]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <aliguori@us.ibm.com> | |
5832d1f2 | 9 | * Glauber Costa <gcosta@redhat.com> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
d38ea87a | 16 | #include "qemu/osdep.h" |
05330448 | 17 | #include <sys/ioctl.h> |
05330448 AL |
18 | |
19 | #include <linux/kvm.h> | |
20 | ||
21 | #include "qemu-common.h" | |
1de7afc9 PB |
22 | #include "qemu/atomic.h" |
23 | #include "qemu/option.h" | |
24 | #include "qemu/config-file.h" | |
4b3cfe72 | 25 | #include "qemu/error-report.h" |
d33a1810 | 26 | #include "hw/hw.h" |
a2cb15b0 | 27 | #include "hw/pci/msi.h" |
d1f6af6a | 28 | #include "hw/pci/msix.h" |
d426d9fb | 29 | #include "hw/s390x/adapter.h" |
022c62cb | 30 | #include "exec/gdbstub.h" |
8571ed35 | 31 | #include "sysemu/kvm_int.h" |
d2528bdc | 32 | #include "sysemu/cpus.h" |
1de7afc9 | 33 | #include "qemu/bswap.h" |
022c62cb | 34 | #include "exec/memory.h" |
747afd5b | 35 | #include "exec/ram_addr.h" |
022c62cb | 36 | #include "exec/address-spaces.h" |
1de7afc9 | 37 | #include "qemu/event_notifier.h" |
0ab8ed18 | 38 | #include "trace-root.h" |
197e3524 | 39 | #include "hw/irq.h" |
05330448 | 40 | |
135a129a AK |
41 | #include "hw/boards.h" |
42 | ||
d2f2b8a7 SH |
43 | /* This check must be after config-host.h is included */ |
44 | #ifdef CONFIG_EVENTFD | |
45 | #include <sys/eventfd.h> | |
46 | #endif | |
47 | ||
bc92e4e9 AJ |
48 | /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We |
49 | * need to use the real host PAGE_SIZE, as that's what KVM will use. | |
50 | */ | |
51 | #define PAGE_SIZE getpagesize() | |
f65ed4c1 | 52 | |
05330448 AL |
53 | //#define DEBUG_KVM |
54 | ||
55 | #ifdef DEBUG_KVM | |
8c0d577e | 56 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
57 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
58 | #else | |
8c0d577e | 59 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
60 | do { } while (0) |
61 | #endif | |
62 | ||
04fa27f5 JK |
63 | #define KVM_MSI_HASHTAB_SIZE 256 |
64 | ||
4c055ab5 GZ |
65 | struct KVMParkedVcpu { |
66 | unsigned long vcpu_id; | |
67 | int kvm_fd; | |
68 | QLIST_ENTRY(KVMParkedVcpu) node; | |
69 | }; | |
70 | ||
9d1c35df | 71 | struct KVMState |
05330448 | 72 | { |
fc02086b EH |
73 | AccelState parent_obj; |
74 | ||
fb541ca5 | 75 | int nr_slots; |
05330448 AL |
76 | int fd; |
77 | int vmfd; | |
f65ed4c1 | 78 | int coalesced_mmio; |
62a2744c | 79 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 80 | bool coalesced_flush_in_progress; |
e69917e2 | 81 | int broken_set_mem_region; |
a0fb002c | 82 | int vcpu_events; |
b0b1d690 | 83 | int robust_singlestep; |
ff44f1a3 | 84 | int debugregs; |
e22a25c9 AL |
85 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
86 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
87 | #endif | |
d2f2b8a7 | 88 | int many_ioeventfds; |
3ab73842 | 89 | int intx_set_mask; |
92e4b519 DG |
90 | /* The man page (and posix) say ioctl numbers are signed int, but |
91 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
92 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 93 | unsigned irq_set_ioctl; |
aed6efb9 | 94 | unsigned int sigmask_len; |
197e3524 | 95 | GHashTable *gsimap; |
84b058d7 JK |
96 | #ifdef KVM_CAP_IRQ_ROUTING |
97 | struct kvm_irq_routing *irq_routes; | |
98 | int nr_allocated_irq_routes; | |
8269fb70 | 99 | unsigned long *used_gsi_bitmap; |
4e2e4e63 | 100 | unsigned int gsi_count; |
04fa27f5 | 101 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
84b058d7 | 102 | #endif |
7bbda04c | 103 | KVMMemoryListener memory_listener; |
4c055ab5 | 104 | QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; |
9d1c35df | 105 | }; |
05330448 | 106 | |
6a7af8cb | 107 | KVMState *kvm_state; |
3d4b2649 | 108 | bool kvm_kernel_irqchip; |
15eafc2e | 109 | bool kvm_split_irqchip; |
7ae26bd4 | 110 | bool kvm_async_interrupts_allowed; |
215e79c0 | 111 | bool kvm_halt_in_kernel_allowed; |
69e03ae6 | 112 | bool kvm_eventfds_allowed; |
cc7e0ddf | 113 | bool kvm_irqfds_allowed; |
f41389ae | 114 | bool kvm_resamplefds_allowed; |
614e41bc | 115 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 116 | bool kvm_gsi_routing_allowed; |
76fe21de | 117 | bool kvm_gsi_direct_mapping; |
13eed94e | 118 | bool kvm_allowed; |
df9c8b75 | 119 | bool kvm_readonly_mem_allowed; |
d0a073a1 | 120 | bool kvm_vm_attributes_allowed; |
50bf31b9 | 121 | bool kvm_direct_msi_allowed; |
35108223 | 122 | bool kvm_ioeventfd_any_length_allowed; |
767a554a | 123 | bool kvm_msi_use_devid; |
cf0f7cf9 | 124 | static bool kvm_immediate_exit; |
05330448 | 125 | |
94a8d39a JK |
126 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
127 | KVM_CAP_INFO(USER_MEMORY), | |
