 */
2430 if (worker)
2431 head = worker->scheduled.next;
2432 else {
2433 unsigned long *bits = work_data_bits(target);
2434
2435 head = target->entry.next;
2436 /* there can already be other linked works, inherit and set */
2437 linked = *bits & WORK_STRUCT_LINKED;
2438 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2439 }
2440
dc186ad7 2441 debug_work_activate(&barr->work);
112202d9 2442 insert_work(pwq, &barr->work, head,
affee4b2 2443 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2444}
2445
73f53c4a 2446/**
112202d9 2447 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2448 * @wq: workqueue being flushed
2449 * @flush_color: new flush color, < 0 for no-op
2450 * @work_color: new work color, < 0 for no-op
2451 *
112202d9 2452 * Prepare pwqs for workqueue flushing.
73f53c4a 2453 *
112202d9
TH
2454 * If @flush_color is non-negative, flush_color on all pwqs should be
2455 * -1. If no pwq has in-flight commands at the specified color, all
2456 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2457 * has in flight commands, its pwq->flush_color is set to
2458 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2459 * wakeup logic is armed and %true is returned.
2460 *
2461 * The caller should have initialized @wq->first_flusher prior to
2462 * calling this function with non-negative @flush_color. If
2463 * @flush_color is negative, no flush color update is done and %false
2464 * is returned.
2465 *
112202d9 2466 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2467 * work_color which is previous to @work_color and all will be
2468 * advanced to @work_color.
2469 *
2470 * CONTEXT:
3c25a55d 2471 * mutex_lock(wq->mutex).
73f53c4a
TH
2472 *
2473 * RETURNS:
2474 * %true if @flush_color >= 0 and there's something to flush. %false
2475 * otherwise.
2476 */
112202d9 2477static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2478 int flush_color, int work_color)
1da177e4 2479{
73f53c4a 2480 bool wait = false;
49e3cf44 2481 struct pool_workqueue *pwq;
1da177e4 2482
73f53c4a 2483 if (flush_color >= 0) {
6183c009 2484 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2485 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2486 }
2355b70f 2487
49e3cf44 2488 for_each_pwq(pwq, wq) {
112202d9 2489 struct worker_pool *pool = pwq->pool;
fc2e4d70 2490
b09f4fd3 2491 spin_lock_irq(&pool->lock);
83c22520 2492
73f53c4a 2493 if (flush_color >= 0) {
6183c009 2494 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2495
112202d9
TH
2496 if (pwq->nr_in_flight[flush_color]) {
2497 pwq->flush_color = flush_color;
2498 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2499 wait = true;
2500 }
2501 }
1da177e4 2502
73f53c4a 2503 if (work_color >= 0) {
6183c009 2504 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2505 pwq->work_color = work_color;
73f53c4a 2506 }
1da177e4 2507
b09f4fd3 2508 spin_unlock_irq(&pool->lock);
1da177e4 2509 }
2355b70f 2510
112202d9 2511 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2512 complete(&wq->first_flusher->done);
14441960 2513
73f53c4a 2514 return wait;
1da177e4
LT
2515}
2516
0fcb78c2 2517/**
1da177e4 2518 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2519 * @wq: workqueue to flush
1da177e4 2520 *
c5aa87bb
TH
2521 * This function sleeps until all work items which were queued on entry
2522 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2523 */
7ad5b3a5 2524void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2525{
73f53c4a
TH
2526 struct wq_flusher this_flusher = {
2527 .list = LIST_HEAD_INIT(this_flusher.list),
2528 .flush_color = -1,
2529 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2530 };
2531 int next_color;
1da177e4 2532
3295f0ef
IM
2533 lock_map_acquire(&wq->lockdep_map);
2534 lock_map_release(&wq->lockdep_map);
73f53c4a 2535
3c25a55d 2536 mutex_lock(&wq->mutex);
73f53c4a
TH
2537
2538 /*
2539 * Start-to-wait phase
2540 */
2541 next_color = work_next_color(wq->work_color);
2542
2543 if (next_color != wq->flush_color) {
2544 /*
2545 * Color space is not full. The current work_color
2546 * becomes our flush_color and work_color is advanced
2547 * by one.
2548 */
6183c009 2549 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2550 this_flusher.flush_color = wq->work_color;
2551 wq->work_color = next_color;
2552
2553 if (!wq->first_flusher) {
2554 /* no flush in progress, become the first flusher */
6183c009 2555 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2556
2557 wq->first_flusher = &this_flusher;
2558
112202d9 2559 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2560 wq->work_color)) {
2561 /* nothing to flush, done */
2562 wq->flush_color = next_color;
2563 wq->first_flusher = NULL;
2564 goto out_unlock;
2565 }
2566 } else {
2567 /* wait in queue */
6183c009 2568 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2569 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2570 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2571 }
2572 } else {
2573 /*
2574 * Oops, color space is full, wait on overflow queue.
2575 * The next flush completion will assign us
2576 * flush_color and transfer to flusher_queue.
2577 */
2578 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2579 }
2580
3c25a55d 2581 mutex_unlock(&wq->mutex);
73f53c4a
TH
2582
2583 wait_for_completion(&this_flusher.done);
2584
2585 /*
2586 * Wake-up-and-cascade phase
2587 *
2588 * First flushers are responsible for cascading flushes and
2589 * handling overflow. Non-first flushers can simply return.
2590 */
2591 if (wq->first_flusher != &this_flusher)
2592 return;
2593
3c25a55d 2594 mutex_lock(&wq->mutex);
73f53c4a 2595
4ce48b37
TH
2596 /* we might have raced, check again with mutex held */
2597 if (wq->first_flusher != &this_flusher)
2598 goto out_unlock;
2599
73f53c4a
TH
2600 wq->first_flusher = NULL;
2601
6183c009
TH
2602 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2603 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2604
2605 while (true) {
2606 struct wq_flusher *next, *tmp;
2607
2608 /* complete all the flushers sharing the current flush color */
2609 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2610 if (next->flush_color != wq->flush_color)
2611 break;
2612 list_del_init(&next->list);
2613 complete(&next->done);
2614 }
2615
6183c009
TH
2616 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2617 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2618
2619 /* this flush_color is finished, advance by one */
2620 wq->flush_color = work_next_color(wq->flush_color);
2621
2622 /* one color has been freed, handle overflow queue */
2623 if (!list_empty(&wq->flusher_overflow)) {
2624 /*
2625 * Assign the same color to all overflowed
2626 * flushers, advance work_color and append to
2627 * flusher_queue. This is the start-to-wait
2628 * phase for these overflowed flushers.
2629 */
2630 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2631 tmp->flush_color = wq->work_color;
2632
2633 wq->work_color = work_next_color(wq->work_color);
2634
2635 list_splice_tail_init(&wq->flusher_overflow,
2636 &wq->flusher_queue);
112202d9 2637 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2638 }
2639
2640 if (list_empty(&wq->flusher_queue)) {
6183c009 2641 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2642 break;
2643 }
2644
2645 /*
2646 * Need to flush more colors. Make the next flusher
112202d9 2647 * the new first flusher and arm pwqs.
73f53c4a 2648 */
6183c009
TH
2649 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2650 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2651
2652 list_del_init(&next->list);
2653 wq->first_flusher = next;
2654
112202d9 2655 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2656 break;
2657
2658 /*
2659 * Meh... this color is already done, clear first
2660 * flusher and repeat cascading.
2661 */
2662 wq->first_flusher = NULL;
2663 }
2664
2665out_unlock:
3c25a55d 2666 mutex_unlock(&wq->mutex);
1da177e4 2667}
ae90dd5d 2668EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2669
9c5a2ba7
TH
2670/**
2671 * drain_workqueue - drain a workqueue
2672 * @wq: workqueue to drain
2673 *
2674 * Wait until the workqueue becomes empty. While draining is in progress,
2675 * only chain queueing is allowed. IOW, only currently pending or running
2676 * work items on @wq can queue further work items on it. @wq is flushed
2677 * repeatedly until it becomes empty. The number of flushing is detemined
2678 * by the depth of chaining and should be relatively short. Whine if it
2679 * takes too long.
