]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/workqueue.c
Merge tag 'backlight-for-linus-3.15' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
11ebea50 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 73 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 74
c8e55f36
TH
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
3270476a 106 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
822d8405
TH
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
68e13a67 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 133 *
3c25a55d
LJ
134 * WQ: wq->mutex protected.
135 *
b5927605 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
137 *
138 * MD: wq_mayday_lock protected.
1da177e4 139 */
1da177e4 140
2eaebdb3 141/* struct worker is defined in workqueue_internal.h */
c34056a3 142
bd7bdd43 143struct worker_pool {
d565ed63 144 spinlock_t lock; /* the pool lock */
d84ff051 145 int cpu; /* I: the associated cpu */
f3f90ad4 146 int node; /* I: the associated node ID */
9daf9e67 147 int id; /* I: pool ID */
11ebea50 148 unsigned int flags; /* X: flags */
bd7bdd43
TH
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
152
153 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
c5aa87bb 160 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
bc3a1afc 164 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 165 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 166 struct mutex manager_mutex; /* manager exclusion */
822d8405 167 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 168
7a4e344c 169 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 172
e19e397a
TH
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
8b03ae3c
TH
185} ____cacheline_aligned_in_smp;
186
1da177e4 187/*
112202d9
TH
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
1da177e4 192 */
112202d9 193struct pool_workqueue {
bd7bdd43 194 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 195 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
8864b4e5 198 int refcnt; /* L: reference count */
73f53c4a
TH
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
3c25a55d 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 205 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 211 * determined without grabbing wq->mutex.
8864b4e5
TH
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
e904e6c2 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 216
73f53c4a
TH
217/*
218 * Structure used to wait for workqueue flush.
219 */
220struct wq_flusher {
3c25a55d
LJ
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
223 struct completion done; /* flush completion */
224};
225
226223ab
TH
226struct wq_device;
227
1da177e4 228/*
c5aa87bb
TH
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
231 */
232struct workqueue_struct {
3c25a55d 233 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 234 struct list_head list; /* PL: list of all workqueues */
73f53c4a 235
3c25a55d
LJ
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
112202d9 239 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 243
2e109a28 244 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
245 struct worker *rescuer; /* I: rescue worker */
246
87fc741e 247 int nr_drainers; /* WQ: drain in progress */
a357fc03 248 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 249
6029a918 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 252
226223ab
TH
253#ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255#endif
4e6045f1 256#ifdef CONFIG_LOCKDEP
4690c4ab 257 struct lockdep_map lockdep_map;
4e6045f1 258#endif
ecf6881f 259 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
265};
266
e904e6c2
TH
267static struct kmem_cache *pwq_cache;
268
bce90380
TH
269static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
d55262c4
TH
273static bool wq_disable_numa;
274module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
cee22a15
VK
276/* see the comment above the definition of WQ_POWER_EFFICIENT */
277#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278static bool wq_power_efficient = true;
279#else
280static bool wq_power_efficient;
281#endif
282
283module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
bce90380
TH
285static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
4c16bd32
TH
287/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
68e13a67 290static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 291static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 292
68e13a67
LJ
293static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
295
296/* the per-cpu worker pools */
297static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
68e13a67 300static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 301
68e13a67 302/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
303static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
c5aa87bb 305/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
306static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
8a2b7538
TH
308/* I: attributes used when instantiating ordered pools on demand */
309static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
d320c038 311struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 312EXPORT_SYMBOL(system_wq);
044c782c 313struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 314EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 315struct workqueue_struct *system_long_wq __read_mostly;
d320c038 316EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 317struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 318EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 319struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 320EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
321struct workqueue_struct *system_power_efficient_wq __read_mostly;
322EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 325
7d19c5ce
TH
326static int worker_thread(void *__worker);
327static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
97bd2347
TH
330#define CREATE_TRACE_POINTS
331#include <trace/events/workqueue.h>
332
68e13a67 333#define assert_rcu_or_pool_mutex() \
5bcab335 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
5bcab335 337
b09f4fd3 338#define assert_rcu_or_wq_mutex(wq) \
76af4d93 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 340 lockdep_is_held(&wq->mutex), \
b09f4fd3 341 "sched RCU or wq->mutex should be held")
76af4d93 342
822d8405
TH
343#ifdef CONFIG_LOCKDEP
344#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
345 WARN_ONCE(debug_locks && \
346 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
347 !lockdep_is_held(&(pool)->lock), \
348 "pool->manager_mutex or ->lock should be held")
349#else
350#define assert_manager_or_pool_lock(pool) do { } while (0)
351#endif
352
f02ae73a
TH
353#define for_each_cpu_worker_pool(pool, cpu) \
354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 356 (pool)++)
4ce62e9e 357
17116969
TH
358/**
359 * for_each_pool - iterate through all worker_pools in the system
360 * @pool: iteration cursor
611c92a0 361 * @pi: integer used for iteration
fa1b54e6 362 *
68e13a67
LJ
363 * This must be called either with wq_pool_mutex held or sched RCU read
364 * locked. If the pool needs to be used beyond the locking in effect, the
365 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
366 *
367 * The if/else clause exists only for the lockdep assertion and can be
368 * ignored.
17116969 369 */
611c92a0
TH
370#define for_each_pool(pool, pi) \
371 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 373 else
17116969 374
822d8405
TH
375/**
376 * for_each_pool_worker - iterate through all workers of a worker_pool
377 * @worker: iteration cursor
378 * @wi: integer used for iteration
379 * @pool: worker_pool to iterate workers of
380 *
381 * This must be called with either @pool->manager_mutex or ->lock held.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386#define for_each_pool_worker(worker, wi, pool) \
387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 else
390
49e3cf44
TH
391/**
392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393 * @pwq: iteration cursor
394 * @wq: the target workqueue
76af4d93 395 *
b09f4fd3 396 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
397 * If the pwq needs to be used beyond the locking in effect, the caller is
398 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
399 *
400 * The if/else clause exists only for the lockdep assertion and can be
401 * ignored.
49e3cf44
TH
402 */
403#define for_each_pwq(pwq, wq) \
76af4d93 404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 406 else
f3421797 407
dc186ad7
TG
408#ifdef CONFIG_DEBUG_OBJECTS_WORK
409
410static struct debug_obj_descr work_debug_descr;
411
99777288
SG
412static void *work_debug_hint(void *addr)
413{
414 return ((struct work_struct *) addr)->func;
415}
416
dc186ad7
TG
417/*
418 * fixup_init is called when:
419 * - an active object is initialized
420 */
421static int work_fixup_init(void *addr, enum debug_obj_state state)
422{
423 struct work_struct *work = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 cancel_work_sync(work);
428 debug_object_init(work, &work_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433}
434
435/*
436 * fixup_activate is called when:
437 * - an active object is activated
438 * - an unknown object is activated (might be a statically initialized object)
439 */
440static int work_fixup_activate(void *addr, enum debug_obj_state state)
441{
442 struct work_struct *work = addr;
443
444 switch (state) {
445
446 case ODEBUG_STATE_NOTAVAILABLE:
447 /*
448 * This is not really a fixup. The work struct was
449 * statically initialized. We just make sure that it
450 * is tracked in the object tracker.
451 */
22df02bb 452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
453 debug_object_init(work, &work_debug_descr);
454 debug_object_activate(work, &work_debug_descr);
455 return 0;
456 }
457 WARN_ON_ONCE(1);
458 return 0;
459
460 case ODEBUG_STATE_ACTIVE:
461 WARN_ON(1);
462
463 default:
464 return 0;
465 }
466}
467
468/*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472static int work_fixup_free(void *addr, enum debug_obj_state state)
473{
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484}
485
486static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
99777288 488 .debug_hint = work_debug_hint,
dc186ad7
TG
489 .fixup_init = work_fixup_init,
490 .fixup_activate = work_fixup_activate,
491 .fixup_free = work_fixup_free,
492};
493
494static inline void debug_work_activate(struct work_struct *work)
495{
496 debug_object_activate(work, &work_debug_descr);
497}
498
499static inline void debug_work_deactivate(struct work_struct *work)
500{
501 debug_object_deactivate(work, &work_debug_descr);
502}
503
504void __init_work(struct work_struct *work, int onstack)
505{
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(__init_work);
512
513void destroy_work_on_stack(struct work_struct *work)
514{
515 debug_object_free(work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
ea2e64f2
TG
519void destroy_delayed_work_on_stack(struct delayed_work *work)
520{
521 destroy_timer_on_stack(&work->timer);
522 debug_object_free(&work->work, &work_debug_descr);
523}
524EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525
dc186ad7
TG
526#else
527static inline void debug_work_activate(struct work_struct *work) { }
528static inline void debug_work_deactivate(struct work_struct *work) { }
529#endif
530
4e8b22bd
LB
531/**
532 * worker_pool_assign_id - allocate ID and assing it to @pool
533 * @pool: the pool pointer of interest
534 *
535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536 * successfully, -errno on failure.
537 */
9daf9e67
TH
538static int worker_pool_assign_id(struct worker_pool *pool)
539{
540 int ret;
541
68e13a67 542 lockdep_assert_held(&wq_pool_mutex);
5bcab335 543
4e8b22bd
LB
544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 GFP_KERNEL);
229641a6 546 if (ret >= 0) {
e68035fb 547 pool->id = ret;
229641a6
TH
548 return 0;
549 }
fa1b54e6 550 return ret;
7c3eed5c
TH
551}
552
df2d5ae4
TH
553/**
554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555 * @wq: the target workqueue
556 * @node: the node ID
557 *
558 * This must be called either with pwq_lock held or sched RCU read locked.
559 * If the pwq needs to be used beyond the locking in effect, the caller is
560 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
561 *
562 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
563 */
564static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
565 int node)
566{
567 assert_rcu_or_wq_mutex(wq);
568 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
569}
570
73f53c4a
TH
571static unsigned int work_color_to_flags(int color)
572{
573 return color << WORK_STRUCT_COLOR_SHIFT;
574}
575
576static int get_work_color(struct work_struct *work)
577{
578 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
579 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
580}
581
582static int work_next_color(int color)
583{
584 return (color + 1) % WORK_NR_COLORS;
585}
1da177e4 586
14441960 587/*
112202d9
TH
588 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
589 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 590 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 591 *
112202d9
TH
592 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
593 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
594 * work->data. These functions should only be called while the work is
595 * owned - ie. while the PENDING bit is set.
7a22ad75 596 *
112202d9 597 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 598 * corresponding to a work. Pool is available once the work has been
112202d9 599 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 600 * available only while the work item is queued.
7a22ad75 601 *
bbb68dfa
TH
602 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
603 * canceled. While being canceled, a work item may have its PENDING set
604 * but stay off timer and worklist for arbitrarily long and nobody should
605 * try to steal the PENDING bit.
14441960 606 */
7a22ad75
TH
607static inline void set_work_data(struct work_struct *work, unsigned long data,
608 unsigned long flags)
365970a1 609{
6183c009 610 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
611 atomic_long_set(&work->data, data | flags | work_static(work));
612}
365970a1 613
112202d9 614static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
615 unsigned long extra_flags)
616{
112202d9
TH
617 set_work_data(work, (unsigned long)pwq,
618 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
619}
620
4468a00f
LJ
621static void set_work_pool_and_keep_pending(struct work_struct *work,
622 int pool_id)
623{
624 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
625 WORK_STRUCT_PENDING);
626}
627
7c3eed5c
TH
628static void set_work_pool_and_clear_pending(struct work_struct *work,
629 int pool_id)
7a22ad75 630{
23657bb1
TH
631 /*
632 * The following wmb is paired with the implied mb in
633 * test_and_set_bit(PENDING) and ensures all updates to @work made
634 * here are visible to and precede any updates by the next PENDING
635 * owner.
636 */
637 smp_wmb();
7c3eed5c 638 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 639}
f756d5e2 640
7a22ad75 641static void clear_work_data(struct work_struct *work)
1da177e4 642{
7c3eed5c
TH
643 smp_wmb(); /* see set_work_pool_and_clear_pending() */
644 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
645}
646
112202d9 647static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 648{
e120153d 649 unsigned long data = atomic_long_read(&work->data);
7a22ad75 650
112202d9 651 if (data & WORK_STRUCT_PWQ)
e120153d
TH
652 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
653 else
654 return NULL;
4d707b9f
ON
655}
656
7c3eed5c
TH
657/**
658 * get_work_pool - return the worker_pool a given work was associated with
659 * @work: the work item of interest
660 *
68e13a67
LJ
661 * Pools are created and destroyed under wq_pool_mutex, and allows read
662 * access under sched-RCU read lock. As such, this function should be
663 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
664 *
665 * All fields of the returned pool are accessible as long as the above
666 * mentioned locking is in effect. If the returned pool needs to be used
667 * beyond the critical section, the caller is responsible for ensuring the
668 * returned pool is and stays online.
d185af30
YB
669 *
670 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
671 */
672static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 673{
e120153d 674 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 675 int pool_id;
7a22ad75 676
68e13a67 677 assert_rcu_or_pool_mutex();
fa1b54e6 678
112202d9
TH
679 if (data & WORK_STRUCT_PWQ)
680 return ((struct pool_workqueue *)
7c3eed5c 681 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 682
7c3eed5c
TH
683 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
684 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
685 return NULL;
686
fa1b54e6 687 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
688}
689
690/**
691 * get_work_pool_id - return the worker pool ID a given work is associated with
692 * @work: the work item of interest
693 *
d185af30 694 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
695 * %WORK_OFFQ_POOL_NONE if none.
696 */
697static int get_work_pool_id(struct work_struct *work)
698{
54d5b7d0
LJ
699 unsigned long data = atomic_long_read(&work->data);
700
112202d9
TH
701 if (data & WORK_STRUCT_PWQ)
702 return ((struct pool_workqueue *)
54d5b7d0 703 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 704
54d5b7d0 705 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
706}
707
bbb68dfa
TH
708static void mark_work_canceling(struct work_struct *work)
709{
7c3eed5c 710 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 711
7c3eed5c
TH
712 pool_id <<= WORK_OFFQ_POOL_SHIFT;
713 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
714}
715
716static bool work_is_canceling(struct work_struct *work)
717{
718 unsigned long data = atomic_long_read(&work->data);
719
112202d9 720 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
721}
722
e22bee78 723/*
3270476a
TH
724 * Policy functions. These define the policies on how the global worker
725 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 726 * they're being called with pool->lock held.
e22bee78
TH
727 */
728
63d95a91 729static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 730{
e19e397a 731 return !atomic_read(&pool->nr_running);
a848e3b6
ON
732}
733
4594bf15 734/*
e22bee78
TH
735 * Need to wake up a worker? Called from anything but currently
736 * running workers.
974271c4
TH
737 *
738 * Note that, because unbound workers never contribute to nr_running, this
706026c2 739 * function will always return %true for unbound pools as long as the
974271c4 740 * worklist isn't empty.
4594bf15 741 */
63d95a91 742static bool need_more_worker(struct worker_pool *pool)
365970a1 743{
63d95a91 744 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 745}
4594bf15 746
e22bee78 747/* Can I start working? Called from busy but !running workers. */
63d95a91 748static bool may_start_working(struct worker_pool *pool)
e22bee78 749{
63d95a91 750 return pool->nr_idle;
e22bee78
TH
751}
752
753/* Do I need to keep working? Called from currently running workers. */
63d95a91 754static bool keep_working(struct worker_pool *pool)
e22bee78 755{
e19e397a
TH
756 return !list_empty(&pool->worklist) &&
757 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
758}
759
760/* Do we need a new worker? Called from manager. */
63d95a91 761static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 762{
63d95a91 763 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 764}
365970a1 765
e22bee78 766/* Do I need to be the manager? */
63d95a91 767static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 768{
63d95a91 769 return need_to_create_worker(pool) ||
11ebea50 770 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
771}
772
773/* Do we have too many workers and should some go away? */
63d95a91 774static bool too_many_workers(struct worker_pool *pool)
e22bee78 775{
34a06bd6 776 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
777 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
778 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 779
ea1abd61
LJ
780 /*
781 * nr_idle and idle_list may disagree if idle rebinding is in
782 * progress. Never return %true if idle_list is empty.
783 */
784 if (list_empty(&pool->idle_list))
785 return false;
786
e22bee78 787 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
788}
789
4d707b9f 790/*
e22bee78
TH
791 * Wake up functions.
792 */
793
7e11629d 794/* Return the first worker. Safe with preemption disabled */
63d95a91 795static struct worker *first_worker(struct worker_pool *pool)
7e11629d 796{
63d95a91 797 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
798 return NULL;
799
63d95a91 800 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
801}
802
803/**
804 * wake_up_worker - wake up an idle worker
63d95a91 805 * @pool: worker pool to wake worker from
7e11629d 806 *
63d95a91 807 * Wake up the first idle worker of @pool.
7e11629d
TH
808 *
809 * CONTEXT:
d565ed63 810 * spin_lock_irq(pool->lock).
7e11629d 811 */
63d95a91 812static void wake_up_worker(struct worker_pool *pool)
7e11629d 813{
63d95a91 814 struct worker *worker = first_worker(pool);
7e11629d
TH
815
816 if (likely(worker))
817 wake_up_process(worker->task);
818}
819
d302f017 820/**
e22bee78
TH
821 * wq_worker_waking_up - a worker is waking up
822 * @task: task waking up
823 * @cpu: CPU @task is waking up to
824 *
825 * This function is called during try_to_wake_up() when a worker is
826 * being awoken.
827 *
828 * CONTEXT:
829 * spin_lock_irq(rq->lock)
830 */
d84ff051 831void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
832{
833 struct worker *worker = kthread_data(task);
834
36576000 835 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 836 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 837 atomic_inc(&worker->pool->nr_running);
36576000 838 }
e22bee78
TH
839}
840
841/**
842 * wq_worker_sleeping - a worker is going to sleep
843 * @task: task going to sleep
844 * @cpu: CPU in question, must be the current CPU number
845 *
846 * This function is called during schedule() when a busy worker is
847 * going to sleep. Worker on the same cpu can be woken up by
848 * returning pointer to its task.
849 *
850 * CONTEXT:
851 * spin_lock_irq(rq->lock)
852 *
d185af30 853 * Return:
e22bee78
TH
854 * Worker task on @cpu to wake up, %NULL if none.
855 */
d84ff051 856struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
857{
858 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 859 struct worker_pool *pool;
e22bee78 860
111c225a
TH
861 /*
862 * Rescuers, which may not have all the fields set up like normal
863 * workers, also reach here, let's not access anything before
864 * checking NOT_RUNNING.
865 */
2d64672e 866 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
867 return NULL;
868
111c225a 869 pool = worker->pool;
111c225a 870
e22bee78 871 /* this can only happen on the local cpu */
6183c009
TH
872 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
873 return NULL;
e22bee78
TH
874
875 /*
876 * The counterpart of the following dec_and_test, implied mb,
877 * worklist not empty test sequence is in insert_work().
878 * Please read comment there.
879 *
628c78e7
TH
880 * NOT_RUNNING is clear. This means that we're bound to and
881 * running on the local cpu w/ rq lock held and preemption
882 * disabled, which in turn means that none else could be
d565ed63 883 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 884 * lock is safe.
e22bee78 885 */
e19e397a
TH
886 if (atomic_dec_and_test(&pool->nr_running) &&
887 !list_empty(&pool->worklist))
63d95a91 888 to_wakeup = first_worker(pool);
e22bee78
TH
889 return to_wakeup ? to_wakeup->task : NULL;
890}
891
892/**
893 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 894 * @worker: self
d302f017
TH
895 * @flags: flags to set
896 * @wakeup: wakeup an idle worker if necessary
897 *
e22bee78
TH
898 * Set @flags in @worker->flags and adjust nr_running accordingly. If
899 * nr_running becomes zero and @wakeup is %true, an idle worker is
900 * woken up.
d302f017 901 *
cb444766 902 * CONTEXT:
d565ed63 903 * spin_lock_irq(pool->lock)
d302f017
TH
904 */
905static inline void worker_set_flags(struct worker *worker, unsigned int flags,
906 bool wakeup)
907{
bd7bdd43 908 struct worker_pool *pool = worker->pool;
e22bee78 909
cb444766
TH
910 WARN_ON_ONCE(worker->task != current);
911
e22bee78
TH
912 /*
913 * If transitioning into NOT_RUNNING, adjust nr_running and
914 * wake up an idle worker as necessary if requested by
915 * @wakeup.
