]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/workqueue.c
workqueue: update synchronization rules on worker_pool_idr
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
76af4d93 45#include <linux/rculist.h>
e22bee78 46
ea138446 47#include "workqueue_internal.h"
1da177e4 48
c8e55f36 49enum {
24647570
TH
50 /*
51 * worker_pool flags
bc2ae0f5 52 *
24647570 53 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
54 * While associated (!DISASSOCIATED), all workers are bound to the
55 * CPU and none has %WORKER_UNBOUND set and concurrency management
56 * is in effect.
57 *
58 * While DISASSOCIATED, the cpu may be offline and all workers have
59 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 60 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
61 *
62 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
63 * assoc_mutex to avoid changing binding state while
64 * create_worker() is in progress.
bc2ae0f5 65 */
11ebea50 66 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 67 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
c8e55f36 84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 85
e22bee78
TH
86 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
87 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
88
3233cdbd
TH
89 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
90 /* call for help after 10ms
91 (min two ticks) */
e22bee78
TH
92 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
93 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
94
95 /*
96 * Rescue workers are used only on emergencies and shared by
97 * all cpus. Give -20.
98 */
99 RESCUER_NICE_LEVEL = -20,
3270476a 100 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 101};
1da177e4
LT
102
103/*
4690c4ab
TH
104 * Structure fields follow one of the following exclusion rules.
105 *
e41e704b
TH
106 * I: Modifiable by initialization/destruction paths and read-only for
107 * everyone else.
4690c4ab 108 *
e22bee78
TH
109 * P: Preemption protected. Disabling preemption is enough and should
110 * only be modified and accessed from the local cpu.
111 *
d565ed63 112 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 113 *
d565ed63
TH
114 * X: During normal operation, modification requires pool->lock and should
115 * be done only from local cpu. Either disabling preemption on local
116 * cpu or grabbing pool->lock is enough for read access. If
117 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 118 *
73f53c4a
TH
119 * F: wq->flush_mutex protected.
120 *
4690c4ab 121 * W: workqueue_lock protected.
76af4d93
TH
122 *
123 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
1da177e4 124 */
1da177e4 125
2eaebdb3 126/* struct worker is defined in workqueue_internal.h */
c34056a3 127
bd7bdd43 128struct worker_pool {
d565ed63 129 spinlock_t lock; /* the pool lock */
d84ff051 130 int cpu; /* I: the associated cpu */
9daf9e67 131 int id; /* I: pool ID */
11ebea50 132 unsigned int flags; /* X: flags */
bd7bdd43
TH
133
134 struct list_head worklist; /* L: list of pending works */
135 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
136
137 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
138 int nr_idle; /* L: currently idle ones */
139
140 struct list_head idle_list; /* X: list of idle workers */
141 struct timer_list idle_timer; /* L: worker idle timeout */
142 struct timer_list mayday_timer; /* L: SOS timer for workers */
143
c9e7cf27
TH
144 /* workers are chained either in busy_hash or idle_list */
145 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
146 /* L: hash of busy workers */
147
24647570 148 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 149 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
150
151 /*
152 * The current concurrency level. As it's likely to be accessed
153 * from other CPUs during try_to_wake_up(), put it in a separate
154 * cacheline.
155 */
156 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
157} ____cacheline_aligned_in_smp;
158
1da177e4 159/*
112202d9
TH
160 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
161 * of work_struct->data are used for flags and the remaining high bits
162 * point to the pwq; thus, pwqs need to be aligned at two's power of the
163 * number of flag bits.
1da177e4 164 */
112202d9 165struct pool_workqueue {
bd7bdd43 166 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 167 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
168 int work_color; /* L: current color */
169 int flush_color; /* L: flushing color */
170 int nr_in_flight[WORK_NR_COLORS];
171 /* L: nr of in_flight works */
1e19ffc6 172 int nr_active; /* L: nr of active works */
a0a1a5fd 173 int max_active; /* L: max active works */
1e19ffc6 174 struct list_head delayed_works; /* L: delayed works */
76af4d93 175 struct list_head pwqs_node; /* R: node on wq->pwqs */
493a1724 176 struct list_head mayday_node; /* W: node on wq->maydays */
e904e6c2 177} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 178
73f53c4a
TH
179/*
180 * Structure used to wait for workqueue flush.
181 */
182struct wq_flusher {
183 struct list_head list; /* F: list of flushers */
184 int flush_color; /* F: flush color waiting for */
185 struct completion done; /* flush completion */
186};
187
1da177e4
LT
188/*
189 * The externally visible workqueue abstraction is an array of
190 * per-CPU workqueues:
191 */
192struct workqueue_struct {
9c5a2ba7 193 unsigned int flags; /* W: WQ_* flags */
420c0ddb 194 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
76af4d93 195 struct list_head pwqs; /* R: all pwqs of this wq */
4690c4ab 196 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
197
198 struct mutex flush_mutex; /* protects wq flushing */
199 int work_color; /* F: current work color */
200 int flush_color; /* F: current flush color */
112202d9 201 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
202 struct wq_flusher *first_flusher; /* F: first flusher */
203 struct list_head flusher_queue; /* F: flush waiters */
204 struct list_head flusher_overflow; /* F: flush overflow list */
205
493a1724 206 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
207 struct worker *rescuer; /* I: rescue worker */
208
9c5a2ba7 209 int nr_drainers; /* W: drain in progress */
112202d9 210 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 211#ifdef CONFIG_LOCKDEP
4690c4ab 212 struct lockdep_map lockdep_map;
4e6045f1 213#endif
b196be89 214 char name[]; /* I: workqueue name */
1da177e4
LT
215};
216
e904e6c2
TH
217static struct kmem_cache *pwq_cache;
218
d320c038 219struct workqueue_struct *system_wq __read_mostly;
d320c038 220EXPORT_SYMBOL_GPL(system_wq);
044c782c 221struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 222EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 223struct workqueue_struct *system_long_wq __read_mostly;
d320c038 224EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 225struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 226EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 227struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 228EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 229
97bd2347
TH
230#define CREATE_TRACE_POINTS
231#include <trace/events/workqueue.h>
232
76af4d93
TH
233#define assert_rcu_or_wq_lock() \
234 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
235 lockdep_is_held(&workqueue_lock), \
236 "sched RCU or workqueue lock should be held")
237
38db41d9 238#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
239 for ((pool) = &std_worker_pools(cpu)[0]; \
240 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 241
b67bfe0d
SL
242#define for_each_busy_worker(worker, i, pool) \
243 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 244
706026c2
TH
245static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
246 unsigned int sw)
f3421797
TH
247{
248 if (cpu < nr_cpu_ids) {
249 if (sw & 1) {
250 cpu = cpumask_next(cpu, mask);
251 if (cpu < nr_cpu_ids)
252 return cpu;
253 }
254 if (sw & 2)
255 return WORK_CPU_UNBOUND;
256 }
6be19588 257 return WORK_CPU_END;
f3421797
TH
258}
259
09884951
TH
260/*
261 * CPU iterators
262 *
706026c2 263 * An extra cpu number is defined using an invalid cpu number
09884951 264 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
265 * specific CPU. The following iterators are similar to for_each_*_cpu()
266 * iterators but also considers the unbound CPU.
09884951 267 *
706026c2
TH
268 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
269 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951 270 */
706026c2
TH
271#define for_each_wq_cpu(cpu) \
272 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 273 (cpu) < WORK_CPU_END; \
706026c2 274 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 275
706026c2
TH
276#define for_each_online_wq_cpu(cpu) \
277 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 278 (cpu) < WORK_CPU_END; \
706026c2 279 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 280
17116969
TH
281/**
282 * for_each_pool - iterate through all worker_pools in the system
283 * @pool: iteration cursor
284 * @id: integer used for iteration
fa1b54e6
TH
285 *
286 * This must be called either with workqueue_lock held or sched RCU read
287 * locked. If the pool needs to be used beyond the locking in effect, the
288 * caller is responsible for guaranteeing that the pool stays online.
289 *
290 * The if/else clause exists only for the lockdep assertion and can be
291 * ignored.
17116969
TH
292 */
293#define for_each_pool(pool, id) \
fa1b54e6
TH
294 idr_for_each_entry(&worker_pool_idr, pool, id) \
295 if (({ assert_rcu_or_wq_lock(); false; })) { } \
296 else
17116969 297
49e3cf44
TH
298/**
299 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
300 * @pwq: iteration cursor
301 * @wq: the target workqueue
76af4d93
TH
302 *
303 * This must be called either with workqueue_lock held or sched RCU read
304 * locked. If the pwq needs to be used beyond the locking in effect, the
305 * caller is responsible for guaranteeing that the pwq stays online.
306 *
307 * The if/else clause exists only for the lockdep assertion and can be
308 * ignored.
49e3cf44
TH
309 */
310#define for_each_pwq(pwq, wq) \
76af4d93
TH
311 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
312 if (({ assert_rcu_or_wq_lock(); false; })) { } \
313 else
f3421797 314
dc186ad7
TG
315#ifdef CONFIG_DEBUG_OBJECTS_WORK
316
317static struct debug_obj_descr work_debug_descr;
318
99777288
SG
319static void *work_debug_hint(void *addr)
320{
321 return ((struct work_struct *) addr)->func;
322}
323
dc186ad7
TG
324/*
325 * fixup_init is called when:
326 * - an active object is initialized
327 */
328static int work_fixup_init(void *addr, enum debug_obj_state state)
329{
330 struct work_struct *work = addr;
331
332 switch (state) {
333 case ODEBUG_STATE_ACTIVE:
334 cancel_work_sync(work);
335 debug_object_init(work, &work_debug_descr);
336 return 1;
337 default:
338 return 0;
339 }
340}
341
342/*
343 * fixup_activate is called when:
344 * - an active object is activated
345 * - an unknown object is activated (might be a statically initialized object)
346 */
347static int work_fixup_activate(void *addr, enum debug_obj_state state)
348{
349 struct work_struct *work = addr;
350
351 switch (state) {
352
353 case ODEBUG_STATE_NOTAVAILABLE:
354 /*
355 * This is not really a fixup. The work struct was
356 * statically initialized. We just make sure that it
357 * is tracked in the object tracker.
358 */
22df02bb 359 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
360 debug_object_init(work, &work_debug_descr);
361 debug_object_activate(work, &work_debug_descr);
362 return 0;
363 }
364 WARN_ON_ONCE(1);
365 return 0;
366
367 case ODEBUG_STATE_ACTIVE:
368 WARN_ON(1);
369
370 default:
371 return 0;
372 }
373}
374
375/*
376 * fixup_free is called when:
377 * - an active object is freed
378 */
379static int work_fixup_free(void *addr, enum debug_obj_state state)
380{
381 struct work_struct *work = addr;
382
383 switch (state) {
384 case ODEBUG_STATE_ACTIVE:
385 cancel_work_sync(work);
386 debug_object_free(work, &work_debug_descr);
387 return 1;
388 default:
389 return 0;
390 }
391}
392
393static struct debug_obj_descr work_debug_descr = {
394 .name = "work_struct",
99777288 395 .debug_hint = work_debug_hint,
dc186ad7
TG
396 .fixup_init = work_fixup_init,
397 .fixup_activate = work_fixup_activate,
398 .fixup_free = work_fixup_free,
399};
400
401static inline void debug_work_activate(struct work_struct *work)
402{
403 debug_object_activate(work, &work_debug_descr);
404}
405
406static inline void debug_work_deactivate(struct work_struct *work)
407{
408 debug_object_deactivate(work, &work_debug_descr);
409}
410
411void __init_work(struct work_struct *work, int onstack)
412{
413 if (onstack)
414 debug_object_init_on_stack(work, &work_debug_descr);
415 else
416 debug_object_init(work, &work_debug_descr);
417}
418EXPORT_SYMBOL_GPL(__init_work);
419
420void destroy_work_on_stack(struct work_struct *work)
421{
422 debug_object_free(work, &work_debug_descr);
423}
424EXPORT_SYMBOL_GPL(destroy_work_on_stack);
425
426#else
427static inline void debug_work_activate(struct work_struct *work) { }
428static inline void debug_work_deactivate(struct work_struct *work) { }
429#endif
430
95402b38
GS
431/* Serializes the accesses to the list of workqueues. */
432static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 433static LIST_HEAD(workqueues);
a0a1a5fd 434static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 435
e22bee78 436/*
e19e397a
TH
437 * The CPU and unbound standard worker pools. The unbound ones have
438 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 439 */
e19e397a
TH
440static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
441 cpu_std_worker_pools);
a60dc39c 442static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 443
fa1b54e6
TH
444/*
445 * idr of all pools. Modifications are protected by workqueue_lock. Read
446 * accesses are protected by sched-RCU protected.
447 */
9daf9e67
TH
448static DEFINE_IDR(worker_pool_idr);
449
c34056a3 450static int worker_thread(void *__worker);
1da177e4 451
a60dc39c 452static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 453{
f3421797 454 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 455 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 456 else
a60dc39c 457 return unbound_std_worker_pools;
8b03ae3c
TH
458}
459
4e8f0a60
TH
460static int std_worker_pool_pri(struct worker_pool *pool)
461{
a60dc39c 462 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
463}
464
9daf9e67
TH
465/* allocate ID and assign it to @pool */
466static int worker_pool_assign_id(struct worker_pool *pool)
467{
468 int ret;
469
fa1b54e6
TH
470 do {
471 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
472 return -ENOMEM;
9daf9e67 473
fa1b54e6
TH
474 spin_lock_irq(&workqueue_lock);
475 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
476 spin_unlock_irq(&workqueue_lock);
477 } while (ret == -EAGAIN);
9daf9e67 478
fa1b54e6 479 return ret;
7c3eed5c
TH
480}
481
d565ed63
TH
482static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
483{
a60dc39c 484 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 485
a60dc39c 486 return &pools[highpri];
d565ed63
TH
487}
488
76af4d93
TH
489/**
490 * first_pwq - return the first pool_workqueue of the specified workqueue
491 * @wq: the target workqueue
492 *
493 * This must be called either with workqueue_lock held or sched RCU read
494 * locked. If the pwq needs to be used beyond the locking in effect, the
495 * caller is responsible for guaranteeing that the pwq stays online.
496 */
7fb98ea7 497static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 498{
76af4d93
TH
499 assert_rcu_or_wq_lock();
500 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
501 pwqs_node);
b1f4ec17
ON
502}
503
73f53c4a
TH
504static unsigned int work_color_to_flags(int color)
505{
506 return color << WORK_STRUCT_COLOR_SHIFT;
507}
508
509static int get_work_color(struct work_struct *work)
510{
511 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
512 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
513}
514
515static int work_next_color(int color)
516{
517 return (color + 1) % WORK_NR_COLORS;
518}
1da177e4 519
14441960 520/*
112202d9
TH
521 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
522 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 523 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 524 *
112202d9
TH
525 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
526 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
527 * work->data. These functions should only be called while the work is
528 * owned - ie. while the PENDING bit is set.
7a22ad75 529 *
112202d9 530 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 531 * corresponding to a work. Pool is available once the work has been
112202d9 532 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 533 * available only while the work item is queued.
7a22ad75 534 *
bbb68dfa
TH
535 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
536 * canceled. While being canceled, a work item may have its PENDING set
537 * but stay off timer and worklist for arbitrarily long and nobody should
538 * try to steal the PENDING bit.
14441960 539 */
7a22ad75
TH
540static inline void set_work_data(struct work_struct *work, unsigned long data,
541 unsigned long flags)
365970a1 542{
6183c009 543 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
544 atomic_long_set(&work->data, data | flags | work_static(work));
545}
365970a1 546
112202d9 547static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
548 unsigned long extra_flags)
549{
112202d9
TH
550 set_work_data(work, (unsigned long)pwq,
551 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
552}
553
4468a00f
LJ
554static void set_work_pool_and_keep_pending(struct work_struct *work,
555 int pool_id)
556{
557 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
558 WORK_STRUCT_PENDING);
559}
560
7c3eed5c
TH
561static void set_work_pool_and_clear_pending(struct work_struct *work,
562 int pool_id)
7a22ad75 563{
23657bb1
TH
564 /*
565 * The following wmb is paired with the implied mb in
566 * test_and_set_bit(PENDING) and ensures all updates to @work made
567 * here are visible to and precede any updates by the next PENDING
568 * owner.