128 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
129 | KVM_CAP_LAST_INFO | |
130 | }; | |
131 | ||
44f2e6c1 BR |
132 | int kvm_get_max_memslots(void) |
133 | { | |
134 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
135 | ||
136 | return s->nr_slots; | |
137 | } | |
138 | ||
7bbda04c | 139 | static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) |
05330448 | 140 | { |
7bbda04c | 141 | KVMState *s = kvm_state; |
05330448 AL |
142 | int i; |
143 | ||
fb541ca5 | 144 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c PB |
145 | if (kml->slots[i].memory_size == 0) { |
146 | return &kml->slots[i]; | |
a426e122 | 147 | } |
05330448 AL |
148 | } |
149 | ||
b8865591 IM |
150 | return NULL; |
151 | } | |
152 | ||
153 | bool kvm_has_free_slot(MachineState *ms) | |
154 | { | |
7bbda04c PB |
155 | KVMState *s = KVM_STATE(ms->accelerator); |
156 | ||
157 | return kvm_get_free_slot(&s->memory_listener); | |
b8865591 IM |
158 | } |
159 | ||
7bbda04c | 160 | static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) |
b8865591 | 161 | { |
7bbda04c | 162 | KVMSlot *slot = kvm_get_free_slot(kml); |
b8865591 IM |
163 | |
164 | if (slot) { | |
165 | return slot; | |
166 | } | |
167 | ||
d3f8d37f AL |
168 | fprintf(stderr, "%s: no free slot available\n", __func__); |
169 | abort(); | |
170 | } | |
171 | ||
7bbda04c | 172 | static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, |
a8170e5e AK |
173 | hwaddr start_addr, |
174 | hwaddr end_addr) | |
d3f8d37f | 175 | { |
7bbda04c | 176 | KVMState *s = kvm_state; |
d3f8d37f AL |
177 | int i; |
178 | ||
fb541ca5 | 179 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 180 | KVMSlot *mem = &kml->slots[i]; |
d3f8d37f AL |
181 | |
182 | if (start_addr == mem->start_addr && | |
183 | end_addr == mem->start_addr + mem->memory_size) { | |
184 | return mem; | |
185 | } | |
186 | } | |
187 | ||
05330448 AL |
188 | return NULL; |
189 | } | |
190 | ||
6152e2ae AL |
191 | /* |
192 | * Find overlapping slot with lowest start address | |
193 | */ | |
7bbda04c | 194 | static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, |
a8170e5e AK |
195 | hwaddr start_addr, |
196 | hwaddr end_addr) | |
05330448 | 197 | { |
7bbda04c | 198 | KVMState *s = kvm_state; |
6152e2ae | 199 | KVMSlot *found = NULL; |
05330448 AL |
200 | int i; |
201 | ||
fb541ca5 | 202 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 203 | KVMSlot *mem = &kml->slots[i]; |
05330448 | 204 | |
6152e2ae AL |
205 | if (mem->memory_size == 0 || |
206 | (found && found->start_addr < mem->start_addr)) { | |
207 | continue; | |
208 | } | |
209 | ||
210 | if (end_addr > mem->start_addr && | |
211 | start_addr < mem->start_addr + mem->memory_size) { | |
212 | found = mem; | |
213 | } | |
05330448 AL |
214 | } |
215 | ||
6152e2ae | 216 | return found; |
05330448 AL |
217 | } |
218 | ||
9f213ed9 | 219 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 220 | hwaddr *phys_addr) |
983dfc3b | 221 | { |
7bbda04c | 222 | KVMMemoryListener *kml = &s->memory_listener; |
983dfc3b HY |
223 | int i; |
224 | ||
fb541ca5 | 225 | for (i = 0; i < s->nr_slots; i++) { |
7bbda04c | 226 | KVMSlot *mem = &kml->slots[i]; |
983dfc3b | 227 | |
9f213ed9 AK |
228 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
229 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
230 | return 1; |
231 | } | |
232 | } | |
233 | ||
234 | return 0; | |
235 | } | |
236 | ||
7bbda04c | 237 | static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) |
5832d1f2 | 238 | { |
7bbda04c | 239 | KVMState *s = kvm_state; |
5832d1f2 AL |
240 | struct kvm_userspace_memory_region mem; |
241 | ||
38bfe691 | 242 | mem.slot = slot->slot | (kml->as_id << 16); |
5832d1f2 | 243 | mem.guest_phys_addr = slot->start_addr; |
9f213ed9 | 244 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 245 | mem.flags = slot->flags; |
651eb0f4 XG |
246 | |
247 | if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { | |
235e8982 JJ |
248 | /* Set the slot size to 0 before setting the slot to the desired |
249 | * value. This is needed based on KVM commit 75d61fbc. */ | |
250 | mem.memory_size = 0; | |
251 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
252 | } | |
253 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
254 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
255 | } | |
256 | ||
4c055ab5 GZ |
257 | int kvm_destroy_vcpu(CPUState *cpu) |
258 | { | |
259 | KVMState *s = kvm_state; | |
260 | long mmap_size; | |
261 | struct KVMParkedVcpu *vcpu = NULL; | |
262 | int ret = 0; | |
263 | ||
264 | DPRINTF("kvm_destroy_vcpu\n"); | |
265 | ||
266 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
267 | if (mmap_size < 0) { | |