916 */
917 if ((flags & WORKER_NOT_RUNNING) &&
918 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 919 if (wakeup) {
e19e397a 920 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 921 !list_empty(&pool->worklist))
63d95a91 922 wake_up_worker(pool);
e22bee78 923 } else
e19e397a 924 atomic_dec(&pool->nr_running);
e22bee78
TH
925 }
926
d302f017
TH
927 worker->flags |= flags;
928}
929
930/**
e22bee78 931 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 932 * @worker: self
d302f017
TH
933 * @flags: flags to clear
934 *
e22bee78 935 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 936 *
cb444766 937 * CONTEXT:
d565ed63 938 * spin_lock_irq(pool->lock)
d302f017
TH
939 */
940static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
941{
63d95a91 942 struct worker_pool *pool = worker->pool;
e22bee78
TH
943 unsigned int oflags = worker->flags;
944
cb444766
TH
945 WARN_ON_ONCE(worker->task != current);
946
d302f017 947 worker->flags &= ~flags;
e22bee78 948
42c025f3
TH
949 /*
950 * If transitioning out of NOT_RUNNING, increment nr_running. Note
951 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
952 * of multiple flags, not a single flag.
953 */
e22bee78
TH
954 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
955 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 956 atomic_inc(&pool->nr_running);
d302f017
TH
957}
958
8cca0eea
TH
959/**
960 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 961 * @pool: pool of interest
8cca0eea
TH
962 * @work: work to find worker for
963 *
c9e7cf27
TH
964 * Find a worker which is executing @work on @pool by searching
965 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
966 * to match, its current execution should match the address of @work and
967 * its work function. This is to avoid unwanted dependency between
968 * unrelated work executions through a work item being recycled while still
969 * being executed.
970 *
971 * This is a bit tricky. A work item may be freed once its execution
972 * starts and nothing prevents the freed area from being recycled for
973 * another work item. If the same work item address ends up being reused
974 * before the original execution finishes, workqueue will identify the
975 * recycled work item as currently executing and make it wait until the
976 * current execution finishes, introducing an unwanted dependency.
977 *
c5aa87bb
TH
978 * This function checks the work item address and work function to avoid
979 * false positives. Note that this isn't complete as one may construct a
980 * work function which can introduce dependency onto itself through a
981 * recycled work item. Well, if somebody wants to shoot oneself in the
982 * foot that badly, there's only so much we can do, and if such deadlock
983 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
984 *
985 * CONTEXT:
d565ed63 986 * spin_lock_irq(pool->lock).
8cca0eea 987 *
d185af30
YB
988 * Return:
989 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 990 * otherwise.
4d707b9f 991 */
c9e7cf27 992static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 993 struct work_struct *work)
4d707b9f 994{
42f8570f 995 struct worker *worker;
42f8570f 996
b67bfe0d 997 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
998 (unsigned long)work)
999 if (worker->current_work == work &&
1000 worker->current_func == work->func)
42f8570f
SL
1001 return worker;
1002
1003 return NULL;
4d707b9f
ON
1004}
1005
bf4ede01
TH
1006/**
1007 * move_linked_works - move linked works to a list
1008 * @work: start of series of works to be scheduled
1009 * @head: target list to append @work to
1010 * @nextp: out paramter for nested worklist walking
1011 *
1012 * Schedule linked works starting from @work to @head. Work series to
1013 * be scheduled starts at @work and includes any consecutive work with
1014 * WORK_STRUCT_LINKED set in its predecessor.
1015 *
1016 * If @nextp is not NULL, it's updated to point to the next work of
1017 * the last scheduled work. This allows move_linked_works() to be
1018 * nested inside outer list_for_each_entry_safe().
1019 *
1020 * CONTEXT:
d565ed63 1021 * spin_lock_irq(pool->lock).
bf4ede01
TH
1022 */
1023static void move_linked_works(struct work_struct *work, struct list_head *head,
1024 struct work_struct **nextp)
1025{
1026 struct work_struct *n;
1027
1028 /*
1029 * Linked worklist will always end before the end of the list,
1030 * use NULL for list head.
1031 */
1032 list_for_each_entry_safe_from(work, n, NULL, entry) {
1033 list_move_tail(&work->entry, head);
1034 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1035 break;
1036 }
1037
1038 /*
1039 * If we're already inside safe list traversal and have moved
1040 * multiple works to the scheduled queue, the next position
1041 * needs to be updated.
1042 */
1043 if (nextp)
1044 *nextp = n;
1045}
1046
8864b4e5
TH
1047/**
1048 * get_pwq - get an extra reference on the specified pool_workqueue
1049 * @pwq: pool_workqueue to get
1050 *
1051 * Obtain an extra reference on @pwq. The caller should guarantee that
1052 * @pwq has positive refcnt and be holding the matching pool->lock.
1053 */
1054static void get_pwq(struct pool_workqueue *pwq)
1055{
1056 lockdep_assert_held(&pwq->pool->lock);
1057 WARN_ON_ONCE(pwq->refcnt <= 0);
1058 pwq->refcnt++;
1059}
1060
1061/**
1062 * put_pwq - put a pool_workqueue reference
1063 * @pwq: pool_workqueue to put
1064 *
1065 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1066 * destruction. The caller should be holding the matching pool->lock.
1067 */
1068static void put_pwq(struct pool_workqueue *pwq)
1069{
1070 lockdep_assert_held(&pwq->pool->lock);
1071 if (likely(--pwq->refcnt))
1072 return;
1073 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1074 return;
1075 /*
1076 * @pwq can't be released under pool->lock, bounce to
1077 * pwq_unbound_release_workfn(). This never recurses on the same
1078 * pool->lock as this path is taken only for unbound workqueues and
1079 * the release work item is scheduled on a per-cpu workqueue. To
1080 * avoid lockdep warning, unbound pool->locks are given lockdep
1081 * subclass of 1 in get_unbound_pool().
1082 */
1083 schedule_work(&pwq->unbound_release_work);
1084}
1085
dce90d47
TH
1086/**
1087 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1088 * @pwq: pool_workqueue to put (can be %NULL)
1089 *
1090 * put_pwq() with locking. This function also allows %NULL @pwq.
1091 */
1092static void put_pwq_unlocked(struct pool_workqueue *pwq)
1093{
1094 if (pwq) {
1095 /*
1096 * As both pwqs and pools are sched-RCU protected, the
1097 * following lock operations are safe.
1098 */
1099 spin_lock_irq(&pwq->pool->lock);
1100 put_pwq(pwq);
1101 spin_unlock_irq(&pwq->pool->lock);
1102 }
1103}
1104
112202d9 1105static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1106{
112202d9 1107 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1108
1109 trace_workqueue_activate_work(work);
112202d9 1110 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1111 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1112 pwq->nr_active++;
bf4ede01
TH
1113}
1114
112202d9 1115static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1116{
112202d9 1117 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1118 struct work_struct, entry);
1119
112202d9 1120 pwq_activate_delayed_work(work);
3aa62497
LJ
1121}
1122
bf4ede01 1123/**
112202d9
TH
1124 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1125 * @pwq: pwq of interest
bf4ede01 1126 * @color: color of work which left the queue
bf4ede01
TH
1127 *
1128 * A work either has completed or is removed from pending queue,
112202d9 1129 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1130 *
1131 * CONTEXT:
d565ed63 1132 * spin_lock_irq(pool->lock).
bf4ede01 1133 */
112202d9 1134static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1135{
8864b4e5 1136 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1137 if (color == WORK_NO_COLOR)
8864b4e5 1138 goto out_put;
bf4ede01 1139
112202d9 1140 pwq->nr_in_flight[color]--;
bf4ede01 1141
112202d9
TH
1142 pwq->nr_active--;
1143 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1144 /* one down, submit a delayed one */
112202d9
TH
1145 if (pwq->nr_active < pwq->max_active)
1146 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1147 }
1148
1149 /* is flush in progress and are we at the flushing tip? */
112202d9 1150 if (likely(pwq->flush_color != color))
8864b4e5 1151 goto out_put;
bf4ede01
TH
1152
1153 /* are there still in-flight works? */
112202d9 1154 if (pwq->nr_in_flight[color])
8864b4e5 1155 goto out_put;
bf4ede01 1156
112202d9
TH
1157 /* this pwq is done, clear flush_color */
1158 pwq->flush_color = -1;
bf4ede01
TH
1159
1160 /*
112202d9 1161 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1162 * will handle the rest.
1163 */
112202d9
TH
1164 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1165 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1166out_put:
1167 put_pwq(pwq);
bf4ede01
TH
1168}
1169
36e227d2 1170/**
bbb68dfa 1171 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1172 * @work: work item to steal
1173 * @is_dwork: @work is a delayed_work
bbb68dfa 1174 * @flags: place to store irq state
36e227d2
TH
1175 *
1176 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1177 * stable state - idle, on timer or on worklist.
36e227d2 1178 *
d185af30 1179 * Return:
36e227d2
TH
1180 * 1 if @work was pending and we successfully stole PENDING
1181 * 0 if @work was idle and we claimed PENDING
1182 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1183 * -ENOENT if someone else is canceling @work, this state may persist
1184 * for arbitrarily long
36e227d2 1185 *
d185af30 1186 * Note:
bbb68dfa 1187 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1188 * interrupted while holding PENDING and @work off queue, irq must be
1189 * disabled on entry. This, combined with delayed_work->timer being
1190 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1191 *
1192 * On successful return, >= 0, irq is disabled and the caller is
1193 * responsible for releasing it using local_irq_restore(*@flags).
1194 *
e0aecdd8 1195 * This function is safe to call from any context including IRQ handler.
bf4ede01 1196 */
bbb68dfa
TH
1197static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1198 unsigned long *flags)
bf4ede01 1199{
d565ed63 1200 struct worker_pool *pool;
112202d9 1201 struct pool_workqueue *pwq;
bf4ede01 1202
bbb68dfa
TH
1203 local_irq_save(*flags);
1204
36e227d2
TH
1205 /* try to steal the timer if it exists */
1206 if (is_dwork) {
1207 struct delayed_work *dwork = to_delayed_work(work);
1208
e0aecdd8
TH
1209 /*
1210 * dwork->timer is irqsafe. If del_timer() fails, it's
1211 * guaranteed that the timer is not queued anywhere and not
1212 * running on the local CPU.
1213 */
36e227d2
TH
1214 if (likely(del_timer(&dwork->timer)))
1215 return 1;
1216 }
1217
1218 /* try to claim PENDING the normal way */
bf4ede01
TH
1219 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1220 return 0;
1221
1222 /*
1223 * The queueing is in progress, or it is already queued. Try to
1224 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1225 */
d565ed63
TH
1226 pool = get_work_pool(work);
1227 if (!pool)
bbb68dfa 1228 goto fail;
bf4ede01 1229
d565ed63 1230 spin_lock(&pool->lock);
0b3dae68 1231 /*
112202d9
TH
1232 * work->data is guaranteed to point to pwq only while the work
1233 * item is queued on pwq->wq, and both updating work->data to point
1234 * to pwq on queueing and to pool on dequeueing are done under
1235 * pwq->pool->lock. This in turn guarantees that, if work->data
1236 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1237 * item is currently queued on that pool.
1238 */
112202d9
TH
1239 pwq = get_work_pwq(work);
1240 if (pwq && pwq->pool == pool) {
16062836
TH
1241 debug_work_deactivate(work);
1242
1243 /*
1244 * A delayed work item cannot be grabbed directly because
1245 * it might have linked NO_COLOR work items which, if left
112202d9 1246 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1247 * management later on and cause stall. Make sure the work
1248 * item is activated before grabbing.
1249 */
1250 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1251 pwq_activate_delayed_work(work);
16062836
TH
1252
1253 list_del_init(&work->entry);
112202d9 1254 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1255
112202d9 1256 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1257 set_work_pool_and_keep_pending(work, pool->id);
1258
1259 spin_unlock(&pool->lock);
1260 return 1;
bf4ede01 1261 }
d565ed63 1262 spin_unlock(&pool->lock);
bbb68dfa
TH
1263fail:
1264 local_irq_restore(*flags);
1265 if (work_is_canceling(work))
1266 return -ENOENT;
1267 cpu_relax();
36e227d2 1268 return -EAGAIN;
bf4ede01
TH
1269}
1270
4690c4ab 1271/**
706026c2 1272 * insert_work - insert a work into a pool
112202d9 1273 * @pwq: pwq @work belongs to
4690c4ab
TH
1274 * @work: work to insert
1275 * @head: insertion point
1276 * @extra_flags: extra WORK_STRUCT_* flags to set
1277 *
112202d9 1278 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1279 * work_struct flags.
4690c4ab
TH
1280 *
1281 * CONTEXT:
d565ed63 1282 * spin_lock_irq(pool->lock).
4690c4ab 1283 */
112202d9
TH
1284static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1285 struct list_head *head, unsigned int extra_flags)
b89deed3 1286{
112202d9 1287 struct worker_pool *pool = pwq->pool;
e22bee78 1288
4690c4ab 1289 /* we own @work, set data and link */
112202d9 1290 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1291 list_add_tail(&work->entry, head);
8864b4e5 1292 get_pwq(pwq);
e22bee78
TH
1293
1294 /*
c5aa87bb
TH
1295 * Ensure either wq_worker_sleeping() sees the above
1296 * list_add_tail() or we see zero nr_running to avoid workers lying
1297 * around lazily while there are works to be processed.
e22bee78
TH
1298 */
1299 smp_mb();
1300
63d95a91
TH
1301 if (__need_more_worker(pool))
1302 wake_up_worker(pool);
b89deed3
ON
1303}
1304
c8efcc25
TH
1305/*
1306 * Test whether @work is being queued from another work executing on the
8d03ecfe 1307 * same workqueue.
c8efcc25
TH
1308 */
1309static bool is_chained_work(struct workqueue_struct *wq)
1310{
8d03ecfe
TH
1311 struct worker *worker;
1312
1313 worker = current_wq_worker();
1314 /*
1315 * Return %true iff I'm a worker execuing a work item on @wq. If
1316 * I'm @worker, it's safe to dereference it without locking.
1317 */
112202d9 1318 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1319}
1320
d84ff051 1321static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1322 struct work_struct *work)
1323{
112202d9 1324 struct pool_workqueue *pwq;
c9178087 1325 struct worker_pool *last_pool;
1e19ffc6 1326 struct list_head *worklist;
8a2e8e5d 1327 unsigned int work_flags;
b75cac93 1328 unsigned int req_cpu = cpu;
8930caba
TH
1329
1330 /*
1331 * While a work item is PENDING && off queue, a task trying to
1332 * steal the PENDING will busy-loop waiting for it to either get
1333 * queued or lose PENDING. Grabbing PENDING and queueing should
1334 * happen with IRQ disabled.
1335 */
1336 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1337
dc186ad7 1338 debug_work_activate(work);
1e19ffc6 1339
9ef28a73 1340 /* if draining, only works from the same workqueue are allowed */
618b01eb 1341 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1342 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1343 return;
9e8cd2f5 1344retry:
df2d5ae4
TH
1345 if (req_cpu == WORK_CPU_UNBOUND)
1346 cpu = raw_smp_processor_id();
1347
c9178087 1348 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1349 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1350 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1351 else
1352 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1353
c9178087
TH
1354 /*
1355 * If @work was previously on a different pool, it might still be
1356 * running there, in which case the work needs to be queued on that
1357 * pool to guarantee non-reentrancy.
1358 */
1359 last_pool = get_work_pool(work);
1360 if (last_pool && last_pool != pwq->pool) {
1361 struct worker *worker;
18aa9eff 1362
c9178087 1363 spin_lock(&last_pool->lock);
18aa9eff 1364
c9178087 1365 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1366
c9178087
TH
1367 if (worker && worker->current_pwq->wq == wq) {
1368 pwq = worker->current_pwq;
8930caba 1369 } else {
c9178087
TH
1370 /* meh... not running there, queue here */
1371 spin_unlock(&last_pool->lock);
112202d9 1372 spin_lock(&pwq->pool->lock);
8930caba 1373 }
f3421797 1374 } else {
112202d9 1375 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1376 }
1377
9e8cd2f5
TH
1378 /*
1379 * pwq is determined and locked. For unbound pools, we could have
1380 * raced with pwq release and it could already be dead. If its
1381 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1382 * without another pwq replacing it in the numa_pwq_tbl or while
1383 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1384 * make forward-progress.
1385 */
1386 if (unlikely(!pwq->refcnt)) {
1387 if (wq->flags & WQ_UNBOUND) {
1388 spin_unlock(&pwq->pool->lock);
1389 cpu_relax();
1390 goto retry;
1391 }
1392 /* oops */
1393 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1394 wq->name, cpu);
1395 }
1396
112202d9
TH
1397 /* pwq determined, queue */
1398 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1399
f5b2552b 1400 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1401 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1402 return;
1403 }
1e19ffc6 1404
112202d9
TH
1405 pwq->nr_in_flight[pwq->work_color]++;
1406 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1407
112202d9 1408 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1409 trace_workqueue_activate_work(work);
112202d9
TH
1410 pwq->nr_active++;
1411 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1412 } else {
1413 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1414 worklist = &pwq->delayed_works;
8a2e8e5d 1415 }
1e19ffc6 1416
112202d9 1417 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1418
112202d9 1419 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1420}
1421
0fcb78c2 1422/**
c1a220e7
ZR
1423 * queue_work_on - queue work on specific cpu
1424 * @cpu: CPU number to execute work on
0fcb78c2
REB
1425 * @wq: workqueue to use
1426 * @work: work to queue
1427 *
c1a220e7
ZR
1428 * We queue the work to a specific CPU, the caller must ensure it
1429 * can't go away.
d185af30
YB
1430 *
1431 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1432 */
d4283e93
TH
1433bool queue_work_on(int cpu, struct workqueue_struct *wq,
1434 struct work_struct *work)
1da177e4 1435{
d4283e93 1436 bool ret = false;
8930caba 1437 unsigned long flags;
ef1ca236 1438
8930caba 1439 local_irq_save(flags);
c1a220e7 1440
22df02bb 1441 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1442 __queue_work(cpu, wq, work);
d4283e93 1443 ret = true;
c1a220e7 1444 }
ef1ca236 1445
8930caba 1446 local_irq_restore(flags);
1da177e4
LT
1447 return ret;
1448}
ad7b1f84 1449EXPORT_SYMBOL(queue_work_on);
1da177e4 1450
d8e794df 1451void delayed_work_timer_fn(unsigned long __data)
1da177e4 1452{
52bad64d 1453 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1454
e0aecdd8 1455 /* should have been called from irqsafe timer with irq already off */
60c057bc 1456 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1457}
1438ade5 1458EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1459
7beb2edf
TH
1460static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1461 struct delayed_work *dwork, unsigned long delay)
1da177e4 1462{
7beb2edf
TH
1463 struct timer_list *timer = &dwork->timer;
1464 struct work_struct *work = &dwork->work;
7beb2edf
TH
1465
1466 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1467 timer->data != (unsigned long)dwork);
fc4b514f
TH
1468 WARN_ON_ONCE(timer_pending(timer));
1469 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1470
8852aac2
TH
1471 /*
1472 * If @delay is 0, queue @dwork->work immediately. This is for
1473 * both optimization and correctness. The earliest @timer can
1474 * expire is on the closest next tick and delayed_work users depend
1475 * on that there's no such delay when @delay is 0.