569 */
570 smp_wmb();
7c3eed5c 571 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 572}
f756d5e2 573
7a22ad75 574static void clear_work_data(struct work_struct *work)
1da177e4 575{
7c3eed5c
TH
576 smp_wmb(); /* see set_work_pool_and_clear_pending() */
577 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
578}
579
112202d9 580static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 581{
e120153d 582 unsigned long data = atomic_long_read(&work->data);
7a22ad75 583
112202d9 584 if (data & WORK_STRUCT_PWQ)
e120153d
TH
585 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
586 else
587 return NULL;
4d707b9f
ON
588}
589
7c3eed5c
TH
590/**
591 * get_work_pool - return the worker_pool a given work was associated with
592 * @work: the work item of interest
593 *
594 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
595 *
596 * Pools are created and destroyed under workqueue_lock, and allows read
597 * access under sched-RCU read lock. As such, this function should be
598 * called under workqueue_lock or with preemption disabled.
599 *
600 * All fields of the returned pool are accessible as long as the above
601 * mentioned locking is in effect. If the returned pool needs to be used
602 * beyond the critical section, the caller is responsible for ensuring the
603 * returned pool is and stays online.
7c3eed5c
TH
604 */
605static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 606{
e120153d 607 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 608 int pool_id;
7a22ad75 609
fa1b54e6
TH
610 assert_rcu_or_wq_lock();
611
112202d9
TH
612 if (data & WORK_STRUCT_PWQ)
613 return ((struct pool_workqueue *)
7c3eed5c 614 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 615
7c3eed5c
TH
616 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
617 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
618 return NULL;
619
fa1b54e6 620 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
621}
622
623/**
624 * get_work_pool_id - return the worker pool ID a given work is associated with
625 * @work: the work item of interest
626 *
627 * Return the worker_pool ID @work was last associated with.
628 * %WORK_OFFQ_POOL_NONE if none.
629 */
630static int get_work_pool_id(struct work_struct *work)
631{
54d5b7d0
LJ
632 unsigned long data = atomic_long_read(&work->data);
633
112202d9
TH
634 if (data & WORK_STRUCT_PWQ)
635 return ((struct pool_workqueue *)
54d5b7d0 636 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 637
54d5b7d0 638 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
639}
640
bbb68dfa
TH
641static void mark_work_canceling(struct work_struct *work)
642{
7c3eed5c 643 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 644
7c3eed5c
TH
645 pool_id <<= WORK_OFFQ_POOL_SHIFT;
646 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
647}
648
649static bool work_is_canceling(struct work_struct *work)
650{
651 unsigned long data = atomic_long_read(&work->data);
652
112202d9 653 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
654}
655
e22bee78 656/*
3270476a
TH
657 * Policy functions. These define the policies on how the global worker
658 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 659 * they're being called with pool->lock held.
e22bee78
TH
660 */
661
63d95a91 662static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 663{
e19e397a 664 return !atomic_read(&pool->nr_running);
a848e3b6
ON
665}
666
4594bf15 667/*
e22bee78
TH
668 * Need to wake up a worker? Called from anything but currently
669 * running workers.
974271c4
TH
670 *
671 * Note that, because unbound workers never contribute to nr_running, this
706026c2 672 * function will always return %true for unbound pools as long as the
974271c4 673 * worklist isn't empty.
4594bf15 674 */
63d95a91 675static bool need_more_worker(struct worker_pool *pool)
365970a1 676{
63d95a91 677 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 678}
4594bf15 679
e22bee78 680/* Can I start working? Called from busy but !running workers. */
63d95a91 681static bool may_start_working(struct worker_pool *pool)
e22bee78 682{
63d95a91 683 return pool->nr_idle;
e22bee78
TH
684}
685
686/* Do I need to keep working? Called from currently running workers. */
63d95a91 687static bool keep_working(struct worker_pool *pool)
e22bee78 688{
e19e397a
TH
689 return !list_empty(&pool->worklist) &&
690 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
691}
692
693/* Do we need a new worker? Called from manager. */
63d95a91 694static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 695{
63d95a91 696 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 697}
365970a1 698
e22bee78 699/* Do I need to be the manager? */
63d95a91 700static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 701{
63d95a91 702 return need_to_create_worker(pool) ||
11ebea50 703 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
704}
705
706/* Do we have too many workers and should some go away? */
63d95a91 707static bool too_many_workers(struct worker_pool *pool)
e22bee78 708{
552a37e9 709 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
710 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
711 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 712
ea1abd61
LJ
713 /*
714 * nr_idle and idle_list may disagree if idle rebinding is in
715 * progress. Never return %true if idle_list is empty.
716 */
717 if (list_empty(&pool->idle_list))
718 return false;
719
e22bee78 720 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
721}
722
4d707b9f 723/*
e22bee78
TH
724 * Wake up functions.
725 */
726
7e11629d 727/* Return the first worker. Safe with preemption disabled */
63d95a91 728static struct worker *first_worker(struct worker_pool *pool)
7e11629d 729{
63d95a91 730 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
731 return NULL;
732
63d95a91 733 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
734}
735
736/**
737 * wake_up_worker - wake up an idle worker
63d95a91 738 * @pool: worker pool to wake worker from
7e11629d 739 *
63d95a91 740 * Wake up the first idle worker of @pool.
7e11629d
TH
741 *
742 * CONTEXT:
d565ed63 743 * spin_lock_irq(pool->lock).
7e11629d 744 */
63d95a91 745static void wake_up_worker(struct worker_pool *pool)
7e11629d 746{
63d95a91 747 struct worker *worker = first_worker(pool);
7e11629d
TH
748
749 if (likely(worker))
750 wake_up_process(worker->task);
751}
752
d302f017 753/**
e22bee78
TH
754 * wq_worker_waking_up - a worker is waking up
755 * @task: task waking up
756 * @cpu: CPU @task is waking up to
757 *
758 * This function is called during try_to_wake_up() when a worker is
759 * being awoken.
760 *
761 * CONTEXT:
762 * spin_lock_irq(rq->lock)
763 */
d84ff051 764void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
765{
766 struct worker *worker = kthread_data(task);
767
36576000 768 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 769 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 770 atomic_inc(&worker->pool->nr_running);
36576000 771 }
e22bee78
TH
772}
773
774/**
775 * wq_worker_sleeping - a worker is going to sleep
776 * @task: task going to sleep
777 * @cpu: CPU in question, must be the current CPU number
778 *
779 * This function is called during schedule() when a busy worker is
780 * going to sleep. Worker on the same cpu can be woken up by
781 * returning pointer to its task.
782 *
783 * CONTEXT:
784 * spin_lock_irq(rq->lock)
785 *
786 * RETURNS:
787 * Worker task on @cpu to wake up, %NULL if none.
788 */
d84ff051 789struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
790{
791 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 792 struct worker_pool *pool;
e22bee78 793
111c225a
TH
794 /*
795 * Rescuers, which may not have all the fields set up like normal
796 * workers, also reach here, let's not access anything before
797 * checking NOT_RUNNING.
798 */
2d64672e 799 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
800 return NULL;
801
111c225a 802 pool = worker->pool;
111c225a 803
e22bee78 804 /* this can only happen on the local cpu */
6183c009
TH
805 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
806 return NULL;
e22bee78
TH
807
808 /*
809 * The counterpart of the following dec_and_test, implied mb,
810 * worklist not empty test sequence is in insert_work().
811 * Please read comment there.
812 *
628c78e7
TH
813 * NOT_RUNNING is clear. This means that we're bound to and
814 * running on the local cpu w/ rq lock held and preemption
815 * disabled, which in turn means that none else could be
d565ed63 816 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 817 * lock is safe.
e22bee78 818 */
e19e397a
TH
819 if (atomic_dec_and_test(&pool->nr_running) &&
820 !list_empty(&pool->worklist))
63d95a91 821 to_wakeup = first_worker(pool);
e22bee78
TH
822 return to_wakeup ? to_wakeup->task : NULL;
823}
824
825/**
826 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 827 * @worker: self
d302f017
TH
828 * @flags: flags to set
829 * @wakeup: wakeup an idle worker if necessary
830 *
e22bee78
TH
831 * Set @flags in @worker->flags and adjust nr_running accordingly. If
832 * nr_running becomes zero and @wakeup is %true, an idle worker is
833 * woken up.
d302f017 834 *
cb444766 835 * CONTEXT:
d565ed63 836 * spin_lock_irq(pool->lock)
d302f017
TH
837 */
838static inline void worker_set_flags(struct worker *worker, unsigned int flags,
839 bool wakeup)
840{
bd7bdd43 841 struct worker_pool *pool = worker->pool;
e22bee78 842
cb444766
TH
843 WARN_ON_ONCE(worker->task != current);
844
e22bee78
TH
845 /*
846 * If transitioning into NOT_RUNNING, adjust nr_running and
847 * wake up an idle worker as necessary if requested by
848 * @wakeup.
849 */
850 if ((flags & WORKER_NOT_RUNNING) &&
851 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 852 if (wakeup) {
e19e397a 853 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 854 !list_empty(&pool->worklist))
63d95a91 855 wake_up_worker(pool);
e22bee78 856 } else
e19e397a 857 atomic_dec(&pool->nr_running);
e22bee78
TH
858 }
859
d302f017
TH
860 worker->flags |= flags;
861}
862
863/**
e22bee78 864 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 865 * @worker: self
d302f017
TH
866 * @flags: flags to clear
867 *
e22bee78 868 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 869 *
cb444766 870 * CONTEXT:
d565ed63 871 * spin_lock_irq(pool->lock)
d302f017
TH
872 */
873static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
874{
63d95a91 875 struct worker_pool *pool = worker->pool;
e22bee78
TH
876 unsigned int oflags = worker->flags;
877
cb444766
TH
878 WARN_ON_ONCE(worker->task != current);
879
d302f017 880 worker->flags &= ~flags;
e22bee78 881
42c025f3
TH
882 /*
883 * If transitioning out of NOT_RUNNING, increment nr_running. Note
884 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
885 * of multiple flags, not a single flag.
886 */
e22bee78
TH
887 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
888 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 889 atomic_inc(&pool->nr_running);
d302f017
TH
890}
891
8cca0eea
TH
892/**
893 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 894 * @pool: pool of interest
8cca0eea
TH
895 * @work: work to find worker for
896 *
c9e7cf27
TH
897 * Find a worker which is executing @work on @pool by searching
898 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
899 * to match, its current execution should match the address of @work and
900 * its work function. This is to avoid unwanted dependency between
901 * unrelated work executions through a work item being recycled while still
902 * being executed.
903 *
904 * This is a bit tricky. A work item may be freed once its execution
905 * starts and nothing prevents the freed area from being recycled for
906 * another work item. If the same work item address ends up being reused
907 * before the original execution finishes, workqueue will identify the
908 * recycled work item as currently executing and make it wait until the
909 * current execution finishes, introducing an unwanted dependency.
910 *
911 * This function checks the work item address, work function and workqueue
912 * to avoid false positives. Note that this isn't complete as one may
913 * construct a work function which can introduce dependency onto itself
914 * through a recycled work item. Well, if somebody wants to shoot oneself
915 * in the foot that badly, there's only so much we can do, and if such
916 * deadlock actually occurs, it should be easy to locate the culprit work
917 * function.
8cca0eea
TH
918 *
919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock).
8cca0eea
TH
921 *
922 * RETURNS:
923 * Pointer to worker which is executing @work if found, NULL
924 * otherwise.
4d707b9f 925 */
c9e7cf27 926static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 927 struct work_struct *work)
4d707b9f 928{
42f8570f 929 struct worker *worker;
42f8570f 930
b67bfe0d 931 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
932 (unsigned long)work)
933 if (worker->current_work == work &&
934 worker->current_func == work->func)
42f8570f
SL
935 return worker;
936
937 return NULL;
4d707b9f
ON
938}
939
bf4ede01
TH
940/**
941 * move_linked_works - move linked works to a list
942 * @work: start of series of works to be scheduled
943 * @head: target list to append @work to
944 * @nextp: out paramter for nested worklist walking
945 *
946 * Schedule linked works starting from @work to @head. Work series to
947 * be scheduled starts at @work and includes any consecutive work with
948 * WORK_STRUCT_LINKED set in its predecessor.
949 *
950 * If @nextp is not NULL, it's updated to point to the next work of
951 * the last scheduled work. This allows move_linked_works() to be
952 * nested inside outer list_for_each_entry_safe().
953 *
954 * CONTEXT:
d565ed63 955 * spin_lock_irq(pool->lock).
bf4ede01
TH
956 */
957static void move_linked_works(struct work_struct *work, struct list_head *head,
958 struct work_struct **nextp)
959{
960 struct work_struct *n;
961
962 /*
963 * Linked worklist will always end before the end of the list,
964 * use NULL for list head.
965 */
966 list_for_each_entry_safe_from(work, n, NULL, entry) {
967 list_move_tail(&work->entry, head);
968 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
969 break;
970 }
971
972 /*
973 * If we're already inside safe list traversal and have moved
974 * multiple works to the scheduled queue, the next position
975 * needs to be updated.
976 */
977 if (nextp)
978 *nextp = n;
979}
980
112202d9 981static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 982{
112202d9 983 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
984
985 trace_workqueue_activate_work(work);
112202d9 986 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 987 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 988 pwq->nr_active++;
bf4ede01
TH
989}
990
112202d9 991static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 992{
112202d9 993 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
994 struct work_struct, entry);
995
112202d9 996 pwq_activate_delayed_work(work);
3aa62497
LJ
997}
998
bf4ede01 999/**
112202d9
TH
1000 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1001 * @pwq: pwq of interest
bf4ede01 1002 * @color: color of work which left the queue
bf4ede01
TH
1003 *
1004 * A work either has completed or is removed from pending queue,
112202d9 1005 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1006 *
1007 * CONTEXT:
d565ed63 1008 * spin_lock_irq(pool->lock).
bf4ede01 1009 */
112202d9 1010static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
1011{
1012 /* ignore uncolored works */
1013 if (color == WORK_NO_COLOR)
1014 return;
1015
112202d9 1016 pwq->nr_in_flight[color]--;
bf4ede01 1017
112202d9
TH
1018 pwq->nr_active--;
1019 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1020 /* one down, submit a delayed one */
112202d9
TH
1021 if (pwq->nr_active < pwq->max_active)
1022 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1023 }
1024
1025 /* is flush in progress and are we at the flushing tip? */
112202d9 1026 if (likely(pwq->flush_color != color))
bf4ede01
TH
1027 return;
1028
1029 /* are there still in-flight works? */
112202d9 1030 if (pwq->nr_in_flight[color])
bf4ede01
TH
1031 return;
1032
112202d9
TH
1033 /* this pwq is done, clear flush_color */
1034 pwq->flush_color = -1;
bf4ede01
TH
1035
1036 /*
112202d9 1037 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1038 * will handle the rest.
1039 */
112202d9
TH
1040 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1041 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1042}
1043
36e227d2 1044/**
bbb68dfa 1045 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1046 * @work: work item to steal
1047 * @is_dwork: @work is a delayed_work
bbb68dfa 1048 * @flags: place to store irq state
36e227d2
TH
1049 *
1050 * Try to grab PENDING bit of @work. This function can handle @work in any
1051 * stable state - idle, on timer or on worklist. Return values are
1052 *
1053 * 1 if @work was pending and we successfully stole PENDING
1054 * 0 if @work was idle and we claimed PENDING
1055 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1056 * -ENOENT if someone else is canceling @work, this state may persist
1057 * for arbitrarily long
36e227d2 1058 *
bbb68dfa 1059 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1060 * interrupted while holding PENDING and @work off queue, irq must be
1061 * disabled on entry. This, combined with delayed_work->timer being
1062 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1063 *
1064 * On successful return, >= 0, irq is disabled and the caller is
1065 * responsible for releasing it using local_irq_restore(*@flags).