2680 */
2681void drain_workqueue(struct workqueue_struct *wq)
2682{
2683 unsigned int flush_cnt = 0;
49e3cf44 2684 struct pool_workqueue *pwq;
9c5a2ba7
TH
2685
2686 /*
2687 * __queue_work() needs to test whether there are drainers, is much
2688 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2689 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2690 */
87fc741e 2691 mutex_lock(&wq->mutex);
9c5a2ba7 2692 if (!wq->nr_drainers++)
618b01eb 2693 wq->flags |= __WQ_DRAINING;
87fc741e 2694 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2695reflush:
2696 flush_workqueue(wq);
2697
b09f4fd3 2698 mutex_lock(&wq->mutex);
76af4d93 2699
49e3cf44 2700 for_each_pwq(pwq, wq) {
fa2563e4 2701 bool drained;
9c5a2ba7 2702
b09f4fd3 2703 spin_lock_irq(&pwq->pool->lock);
112202d9 2704 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2705 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2706
2707 if (drained)
9c5a2ba7
TH
2708 continue;
2709
2710 if (++flush_cnt == 10 ||
2711 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2712 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2713 wq->name, flush_cnt);
76af4d93 2714
b09f4fd3 2715 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2716 goto reflush;
2717 }
2718
9c5a2ba7 2719 if (!--wq->nr_drainers)
618b01eb 2720 wq->flags &= ~__WQ_DRAINING;
87fc741e 2721 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2722}
2723EXPORT_SYMBOL_GPL(drain_workqueue);
2724
606a5020 2725static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2726{
affee4b2 2727 struct worker *worker = NULL;
c9e7cf27 2728 struct worker_pool *pool;
112202d9 2729 struct pool_workqueue *pwq;
db700897
ON
2730
2731 might_sleep();
fa1b54e6
TH
2732
2733 local_irq_disable();
c9e7cf27 2734 pool = get_work_pool(work);
fa1b54e6
TH
2735 if (!pool) {
2736 local_irq_enable();
baf59022 2737 return false;
fa1b54e6 2738 }
db700897 2739
fa1b54e6 2740 spin_lock(&pool->lock);
0b3dae68 2741 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2742 pwq = get_work_pwq(work);
2743 if (pwq) {
2744 if (unlikely(pwq->pool != pool))
4690c4ab 2745 goto already_gone;
606a5020 2746 } else {
c9e7cf27 2747 worker = find_worker_executing_work(pool, work);
affee4b2 2748 if (!worker)
4690c4ab 2749 goto already_gone;
112202d9 2750 pwq = worker->current_pwq;
606a5020 2751 }
db700897 2752
112202d9 2753 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2754 spin_unlock_irq(&pool->lock);
7a22ad75 2755
e159489b
TH
2756 /*
2757 * If @max_active is 1 or rescuer is in use, flushing another work
2758 * item on the same workqueue may lead to deadlock. Make sure the
2759 * flusher is not running on the same workqueue by verifying write
2760 * access.
2761 */
493008a8 2762 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2763 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2764 else
112202d9
TH
2765 lock_map_acquire_read(&pwq->wq->lockdep_map);
2766 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2767
401a8d04 2768 return true;
4690c4ab 2769already_gone:
d565ed63 2770 spin_unlock_irq(&pool->lock);
401a8d04 2771 return false;
db700897 2772}
baf59022
TH
2773
2774/**
2775 * flush_work - wait for a work to finish executing the last queueing instance
2776 * @work: the work to flush
2777 *
606a5020
TH
2778 * Wait until @work has finished execution. @work is guaranteed to be idle
2779 * on return if it hasn't been requeued since flush started.
baf59022
TH
2780 *
2781 * RETURNS:
2782 * %true if flush_work() waited for the work to finish execution,
2783 * %false if it was already idle.
2784 */
2785bool flush_work(struct work_struct *work)
2786{
2787 struct wq_barrier barr;
2788
0976dfc1
SB
2789 lock_map_acquire(&work->lockdep_map);
2790 lock_map_release(&work->lockdep_map);
2791
606a5020 2792 if (start_flush_work(work, &barr)) {
401a8d04
TH
2793 wait_for_completion(&barr.done);
2794 destroy_work_on_stack(&barr.work);
2795 return true;
606a5020 2796 } else {
401a8d04 2797 return false;
6e84d644 2798 }
6e84d644 2799}
606a5020 2800EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2801
36e227d2 2802static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2803{
bbb68dfa 2804 unsigned long flags;
1f1f642e
ON
2805 int ret;
2806
2807 do {
bbb68dfa
TH
2808 ret = try_to_grab_pending(work, is_dwork, &flags);
2809 /*
2810 * If someone else is canceling, wait for the same event it
2811 * would be waiting for before retrying.
2812 */
2813 if (unlikely(ret == -ENOENT))
606a5020 2814 flush_work(work);
1f1f642e
ON
2815 } while (unlikely(ret < 0));
2816
bbb68dfa
TH
2817 /* tell other tasks trying to grab @work to back off */
2818 mark_work_canceling(work);
2819 local_irq_restore(flags);
2820
606a5020 2821 flush_work(work);
7a22ad75 2822 clear_work_data(work);
1f1f642e
ON
2823 return ret;
2824}
2825
6e84d644 2826/**
401a8d04
TH
2827 * cancel_work_sync - cancel a work and wait for it to finish
2828 * @work: the work to cancel
6e84d644 2829 *
401a8d04
TH
2830 * Cancel @work and wait for its execution to finish. This function
2831 * can be used even if the work re-queues itself or migrates to
2832 * another workqueue. On return from this function, @work is
2833 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2834 *
401a8d04
TH
2835 * cancel_work_sync(&delayed_work->work) must not be used for
2836 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2837 *
401a8d04 2838 * The caller must ensure that the workqueue on which @work was last
6e84d644 2839 * queued can't be destroyed before this function returns.
401a8d04
TH
2840 *
2841 * RETURNS:
2842 * %true if @work was pending, %false otherwise.
6e84d644 2843 */
401a8d04 2844bool cancel_work_sync(struct work_struct *work)
6e84d644 2845{
36e227d2 2846 return __cancel_work_timer(work, false);
b89deed3 2847}
28e53bdd 2848EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2849
6e84d644 2850/**
401a8d04
TH
2851 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2852 * @dwork: the delayed work to flush
6e84d644 2853 *
401a8d04
TH
2854 * Delayed timer is cancelled and the pending work is queued for
2855 * immediate execution. Like flush_work(), this function only
2856 * considers the last queueing instance of @dwork.
1f1f642e 2857 *
401a8d04
TH
2858 * RETURNS:
2859 * %true if flush_work() waited for the work to finish execution,
2860 * %false if it was already idle.
6e84d644 2861 */
401a8d04
TH
2862bool flush_delayed_work(struct delayed_work *dwork)
2863{
8930caba 2864 local_irq_disable();
401a8d04 2865 if (del_timer_sync(&dwork->timer))
60c057bc 2866 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2867 local_irq_enable();
401a8d04
TH
2868 return flush_work(&dwork->work);
2869}
2870EXPORT_SYMBOL(flush_delayed_work);
2871
09383498 2872/**
57b30ae7
TH
2873 * cancel_delayed_work - cancel a delayed work
2874 * @dwork: delayed_work to cancel
09383498 2875 *
57b30ae7
TH
2876 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2877 * and canceled; %false if wasn't pending. Note that the work callback
2878 * function may still be running on return, unless it returns %true and the
2879 * work doesn't re-arm itself. Explicitly flush or use
2880 * cancel_delayed_work_sync() to wait on it.
09383498 2881 *
57b30ae7 2882 * This function is safe to call from any context including IRQ handler.
09383498 2883 */
57b30ae7 2884bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2885{
57b30ae7
TH
2886 unsigned long flags;
2887 int ret;
2888
2889 do {
2890 ret = try_to_grab_pending(&dwork->work, true, &flags);
2891 } while (unlikely(ret == -EAGAIN));
2892
2893 if (unlikely(ret < 0))
2894 return false;
2895
7c3eed5c
TH
2896 set_work_pool_and_clear_pending(&dwork->work,
2897 get_work_pool_id(&dwork->work));
57b30ae7 2898 local_irq_restore(flags);
c0158ca6 2899 return ret;
09383498 2900}
57b30ae7 2901EXPORT_SYMBOL(cancel_delayed_work);
09383498 2902
401a8d04
TH
2903/**
2904 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2905 * @dwork: the delayed work cancel
2906 *
2907 * This is cancel_work_sync() for delayed works.
2908 *
2909 * RETURNS:
2910 * %true if @dwork was pending, %false otherwise.
2911 */
2912bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2913{
36e227d2 2914 return __cancel_work_timer(&dwork->work, true);
6e84d644 2915}
f5a421a4 2916EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2917
b6136773 2918/**
31ddd871 2919 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2920 * @func: the function to call
b6136773 2921 *
31ddd871
TH
2922 * schedule_on_each_cpu() executes @func on each online CPU using the
2923 * system workqueue and blocks until all CPUs have completed.
b6136773 2924 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2925 *
2926 * RETURNS:
2927 * 0 on success, -errno on failure.
b6136773 2928 */
65f27f38 2929int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2930{
2931 int cpu;
38f51568 2932 struct work_struct __percpu *works;
15316ba8 2933
b6136773
AM
2934 works = alloc_percpu(struct work_struct);
2935 if (!works)
15316ba8 2936 return -ENOMEM;
b6136773 2937
93981800
TH
2938 get_online_cpus();
2939
15316ba8 2940 for_each_online_cpu(cpu) {
9bfb1839
IM
2941 struct work_struct *work = per_cpu_ptr(works, cpu);
2942
2943 INIT_WORK(work, func);
b71ab8c2 2944 schedule_work_on(cpu, work);
65a64464 2945 }
93981800
TH
2946
2947 for_each_online_cpu(cpu)
2948 flush_work(per_cpu_ptr(works, cpu));
2949
95402b38 2950 put_online_cpus();
b6136773 2951 free_percpu(works);
15316ba8
CL
2952 return 0;
2953}
2954
eef6a7d5
AS
2955/**
2956 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2957 *
2958 * Forces execution of the kernel-global workqueue and blocks until its
2959 * completion.