1476 */
1477 if (!delay) {
1478 __queue_work(cpu, wq, &dwork->work);
1479 return;
1480 }
1481
7beb2edf 1482 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1483
60c057bc 1484 dwork->wq = wq;
1265057f 1485 dwork->cpu = cpu;
7beb2edf
TH
1486 timer->expires = jiffies + delay;
1487
1488 if (unlikely(cpu != WORK_CPU_UNBOUND))
1489 add_timer_on(timer, cpu);
1490 else
1491 add_timer(timer);
1da177e4
LT
1492}
1493
0fcb78c2
REB
1494/**
1495 * queue_delayed_work_on - queue work on specific CPU after delay
1496 * @cpu: CPU number to execute work on
1497 * @wq: workqueue to use
af9997e4 1498 * @dwork: work to queue
0fcb78c2
REB
1499 * @delay: number of jiffies to wait before queueing
1500 *
d185af30 1501 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1502 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1503 * execution.
0fcb78c2 1504 */
d4283e93
TH
1505bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1506 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1507{
52bad64d 1508 struct work_struct *work = &dwork->work;
d4283e93 1509 bool ret = false;
8930caba 1510 unsigned long flags;
7a6bc1cd 1511
8930caba
TH
1512 /* read the comment in __queue_work() */
1513 local_irq_save(flags);
7a6bc1cd 1514
22df02bb 1515 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1516 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1517 ret = true;
7a6bc1cd 1518 }
8a3e77cc 1519
8930caba 1520 local_irq_restore(flags);
7a6bc1cd
VP
1521 return ret;
1522}
ad7b1f84 1523EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1524
8376fe22
TH
1525/**
1526 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1527 * @cpu: CPU number to execute work on
1528 * @wq: workqueue to use
1529 * @dwork: work to queue
1530 * @delay: number of jiffies to wait before queueing
1531 *
1532 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1533 * modify @dwork's timer so that it expires after @delay. If @delay is
1534 * zero, @work is guaranteed to be scheduled immediately regardless of its
1535 * current state.
1536 *
d185af30 1537 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1538 * pending and its timer was modified.
1539 *
e0aecdd8 1540 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1541 * See try_to_grab_pending() for details.
1542 */
1543bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1544 struct delayed_work *dwork, unsigned long delay)
1545{
1546 unsigned long flags;
1547 int ret;
c7fc77f7 1548
8376fe22
TH
1549 do {
1550 ret = try_to_grab_pending(&dwork->work, true, &flags);
1551 } while (unlikely(ret == -EAGAIN));
63bc0362 1552
8376fe22
TH
1553 if (likely(ret >= 0)) {
1554 __queue_delayed_work(cpu, wq, dwork, delay);
1555 local_irq_restore(flags);
7a6bc1cd 1556 }
8376fe22
TH
1557
1558 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1559 return ret;
1560}
8376fe22
TH
1561EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1562
c8e55f36
TH
1563/**
1564 * worker_enter_idle - enter idle state
1565 * @worker: worker which is entering idle state
1566 *
1567 * @worker is entering idle state. Update stats and idle timer if
1568 * necessary.
1569 *
1570 * LOCKING:
d565ed63 1571 * spin_lock_irq(pool->lock).
c8e55f36
TH
1572 */
1573static void worker_enter_idle(struct worker *worker)
1da177e4 1574{
bd7bdd43 1575 struct worker_pool *pool = worker->pool;
c8e55f36 1576
6183c009
TH
1577 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1578 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1579 (worker->hentry.next || worker->hentry.pprev)))
1580 return;
c8e55f36 1581
cb444766
TH
1582 /* can't use worker_set_flags(), also called from start_worker() */
1583 worker->flags |= WORKER_IDLE;
bd7bdd43 1584 pool->nr_idle++;
e22bee78 1585 worker->last_active = jiffies;
c8e55f36
TH
1586
1587 /* idle_list is LIFO */
bd7bdd43 1588 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1589
628c78e7
TH
1590 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1591 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1592
544ecf31 1593 /*
706026c2 1594 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1595 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1596 * nr_running, the warning may trigger spuriously. Check iff
1597 * unbind is not in progress.
544ecf31 1598 */
24647570 1599 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1600 pool->nr_workers == pool->nr_idle &&
e19e397a 1601 atomic_read(&pool->nr_running));
c8e55f36
TH
1602}
1603
1604/**
1605 * worker_leave_idle - leave idle state
1606 * @worker: worker which is leaving idle state
1607 *
1608 * @worker is leaving idle state. Update stats.
1609 *
1610 * LOCKING:
d565ed63 1611 * spin_lock_irq(pool->lock).
c8e55f36
TH
1612 */
1613static void worker_leave_idle(struct worker *worker)
1614{
bd7bdd43 1615 struct worker_pool *pool = worker->pool;
c8e55f36 1616
6183c009
TH
1617 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1618 return;
d302f017 1619 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1620 pool->nr_idle--;
c8e55f36
TH
1621 list_del_init(&worker->entry);
1622}
1623
e22bee78 1624/**
f36dc67b
LJ
1625 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1626 * @pool: target worker_pool
1627 *
1628 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1629 *
1630 * Works which are scheduled while the cpu is online must at least be
1631 * scheduled to a worker which is bound to the cpu so that if they are
1632 * flushed from cpu callbacks while cpu is going down, they are
1633 * guaranteed to execute on the cpu.
1634 *
f5faa077 1635 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1636 * themselves to the target cpu and may race with cpu going down or
1637 * coming online. kthread_bind() can't be used because it may put the
1638 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1639 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1640 * [dis]associated in the meantime.
1641 *
706026c2 1642 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1643 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1644 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1645 * enters idle state or fetches works without dropping lock, it can
1646 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1647 *
1648 * CONTEXT:
d565ed63 1649 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1650 * held.
1651 *
d185af30 1652 * Return:
706026c2 1653 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1654 * bound), %false if offline.
1655 */
f36dc67b 1656static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1657__acquires(&pool->lock)
e22bee78 1658{
e22bee78 1659 while (true) {
4e6045f1 1660 /*
e22bee78
TH
1661 * The following call may fail, succeed or succeed
1662 * without actually migrating the task to the cpu if
1663 * it races with cpu hotunplug operation. Verify
24647570 1664 * against POOL_DISASSOCIATED.
4e6045f1 1665 */
24647570 1666 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1667 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1668
d565ed63 1669 spin_lock_irq(&pool->lock);
24647570 1670 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1671 return false;
f5faa077 1672 if (task_cpu(current) == pool->cpu &&
7a4e344c 1673 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1674 return true;
d565ed63 1675 spin_unlock_irq(&pool->lock);
e22bee78 1676
5035b20f
TH
1677 /*
1678 * We've raced with CPU hot[un]plug. Give it a breather
1679 * and retry migration. cond_resched() is required here;
1680 * otherwise, we might deadlock against cpu_stop trying to
1681 * bring down the CPU on non-preemptive kernel.
1682 */
e22bee78 1683 cpu_relax();
5035b20f 1684 cond_resched();
e22bee78
TH
1685 }
1686}
1687
c34056a3
TH
1688static struct worker *alloc_worker(void)
1689{
1690 struct worker *worker;
1691
1692 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1693 if (worker) {
1694 INIT_LIST_HEAD(&worker->entry);
affee4b2 1695 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1696 /* on creation a worker is in !idle && prep state */
1697 worker->flags = WORKER_PREP;
c8e55f36 1698 }
c34056a3
TH
1699 return worker;
1700}
1701
1702/**
1703 * create_worker - create a new workqueue worker
63d95a91 1704 * @pool: pool the new worker will belong to
c34056a3 1705 *
63d95a91 1706 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1707 * can be started by calling start_worker() or destroyed using
1708 * destroy_worker().
1709 *
1710 * CONTEXT:
1711 * Might sleep. Does GFP_KERNEL allocations.
1712 *
d185af30 1713 * Return:
c34056a3
TH
1714 * Pointer to the newly created worker.
1715 */
bc2ae0f5 1716static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1717{
c34056a3 1718 struct worker *worker = NULL;
f3421797 1719 int id = -1;
e3c916a4 1720 char id_buf[16];
c34056a3 1721
cd549687
TH
1722 lockdep_assert_held(&pool->manager_mutex);
1723
822d8405
TH
1724 /*
1725 * ID is needed to determine kthread name. Allocate ID first
1726 * without installing the pointer.
1727 */
1728 idr_preload(GFP_KERNEL);
d565ed63 1729 spin_lock_irq(&pool->lock);
822d8405
TH
1730
1731 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1732
d565ed63 1733 spin_unlock_irq(&pool->lock);
822d8405
TH
1734 idr_preload_end();
1735 if (id < 0)
1736 goto fail;
c34056a3
TH
1737
1738 worker = alloc_worker();
1739 if (!worker)
1740 goto fail;
1741
bd7bdd43 1742 worker->pool = pool;
c34056a3
TH
1743 worker->id = id;
1744
29c91e99 1745 if (pool->cpu >= 0)
e3c916a4
TH
1746 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747 pool->attrs->nice < 0 ? "H" : "");
f3421797 1748 else
e3c916a4
TH
1749 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750
f3f90ad4 1751 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1752 "kworker/%s", id_buf);
c34056a3
TH
1753 if (IS_ERR(worker->task))
1754 goto fail;
1755
91151228
ON
1756 set_user_nice(worker->task, pool->attrs->nice);
1757
1758 /* prevent userland from meddling with cpumask of workqueue workers */
1759 worker->task->flags |= PF_NO_SETAFFINITY;
1760
c5aa87bb
TH
1761 /*
1762 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763 * online CPUs. It'll be re-applied when any of the CPUs come up.
1764 */
7a4e344c 1765 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1766
7a4e344c
TH
1767 /*
1768 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769 * remains stable across this function. See the comments above the
1770 * flag definition for details.
1771 */
1772 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1773 worker->flags |= WORKER_UNBOUND;
c34056a3 1774
822d8405
TH
1775 /* successful, commit the pointer to idr */
1776 spin_lock_irq(&pool->lock);
1777 idr_replace(&pool->worker_idr, worker, worker->id);
1778 spin_unlock_irq(&pool->lock);
1779
c34056a3 1780 return worker;
822d8405 1781
c34056a3
TH
1782fail:
1783 if (id >= 0) {
d565ed63 1784 spin_lock_irq(&pool->lock);
822d8405 1785 idr_remove(&pool->worker_idr, id);
d565ed63 1786 spin_unlock_irq(&pool->lock);
c34056a3
TH
1787 }
1788 kfree(worker);
1789 return NULL;
1790}
1791
1792/**
1793 * start_worker - start a newly created worker
1794 * @worker: worker to start
1795 *
706026c2 1796 * Make the pool aware of @worker and start it.
c34056a3
TH
1797 *
1798 * CONTEXT:
d565ed63 1799 * spin_lock_irq(pool->lock).
c34056a3
TH
1800 */
1801static void start_worker(struct worker *worker)
1802{
cb444766 1803 worker->flags |= WORKER_STARTED;
bd7bdd43 1804 worker->pool->nr_workers++;
c8e55f36 1805 worker_enter_idle(worker);
c34056a3
TH
1806 wake_up_process(worker->task);
1807}
1808
ebf44d16
TH
1809/**
1810 * create_and_start_worker - create and start a worker for a pool
1811 * @pool: the target pool
1812 *
cd549687 1813 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1814 *
1815 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1816 */
1817static int create_and_start_worker(struct worker_pool *pool)
1818{
1819 struct worker *worker;
1820
cd549687
TH
1821 mutex_lock(&pool->manager_mutex);
1822
ebf44d16
TH
1823 worker = create_worker(pool);
1824 if (worker) {
1825 spin_lock_irq(&pool->lock);
1826 start_worker(worker);
1827 spin_unlock_irq(&pool->lock);
1828 }
1829
cd549687
TH
1830 mutex_unlock(&pool->manager_mutex);
1831
ebf44d16
TH
1832 return worker ? 0 : -ENOMEM;
1833}
1834
c34056a3
TH
1835/**
1836 * destroy_worker - destroy a workqueue worker
1837 * @worker: worker to be destroyed
1838 *
706026c2 1839 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1840 *
1841 * CONTEXT:
d565ed63 1842 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1843 */
1844static void destroy_worker(struct worker *worker)
1845{
bd7bdd43 1846 struct worker_pool *pool = worker->pool;
c34056a3 1847
cd549687
TH
1848 lockdep_assert_held(&pool->manager_mutex);
1849 lockdep_assert_held(&pool->lock);
1850
c34056a3 1851 /* sanity check frenzy */
6183c009
TH
1852 if (WARN_ON(worker->current_work) ||
1853 WARN_ON(!list_empty(&worker->scheduled)))
1854 return;
c34056a3 1855
c8e55f36 1856 if (worker->flags & WORKER_STARTED)
bd7bdd43 1857 pool->nr_workers--;
c8e55f36 1858 if (worker->flags & WORKER_IDLE)
bd7bdd43 1859 pool->nr_idle--;
c8e55f36 1860
5bdfff96
LJ
1861 /*
1862 * Once WORKER_DIE is set, the kworker may destroy itself at any
1863 * point. Pin to ensure the task stays until we're done with it.
1864 */
1865 get_task_struct(worker->task);
1866
c8e55f36 1867 list_del_init(&worker->entry);
cb444766 1868 worker->flags |= WORKER_DIE;
c8e55f36 1869
822d8405
TH
1870 idr_remove(&pool->worker_idr, worker->id);
1871
d565ed63 1872 spin_unlock_irq(&pool->lock);
c8e55f36 1873
c34056a3 1874 kthread_stop(worker->task);
5bdfff96 1875 put_task_struct(worker->task);
c34056a3
TH
1876 kfree(worker);
1877
d565ed63 1878 spin_lock_irq(&pool->lock);
c34056a3
TH
1879}
1880
63d95a91 1881static void idle_worker_timeout(unsigned long __pool)
e22bee78 1882{
63d95a91 1883 struct worker_pool *pool = (void *)__pool;
e22bee78 1884
d565ed63 1885 spin_lock_irq(&pool->lock);
e22bee78 1886
63d95a91 1887 if (too_many_workers(pool)) {
e22bee78
TH
1888 struct worker *worker;
1889 unsigned long expires;
1890
1891 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1892 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1893 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1894
1895 if (time_before(jiffies, expires))
63d95a91 1896 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1897 else {
1898 /* it's been idle for too long, wake up manager */
11ebea50 1899 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1900 wake_up_worker(pool);
d5abe669 1901 }
e22bee78
TH
1902 }
1903
d565ed63 1904 spin_unlock_irq(&pool->lock);
e22bee78 1905}
d5abe669 1906
493a1724 1907static void send_mayday(struct work_struct *work)
e22bee78 1908{
112202d9
TH
1909 struct pool_workqueue *pwq = get_work_pwq(work);
1910 struct workqueue_struct *wq = pwq->wq;
493a1724 1911
2e109a28 1912 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1913
493008a8 1914 if (!wq->rescuer)
493a1724 1915 return;
e22bee78
TH
1916
1917 /* mayday mayday mayday */
493a1724
TH
1918 if (list_empty(&pwq->mayday_node)) {
1919 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1920 wake_up_process(wq->rescuer->task);
493a1724 1921 }
e22bee78
TH
1922}
1923
706026c2 1924static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1925{
63d95a91 1926 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1927 struct work_struct *work;
1928
2e109a28 1929 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1930 spin_lock(&pool->lock);
e22bee78 1931
63d95a91 1932 if (need_to_create_worker(pool)) {
e22bee78
TH
1933 /*
1934 * We've been trying to create a new worker but
1935 * haven't been successful. We might be hitting an
1936 * allocation deadlock. Send distress signals to
1937 * rescuers.
1938 */
63d95a91 1939 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1940 send_mayday(work);
1da177e4 1941 }
e22bee78 1942
493a1724 1943 spin_unlock(&pool->lock);
2e109a28 1944 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1945
63d95a91 1946 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1947}
1948
e22bee78
TH
1949/**
1950 * maybe_create_worker - create a new worker if necessary
63d95a91 1951 * @pool: pool to create a new worker for
e22bee78 1952 *
63d95a91 1953 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1954 * have at least one idle worker on return from this function. If
1955 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1956 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1957 * possible allocation deadlock.
1958 *
c5aa87bb
TH
1959 * On return, need_to_create_worker() is guaranteed to be %false and
1960 * may_start_working() %true.
e22bee78
TH
1961 *
1962 * LOCKING:
d565ed63 1963 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1964 * multiple times. Does GFP_KERNEL allocations. Called only from
1965 * manager.
1966 *
d185af30 1967 * Return:
c5aa87bb 1968 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1969 * otherwise.
1970 */
63d95a91 1971static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1972__releases(&pool->lock)
1973__acquires(&pool->lock)
1da177e4 1974{
63d95a91 1975 if (!need_to_create_worker(pool))
e22bee78
TH
1976 return false;
1977restart:
d565ed63 1978 spin_unlock_irq(&pool->lock);
9f9c2364 1979
e22bee78 1980 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1981 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1982
1983 while (true) {
1984 struct worker *worker;
1985
bc2ae0f5 1986 worker = create_worker(pool);
e22bee78 1987 if (worker) {
63d95a91 1988 del_timer_sync(&pool->mayday_timer);
d565ed63 1989 spin_lock_irq(&pool->lock);
e22bee78 1990 start_worker(worker);
6183c009
TH
1991 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1992 goto restart;
e22bee78
TH
1993 return true;
1994 }
1995
63d95a91 1996 if (!need_to_create_worker(pool))
e22bee78 1997 break;
1da177e4 1998
e22bee78
TH
1999 __set_current_state(TASK_INTERRUPTIBLE);
2000 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2001
63d95a91 2002 if (!need_to_create_worker(pool))
e22bee78
TH
2003 break;
2004 }
2005
63d95a91 2006 del_timer_sync(&pool->mayday_timer);
d565ed63 2007 spin_lock_irq(&pool->lock);
63d95a91 2008 if (need_to_create_worker(pool))
e22bee78
TH
2009 goto restart;
2010 return true;
2011}
2012
2013/**
2014 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2015 * @pool: pool to destroy workers for
e22bee78 2016 *
63d95a91 2017 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2018 * IDLE_WORKER_TIMEOUT.
2019 *
2020 * LOCKING:
d565ed63 2021 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2022 * multiple times. Called only from manager.
2023 *
d185af30 2024 * Return:
c5aa87bb 2025 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2026 * otherwise.
2027 */
63d95a91 2028static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2029{
2030 bool ret = false;
1da177e4 2031
63d95a91 2032 while (too_many_workers(pool)) {
e22bee78
TH
2033 struct worker *worker;
2034 unsigned long expires;
3af24433 2035
63d95a91 2036 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2037 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2038
e22bee78 2039 if (time_before(jiffies, expires)) {
63d95a91 2040 mod_timer(&pool->idle_timer, expires);
3af24433 2041 break;
e22bee78 2042 }
1da177e4 2043
e22bee78
TH
2044 destroy_worker(worker);
2045 ret = true;
1da177e4 2046 }
1e19ffc6 2047
e22bee78 2048 return ret;
1e19ffc6
TH
2049}
2050
73f53c4a 2051/**
e22bee78
TH
2052 * manage_workers - manage worker pool
2053 * @worker: self
73f53c4a 2054 *
706026c2 2055 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2056 * to. At any given time, there can be only zero or one manager per
706026c2 2057 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2058 *
2059 * The caller can safely start processing works on false return. On
2060 * true return, it's guaranteed that need_to_create_worker() is false
2061 * and may_start_working() is true.
73f53c4a
TH
2062 *
2063 * CONTEXT:
d565ed63 2064 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2065 * multiple times. Does GFP_KERNEL allocations.
2066 *
d185af30 2067 * Return:
2d498db9
L
2068 * %false if the pool don't need management and the caller can safely start
2069 * processing works, %true indicates that the function released pool->lock
2070 * and reacquired it to perform some management function and that the
2071 * conditions that the caller verified while holding the lock before
2072 * calling the function might no longer be true.
73f53c4a 2073 */
e22bee78 2074static bool manage_workers(struct worker *worker)
73f53c4a 2075{
63d95a91 2076 struct worker_pool *pool = worker->pool;
e22bee78 2077 bool ret = false;
73f53c4a 2078
bc3a1afc
TH
2079 /*
2080 * Managership is governed by two mutexes - manager_arb and
2081 * manager_mutex. manager_arb handles arbitration of manager role.