1066 *
e0aecdd8 1067 * This function is safe to call from any context including IRQ handler.
bf4ede01 1068 */
bbb68dfa
TH
1069static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1070 unsigned long *flags)
bf4ede01 1071{
d565ed63 1072 struct worker_pool *pool;
112202d9 1073 struct pool_workqueue *pwq;
bf4ede01 1074
bbb68dfa
TH
1075 local_irq_save(*flags);
1076
36e227d2
TH
1077 /* try to steal the timer if it exists */
1078 if (is_dwork) {
1079 struct delayed_work *dwork = to_delayed_work(work);
1080
e0aecdd8
TH
1081 /*
1082 * dwork->timer is irqsafe. If del_timer() fails, it's
1083 * guaranteed that the timer is not queued anywhere and not
1084 * running on the local CPU.
1085 */
36e227d2
TH
1086 if (likely(del_timer(&dwork->timer)))
1087 return 1;
1088 }
1089
1090 /* try to claim PENDING the normal way */
bf4ede01
TH
1091 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1092 return 0;
1093
1094 /*
1095 * The queueing is in progress, or it is already queued. Try to
1096 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1097 */
d565ed63
TH
1098 pool = get_work_pool(work);
1099 if (!pool)
bbb68dfa 1100 goto fail;
bf4ede01 1101
d565ed63 1102 spin_lock(&pool->lock);
0b3dae68 1103 /*
112202d9
TH
1104 * work->data is guaranteed to point to pwq only while the work
1105 * item is queued on pwq->wq, and both updating work->data to point
1106 * to pwq on queueing and to pool on dequeueing are done under
1107 * pwq->pool->lock. This in turn guarantees that, if work->data
1108 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1109 * item is currently queued on that pool.
1110 */
112202d9
TH
1111 pwq = get_work_pwq(work);
1112 if (pwq && pwq->pool == pool) {
16062836
TH
1113 debug_work_deactivate(work);
1114
1115 /*
1116 * A delayed work item cannot be grabbed directly because
1117 * it might have linked NO_COLOR work items which, if left
112202d9 1118 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1119 * management later on and cause stall. Make sure the work
1120 * item is activated before grabbing.
1121 */
1122 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1123 pwq_activate_delayed_work(work);
16062836
TH
1124
1125 list_del_init(&work->entry);
112202d9 1126 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1127
112202d9 1128 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1129 set_work_pool_and_keep_pending(work, pool->id);
1130
1131 spin_unlock(&pool->lock);
1132 return 1;
bf4ede01 1133 }
d565ed63 1134 spin_unlock(&pool->lock);
bbb68dfa
TH
1135fail:
1136 local_irq_restore(*flags);
1137 if (work_is_canceling(work))
1138 return -ENOENT;
1139 cpu_relax();
36e227d2 1140 return -EAGAIN;
bf4ede01
TH
1141}
1142
4690c4ab 1143/**
706026c2 1144 * insert_work - insert a work into a pool
112202d9 1145 * @pwq: pwq @work belongs to
4690c4ab
TH
1146 * @work: work to insert
1147 * @head: insertion point
1148 * @extra_flags: extra WORK_STRUCT_* flags to set
1149 *
112202d9 1150 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1151 * work_struct flags.
4690c4ab
TH
1152 *
1153 * CONTEXT:
d565ed63 1154 * spin_lock_irq(pool->lock).
4690c4ab 1155 */
112202d9
TH
1156static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1157 struct list_head *head, unsigned int extra_flags)
b89deed3 1158{
112202d9 1159 struct worker_pool *pool = pwq->pool;
e22bee78 1160
4690c4ab 1161 /* we own @work, set data and link */
112202d9 1162 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1163 list_add_tail(&work->entry, head);
e22bee78
TH
1164
1165 /*
1166 * Ensure either worker_sched_deactivated() sees the above
1167 * list_add_tail() or we see zero nr_running to avoid workers
1168 * lying around lazily while there are works to be processed.
1169 */
1170 smp_mb();
1171
63d95a91
TH
1172 if (__need_more_worker(pool))
1173 wake_up_worker(pool);
b89deed3
ON
1174}
1175
c8efcc25
TH
1176/*
1177 * Test whether @work is being queued from another work executing on the
8d03ecfe 1178 * same workqueue.
c8efcc25
TH
1179 */
1180static bool is_chained_work(struct workqueue_struct *wq)
1181{
8d03ecfe
TH
1182 struct worker *worker;
1183
1184 worker = current_wq_worker();
1185 /*
1186 * Return %true iff I'm a worker execuing a work item on @wq. If
1187 * I'm @worker, it's safe to dereference it without locking.
1188 */
112202d9 1189 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1190}
1191
d84ff051 1192static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1193 struct work_struct *work)
1194{
112202d9 1195 struct pool_workqueue *pwq;
1e19ffc6 1196 struct list_head *worklist;
8a2e8e5d 1197 unsigned int work_flags;
b75cac93 1198 unsigned int req_cpu = cpu;
8930caba
TH
1199
1200 /*
1201 * While a work item is PENDING && off queue, a task trying to
1202 * steal the PENDING will busy-loop waiting for it to either get
1203 * queued or lose PENDING. Grabbing PENDING and queueing should
1204 * happen with IRQ disabled.
1205 */
1206 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1207
dc186ad7 1208 debug_work_activate(work);
1e19ffc6 1209
c8efcc25 1210 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1211 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1212 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1213 return;
1214
112202d9 1215 /* determine the pwq to use */
c7fc77f7 1216 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1217 struct worker_pool *last_pool;
18aa9eff 1218
57469821 1219 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1220 cpu = raw_smp_processor_id();
1221
18aa9eff 1222 /*
dbf2576e
TH
1223 * It's multi cpu. If @work was previously on a different
1224 * cpu, it might still be running there, in which case the
1225 * work needs to be queued on that cpu to guarantee
1226 * non-reentrancy.
18aa9eff 1227 */
7fb98ea7 1228 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9e7cf27 1229 last_pool = get_work_pool(work);
dbf2576e 1230
112202d9 1231 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1232 struct worker *worker;
1233
d565ed63 1234 spin_lock(&last_pool->lock);
18aa9eff 1235
c9e7cf27 1236 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1237
112202d9 1238 if (worker && worker->current_pwq->wq == wq) {
7fb98ea7 1239 pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
8594fade 1240 } else {
18aa9eff 1241 /* meh... not running there, queue here */
d565ed63 1242 spin_unlock(&last_pool->lock);
112202d9 1243 spin_lock(&pwq->pool->lock);
18aa9eff 1244 }
8930caba 1245 } else {
112202d9 1246 spin_lock(&pwq->pool->lock);
8930caba 1247 }
f3421797 1248 } else {
7fb98ea7 1249 pwq = first_pwq(wq);
112202d9 1250 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1251 }
1252
112202d9
TH
1253 /* pwq determined, queue */
1254 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1255
f5b2552b 1256 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1257 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1258 return;
1259 }
1e19ffc6 1260
112202d9
TH
1261 pwq->nr_in_flight[pwq->work_color]++;
1262 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1263
112202d9 1264 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1265 trace_workqueue_activate_work(work);
112202d9
TH
1266 pwq->nr_active++;
1267 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1268 } else {
1269 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1270 worklist = &pwq->delayed_works;
8a2e8e5d 1271 }
1e19ffc6 1272
112202d9 1273 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1274
112202d9 1275 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1276}
1277
0fcb78c2 1278/**
c1a220e7
ZR
1279 * queue_work_on - queue work on specific cpu
1280 * @cpu: CPU number to execute work on
0fcb78c2
REB
1281 * @wq: workqueue to use
1282 * @work: work to queue
1283 *
d4283e93 1284 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1285 *
c1a220e7
ZR
1286 * We queue the work to a specific CPU, the caller must ensure it
1287 * can't go away.
1da177e4 1288 */
d4283e93
TH
1289bool queue_work_on(int cpu, struct workqueue_struct *wq,
1290 struct work_struct *work)
1da177e4 1291{
d4283e93 1292 bool ret = false;
8930caba 1293 unsigned long flags;
ef1ca236 1294
8930caba 1295 local_irq_save(flags);
c1a220e7 1296
22df02bb 1297 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1298 __queue_work(cpu, wq, work);
d4283e93 1299 ret = true;
c1a220e7 1300 }
ef1ca236 1301
8930caba 1302 local_irq_restore(flags);
1da177e4
LT
1303 return ret;
1304}
c1a220e7 1305EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1306
c1a220e7 1307/**
0a13c00e 1308 * queue_work - queue work on a workqueue
c1a220e7
ZR
1309 * @wq: workqueue to use
1310 * @work: work to queue
1311 *
d4283e93 1312 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1313 *
0a13c00e
TH
1314 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1315 * it can be processed by another CPU.
c1a220e7 1316 */
d4283e93 1317bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1318{
57469821 1319 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1320}
0a13c00e 1321EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1322
d8e794df 1323void delayed_work_timer_fn(unsigned long __data)
1da177e4 1324{
52bad64d 1325 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1326
e0aecdd8 1327 /* should have been called from irqsafe timer with irq already off */
60c057bc 1328 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1329}
1438ade5 1330EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1331
7beb2edf
TH
1332static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1333 struct delayed_work *dwork, unsigned long delay)
1da177e4 1334{
7beb2edf
TH
1335 struct timer_list *timer = &dwork->timer;
1336 struct work_struct *work = &dwork->work;
7beb2edf
TH
1337
1338 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1339 timer->data != (unsigned long)dwork);
fc4b514f
TH
1340 WARN_ON_ONCE(timer_pending(timer));
1341 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1342
8852aac2
TH
1343 /*
1344 * If @delay is 0, queue @dwork->work immediately. This is for
1345 * both optimization and correctness. The earliest @timer can
1346 * expire is on the closest next tick and delayed_work users depend
1347 * on that there's no such delay when @delay is 0.
1348 */
1349 if (!delay) {
1350 __queue_work(cpu, wq, &dwork->work);
1351 return;
1352 }
1353
7beb2edf 1354 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1355
60c057bc 1356 dwork->wq = wq;
1265057f 1357 dwork->cpu = cpu;
7beb2edf
TH
1358 timer->expires = jiffies + delay;
1359
1360 if (unlikely(cpu != WORK_CPU_UNBOUND))
1361 add_timer_on(timer, cpu);
1362 else
1363 add_timer(timer);
1da177e4
LT
1364}
1365
0fcb78c2
REB
1366/**
1367 * queue_delayed_work_on - queue work on specific CPU after delay
1368 * @cpu: CPU number to execute work on
1369 * @wq: workqueue to use
af9997e4 1370 * @dwork: work to queue
0fcb78c2
REB
1371 * @delay: number of jiffies to wait before queueing
1372 *
715f1300
TH
1373 * Returns %false if @work was already on a queue, %true otherwise. If
1374 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1375 * execution.
0fcb78c2 1376 */
d4283e93
TH
1377bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1378 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1379{
52bad64d 1380 struct work_struct *work = &dwork->work;
d4283e93 1381 bool ret = false;
8930caba 1382 unsigned long flags;
7a6bc1cd 1383
8930caba
TH
1384 /* read the comment in __queue_work() */
1385 local_irq_save(flags);
7a6bc1cd 1386
22df02bb 1387 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1388 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1389 ret = true;
7a6bc1cd 1390 }
8a3e77cc 1391
8930caba 1392 local_irq_restore(flags);
7a6bc1cd
VP
1393 return ret;
1394}
ae90dd5d 1395EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1396
0a13c00e
TH
1397/**
1398 * queue_delayed_work - queue work on a workqueue after delay
1399 * @wq: workqueue to use
1400 * @dwork: delayable work to queue
1401 * @delay: number of jiffies to wait before queueing
1402 *
715f1300 1403 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1404 */
d4283e93 1405bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1406 struct delayed_work *dwork, unsigned long delay)
1407{
57469821 1408 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1409}
1410EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1411
8376fe22
TH
1412/**
1413 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1414 * @cpu: CPU number to execute work on
1415 * @wq: workqueue to use
1416 * @dwork: work to queue
1417 * @delay: number of jiffies to wait before queueing
1418 *
1419 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1420 * modify @dwork's timer so that it expires after @delay. If @delay is
1421 * zero, @work is guaranteed to be scheduled immediately regardless of its
1422 * current state.
1423 *
1424 * Returns %false if @dwork was idle and queued, %true if @dwork was
1425 * pending and its timer was modified.
1426 *
e0aecdd8 1427 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1428 * See try_to_grab_pending() for details.
1429 */
1430bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1431 struct delayed_work *dwork, unsigned long delay)
1432{
1433 unsigned long flags;
1434 int ret;
c7fc77f7 1435
8376fe22
TH
1436 do {
1437 ret = try_to_grab_pending(&dwork->work, true, &flags);
1438 } while (unlikely(ret == -EAGAIN));
63bc0362 1439
8376fe22
TH
1440 if (likely(ret >= 0)) {
1441 __queue_delayed_work(cpu, wq, dwork, delay);
1442 local_irq_restore(flags);
7a6bc1cd 1443 }
8376fe22
TH
1444
1445 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1446 return ret;
1447}
8376fe22
TH
1448EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1449
1450/**
1451 * mod_delayed_work - modify delay of or queue a delayed work
1452 * @wq: workqueue to use
1453 * @dwork: work to queue
1454 * @delay: number of jiffies to wait before queueing
1455 *
1456 * mod_delayed_work_on() on local CPU.
1457 */
1458bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1459 unsigned long delay)
1460{
1461 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1462}
1463EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1464
c8e55f36
TH
1465/**
1466 * worker_enter_idle - enter idle state
1467 * @worker: worker which is entering idle state
1468 *
1469 * @worker is entering idle state. Update stats and idle timer if
1470 * necessary.
1471 *
1472 * LOCKING:
d565ed63 1473 * spin_lock_irq(pool->lock).
c8e55f36
TH
1474 */
1475static void worker_enter_idle(struct worker *worker)
1da177e4 1476{
bd7bdd43 1477 struct worker_pool *pool = worker->pool;
c8e55f36 1478
6183c009
TH
1479 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1480 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1481 (worker->hentry.next || worker->hentry.pprev)))
1482 return;
c8e55f36 1483
cb444766
TH
1484 /* can't use worker_set_flags(), also called from start_worker() */
1485 worker->flags |= WORKER_IDLE;
bd7bdd43 1486 pool->nr_idle++;
e22bee78 1487 worker->last_active = jiffies;
c8e55f36
TH
1488
1489 /* idle_list is LIFO */
bd7bdd43 1490 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1491
628c78e7
TH
1492 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1493 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1494
544ecf31 1495 /*
706026c2 1496 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1497 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1498 * nr_running, the warning may trigger spuriously. Check iff
1499 * unbind is not in progress.
544ecf31 1500 */
24647570 1501 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1502 pool->nr_workers == pool->nr_idle &&
e19e397a 1503 atomic_read(&pool->nr_running));
c8e55f36
TH
1504}
1505
1506/**
1507 * worker_leave_idle - leave idle state
1508 * @worker: worker which is leaving idle state
1509 *
1510 * @worker is leaving idle state. Update stats.