268 | ret = mmap_size; | |
269 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
270 | goto err; | |
271 | } | |
272 | ||
273 | ret = munmap(cpu->kvm_run, mmap_size); | |
274 | if (ret < 0) { | |
275 | goto err; | |
276 | } | |
277 | ||
278 | vcpu = g_malloc0(sizeof(*vcpu)); | |
279 | vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); | |
280 | vcpu->kvm_fd = cpu->kvm_fd; | |
281 | QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); | |
282 | err: | |
283 | return ret; | |
284 | } | |
285 | ||
286 | static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) | |
287 | { | |
288 | struct KVMParkedVcpu *cpu; | |
289 | ||
290 | QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { | |
291 | if (cpu->vcpu_id == vcpu_id) { | |
292 | int kvm_fd; | |
293 | ||
294 | QLIST_REMOVE(cpu, node); | |
295 | kvm_fd = cpu->kvm_fd; | |
296 | g_free(cpu); | |
297 | return kvm_fd; | |
298 | } | |
299 | } | |
300 | ||
301 | return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); | |
302 | } | |
303 | ||
504134d2 | 304 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
305 | { |
306 | KVMState *s = kvm_state; | |
307 | long mmap_size; | |
308 | int ret; | |
309 | ||
8c0d577e | 310 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 311 | |
4c055ab5 | 312 | ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); |
05330448 | 313 | if (ret < 0) { |
8c0d577e | 314 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
315 | goto err; |
316 | } | |
317 | ||
8737c51c | 318 | cpu->kvm_fd = ret; |
a60f24b5 | 319 | cpu->kvm_state = s; |
20d695a9 | 320 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
321 | |
322 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
323 | if (mmap_size < 0) { | |
748a680b | 324 | ret = mmap_size; |
8c0d577e | 325 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
326 | goto err; |
327 | } | |
328 | ||
f7575c96 | 329 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 330 | cpu->kvm_fd, 0); |
f7575c96 | 331 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 332 | ret = -errno; |
8c0d577e | 333 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
334 | goto err; |
335 | } | |
336 | ||
a426e122 JK |
337 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
338 | s->coalesced_mmio_ring = | |
f7575c96 | 339 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 340 | } |
62a2744c | 341 | |
20d695a9 | 342 | ret = kvm_arch_init_vcpu(cpu); |
05330448 AL |
343 | err: |
344 | return ret; | |
345 | } | |
346 | ||
5832d1f2 AL |
347 | /* |
348 | * dirty pages logging control | |
349 | */ | |
25254bbc | 350 | |
d6ff5cbc | 351 | static int kvm_mem_flags(MemoryRegion *mr) |
25254bbc | 352 | { |
d6ff5cbc | 353 | bool readonly = mr->readonly || memory_region_is_romd(mr); |
235e8982 | 354 | int flags = 0; |
d6ff5cbc AJ |
355 | |
356 | if (memory_region_get_dirty_log_mask(mr) != 0) { | |
357 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
358 | } | |
235e8982 JJ |
359 | if (readonly && kvm_readonly_mem_allowed) { |
360 | flags |= KVM_MEM_READONLY; | |
361 | } | |
362 | return flags; | |
25254bbc MT |
363 | } |
364 | ||
7bbda04c PB |
365 | static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, |
366 | MemoryRegion *mr) | |
5832d1f2 | 367 | { |
4495d6a7 JK |
368 | int old_flags; |
369 | ||
4495d6a7 | 370 | old_flags = mem->flags; |
d6ff5cbc | 371 | mem->flags = kvm_mem_flags(mr); |
5832d1f2 | 372 | |
4495d6a7 | 373 | /* If nothing changed effectively, no need to issue ioctl */ |
d6ff5cbc | 374 | if (mem->flags == old_flags) { |
25254bbc | 375 | return 0; |
4495d6a7 JK |
376 | } |
377 | ||
7bbda04c | 378 | return kvm_set_user_memory_region(kml, mem); |
5832d1f2 AL |
379 | } |
380 | ||
7bbda04c PB |
381 | static int kvm_section_update_flags(KVMMemoryListener *kml, |
382 | MemoryRegionSection *section) | |
25254bbc | 383 | { |
d6ff5cbc AJ |
384 | hwaddr phys_addr = section->offset_within_address_space; |
385 | ram_addr_t size = int128_get64(section->size); | |
7bbda04c | 386 | KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size); |
25254bbc MT |
387 | |
388 | if (mem == NULL) { | |
ea8cb1a8 PB |
389 | return 0; |
390 | } else { | |
7bbda04c | 391 | return kvm_slot_update_flags(kml, mem, section->mr); |
25254bbc | 392 | } |
25254bbc MT |
393 | } |
394 | ||
a01672d3 | 395 | static void kvm_log_start(MemoryListener *listener, |
b2dfd71c PB |
396 | MemoryRegionSection *section, |
397 | int old, int new) | |
5832d1f2 | 398 | { |
7bbda04c | 399 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
400 | int r; |
401 | ||
b2dfd71c PB |
402 | if (old != 0) { |
403 | return; | |
404 | } | |
405 | ||
7bbda04c | 406 | r = kvm_section_update_flags(kml, section); |