2082 * Anyone who successfully grabs manager_arb wins the arbitration
2083 * and becomes the manager. mutex_trylock() on pool->manager_arb
2084 * failure while holding pool->lock reliably indicates that someone
2085 * else is managing the pool and the worker which failed trylock
2086 * can proceed to executing work items. This means that anyone
2087 * grabbing manager_arb is responsible for actually performing
2088 * manager duties. If manager_arb is grabbed and released without
2089 * actual management, the pool may stall indefinitely.
2090 *
2091 * manager_mutex is used for exclusion of actual management
2092 * operations. The holder of manager_mutex can be sure that none
2093 * of management operations, including creation and destruction of
2094 * workers, won't take place until the mutex is released. Because
2095 * manager_mutex doesn't interfere with manager role arbitration,
2096 * it is guaranteed that the pool's management, while may be
2097 * delayed, won't be disturbed by someone else grabbing
2098 * manager_mutex.
2099 */
34a06bd6 2100 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2101 return ret;
1e19ffc6 2102
ee378aa4 2103 /*
bc3a1afc
TH
2104 * With manager arbitration won, manager_mutex would be free in
2105 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2106 */
bc3a1afc 2107 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2108 spin_unlock_irq(&pool->lock);
bc3a1afc 2109 mutex_lock(&pool->manager_mutex);
8f174b11 2110 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2111 ret = true;
2112 }
73f53c4a 2113
11ebea50 2114 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2115
2116 /*
e22bee78
TH
2117 * Destroy and then create so that may_start_working() is true
2118 * on return.
73f53c4a 2119 */
63d95a91
TH
2120 ret |= maybe_destroy_workers(pool);
2121 ret |= maybe_create_worker(pool);
e22bee78 2122
bc3a1afc 2123 mutex_unlock(&pool->manager_mutex);
34a06bd6 2124 mutex_unlock(&pool->manager_arb);
e22bee78 2125 return ret;
73f53c4a
TH
2126}
2127
a62428c0
TH
2128/**
2129 * process_one_work - process single work
c34056a3 2130 * @worker: self
a62428c0
TH
2131 * @work: work to process
2132 *
2133 * Process @work. This function contains all the logics necessary to
2134 * process a single work including synchronization against and
2135 * interaction with other workers on the same cpu, queueing and
2136 * flushing. As long as context requirement is met, any worker can
2137 * call this function to process a work.
2138 *
2139 * CONTEXT:
d565ed63 2140 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2141 */
c34056a3 2142static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2143__releases(&pool->lock)
2144__acquires(&pool->lock)
a62428c0 2145{
112202d9 2146 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2147 struct worker_pool *pool = worker->pool;
112202d9 2148 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2149 int work_color;
7e11629d 2150 struct worker *collision;
a62428c0
TH
2151#ifdef CONFIG_LOCKDEP
2152 /*
2153 * It is permissible to free the struct work_struct from
2154 * inside the function that is called from it, this we need to
2155 * take into account for lockdep too. To avoid bogus "held
2156 * lock freed" warnings as well as problems when looking into
2157 * work->lockdep_map, make a copy and use that here.
2158 */
4d82a1de
PZ
2159 struct lockdep_map lockdep_map;
2160
2161 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2162#endif
6fec10a1
TH
2163 /*
2164 * Ensure we're on the correct CPU. DISASSOCIATED test is
2165 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2166 * unbound or a disassociated pool.
6fec10a1 2167 */
5f7dabfd 2168 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2169 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2170 raw_smp_processor_id() != pool->cpu);
25511a47 2171
7e11629d
TH
2172 /*
2173 * A single work shouldn't be executed concurrently by
2174 * multiple workers on a single cpu. Check whether anyone is
2175 * already processing the work. If so, defer the work to the
2176 * currently executing one.
2177 */
c9e7cf27 2178 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2179 if (unlikely(collision)) {
2180 move_linked_works(work, &collision->scheduled, NULL);
2181 return;
2182 }
2183
8930caba 2184 /* claim and dequeue */
a62428c0 2185 debug_work_deactivate(work);
c9e7cf27 2186 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2187 worker->current_work = work;
a2c1c57b 2188 worker->current_func = work->func;
112202d9 2189 worker->current_pwq = pwq;
73f53c4a 2190 work_color = get_work_color(work);
7a22ad75 2191
a62428c0
TH
2192 list_del_init(&work->entry);
2193
fb0e7beb
TH
2194 /*
2195 * CPU intensive works don't participate in concurrency
2196 * management. They're the scheduler's responsibility.
2197 */
2198 if (unlikely(cpu_intensive))
2199 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2200
974271c4 2201 /*
d565ed63 2202 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2203 * executed ASAP. Wake up another worker if necessary.
2204 */
63d95a91
TH
2205 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2206 wake_up_worker(pool);
974271c4 2207
8930caba 2208 /*
7c3eed5c 2209 * Record the last pool and clear PENDING which should be the last
d565ed63 2210 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2211 * PENDING and queued state changes happen together while IRQ is
2212 * disabled.
8930caba 2213 */
7c3eed5c 2214 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2215
d565ed63 2216 spin_unlock_irq(&pool->lock);
a62428c0 2217
112202d9 2218 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2219 lock_map_acquire(&lockdep_map);
e36c886a 2220 trace_workqueue_execute_start(work);
a2c1c57b 2221 worker->current_func(work);
e36c886a
AV
2222 /*
2223 * While we must be careful to not use "work" after this, the trace
2224 * point will only record its address.
2225 */
2226 trace_workqueue_execute_end(work);
a62428c0 2227 lock_map_release(&lockdep_map);
112202d9 2228 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2229
2230 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2231 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2232 " last function: %pf\n",
a2c1c57b
TH
2233 current->comm, preempt_count(), task_pid_nr(current),
2234 worker->current_func);
a62428c0
TH
2235 debug_show_held_locks(current);
2236 dump_stack();
2237 }
2238
b22ce278
TH
2239 /*
2240 * The following prevents a kworker from hogging CPU on !PREEMPT
2241 * kernels, where a requeueing work item waiting for something to
2242 * happen could deadlock with stop_machine as such work item could
2243 * indefinitely requeue itself while all other CPUs are trapped in
2244 * stop_machine.
2245 */
2246 cond_resched();
2247
d565ed63 2248 spin_lock_irq(&pool->lock);
a62428c0 2249
fb0e7beb
TH
2250 /* clear cpu intensive status */
2251 if (unlikely(cpu_intensive))
2252 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2253
a62428c0 2254 /* we're done with it, release */
42f8570f 2255 hash_del(&worker->hentry);
c34056a3 2256 worker->current_work = NULL;
a2c1c57b 2257 worker->current_func = NULL;
112202d9 2258 worker->current_pwq = NULL;
3d1cb205 2259 worker->desc_valid = false;
112202d9 2260 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2261}
2262
affee4b2
TH
2263/**
2264 * process_scheduled_works - process scheduled works
2265 * @worker: self
2266 *
2267 * Process all scheduled works. Please note that the scheduled list
2268 * may change while processing a work, so this function repeatedly
2269 * fetches a work from the top and executes it.
2270 *
2271 * CONTEXT:
d565ed63 2272 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2273 * multiple times.
2274 */
2275static void process_scheduled_works(struct worker *worker)
1da177e4 2276{
affee4b2
TH
2277 while (!list_empty(&worker->scheduled)) {
2278 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2279 struct work_struct, entry);
c34056a3 2280 process_one_work(worker, work);
1da177e4 2281 }
1da177e4
LT
2282}
2283
4690c4ab
TH
2284/**
2285 * worker_thread - the worker thread function
c34056a3 2286 * @__worker: self
4690c4ab 2287 *
c5aa87bb
TH
2288 * The worker thread function. All workers belong to a worker_pool -
2289 * either a per-cpu one or dynamic unbound one. These workers process all
2290 * work items regardless of their specific target workqueue. The only
2291 * exception is work items which belong to workqueues with a rescuer which
2292 * will be explained in rescuer_thread().
d185af30
YB
2293 *
2294 * Return: 0
4690c4ab 2295 */
c34056a3 2296static int worker_thread(void *__worker)
1da177e4 2297{
c34056a3 2298 struct worker *worker = __worker;
bd7bdd43 2299 struct worker_pool *pool = worker->pool;
1da177e4 2300
e22bee78
TH
2301 /* tell the scheduler that this is a workqueue worker */
2302 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2303woke_up:
d565ed63 2304 spin_lock_irq(&pool->lock);
1da177e4 2305
a9ab775b
TH
2306 /* am I supposed to die? */
2307 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2308 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2309 WARN_ON_ONCE(!list_empty(&worker->entry));
2310 worker->task->flags &= ~PF_WQ_WORKER;
2311 return 0;
c8e55f36 2312 }
affee4b2 2313
c8e55f36 2314 worker_leave_idle(worker);
db7bccf4 2315recheck:
e22bee78 2316 /* no more worker necessary? */
63d95a91 2317 if (!need_more_worker(pool))
e22bee78
TH
2318 goto sleep;
2319
2320 /* do we need to manage? */
63d95a91 2321 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2322 goto recheck;
2323
c8e55f36
TH
2324 /*
2325 * ->scheduled list can only be filled while a worker is
2326 * preparing to process a work or actually processing it.
2327 * Make sure nobody diddled with it while I was sleeping.
2328 */
6183c009 2329 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2330
e22bee78 2331 /*
a9ab775b
TH
2332 * Finish PREP stage. We're guaranteed to have at least one idle
2333 * worker or that someone else has already assumed the manager
2334 * role. This is where @worker starts participating in concurrency
2335 * management if applicable and concurrency management is restored
2336 * after being rebound. See rebind_workers() for details.
e22bee78 2337 */
a9ab775b 2338 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2339
2340 do {
c8e55f36 2341 struct work_struct *work =
bd7bdd43 2342 list_first_entry(&pool->worklist,
c8e55f36
TH
2343 struct work_struct, entry);
2344
2345 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2346 /* optimization path, not strictly necessary */
2347 process_one_work(worker, work);
2348 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2349 process_scheduled_works(worker);
c8e55f36
TH
2350 } else {
2351 move_linked_works(work, &worker->scheduled, NULL);
2352 process_scheduled_works(worker);
affee4b2 2353 }
63d95a91 2354 } while (keep_working(pool));
e22bee78
TH
2355
2356 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2357sleep:
63d95a91 2358 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2359 goto recheck;
d313dd85 2360
c8e55f36 2361 /*
d565ed63
TH
2362 * pool->lock is held and there's no work to process and no need to
2363 * manage, sleep. Workers are woken up only while holding
2364 * pool->lock or from local cpu, so setting the current state
2365 * before releasing pool->lock is enough to prevent losing any
2366 * event.
c8e55f36
TH
2367 */
2368 worker_enter_idle(worker);
2369 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2370 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2371 schedule();
2372 goto woke_up;
1da177e4
LT
2373}
2374
e22bee78
TH
2375/**
2376 * rescuer_thread - the rescuer thread function
111c225a 2377 * @__rescuer: self
e22bee78
TH
2378 *
2379 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2380 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2381 *
706026c2 2382 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2383 * worker which uses GFP_KERNEL allocation which has slight chance of
2384 * developing into deadlock if some works currently on the same queue
2385 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2386 * the problem rescuer solves.
2387 *
706026c2
TH
2388 * When such condition is possible, the pool summons rescuers of all
2389 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2390 * those works so that forward progress can be guaranteed.
2391 *
2392 * This should happen rarely.
d185af30
YB
2393 *
2394 * Return: 0
e22bee78 2395 */
111c225a 2396static int rescuer_thread(void *__rescuer)
e22bee78 2397{
111c225a
TH
2398 struct worker *rescuer = __rescuer;
2399 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2400 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2401
2402 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2403
2404 /*
2405 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2406 * doesn't participate in concurrency management.
2407 */
2408 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2409repeat:
2410 set_current_state(TASK_INTERRUPTIBLE);
2411
412d32e6
MG
2412 if (kthread_should_stop()) {
2413 __set_current_state(TASK_RUNNING);
111c225a 2414 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2415 return 0;
412d32e6 2416 }
e22bee78 2417
493a1724 2418 /* see whether any pwq is asking for help */
2e109a28 2419 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2420
2421 while (!list_empty(&wq->maydays)) {
2422 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2423 struct pool_workqueue, mayday_node);
112202d9 2424 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2425 struct work_struct *work, *n;
2426
2427 __set_current_state(TASK_RUNNING);
493a1724
TH
2428 list_del_init(&pwq->mayday_node);
2429
2e109a28 2430 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2431
2432 /* migrate to the target cpu if possible */
f36dc67b 2433 worker_maybe_bind_and_lock(pool);
b3104104 2434 rescuer->pool = pool;
e22bee78
TH
2435
2436 /*
2437 * Slurp in all works issued via this workqueue and
2438 * process'em.
2439 */
6183c009 2440 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2441 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2442 if (get_work_pwq(work) == pwq)
e22bee78
TH
2443 move_linked_works(work, scheduled, &n);
2444
2445 process_scheduled_works(rescuer);
7576958a
TH
2446
2447 /*
d565ed63 2448 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2449 * regular worker; otherwise, we end up with 0 concurrency
2450 * and stalling the execution.
2451 */
63d95a91
TH
2452 if (keep_working(pool))
2453 wake_up_worker(pool);
7576958a 2454
b3104104 2455 rescuer->pool = NULL;
493a1724 2456 spin_unlock(&pool->lock);
2e109a28 2457 spin_lock(&wq_mayday_lock);
e22bee78
TH
2458 }
2459
2e109a28 2460 spin_unlock_irq(&wq_mayday_lock);
493a1724 2461
111c225a
TH
2462 /* rescuers should never participate in concurrency management */
2463 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2464 schedule();
2465 goto repeat;
1da177e4
LT
2466}
2467
fc2e4d70
ON
2468struct wq_barrier {
2469 struct work_struct work;
2470 struct completion done;
2471};
2472
2473static void wq_barrier_func(struct work_struct *work)
2474{
2475 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2476 complete(&barr->done);
2477}
2478
4690c4ab
TH
2479/**
2480 * insert_wq_barrier - insert a barrier work
112202d9 2481 * @pwq: pwq to insert barrier into
4690c4ab 2482 * @barr: wq_barrier to insert
affee4b2
TH
2483 * @target: target work to attach @barr to
2484 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2485 *
affee4b2
TH
2486 * @barr is linked to @target such that @barr is completed only after
2487 * @target finishes execution. Please note that the ordering
2488 * guarantee is observed only with respect to @target and on the local
2489 * cpu.
2490 *
2491 * Currently, a queued barrier can't be canceled. This is because
2492 * try_to_grab_pending() can't determine whether the work to be
2493 * grabbed is at the head of the queue and thus can't clear LINKED
2494 * flag of the previous work while there must be a valid next work
2495 * after a work with LINKED flag set.
2496 *
2497 * Note that when @worker is non-NULL, @target may be modified
112202d9 2498 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2499 *
2500 * CONTEXT:
d565ed63 2501 * spin_lock_irq(pool->lock).
4690c4ab 2502 */
112202d9 2503static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2504 struct wq_barrier *barr,
2505 struct work_struct *target, struct worker *worker)
fc2e4d70 2506{
affee4b2
TH
2507 struct list_head *head;
2508 unsigned int linked = 0;
2509
dc186ad7 2510 /*
d565ed63 2511 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2512 * as we know for sure that this will not trigger any of the
2513 * checks and call back into the fixup functions where we
2514 * might deadlock.
2515 */
ca1cab37 2516 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2517 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2518 init_completion(&barr->done);
83c22520 2519
affee4b2
TH
2520 /*
2521 * If @target is currently being executed, schedule the
2522 * barrier to the worker; otherwise, put it after @target.
2523 */
2524 if (worker)
2525 head = worker->scheduled.next;
2526 else {
2527 unsigned long *bits = work_data_bits(target);
2528
2529 head = target->entry.next;
2530 /* there can already be other linked works, inherit and set */
2531 linked = *bits & WORK_STRUCT_LINKED;
2532 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2533 }
2534
dc186ad7 2535 debug_work_activate(&barr->work);
112202d9 2536 insert_work(pwq, &barr->work, head,
affee4b2 2537 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2538}
2539
73f53c4a 2540/**
112202d9 2541 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2542 * @wq: workqueue being flushed
2543 * @flush_color: new flush color, < 0 for no-op
2544 * @work_color: new work color, < 0 for no-op
2545 *
112202d9 2546 * Prepare pwqs for workqueue flushing.
73f53c4a 2547 *
112202d9
TH
2548 * If @flush_color is non-negative, flush_color on all pwqs should be
2549 * -1. If no pwq has in-flight commands at the specified color, all
2550 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2551 * has in flight commands, its pwq->flush_color is set to
2552 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2553 * wakeup logic is armed and %true is returned.
2554 *
2555 * The caller should have initialized @wq->first_flusher prior to
2556 * calling this function with non-negative @flush_color. If
2557 * @flush_color is negative, no flush color update is done and %false
2558 * is returned.
2559 *
112202d9 2560 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2561 * work_color which is previous to @work_color and all will be
2562 * advanced to @work_color.
2563 *
2564 * CONTEXT:
3c25a55d 2565 * mutex_lock(wq->mutex).
73f53c4a 2566 *
d185af30 2567 * Return:
73f53c4a
TH
2568 * %true if @flush_color >= 0 and there's something to flush. %false
2569 * otherwise.
2570 */
112202d9 2571static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2572 int flush_color, int work_color)
1da177e4 2573{
73f53c4a 2574 bool wait = false;
49e3cf44 2575 struct pool_workqueue *pwq;
1da177e4 2576
73f53c4a 2577 if (flush_color >= 0) {
6183c009 2578 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2579 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2580 }
2355b70f 2581
49e3cf44 2582 for_each_pwq(pwq, wq) {
112202d9 2583 struct worker_pool *pool = pwq->pool;
fc2e4d70 2584
b09f4fd3 2585 spin_lock_irq(&pool->lock);
83c22520 2586
73f53c4a 2587 if (flush_color >= 0) {
6183c009 2588 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2589
112202d9
TH
2590 if (pwq->nr_in_flight[flush_color]) {
2591 pwq->flush_color = flush_color;
2592 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2593 wait = true;
2594 }
2595 }
1da177e4 2596
73f53c4a 2597 if (work_color >= 0) {
6183c009 2598 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2599 pwq->work_color = work_color;
73f53c4a 2600 }
1da177e4 2601
b09f4fd3 2602 spin_unlock_irq(&pool->lock);
1da177e4 2603 }
2355b70f 2604
112202d9 2605 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2606 complete(&wq->first_flusher->done);
14441960 2607
73f53c4a 2608 return wait;
1da177e4
LT
2609}
2610
0fcb78c2 2611/**
1da177e4 2612 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2613 * @wq: workqueue to flush
1da177e4 2614 *
c5aa87bb
TH
2615 * This function sleeps until all work items which were queued on entry
2616 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2617 */
7ad5b3a5 2618void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2619{
73f53c4a
TH
2620 struct wq_flusher this_flusher = {
2621 .list = LIST_HEAD_INIT(this_flusher.list),
2622 .flush_color = -1,
2623 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2624 };
2625 int next_color;
1da177e4 2626
3295f0ef
IM
2627 lock_map_acquire(&wq->lockdep_map);
2628 lock_map_release(&wq->lockdep_map);
73f53c4a 2629
3c25a55d 2630 mutex_lock(&wq->mutex);
73f53c4a
TH
2631
2632 /*
2633 * Start-to-wait phase
2634 */
2635 next_color = work_next_color(wq->work_color);
2636
2637 if (next_color != wq->flush_color) {
2638 /*
2639 * Color space is not full. The current work_color
2640 * becomes our flush_color and work_color is advanced
2641 * by one.