1511 *
1512 * LOCKING:
d565ed63 1513 * spin_lock_irq(pool->lock).
c8e55f36
TH
1514 */
1515static void worker_leave_idle(struct worker *worker)
1516{
bd7bdd43 1517 struct worker_pool *pool = worker->pool;
c8e55f36 1518
6183c009
TH
1519 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1520 return;
d302f017 1521 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1522 pool->nr_idle--;
c8e55f36
TH
1523 list_del_init(&worker->entry);
1524}
1525
e22bee78 1526/**
f36dc67b
LJ
1527 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1528 * @pool: target worker_pool
1529 *
1530 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1531 *
1532 * Works which are scheduled while the cpu is online must at least be
1533 * scheduled to a worker which is bound to the cpu so that if they are
1534 * flushed from cpu callbacks while cpu is going down, they are
1535 * guaranteed to execute on the cpu.
1536 *
f5faa077 1537 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1538 * themselves to the target cpu and may race with cpu going down or
1539 * coming online. kthread_bind() can't be used because it may put the
1540 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1541 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1542 * [dis]associated in the meantime.
1543 *
706026c2 1544 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1545 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1546 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1547 * enters idle state or fetches works without dropping lock, it can
1548 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1549 *
1550 * CONTEXT:
d565ed63 1551 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1552 * held.
1553 *
1554 * RETURNS:
706026c2 1555 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1556 * bound), %false if offline.
1557 */
f36dc67b 1558static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1559__acquires(&pool->lock)
e22bee78 1560{
e22bee78 1561 while (true) {
4e6045f1 1562 /*
e22bee78
TH
1563 * The following call may fail, succeed or succeed
1564 * without actually migrating the task to the cpu if
1565 * it races with cpu hotunplug operation. Verify
24647570 1566 * against POOL_DISASSOCIATED.
4e6045f1 1567 */
24647570 1568 if (!(pool->flags & POOL_DISASSOCIATED))
f5faa077 1569 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
e22bee78 1570
d565ed63 1571 spin_lock_irq(&pool->lock);
24647570 1572 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1573 return false;
f5faa077 1574 if (task_cpu(current) == pool->cpu &&
e22bee78 1575 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1576 get_cpu_mask(pool->cpu)))
e22bee78 1577 return true;
d565ed63 1578 spin_unlock_irq(&pool->lock);
e22bee78 1579
5035b20f
TH
1580 /*
1581 * We've raced with CPU hot[un]plug. Give it a breather
1582 * and retry migration. cond_resched() is required here;
1583 * otherwise, we might deadlock against cpu_stop trying to
1584 * bring down the CPU on non-preemptive kernel.
1585 */
e22bee78 1586 cpu_relax();
5035b20f 1587 cond_resched();
e22bee78
TH
1588 }
1589}
1590
25511a47 1591/*
ea1abd61 1592 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1593 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1594 */
1595static void idle_worker_rebind(struct worker *worker)
1596{
5f7dabfd 1597 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1598 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1599 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1600
ea1abd61
LJ
1601 /* rebind complete, become available again */
1602 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1603 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1604}
1605
e22bee78 1606/*
25511a47 1607 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1608 * the associated cpu which is coming back online. This is scheduled by
1609 * cpu up but can race with other cpu hotplug operations and may be
1610 * executed twice without intervening cpu down.
e22bee78 1611 */
25511a47 1612static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1613{
1614 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1615
f36dc67b 1616 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1617 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1618
d565ed63 1619 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1620}
1621
25511a47 1622/**
94cf58bb
TH
1623 * rebind_workers - rebind all workers of a pool to the associated CPU
1624 * @pool: pool of interest
25511a47 1625 *
94cf58bb 1626 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1627 * is different for idle and busy ones.
1628 *
ea1abd61
LJ
1629 * Idle ones will be removed from the idle_list and woken up. They will
1630 * add themselves back after completing rebind. This ensures that the
1631 * idle_list doesn't contain any unbound workers when re-bound busy workers
1632 * try to perform local wake-ups for concurrency management.
25511a47 1633 *
ea1abd61
LJ
1634 * Busy workers can rebind after they finish their current work items.
1635 * Queueing the rebind work item at the head of the scheduled list is
1636 * enough. Note that nr_running will be properly bumped as busy workers
1637 * rebind.
25511a47 1638 *
ea1abd61
LJ
1639 * On return, all non-manager workers are scheduled for rebind - see
1640 * manage_workers() for the manager special case. Any idle worker
1641 * including the manager will not appear on @idle_list until rebind is
1642 * complete, making local wake-ups safe.
25511a47 1643 */
94cf58bb 1644static void rebind_workers(struct worker_pool *pool)
25511a47 1645{
ea1abd61 1646 struct worker *worker, *n;
25511a47
TH
1647 int i;
1648
94cf58bb
TH
1649 lockdep_assert_held(&pool->assoc_mutex);
1650 lockdep_assert_held(&pool->lock);
25511a47 1651
5f7dabfd 1652 /* dequeue and kick idle ones */
94cf58bb
TH
1653 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1654 /*
1655 * idle workers should be off @pool->idle_list until rebind
1656 * is complete to avoid receiving premature local wake-ups.
1657 */
1658 list_del_init(&worker->entry);
25511a47 1659
94cf58bb
TH
1660 /*
1661 * worker_thread() will see the above dequeuing and call
1662 * idle_worker_rebind().
1663 */
1664 wake_up_process(worker->task);
1665 }
25511a47 1666
94cf58bb 1667 /* rebind busy workers */
b67bfe0d 1668 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1669 struct work_struct *rebind_work = &worker->rebind_work;
1670 struct workqueue_struct *wq;
25511a47 1671
94cf58bb
TH
1672 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1673 work_data_bits(rebind_work)))
1674 continue;
25511a47 1675
94cf58bb 1676 debug_work_activate(rebind_work);
90beca5d 1677
94cf58bb
TH
1678 /*
1679 * wq doesn't really matter but let's keep @worker->pool
112202d9 1680 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1681 */
1682 if (std_worker_pool_pri(worker->pool))
1683 wq = system_highpri_wq;
1684 else
1685 wq = system_wq;
1686
7fb98ea7 1687 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1688 worker->scheduled.next,
1689 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1690 }
25511a47
TH
1691}
1692
c34056a3
TH
1693static struct worker *alloc_worker(void)
1694{
1695 struct worker *worker;
1696
1697 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1698 if (worker) {
1699 INIT_LIST_HEAD(&worker->entry);
affee4b2 1700 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1701 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1702 /* on creation a worker is in !idle && prep state */
1703 worker->flags = WORKER_PREP;
c8e55f36 1704 }
c34056a3
TH
1705 return worker;
1706}
1707
1708/**
1709 * create_worker - create a new workqueue worker
63d95a91 1710 * @pool: pool the new worker will belong to
c34056a3 1711 *
63d95a91 1712 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1713 * can be started by calling start_worker() or destroyed using
1714 * destroy_worker().
1715 *
1716 * CONTEXT:
1717 * Might sleep. Does GFP_KERNEL allocations.
1718 *
1719 * RETURNS:
1720 * Pointer to the newly created worker.
1721 */
bc2ae0f5 1722static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1723{
e34cdddb 1724 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1725 struct worker *worker = NULL;
f3421797 1726 int id = -1;
c34056a3 1727
d565ed63 1728 spin_lock_irq(&pool->lock);
bd7bdd43 1729 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1730 spin_unlock_irq(&pool->lock);
bd7bdd43 1731 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1732 goto fail;
d565ed63 1733 spin_lock_irq(&pool->lock);
c34056a3 1734 }
d565ed63 1735 spin_unlock_irq(&pool->lock);
c34056a3
TH
1736
1737 worker = alloc_worker();
1738 if (!worker)
1739 goto fail;
1740
bd7bdd43 1741 worker->pool = pool;
c34056a3
TH
1742 worker->id = id;
1743
ec22ca5e 1744 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1745 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1746 worker, cpu_to_node(pool->cpu),
d84ff051 1747 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1748 else
1749 worker->task = kthread_create(worker_thread, worker,
3270476a 1750 "kworker/u:%d%s", id, pri);
c34056a3
TH
1751 if (IS_ERR(worker->task))
1752 goto fail;
1753
e34cdddb 1754 if (std_worker_pool_pri(pool))
3270476a
TH
1755 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1756
db7bccf4 1757 /*
bc2ae0f5 1758 * Determine CPU binding of the new worker depending on
24647570 1759 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1760 * flag remains stable across this function. See the comments
1761 * above the flag definition for details.
1762 *
1763 * As an unbound worker may later become a regular one if CPU comes
1764 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1765 */
24647570 1766 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1767 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1768 } else {
db7bccf4 1769 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1770 worker->flags |= WORKER_UNBOUND;
f3421797 1771 }
c34056a3
TH
1772
1773 return worker;
1774fail:
1775 if (id >= 0) {
d565ed63 1776 spin_lock_irq(&pool->lock);
bd7bdd43 1777 ida_remove(&pool->worker_ida, id);
d565ed63 1778 spin_unlock_irq(&pool->lock);
c34056a3
TH
1779 }
1780 kfree(worker);
1781 return NULL;
1782}
1783
1784/**
1785 * start_worker - start a newly created worker
1786 * @worker: worker to start
1787 *
706026c2 1788 * Make the pool aware of @worker and start it.
c34056a3
TH
1789 *
1790 * CONTEXT:
d565ed63 1791 * spin_lock_irq(pool->lock).
c34056a3
TH
1792 */
1793static void start_worker(struct worker *worker)
1794{
cb444766 1795 worker->flags |= WORKER_STARTED;
bd7bdd43 1796 worker->pool->nr_workers++;
c8e55f36 1797 worker_enter_idle(worker);
c34056a3
TH
1798 wake_up_process(worker->task);
1799}
1800
1801/**
1802 * destroy_worker - destroy a workqueue worker
1803 * @worker: worker to be destroyed
1804 *
706026c2 1805 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1806 *
1807 * CONTEXT:
d565ed63 1808 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1809 */
1810static void destroy_worker(struct worker *worker)
1811{
bd7bdd43 1812 struct worker_pool *pool = worker->pool;
c34056a3
TH
1813 int id = worker->id;
1814
1815 /* sanity check frenzy */
6183c009
TH
1816 if (WARN_ON(worker->current_work) ||
1817 WARN_ON(!list_empty(&worker->scheduled)))
1818 return;
c34056a3 1819
c8e55f36 1820 if (worker->flags & WORKER_STARTED)
bd7bdd43 1821 pool->nr_workers--;
c8e55f36 1822 if (worker->flags & WORKER_IDLE)
bd7bdd43 1823 pool->nr_idle--;
c8e55f36
TH
1824
1825 list_del_init(&worker->entry);
cb444766 1826 worker->flags |= WORKER_DIE;
c8e55f36 1827
d565ed63 1828 spin_unlock_irq(&pool->lock);
c8e55f36 1829
c34056a3
TH
1830 kthread_stop(worker->task);
1831 kfree(worker);
1832
d565ed63 1833 spin_lock_irq(&pool->lock);
bd7bdd43 1834 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1835}
1836
63d95a91 1837static void idle_worker_timeout(unsigned long __pool)
e22bee78 1838{
63d95a91 1839 struct worker_pool *pool = (void *)__pool;
e22bee78 1840
d565ed63 1841 spin_lock_irq(&pool->lock);
e22bee78 1842
63d95a91 1843 if (too_many_workers(pool)) {
e22bee78
TH
1844 struct worker *worker;
1845 unsigned long expires;
1846
1847 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1848 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1849 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1850
1851 if (time_before(jiffies, expires))
63d95a91 1852 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1853 else {
1854 /* it's been idle for too long, wake up manager */
11ebea50 1855 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1856 wake_up_worker(pool);
d5abe669 1857 }
e22bee78
TH
1858 }
1859
d565ed63 1860 spin_unlock_irq(&pool->lock);
e22bee78 1861}
d5abe669 1862
493a1724 1863static void send_mayday(struct work_struct *work)
e22bee78 1864{
112202d9
TH
1865 struct pool_workqueue *pwq = get_work_pwq(work);
1866 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1867
1868 lockdep_assert_held(&workqueue_lock);
e22bee78
TH
1869
1870 if (!(wq->flags & WQ_RESCUER))
493a1724 1871 return;
e22bee78
TH
1872
1873 /* mayday mayday mayday */
493a1724
TH
1874 if (list_empty(&pwq->mayday_node)) {
1875 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1876 wake_up_process(wq->rescuer->task);
493a1724 1877 }
e22bee78
TH
1878}
1879
706026c2 1880static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1881{
63d95a91 1882 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1883 struct work_struct *work;
1884
493a1724
TH
1885 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1886 spin_lock(&pool->lock);
e22bee78 1887
63d95a91 1888 if (need_to_create_worker(pool)) {
e22bee78
TH
1889 /*
1890 * We've been trying to create a new worker but
1891 * haven't been successful. We might be hitting an
1892 * allocation deadlock. Send distress signals to
1893 * rescuers.
1894 */
63d95a91 1895 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1896 send_mayday(work);
1da177e4 1897 }
e22bee78 1898
493a1724
TH
1899 spin_unlock(&pool->lock);
1900 spin_unlock_irq(&workqueue_lock);
e22bee78 1901
63d95a91 1902 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1903}
1904
e22bee78
TH
1905/**
1906 * maybe_create_worker - create a new worker if necessary
63d95a91 1907 * @pool: pool to create a new worker for
e22bee78 1908 *
63d95a91 1909 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1910 * have at least one idle worker on return from this function. If
1911 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1912 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1913 * possible allocation deadlock.
1914 *
1915 * On return, need_to_create_worker() is guaranteed to be false and
1916 * may_start_working() true.
1917 *
1918 * LOCKING:
d565ed63 1919 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1920 * multiple times. Does GFP_KERNEL allocations. Called only from
1921 * manager.
1922 *
1923 * RETURNS:
d565ed63 1924 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1925 * otherwise.
1926 */
63d95a91 1927static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1da177e4 1930{
63d95a91 1931 if (!need_to_create_worker(pool))
e22bee78
TH
1932 return false;
1933restart:
d565ed63 1934 spin_unlock_irq(&pool->lock);
9f9c2364 1935
e22bee78 1936 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1937 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1938
1939 while (true) {
1940 struct worker *worker;
1941
bc2ae0f5 1942 worker = create_worker(pool);
e22bee78 1943 if (worker) {
63d95a91 1944 del_timer_sync(&pool->mayday_timer);
d565ed63 1945 spin_lock_irq(&pool->lock);
e22bee78 1946 start_worker(worker);
6183c009
TH
1947 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1948 goto restart;
e22bee78
TH
1949 return true;
1950 }
1951
63d95a91 1952 if (!need_to_create_worker(pool))
e22bee78 1953 break;
1da177e4 1954
e22bee78
TH
1955 __set_current_state(TASK_INTERRUPTIBLE);
1956 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1957
63d95a91 1958 if (!need_to_create_worker(pool))
e22bee78
TH
1959 break;
1960 }
1961
63d95a91 1962 del_timer_sync(&pool->mayday_timer);
d565ed63 1963 spin_lock_irq(&pool->lock);
63d95a91 1964 if (need_to_create_worker(pool))
e22bee78
TH
1965 goto restart;
1966 return true;
1967}
1968
1969/**
1970 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1971 * @pool: pool to destroy workers for
e22bee78 1972 *
63d95a91 1973 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1974 * IDLE_WORKER_TIMEOUT.
1975 *
1976 * LOCKING:
d565ed63 1977 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1978 * multiple times. Called only from manager.
1979 *
1980 * RETURNS:
d565ed63 1981 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1982 * otherwise.
1983 */
63d95a91 1984static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1985{
1986 bool ret = false;
1da177e4 1987
63d95a91 1988 while (too_many_workers(pool)) {
e22bee78
TH
1989 struct worker *worker;
1990 unsigned long expires;
3af24433 1991
63d95a91 1992 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1993 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1994
e22bee78 1995 if (time_before(jiffies, expires)) {
63d95a91 1996 mod_timer(&pool->idle_timer, expires);
3af24433 1997 break;
e22bee78 1998 }
1da177e4 1999
e22bee78
TH
2000 destroy_worker(worker);
2001 ret = true;
1da177e4 2002 }
1e19ffc6 2003
e22bee78 2004 return ret;
1e19ffc6
TH
2005}
2006
73f53c4a 2007/**
e22bee78
TH
2008 * manage_workers - manage worker pool
2009 * @worker: self
73f53c4a 2010 *
706026c2 2011 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2012 * to. At any given time, there can be only zero or one manager per
706026c2 2013 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2014 *
2015 * The caller can safely start processing works on false return. On
2016 * true return, it's guaranteed that need_to_create_worker() is false
2017 * and may_start_working() is true.