a01672d3 AK |
407 | if (r < 0) { |
408 | abort(); | |
409 | } | |
5832d1f2 AL |
410 | } |
411 | ||
a01672d3 | 412 | static void kvm_log_stop(MemoryListener *listener, |
b2dfd71c PB |
413 | MemoryRegionSection *section, |
414 | int old, int new) | |
5832d1f2 | 415 | { |
7bbda04c | 416 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
417 | int r; |
418 | ||
b2dfd71c PB |
419 | if (new != 0) { |
420 | return; | |
421 | } | |
422 | ||
7bbda04c | 423 | r = kvm_section_update_flags(kml, section); |
a01672d3 AK |
424 | if (r < 0) { |
425 | abort(); | |
426 | } | |
5832d1f2 AL |
427 | } |
428 | ||
8369e01c | 429 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
430 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
431 | unsigned long *bitmap) | |
96c1606b | 432 | { |
8e41fb63 FZ |
433 | ram_addr_t start = section->offset_within_region + |
434 | memory_region_get_ram_addr(section->mr); | |
5ff7fb77 JQ |
435 | ram_addr_t pages = int128_get64(section->size) / getpagesize(); |
436 | ||
437 | cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); | |
8369e01c | 438 | return 0; |
96c1606b AG |
439 | } |
440 | ||
8369e01c MT |
441 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
442 | ||
5832d1f2 AL |
443 | /** |
444 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
445 | * This function updates qemu's dirty bitmap using |
446 | * memory_region_set_dirty(). This means all bits are set | |
447 | * to dirty. | |
5832d1f2 | 448 | * |
d3f8d37f | 449 | * @start_add: start of logged region. |
5832d1f2 AL |
450 | * @end_addr: end of logged region. |
451 | */ | |
7bbda04c PB |
452 | static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, |
453 | MemoryRegionSection *section) | |
5832d1f2 AL |
454 | { |
455 | KVMState *s = kvm_state; | |
151f7749 | 456 | unsigned long size, allocated_size = 0; |
714f78c5 | 457 | struct kvm_dirty_log d = {}; |
151f7749 JK |
458 | KVMSlot *mem; |
459 | int ret = 0; | |
a8170e5e | 460 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 461 | hwaddr end_addr = start_addr + int128_get64(section->size); |
5832d1f2 | 462 | |
151f7749 JK |
463 | d.dirty_bitmap = NULL; |
464 | while (start_addr < end_addr) { | |
7bbda04c | 465 | mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); |
151f7749 JK |
466 | if (mem == NULL) { |
467 | break; | |
468 | } | |
5832d1f2 | 469 | |
51b0c606 MT |
470 | /* XXX bad kernel interface alert |
471 | * For dirty bitmap, kernel allocates array of size aligned to | |
472 | * bits-per-long. But for case when the kernel is 64bits and | |
473 | * the userspace is 32bits, userspace can't align to the same | |
474 | * bits-per-long, since sizeof(long) is different between kernel | |
475 | * and user space. This way, userspace will provide buffer which | |
476 | * may be 4 bytes less than the kernel will use, resulting in | |
477 | * userspace memory corruption (which is not detectable by valgrind | |
478 | * too, in most cases). | |
479 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
cb8d4c8f | 480 | * a hope that sizeof(long) won't become >8 any time soon. |
51b0c606 MT |
481 | */ |
482 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
483 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 484 | if (!d.dirty_bitmap) { |
7267c094 | 485 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 486 | } else if (size > allocated_size) { |
7267c094 | 487 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
488 | } |
489 | allocated_size = size; | |
490 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 491 | |
38bfe691 | 492 | d.slot = mem->slot | (kml->as_id << 16); |
50212d63 | 493 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 494 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
495 | ret = -1; |
496 | break; | |
497 | } | |
5832d1f2 | 498 | |
ffcde12f | 499 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 500 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 501 | } |
7267c094 | 502 | g_free(d.dirty_bitmap); |
151f7749 JK |
503 | |
504 | return ret; | |
5832d1f2 AL |
505 | } |
506 | ||
95d2994a AK |
507 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
508 | MemoryRegionSection *secion, | |
a8170e5e | 509 | hwaddr start, hwaddr size) |
f65ed4c1 | 510 | { |
f65ed4c1 AL |
511 | KVMState *s = kvm_state; |
512 | ||
513 | if (s->coalesced_mmio) { | |
514 | struct kvm_coalesced_mmio_zone zone; | |
515 | ||
516 | zone.addr = start; | |
517 | zone.size = size; | |
7e680753 | 518 | zone.pad = 0; |
f65ed4c1 | 519 | |
95d2994a | 520 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 521 | } |
f65ed4c1 AL |
522 | } |
523 | ||
95d2994a AK |