2642 */
6183c009 2643 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2644 this_flusher.flush_color = wq->work_color;
2645 wq->work_color = next_color;
2646
2647 if (!wq->first_flusher) {
2648 /* no flush in progress, become the first flusher */
6183c009 2649 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2650
2651 wq->first_flusher = &this_flusher;
2652
112202d9 2653 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2654 wq->work_color)) {
2655 /* nothing to flush, done */
2656 wq->flush_color = next_color;
2657 wq->first_flusher = NULL;
2658 goto out_unlock;
2659 }
2660 } else {
2661 /* wait in queue */
6183c009 2662 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2663 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2664 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2665 }
2666 } else {
2667 /*
2668 * Oops, color space is full, wait on overflow queue.
2669 * The next flush completion will assign us
2670 * flush_color and transfer to flusher_queue.
2671 */
2672 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2673 }
2674
3c25a55d 2675 mutex_unlock(&wq->mutex);
73f53c4a
TH
2676
2677 wait_for_completion(&this_flusher.done);
2678
2679 /*
2680 * Wake-up-and-cascade phase
2681 *
2682 * First flushers are responsible for cascading flushes and
2683 * handling overflow. Non-first flushers can simply return.
2684 */
2685 if (wq->first_flusher != &this_flusher)
2686 return;
2687
3c25a55d 2688 mutex_lock(&wq->mutex);
73f53c4a 2689
4ce48b37
TH
2690 /* we might have raced, check again with mutex held */
2691 if (wq->first_flusher != &this_flusher)
2692 goto out_unlock;
2693
73f53c4a
TH
2694 wq->first_flusher = NULL;
2695
6183c009
TH
2696 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2697 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2698
2699 while (true) {
2700 struct wq_flusher *next, *tmp;
2701
2702 /* complete all the flushers sharing the current flush color */
2703 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2704 if (next->flush_color != wq->flush_color)
2705 break;
2706 list_del_init(&next->list);
2707 complete(&next->done);
2708 }
2709
6183c009
TH
2710 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2711 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2712
2713 /* this flush_color is finished, advance by one */
2714 wq->flush_color = work_next_color(wq->flush_color);
2715
2716 /* one color has been freed, handle overflow queue */
2717 if (!list_empty(&wq->flusher_overflow)) {
2718 /*
2719 * Assign the same color to all overflowed
2720 * flushers, advance work_color and append to
2721 * flusher_queue. This is the start-to-wait
2722 * phase for these overflowed flushers.
2723 */
2724 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2725 tmp->flush_color = wq->work_color;
2726
2727 wq->work_color = work_next_color(wq->work_color);
2728
2729 list_splice_tail_init(&wq->flusher_overflow,
2730 &wq->flusher_queue);
112202d9 2731 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2732 }
2733
2734 if (list_empty(&wq->flusher_queue)) {
6183c009 2735 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2736 break;
2737 }
2738
2739 /*
2740 * Need to flush more colors. Make the next flusher
112202d9 2741 * the new first flusher and arm pwqs.
73f53c4a 2742 */
6183c009
TH
2743 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2744 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2745
2746 list_del_init(&next->list);
2747 wq->first_flusher = next;
2748
112202d9 2749 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2750 break;
2751
2752 /*
2753 * Meh... this color is already done, clear first
2754 * flusher and repeat cascading.
2755 */
2756 wq->first_flusher = NULL;
2757 }
2758
2759out_unlock:
3c25a55d 2760 mutex_unlock(&wq->mutex);
1da177e4 2761}
ae90dd5d 2762EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2763
9c5a2ba7
TH
2764/**
2765 * drain_workqueue - drain a workqueue
2766 * @wq: workqueue to drain
2767 *
2768 * Wait until the workqueue becomes empty. While draining is in progress,
2769 * only chain queueing is allowed. IOW, only currently pending or running
2770 * work items on @wq can queue further work items on it. @wq is flushed
2771 * repeatedly until it becomes empty. The number of flushing is detemined
2772 * by the depth of chaining and should be relatively short. Whine if it
2773 * takes too long.
2774 */
2775void drain_workqueue(struct workqueue_struct *wq)
2776{
2777 unsigned int flush_cnt = 0;
49e3cf44 2778 struct pool_workqueue *pwq;
9c5a2ba7
TH
2779
2780 /*
2781 * __queue_work() needs to test whether there are drainers, is much
2782 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2783 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2784 */
87fc741e 2785 mutex_lock(&wq->mutex);
9c5a2ba7 2786 if (!wq->nr_drainers++)
618b01eb 2787 wq->flags |= __WQ_DRAINING;
87fc741e 2788 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2789reflush:
2790 flush_workqueue(wq);
2791
b09f4fd3 2792 mutex_lock(&wq->mutex);
76af4d93 2793
49e3cf44 2794 for_each_pwq(pwq, wq) {
fa2563e4 2795 bool drained;
9c5a2ba7 2796
b09f4fd3 2797 spin_lock_irq(&pwq->pool->lock);
112202d9 2798 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2799 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2800
2801 if (drained)
9c5a2ba7
TH
2802 continue;
2803
2804 if (++flush_cnt == 10 ||
2805 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2806 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2807 wq->name, flush_cnt);
76af4d93 2808
b09f4fd3 2809 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2810 goto reflush;
2811 }
2812
9c5a2ba7 2813 if (!--wq->nr_drainers)
618b01eb 2814 wq->flags &= ~__WQ_DRAINING;
87fc741e 2815 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2816}
2817EXPORT_SYMBOL_GPL(drain_workqueue);
2818
606a5020 2819static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2820{
affee4b2 2821 struct worker *worker = NULL;
c9e7cf27 2822 struct worker_pool *pool;
112202d9 2823 struct pool_workqueue *pwq;
db700897
ON
2824
2825 might_sleep();
fa1b54e6
TH
2826
2827 local_irq_disable();
c9e7cf27 2828 pool = get_work_pool(work);
fa1b54e6
TH
2829 if (!pool) {
2830 local_irq_enable();
baf59022 2831 return false;
fa1b54e6 2832 }
db700897 2833
fa1b54e6 2834 spin_lock(&pool->lock);
0b3dae68 2835 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2836 pwq = get_work_pwq(work);
2837 if (pwq) {
2838 if (unlikely(pwq->pool != pool))
4690c4ab 2839 goto already_gone;
606a5020 2840 } else {
c9e7cf27 2841 worker = find_worker_executing_work(pool, work);
affee4b2 2842 if (!worker)
4690c4ab 2843 goto already_gone;
112202d9 2844 pwq = worker->current_pwq;
606a5020 2845 }
db700897 2846
112202d9 2847 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2848 spin_unlock_irq(&pool->lock);
7a22ad75 2849
e159489b
TH
2850 /*
2851 * If @max_active is 1 or rescuer is in use, flushing another work
2852 * item on the same workqueue may lead to deadlock. Make sure the
2853 * flusher is not running on the same workqueue by verifying write
2854 * access.
2855 */
493008a8 2856 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2857 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2858 else
112202d9
TH
2859 lock_map_acquire_read(&pwq->wq->lockdep_map);
2860 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2861
401a8d04 2862 return true;
4690c4ab 2863already_gone:
d565ed63 2864 spin_unlock_irq(&pool->lock);
401a8d04 2865 return false;
db700897 2866}
baf59022
TH
2867
2868/**
2869 * flush_work - wait for a work to finish executing the last queueing instance
2870 * @work: the work to flush
2871 *
606a5020
TH
2872 * Wait until @work has finished execution. @work is guaranteed to be idle
2873 * on return if it hasn't been requeued since flush started.
baf59022 2874 *
d185af30 2875 * Return:
baf59022
TH
2876 * %true if flush_work() waited for the work to finish execution,
2877 * %false if it was already idle.
2878 */
2879bool flush_work(struct work_struct *work)
2880{
12997d1a
BH
2881 struct wq_barrier barr;
2882
0976dfc1
SB
2883 lock_map_acquire(&work->lockdep_map);
2884 lock_map_release(&work->lockdep_map);
2885
12997d1a
BH
2886 if (start_flush_work(work, &barr)) {
2887 wait_for_completion(&barr.done);
2888 destroy_work_on_stack(&barr.work);
2889 return true;
2890 } else {
2891 return false;
2892 }
6e84d644 2893}
606a5020 2894EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2895
36e227d2 2896static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2897{
bbb68dfa 2898 unsigned long flags;
1f1f642e
ON
2899 int ret;
2900
2901 do {
bbb68dfa
TH
2902 ret = try_to_grab_pending(work, is_dwork, &flags);
2903 /*
2904 * If someone else is canceling, wait for the same event it
2905 * would be waiting for before retrying.
2906 */
2907 if (unlikely(ret == -ENOENT))
606a5020 2908 flush_work(work);
1f1f642e
ON
2909 } while (unlikely(ret < 0));
2910
bbb68dfa
TH
2911 /* tell other tasks trying to grab @work to back off */
2912 mark_work_canceling(work);
2913 local_irq_restore(flags);
2914
606a5020 2915 flush_work(work);
7a22ad75 2916 clear_work_data(work);
1f1f642e
ON
2917 return ret;
2918}
2919
6e84d644 2920/**
401a8d04
TH
2921 * cancel_work_sync - cancel a work and wait for it to finish
2922 * @work: the work to cancel
6e84d644 2923 *
401a8d04
TH
2924 * Cancel @work and wait for its execution to finish. This function
2925 * can be used even if the work re-queues itself or migrates to
2926 * another workqueue. On return from this function, @work is
2927 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2928 *
401a8d04
TH
2929 * cancel_work_sync(&delayed_work->work) must not be used for
2930 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2931 *
401a8d04 2932 * The caller must ensure that the workqueue on which @work was last
6e84d644 2933 * queued can't be destroyed before this function returns.
401a8d04 2934 *
d185af30 2935 * Return:
401a8d04 2936 * %true if @work was pending, %false otherwise.
6e84d644 2937 */
401a8d04 2938bool cancel_work_sync(struct work_struct *work)
6e84d644 2939{
36e227d2 2940 return __cancel_work_timer(work, false);
b89deed3 2941}
28e53bdd 2942EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2943
6e84d644 2944/**
401a8d04
TH
2945 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2946 * @dwork: the delayed work to flush
6e84d644 2947 *
401a8d04
TH
2948 * Delayed timer is cancelled and the pending work is queued for
2949 * immediate execution. Like flush_work(), this function only
2950 * considers the last queueing instance of @dwork.
1f1f642e 2951 *
d185af30 2952 * Return:
401a8d04
TH
2953 * %true if flush_work() waited for the work to finish execution,
2954 * %false if it was already idle.
6e84d644 2955 */
401a8d04
TH
2956bool flush_delayed_work(struct delayed_work *dwork)
2957{
8930caba 2958 local_irq_disable();
401a8d04 2959 if (del_timer_sync(&dwork->timer))
60c057bc 2960 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2961 local_irq_enable();
401a8d04
TH
2962 return flush_work(&dwork->work);
2963}
2964EXPORT_SYMBOL(flush_delayed_work);
2965
09383498 2966/**
57b30ae7
TH
2967 * cancel_delayed_work - cancel a delayed work
2968 * @dwork: delayed_work to cancel
09383498 2969 *
d185af30
YB
2970 * Kill off a pending delayed_work.
2971 *
2972 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2973 * pending.
2974 *
2975 * Note:
2976 * The work callback function may still be running on return, unless
2977 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2978 * use cancel_delayed_work_sync() to wait on it.
09383498 2979 *
57b30ae7 2980 * This function is safe to call from any context including IRQ handler.
09383498 2981 */
57b30ae7 2982bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2983{
57b30ae7
TH
2984 unsigned long flags;
2985 int ret;
2986
2987 do {
2988 ret = try_to_grab_pending(&dwork->work, true, &flags);
2989 } while (unlikely(ret == -EAGAIN));
2990
2991 if (unlikely(ret < 0))
2992 return false;
2993
7c3eed5c
TH
2994 set_work_pool_and_clear_pending(&dwork->work,
2995 get_work_pool_id(&dwork->work));
57b30ae7 2996 local_irq_restore(flags);
c0158ca6 2997 return ret;
09383498 2998}
57b30ae7 2999EXPORT_SYMBOL(cancel_delayed_work);
09383498 3000
401a8d04
TH
3001/**
3002 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3003 * @dwork: the delayed work cancel
3004 *
3005 * This is cancel_work_sync() for delayed works.
3006 *
d185af30 3007 * Return:
401a8d04
TH
3008 * %true if @dwork was pending, %false otherwise.
3009 */
3010bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3011{
36e227d2 3012 return __cancel_work_timer(&dwork->work, true);
6e84d644 3013}
f5a421a4 3014EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3015
b6136773 3016/**
31ddd871 3017 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3018 * @func: the function to call
b6136773 3019 *
31ddd871
TH
3020 * schedule_on_each_cpu() executes @func on each online CPU using the
3021 * system workqueue and blocks until all CPUs have completed.
b6136773 3022 * schedule_on_each_cpu() is very slow.
31ddd871 3023 *
d185af30 3024 * Return:
31ddd871 3025 * 0 on success, -errno on failure.
b6136773 3026 */
65f27f38 3027int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3028{
3029 int cpu;
38f51568 3030 struct work_struct __percpu *works;
15316ba8 3031
b6136773
AM
3032 works = alloc_percpu(struct work_struct);
3033 if (!works)
15316ba8 3034 return -ENOMEM;
b6136773 3035
93981800
TH
3036 get_online_cpus();
3037
15316ba8 3038 for_each_online_cpu(cpu) {
9bfb1839
IM
3039 struct work_struct *work = per_cpu_ptr(works, cpu);
3040
3041 INIT_WORK(work, func);
b71ab8c2 3042 schedule_work_on(cpu, work);
65a64464 3043 }
93981800
TH
3044
3045 for_each_online_cpu(cpu)
3046 flush_work(per_cpu_ptr(works, cpu));
3047
95402b38 3048 put_online_cpus();
b6136773 3049 free_percpu(works);
15316ba8
CL
3050 return 0;
3051}
3052
eef6a7d5
AS
3053/**
3054 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3055 *
3056 * Forces execution of the kernel-global workqueue and blocks until its
3057 * completion.
3058 *
3059 * Think twice before calling this function! It's very easy to get into
3060 * trouble if you don't take great care. Either of the following situations
3061 * will lead to deadlock:
3062 *
3063 * One of the work items currently on the workqueue needs to acquire
3064 * a lock held by your code or its caller.
3065 *
3066 * Your code is running in the context of a work routine.
3067 *
3068 * They will be detected by lockdep when they occur, but the first might not
3069 * occur very often. It depends on what work items are on the workqueue and
3070 * what locks they need, which you have no control over.
3071 *
3072 * In most situations flushing the entire workqueue is overkill; you merely
3073 * need to know that a particular work item isn't queued and isn't running.
3074 * In such cases you should use cancel_delayed_work_sync() or
3075 * cancel_work_sync() instead.
3076 */
1da177e4
LT
3077void flush_scheduled_work(void)
3078{
d320c038 3079 flush_workqueue(system_wq);
1da177e4 3080}
ae90dd5d 3081EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3082
1fa44eca
JB
3083/**
3084 * execute_in_process_context - reliably execute the routine with user context
3085 * @fn: the function to execute
1fa44eca
JB
3086 * @ew: guaranteed storage for the execute work structure (must
3087 * be available when the work executes)
3088 *
3089 * Executes the function immediately if process context is available,
3090 * otherwise schedules the function for delayed execution.
3091 *
d185af30 3092 * Return: 0 - function was executed
1fa44eca
JB
3093 * 1 - function was scheduled for execution
3094 */
65f27f38 3095int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3096{
3097 if (!in_interrupt()) {
65f27f38 3098 fn(&ew->work);
1fa44eca
JB
3099 return 0;
3100 }
3101
65f27f38 3102 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3103 schedule_work(&ew->work);
3104
3105 return 1;
3106}
3107EXPORT_SYMBOL_GPL(execute_in_process_context);
3108
226223ab
TH
3109#ifdef CONFIG_SYSFS
3110/*
3111 * Workqueues with WQ_SYSFS flag set is visible to userland via
3112 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3113 * following attributes.
3114 *
3115 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3116 * max_active RW int : maximum number of in-flight work items
3117 *
3118 * Unbound workqueues have the following extra attributes.
3119 *
3120 * id RO int : the associated pool ID
3121 * nice RW int : nice value of the workers
3122 * cpumask RW mask : bitmask of allowed CPUs for the workers
3123 */
3124struct wq_device {
3125 struct workqueue_struct *wq;
3126 struct device dev;
3127};
3128
3129static struct workqueue_struct *dev_to_wq(struct device *dev)
3130{
3131 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3132
3133 return wq_dev->wq;
3134}
3135
1a6661da
GKH
3136static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3137 char *buf)
226223ab
TH
3138{
3139 struct workqueue_struct *wq = dev_to_wq(dev);
3140
3141 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3142}
1a6661da 3143static DEVICE_ATTR_RO(per_cpu);
226223ab 3144
1a6661da
GKH
3145static ssize_t max_active_show(struct device *dev,
3146 struct device_attribute *attr, char *buf)
226223ab
TH
3147{
3148 struct workqueue_struct *wq = dev_to_wq(dev);
3149
3150 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3151}
3152
1a6661da
GKH
3153static ssize_t max_active_store(struct device *dev,
3154 struct device_attribute *attr, const char *buf,
3155 size_t count)
226223ab
TH
3156{
3157 struct workqueue_struct *wq = dev_to_wq(dev);
3158 int val;
3159
3160 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3161 return -EINVAL;
3162
3163 workqueue_set_max_active(wq, val);
3164 return count;
3165}
1a6661da 3166static DEVICE_ATTR_RW(max_active);
226223ab 3167
1a6661da
GKH
3168static struct attribute *wq_sysfs_attrs[] = {
3169 &dev_attr_per_cpu.attr,
3170 &dev_attr_max_active.attr,
3171 NULL,
226223ab 3172};
1a6661da 3173ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3174
d55262c4
TH
3175static ssize_t wq_pool_ids_show(struct device *dev,
3176 struct device_attribute *attr, char *buf)
226223ab
TH
3177{
3178 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3179 const char *delim = "";
3180 int node, written = 0;
226223ab
TH
3181
3182 rcu_read_lock_sched();
d55262c4
TH
3183 for_each_node(node) {
3184 written += scnprintf(buf + written, PAGE_SIZE - written,
3185 "%s%d:%d", delim, node,
3186 unbound_pwq_by_node(wq, node)->pool->id);
3187 delim = " ";
3188 }
3189 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3190 rcu_read_unlock_sched();
3191
3192 return written;
3193}
3194
3195static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3196 char *buf)
3197{
3198 struct workqueue_struct *wq = dev_to_wq(dev);
3199 int written;
3200
6029a918
TH
3201 mutex_lock(&wq->mutex);
3202 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3203 mutex_unlock(&wq->mutex);
226223ab
TH
3204
3205 return written;
3206}
3207
3208/* prepare workqueue_attrs for sysfs store operations */
3209static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3210{
3211 struct workqueue_attrs *attrs;
3212
3213 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3214 if (!attrs)
3215 return NULL;
3216
6029a918
TH
3217 mutex_lock(&wq->mutex);
3218 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3219 mutex_unlock(&wq->mutex);
226223ab
TH
3220 return attrs;
3221}
3222
3223static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3224 const char *buf, size_t count)
3225{
3226 struct workqueue_struct *wq = dev_to_wq(dev);
3227 struct workqueue_attrs *attrs;
3228 int ret;
3229
3230 attrs = wq_sysfs_prep_attrs(wq);
3231 if (!attrs)
3232 return -ENOMEM;
3233
3234 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3235 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3236 ret = apply_workqueue_attrs(wq, attrs);
3237 else
3238 ret = -EINVAL;
3239
3240 free_workqueue_attrs(attrs);
3241 return ret ?: count;
3242}
3243
3244static ssize_t wq_cpumask_show(struct device *dev,
3245 struct device_attribute *attr, char *buf)
3246{
3247 struct workqueue_struct *wq = dev_to_wq(dev);
3248 int written;
3249
6029a918
TH
3250 mutex_lock(&wq->mutex);
3251 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3252 mutex_unlock(&wq->mutex);
226223ab
TH
3253
3254 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3255 return written;
3256}
3257
3258static ssize_t wq_cpumask_store(struct device *dev,
3259 struct device_attribute *attr,
3260 const char *buf, size_t count)
3261{
3262 struct workqueue_struct *wq = dev_to_wq(dev);
3263 struct workqueue_attrs *attrs;
3264 int ret;
3265
3266 attrs = wq_sysfs_prep_attrs(wq);
3267 if (!attrs)
3268 return -ENOMEM;
3269
3270 ret = cpumask_parse(buf, attrs->cpumask);
3271 if (!ret)
3272 ret = apply_workqueue_attrs(wq, attrs);
3273
3274 free_workqueue_attrs(attrs);
3275 return ret ?: count;
3276}
3277
d55262c4
TH
3278static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3279 char *buf)
3280{
3281 struct workqueue_struct *wq = dev_to_wq(dev);
3282 int written;
3283
3284 mutex_lock(&wq->mutex);
3285 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3286 !wq->unbound_attrs->no_numa);
3287 mutex_unlock(&wq->mutex);
3288
3289 return written;
3290}
3291
3292static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3293 const char *buf, size_t count)
3294{
3295 struct workqueue_struct *wq = dev_to_wq(dev);
3296 struct workqueue_attrs *attrs;
3297 int v, ret;
3298
3299 attrs = wq_sysfs_prep_attrs(wq);
3300 if (!attrs)
3301 return -ENOMEM;
3302
3303 ret = -EINVAL;
3304 if (sscanf(buf, "%d", &v) == 1) {
3305 attrs->no_numa = !v;
3306 ret = apply_workqueue_attrs(wq, attrs);
3307 }
3308
3309 free_workqueue_attrs(attrs);
3310 return ret ?: count;
3311}
3312
226223ab 3313static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3314 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3315 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3316 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3317 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3318 __ATTR_NULL,
3319};
3320
3321static struct bus_type wq_subsys = {
3322 .name = "workqueue",
1a6661da 3323 .dev_groups = wq_sysfs_groups,
226223ab
TH
3324};
3325
3326static int __init wq_sysfs_init(void)
3327{
3328 return subsys_virtual_register(&wq_subsys, NULL);
3329}
3330core_initcall(wq_sysfs_init);
3331
3332static void wq_device_release(struct device *dev)
3333{
3334 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3335
3336 kfree(wq_dev);
3337}
3338
3339/**
3340 * workqueue_sysfs_register - make a workqueue visible in sysfs
3341 * @wq: the workqueue to register
3342 *
3343 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3345 * which is the preferred method.