73f53c4a
TH
2018 *
2019 * CONTEXT:
d565ed63 2020 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2021 * multiple times. Does GFP_KERNEL allocations.
2022 *
2023 * RETURNS:
d565ed63
TH
2024 * spin_lock_irq(pool->lock) which may be released and regrabbed
2025 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2026 */
e22bee78 2027static bool manage_workers(struct worker *worker)
73f53c4a 2028{
63d95a91 2029 struct worker_pool *pool = worker->pool;
e22bee78 2030 bool ret = false;
73f53c4a 2031
ee378aa4 2032 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2033 return ret;
1e19ffc6 2034
552a37e9 2035 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2036
ee378aa4
LJ
2037 /*
2038 * To simplify both worker management and CPU hotplug, hold off
2039 * management while hotplug is in progress. CPU hotplug path can't
2040 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2041 * lead to idle worker depletion (all become busy thinking someone
2042 * else is managing) which in turn can result in deadlock under
b2eb83d1 2043 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2044 * manager against CPU hotplug.
2045 *
b2eb83d1 2046 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2047 * progress. trylock first without dropping @pool->lock.
ee378aa4 2048 */
b2eb83d1 2049 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2050 spin_unlock_irq(&pool->lock);
b2eb83d1 2051 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2052 /*
2053 * CPU hotplug could have happened while we were waiting
b2eb83d1 2054 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2055 * because manager isn't either on idle or busy list, and
706026c2 2056 * @pool's state and ours could have deviated.
ee378aa4 2057 *
b2eb83d1 2058 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2059 * simply try to bind. It will succeed or fail depending
706026c2 2060 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2061 * %WORKER_UNBOUND accordingly.
2062 */
f36dc67b 2063 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2064 worker->flags &= ~WORKER_UNBOUND;
2065 else
2066 worker->flags |= WORKER_UNBOUND;
73f53c4a 2067
ee378aa4
LJ
2068 ret = true;
2069 }
73f53c4a 2070
11ebea50 2071 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2072
2073 /*
e22bee78
TH
2074 * Destroy and then create so that may_start_working() is true
2075 * on return.
73f53c4a 2076 */
63d95a91
TH
2077 ret |= maybe_destroy_workers(pool);
2078 ret |= maybe_create_worker(pool);
e22bee78 2079
552a37e9 2080 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2081 mutex_unlock(&pool->assoc_mutex);
e22bee78 2082 return ret;
73f53c4a
TH
2083}
2084
a62428c0
TH
2085/**
2086 * process_one_work - process single work
c34056a3 2087 * @worker: self
a62428c0
TH
2088 * @work: work to process
2089 *
2090 * Process @work. This function contains all the logics necessary to
2091 * process a single work including synchronization against and
2092 * interaction with other workers on the same cpu, queueing and
2093 * flushing. As long as context requirement is met, any worker can
2094 * call this function to process a work.
2095 *
2096 * CONTEXT:
d565ed63 2097 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2098 */
c34056a3 2099static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2100__releases(&pool->lock)
2101__acquires(&pool->lock)
a62428c0 2102{
112202d9 2103 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2104 struct worker_pool *pool = worker->pool;
112202d9 2105 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2106 int work_color;
7e11629d 2107 struct worker *collision;
a62428c0
TH
2108#ifdef CONFIG_LOCKDEP
2109 /*
2110 * It is permissible to free the struct work_struct from
2111 * inside the function that is called from it, this we need to
2112 * take into account for lockdep too. To avoid bogus "held
2113 * lock freed" warnings as well as problems when looking into
2114 * work->lockdep_map, make a copy and use that here.
2115 */
4d82a1de
PZ
2116 struct lockdep_map lockdep_map;
2117
2118 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2119#endif
6fec10a1
TH
2120 /*
2121 * Ensure we're on the correct CPU. DISASSOCIATED test is
2122 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2123 * unbound or a disassociated pool.
6fec10a1 2124 */
5f7dabfd 2125 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2126 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2127 raw_smp_processor_id() != pool->cpu);
25511a47 2128
7e11629d
TH
2129 /*
2130 * A single work shouldn't be executed concurrently by
2131 * multiple workers on a single cpu. Check whether anyone is
2132 * already processing the work. If so, defer the work to the
2133 * currently executing one.
2134 */
c9e7cf27 2135 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2136 if (unlikely(collision)) {
2137 move_linked_works(work, &collision->scheduled, NULL);
2138 return;
2139 }
2140
8930caba 2141 /* claim and dequeue */
a62428c0 2142 debug_work_deactivate(work);
c9e7cf27 2143 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2144 worker->current_work = work;
a2c1c57b 2145 worker->current_func = work->func;
112202d9 2146 worker->current_pwq = pwq;
73f53c4a 2147 work_color = get_work_color(work);
7a22ad75 2148
a62428c0
TH
2149 list_del_init(&work->entry);
2150
fb0e7beb
TH
2151 /*
2152 * CPU intensive works don't participate in concurrency
2153 * management. They're the scheduler's responsibility.
2154 */
2155 if (unlikely(cpu_intensive))
2156 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2157
974271c4 2158 /*
d565ed63 2159 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2160 * executed ASAP. Wake up another worker if necessary.
2161 */
63d95a91
TH
2162 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2163 wake_up_worker(pool);
974271c4 2164
8930caba 2165 /*
7c3eed5c 2166 * Record the last pool and clear PENDING which should be the last
d565ed63 2167 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2168 * PENDING and queued state changes happen together while IRQ is
2169 * disabled.
8930caba 2170 */
7c3eed5c 2171 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2172
d565ed63 2173 spin_unlock_irq(&pool->lock);
a62428c0 2174
112202d9 2175 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2176 lock_map_acquire(&lockdep_map);
e36c886a 2177 trace_workqueue_execute_start(work);
a2c1c57b 2178 worker->current_func(work);
e36c886a
AV
2179 /*
2180 * While we must be careful to not use "work" after this, the trace
2181 * point will only record its address.
2182 */
2183 trace_workqueue_execute_end(work);
a62428c0 2184 lock_map_release(&lockdep_map);
112202d9 2185 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2186
2187 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2188 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2189 " last function: %pf\n",
a2c1c57b
TH
2190 current->comm, preempt_count(), task_pid_nr(current),
2191 worker->current_func);
a62428c0
TH
2192 debug_show_held_locks(current);
2193 dump_stack();
2194 }
2195
d565ed63 2196 spin_lock_irq(&pool->lock);
a62428c0 2197
fb0e7beb
TH
2198 /* clear cpu intensive status */
2199 if (unlikely(cpu_intensive))
2200 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2201
a62428c0 2202 /* we're done with it, release */
42f8570f 2203 hash_del(&worker->hentry);
c34056a3 2204 worker->current_work = NULL;
a2c1c57b 2205 worker->current_func = NULL;
112202d9
TH
2206 worker->current_pwq = NULL;
2207 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2208}
2209
affee4b2
TH
2210/**
2211 * process_scheduled_works - process scheduled works
2212 * @worker: self
2213 *
2214 * Process all scheduled works. Please note that the scheduled list
2215 * may change while processing a work, so this function repeatedly
2216 * fetches a work from the top and executes it.
2217 *
2218 * CONTEXT:
d565ed63 2219 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2220 * multiple times.
2221 */
2222static void process_scheduled_works(struct worker *worker)
1da177e4 2223{
affee4b2
TH
2224 while (!list_empty(&worker->scheduled)) {
2225 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2226 struct work_struct, entry);
c34056a3 2227 process_one_work(worker, work);
1da177e4 2228 }
1da177e4
LT
2229}
2230
4690c4ab
TH
2231/**
2232 * worker_thread - the worker thread function
c34056a3 2233 * @__worker: self
4690c4ab 2234 *
706026c2
TH
2235 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2236 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2237 * their specific target workqueue. The only exception is works which
2238 * belong to workqueues with a rescuer which will be explained in
2239 * rescuer_thread().
4690c4ab 2240 */
c34056a3 2241static int worker_thread(void *__worker)
1da177e4 2242{
c34056a3 2243 struct worker *worker = __worker;
bd7bdd43 2244 struct worker_pool *pool = worker->pool;
1da177e4 2245
e22bee78
TH
2246 /* tell the scheduler that this is a workqueue worker */
2247 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2248woke_up:
d565ed63 2249 spin_lock_irq(&pool->lock);
1da177e4 2250
5f7dabfd
LJ
2251 /* we are off idle list if destruction or rebind is requested */
2252 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2253 spin_unlock_irq(&pool->lock);
25511a47 2254
5f7dabfd 2255 /* if DIE is set, destruction is requested */
25511a47
TH
2256 if (worker->flags & WORKER_DIE) {
2257 worker->task->flags &= ~PF_WQ_WORKER;
2258 return 0;
2259 }
2260
5f7dabfd 2261 /* otherwise, rebind */
25511a47
TH
2262 idle_worker_rebind(worker);
2263 goto woke_up;
c8e55f36 2264 }
affee4b2 2265
c8e55f36 2266 worker_leave_idle(worker);
db7bccf4 2267recheck:
e22bee78 2268 /* no more worker necessary? */
63d95a91 2269 if (!need_more_worker(pool))
e22bee78
TH
2270 goto sleep;
2271
2272 /* do we need to manage? */
63d95a91 2273 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2274 goto recheck;
2275
c8e55f36
TH
2276 /*
2277 * ->scheduled list can only be filled while a worker is
2278 * preparing to process a work or actually processing it.
2279 * Make sure nobody diddled with it while I was sleeping.
2280 */
6183c009 2281 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2282
e22bee78
TH
2283 /*
2284 * When control reaches this point, we're guaranteed to have
2285 * at least one idle worker or that someone else has already
2286 * assumed the manager role.
2287 */
2288 worker_clr_flags(worker, WORKER_PREP);
2289
2290 do {
c8e55f36 2291 struct work_struct *work =
bd7bdd43 2292 list_first_entry(&pool->worklist,
c8e55f36
TH
2293 struct work_struct, entry);
2294
2295 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2296 /* optimization path, not strictly necessary */
2297 process_one_work(worker, work);
2298 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2299 process_scheduled_works(worker);
c8e55f36
TH
2300 } else {
2301 move_linked_works(work, &worker->scheduled, NULL);
2302 process_scheduled_works(worker);
affee4b2 2303 }
63d95a91 2304 } while (keep_working(pool));
e22bee78
TH
2305
2306 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2307sleep:
63d95a91 2308 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2309 goto recheck;
d313dd85 2310
c8e55f36 2311 /*
d565ed63
TH
2312 * pool->lock is held and there's no work to process and no need to
2313 * manage, sleep. Workers are woken up only while holding
2314 * pool->lock or from local cpu, so setting the current state
2315 * before releasing pool->lock is enough to prevent losing any
2316 * event.
c8e55f36
TH
2317 */
2318 worker_enter_idle(worker);
2319 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2320 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2321 schedule();
2322 goto woke_up;
1da177e4
LT
2323}
2324
e22bee78
TH
2325/**
2326 * rescuer_thread - the rescuer thread function
111c225a 2327 * @__rescuer: self
e22bee78
TH
2328 *
2329 * Workqueue rescuer thread function. There's one rescuer for each
2330 * workqueue which has WQ_RESCUER set.
2331 *
706026c2 2332 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2333 * worker which uses GFP_KERNEL allocation which has slight chance of
2334 * developing into deadlock if some works currently on the same queue
2335 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2336 * the problem rescuer solves.
2337 *
706026c2
TH
2338 * When such condition is possible, the pool summons rescuers of all
2339 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2340 * those works so that forward progress can be guaranteed.
2341 *
2342 * This should happen rarely.
2343 */
111c225a 2344static int rescuer_thread(void *__rescuer)
e22bee78 2345{
111c225a
TH
2346 struct worker *rescuer = __rescuer;
2347 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2348 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2349
2350 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2351
2352 /*
2353 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2354 * doesn't participate in concurrency management.
2355 */
2356 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2357repeat:
2358 set_current_state(TASK_INTERRUPTIBLE);
2359
412d32e6
MG
2360 if (kthread_should_stop()) {
2361 __set_current_state(TASK_RUNNING);
111c225a 2362 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2363 return 0;
412d32e6 2364 }
e22bee78 2365
493a1724
TH
2366 /* see whether any pwq is asking for help */
2367 spin_lock_irq(&workqueue_lock);
2368
2369 while (!list_empty(&wq->maydays)) {
2370 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2371 struct pool_workqueue, mayday_node);
112202d9 2372 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2373 struct work_struct *work, *n;
2374
2375 __set_current_state(TASK_RUNNING);
493a1724
TH
2376 list_del_init(&pwq->mayday_node);
2377
2378 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2379
2380 /* migrate to the target cpu if possible */
f36dc67b 2381 worker_maybe_bind_and_lock(pool);
b3104104 2382 rescuer->pool = pool;
e22bee78
TH
2383
2384 /*
2385 * Slurp in all works issued via this workqueue and
2386 * process'em.
2387 */
6183c009 2388 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2389 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2390 if (get_work_pwq(work) == pwq)
e22bee78
TH
2391 move_linked_works(work, scheduled, &n);
2392
2393 process_scheduled_works(rescuer);
7576958a
TH
2394
2395 /*
d565ed63 2396 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2397 * regular worker; otherwise, we end up with 0 concurrency
2398 * and stalling the execution.
2399 */
63d95a91
TH
2400 if (keep_working(pool))
2401 wake_up_worker(pool);
7576958a 2402
b3104104 2403 rescuer->pool = NULL;
493a1724
TH
2404 spin_unlock(&pool->lock);
2405 spin_lock(&workqueue_lock);
e22bee78
TH
2406 }
2407
493a1724
TH
2408 spin_unlock_irq(&workqueue_lock);
2409
111c225a
TH
2410 /* rescuers should never participate in concurrency management */
2411 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2412 schedule();
2413 goto repeat;
1da177e4
LT
2414}
2415
fc2e4d70
ON
2416struct wq_barrier {
2417 struct work_struct work;
2418 struct completion done;
2419};
2420
2421static void wq_barrier_func(struct work_struct *work)
2422{
2423 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2424 complete(&barr->done);
2425}
2426
4690c4ab
TH
2427/**
2428 * insert_wq_barrier - insert a barrier work
112202d9 2429 * @pwq: pwq to insert barrier into
4690c4ab 2430 * @barr: wq_barrier to insert
affee4b2
TH
2431 * @target: target work to attach @barr to
2432 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2433 *
affee4b2
TH
2434 * @barr is linked to @target such that @barr is completed only after
2435 * @target finishes execution. Please note that the ordering
2436 * guarantee is observed only with respect to @target and on the local
2437 * cpu.
2438 *
2439 * Currently, a queued barrier can't be canceled. This is because
2440 * try_to_grab_pending() can't determine whether the work to be
2441 * grabbed is at the head of the queue and thus can't clear LINKED
2442 * flag of the previous work while there must be a valid next work
2443 * after a work with LINKED flag set.
2444 *
2445 * Note that when @worker is non-NULL, @target may be modified
112202d9 2446 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2447 *
2448 * CONTEXT:
d565ed63 2449 * spin_lock_irq(pool->lock).
4690c4ab 2450 */
112202d9 2451static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2452 struct wq_barrier *barr,
2453 struct work_struct *target, struct worker *worker)
fc2e4d70 2454{
affee4b2
TH
2455 struct list_head *head;
2456 unsigned int linked = 0;
2457
dc186ad7 2458 /*
d565ed63 2459 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2460 * as we know for sure that this will not trigger any of the
2461 * checks and call back into the fixup functions where we
2462 * might deadlock.