2960 *
2961 * Think twice before calling this function! It's very easy to get into
2962 * trouble if you don't take great care. Either of the following situations
2963 * will lead to deadlock:
2964 *
2965 * One of the work items currently on the workqueue needs to acquire
2966 * a lock held by your code or its caller.
2967 *
2968 * Your code is running in the context of a work routine.
2969 *
2970 * They will be detected by lockdep when they occur, but the first might not
2971 * occur very often. It depends on what work items are on the workqueue and
2972 * what locks they need, which you have no control over.
2973 *
2974 * In most situations flushing the entire workqueue is overkill; you merely
2975 * need to know that a particular work item isn't queued and isn't running.
2976 * In such cases you should use cancel_delayed_work_sync() or
2977 * cancel_work_sync() instead.
2978 */
1da177e4
LT
2979void flush_scheduled_work(void)
2980{
d320c038 2981 flush_workqueue(system_wq);
1da177e4 2982}
ae90dd5d 2983EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2984
1fa44eca
JB
2985/**
2986 * execute_in_process_context - reliably execute the routine with user context
2987 * @fn: the function to execute
1fa44eca
JB
2988 * @ew: guaranteed storage for the execute work structure (must
2989 * be available when the work executes)
2990 *
2991 * Executes the function immediately if process context is available,
2992 * otherwise schedules the function for delayed execution.
2993 *
2994 * Returns: 0 - function was executed
2995 * 1 - function was scheduled for execution
2996 */
65f27f38 2997int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2998{
2999 if (!in_interrupt()) {
65f27f38 3000 fn(&ew->work);
1fa44eca
JB
3001 return 0;
3002 }
3003
65f27f38 3004 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3005 schedule_work(&ew->work);
3006
3007 return 1;
3008}
3009EXPORT_SYMBOL_GPL(execute_in_process_context);
3010
226223ab
TH
3011#ifdef CONFIG_SYSFS
3012/*
3013 * Workqueues with WQ_SYSFS flag set is visible to userland via
3014 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3015 * following attributes.
3016 *
3017 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3018 * max_active RW int : maximum number of in-flight work items
3019 *
3020 * Unbound workqueues have the following extra attributes.
3021 *
3022 * id RO int : the associated pool ID
3023 * nice RW int : nice value of the workers
3024 * cpumask RW mask : bitmask of allowed CPUs for the workers
3025 */
3026struct wq_device {
3027 struct workqueue_struct *wq;
3028 struct device dev;
3029};
3030
3031static struct workqueue_struct *dev_to_wq(struct device *dev)
3032{
3033 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3034
3035 return wq_dev->wq;
3036}
3037
3038static ssize_t wq_per_cpu_show(struct device *dev,
3039 struct device_attribute *attr, char *buf)
3040{
3041 struct workqueue_struct *wq = dev_to_wq(dev);
3042
3043 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3044}
3045
3046static ssize_t wq_max_active_show(struct device *dev,
3047 struct device_attribute *attr, char *buf)
3048{
3049 struct workqueue_struct *wq = dev_to_wq(dev);
3050
3051 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3052}
3053
3054static ssize_t wq_max_active_store(struct device *dev,
3055 struct device_attribute *attr,
3056 const char *buf, size_t count)
3057{
3058 struct workqueue_struct *wq = dev_to_wq(dev);
3059 int val;
3060
3061 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3062 return -EINVAL;
3063
3064 workqueue_set_max_active(wq, val);
3065 return count;
3066}
3067
3068static struct device_attribute wq_sysfs_attrs[] = {
3069 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3070 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3071 __ATTR_NULL,
3072};
3073
3074static ssize_t wq_pool_id_show(struct device *dev,
3075 struct device_attribute *attr, char *buf)
3076{
3077 struct workqueue_struct *wq = dev_to_wq(dev);
3078 struct worker_pool *pool;
3079 int written;
3080
3081 rcu_read_lock_sched();
3082 pool = first_pwq(wq)->pool;
3083 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3084 rcu_read_unlock_sched();
3085
3086 return written;
3087}
3088
3089static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3090 char *buf)
3091{
3092 struct workqueue_struct *wq = dev_to_wq(dev);
3093 int written;
3094
6029a918
TH
3095 mutex_lock(&wq->mutex);
3096 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3097 mutex_unlock(&wq->mutex);
226223ab
TH
3098
3099 return written;
3100}
3101
3102/* prepare workqueue_attrs for sysfs store operations */
3103static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3104{
3105 struct workqueue_attrs *attrs;
3106
3107 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3108 if (!attrs)
3109 return NULL;
3110
6029a918
TH
3111 mutex_lock(&wq->mutex);
3112 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3113 mutex_unlock(&wq->mutex);
226223ab
TH
3114 return attrs;
3115}
3116
3117static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3118 const char *buf, size_t count)
3119{
3120 struct workqueue_struct *wq = dev_to_wq(dev);
3121 struct workqueue_attrs *attrs;
3122 int ret;
3123
3124 attrs = wq_sysfs_prep_attrs(wq);
3125 if (!attrs)
3126 return -ENOMEM;
3127
3128 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3129 attrs->nice >= -20 && attrs->nice <= 19)
3130 ret = apply_workqueue_attrs(wq, attrs);
3131 else
3132 ret = -EINVAL;
3133
3134 free_workqueue_attrs(attrs);
3135 return ret ?: count;
3136}
3137
3138static ssize_t wq_cpumask_show(struct device *dev,
3139 struct device_attribute *attr, char *buf)
3140{
3141 struct workqueue_struct *wq = dev_to_wq(dev);
3142 int written;
3143
6029a918
TH
3144 mutex_lock(&wq->mutex);
3145 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3146 mutex_unlock(&wq->mutex);
226223ab
TH
3147
3148 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3149 return written;
3150}
3151
3152static ssize_t wq_cpumask_store(struct device *dev,
3153 struct device_attribute *attr,
3154 const char *buf, size_t count)
3155{
3156 struct workqueue_struct *wq = dev_to_wq(dev);
3157 struct workqueue_attrs *attrs;
3158 int ret;
3159
3160 attrs = wq_sysfs_prep_attrs(wq);
3161 if (!attrs)
3162 return -ENOMEM;
3163
3164 ret = cpumask_parse(buf, attrs->cpumask);
3165 if (!ret)
3166 ret = apply_workqueue_attrs(wq, attrs);
3167
3168 free_workqueue_attrs(attrs);
3169 return ret ?: count;
3170}
3171
3172static struct device_attribute wq_sysfs_unbound_attrs[] = {
3173 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3174 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3175 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3176 __ATTR_NULL,
3177};
3178
3179static struct bus_type wq_subsys = {
3180 .name = "workqueue",
3181 .dev_attrs = wq_sysfs_attrs,
3182};
3183
3184static int __init wq_sysfs_init(void)
3185{
3186 return subsys_virtual_register(&wq_subsys, NULL);
3187}
3188core_initcall(wq_sysfs_init);
3189
3190static void wq_device_release(struct device *dev)
3191{
3192 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3193
3194 kfree(wq_dev);
3195}
3196
3197/**
3198 * workqueue_sysfs_register - make a workqueue visible in sysfs
3199 * @wq: the workqueue to register
3200 *
3201 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3202 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3203 * which is the preferred method.
3204 *
3205 * Workqueue user should use this function directly iff it wants to apply
3206 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3207 * apply_workqueue_attrs() may race against userland updating the
3208 * attributes.
3209 *
3210 * Returns 0 on success, -errno on failure.
3211 */
3212int workqueue_sysfs_register(struct workqueue_struct *wq)
3213{
3214 struct wq_device *wq_dev;
3215 int ret;
3216
3217 /*
3218 * Adjusting max_active or creating new pwqs by applyting
3219 * attributes breaks ordering guarantee. Disallow exposing ordered
3220 * workqueues.
3221 */
3222 if (WARN_ON(wq->flags & __WQ_ORDERED))
3223 return -EINVAL;
3224
3225 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3226 if (!wq_dev)
3227 return -ENOMEM;
3228
3229 wq_dev->wq = wq;
3230 wq_dev->dev.bus = &wq_subsys;
3231 wq_dev->dev.init_name = wq->name;
3232 wq_dev->dev.release = wq_device_release;
3233
3234 /*
3235 * unbound_attrs are created separately. Suppress uevent until
3236 * everything is ready.