3346 *
3347 * Workqueue user should use this function directly iff it wants to apply
3348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3349 * apply_workqueue_attrs() may race against userland updating the
3350 * attributes.
3351 *
d185af30 3352 * Return: 0 on success, -errno on failure.
226223ab
TH
3353 */
3354int workqueue_sysfs_register(struct workqueue_struct *wq)
3355{
3356 struct wq_device *wq_dev;
3357 int ret;
3358
3359 /*
3360 * Adjusting max_active or creating new pwqs by applyting
3361 * attributes breaks ordering guarantee. Disallow exposing ordered
3362 * workqueues.
3363 */
3364 if (WARN_ON(wq->flags & __WQ_ORDERED))
3365 return -EINVAL;
3366
3367 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3368 if (!wq_dev)
3369 return -ENOMEM;
3370
3371 wq_dev->wq = wq;
3372 wq_dev->dev.bus = &wq_subsys;
3373 wq_dev->dev.init_name = wq->name;
3374 wq_dev->dev.release = wq_device_release;
3375
3376 /*
3377 * unbound_attrs are created separately. Suppress uevent until
3378 * everything is ready.
3379 */
3380 dev_set_uevent_suppress(&wq_dev->dev, true);
3381
3382 ret = device_register(&wq_dev->dev);
3383 if (ret) {
3384 kfree(wq_dev);
3385 wq->wq_dev = NULL;
3386 return ret;
3387 }
3388
3389 if (wq->flags & WQ_UNBOUND) {
3390 struct device_attribute *attr;
3391
3392 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3393 ret = device_create_file(&wq_dev->dev, attr);
3394 if (ret) {
3395 device_unregister(&wq_dev->dev);
3396 wq->wq_dev = NULL;
3397 return ret;
3398 }
3399 }
3400 }
3401
3402 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3403 return 0;
3404}
3405
3406/**
3407 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3408 * @wq: the workqueue to unregister
3409 *
3410 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3411 */
3412static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3413{
3414 struct wq_device *wq_dev = wq->wq_dev;
3415
3416 if (!wq->wq_dev)
3417 return;
3418
3419 wq->wq_dev = NULL;
3420 device_unregister(&wq_dev->dev);
3421}
3422#else /* CONFIG_SYSFS */
3423static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3424#endif /* CONFIG_SYSFS */
3425
7a4e344c
TH
3426/**
3427 * free_workqueue_attrs - free a workqueue_attrs
3428 * @attrs: workqueue_attrs to free
3429 *
3430 * Undo alloc_workqueue_attrs().
3431 */
3432void free_workqueue_attrs(struct workqueue_attrs *attrs)
3433{
3434 if (attrs) {
3435 free_cpumask_var(attrs->cpumask);
3436 kfree(attrs);
3437 }
3438}
3439
3440/**
3441 * alloc_workqueue_attrs - allocate a workqueue_attrs
3442 * @gfp_mask: allocation mask to use
3443 *
3444 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3445 * return it.
3446 *
3447 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3448 */
3449struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3450{
3451 struct workqueue_attrs *attrs;
3452
3453 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3454 if (!attrs)
3455 goto fail;
3456 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3457 goto fail;
3458
13e2e556 3459 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3460 return attrs;
3461fail:
3462 free_workqueue_attrs(attrs);
3463 return NULL;
3464}
3465
29c91e99
TH
3466static void copy_workqueue_attrs(struct workqueue_attrs *to,
3467 const struct workqueue_attrs *from)
3468{
3469 to->nice = from->nice;
3470 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3471 /*
3472 * Unlike hash and equality test, this function doesn't ignore
3473 * ->no_numa as it is used for both pool and wq attrs. Instead,
3474 * get_unbound_pool() explicitly clears ->no_numa after copying.
3475 */
3476 to->no_numa = from->no_numa;
29c91e99
TH
3477}
3478
29c91e99
TH
3479/* hash value of the content of @attr */
3480static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3481{
3482 u32 hash = 0;
3483
3484 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3485 hash = jhash(cpumask_bits(attrs->cpumask),
3486 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3487 return hash;
3488}
3489
3490/* content equality test */
3491static bool wqattrs_equal(const struct workqueue_attrs *a,
3492 const struct workqueue_attrs *b)
3493{
3494 if (a->nice != b->nice)
3495 return false;
3496 if (!cpumask_equal(a->cpumask, b->cpumask))
3497 return false;
3498 return true;
3499}
3500
7a4e344c
TH
3501/**
3502 * init_worker_pool - initialize a newly zalloc'd worker_pool
3503 * @pool: worker_pool to initialize
3504 *
3505 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3506 *
3507 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3508 * inside @pool proper are initialized and put_unbound_pool() can be called
3509 * on @pool safely to release it.
7a4e344c
TH
3510 */
3511static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3512{
3513 spin_lock_init(&pool->lock);
29c91e99
TH
3514 pool->id = -1;
3515 pool->cpu = -1;
f3f90ad4 3516 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3517 pool->flags |= POOL_DISASSOCIATED;
3518 INIT_LIST_HEAD(&pool->worklist);
3519 INIT_LIST_HEAD(&pool->idle_list);
3520 hash_init(pool->busy_hash);
3521
3522 init_timer_deferrable(&pool->idle_timer);
3523 pool->idle_timer.function = idle_worker_timeout;
3524 pool->idle_timer.data = (unsigned long)pool;
3525
3526 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3527 (unsigned long)pool);
3528
3529 mutex_init(&pool->manager_arb);
bc3a1afc 3530 mutex_init(&pool->manager_mutex);
822d8405 3531 idr_init(&pool->worker_idr);
7a4e344c 3532
29c91e99
TH
3533 INIT_HLIST_NODE(&pool->hash_node);
3534 pool->refcnt = 1;
3535
3536 /* shouldn't fail above this point */
7a4e344c
TH
3537 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3538 if (!pool->attrs)
3539 return -ENOMEM;
3540 return 0;
4e1a1f9a
TH
3541}
3542
29c91e99
TH
3543static void rcu_free_pool(struct rcu_head *rcu)
3544{
3545 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3546
822d8405 3547 idr_destroy(&pool->worker_idr);
29c91e99
TH
3548 free_workqueue_attrs(pool->attrs);
3549 kfree(pool);
3550}
3551
3552/**
3553 * put_unbound_pool - put a worker_pool
3554 * @pool: worker_pool to put
3555 *
3556 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3557 * safe manner. get_unbound_pool() calls this function on its failure path
3558 * and this function should be able to release pools which went through,
3559 * successfully or not, init_worker_pool().
a892cacc
TH
3560 *
3561 * Should be called with wq_pool_mutex held.
29c91e99
TH
3562 */
3563static void put_unbound_pool(struct worker_pool *pool)
3564{
3565 struct worker *worker;
3566
a892cacc
TH
3567 lockdep_assert_held(&wq_pool_mutex);
3568
3569 if (--pool->refcnt)
29c91e99 3570 return;
29c91e99
TH
3571
3572 /* sanity checks */
3573 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3574 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3575 return;
29c91e99
TH
3576
3577 /* release id and unhash */
3578 if (pool->id >= 0)
3579 idr_remove(&worker_pool_idr, pool->id);
3580 hash_del(&pool->hash_node);
3581
c5aa87bb
TH
3582 /*
3583 * Become the manager and destroy all workers. Grabbing
3584 * manager_arb prevents @pool's workers from blocking on
3585 * manager_mutex.
3586 */
29c91e99 3587 mutex_lock(&pool->manager_arb);
cd549687 3588 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3589 spin_lock_irq(&pool->lock);
3590
3591 while ((worker = first_worker(pool)))
3592 destroy_worker(worker);
3593 WARN_ON(pool->nr_workers || pool->nr_idle);
3594
3595 spin_unlock_irq(&pool->lock);
cd549687 3596 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3597 mutex_unlock(&pool->manager_arb);
3598
3599 /* shut down the timers */
3600 del_timer_sync(&pool->idle_timer);
3601 del_timer_sync(&pool->mayday_timer);
3602
3603 /* sched-RCU protected to allow dereferences from get_work_pool() */
3604 call_rcu_sched(&pool->rcu, rcu_free_pool);
3605}
3606
3607/**
3608 * get_unbound_pool - get a worker_pool with the specified attributes
3609 * @attrs: the attributes of the worker_pool to get
3610 *
3611 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3612 * reference count and return it. If there already is a matching
3613 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3614 * create a new one.
a892cacc
TH
3615 *
3616 * Should be called with wq_pool_mutex held.
d185af30
YB
3617 *
3618 * Return: On success, a worker_pool with the same attributes as @attrs.
3619 * On failure, %NULL.
29c91e99
TH
3620 */
3621static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3622{
29c91e99
TH
3623 u32 hash = wqattrs_hash(attrs);
3624 struct worker_pool *pool;
f3f90ad4 3625 int node;
29c91e99 3626
a892cacc 3627 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3628
3629 /* do we already have a matching pool? */
29c91e99
TH
3630 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3631 if (wqattrs_equal(pool->attrs, attrs)) {
3632 pool->refcnt++;
3633 goto out_unlock;
3634 }
3635 }
29c91e99
TH
3636
3637 /* nope, create a new one */
3638 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3639 if (!pool || init_worker_pool(pool) < 0)
3640 goto fail;
3641
12ee4fc6
LJ
3642 if (workqueue_freezing)
3643 pool->flags |= POOL_FREEZING;
3644
8864b4e5 3645 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3646 copy_workqueue_attrs(pool->attrs, attrs);
3647
2865a8fb
SL
3648 /*
3649 * no_numa isn't a worker_pool attribute, always clear it. See
3650 * 'struct workqueue_attrs' comments for detail.
3651 */
3652 pool->attrs->no_numa = false;
3653
f3f90ad4
TH
3654 /* if cpumask is contained inside a NUMA node, we belong to that node */
3655 if (wq_numa_enabled) {
3656 for_each_node(node) {
3657 if (cpumask_subset(pool->attrs->cpumask,
3658 wq_numa_possible_cpumask[node])) {
3659 pool->node = node;
3660 break;
3661 }
3662 }
3663 }
3664
29c91e99
TH
3665 if (worker_pool_assign_id(pool) < 0)
3666 goto fail;
3667
3668 /* create and start the initial worker */
ebf44d16 3669 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3670 goto fail;
3671
29c91e99 3672 /* install */
29c91e99
TH
3673 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3674out_unlock:
29c91e99
TH
3675 return pool;
3676fail:
29c91e99
TH
3677 if (pool)
3678 put_unbound_pool(pool);
3679 return NULL;
3680}
3681
8864b4e5
TH
3682static void rcu_free_pwq(struct rcu_head *rcu)
3683{
3684 kmem_cache_free(pwq_cache,
3685 container_of(rcu, struct pool_workqueue, rcu));
3686}
3687
3688/*
3689 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3690 * and needs to be destroyed.
3691 */
3692static void pwq_unbound_release_workfn(struct work_struct *work)
3693{
3694 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3695 unbound_release_work);
3696 struct workqueue_struct *wq = pwq->wq;
3697 struct worker_pool *pool = pwq->pool;
bc0caf09 3698 bool is_last;
8864b4e5
TH
3699
3700 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3701 return;
3702
75ccf595 3703 /*
3c25a55d 3704 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3705 * necessary on release but do it anyway. It's easier to verify
3706 * and consistent with the linking path.
3707 */
3c25a55d 3708 mutex_lock(&wq->mutex);
8864b4e5 3709 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3710 is_last = list_empty(&wq->pwqs);
3c25a55d 3711 mutex_unlock(&wq->mutex);
8864b4e5 3712
a892cacc 3713 mutex_lock(&wq_pool_mutex);
8864b4e5 3714 put_unbound_pool(pool);
a892cacc
TH
3715 mutex_unlock(&wq_pool_mutex);
3716
8864b4e5
TH
3717 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3718
3719 /*
3720 * If we're the last pwq going away, @wq is already dead and no one
3721 * is gonna access it anymore. Free it.
3722 */
6029a918
TH
3723 if (is_last) {
3724 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3725 kfree(wq);
6029a918 3726 }
8864b4e5
TH
3727}
3728
0fbd95aa 3729/**
699ce097 3730 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3731 * @pwq: target pool_workqueue
0fbd95aa 3732 *
699ce097
TH
3733 * If @pwq isn't freezing, set @pwq->max_active to the associated
3734 * workqueue's saved_max_active and activate delayed work items
3735 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3736 */
699ce097 3737static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3738{
699ce097
TH
3739 struct workqueue_struct *wq = pwq->wq;
3740 bool freezable = wq->flags & WQ_FREEZABLE;
3741
3742 /* for @wq->saved_max_active */
a357fc03 3743 lockdep_assert_held(&wq->mutex);
699ce097
TH
3744
3745 /* fast exit for non-freezable wqs */
3746 if (!freezable && pwq->max_active == wq->saved_max_active)
3747 return;
3748
a357fc03 3749 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3750
3751 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3752 pwq->max_active = wq->saved_max_active;
0fbd95aa 3753
699ce097
TH
3754 while (!list_empty(&pwq->delayed_works) &&
3755 pwq->nr_active < pwq->max_active)
3756 pwq_activate_first_delayed(pwq);
951a078a
LJ
3757
3758 /*
3759 * Need to kick a worker after thawed or an unbound wq's
3760 * max_active is bumped. It's a slow path. Do it always.
3761 */
3762 wake_up_worker(pwq->pool);
699ce097
TH
3763 } else {
3764 pwq->max_active = 0;
3765 }
3766
a357fc03 3767 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3768}
3769
e50aba9a 3770/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3771static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3772 struct worker_pool *pool)
d2c1d404
TH
3773{
3774 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3775
e50aba9a
TH
3776 memset(pwq, 0, sizeof(*pwq));
3777
d2c1d404
TH
3778 pwq->pool = pool;
3779 pwq->wq = wq;
3780 pwq->flush_color = -1;
8864b4e5 3781 pwq->refcnt = 1;
d2c1d404 3782 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3783 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3784 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3785 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3786}
d2c1d404 3787
f147f29e 3788/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3789static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3790{
3791 struct workqueue_struct *wq = pwq->wq;
3792
3793 lockdep_assert_held(&wq->mutex);
75ccf595 3794
1befcf30
TH
3795 /* may be called multiple times, ignore if already linked */
3796 if (!list_empty(&pwq->pwqs_node))
3797 return;
3798
983ca25e
TH
3799 /*
3800 * Set the matching work_color. This is synchronized with
3c25a55d 3801 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3802 */
75ccf595 3803 pwq->work_color = wq->work_color;
983ca25e
TH
3804
3805 /* sync max_active to the current setting */
3806 pwq_adjust_max_active(pwq);
3807
3808 /* link in @pwq */
9e8cd2f5 3809 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3810}
a357fc03 3811
f147f29e
TH
3812/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3813static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3814 const struct workqueue_attrs *attrs)
3815{
3816 struct worker_pool *pool;
3817 struct pool_workqueue *pwq;
3818
3819 lockdep_assert_held(&wq_pool_mutex);
3820
3821 pool = get_unbound_pool(attrs);
3822 if (!pool)
3823 return NULL;
3824
e50aba9a 3825 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3826 if (!pwq) {
3827 put_unbound_pool(pool);
3828 return NULL;
df2d5ae4 3829 }
6029a918 3830
f147f29e
TH
3831 init_pwq(pwq, wq, pool);
3832 return pwq;
d2c1d404
TH
3833}
3834
4c16bd32
TH
3835/* undo alloc_unbound_pwq(), used only in the error path */
3836static void free_unbound_pwq(struct pool_workqueue *pwq)
3837{
3838 lockdep_assert_held(&wq_pool_mutex);
3839
3840 if (pwq) {
3841 put_unbound_pool(pwq->pool);
cece95df 3842 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3843 }
3844}
3845
3846/**
3847 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3848 * @attrs: the wq_attrs of interest
3849 * @node: the target NUMA node
3850 * @cpu_going_down: if >= 0, the CPU to consider as offline
3851 * @cpumask: outarg, the resulting cpumask
3852 *
3853 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3854 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3855 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3856 *
3857 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3858 * enabled and @node has online CPUs requested by @attrs, the returned
3859 * cpumask is the intersection of the possible CPUs of @node and
3860 * @attrs->cpumask.
3861 *
3862 * The caller is responsible for ensuring that the cpumask of @node stays
3863 * stable.
d185af30
YB
3864 *
3865 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3866 * %false if equal.
4c16bd32
TH
3867 */
3868static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3869 int cpu_going_down, cpumask_t *cpumask)
3870{
d55262c4 3871 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3872 goto use_dfl;
3873
3874 /* does @node have any online CPUs @attrs wants? */
3875 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3876 if (cpu_going_down >= 0)
3877 cpumask_clear_cpu(cpu_going_down, cpumask);
3878
3879 if (cpumask_empty(cpumask))
3880 goto use_dfl;
3881
3882 /* yeap, return possible CPUs in @node that @attrs wants */
3883 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3884 return !cpumask_equal(cpumask, attrs->cpumask);
3885
3886use_dfl:
3887 cpumask_copy(cpumask, attrs->cpumask);
3888 return false;
3889}
3890
1befcf30
TH
3891/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3892static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3893 int node,
3894 struct pool_workqueue *pwq)
3895{
3896 struct pool_workqueue *old_pwq;
3897
3898 lockdep_assert_held(&wq->mutex);
3899
3900 /* link_pwq() can handle duplicate calls */
3901 link_pwq(pwq);
3902
3903 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3904 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3905 return old_pwq;
3906}
3907
9e8cd2f5
TH
3908/**
3909 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3910 * @wq: the target workqueue
3911 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3912 *
4c16bd32
TH
3913 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3914 * machines, this function maps a separate pwq to each NUMA node with
3915 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3916 * NUMA node it was issued on. Older pwqs are released as in-flight work
3917 * items finish. Note that a work item which repeatedly requeues itself
3918 * back-to-back will stay on its current pwq.