2463 */
ca1cab37 2464 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2465 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2466 init_completion(&barr->done);
83c22520 2467
affee4b2
TH
2468 /*
2469 * If @target is currently being executed, schedule the
2470 * barrier to the worker; otherwise, put it after @target.
2471 */
2472 if (worker)
2473 head = worker->scheduled.next;
2474 else {
2475 unsigned long *bits = work_data_bits(target);
2476
2477 head = target->entry.next;
2478 /* there can already be other linked works, inherit and set */
2479 linked = *bits & WORK_STRUCT_LINKED;
2480 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2481 }
2482
dc186ad7 2483 debug_work_activate(&barr->work);
112202d9 2484 insert_work(pwq, &barr->work, head,
affee4b2 2485 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2486}
2487
73f53c4a 2488/**
112202d9 2489 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2490 * @wq: workqueue being flushed
2491 * @flush_color: new flush color, < 0 for no-op
2492 * @work_color: new work color, < 0 for no-op
2493 *
112202d9 2494 * Prepare pwqs for workqueue flushing.
73f53c4a 2495 *
112202d9
TH
2496 * If @flush_color is non-negative, flush_color on all pwqs should be
2497 * -1. If no pwq has in-flight commands at the specified color, all
2498 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2499 * has in flight commands, its pwq->flush_color is set to
2500 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2501 * wakeup logic is armed and %true is returned.
2502 *
2503 * The caller should have initialized @wq->first_flusher prior to
2504 * calling this function with non-negative @flush_color. If
2505 * @flush_color is negative, no flush color update is done and %false
2506 * is returned.
2507 *
112202d9 2508 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2509 * work_color which is previous to @work_color and all will be
2510 * advanced to @work_color.
2511 *
2512 * CONTEXT:
2513 * mutex_lock(wq->flush_mutex).
2514 *
2515 * RETURNS:
2516 * %true if @flush_color >= 0 and there's something to flush. %false
2517 * otherwise.
2518 */
112202d9 2519static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2520 int flush_color, int work_color)
1da177e4 2521{
73f53c4a 2522 bool wait = false;
49e3cf44 2523 struct pool_workqueue *pwq;
1da177e4 2524
73f53c4a 2525 if (flush_color >= 0) {
6183c009 2526 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2527 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2528 }
2355b70f 2529
76af4d93
TH
2530 local_irq_disable();
2531
49e3cf44 2532 for_each_pwq(pwq, wq) {
112202d9 2533 struct worker_pool *pool = pwq->pool;
fc2e4d70 2534
76af4d93 2535 spin_lock(&pool->lock);
83c22520 2536
73f53c4a 2537 if (flush_color >= 0) {
6183c009 2538 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2539
112202d9
TH
2540 if (pwq->nr_in_flight[flush_color]) {
2541 pwq->flush_color = flush_color;
2542 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2543 wait = true;
2544 }
2545 }
1da177e4 2546
73f53c4a 2547 if (work_color >= 0) {
6183c009 2548 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2549 pwq->work_color = work_color;
73f53c4a 2550 }
1da177e4 2551
76af4d93 2552 spin_unlock(&pool->lock);
1da177e4 2553 }
2355b70f 2554
76af4d93
TH
2555 local_irq_enable();
2556
112202d9 2557 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2558 complete(&wq->first_flusher->done);
14441960 2559
73f53c4a 2560 return wait;
1da177e4
LT
2561}
2562
0fcb78c2 2563/**
1da177e4 2564 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2565 * @wq: workqueue to flush
1da177e4
LT
2566 *
2567 * Forces execution of the workqueue and blocks until its completion.
2568 * This is typically used in driver shutdown handlers.
2569 *
fc2e4d70
ON
2570 * We sleep until all works which were queued on entry have been handled,
2571 * but we are not livelocked by new incoming ones.
1da177e4 2572 */
7ad5b3a5 2573void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2574{
73f53c4a
TH
2575 struct wq_flusher this_flusher = {
2576 .list = LIST_HEAD_INIT(this_flusher.list),
2577 .flush_color = -1,
2578 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2579 };
2580 int next_color;
1da177e4 2581
3295f0ef
IM
2582 lock_map_acquire(&wq->lockdep_map);
2583 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2584
2585 mutex_lock(&wq->flush_mutex);
2586
2587 /*
2588 * Start-to-wait phase
2589 */
2590 next_color = work_next_color(wq->work_color);
2591
2592 if (next_color != wq->flush_color) {
2593 /*
2594 * Color space is not full. The current work_color
2595 * becomes our flush_color and work_color is advanced
2596 * by one.
2597 */
6183c009 2598 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2599 this_flusher.flush_color = wq->work_color;
2600 wq->work_color = next_color;
2601
2602 if (!wq->first_flusher) {
2603 /* no flush in progress, become the first flusher */
6183c009 2604 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2605
2606 wq->first_flusher = &this_flusher;
2607
112202d9 2608 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2609 wq->work_color)) {
2610 /* nothing to flush, done */
2611 wq->flush_color = next_color;
2612 wq->first_flusher = NULL;
2613 goto out_unlock;
2614 }
2615 } else {
2616 /* wait in queue */
6183c009 2617 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2618 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2619 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2620 }
2621 } else {
2622 /*
2623 * Oops, color space is full, wait on overflow queue.
2624 * The next flush completion will assign us
2625 * flush_color and transfer to flusher_queue.
2626 */
2627 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2628 }
2629
2630 mutex_unlock(&wq->flush_mutex);
2631
2632 wait_for_completion(&this_flusher.done);
2633
2634 /*
2635 * Wake-up-and-cascade phase
2636 *
2637 * First flushers are responsible for cascading flushes and
2638 * handling overflow. Non-first flushers can simply return.
2639 */
2640 if (wq->first_flusher != &this_flusher)
2641 return;
2642
2643 mutex_lock(&wq->flush_mutex);
2644
4ce48b37
TH
2645 /* we might have raced, check again with mutex held */
2646 if (wq->first_flusher != &this_flusher)
2647 goto out_unlock;
2648
73f53c4a
TH
2649 wq->first_flusher = NULL;
2650
6183c009
TH
2651 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2652 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2653
2654 while (true) {
2655 struct wq_flusher *next, *tmp;
2656
2657 /* complete all the flushers sharing the current flush color */
2658 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2659 if (next->flush_color != wq->flush_color)
2660 break;
2661 list_del_init(&next->list);
2662 complete(&next->done);
2663 }
2664
6183c009
TH
2665 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2666 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2667
2668 /* this flush_color is finished, advance by one */
2669 wq->flush_color = work_next_color(wq->flush_color);
2670
2671 /* one color has been freed, handle overflow queue */
2672 if (!list_empty(&wq->flusher_overflow)) {
2673 /*
2674 * Assign the same color to all overflowed
2675 * flushers, advance work_color and append to
2676 * flusher_queue. This is the start-to-wait
2677 * phase for these overflowed flushers.
2678 */
2679 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2680 tmp->flush_color = wq->work_color;
2681
2682 wq->work_color = work_next_color(wq->work_color);
2683
2684 list_splice_tail_init(&wq->flusher_overflow,
2685 &wq->flusher_queue);
112202d9 2686 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2687 }
2688
2689 if (list_empty(&wq->flusher_queue)) {
6183c009 2690 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2691 break;
2692 }
2693
2694 /*
2695 * Need to flush more colors. Make the next flusher
112202d9 2696 * the new first flusher and arm pwqs.
73f53c4a 2697 */
6183c009
TH
2698 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2699 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2700
2701 list_del_init(&next->list);
2702 wq->first_flusher = next;
2703
112202d9 2704 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2705 break;
2706
2707 /*
2708 * Meh... this color is already done, clear first
2709 * flusher and repeat cascading.
2710 */
2711 wq->first_flusher = NULL;
2712 }
2713
2714out_unlock:
2715 mutex_unlock(&wq->flush_mutex);
1da177e4 2716}
ae90dd5d 2717EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2718
9c5a2ba7
TH
2719/**
2720 * drain_workqueue - drain a workqueue
2721 * @wq: workqueue to drain
2722 *
2723 * Wait until the workqueue becomes empty. While draining is in progress,
2724 * only chain queueing is allowed. IOW, only currently pending or running
2725 * work items on @wq can queue further work items on it. @wq is flushed
2726 * repeatedly until it becomes empty. The number of flushing is detemined
2727 * by the depth of chaining and should be relatively short. Whine if it
2728 * takes too long.
2729 */
2730void drain_workqueue(struct workqueue_struct *wq)
2731{
2732 unsigned int flush_cnt = 0;
49e3cf44 2733 struct pool_workqueue *pwq;
9c5a2ba7
TH
2734
2735 /*
2736 * __queue_work() needs to test whether there are drainers, is much
2737 * hotter than drain_workqueue() and already looks at @wq->flags.
2738 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2739 */
e98d5b16 2740 spin_lock_irq(&workqueue_lock);
9c5a2ba7
TH
2741 if (!wq->nr_drainers++)
2742 wq->flags |= WQ_DRAINING;
e98d5b16 2743 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2744reflush:
2745 flush_workqueue(wq);
2746
76af4d93
TH
2747 local_irq_disable();
2748
49e3cf44 2749 for_each_pwq(pwq, wq) {
fa2563e4 2750 bool drained;
9c5a2ba7 2751
76af4d93 2752 spin_lock(&pwq->pool->lock);
112202d9 2753 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2754 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2755
2756 if (drained)
9c5a2ba7
TH
2757 continue;
2758
2759 if (++flush_cnt == 10 ||
2760 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2761 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2762 wq->name, flush_cnt);
76af4d93
TH
2763
2764 local_irq_enable();
9c5a2ba7
TH
2765 goto reflush;
2766 }
2767
76af4d93 2768 spin_lock(&workqueue_lock);
9c5a2ba7
TH
2769 if (!--wq->nr_drainers)
2770 wq->flags &= ~WQ_DRAINING;
76af4d93
TH
2771 spin_unlock(&workqueue_lock);
2772
2773 local_irq_enable();
9c5a2ba7
TH
2774}
2775EXPORT_SYMBOL_GPL(drain_workqueue);
2776
606a5020 2777static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2778{
affee4b2 2779 struct worker *worker = NULL;
c9e7cf27 2780 struct worker_pool *pool;
112202d9 2781 struct pool_workqueue *pwq;
db700897
ON
2782
2783 might_sleep();
fa1b54e6
TH
2784
2785 local_irq_disable();
c9e7cf27 2786 pool = get_work_pool(work);
fa1b54e6
TH
2787 if (!pool) {
2788 local_irq_enable();
baf59022 2789 return false;
fa1b54e6 2790 }
db700897 2791
fa1b54e6 2792 spin_lock(&pool->lock);
0b3dae68 2793 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2794 pwq = get_work_pwq(work);
2795 if (pwq) {
2796 if (unlikely(pwq->pool != pool))
4690c4ab 2797 goto already_gone;
606a5020 2798 } else {
c9e7cf27 2799 worker = find_worker_executing_work(pool, work);
affee4b2 2800 if (!worker)
4690c4ab 2801 goto already_gone;
112202d9 2802 pwq = worker->current_pwq;
606a5020 2803 }
db700897 2804
112202d9 2805 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2806 spin_unlock_irq(&pool->lock);
7a22ad75 2807
e159489b
TH
2808 /*
2809 * If @max_active is 1 or rescuer is in use, flushing another work
2810 * item on the same workqueue may lead to deadlock. Make sure the
2811 * flusher is not running on the same workqueue by verifying write
2812 * access.
2813 */
112202d9
TH
2814 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2815 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2816 else
112202d9
TH
2817 lock_map_acquire_read(&pwq->wq->lockdep_map);
2818 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2819
401a8d04 2820 return true;
4690c4ab 2821already_gone:
d565ed63 2822 spin_unlock_irq(&pool->lock);
401a8d04 2823 return false;
db700897 2824}
baf59022
TH
2825
2826/**
2827 * flush_work - wait for a work to finish executing the last queueing instance
2828 * @work: the work to flush
2829 *
606a5020
TH
2830 * Wait until @work has finished execution. @work is guaranteed to be idle
2831 * on return if it hasn't been requeued since flush started.
baf59022
TH
2832 *
2833 * RETURNS:
2834 * %true if flush_work() waited for the work to finish execution,
2835 * %false if it was already idle.
2836 */
2837bool flush_work(struct work_struct *work)
2838{
2839 struct wq_barrier barr;
2840
0976dfc1
SB
2841 lock_map_acquire(&work->lockdep_map);
2842 lock_map_release(&work->lockdep_map);
2843
606a5020 2844 if (start_flush_work(work, &barr)) {
401a8d04
TH
2845 wait_for_completion(&barr.done);
2846 destroy_work_on_stack(&barr.work);
2847 return true;
606a5020 2848 } else {
401a8d04 2849 return false;
6e84d644 2850 }
6e84d644 2851}
606a5020 2852EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2853
36e227d2 2854static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2855{
bbb68dfa 2856 unsigned long flags;
1f1f642e
ON
2857 int ret;
2858
2859 do {
bbb68dfa
TH
2860 ret = try_to_grab_pending(work, is_dwork, &flags);
2861 /*
2862 * If someone else is canceling, wait for the same event it
2863 * would be waiting for before retrying.
2864 */
2865 if (unlikely(ret == -ENOENT))
606a5020 2866 flush_work(work);
1f1f642e
ON
2867 } while (unlikely(ret < 0));
2868
bbb68dfa
TH
2869 /* tell other tasks trying to grab @work to back off */
2870 mark_work_canceling(work);
2871 local_irq_restore(flags);
2872
606a5020 2873 flush_work(work);
7a22ad75 2874 clear_work_data(work);
1f1f642e
ON
2875 return ret;
2876}
2877
6e84d644 2878/**
401a8d04
TH
2879 * cancel_work_sync - cancel a work and wait for it to finish
2880 * @work: the work to cancel
6e84d644 2881 *
401a8d04
TH
2882 * Cancel @work and wait for its execution to finish. This function
2883 * can be used even if the work re-queues itself or migrates to
2884 * another workqueue. On return from this function, @work is
2885 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2886 *
401a8d04
TH
2887 * cancel_work_sync(&delayed_work->work) must not be used for
2888 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2889 *
401a8d04 2890 * The caller must ensure that the workqueue on which @work was last
6e84d644 2891 * queued can't be destroyed before this function returns.
401a8d04
TH
2892 *
2893 * RETURNS:
2894 * %true if @work was pending, %false otherwise.
6e84d644 2895 */
401a8d04 2896bool cancel_work_sync(struct work_struct *work)
6e84d644 2897{
36e227d2 2898 return __cancel_work_timer(work, false);
b89deed3 2899}
28e53bdd 2900EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2901
6e84d644 2902/**
401a8d04
TH
2903 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2904 * @dwork: the delayed work to flush
6e84d644 2905 *
401a8d04
TH
2906 * Delayed timer is cancelled and the pending work is queued for
2907 * immediate execution. Like flush_work(), this function only
2908 * considers the last queueing instance of @dwork.
1f1f642e 2909 *
401a8d04
TH
2910 * RETURNS:
2911 * %true if flush_work() waited for the work to finish execution,
2912 * %false if it was already idle.
6e84d644 2913 */
401a8d04
TH
2914bool flush_delayed_work(struct delayed_work *dwork)
2915{
8930caba 2916 local_irq_disable();
401a8d04 2917 if (del_timer_sync(&dwork->timer))
60c057bc 2918 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2919 local_irq_enable();
401a8d04
TH
2920 return flush_work(&dwork->work);
2921}
2922EXPORT_SYMBOL(flush_delayed_work);
2923
09383498 2924/**
57b30ae7
TH
2925 * cancel_delayed_work - cancel a delayed work
2926 * @dwork: delayed_work to cancel
09383498 2927 *
57b30ae7
TH
2928 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2929 * and canceled; %false if wasn't pending. Note that the work callback
2930 * function may still be running on return, unless it returns %true and the
2931 * work doesn't re-arm itself. Explicitly flush or use
2932 * cancel_delayed_work_sync() to wait on it.