3237 */
3238 dev_set_uevent_suppress(&wq_dev->dev, true);
3239
3240 ret = device_register(&wq_dev->dev);
3241 if (ret) {
3242 kfree(wq_dev);
3243 wq->wq_dev = NULL;
3244 return ret;
3245 }
3246
3247 if (wq->flags & WQ_UNBOUND) {
3248 struct device_attribute *attr;
3249
3250 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3251 ret = device_create_file(&wq_dev->dev, attr);
3252 if (ret) {
3253 device_unregister(&wq_dev->dev);
3254 wq->wq_dev = NULL;
3255 return ret;
3256 }
3257 }
3258 }
3259
3260 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3261 return 0;
3262}
3263
3264/**
3265 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3266 * @wq: the workqueue to unregister
3267 *
3268 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3269 */
3270static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3271{
3272 struct wq_device *wq_dev = wq->wq_dev;
3273
3274 if (!wq->wq_dev)
3275 return;
3276
3277 wq->wq_dev = NULL;
3278 device_unregister(&wq_dev->dev);
3279}
3280#else /* CONFIG_SYSFS */
3281static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3282#endif /* CONFIG_SYSFS */
3283
7a4e344c
TH
3284/**
3285 * free_workqueue_attrs - free a workqueue_attrs
3286 * @attrs: workqueue_attrs to free
3287 *
3288 * Undo alloc_workqueue_attrs().
3289 */
3290void free_workqueue_attrs(struct workqueue_attrs *attrs)
3291{
3292 if (attrs) {
3293 free_cpumask_var(attrs->cpumask);
3294 kfree(attrs);
3295 }
3296}
3297
3298/**
3299 * alloc_workqueue_attrs - allocate a workqueue_attrs
3300 * @gfp_mask: allocation mask to use
3301 *
3302 * Allocate a new workqueue_attrs, initialize with default settings and
3303 * return it. Returns NULL on failure.
3304 */
3305struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3306{
3307 struct workqueue_attrs *attrs;
3308
3309 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3310 if (!attrs)
3311 goto fail;
3312 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3313 goto fail;
3314
13e2e556 3315 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3316 return attrs;
3317fail:
3318 free_workqueue_attrs(attrs);
3319 return NULL;
3320}
3321
29c91e99
TH
3322static void copy_workqueue_attrs(struct workqueue_attrs *to,
3323 const struct workqueue_attrs *from)
3324{
3325 to->nice = from->nice;
3326 cpumask_copy(to->cpumask, from->cpumask);
3327}
3328
29c91e99
TH
3329/* hash value of the content of @attr */
3330static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3331{
3332 u32 hash = 0;
3333
3334 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3335 hash = jhash(cpumask_bits(attrs->cpumask),
3336 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3337 return hash;
3338}
3339
3340/* content equality test */
3341static bool wqattrs_equal(const struct workqueue_attrs *a,
3342 const struct workqueue_attrs *b)
3343{
3344 if (a->nice != b->nice)
3345 return false;
3346 if (!cpumask_equal(a->cpumask, b->cpumask))
3347 return false;
3348 return true;
3349}
3350
7a4e344c
TH
3351/**
3352 * init_worker_pool - initialize a newly zalloc'd worker_pool
3353 * @pool: worker_pool to initialize
3354 *
3355 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3356 * Returns 0 on success, -errno on failure. Even on failure, all fields
3357 * inside @pool proper are initialized and put_unbound_pool() can be called
3358 * on @pool safely to release it.
7a4e344c
TH
3359 */
3360static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3361{
3362 spin_lock_init(&pool->lock);
29c91e99
TH
3363 pool->id = -1;
3364 pool->cpu = -1;
f3f90ad4 3365 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3366 pool->flags |= POOL_DISASSOCIATED;
3367 INIT_LIST_HEAD(&pool->worklist);
3368 INIT_LIST_HEAD(&pool->idle_list);
3369 hash_init(pool->busy_hash);
3370
3371 init_timer_deferrable(&pool->idle_timer);
3372 pool->idle_timer.function = idle_worker_timeout;
3373 pool->idle_timer.data = (unsigned long)pool;
3374
3375 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3376 (unsigned long)pool);
3377
3378 mutex_init(&pool->manager_arb);
bc3a1afc 3379 mutex_init(&pool->manager_mutex);
822d8405 3380 idr_init(&pool->worker_idr);
7a4e344c 3381
29c91e99
TH
3382 INIT_HLIST_NODE(&pool->hash_node);
3383 pool->refcnt = 1;
3384
3385 /* shouldn't fail above this point */
7a4e344c
TH
3386 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3387 if (!pool->attrs)
3388 return -ENOMEM;
3389 return 0;
4e1a1f9a
TH
3390}
3391
29c91e99
TH
3392static void rcu_free_pool(struct rcu_head *rcu)
3393{
3394 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3395
822d8405 3396 idr_destroy(&pool->worker_idr);
29c91e99
TH
3397 free_workqueue_attrs(pool->attrs);
3398 kfree(pool);
3399}
3400
3401/**
3402 * put_unbound_pool - put a worker_pool
3403 * @pool: worker_pool to put
3404 *
3405 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3406 * safe manner. get_unbound_pool() calls this function on its failure path
3407 * and this function should be able to release pools which went through,
3408 * successfully or not, init_worker_pool().
a892cacc
TH
3409 *
3410 * Should be called with wq_pool_mutex held.
29c91e99
TH
3411 */
3412static void put_unbound_pool(struct worker_pool *pool)
3413{
3414 struct worker *worker;
3415
a892cacc
TH
3416 lockdep_assert_held(&wq_pool_mutex);
3417
3418 if (--pool->refcnt)
29c91e99 3419 return;
29c91e99
TH
3420
3421 /* sanity checks */
3422 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3423 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3424 return;
29c91e99
TH
3425
3426 /* release id and unhash */
3427 if (pool->id >= 0)
3428 idr_remove(&worker_pool_idr, pool->id);
3429 hash_del(&pool->hash_node);
3430
c5aa87bb
TH
3431 /*
3432 * Become the manager and destroy all workers. Grabbing
3433 * manager_arb prevents @pool's workers from blocking on
3434 * manager_mutex.
3435 */
29c91e99 3436 mutex_lock(&pool->manager_arb);
cd549687 3437 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3438 spin_lock_irq(&pool->lock);
3439
3440 while ((worker = first_worker(pool)))
3441 destroy_worker(worker);
3442 WARN_ON(pool->nr_workers || pool->nr_idle);
3443
3444 spin_unlock_irq(&pool->lock);
cd549687 3445 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3446 mutex_unlock(&pool->manager_arb);
3447
3448 /* shut down the timers */
3449 del_timer_sync(&pool->idle_timer);
3450 del_timer_sync(&pool->mayday_timer);
3451
3452 /* sched-RCU protected to allow dereferences from get_work_pool() */
3453 call_rcu_sched(&pool->rcu, rcu_free_pool);
3454}
3455
3456/**
3457 * get_unbound_pool - get a worker_pool with the specified attributes
3458 * @attrs: the attributes of the worker_pool to get
3459 *
3460 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3461 * reference count and return it. If there already is a matching
3462 * worker_pool, it will be used; otherwise, this function attempts to
3463 * create a new one. On failure, returns NULL.
a892cacc
TH
3464 *
3465 * Should be called with wq_pool_mutex held.
29c91e99
TH
3466 */
3467static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3468{
29c91e99
TH
3469 u32 hash = wqattrs_hash(attrs);
3470 struct worker_pool *pool;
f3f90ad4 3471 int node;
29c91e99 3472
a892cacc 3473 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3474
3475 /* do we already have a matching pool? */
29c91e99
TH
3476 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3477 if (wqattrs_equal(pool->attrs, attrs)) {
3478 pool->refcnt++;
3479 goto out_unlock;
3480 }
3481 }
29c91e99
TH
3482
3483 /* nope, create a new one */
3484 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3485 if (!pool || init_worker_pool(pool) < 0)
3486 goto fail;
3487
12ee4fc6
LJ
3488 if (workqueue_freezing)
3489 pool->flags |= POOL_FREEZING;
3490
8864b4e5 3491 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3492 copy_workqueue_attrs(pool->attrs, attrs);
3493
f3f90ad4
TH
3494 /* if cpumask is contained inside a NUMA node, we belong to that node */
3495 if (wq_numa_enabled) {
3496 for_each_node(node) {
3497 if (cpumask_subset(pool->attrs->cpumask,
3498 wq_numa_possible_cpumask[node])) {
3499 pool->node = node;
3500 break;
3501 }
3502 }
3503 }
3504
29c91e99
TH
3505 if (worker_pool_assign_id(pool) < 0)
3506 goto fail;
3507
3508 /* create and start the initial worker */
ebf44d16 3509 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3510 goto fail;
3511
29c91e99 3512 /* install */
29c91e99
TH
3513 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3514out_unlock:
29c91e99
TH
3515 return pool;
3516fail:
29c91e99
TH
3517 if (pool)
3518 put_unbound_pool(pool);
3519 return NULL;
3520}
3521
8864b4e5
TH
3522static void rcu_free_pwq(struct rcu_head *rcu)
3523{
3524 kmem_cache_free(pwq_cache,
3525 container_of(rcu, struct pool_workqueue, rcu));
3526}
3527
3528/*
3529 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3530 * and needs to be destroyed.