9e8cd2f5 3919 *
d185af30
YB
3920 * Performs GFP_KERNEL allocations.
3921 *
3922 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3923 */
3924int apply_workqueue_attrs(struct workqueue_struct *wq,
3925 const struct workqueue_attrs *attrs)
3926{
4c16bd32
TH
3927 struct workqueue_attrs *new_attrs, *tmp_attrs;
3928 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3929 int node, ret;
9e8cd2f5 3930
8719dcea 3931 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3932 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3933 return -EINVAL;
3934
8719dcea
TH
3935 /* creating multiple pwqs breaks ordering guarantee */
3936 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3937 return -EINVAL;
3938
4c16bd32 3939 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3940 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3941 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3942 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3943 goto enomem;
3944
4c16bd32 3945 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3946 copy_workqueue_attrs(new_attrs, attrs);
3947 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3948
4c16bd32
TH
3949 /*
3950 * We may create multiple pwqs with differing cpumasks. Make a
3951 * copy of @new_attrs which will be modified and used to obtain
3952 * pools.
3953 */
3954 copy_workqueue_attrs(tmp_attrs, new_attrs);
3955
3956 /*
3957 * CPUs should stay stable across pwq creations and installations.
3958 * Pin CPUs, determine the target cpumask for each node and create
3959 * pwqs accordingly.
3960 */
3961 get_online_cpus();
3962
a892cacc 3963 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3964
3965 /*
3966 * If something goes wrong during CPU up/down, we'll fall back to
3967 * the default pwq covering whole @attrs->cpumask. Always create
3968 * it even if we don't use it immediately.
3969 */
3970 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3971 if (!dfl_pwq)
3972 goto enomem_pwq;
3973
3974 for_each_node(node) {
3975 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3976 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3977 if (!pwq_tbl[node])
3978 goto enomem_pwq;
3979 } else {
3980 dfl_pwq->refcnt++;
3981 pwq_tbl[node] = dfl_pwq;
3982 }
3983 }
3984
f147f29e 3985 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3986
4c16bd32 3987 /* all pwqs have been created successfully, let's install'em */
f147f29e 3988 mutex_lock(&wq->mutex);
a892cacc 3989
f147f29e 3990 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3991
3992 /* save the previous pwq and install the new one */
f147f29e 3993 for_each_node(node)
4c16bd32
TH
3994 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3995
3996 /* @dfl_pwq might not have been used, ensure it's linked */
3997 link_pwq(dfl_pwq);
3998 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3999
4000 mutex_unlock(&wq->mutex);
9e8cd2f5 4001
4c16bd32
TH
4002 /* put the old pwqs */
4003 for_each_node(node)
4004 put_pwq_unlocked(pwq_tbl[node]);
4005 put_pwq_unlocked(dfl_pwq);
4006
4007 put_online_cpus();
4862125b
TH
4008 ret = 0;
4009 /* fall through */
4010out_free:
4c16bd32 4011 free_workqueue_attrs(tmp_attrs);
4862125b 4012 free_workqueue_attrs(new_attrs);
4c16bd32 4013 kfree(pwq_tbl);
4862125b 4014 return ret;
13e2e556 4015
4c16bd32
TH
4016enomem_pwq:
4017 free_unbound_pwq(dfl_pwq);
4018 for_each_node(node)
4019 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4020 free_unbound_pwq(pwq_tbl[node]);
4021 mutex_unlock(&wq_pool_mutex);
4022 put_online_cpus();
13e2e556 4023enomem:
4862125b
TH
4024 ret = -ENOMEM;
4025 goto out_free;
9e8cd2f5
TH
4026}
4027
4c16bd32
TH
4028/**
4029 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4030 * @wq: the target workqueue
4031 * @cpu: the CPU coming up or going down
4032 * @online: whether @cpu is coming up or going down
4033 *
4034 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4035 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4036 * @wq accordingly.
4037 *
4038 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4039 * falls back to @wq->dfl_pwq which may not be optimal but is always
4040 * correct.
4041 *
4042 * Note that when the last allowed CPU of a NUMA node goes offline for a
4043 * workqueue with a cpumask spanning multiple nodes, the workers which were
4044 * already executing the work items for the workqueue will lose their CPU
4045 * affinity and may execute on any CPU. This is similar to how per-cpu
4046 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4047 * affinity, it's the user's responsibility to flush the work item from
4048 * CPU_DOWN_PREPARE.
4049 */
4050static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4051 bool online)
4052{
4053 int node = cpu_to_node(cpu);
4054 int cpu_off = online ? -1 : cpu;
4055 struct pool_workqueue *old_pwq = NULL, *pwq;
4056 struct workqueue_attrs *target_attrs;
4057 cpumask_t *cpumask;
4058
4059 lockdep_assert_held(&wq_pool_mutex);
4060
4061 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4062 return;
4063
4064 /*
4065 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4066 * Let's use a preallocated one. The following buf is protected by
4067 * CPU hotplug exclusion.
4068 */
4069 target_attrs = wq_update_unbound_numa_attrs_buf;
4070 cpumask = target_attrs->cpumask;
4071
4072 mutex_lock(&wq->mutex);
d55262c4
TH
4073 if (wq->unbound_attrs->no_numa)
4074 goto out_unlock;
4c16bd32
TH
4075
4076 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4077 pwq = unbound_pwq_by_node(wq, node);
4078
4079 /*
4080 * Let's determine what needs to be done. If the target cpumask is
4081 * different from wq's, we need to compare it to @pwq's and create
4082 * a new one if they don't match. If the target cpumask equals
4083 * wq's, the default pwq should be used. If @pwq is already the
4084 * default one, nothing to do; otherwise, install the default one.
4085 */
4086 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4087 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4088 goto out_unlock;
4089 } else {
4090 if (pwq == wq->dfl_pwq)
4091 goto out_unlock;
4092 else
4093 goto use_dfl_pwq;
4094 }
4095
4096 mutex_unlock(&wq->mutex);
4097
4098 /* create a new pwq */
4099 pwq = alloc_unbound_pwq(wq, target_attrs);
4100 if (!pwq) {
4101 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4102 wq->name);
4103 goto out_unlock;
4104 }
4105
4106 /*
4107 * Install the new pwq. As this function is called only from CPU
4108 * hotplug callbacks and applying a new attrs is wrapped with
4109 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4110 * inbetween.
4111 */
4112 mutex_lock(&wq->mutex);
4113 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4114 goto out_unlock;
4115
4116use_dfl_pwq:
4117 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4118 get_pwq(wq->dfl_pwq);
4119 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4120 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4121out_unlock:
4122 mutex_unlock(&wq->mutex);
4123 put_pwq_unlocked(old_pwq);
4124}
4125
30cdf249 4126static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4127{
49e3cf44 4128 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4129 int cpu, ret;
30cdf249
TH
4130
4131 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4132 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4133 if (!wq->cpu_pwqs)
30cdf249
TH
4134 return -ENOMEM;
4135
4136 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4137 struct pool_workqueue *pwq =
4138 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4139 struct worker_pool *cpu_pools =
f02ae73a 4140 per_cpu(cpu_worker_pools, cpu);
f3421797 4141
f147f29e
TH
4142 init_pwq(pwq, wq, &cpu_pools[highpri]);
4143
4144 mutex_lock(&wq->mutex);
1befcf30 4145 link_pwq(pwq);
f147f29e 4146 mutex_unlock(&wq->mutex);
30cdf249 4147 }
9e8cd2f5 4148 return 0;
8a2b7538
TH
4149 } else if (wq->flags & __WQ_ORDERED) {
4150 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4151 /* there should only be single pwq for ordering guarantee */
4152 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4153 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4154 "ordering guarantee broken for workqueue %s\n", wq->name);
4155 return ret;
30cdf249 4156 } else {
9e8cd2f5 4157 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4158 }
0f900049
TH
4159}
4160
f3421797
TH
4161static int wq_clamp_max_active(int max_active, unsigned int flags,
4162 const char *name)
b71ab8c2 4163{
f3421797
TH
4164 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4165
4166 if (max_active < 1 || max_active > lim)
044c782c
VI
4167 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4168 max_active, name, 1, lim);
b71ab8c2 4169
f3421797 4170 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4171}
4172
b196be89 4173struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4174 unsigned int flags,
4175 int max_active,
4176 struct lock_class_key *key,
b196be89 4177 const char *lock_name, ...)
1da177e4 4178{
df2d5ae4 4179 size_t tbl_size = 0;
ecf6881f 4180 va_list args;
1da177e4 4181 struct workqueue_struct *wq;
49e3cf44 4182 struct pool_workqueue *pwq;
b196be89 4183
cee22a15
VK
4184 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4185 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4186 flags |= WQ_UNBOUND;
4187
ecf6881f 4188 /* allocate wq and format name */
df2d5ae4
TH
4189 if (flags & WQ_UNBOUND)
4190 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4191
4192 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4193 if (!wq)
d2c1d404 4194 return NULL;
b196be89 4195
6029a918
TH
4196 if (flags & WQ_UNBOUND) {
4197 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4198 if (!wq->unbound_attrs)
4199 goto err_free_wq;
4200 }
4201
ecf6881f
TH
4202 va_start(args, lock_name);
4203 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4204 va_end(args);
1da177e4 4205
d320c038 4206 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4207 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4208
b196be89 4209 /* init wq */
97e37d7b 4210 wq->flags = flags;
a0a1a5fd 4211 wq->saved_max_active = max_active;
3c25a55d 4212 mutex_init(&wq->mutex);
112202d9 4213 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4214 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4215 INIT_LIST_HEAD(&wq->flusher_queue);
4216 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4217 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4218
eb13ba87 4219 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4220 INIT_LIST_HEAD(&wq->list);
3af24433 4221
30cdf249 4222 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4223 goto err_free_wq;
1537663f 4224
493008a8
TH
4225 /*
4226 * Workqueues which may be used during memory reclaim should
4227 * have a rescuer to guarantee forward progress.
4228 */
4229 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4230 struct worker *rescuer;
4231
d2c1d404 4232 rescuer = alloc_worker();
e22bee78 4233 if (!rescuer)
d2c1d404 4234 goto err_destroy;
e22bee78 4235
111c225a
TH
4236 rescuer->rescue_wq = wq;
4237 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4238 wq->name);
d2c1d404
TH
4239 if (IS_ERR(rescuer->task)) {
4240 kfree(rescuer);
4241 goto err_destroy;
4242 }
e22bee78 4243
d2c1d404 4244 wq->rescuer = rescuer;
14a40ffc 4245 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4246 wake_up_process(rescuer->task);
3af24433
ON
4247 }
4248
226223ab
TH
4249 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4250 goto err_destroy;
4251
a0a1a5fd 4252 /*
68e13a67
LJ
4253 * wq_pool_mutex protects global freeze state and workqueues list.
4254 * Grab it, adjust max_active and add the new @wq to workqueues
4255 * list.
a0a1a5fd 4256 */
68e13a67 4257 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4258
a357fc03 4259 mutex_lock(&wq->mutex);
699ce097
TH
4260 for_each_pwq(pwq, wq)
4261 pwq_adjust_max_active(pwq);
a357fc03 4262 mutex_unlock(&wq->mutex);
a0a1a5fd 4263
1537663f 4264 list_add(&wq->list, &workqueues);
a0a1a5fd 4265
68e13a67 4266 mutex_unlock(&wq_pool_mutex);
1537663f 4267
3af24433 4268 return wq;
d2c1d404
TH
4269
4270err_free_wq:
6029a918 4271 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4272 kfree(wq);
4273 return NULL;
4274err_destroy:
4275 destroy_workqueue(wq);
4690c4ab 4276 return NULL;
3af24433 4277}
d320c038 4278EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4279
3af24433
ON
4280/**
4281 * destroy_workqueue - safely terminate a workqueue
4282 * @wq: target workqueue
4283 *
4284 * Safely destroy a workqueue. All work currently pending will be done first.
4285 */
4286void destroy_workqueue(struct workqueue_struct *wq)
4287{
49e3cf44 4288 struct pool_workqueue *pwq;
4c16bd32 4289 int node;
3af24433 4290
9c5a2ba7
TH
4291 /* drain it before proceeding with destruction */
4292 drain_workqueue(wq);
c8efcc25 4293
6183c009 4294 /* sanity checks */
b09f4fd3 4295 mutex_lock(&wq->mutex);
49e3cf44 4296 for_each_pwq(pwq, wq) {
6183c009
TH
4297 int i;
4298
76af4d93
TH
4299 for (i = 0; i < WORK_NR_COLORS; i++) {
4300 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4301 mutex_unlock(&wq->mutex);
6183c009 4302 return;
76af4d93
TH
4303 }
4304 }
4305
5c529597 4306 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4307 WARN_ON(pwq->nr_active) ||
76af4d93 4308 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4309 mutex_unlock(&wq->mutex);
6183c009 4310 return;
76af4d93 4311 }
6183c009 4312 }
b09f4fd3 4313 mutex_unlock(&wq->mutex);
6183c009 4314
a0a1a5fd
TH
4315 /*
4316 * wq list is used to freeze wq, remove from list after
4317 * flushing is complete in case freeze races us.
4318 */
68e13a67 4319 mutex_lock(&wq_pool_mutex);
d2c1d404 4320 list_del_init(&wq->list);
68e13a67 4321 mutex_unlock(&wq_pool_mutex);
3af24433 4322
226223ab
TH
4323 workqueue_sysfs_unregister(wq);
4324
493008a8 4325 if (wq->rescuer) {
e22bee78 4326 kthread_stop(wq->rescuer->task);
8d9df9f0 4327 kfree(wq->rescuer);
493008a8 4328 wq->rescuer = NULL;
e22bee78
TH
4329 }
4330
8864b4e5
TH
4331 if (!(wq->flags & WQ_UNBOUND)) {
4332 /*
4333 * The base ref is never dropped on per-cpu pwqs. Directly
4334 * free the pwqs and wq.
4335 */
4336 free_percpu(wq->cpu_pwqs);
4337 kfree(wq);
4338 } else {
4339 /*
4340 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4341 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4342 * @wq will be freed when the last pwq is released.
8864b4e5 4343 */
4c16bd32
TH
4344 for_each_node(node) {
4345 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4346 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4347 put_pwq_unlocked(pwq);
4348 }
4349
4350 /*
4351 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4352 * put. Don't access it afterwards.
4353 */
4354 pwq = wq->dfl_pwq;
4355 wq->dfl_pwq = NULL;
dce90d47 4356 put_pwq_unlocked(pwq);
29c91e99 4357 }
3af24433
ON
4358}
4359EXPORT_SYMBOL_GPL(destroy_workqueue);
4360
dcd989cb
TH
4361/**
4362 * workqueue_set_max_active - adjust max_active of a workqueue
4363 * @wq: target workqueue
4364 * @max_active: new max_active value.
4365 *
4366 * Set max_active of @wq to @max_active.
4367 *
4368 * CONTEXT:
4369 * Don't call from IRQ context.
4370 */
4371void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4372{
49e3cf44 4373 struct pool_workqueue *pwq;
dcd989cb 4374
8719dcea
TH
4375 /* disallow meddling with max_active for ordered workqueues */
4376 if (WARN_ON(wq->flags & __WQ_ORDERED))
4377 return;
4378
f3421797 4379 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4380
a357fc03 4381 mutex_lock(&wq->mutex);
dcd989cb
TH
4382
4383 wq->saved_max_active = max_active;
4384
699ce097
TH
4385 for_each_pwq(pwq, wq)
4386 pwq_adjust_max_active(pwq);
93981800 4387
a357fc03 4388 mutex_unlock(&wq->mutex);
15316ba8 4389}
dcd989cb 4390EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4391
e6267616
TH
4392/**
4393 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4394 *
4395 * Determine whether %current is a workqueue rescuer. Can be used from
4396 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4397 *
4398 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4399 */
4400bool current_is_workqueue_rescuer(void)
4401{
4402 struct worker *worker = current_wq_worker();
4403
6a092dfd 4404 return worker && worker->rescue_wq;
e6267616
TH
4405}
4406
eef6a7d5 4407/**
dcd989cb
TH
4408 * workqueue_congested - test whether a workqueue is congested
4409 * @cpu: CPU in question
4410 * @wq: target workqueue
eef6a7d5 4411 *
dcd989cb
TH
4412 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4413 * no synchronization around this function and the test result is
4414 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4415 *
d3251859
TH
4416 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4417 * Note that both per-cpu and unbound workqueues may be associated with
4418 * multiple pool_workqueues which have separate congested states. A
4419 * workqueue being congested on one CPU doesn't mean the workqueue is also
4420 * contested on other CPUs / NUMA nodes.
4421 *
d185af30 4422 * Return:
dcd989cb 4423 * %true if congested, %false otherwise.
eef6a7d5 4424 */
d84ff051 4425bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4426{
7fb98ea7 4427 struct pool_workqueue *pwq;
76af4d93
TH
4428 bool ret;
4429
88109453 4430 rcu_read_lock_sched();
7fb98ea7 4431
d3251859
TH
4432 if (cpu == WORK_CPU_UNBOUND)
4433 cpu = smp_processor_id();
4434
7fb98ea7
TH
4435 if (!(wq->flags & WQ_UNBOUND))
4436 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4437 else
df2d5ae4 4438 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4439
76af4d93 4440 ret = !list_empty(&pwq->delayed_works);
88109453 4441 rcu_read_unlock_sched();
76af4d93
TH
4442
4443 return ret;
1da177e4 4444}
dcd989cb 4445EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4446
dcd989cb
TH
4447/**
4448 * work_busy - test whether a work is currently pending or running
4449 * @work: the work to be tested
4450 *
4451 * Test whether @work is currently pending or running. There is no
4452 * synchronization around this function and the test result is
4453 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4454 *
d185af30 4455 * Return:
dcd989cb
TH
4456 * OR'd bitmask of WORK_BUSY_* bits.
4457 */
4458unsigned int work_busy(struct work_struct *work)
1da177e4 4459{
fa1b54e6 4460 struct worker_pool *pool;
dcd989cb
TH
4461 unsigned long flags;
4462 unsigned int ret = 0;
1da177e4 4463
dcd989cb
TH
4464 if (work_pending(work))
4465 ret |= WORK_BUSY_PENDING;
1da177e4 4466
fa1b54e6
TH
4467 local_irq_save(flags);
4468 pool = get_work_pool(work);
038366c5 4469 if (pool) {
fa1b54e6 4470 spin_lock(&pool->lock);
038366c5
LJ
4471 if (find_worker_executing_work(pool, work))
4472 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4473 spin_unlock(&pool->lock);
038366c5 4474 }
fa1b54e6 4475 local_irq_restore(flags);
1da177e4 4476
dcd989cb 4477 return ret;
1da177e4 4478}
dcd989cb 4479EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4480
3d1cb205
TH
4481/**
4482 * set_worker_desc - set description for the current work item
4483 * @fmt: printf-style format string
4484 * @...: arguments for the format string
4485 *
4486 * This function can be called by a running work function to describe what
4487 * the work item is about. If the worker task gets dumped, this
4488 * information will be printed out together to help debugging. The
4489 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4490 */
4491void set_worker_desc(const char *fmt, ...)
4492{
4493 struct worker *worker = current_wq_worker();
4494 va_list args;
4495
4496 if (worker) {
4497 va_start(args, fmt);
4498 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4499 va_end(args);
4500 worker->desc_valid = true;
4501 }
4502}
4503
4504/**
4505 * print_worker_info - print out worker information and description
4506 * @log_lvl: the log level to use when printing
4507 * @task: target task
4508 *
4509 * If @task is a worker and currently executing a work item, print out the
4510 * name of the workqueue being serviced and worker description set with
4511 * set_worker_desc() by the currently executing work item.