09383498 2933 *
57b30ae7 2934 * This function is safe to call from any context including IRQ handler.
09383498 2935 */
57b30ae7 2936bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2937{
57b30ae7
TH
2938 unsigned long flags;
2939 int ret;
2940
2941 do {
2942 ret = try_to_grab_pending(&dwork->work, true, &flags);
2943 } while (unlikely(ret == -EAGAIN));
2944
2945 if (unlikely(ret < 0))
2946 return false;
2947
7c3eed5c
TH
2948 set_work_pool_and_clear_pending(&dwork->work,
2949 get_work_pool_id(&dwork->work));
57b30ae7 2950 local_irq_restore(flags);
c0158ca6 2951 return ret;
09383498 2952}
57b30ae7 2953EXPORT_SYMBOL(cancel_delayed_work);
09383498 2954
401a8d04
TH
2955/**
2956 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2957 * @dwork: the delayed work cancel
2958 *
2959 * This is cancel_work_sync() for delayed works.
2960 *
2961 * RETURNS:
2962 * %true if @dwork was pending, %false otherwise.
2963 */
2964bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2965{
36e227d2 2966 return __cancel_work_timer(&dwork->work, true);
6e84d644 2967}
f5a421a4 2968EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2969
0fcb78c2 2970/**
c1a220e7
ZR
2971 * schedule_work_on - put work task on a specific cpu
2972 * @cpu: cpu to put the work task on
2973 * @work: job to be done
2974 *
2975 * This puts a job on a specific cpu
2976 */
d4283e93 2977bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2978{
d320c038 2979 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2980}
2981EXPORT_SYMBOL(schedule_work_on);
2982
0fcb78c2 2983/**
0fcb78c2
REB
2984 * schedule_work - put work task in global workqueue
2985 * @work: job to be done
0fcb78c2 2986 *
d4283e93
TH
2987 * Returns %false if @work was already on the kernel-global workqueue and
2988 * %true otherwise.
5b0f437d
BVA
2989 *
2990 * This puts a job in the kernel-global workqueue if it was not already
2991 * queued and leaves it in the same position on the kernel-global
2992 * workqueue otherwise.
0fcb78c2 2993 */
d4283e93 2994bool schedule_work(struct work_struct *work)
1da177e4 2995{
d320c038 2996 return queue_work(system_wq, work);
1da177e4 2997}
ae90dd5d 2998EXPORT_SYMBOL(schedule_work);
1da177e4 2999
0fcb78c2
REB
3000/**
3001 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3002 * @cpu: cpu to use
52bad64d 3003 * @dwork: job to be done
0fcb78c2
REB
3004 * @delay: number of jiffies to wait
3005 *
3006 * After waiting for a given time this puts a job in the kernel-global
3007 * workqueue on the specified CPU.
3008 */
d4283e93
TH
3009bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3010 unsigned long delay)
1da177e4 3011{
d320c038 3012 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3013}
ae90dd5d 3014EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3015
0fcb78c2
REB
3016/**
3017 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3018 * @dwork: job to be done
3019 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3020 *
3021 * After waiting for a given time this puts a job in the kernel-global
3022 * workqueue.
3023 */
d4283e93 3024bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3025{
d320c038 3026 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3027}
ae90dd5d 3028EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3029
b6136773 3030/**
31ddd871 3031 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3032 * @func: the function to call
b6136773 3033 *
31ddd871
TH
3034 * schedule_on_each_cpu() executes @func on each online CPU using the
3035 * system workqueue and blocks until all CPUs have completed.
b6136773 3036 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3037 *
3038 * RETURNS:
3039 * 0 on success, -errno on failure.
b6136773 3040 */
65f27f38 3041int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3042{
3043 int cpu;
38f51568 3044 struct work_struct __percpu *works;
15316ba8 3045
b6136773
AM
3046 works = alloc_percpu(struct work_struct);
3047 if (!works)
15316ba8 3048 return -ENOMEM;
b6136773 3049
93981800
TH
3050 get_online_cpus();
3051
15316ba8 3052 for_each_online_cpu(cpu) {
9bfb1839
IM
3053 struct work_struct *work = per_cpu_ptr(works, cpu);
3054
3055 INIT_WORK(work, func);
b71ab8c2 3056 schedule_work_on(cpu, work);
65a64464 3057 }
93981800
TH
3058
3059 for_each_online_cpu(cpu)
3060 flush_work(per_cpu_ptr(works, cpu));
3061
95402b38 3062 put_online_cpus();
b6136773 3063 free_percpu(works);
15316ba8
CL
3064 return 0;
3065}
3066
eef6a7d5
AS
3067/**
3068 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3069 *
3070 * Forces execution of the kernel-global workqueue and blocks until its
3071 * completion.
3072 *
3073 * Think twice before calling this function! It's very easy to get into
3074 * trouble if you don't take great care. Either of the following situations
3075 * will lead to deadlock:
3076 *
3077 * One of the work items currently on the workqueue needs to acquire
3078 * a lock held by your code or its caller.
3079 *
3080 * Your code is running in the context of a work routine.
3081 *
3082 * They will be detected by lockdep when they occur, but the first might not
3083 * occur very often. It depends on what work items are on the workqueue and
3084 * what locks they need, which you have no control over.
3085 *
3086 * In most situations flushing the entire workqueue is overkill; you merely
3087 * need to know that a particular work item isn't queued and isn't running.
3088 * In such cases you should use cancel_delayed_work_sync() or
3089 * cancel_work_sync() instead.
3090 */
1da177e4
LT
3091void flush_scheduled_work(void)
3092{
d320c038 3093 flush_workqueue(system_wq);
1da177e4 3094}
ae90dd5d 3095EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3096
1fa44eca
JB
3097/**
3098 * execute_in_process_context - reliably execute the routine with user context
3099 * @fn: the function to execute
1fa44eca
JB
3100 * @ew: guaranteed storage for the execute work structure (must
3101 * be available when the work executes)
3102 *
3103 * Executes the function immediately if process context is available,
3104 * otherwise schedules the function for delayed execution.
3105 *
3106 * Returns: 0 - function was executed
3107 * 1 - function was scheduled for execution
3108 */
65f27f38 3109int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3110{
3111 if (!in_interrupt()) {
65f27f38 3112 fn(&ew->work);
1fa44eca
JB
3113 return 0;
3114 }
3115
65f27f38 3116 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3117 schedule_work(&ew->work);
3118
3119 return 1;
3120}
3121EXPORT_SYMBOL_GPL(execute_in_process_context);
3122
1da177e4
LT
3123int keventd_up(void)
3124{
d320c038 3125 return system_wq != NULL;
1da177e4
LT
3126}
3127
30cdf249 3128static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3129{
49e3cf44 3130 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3131 int cpu;
3132
3133 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3134 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3135 if (!wq->cpu_pwqs)
30cdf249
TH
3136 return -ENOMEM;
3137
3138 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3139 struct pool_workqueue *pwq =
3140 per_cpu_ptr(wq->cpu_pwqs, cpu);
f3421797 3141
49e3cf44 3142 pwq->pool = get_std_worker_pool(cpu, highpri);
76af4d93 3143 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
30cdf249
TH
3144 }
3145 } else {
3146 struct pool_workqueue *pwq;
3147
3148 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3149 if (!pwq)
3150 return -ENOMEM;
3151
49e3cf44 3152 pwq->pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
76af4d93 3153 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
30cdf249
TH
3154 }
3155
3156 return 0;
0f900049
TH
3157}
3158
112202d9 3159static void free_pwqs(struct workqueue_struct *wq)
0f900049 3160{
e06ffa1e 3161 if (!(wq->flags & WQ_UNBOUND))
420c0ddb
TH
3162 free_percpu(wq->cpu_pwqs);
3163 else if (!list_empty(&wq->pwqs))
3164 kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
3165 struct pool_workqueue, pwqs_node));
0f900049
TH
3166}
3167
f3421797
TH
3168static int wq_clamp_max_active(int max_active, unsigned int flags,
3169 const char *name)
b71ab8c2 3170{
f3421797
TH
3171 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3172
3173 if (max_active < 1 || max_active > lim)
044c782c
VI
3174 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3175 max_active, name, 1, lim);
b71ab8c2 3176
f3421797 3177 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3178}
3179
b196be89 3180struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3181 unsigned int flags,
3182 int max_active,
3183 struct lock_class_key *key,
b196be89 3184 const char *lock_name, ...)
1da177e4 3185{
b196be89 3186 va_list args, args1;
1da177e4 3187 struct workqueue_struct *wq;
49e3cf44 3188 struct pool_workqueue *pwq;
b196be89
TH
3189 size_t namelen;
3190
3191 /* determine namelen, allocate wq and format name */
3192 va_start(args, lock_name);
3193 va_copy(args1, args);
3194 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3195
3196 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3197 if (!wq)
3198 goto err;
3199
3200 vsnprintf(wq->name, namelen, fmt, args1);
3201 va_end(args);
3202 va_end(args1);
1da177e4 3203
6370a6ad
TH
3204 /*
3205 * Workqueues which may be used during memory reclaim should
3206 * have a rescuer to guarantee forward progress.
3207 */
3208 if (flags & WQ_MEM_RECLAIM)
3209 flags |= WQ_RESCUER;
3210
d320c038 3211 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3212 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3213
b196be89 3214 /* init wq */
97e37d7b 3215 wq->flags = flags;
a0a1a5fd 3216 wq->saved_max_active = max_active;
73f53c4a 3217 mutex_init(&wq->flush_mutex);
112202d9 3218 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3219 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3220 INIT_LIST_HEAD(&wq->flusher_queue);
3221 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3222 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3223
eb13ba87 3224 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3225 INIT_LIST_HEAD(&wq->list);
3af24433 3226
30cdf249 3227 if (alloc_and_link_pwqs(wq) < 0)
bdbc5dd7
TH
3228 goto err;
3229
76af4d93 3230 local_irq_disable();
49e3cf44 3231 for_each_pwq(pwq, wq) {
112202d9 3232 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
112202d9
TH
3233 pwq->wq = wq;
3234 pwq->flush_color = -1;
3235 pwq->max_active = max_active;
3236 INIT_LIST_HEAD(&pwq->delayed_works);
493a1724 3237 INIT_LIST_HEAD(&pwq->mayday_node);
e22bee78 3238 }
76af4d93 3239 local_irq_enable();
1537663f 3240
e22bee78
TH
3241 if (flags & WQ_RESCUER) {
3242 struct worker *rescuer;
3243
e22bee78
TH
3244 wq->rescuer = rescuer = alloc_worker();
3245 if (!rescuer)
3246 goto err;
3247
111c225a
TH
3248 rescuer->rescue_wq = wq;
3249 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3250 wq->name);
e22bee78
TH
3251 if (IS_ERR(rescuer->task))
3252 goto err;
3253
e22bee78
TH
3254 rescuer->task->flags |= PF_THREAD_BOUND;
3255 wake_up_process(rescuer->task);
3af24433
ON
3256 }
3257
a0a1a5fd
TH
3258 /*
3259 * workqueue_lock protects global freeze state and workqueues
3260 * list. Grab it, set max_active accordingly and add the new
3261 * workqueue to workqueues list.
3262 */
e98d5b16 3263 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3264
58a69cb4 3265 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
49e3cf44
TH
3266 for_each_pwq(pwq, wq)
3267 pwq->max_active = 0;
a0a1a5fd 3268
1537663f 3269 list_add(&wq->list, &workqueues);
a0a1a5fd 3270
e98d5b16 3271 spin_unlock_irq(&workqueue_lock);
1537663f 3272
3af24433 3273 return wq;
4690c4ab
TH
3274err:
3275 if (wq) {
112202d9 3276 free_pwqs(wq);
e22bee78 3277 kfree(wq->rescuer);
4690c4ab
TH
3278 kfree(wq);
3279 }
3280 return NULL;
3af24433 3281}
d320c038 3282EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3283
3af24433
ON
3284/**
3285 * destroy_workqueue - safely terminate a workqueue
3286 * @wq: target workqueue
3287 *
3288 * Safely destroy a workqueue. All work currently pending will be done first.
3289 */
3290void destroy_workqueue(struct workqueue_struct *wq)
3291{
49e3cf44 3292 struct pool_workqueue *pwq;
3af24433 3293
9c5a2ba7
TH
3294 /* drain it before proceeding with destruction */
3295 drain_workqueue(wq);
c8efcc25 3296
76af4d93
TH
3297 spin_lock_irq(&workqueue_lock);
3298
6183c009 3299 /* sanity checks */
49e3cf44 3300 for_each_pwq(pwq, wq) {
6183c009
TH
3301 int i;
3302
76af4d93
TH
3303 for (i = 0; i < WORK_NR_COLORS; i++) {
3304 if (WARN_ON(pwq->nr_in_flight[i])) {
3305 spin_unlock_irq(&workqueue_lock);
6183c009 3306 return;
76af4d93
TH
3307 }
3308 }
3309
6183c009 3310 if (WARN_ON(pwq->nr_active) ||
76af4d93
TH
3311 WARN_ON(!list_empty(&pwq->delayed_works))) {
3312 spin_unlock_irq(&workqueue_lock);
6183c009 3313 return;
76af4d93 3314 }
6183c009
TH
3315 }
3316
a0a1a5fd
TH
3317 /*
3318 * wq list is used to freeze wq, remove from list after
3319 * flushing is complete in case freeze races us.
3320 */
b1f4ec17 3321 list_del(&wq->list);
76af4d93 3322
e98d5b16 3323 spin_unlock_irq(&workqueue_lock);
3af24433 3324
e22bee78
TH
3325 if (wq->flags & WQ_RESCUER) {
3326 kthread_stop(wq->rescuer->task);
8d9df9f0 3327 kfree(wq->rescuer);
e22bee78
TH
3328 }
3329
112202d9 3330 free_pwqs(wq);
3af24433
ON
3331 kfree(wq);
3332}
3333EXPORT_SYMBOL_GPL(destroy_workqueue);
3334
9f4bd4cd 3335/**
112202d9
TH
3336 * pwq_set_max_active - adjust max_active of a pwq
3337 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3338 * @max_active: new max_active value.
3339 *
112202d9 3340 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3341 * increased.
3342 *
3343 * CONTEXT:
d565ed63 3344 * spin_lock_irq(pool->lock).
9f4bd4cd 3345 */
112202d9 3346static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3347{
112202d9 3348 pwq->max_active = max_active;
9f4bd4cd 3349
112202d9
TH
3350 while (!list_empty(&pwq->delayed_works) &&
3351 pwq->nr_active < pwq->max_active)
3352 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3353}
3354
dcd989cb
TH
3355/**
3356 * workqueue_set_max_active - adjust max_active of a workqueue
3357 * @wq: target workqueue
3358 * @max_active: new max_active value.
3359 *
3360 * Set max_active of @wq to @max_active.
3361 *
3362 * CONTEXT:
3363 * Don't call from IRQ context.