3531 */
3532static void pwq_unbound_release_workfn(struct work_struct *work)
3533{
3534 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3535 unbound_release_work);
3536 struct workqueue_struct *wq = pwq->wq;
3537 struct worker_pool *pool = pwq->pool;
bc0caf09 3538 bool is_last;
8864b4e5
TH
3539
3540 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3541 return;
3542
75ccf595 3543 /*
3c25a55d 3544 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3545 * necessary on release but do it anyway. It's easier to verify
3546 * and consistent with the linking path.
3547 */
3c25a55d 3548 mutex_lock(&wq->mutex);
8864b4e5 3549 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3550 is_last = list_empty(&wq->pwqs);
3c25a55d 3551 mutex_unlock(&wq->mutex);
8864b4e5 3552
a892cacc 3553 mutex_lock(&wq_pool_mutex);
8864b4e5 3554 put_unbound_pool(pool);
a892cacc
TH
3555 mutex_unlock(&wq_pool_mutex);
3556
8864b4e5
TH
3557 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3558
3559 /*
3560 * If we're the last pwq going away, @wq is already dead and no one
3561 * is gonna access it anymore. Free it.
3562 */
6029a918
TH
3563 if (is_last) {
3564 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3565 kfree(wq);
6029a918 3566 }
8864b4e5
TH
3567}
3568
0fbd95aa 3569/**
699ce097 3570 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3571 * @pwq: target pool_workqueue
0fbd95aa 3572 *
699ce097
TH
3573 * If @pwq isn't freezing, set @pwq->max_active to the associated
3574 * workqueue's saved_max_active and activate delayed work items
3575 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3576 */
699ce097 3577static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3578{
699ce097
TH
3579 struct workqueue_struct *wq = pwq->wq;
3580 bool freezable = wq->flags & WQ_FREEZABLE;
3581
3582 /* for @wq->saved_max_active */
a357fc03 3583 lockdep_assert_held(&wq->mutex);
699ce097
TH
3584
3585 /* fast exit for non-freezable wqs */
3586 if (!freezable && pwq->max_active == wq->saved_max_active)
3587 return;
3588
a357fc03 3589 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3590
3591 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3592 pwq->max_active = wq->saved_max_active;
0fbd95aa 3593
699ce097
TH
3594 while (!list_empty(&pwq->delayed_works) &&
3595 pwq->nr_active < pwq->max_active)
3596 pwq_activate_first_delayed(pwq);
951a078a
LJ
3597
3598 /*
3599 * Need to kick a worker after thawed or an unbound wq's
3600 * max_active is bumped. It's a slow path. Do it always.
3601 */
3602 wake_up_worker(pwq->pool);
699ce097
TH
3603 } else {
3604 pwq->max_active = 0;
3605 }
3606
a357fc03 3607 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3608}
3609
d2c1d404
TH
3610static void init_and_link_pwq(struct pool_workqueue *pwq,
3611 struct workqueue_struct *wq,
9e8cd2f5
TH
3612 struct worker_pool *pool,
3613 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3614{
3615 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3616
3617 pwq->pool = pool;
3618 pwq->wq = wq;
3619 pwq->flush_color = -1;
8864b4e5 3620 pwq->refcnt = 1;
d2c1d404
TH
3621 INIT_LIST_HEAD(&pwq->delayed_works);
3622 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3623 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3624
3c25a55d 3625 mutex_lock(&wq->mutex);
75ccf595 3626
983ca25e
TH
3627 /*
3628 * Set the matching work_color. This is synchronized with
3c25a55d 3629 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3630 */
9e8cd2f5
TH
3631 if (p_last_pwq)
3632 *p_last_pwq = first_pwq(wq);
75ccf595 3633 pwq->work_color = wq->work_color;
983ca25e
TH
3634
3635 /* sync max_active to the current setting */
3636 pwq_adjust_max_active(pwq);
3637
3638 /* link in @pwq */
9e8cd2f5 3639 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
a357fc03 3640
6029a918
TH
3641 if (wq->flags & WQ_UNBOUND)
3642 copy_workqueue_attrs(wq->unbound_attrs, pool->attrs);
3643
3c25a55d 3644 mutex_unlock(&wq->mutex);
d2c1d404
TH
3645}
3646
9e8cd2f5
TH
3647/**
3648 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3649 * @wq: the target workqueue
3650 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3651 *
3652 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3653 * current attributes, a new pwq is created and made the first pwq which
3654 * will serve all new work items. Older pwqs are released as in-flight
3655 * work items finish. Note that a work item which repeatedly requeues
3656 * itself back-to-back will stay on its current pwq.
3657 *
3658 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3659 * failure.
3660 */
3661int apply_workqueue_attrs(struct workqueue_struct *wq,
3662 const struct workqueue_attrs *attrs)
3663{
13e2e556
TH
3664 struct workqueue_attrs *new_attrs;
3665 struct pool_workqueue *pwq = NULL, *last_pwq;
9e8cd2f5 3666 struct worker_pool *pool;
4862125b 3667 int ret;
9e8cd2f5 3668
8719dcea 3669 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3670 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3671 return -EINVAL;
3672
8719dcea
TH
3673 /* creating multiple pwqs breaks ordering guarantee */
3674 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3675 return -EINVAL;
3676
13e2e556
TH
3677 /* make a copy of @attrs and sanitize it */
3678 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3679 if (!new_attrs)
3680 goto enomem;
3681
3682 copy_workqueue_attrs(new_attrs, attrs);
3683 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3684
a892cacc
TH
3685 mutex_lock(&wq_pool_mutex);
3686
9e8cd2f5 3687 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
a892cacc
TH
3688 if (!pwq) {
3689 mutex_unlock(&wq_pool_mutex);
13e2e556 3690 goto enomem;
a892cacc 3691 }
9e8cd2f5 3692
13e2e556 3693 pool = get_unbound_pool(new_attrs);
a892cacc
TH
3694 if (!pool) {
3695 mutex_unlock(&wq_pool_mutex);
13e2e556 3696 goto enomem;
a892cacc
TH
3697 }
3698
3699 mutex_unlock(&wq_pool_mutex);
9e8cd2f5
TH
3700
3701 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3702 if (last_pwq) {
3703 spin_lock_irq(&last_pwq->pool->lock);
3704 put_pwq(last_pwq);
3705 spin_unlock_irq(&last_pwq->pool->lock);
3706 }
3707
4862125b
TH
3708 ret = 0;
3709 /* fall through */
3710out_free:
3711 free_workqueue_attrs(new_attrs);
3712 return ret;
13e2e556
TH
3713
3714enomem:
3715 kmem_cache_free(pwq_cache, pwq);
4862125b
TH
3716 ret = -ENOMEM;
3717 goto out_free;
9e8cd2f5
TH
3718}
3719
30cdf249 3720static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3721{
49e3cf44 3722 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3723 int cpu;
3724
3725 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3726 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3727 if (!wq->cpu_pwqs)
30cdf249
TH
3728 return -ENOMEM;
3729
3730 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3731 struct pool_workqueue *pwq =
3732 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3733 struct worker_pool *cpu_pools =
f02ae73a 3734 per_cpu(cpu_worker_pools, cpu);
f3421797 3735
9e8cd2f5 3736 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3737 }
9e8cd2f5 3738 return 0;
30cdf249 3739 } else {
9e8cd2f5 3740 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3741 }
0f900049
TH
3742}
3743
f3421797
TH
3744static int wq_clamp_max_active(int max_active, unsigned int flags,
3745 const char *name)
b71ab8c2 3746{
f3421797
TH
3747 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3748
3749 if (max_active < 1 || max_active > lim)
044c782c
VI
3750 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3751 max_active, name, 1, lim);
b71ab8c2 3752
f3421797 3753 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3754}
3755
b196be89 3756struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3757 unsigned int flags,
3758 int max_active,
3759 struct lock_class_key *key,
b196be89 3760 const char *lock_name, ...)