524 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
525 | MemoryRegionSection *secion, | |
a8170e5e | 526 | hwaddr start, hwaddr size) |
f65ed4c1 | 527 | { |
f65ed4c1 AL |
528 | KVMState *s = kvm_state; |
529 | ||
530 | if (s->coalesced_mmio) { | |
531 | struct kvm_coalesced_mmio_zone zone; | |
532 | ||
533 | zone.addr = start; | |
534 | zone.size = size; | |
7e680753 | 535 | zone.pad = 0; |
f65ed4c1 | 536 | |
95d2994a | 537 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 538 | } |
f65ed4c1 AL |
539 | } |
540 | ||
ad7b8b33 AL |
541 | int kvm_check_extension(KVMState *s, unsigned int extension) |
542 | { | |
543 | int ret; | |
544 | ||
545 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
546 | if (ret < 0) { | |
547 | ret = 0; | |
548 | } | |
549 | ||
550 | return ret; | |
551 | } | |
552 | ||
7d0a07fa AG |
553 | int kvm_vm_check_extension(KVMState *s, unsigned int extension) |
554 | { | |
555 | int ret; | |
556 | ||
557 | ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
558 | if (ret < 0) { | |
559 | /* VM wide version not implemented, use global one instead */ | |
560 | ret = kvm_check_extension(s, extension); | |
561 | } | |
562 | ||
563 | return ret; | |
564 | } | |
565 | ||
b680c5ba GK |
566 | static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) |
567 | { | |
568 | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | |
569 | /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN | |
570 | * endianness, but the memory core hands them in target endianness. | |
571 | * For example, PPC is always treated as big-endian even if running | |
572 | * on KVM and on PPC64LE. Correct here. | |
573 | */ | |
574 | switch (size) { | |
575 | case 2: | |
576 | val = bswap16(val); | |
577 | break; | |
578 | case 4: | |
579 | val = bswap32(val); | |
580 | break; | |
581 | } | |
582 | #endif | |
583 | return val; | |
584 | } | |
585 | ||
584f2be7 | 586 | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, |
41cb62c2 | 587 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
588 | { |
589 | int ret; | |
03a96b83 TH |
590 | struct kvm_ioeventfd iofd = { |
591 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | |
592 | .addr = addr, | |
593 | .len = size, | |
594 | .flags = 0, | |
595 | .fd = fd, | |
596 | }; | |
500ffd4a MT |
597 | |
598 | if (!kvm_enabled()) { | |
599 | return -ENOSYS; | |
600 | } | |
601 | ||
41cb62c2 MT |
602 | if (datamatch) { |
603 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
604 | } | |
500ffd4a MT |
605 | if (!assign) { |
606 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
607 | } | |
608 | ||
609 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
610 | ||
611 | if (ret < 0) { | |
612 | return -errno; | |
613 | } | |
614 | ||
615 | return 0; | |
616 | } | |
617 | ||
44c3f8f7 | 618 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 619 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
620 | { |
621 | struct kvm_ioeventfd kick = { | |
b680c5ba | 622 | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, |
500ffd4a | 623 | .addr = addr, |
41cb62c2 | 624 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 625 | .len = size, |
500ffd4a MT |
626 | .fd = fd, |
627 | }; | |
628 | int r; | |
629 | if (!kvm_enabled()) { | |
630 | return -ENOSYS; | |
631 | } | |
41cb62c2 MT |
632 | if (datamatch) { |
633 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
634 | } | |
500ffd4a MT |
635 | if (!assign) { |
636 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
637 | } | |
638 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
639 | if (r < 0) { | |
640 | return r; | |
641 | } | |
642 | return 0; | |
643 | } | |
644 | ||
645 | ||
d2f2b8a7 SH |
646 | static int kvm_check_many_ioeventfds(void) |
647 | { | |
d0dcac83 SH |
648 | /* Userspace can use ioeventfd for io notification. This requires a host |
649 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
650 | * support SIGIO it cannot interrupt the vcpu. | |
651 | * | |
652 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
653 | * can avoid creating too many ioeventfds. |
654 | */ | |
12d4536f | 655 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
656 | int ioeventfds[7]; |
657 | int i, ret = 0; | |
658 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
659 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
660 | if (ioeventfds[i] < 0) { | |
661 | break; | |
662 | } | |
41cb62c2 | 663 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
664 | if (ret < 0) { |
665 | close(ioeventfds[i]); | |
666 | break; | |
667 | } | |
668 | } | |
669 | ||
670 | /* Decide whether many devices are supported or not */ | |
671 | ret = i == ARRAY_SIZE(ioeventfds); | |
672 | ||