3364 */
3365void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3366{
49e3cf44 3367 struct pool_workqueue *pwq;
dcd989cb 3368
f3421797 3369 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3370
e98d5b16 3371 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3372
3373 wq->saved_max_active = max_active;
3374
49e3cf44 3375 for_each_pwq(pwq, wq) {
112202d9 3376 struct worker_pool *pool = pwq->pool;
dcd989cb 3377
e98d5b16 3378 spin_lock(&pool->lock);
dcd989cb 3379
58a69cb4 3380 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3381 !(pool->flags & POOL_FREEZING))
112202d9 3382 pwq_set_max_active(pwq, max_active);
9bfb1839 3383
e98d5b16 3384 spin_unlock(&pool->lock);
65a64464 3385 }
93981800 3386
e98d5b16 3387 spin_unlock_irq(&workqueue_lock);
15316ba8 3388}
dcd989cb 3389EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3390
eef6a7d5 3391/**
dcd989cb
TH
3392 * workqueue_congested - test whether a workqueue is congested
3393 * @cpu: CPU in question
3394 * @wq: target workqueue
eef6a7d5 3395 *
dcd989cb
TH
3396 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3397 * no synchronization around this function and the test result is
3398 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3399 *
dcd989cb
TH
3400 * RETURNS:
3401 * %true if congested, %false otherwise.
eef6a7d5 3402 */
d84ff051 3403bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3404{
7fb98ea7 3405 struct pool_workqueue *pwq;
76af4d93
TH
3406 bool ret;
3407
3408 preempt_disable();
7fb98ea7
TH
3409
3410 if (!(wq->flags & WQ_UNBOUND))
3411 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3412 else
3413 pwq = first_pwq(wq);
dcd989cb 3414
76af4d93
TH
3415 ret = !list_empty(&pwq->delayed_works);
3416 preempt_enable();
3417
3418 return ret;
1da177e4 3419}
dcd989cb 3420EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3421
dcd989cb
TH
3422/**
3423 * work_busy - test whether a work is currently pending or running
3424 * @work: the work to be tested
3425 *
3426 * Test whether @work is currently pending or running. There is no
3427 * synchronization around this function and the test result is
3428 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3429 *
3430 * RETURNS:
3431 * OR'd bitmask of WORK_BUSY_* bits.
3432 */
3433unsigned int work_busy(struct work_struct *work)
1da177e4 3434{
fa1b54e6 3435 struct worker_pool *pool;
dcd989cb
TH
3436 unsigned long flags;
3437 unsigned int ret = 0;
1da177e4 3438
dcd989cb
TH
3439 if (work_pending(work))
3440 ret |= WORK_BUSY_PENDING;
1da177e4 3441
fa1b54e6
TH
3442 local_irq_save(flags);
3443 pool = get_work_pool(work);
038366c5 3444 if (pool) {
fa1b54e6 3445 spin_lock(&pool->lock);
038366c5
LJ
3446 if (find_worker_executing_work(pool, work))
3447 ret |= WORK_BUSY_RUNNING;
fa1b54e6 3448 spin_unlock(&pool->lock);
038366c5 3449 }
fa1b54e6 3450 local_irq_restore(flags);
1da177e4 3451
dcd989cb 3452 return ret;
1da177e4 3453}
dcd989cb 3454EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3455
db7bccf4
TH
3456/*
3457 * CPU hotplug.
3458 *
e22bee78 3459 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3460 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3461 * pool which make migrating pending and scheduled works very
e22bee78 3462 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3463 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3464 * blocked draining impractical.
3465 *
24647570 3466 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3467 * running as an unbound one and allowing it to be reattached later if the
3468 * cpu comes back online.
db7bccf4 3469 */
1da177e4 3470
706026c2 3471static void wq_unbind_fn(struct work_struct *work)
3af24433 3472{
38db41d9 3473 int cpu = smp_processor_id();
4ce62e9e 3474 struct worker_pool *pool;
db7bccf4 3475 struct worker *worker;
db7bccf4 3476 int i;
3af24433 3477
38db41d9 3478 for_each_std_worker_pool(pool, cpu) {
6183c009 3479 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3480
94cf58bb
TH
3481 mutex_lock(&pool->assoc_mutex);
3482 spin_lock_irq(&pool->lock);
3af24433 3483
94cf58bb
TH
3484 /*
3485 * We've claimed all manager positions. Make all workers
3486 * unbound and set DISASSOCIATED. Before this, all workers
3487 * except for the ones which are still executing works from
3488 * before the last CPU down must be on the cpu. After
3489 * this, they may become diasporas.
3490 */
4ce62e9e 3491 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3492 worker->flags |= WORKER_UNBOUND;
3af24433 3493
b67bfe0d 3494 for_each_busy_worker(worker, i, pool)
c9e7cf27 3495 worker->flags |= WORKER_UNBOUND;
06ba38a9 3496
24647570 3497 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3498
94cf58bb
TH
3499 spin_unlock_irq(&pool->lock);
3500 mutex_unlock(&pool->assoc_mutex);
3501 }
628c78e7 3502
e22bee78 3503 /*
403c821d 3504 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3505 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3506 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3507 */
e22bee78 3508 schedule();
06ba38a9 3509
e22bee78 3510 /*
628c78e7
TH
3511 * Sched callbacks are disabled now. Zap nr_running. After this,
3512 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3513 * are always true as long as the worklist is not empty. Pools on
3514 * @cpu now behave as unbound (in terms of concurrency management)
3515 * pools which are served by workers tied to the CPU.
628c78e7
TH
3516 *
3517 * On return from this function, the current worker would trigger
3518 * unbound chain execution of pending work items if other workers
3519 * didn't already.
e22bee78 3520 */
38db41d9 3521 for_each_std_worker_pool(pool, cpu)
e19e397a 3522 atomic_set(&pool->nr_running, 0);
3af24433 3523}
3af24433 3524
8db25e78
TH
3525/*
3526 * Workqueues should be brought up before normal priority CPU notifiers.
3527 * This will be registered high priority CPU notifier.
3528 */
9fdf9b73 3529static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3530 unsigned long action,
3531 void *hcpu)
3af24433 3532{
d84ff051 3533 int cpu = (unsigned long)hcpu;
4ce62e9e 3534 struct worker_pool *pool;
3ce63377 3535
8db25e78 3536 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3537 case CPU_UP_PREPARE:
38db41d9 3538 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3539 struct worker *worker;
3540
3541 if (pool->nr_workers)
3542 continue;
3543
3544 worker = create_worker(pool);
3545 if (!worker)
3546 return NOTIFY_BAD;
3547
d565ed63 3548 spin_lock_irq(&pool->lock);
3ce63377 3549 start_worker(worker);
d565ed63 3550 spin_unlock_irq(&pool->lock);
3af24433 3551 }
8db25e78 3552 break;
3af24433 3553
db7bccf4
TH
3554 case CPU_DOWN_FAILED:
3555 case CPU_ONLINE:
38db41d9 3556 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3557 mutex_lock(&pool->assoc_mutex);
3558 spin_lock_irq(&pool->lock);
3559
24647570 3560 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3561 rebind_workers(pool);
3562
3563 spin_unlock_irq(&pool->lock);
3564 mutex_unlock(&pool->assoc_mutex);
3565 }
db7bccf4 3566 break;
00dfcaf7 3567 }
65758202
TH
3568 return NOTIFY_OK;
3569}
3570
3571/*
3572 * Workqueues should be brought down after normal priority CPU notifiers.
3573 * This will be registered as low priority CPU notifier.
3574 */
9fdf9b73 3575static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3576 unsigned long action,
3577 void *hcpu)
3578{
d84ff051 3579 int cpu = (unsigned long)hcpu;
8db25e78
TH
3580 struct work_struct unbind_work;
3581
65758202
TH
3582 switch (action & ~CPU_TASKS_FROZEN) {
3583 case CPU_DOWN_PREPARE:
8db25e78 3584 /* unbinding should happen on the local CPU */
706026c2 3585 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3586 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3587 flush_work(&unbind_work);
3588 break;
65758202
TH
3589 }
3590 return NOTIFY_OK;
3591}
3592
2d3854a3 3593#ifdef CONFIG_SMP
8ccad40d 3594
2d3854a3 3595struct work_for_cpu {
ed48ece2 3596 struct work_struct work;
2d3854a3
RR
3597 long (*fn)(void *);
3598 void *arg;
3599 long ret;
3600};
3601
ed48ece2 3602static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3603{
ed48ece2
TH
3604 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3605
2d3854a3
RR
3606 wfc->ret = wfc->fn(wfc->arg);
3607}
3608
3609/**
3610 * work_on_cpu - run a function in user context on a particular cpu
3611 * @cpu: the cpu to run on
3612 * @fn: the function to run
3613 * @arg: the function arg
3614 *
31ad9081
RR
3615 * This will return the value @fn returns.
3616 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3617 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 3618 */
d84ff051 3619long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 3620{
ed48ece2 3621 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3622
ed48ece2
TH
3623 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3624 schedule_work_on(cpu, &wfc.work);
3625 flush_work(&wfc.work);
2d3854a3
RR
3626 return wfc.ret;
3627}
3628EXPORT_SYMBOL_GPL(work_on_cpu);
3629#endif /* CONFIG_SMP */
3630
a0a1a5fd
TH
3631#ifdef CONFIG_FREEZER
3632
3633/**
3634 * freeze_workqueues_begin - begin freezing workqueues
3635 *
58a69cb4
TH
3636 * Start freezing workqueues. After this function returns, all freezable
3637 * workqueues will queue new works to their frozen_works list instead of
706026c2 3638 * pool->worklist.
a0a1a5fd
TH
3639 *
3640 * CONTEXT:
d565ed63 3641 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3642 */
3643void freeze_workqueues_begin(void)
3644{
17116969 3645 struct worker_pool *pool;
24b8a847
TH
3646 struct workqueue_struct *wq;
3647 struct pool_workqueue *pwq;
17116969 3648 int id;
a0a1a5fd 3649
e98d5b16 3650 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3651
6183c009 3652 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
3653 workqueue_freezing = true;
3654
24b8a847 3655 /* set FREEZING */
17116969 3656 for_each_pool(pool, id) {
17116969 3657 spin_lock(&pool->lock);
17116969
TH
3658 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3659 pool->flags |= POOL_FREEZING;
24b8a847
TH
3660 spin_unlock(&pool->lock);
3661 }
a0a1a5fd 3662
24b8a847
TH
3663 /* suppress further executions by setting max_active to zero */
3664 list_for_each_entry(wq, &workqueues, list) {
3665 if (!(wq->flags & WQ_FREEZABLE))
3666 continue;
8b03ae3c 3667
24b8a847
TH
3668 for_each_pwq(pwq, wq) {
3669 spin_lock(&pwq->pool->lock);
3670 pwq->max_active = 0;
3671 spin_unlock(&pwq->pool->lock);
a1056305 3672 }
a0a1a5fd
TH
3673 }
3674
e98d5b16 3675 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3676}
3677
3678/**
58a69cb4 3679 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3680 *
3681 * Check whether freezing is complete. This function must be called
3682 * between freeze_workqueues_begin() and thaw_workqueues().
3683 *
3684 * CONTEXT:
3685 * Grabs and releases workqueue_lock.
3686 *
3687 * RETURNS:
58a69cb4
TH
3688 * %true if some freezable workqueues are still busy. %false if freezing
3689 * is complete.
a0a1a5fd
TH
3690 */
3691bool freeze_workqueues_busy(void)
3692{
a0a1a5fd 3693 bool busy = false;
24b8a847
TH
3694 struct workqueue_struct *wq;
3695 struct pool_workqueue *pwq;
a0a1a5fd 3696
e98d5b16 3697 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3698
6183c009 3699 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 3700
24b8a847
TH
3701 list_for_each_entry(wq, &workqueues, list) {
3702 if (!(wq->flags & WQ_FREEZABLE))
3703 continue;
a0a1a5fd
TH
3704 /*
3705 * nr_active is monotonically decreasing. It's safe
3706 * to peek without lock.
3707 */
24b8a847 3708 for_each_pwq(pwq, wq) {
6183c009 3709 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 3710 if (pwq->nr_active) {
a0a1a5fd
TH
3711 busy = true;
3712 goto out_unlock;
3713 }
3714 }
3715 }
3716out_unlock:
e98d5b16 3717 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3718 return busy;
3719}
3720
3721/**
3722 * thaw_workqueues - thaw workqueues
3723 *
3724 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3725 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3726 *
3727 * CONTEXT:
d565ed63 3728 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3729 */
3730void thaw_workqueues(void)
3731{
24b8a847
TH
3732 struct workqueue_struct *wq;
3733 struct pool_workqueue *pwq;
3734 struct worker_pool *pool;
3735 int id;
a0a1a5fd 3736
e98d5b16 3737 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
3738
3739 if (!workqueue_freezing)
3740 goto out_unlock;
3741
24b8a847
TH
3742 /* clear FREEZING */
3743 for_each_pool(pool, id) {
3744 spin_lock(&pool->lock);
3745 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3746 pool->flags &= ~POOL_FREEZING;
3747 spin_unlock(&pool->lock);
3748 }
8b03ae3c 3749
24b8a847
TH
3750 /* restore max_active and repopulate worklist */
3751 list_for_each_entry(wq, &workqueues, list) {
3752 if (!(wq->flags & WQ_FREEZABLE))
3753 continue;
a1056305 3754
24b8a847
TH
3755 for_each_pwq(pwq, wq) {
3756 spin_lock(&pwq->pool->lock);
3757 pwq_set_max_active(pwq, wq->saved_max_active);
3758 spin_unlock(&pwq->pool->lock);
d565ed63 3759 }
a0a1a5fd
TH
3760 }
3761
24b8a847
TH
3762 /* kick workers */
3763 for_each_pool(pool, id) {
3764 spin_lock(&pool->lock);
3765 wake_up_worker(pool);
3766 spin_unlock(&pool->lock);
3767 }
3768
a0a1a5fd
TH
3769 workqueue_freezing = false;
3770out_unlock:
e98d5b16 3771 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
3772}
3773#endif /* CONFIG_FREEZER */
3774
6ee0578b 3775static int __init init_workqueues(void)
1da177e4 3776{
d84ff051 3777 int cpu;
c34056a3 3778
7c3eed5c
TH
3779 /* make sure we have enough bits for OFFQ pool ID */
3780 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3781 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3782
e904e6c2
TH
3783 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
3784
3785 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
3786
65758202 3787 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3788 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3789
706026c2
TH
3790 /* initialize CPU pools */
3791 for_each_wq_cpu(cpu) {
4ce62e9e 3792 struct worker_pool *pool;
8b03ae3c 3793
38db41d9 3794 for_each_std_worker_pool(pool, cpu) {
d565ed63 3795 spin_lock_init(&pool->lock);
ec22ca5e 3796 pool->cpu = cpu;
24647570 3797 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3798 INIT_LIST_HEAD(&pool->worklist);
3799 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3800 hash_init(pool->busy_hash);
e7577c50 3801
4ce62e9e
TH
3802 init_timer_deferrable(&pool->idle_timer);
3803 pool->idle_timer.function = idle_worker_timeout;
3804 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3805
706026c2 3806 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3807 (unsigned long)pool);
3808
b2eb83d1 3809 mutex_init(&pool->assoc_mutex);
4ce62e9e 3810 ida_init(&pool->worker_ida);
9daf9e67
TH
3811
3812 /* alloc pool ID */
3813 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3814 }
8b03ae3c
TH
3815 }
3816
e22bee78 3817 /* create the initial worker */
706026c2 3818 for_each_online_wq_cpu(cpu) {
4ce62e9e 3819 struct worker_pool *pool;
e22bee78 3820
38db41d9 3821 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3822 struct worker *worker;
3823
24647570
TH
3824 if (cpu != WORK_CPU_UNBOUND)
3825 pool->flags &= ~POOL_DISASSOCIATED;
3826
bc2ae0f5 3827 worker = create_worker(pool);
4ce62e9e 3828 BUG_ON(!worker);
d565ed63 3829 spin_lock_irq(&pool->lock);
4ce62e9e 3830 start_worker(worker);
d565ed63 3831 spin_unlock_irq(&pool->lock);
4ce62e9e 3832 }
e22bee78
TH
3833 }
3834
d320c038 3835 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3836 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3837 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3838 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3839 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3840 system_freezable_wq = alloc_workqueue("events_freezable",
3841 WQ_FREEZABLE, 0);
1aabe902 3842 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3843 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3844 return 0;
1da177e4 3845}
6ee0578b 3846early_initcall(init_workqueues);