1da177e4 3761{
ecf6881f 3762 va_list args;
1da177e4 3763 struct workqueue_struct *wq;
49e3cf44 3764 struct pool_workqueue *pwq;
b196be89 3765
ecf6881f
TH
3766 /* allocate wq and format name */
3767 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
b196be89 3768 if (!wq)
d2c1d404 3769 return NULL;
b196be89 3770
6029a918
TH
3771 if (flags & WQ_UNBOUND) {
3772 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3773 if (!wq->unbound_attrs)
3774 goto err_free_wq;
3775 }
3776
ecf6881f
TH
3777 va_start(args, lock_name);
3778 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3779 va_end(args);
1da177e4 3780
d320c038 3781 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3782 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3783
b196be89 3784 /* init wq */
97e37d7b 3785 wq->flags = flags;
a0a1a5fd 3786 wq->saved_max_active = max_active;
3c25a55d 3787 mutex_init(&wq->mutex);
112202d9 3788 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3789 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3790 INIT_LIST_HEAD(&wq->flusher_queue);
3791 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3792 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3793
eb13ba87 3794 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3795 INIT_LIST_HEAD(&wq->list);
3af24433 3796
30cdf249 3797 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3798 goto err_free_wq;
1537663f 3799
493008a8
TH
3800 /*
3801 * Workqueues which may be used during memory reclaim should
3802 * have a rescuer to guarantee forward progress.
3803 */
3804 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3805 struct worker *rescuer;
3806
d2c1d404 3807 rescuer = alloc_worker();
e22bee78 3808 if (!rescuer)
d2c1d404 3809 goto err_destroy;
e22bee78 3810
111c225a
TH
3811 rescuer->rescue_wq = wq;
3812 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3813 wq->name);
d2c1d404
TH
3814 if (IS_ERR(rescuer->task)) {
3815 kfree(rescuer);
3816 goto err_destroy;
3817 }
e22bee78 3818
d2c1d404 3819 wq->rescuer = rescuer;
14a40ffc 3820 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3821 wake_up_process(rescuer->task);
3af24433
ON
3822 }
3823
226223ab
TH
3824 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3825 goto err_destroy;
3826
a0a1a5fd 3827 /*
68e13a67
LJ
3828 * wq_pool_mutex protects global freeze state and workqueues list.
3829 * Grab it, adjust max_active and add the new @wq to workqueues
3830 * list.
a0a1a5fd 3831 */
68e13a67 3832 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3833
a357fc03 3834 mutex_lock(&wq->mutex);
699ce097
TH
3835 for_each_pwq(pwq, wq)
3836 pwq_adjust_max_active(pwq);
a357fc03 3837 mutex_unlock(&wq->mutex);
a0a1a5fd 3838
1537663f 3839 list_add(&wq->list, &workqueues);
a0a1a5fd 3840
68e13a67 3841 mutex_unlock(&wq_pool_mutex);
1537663f 3842
3af24433 3843 return wq;
d2c1d404
TH
3844
3845err_free_wq:
6029a918 3846 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3847 kfree(wq);
3848 return NULL;
3849err_destroy:
3850 destroy_workqueue(wq);
4690c4ab 3851 return NULL;
3af24433 3852}
d320c038 3853EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3854
3af24433
ON
3855/**
3856 * destroy_workqueue - safely terminate a workqueue
3857 * @wq: target workqueue
3858 *
3859 * Safely destroy a workqueue. All work currently pending will be done first.
3860 */
3861void destroy_workqueue(struct workqueue_struct *wq)
3862{
49e3cf44 3863 struct pool_workqueue *pwq;
3af24433 3864
9c5a2ba7
TH
3865 /* drain it before proceeding with destruction */
3866 drain_workqueue(wq);
c8efcc25 3867
6183c009 3868 /* sanity checks */
b09f4fd3 3869 mutex_lock(&wq->mutex);
49e3cf44 3870 for_each_pwq(pwq, wq) {
6183c009
TH
3871 int i;
3872
76af4d93
TH
3873 for (i = 0; i < WORK_NR_COLORS; i++) {
3874 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3875 mutex_unlock(&wq->mutex);
6183c009 3876 return;
76af4d93
TH
3877 }
3878 }
3879
8864b4e5
TH
3880 if (WARN_ON(pwq->refcnt > 1) ||
3881 WARN_ON(pwq->nr_active) ||
76af4d93 3882 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3883 mutex_unlock(&wq->mutex);
6183c009 3884 return;
76af4d93 3885 }
6183c009 3886 }
b09f4fd3 3887 mutex_unlock(&wq->mutex);
6183c009 3888
a0a1a5fd
TH
3889 /*
3890 * wq list is used to freeze wq, remove from list after
3891 * flushing is complete in case freeze races us.
3892 */
68e13a67 3893 mutex_lock(&wq_pool_mutex);
d2c1d404 3894 list_del_init(&wq->list);
68e13a67 3895 mutex_unlock(&wq_pool_mutex);
3af24433 3896
226223ab
TH
3897 workqueue_sysfs_unregister(wq);
3898
493008a8 3899 if (wq->rescuer) {
e22bee78 3900 kthread_stop(wq->rescuer->task);
8d9df9f0 3901 kfree(wq->rescuer);
493008a8 3902 wq->rescuer = NULL;
e22bee78
TH
3903 }
3904
8864b4e5
TH
3905 if (!(wq->flags & WQ_UNBOUND)) {
3906 /*
3907 * The base ref is never dropped on per-cpu pwqs. Directly
3908 * free the pwqs and wq.
3909 */
3910 free_percpu(wq->cpu_pwqs);
3911 kfree(wq);
3912 } else {
3913 /*
3914 * We're the sole accessor of @wq at this point. Directly
3915 * access the first pwq and put the base ref. As both pwqs
3916 * and pools are sched-RCU protected, the lock operations
3917 * are safe. @wq will be freed when the last pwq is
3918 * released.
3919 */
29c91e99
TH
3920 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3921 pwqs_node);
8864b4e5
TH
3922 spin_lock_irq(&pwq->pool->lock);
3923 put_pwq(pwq);
3924 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3925 }
3af24433
ON
3926}
3927EXPORT_SYMBOL_GPL(destroy_workqueue);
3928
dcd989cb
TH
3929/**
3930 * workqueue_set_max_active - adjust max_active of a workqueue
3931 * @wq: target workqueue
3932 * @max_active: new max_active value.
3933 *
3934 * Set max_active of @wq to @max_active.
3935 *
3936 * CONTEXT:
3937 * Don't call from IRQ context.
3938 */
3939void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3940{
49e3cf44 3941 struct pool_workqueue *pwq;
dcd989cb 3942
8719dcea
TH
3943 /* disallow meddling with max_active for ordered workqueues */
3944 if (WARN_ON(wq->flags & __WQ_ORDERED))
3945 return;
3946
f3421797 3947 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3948
a357fc03 3949 mutex_lock(&wq->mutex);
dcd989cb
TH
3950
3951 wq->saved_max_active = max_active;
3952
699ce097
TH
3953 for_each_pwq(pwq, wq)
3954 pwq_adjust_max_active(pwq);
93981800 3955
a357fc03 3956 mutex_unlock(&wq->mutex);
15316ba8 3957}
dcd989cb 3958EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3959
e6267616
TH
3960/**
3961 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3962 *
3963 * Determine whether %current is a workqueue rescuer. Can be used from
3964 * work functions to determine whether it's being run off the rescuer task.
3965 */
3966bool current_is_workqueue_rescuer(void)
3967{
3968 struct worker *worker = current_wq_worker();
3969
6a092dfd 3970 return worker && worker->rescue_wq;
e6267616
TH
3971}
3972
eef6a7d5 3973/**
dcd989cb
TH
3974 * workqueue_congested - test whether a workqueue is congested
3975 * @cpu: CPU in question
3976 * @wq: target workqueue
eef6a7d5 3977 *
dcd989cb
TH
3978 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3979 * no synchronization around this function and the test result is
3980 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3981 *
dcd989cb
TH
3982 * RETURNS:
3983 * %true if congested, %false otherwise.
eef6a7d5 3984 */
d84ff051 3985bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3986{
7fb98ea7 3987 struct pool_workqueue *pwq;
76af4d93
TH
3988 bool ret;
3989
88109453 3990 rcu_read_lock_sched();
7fb98ea7
TH
3991
3992 if (!(wq->flags & WQ_UNBOUND))
3993 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3994 else
3995 pwq = first_pwq(wq);
dcd989cb 3996
76af4d93 3997 ret = !list_empty(&pwq->delayed_works);
88109453 3998 rcu_read_unlock_sched();
76af4d93
TH
3999
4000 return ret;
1da177e4 4001}
dcd989cb 4002EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4003
dcd989cb
TH
4004/**
4005 * work_busy - test whether a work is currently pending or running
4006 * @work: the work to be tested
4007 *
4008 * Test whether @work is currently pending or running. There is no
4009 * synchronization around this function and the test result is
4010 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4011 *
4012 * RETURNS:
4013 * OR'd bitmask of WORK_BUSY_* bits.