673 | while (i-- > 0) { | |
41cb62c2 | 674 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
675 | close(ioeventfds[i]); |
676 | } | |
677 | return ret; | |
678 | #else | |
679 | return 0; | |
680 | #endif | |
681 | } | |
682 | ||
94a8d39a JK |
683 | static const KVMCapabilityInfo * |
684 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
685 | { | |
686 | while (list->name) { | |
687 | if (!kvm_check_extension(s, list->value)) { | |
688 | return list; | |
689 | } | |
690 | list++; | |
691 | } | |
692 | return NULL; | |
693 | } | |
694 | ||
7bbda04c PB |
695 | static void kvm_set_phys_mem(KVMMemoryListener *kml, |
696 | MemoryRegionSection *section, bool add) | |
46dbef6a MT |
697 | { |
698 | KVMState *s = kvm_state; | |
46dbef6a MT |
699 | KVMSlot *mem, old; |
700 | int err; | |
a01672d3 | 701 | MemoryRegion *mr = section->mr; |
235e8982 | 702 | bool writeable = !mr->readonly && !mr->rom_device; |
a8170e5e | 703 | hwaddr start_addr = section->offset_within_address_space; |
052e87b0 | 704 | ram_addr_t size = int128_get64(section->size); |
9f213ed9 | 705 | void *ram = NULL; |
8f6f962b | 706 | unsigned delta; |
46dbef6a | 707 | |
14542fea | 708 | /* kvm works in page size chunks, but the function may be called |
f2a64032 AG |
709 | with sub-page size and unaligned start address. Pad the start |
710 | address to next and truncate size to previous page boundary. */ | |
b232c785 AK |
711 | delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask); |
712 | delta &= ~qemu_real_host_page_mask; | |
8f6f962b AK |
713 | if (delta > size) { |
714 | return; | |
715 | } | |
716 | start_addr += delta; | |
717 | size -= delta; | |
b232c785 AK |
718 | size &= qemu_real_host_page_mask; |
719 | if (!size || (start_addr & ~qemu_real_host_page_mask)) { | |
8f6f962b AK |
720 | return; |
721 | } | |
46dbef6a | 722 | |
a01672d3 | 723 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
724 | if (writeable || !kvm_readonly_mem_allowed) { |
725 | return; | |
726 | } else if (!mr->romd_mode) { | |
727 | /* If the memory device is not in romd_mode, then we actually want | |
728 | * to remove the kvm memory slot so all accesses will trap. */ | |
729 | add = false; | |
730 | } | |
9f213ed9 AK |
731 | } |
732 | ||
8f6f962b | 733 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 734 | |
46dbef6a | 735 | while (1) { |
7bbda04c | 736 | mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size); |
46dbef6a MT |
737 | if (!mem) { |
738 | break; | |
739 | } | |
740 | ||
a01672d3 | 741 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 742 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 743 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 744 | /* The new slot fits into the existing one and comes with |
25254bbc | 745 | * identical parameters - update flags and done. */ |
7bbda04c | 746 | kvm_slot_update_flags(kml, mem, mr); |
46dbef6a MT |
747 | return; |
748 | } | |
749 | ||
750 | old = *mem; | |
751 | ||
1bfbac4e | 752 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
7bbda04c | 753 | kvm_physical_sync_dirty_bitmap(kml, section); |
3fbffb62 AK |
754 | } |
755 | ||
46dbef6a MT |
756 | /* unregister the overlapping slot */ |
757 | mem->memory_size = 0; | |
7bbda04c | 758 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
759 | if (err) { |
760 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
761 | __func__, strerror(-err)); | |
762 | abort(); | |
763 | } | |
764 | ||
765 | /* Workaround for older KVM versions: we can't join slots, even not by | |
766 | * unregistering the previous ones and then registering the larger | |
767 | * slot. We have to maintain the existing fragmentation. Sigh. | |
768 | * | |
769 | * This workaround assumes that the new slot starts at the same | |
770 | * address as the first existing one. If not or if some overlapping | |
771 | * slot comes around later, we will fail (not seen in practice so far) | |
772 | * - and actually require a recent KVM version. */ | |
773 | if (s->broken_set_mem_region && | |
a01672d3 | 774 | old.start_addr == start_addr && old.memory_size < size && add) { |
7bbda04c | 775 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
776 | mem->memory_size = old.memory_size; |
777 | mem->start_addr = old.start_addr; | |
9f213ed9 | 778 | mem->ram = old.ram; |
d6ff5cbc | 779 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 780 | |
7bbda04c | 781 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
782 | if (err) { |
783 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
784 | strerror(-err)); | |
785 | abort(); | |
786 | } | |
787 | ||
788 | start_addr += old.memory_size; | |
9f213ed9 | 789 | ram += old.memory_size; |