4512 *
4513 * This function can be safely called on any task as long as the
4514 * task_struct itself is accessible. While safe, this function isn't
4515 * synchronized and may print out mixups or garbages of limited length.
4516 */
4517void print_worker_info(const char *log_lvl, struct task_struct *task)
4518{
4519 work_func_t *fn = NULL;
4520 char name[WQ_NAME_LEN] = { };
4521 char desc[WORKER_DESC_LEN] = { };
4522 struct pool_workqueue *pwq = NULL;
4523 struct workqueue_struct *wq = NULL;
4524 bool desc_valid = false;
4525 struct worker *worker;
4526
4527 if (!(task->flags & PF_WQ_WORKER))
4528 return;
4529
4530 /*
4531 * This function is called without any synchronization and @task
4532 * could be in any state. Be careful with dereferences.
4533 */
4534 worker = probe_kthread_data(task);
4535
4536 /*
4537 * Carefully copy the associated workqueue's workfn and name. Keep
4538 * the original last '\0' in case the original contains garbage.
4539 */
4540 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4541 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4542 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4543 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4544
4545 /* copy worker description */
4546 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4547 if (desc_valid)
4548 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4549
4550 if (fn || name[0] || desc[0]) {
4551 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4552 if (desc[0])
4553 pr_cont(" (%s)", desc);
4554 pr_cont("\n");
4555 }
4556}
4557
db7bccf4
TH
4558/*
4559 * CPU hotplug.
4560 *
e22bee78 4561 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4562 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4563 * pool which make migrating pending and scheduled works very
e22bee78 4564 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4565 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4566 * blocked draining impractical.
4567 *
24647570 4568 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4569 * running as an unbound one and allowing it to be reattached later if the
4570 * cpu comes back online.
db7bccf4 4571 */
1da177e4 4572
706026c2 4573static void wq_unbind_fn(struct work_struct *work)
3af24433 4574{
38db41d9 4575 int cpu = smp_processor_id();
4ce62e9e 4576 struct worker_pool *pool;
db7bccf4 4577 struct worker *worker;
a9ab775b 4578 int wi;
3af24433 4579
f02ae73a 4580 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4581 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4582
bc3a1afc 4583 mutex_lock(&pool->manager_mutex);
94cf58bb 4584 spin_lock_irq(&pool->lock);
3af24433 4585
94cf58bb 4586 /*
bc3a1afc 4587 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4588 * unbound and set DISASSOCIATED. Before this, all workers
4589 * except for the ones which are still executing works from
4590 * before the last CPU down must be on the cpu. After
4591 * this, they may become diasporas.
4592 */
a9ab775b 4593 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4594 worker->flags |= WORKER_UNBOUND;
06ba38a9 4595
24647570 4596 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4597
94cf58bb 4598 spin_unlock_irq(&pool->lock);
bc3a1afc 4599 mutex_unlock(&pool->manager_mutex);
628c78e7 4600
eb283428
LJ
4601 /*
4602 * Call schedule() so that we cross rq->lock and thus can
4603 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4604 * This is necessary as scheduler callbacks may be invoked
4605 * from other cpus.
4606 */
4607 schedule();
06ba38a9 4608
eb283428
LJ
4609 /*
4610 * Sched callbacks are disabled now. Zap nr_running.
4611 * After this, nr_running stays zero and need_more_worker()
4612 * and keep_working() are always true as long as the
4613 * worklist is not empty. This pool now behaves as an
4614 * unbound (in terms of concurrency management) pool which
4615 * are served by workers tied to the pool.
4616 */
e19e397a 4617 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4618
4619 /*
4620 * With concurrency management just turned off, a busy
4621 * worker blocking could lead to lengthy stalls. Kick off
4622 * unbound chain execution of currently pending work items.
4623 */
4624 spin_lock_irq(&pool->lock);
4625 wake_up_worker(pool);
4626 spin_unlock_irq(&pool->lock);
4627 }
3af24433 4628}
3af24433 4629
bd7c089e
TH
4630/**
4631 * rebind_workers - rebind all workers of a pool to the associated CPU
4632 * @pool: pool of interest
4633 *
a9ab775b 4634 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4635 */
4636static void rebind_workers(struct worker_pool *pool)
4637{
a9ab775b
TH
4638 struct worker *worker;
4639 int wi;
bd7c089e
TH
4640
4641 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4642
a9ab775b
TH
4643 /*
4644 * Restore CPU affinity of all workers. As all idle workers should
4645 * be on the run-queue of the associated CPU before any local
4646 * wake-ups for concurrency management happen, restore CPU affinty
4647 * of all workers first and then clear UNBOUND. As we're called
4648 * from CPU_ONLINE, the following shouldn't fail.
4649 */
4650 for_each_pool_worker(worker, wi, pool)
4651 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4652 pool->attrs->cpumask) < 0);
bd7c089e 4653
a9ab775b 4654 spin_lock_irq(&pool->lock);
bd7c089e 4655
a9ab775b
TH
4656 for_each_pool_worker(worker, wi, pool) {
4657 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4658
4659 /*
a9ab775b
TH
4660 * A bound idle worker should actually be on the runqueue
4661 * of the associated CPU for local wake-ups targeting it to
4662 * work. Kick all idle workers so that they migrate to the
4663 * associated CPU. Doing this in the same loop as
4664 * replacing UNBOUND with REBOUND is safe as no worker will
4665 * be bound before @pool->lock is released.
bd7c089e 4666 */
a9ab775b
TH
4667 if (worker_flags & WORKER_IDLE)
4668 wake_up_process(worker->task);
bd7c089e 4669
a9ab775b
TH
4670 /*
4671 * We want to clear UNBOUND but can't directly call
4672 * worker_clr_flags() or adjust nr_running. Atomically
4673 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4674 * @worker will clear REBOUND using worker_clr_flags() when
4675 * it initiates the next execution cycle thus restoring
4676 * concurrency management. Note that when or whether
4677 * @worker clears REBOUND doesn't affect correctness.
4678 *
4679 * ACCESS_ONCE() is necessary because @worker->flags may be
4680 * tested without holding any lock in
4681 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4682 * fail incorrectly leading to premature concurrency
4683 * management operations.
4684 */
4685 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4686 worker_flags |= WORKER_REBOUND;
4687 worker_flags &= ~WORKER_UNBOUND;
4688 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4689 }
a9ab775b
TH
4690
4691 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4692}
4693
7dbc725e
TH
4694/**
4695 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4696 * @pool: unbound pool of interest
4697 * @cpu: the CPU which is coming up
4698 *
4699 * An unbound pool may end up with a cpumask which doesn't have any online
4700 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4701 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4702 * online CPU before, cpus_allowed of all its workers should be restored.
4703 */
4704static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4705{
4706 static cpumask_t cpumask;
4707 struct worker *worker;
4708 int wi;
4709
4710 lockdep_assert_held(&pool->manager_mutex);
4711
4712 /* is @cpu allowed for @pool? */
4713 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4714 return;
4715
4716 /* is @cpu the only online CPU? */
4717 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4718 if (cpumask_weight(&cpumask) != 1)
4719 return;
4720
4721 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4722 for_each_pool_worker(worker, wi, pool)
4723 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4724 pool->attrs->cpumask) < 0);
4725}
4726
8db25e78
TH
4727/*
4728 * Workqueues should be brought up before normal priority CPU notifiers.
4729 * This will be registered high priority CPU notifier.
4730 */
0db0628d 4731static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4732 unsigned long action,
4733 void *hcpu)
3af24433 4734{
d84ff051 4735 int cpu = (unsigned long)hcpu;
4ce62e9e 4736 struct worker_pool *pool;
4c16bd32 4737 struct workqueue_struct *wq;
7dbc725e 4738 int pi;
3ce63377 4739
8db25e78 4740 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4741 case CPU_UP_PREPARE:
f02ae73a 4742 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4743 if (pool->nr_workers)
4744 continue;
ebf44d16 4745 if (create_and_start_worker(pool) < 0)
3ce63377 4746 return NOTIFY_BAD;
3af24433 4747 }
8db25e78 4748 break;
3af24433 4749
db7bccf4
TH
4750 case CPU_DOWN_FAILED:
4751 case CPU_ONLINE:
68e13a67 4752 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4753
4754 for_each_pool(pool, pi) {
bc3a1afc 4755 mutex_lock(&pool->manager_mutex);
94cf58bb 4756
7dbc725e
TH
4757 if (pool->cpu == cpu) {
4758 spin_lock_irq(&pool->lock);
4759 pool->flags &= ~POOL_DISASSOCIATED;
4760 spin_unlock_irq(&pool->lock);
a9ab775b 4761
7dbc725e
TH
4762 rebind_workers(pool);
4763 } else if (pool->cpu < 0) {
4764 restore_unbound_workers_cpumask(pool, cpu);
4765 }
94cf58bb 4766
bc3a1afc 4767 mutex_unlock(&pool->manager_mutex);
94cf58bb 4768 }
7dbc725e 4769
4c16bd32
TH
4770 /* update NUMA affinity of unbound workqueues */
4771 list_for_each_entry(wq, &workqueues, list)
4772 wq_update_unbound_numa(wq, cpu, true);
4773
68e13a67 4774 mutex_unlock(&wq_pool_mutex);
db7bccf4 4775 break;
00dfcaf7 4776 }
65758202
TH
4777 return NOTIFY_OK;
4778}
4779
4780/*
4781 * Workqueues should be brought down after normal priority CPU notifiers.
4782 * This will be registered as low priority CPU notifier.
4783 */
0db0628d 4784static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4785 unsigned long action,
4786 void *hcpu)
4787{
d84ff051 4788 int cpu = (unsigned long)hcpu;
8db25e78 4789 struct work_struct unbind_work;
4c16bd32 4790 struct workqueue_struct *wq;
8db25e78 4791
65758202
TH
4792 switch (action & ~CPU_TASKS_FROZEN) {
4793 case CPU_DOWN_PREPARE:
4c16bd32 4794 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4795 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4796 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4797
4798 /* update NUMA affinity of unbound workqueues */
4799 mutex_lock(&wq_pool_mutex);
4800 list_for_each_entry(wq, &workqueues, list)
4801 wq_update_unbound_numa(wq, cpu, false);
4802 mutex_unlock(&wq_pool_mutex);
4803
4804 /* wait for per-cpu unbinding to finish */
8db25e78 4805 flush_work(&unbind_work);
440a1136 4806 destroy_work_on_stack(&unbind_work);
8db25e78 4807 break;
65758202
TH
4808 }
4809 return NOTIFY_OK;
4810}
4811
2d3854a3 4812#ifdef CONFIG_SMP
8ccad40d 4813
2d3854a3 4814struct work_for_cpu {
ed48ece2 4815 struct work_struct work;
2d3854a3
RR
4816 long (*fn)(void *);
4817 void *arg;
4818 long ret;
4819};
4820
ed48ece2 4821static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4822{
ed48ece2
TH
4823 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4824
2d3854a3
RR
4825 wfc->ret = wfc->fn(wfc->arg);
4826}
4827
4828/**
4829 * work_on_cpu - run a function in user context on a particular cpu
4830 * @cpu: the cpu to run on
4831 * @fn: the function to run
4832 * @arg: the function arg
4833 *
31ad9081 4834 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4835 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4836 *
4837 * Return: The value @fn returns.
2d3854a3 4838 */
d84ff051 4839long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4840{
ed48ece2 4841 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4842
ed48ece2
TH
4843 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4844 schedule_work_on(cpu, &wfc.work);
12997d1a 4845 flush_work(&wfc.work);
440a1136 4846 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4847 return wfc.ret;
4848}
4849EXPORT_SYMBOL_GPL(work_on_cpu);
4850#endif /* CONFIG_SMP */
4851
a0a1a5fd
TH
4852#ifdef CONFIG_FREEZER
4853
4854/**
4855 * freeze_workqueues_begin - begin freezing workqueues
4856 *
58a69cb4 4857 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4858 * workqueues will queue new works to their delayed_works list instead of
706026c2 4859 * pool->worklist.
a0a1a5fd
TH
4860 *
4861 * CONTEXT:
a357fc03 4862 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4863 */
4864void freeze_workqueues_begin(void)
4865{
17116969 4866 struct worker_pool *pool;
24b8a847
TH
4867 struct workqueue_struct *wq;
4868 struct pool_workqueue *pwq;
611c92a0 4869 int pi;
a0a1a5fd 4870
68e13a67 4871 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4872
6183c009 4873 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4874 workqueue_freezing = true;
4875
24b8a847 4876 /* set FREEZING */
611c92a0 4877 for_each_pool(pool, pi) {
5bcab335 4878 spin_lock_irq(&pool->lock);
17116969
TH
4879 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4880 pool->flags |= POOL_FREEZING;
5bcab335 4881 spin_unlock_irq(&pool->lock);
24b8a847 4882 }
a0a1a5fd 4883
24b8a847 4884 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4885 mutex_lock(&wq->mutex);
699ce097
TH
4886 for_each_pwq(pwq, wq)
4887 pwq_adjust_max_active(pwq);
a357fc03 4888 mutex_unlock(&wq->mutex);
a0a1a5fd 4889 }
5bcab335 4890
68e13a67 4891 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4892}
4893
4894/**
58a69cb4 4895 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4896 *
4897 * Check whether freezing is complete. This function must be called
4898 * between freeze_workqueues_begin() and thaw_workqueues().
4899 *
4900 * CONTEXT:
68e13a67 4901 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4902 *
d185af30 4903 * Return:
58a69cb4
TH
4904 * %true if some freezable workqueues are still busy. %false if freezing
4905 * is complete.
a0a1a5fd
TH
4906 */
4907bool freeze_workqueues_busy(void)
4908{
a0a1a5fd 4909 bool busy = false;
24b8a847
TH
4910 struct workqueue_struct *wq;
4911 struct pool_workqueue *pwq;
a0a1a5fd 4912
68e13a67 4913 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4914
6183c009 4915 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4916
24b8a847
TH
4917 list_for_each_entry(wq, &workqueues, list) {
4918 if (!(wq->flags & WQ_FREEZABLE))
4919 continue;
a0a1a5fd
TH
4920 /*
4921 * nr_active is monotonically decreasing. It's safe
4922 * to peek without lock.
4923 */
88109453 4924 rcu_read_lock_sched();
24b8a847 4925 for_each_pwq(pwq, wq) {
6183c009 4926 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4927 if (pwq->nr_active) {
a0a1a5fd 4928 busy = true;
88109453 4929 rcu_read_unlock_sched();
a0a1a5fd
TH
4930 goto out_unlock;
4931 }
4932 }
88109453 4933 rcu_read_unlock_sched();
a0a1a5fd
TH
4934 }
4935out_unlock:
68e13a67 4936 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4937 return busy;
4938}
4939
4940/**
4941 * thaw_workqueues - thaw workqueues
4942 *
4943 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4944 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4945 *
4946 * CONTEXT:
a357fc03 4947 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4948 */
4949void thaw_workqueues(void)
4950{
24b8a847
TH
4951 struct workqueue_struct *wq;
4952 struct pool_workqueue *pwq;
4953 struct worker_pool *pool;
611c92a0 4954 int pi;
a0a1a5fd 4955
68e13a67 4956 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4957
4958 if (!workqueue_freezing)
4959 goto out_unlock;
4960
24b8a847 4961 /* clear FREEZING */
611c92a0 4962 for_each_pool(pool, pi) {
5bcab335 4963 spin_lock_irq(&pool->lock);
24b8a847
TH
4964 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4965 pool->flags &= ~POOL_FREEZING;
5bcab335 4966 spin_unlock_irq(&pool->lock);
24b8a847 4967 }
8b03ae3c 4968
24b8a847
TH
4969 /* restore max_active and repopulate worklist */
4970 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4971 mutex_lock(&wq->mutex);
699ce097
TH
4972 for_each_pwq(pwq, wq)
4973 pwq_adjust_max_active(pwq);
a357fc03 4974 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4975 }
4976
4977 workqueue_freezing = false;
4978out_unlock:
68e13a67 4979 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4980}
4981#endif /* CONFIG_FREEZER */
4982
bce90380
TH
4983static void __init wq_numa_init(void)
4984{
4985 cpumask_var_t *tbl;
4986 int node, cpu;
4987
4988 /* determine NUMA pwq table len - highest node id + 1 */
4989 for_each_node(node)
4990 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4991
4992 if (num_possible_nodes() <= 1)
4993 return;
4994
d55262c4
TH
4995 if (wq_disable_numa) {
4996 pr_info("workqueue: NUMA affinity support disabled\n");
4997 return;
4998 }
4999
4c16bd32
TH
5000 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5001 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5002
bce90380
TH
5003 /*
5004 * We want masks of possible CPUs of each node which isn't readily
5005 * available. Build one from cpu_to_node() which should have been
5006 * fully initialized by now.
5007 */
5008 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5009 BUG_ON(!tbl);
5010
5011 for_each_node(node)
1be0c25d
TH
5012 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5013 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5014
5015 for_each_possible_cpu(cpu) {
5016 node = cpu_to_node(cpu);
5017 if (WARN_ON(node == NUMA_NO_NODE)) {
5018 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5019 /* happens iff arch is bonkers, let's just proceed */
5020 return;
5021 }
5022 cpumask_set_cpu(cpu, tbl[node]);
5023 }
5024
5025 wq_numa_possible_cpumask = tbl;
5026 wq_numa_enabled = true;
5027}
5028
6ee0578b 5029static int __init init_workqueues(void)
1da177e4 5030{
7a4e344c
TH
5031 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5032 int i, cpu;
c34056a3 5033
e904e6c2
TH
5034 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5035
5036 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5037
65758202 5038 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5039 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5040
bce90380
TH
5041 wq_numa_init();
5042
706026c2 5043 /* initialize CPU pools */
29c91e99 5044 for_each_possible_cpu(cpu) {
4ce62e9e 5045 struct worker_pool *pool;
8b03ae3c 5046
7a4e344c 5047 i = 0;
f02ae73a 5048 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5049 BUG_ON(init_worker_pool(pool));
ec22ca5e 5050 pool->cpu = cpu;
29c91e99 5051 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5052 pool->attrs->nice = std_nice[i++];
f3f90ad4 5053 pool->node = cpu_to_node(cpu);
7a4e344c 5054
9daf9e67 5055 /* alloc pool ID */
68e13a67 5056 mutex_lock(&wq_pool_mutex);
9daf9e67 5057 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5058 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5059 }
8b03ae3c
TH
5060 }
5061
e22bee78 5062 /* create the initial worker */
29c91e99 5063 for_each_online_cpu(cpu) {
4ce62e9e 5064 struct worker_pool *pool;
e22bee78 5065
f02ae73a 5066 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5067 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5068 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5069 }
e22bee78
TH
5070 }
5071
8a2b7538 5072 /* create default unbound and ordered wq attrs */
29c91e99
TH
5073 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5074 struct workqueue_attrs *attrs;
5075
5076 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5077 attrs->nice = std_nice[i];
29c91e99 5078 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5079
5080 /*
5081 * An ordered wq should have only one pwq as ordering is
5082 * guaranteed by max_active which is enforced by pwqs.
5083 * Turn off NUMA so that dfl_pwq is used for all nodes.
5084 */
5085 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5086 attrs->nice = std_nice[i];
5087 attrs->no_numa = true;
5088 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5089 }
5090
d320c038 5091 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5092 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5093 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5094 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5095 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5096 system_freezable_wq = alloc_workqueue("events_freezable",
5097 WQ_FREEZABLE, 0);
0668106c
VK
5098 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5099 WQ_POWER_EFFICIENT, 0);
5100 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5101 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5102 0);
1aabe902 5103 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5104 !system_unbound_wq || !system_freezable_wq ||
5105 !system_power_efficient_wq ||
5106 !system_freezable_power_efficient_wq);
6ee0578b 5107 return 0;
1da177e4 5108}
6ee0578b 5109early_initcall(init_workqueues);