4014 */
4015unsigned int work_busy(struct work_struct *work)
1da177e4 4016{
fa1b54e6 4017 struct worker_pool *pool;
dcd989cb
TH
4018 unsigned long flags;
4019 unsigned int ret = 0;
1da177e4 4020
dcd989cb
TH
4021 if (work_pending(work))
4022 ret |= WORK_BUSY_PENDING;
1da177e4 4023
fa1b54e6
TH
4024 local_irq_save(flags);
4025 pool = get_work_pool(work);
038366c5 4026 if (pool) {
fa1b54e6 4027 spin_lock(&pool->lock);
038366c5
LJ
4028 if (find_worker_executing_work(pool, work))
4029 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4030 spin_unlock(&pool->lock);
038366c5 4031 }
fa1b54e6 4032 local_irq_restore(flags);
1da177e4 4033
dcd989cb 4034 return ret;
1da177e4 4035}
dcd989cb 4036EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4037
db7bccf4
TH
4038/*
4039 * CPU hotplug.
4040 *
e22bee78 4041 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4042 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4043 * pool which make migrating pending and scheduled works very
e22bee78 4044 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4045 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4046 * blocked draining impractical.
4047 *
24647570 4048 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4049 * running as an unbound one and allowing it to be reattached later if the
4050 * cpu comes back online.
db7bccf4 4051 */
1da177e4 4052
706026c2 4053static void wq_unbind_fn(struct work_struct *work)
3af24433 4054{
38db41d9 4055 int cpu = smp_processor_id();
4ce62e9e 4056 struct worker_pool *pool;
db7bccf4 4057 struct worker *worker;
a9ab775b 4058 int wi;
3af24433 4059
f02ae73a 4060 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4061 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4062
bc3a1afc 4063 mutex_lock(&pool->manager_mutex);
94cf58bb 4064 spin_lock_irq(&pool->lock);
3af24433 4065
94cf58bb 4066 /*
bc3a1afc 4067 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4068 * unbound and set DISASSOCIATED. Before this, all workers
4069 * except for the ones which are still executing works from
4070 * before the last CPU down must be on the cpu. After
4071 * this, they may become diasporas.
4072 */
a9ab775b 4073 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4074 worker->flags |= WORKER_UNBOUND;
06ba38a9 4075
24647570 4076 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4077
94cf58bb 4078 spin_unlock_irq(&pool->lock);
bc3a1afc 4079 mutex_unlock(&pool->manager_mutex);
94cf58bb 4080 }
628c78e7 4081
e22bee78 4082 /*
403c821d 4083 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4084 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4085 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4086 */
e22bee78 4087 schedule();
06ba38a9 4088
e22bee78 4089 /*
628c78e7
TH
4090 * Sched callbacks are disabled now. Zap nr_running. After this,
4091 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4092 * are always true as long as the worklist is not empty. Pools on
4093 * @cpu now behave as unbound (in terms of concurrency management)
4094 * pools which are served by workers tied to the CPU.
628c78e7
TH
4095 *
4096 * On return from this function, the current worker would trigger
4097 * unbound chain execution of pending work items if other workers
4098 * didn't already.
e22bee78 4099 */
f02ae73a 4100 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4101 atomic_set(&pool->nr_running, 0);
3af24433 4102}
3af24433 4103
bd7c089e
TH
4104/**
4105 * rebind_workers - rebind all workers of a pool to the associated CPU
4106 * @pool: pool of interest
4107 *
a9ab775b 4108 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4109 */
4110static void rebind_workers(struct worker_pool *pool)
4111{
a9ab775b
TH
4112 struct worker *worker;
4113 int wi;
bd7c089e
TH
4114
4115 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4116
a9ab775b
TH
4117 /*
4118 * Restore CPU affinity of all workers. As all idle workers should
4119 * be on the run-queue of the associated CPU before any local
4120 * wake-ups for concurrency management happen, restore CPU affinty
4121 * of all workers first and then clear UNBOUND. As we're called
4122 * from CPU_ONLINE, the following shouldn't fail.
4123 */
4124 for_each_pool_worker(worker, wi, pool)
4125 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4126 pool->attrs->cpumask) < 0);
bd7c089e 4127
a9ab775b 4128 spin_lock_irq(&pool->lock);
bd7c089e 4129
a9ab775b
TH
4130 for_each_pool_worker(worker, wi, pool) {
4131 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4132
4133 /*
a9ab775b
TH
4134 * A bound idle worker should actually be on the runqueue
4135 * of the associated CPU for local wake-ups targeting it to
4136 * work. Kick all idle workers so that they migrate to the
4137 * associated CPU. Doing this in the same loop as
4138 * replacing UNBOUND with REBOUND is safe as no worker will
4139 * be bound before @pool->lock is released.
bd7c089e 4140 */
a9ab775b
TH
4141 if (worker_flags & WORKER_IDLE)
4142 wake_up_process(worker->task);
bd7c089e 4143
a9ab775b
TH
4144 /*
4145 * We want to clear UNBOUND but can't directly call
4146 * worker_clr_flags() or adjust nr_running. Atomically
4147 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4148 * @worker will clear REBOUND using worker_clr_flags() when
4149 * it initiates the next execution cycle thus restoring
4150 * concurrency management. Note that when or whether
4151 * @worker clears REBOUND doesn't affect correctness.
4152 *
4153 * ACCESS_ONCE() is necessary because @worker->flags may be
4154 * tested without holding any lock in
4155 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4156 * fail incorrectly leading to premature concurrency
4157 * management operations.
4158 */
4159 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4160 worker_flags |= WORKER_REBOUND;
4161 worker_flags &= ~WORKER_UNBOUND;
4162 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4163 }
a9ab775b
TH
4164
4165 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4166}
4167
7dbc725e
TH
4168/**
4169 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4170 * @pool: unbound pool of interest
4171 * @cpu: the CPU which is coming up
4172 *
4173 * An unbound pool may end up with a cpumask which doesn't have any online
4174 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4175 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4176 * online CPU before, cpus_allowed of all its workers should be restored.
4177 */
4178static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4179{
4180 static cpumask_t cpumask;
4181 struct worker *worker;
4182 int wi;
4183
4184 lockdep_assert_held(&pool->manager_mutex);
4185
4186 /* is @cpu allowed for @pool? */
4187 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4188 return;
4189
4190 /* is @cpu the only online CPU? */
4191 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4192 if (cpumask_weight(&cpumask) != 1)
4193 return;
4194
4195 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4196 for_each_pool_worker(worker, wi, pool)
4197 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4198 pool->attrs->cpumask) < 0);
4199}
4200
8db25e78
TH
4201/*
4202 * Workqueues should be brought up before normal priority CPU notifiers.
4203 * This will be registered high priority CPU notifier.
4204 */
9fdf9b73 4205static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4206 unsigned long action,
4207 void *hcpu)
3af24433 4208{
d84ff051 4209 int cpu = (unsigned long)hcpu;
4ce62e9e 4210 struct worker_pool *pool;
7dbc725e 4211 int pi;
3ce63377 4212
8db25e78 4213 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4214 case CPU_UP_PREPARE:
f02ae73a 4215 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4216 if (pool->nr_workers)
4217 continue;
ebf44d16 4218 if (create_and_start_worker(pool) < 0)
3ce63377 4219 return NOTIFY_BAD;
3af24433 4220 }
8db25e78 4221 break;
3af24433 4222
db7bccf4
TH
4223 case CPU_DOWN_FAILED:
4224 case CPU_ONLINE:
68e13a67 4225 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4226
4227 for_each_pool(pool, pi) {
bc3a1afc 4228 mutex_lock(&pool->manager_mutex);
94cf58bb 4229
7dbc725e
TH
4230 if (pool->cpu == cpu) {
4231 spin_lock_irq(&pool->lock);
4232 pool->flags &= ~POOL_DISASSOCIATED;
4233 spin_unlock_irq(&pool->lock);
a9ab775b 4234
7dbc725e
TH
4235 rebind_workers(pool);
4236 } else if (pool->cpu < 0) {
4237 restore_unbound_workers_cpumask(pool, cpu);
4238 }
94cf58bb 4239
bc3a1afc 4240 mutex_unlock(&pool->manager_mutex);
94cf58bb 4241 }
7dbc725e 4242
68e13a67 4243 mutex_unlock(&wq_pool_mutex);
db7bccf4 4244 break;
00dfcaf7 4245 }
65758202
TH
4246 return NOTIFY_OK;
4247}
4248
4249/*
4250 * Workqueues should be brought down after normal priority CPU notifiers.
4251 * This will be registered as low priority CPU notifier.