46dbef6a MT |
790 | size -= old.memory_size; |
791 | continue; | |
792 | } | |
793 | ||
794 | /* register prefix slot */ | |
795 | if (old.start_addr < start_addr) { | |
7bbda04c | 796 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
797 | mem->memory_size = start_addr - old.start_addr; |
798 | mem->start_addr = old.start_addr; | |
9f213ed9 | 799 | mem->ram = old.ram; |
d6ff5cbc | 800 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 801 | |
7bbda04c | 802 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
803 | if (err) { |
804 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
805 | __func__, strerror(-err)); | |
d4d6868f AG |
806 | #ifdef TARGET_PPC |
807 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
808 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
809 | "PAGE_SIZE!\n", __func__); | |
810 | #endif | |
46dbef6a MT |
811 | abort(); |
812 | } | |
813 | } | |
814 | ||
815 | /* register suffix slot */ | |
816 | if (old.start_addr + old.memory_size > start_addr + size) { | |
817 | ram_addr_t size_delta; | |
818 | ||
7bbda04c | 819 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
820 | mem->start_addr = start_addr + size; |
821 | size_delta = mem->start_addr - old.start_addr; | |
822 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 823 | mem->ram = old.ram + size_delta; |
d6ff5cbc | 824 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 825 | |
7bbda04c | 826 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
827 | if (err) { |
828 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
829 | __func__, strerror(-err)); | |
830 | abort(); | |
831 | } | |
832 | } | |
833 | } | |
834 | ||
835 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 836 | if (!size) { |
46dbef6a | 837 | return; |
a426e122 | 838 | } |
a01672d3 | 839 | if (!add) { |
46dbef6a | 840 | return; |
a426e122 | 841 | } |
7bbda04c | 842 | mem = kvm_alloc_slot(kml); |
46dbef6a MT |
843 | mem->memory_size = size; |
844 | mem->start_addr = start_addr; | |
9f213ed9 | 845 | mem->ram = ram; |
d6ff5cbc | 846 | mem->flags = kvm_mem_flags(mr); |
46dbef6a | 847 | |
7bbda04c | 848 | err = kvm_set_user_memory_region(kml, mem); |
46dbef6a MT |
849 | if (err) { |
850 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
851 | strerror(-err)); | |
852 | abort(); | |
853 | } | |
854 | } | |
855 | ||
a01672d3 AK |
856 | static void kvm_region_add(MemoryListener *listener, |
857 | MemoryRegionSection *section) | |
858 | { | |
7bbda04c PB |
859 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
860 | ||
dfde4e6e | 861 | memory_region_ref(section->mr); |
7bbda04c | 862 | kvm_set_phys_mem(kml, section, true); |
a01672d3 AK |
863 | } |
864 | ||
865 | static void kvm_region_del(MemoryListener *listener, | |
866 | MemoryRegionSection *section) | |
867 | { | |
7bbda04c PB |
868 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
869 | ||
870 | kvm_set_phys_mem(kml, section, false); | |
dfde4e6e | 871 | memory_region_unref(section->mr); |
a01672d3 AK |
872 | } |
873 | ||
874 | static void kvm_log_sync(MemoryListener *listener, | |
875 | MemoryRegionSection *section) | |
7b8f3b78 | 876 | { |
7bbda04c | 877 | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); |
a01672d3 AK |
878 | int r; |
879 | ||
7bbda04c | 880 | r = kvm_physical_sync_dirty_bitmap(kml, section); |
a01672d3 AK |
881 | if (r < 0) { |
882 | abort(); | |
883 | } | |
7b8f3b78 MT |
884 | } |
885 | ||
d22b096e AK |
886 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
887 | MemoryRegionSection *section, | |
888 | bool match_data, uint64_t data, | |
889 | EventNotifier *e) | |
890 | { | |
891 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
892 | int r; |
893 | ||
4b8f1c88 | 894 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
895 | data, true, int128_get64(section->size), |
896 | match_data); | |
80a1ea37 | 897 | if (r < 0) { |
fa4ba923 AK |
898 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
899 | __func__, strerror(-r)); | |
80a1ea37 AK |
900 | abort(); |
901 | } | |
902 | } | |
903 | ||
d22b096e AK |
904 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
905 | MemoryRegionSection *section, | |
906 | bool match_data, uint64_t data, | |
907 | EventNotifier *e) | |
80a1ea37 | 908 | { |
d22b096e | 909 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
910 | int r; |
911 | ||
4b8f1c88 | 912 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
052e87b0 PB |
913 | data, false, int128_get64(section->size), |
914 | match_data); | |
80a1ea37 AK |
915 | if (r < 0) { |
916 | abort(); | |
917 | } | |
918 | } | |
919 | ||
d22b096e AK |
920 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
921 | MemoryRegionSection *section, | |