4252 */
9fdf9b73 4253static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4254 unsigned long action,
4255 void *hcpu)
4256{
d84ff051 4257 int cpu = (unsigned long)hcpu;
8db25e78
TH
4258 struct work_struct unbind_work;
4259
65758202
TH
4260 switch (action & ~CPU_TASKS_FROZEN) {
4261 case CPU_DOWN_PREPARE:
8db25e78 4262 /* unbinding should happen on the local CPU */
706026c2 4263 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4264 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4265 flush_work(&unbind_work);
4266 break;
65758202
TH
4267 }
4268 return NOTIFY_OK;
4269}
4270
2d3854a3 4271#ifdef CONFIG_SMP
8ccad40d 4272
2d3854a3 4273struct work_for_cpu {
ed48ece2 4274 struct work_struct work;
2d3854a3
RR
4275 long (*fn)(void *);
4276 void *arg;
4277 long ret;
4278};
4279
ed48ece2 4280static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4281{
ed48ece2
TH
4282 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4283
2d3854a3
RR
4284 wfc->ret = wfc->fn(wfc->arg);
4285}
4286
4287/**
4288 * work_on_cpu - run a function in user context on a particular cpu
4289 * @cpu: the cpu to run on
4290 * @fn: the function to run
4291 * @arg: the function arg
4292 *
31ad9081
RR
4293 * This will return the value @fn returns.
4294 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4295 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4296 */
d84ff051 4297long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4298{
ed48ece2 4299 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4300
ed48ece2
TH
4301 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4302 schedule_work_on(cpu, &wfc.work);
4303 flush_work(&wfc.work);
2d3854a3
RR
4304 return wfc.ret;
4305}
4306EXPORT_SYMBOL_GPL(work_on_cpu);
4307#endif /* CONFIG_SMP */
4308
a0a1a5fd
TH
4309#ifdef CONFIG_FREEZER
4310
4311/**
4312 * freeze_workqueues_begin - begin freezing workqueues
4313 *
58a69cb4 4314 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4315 * workqueues will queue new works to their delayed_works list instead of
706026c2 4316 * pool->worklist.
a0a1a5fd
TH
4317 *
4318 * CONTEXT:
a357fc03 4319 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4320 */
4321void freeze_workqueues_begin(void)
4322{
17116969 4323 struct worker_pool *pool;
24b8a847
TH
4324 struct workqueue_struct *wq;
4325 struct pool_workqueue *pwq;
611c92a0 4326 int pi;
a0a1a5fd 4327
68e13a67 4328 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4329
6183c009 4330 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4331 workqueue_freezing = true;
4332
24b8a847 4333 /* set FREEZING */
611c92a0 4334 for_each_pool(pool, pi) {
5bcab335 4335 spin_lock_irq(&pool->lock);
17116969
TH
4336 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4337 pool->flags |= POOL_FREEZING;
5bcab335 4338 spin_unlock_irq(&pool->lock);
24b8a847 4339 }
a0a1a5fd 4340
24b8a847 4341 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4342 mutex_lock(&wq->mutex);
699ce097
TH
4343 for_each_pwq(pwq, wq)
4344 pwq_adjust_max_active(pwq);
a357fc03 4345 mutex_unlock(&wq->mutex);
a0a1a5fd 4346 }
5bcab335 4347
68e13a67 4348 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4349}
4350
4351/**
58a69cb4 4352 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4353 *
4354 * Check whether freezing is complete. This function must be called
4355 * between freeze_workqueues_begin() and thaw_workqueues().
4356 *
4357 * CONTEXT:
68e13a67 4358 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4359 *
4360 * RETURNS:
58a69cb4
TH
4361 * %true if some freezable workqueues are still busy. %false if freezing
4362 * is complete.
a0a1a5fd
TH
4363 */
4364bool freeze_workqueues_busy(void)
4365{
a0a1a5fd 4366 bool busy = false;
24b8a847
TH
4367 struct workqueue_struct *wq;
4368 struct pool_workqueue *pwq;
a0a1a5fd 4369
68e13a67 4370 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4371
6183c009 4372 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4373
24b8a847
TH
4374 list_for_each_entry(wq, &workqueues, list) {
4375 if (!(wq->flags & WQ_FREEZABLE))
4376 continue;
a0a1a5fd
TH
4377 /*
4378 * nr_active is monotonically decreasing. It's safe
4379 * to peek without lock.
4380 */
88109453 4381 rcu_read_lock_sched();
24b8a847 4382 for_each_pwq(pwq, wq) {
6183c009 4383 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4384 if (pwq->nr_active) {
a0a1a5fd 4385 busy = true;
88109453 4386 rcu_read_unlock_sched();
a0a1a5fd
TH
4387 goto out_unlock;
4388 }
4389 }
88109453 4390 rcu_read_unlock_sched();
a0a1a5fd
TH
4391 }
4392out_unlock:
68e13a67 4393 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4394 return busy;
4395}
4396
4397/**
4398 * thaw_workqueues - thaw workqueues
4399 *
4400 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4401 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4402 *
4403 * CONTEXT:
a357fc03 4404 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4405 */
4406void thaw_workqueues(void)
4407{
24b8a847
TH
4408 struct workqueue_struct *wq;
4409 struct pool_workqueue *pwq;
4410 struct worker_pool *pool;
611c92a0 4411 int pi;
a0a1a5fd 4412
68e13a67 4413 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4414
4415 if (!workqueue_freezing)
4416 goto out_unlock;
4417
24b8a847 4418 /* clear FREEZING */
611c92a0 4419 for_each_pool(pool, pi) {
5bcab335 4420 spin_lock_irq(&pool->lock);
24b8a847
TH
4421 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4422 pool->flags &= ~POOL_FREEZING;
5bcab335 4423 spin_unlock_irq(&pool->lock);
24b8a847 4424 }
8b03ae3c 4425
24b8a847
TH
4426 /* restore max_active and repopulate worklist */
4427 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4428 mutex_lock(&wq->mutex);
699ce097
TH
4429 for_each_pwq(pwq, wq)
4430 pwq_adjust_max_active(pwq);
a357fc03 4431 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4432 }
4433
4434 workqueue_freezing = false;
4435out_unlock:
68e13a67 4436 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4437}
4438#endif /* CONFIG_FREEZER */
4439
bce90380
TH
4440static void __init wq_numa_init(void)
4441{
4442 cpumask_var_t *tbl;
4443 int node, cpu;
4444
4445 /* determine NUMA pwq table len - highest node id + 1 */
4446 for_each_node(node)
4447 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4448
4449 if (num_possible_nodes() <= 1)
4450 return;
4451
4452 /*
4453 * We want masks of possible CPUs of each node which isn't readily
4454 * available. Build one from cpu_to_node() which should have been
4455 * fully initialized by now.
4456 */
4457 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4458 BUG_ON(!tbl);
4459
4460 for_each_node(node)
4461 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
4462
4463 for_each_possible_cpu(cpu) {
4464 node = cpu_to_node(cpu);
4465 if (WARN_ON(node == NUMA_NO_NODE)) {
4466 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4467 /* happens iff arch is bonkers, let's just proceed */
4468 return;
4469 }
4470 cpumask_set_cpu(cpu, tbl[node]);
4471 }
4472
4473 wq_numa_possible_cpumask = tbl;
4474 wq_numa_enabled = true;
4475}
4476
6ee0578b 4477static int __init init_workqueues(void)
1da177e4 4478{
7a4e344c
TH
4479 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4480 int i, cpu;
c34056a3 4481
7c3eed5c
TH
4482 /* make sure we have enough bits for OFFQ pool ID */
4483 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4484 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4485
e904e6c2
TH
4486 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4487
4488 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4489
65758202 4490 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4491 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4492
bce90380
TH
4493 wq_numa_init();
4494
706026c2 4495 /* initialize CPU pools */
29c91e99 4496 for_each_possible_cpu(cpu) {
4ce62e9e 4497 struct worker_pool *pool;
8b03ae3c 4498
7a4e344c 4499 i = 0;
f02ae73a 4500 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4501 BUG_ON(init_worker_pool(pool));
ec22ca5e 4502 pool->cpu = cpu;
29c91e99 4503 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4504 pool->attrs->nice = std_nice[i++];
f3f90ad4 4505 pool->node = cpu_to_node(cpu);
7a4e344c 4506
9daf9e67 4507 /* alloc pool ID */
68e13a67 4508 mutex_lock(&wq_pool_mutex);
9daf9e67 4509 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4510 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4511 }
8b03ae3c
TH
4512 }
4513
e22bee78 4514 /* create the initial worker */
29c91e99 4515 for_each_online_cpu(cpu) {
4ce62e9e 4516 struct worker_pool *pool;
e22bee78 4517
f02ae73a 4518 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4519 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4520 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4521 }
e22bee78
TH
4522 }
4523
29c91e99
TH
4524 /* create default unbound wq attrs */
4525 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4526 struct workqueue_attrs *attrs;
4527
4528 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4529 attrs->nice = std_nice[i];
29c91e99
TH
4530 unbound_std_wq_attrs[i] = attrs;
4531 }
4532
d320c038 4533 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4534 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4535 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4536 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4537 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4538 system_freezable_wq = alloc_workqueue("events_freezable",
4539 WQ_FREEZABLE, 0);
1aabe902 4540 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4541 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4542 return 0;
1da177e4 4543}
6ee0578b 4544early_initcall(init_workqueues);