922 | bool match_data, uint64_t data, | |
923 | EventNotifier *e) | |
80a1ea37 | 924 | { |
d22b096e | 925 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
926 | int r; |
927 | ||
44c3f8f7 | 928 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
929 | data, true, int128_get64(section->size), |
930 | match_data); | |
80a1ea37 | 931 | if (r < 0) { |
fa4ba923 AK |
932 | fprintf(stderr, "%s: error adding ioeventfd: %s\n", |
933 | __func__, strerror(-r)); | |
80a1ea37 AK |
934 | abort(); |
935 | } | |
936 | } | |
937 | ||
d22b096e AK |
938 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
939 | MemoryRegionSection *section, | |
940 | bool match_data, uint64_t data, | |
941 | EventNotifier *e) | |
80a1ea37 AK |
942 | |
943 | { | |
d22b096e | 944 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
945 | int r; |
946 | ||
44c3f8f7 | 947 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
052e87b0 PB |
948 | data, false, int128_get64(section->size), |
949 | match_data); | |
80a1ea37 AK |
950 | if (r < 0) { |
951 | abort(); | |
952 | } | |
953 | } | |
954 | ||
38bfe691 PB |
955 | void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, |
956 | AddressSpace *as, int as_id) | |
7bbda04c PB |
957 | { |
958 | int i; | |
959 | ||
960 | kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); | |
38bfe691 | 961 | kml->as_id = as_id; |
7bbda04c PB |
962 | |
963 | for (i = 0; i < s->nr_slots; i++) { | |
964 | kml->slots[i].slot = i; | |
965 | } | |
966 | ||
967 | kml->listener.region_add = kvm_region_add; | |
968 | kml->listener.region_del = kvm_region_del; | |
969 | kml->listener.log_start = kvm_log_start; | |
970 | kml->listener.log_stop = kvm_log_stop; | |
971 | kml->listener.log_sync = kvm_log_sync; | |
972 | kml->listener.priority = 10; | |
973 | ||
974 | memory_listener_register(&kml->listener, as); | |
975 | } | |
d22b096e AK |
976 | |
977 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
978 | .eventfd_add = kvm_io_ioeventfd_add, |
979 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 980 | .priority = 10, |
7b8f3b78 MT |
981 | }; |
982 | ||
c3affe56 | 983 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 984 | { |
259186a7 | 985 | cpu->interrupt_request |= mask; |
aa7f74d1 | 986 | |
60e82579 | 987 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 988 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
989 | } |
990 | } | |
991 | ||
3889c3fa | 992 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
993 | { |
994 | struct kvm_irq_level event; | |
995 | int ret; | |
996 | ||
7ae26bd4 | 997 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
998 | |
999 | event.level = level; | |
1000 | event.irq = irq; | |
e333cd69 | 1001 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 1002 | if (ret < 0) { |
3889c3fa | 1003 | perror("kvm_set_irq"); |
84b058d7 JK |
1004 | abort(); |
1005 | } | |
1006 | ||
e333cd69 | 1007 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
1008 | } |
1009 | ||
1010 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
1011 | typedef struct KVMMSIRoute { |
1012 | struct kvm_irq_routing_entry kroute; | |
1013 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
1014 | } KVMMSIRoute; | |
1015 | ||
84b058d7 JK |
1016 | static void set_gsi(KVMState *s, unsigned int gsi) |
1017 | { | |
8269fb70 | 1018 | set_bit(gsi, s->used_gsi_bitmap); |
84b058d7 JK |
1019 | } |
1020 | ||
04fa27f5 JK |
1021 | static void clear_gsi(KVMState *s, unsigned int gsi) |
1022 | { | |
8269fb70 | 1023 | clear_bit(gsi, s->used_gsi_bitmap); |
04fa27f5 JK |
1024 | } |
1025 | ||
7b774593 | 1026 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 | 1027 | { |
04fa27f5 | 1028 | int gsi_count, i; |
84b058d7 | 1029 | |
00008418 | 1030 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; |
84b058d7 | 1031 | if (gsi_count > 0) { |
84b058d7 | 1032 | /* Round up so we can search ints using ffs */ |
8269fb70 | 1033 | s->used_gsi_bitmap = bitmap_new(gsi_count); |
4e2e4e63 | 1034 | s->gsi_count = gsi_count; |
84b058d7 JK |
1035 | } |
1036 | ||
1037 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
1038 | s->nr_allocated_irq_routes = 0; | |
1039 | ||
50bf31b9 | 1040 | if (!kvm_direct_msi_allowed) { |
4a3adebb JK |
1041 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { |
1042 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
1043 | } | |
04fa27f5 JK |
1044 | } |
1045 | ||
84b058d7 JK |
1046 | kvm_arch_init_irq_routing(s); |
1047 | } | |
1048 | ||
cb925cf9 | 1049 | void kvm_irqchip_commit_routes(KVMState *s) |
e7b20308 JK |
1050 | { |
1051 | int ret; | |
1052 | ||
7005f7f8 PX |
1053 | if (kvm_gsi_direct_mapping()) { |
1054 | return; | |
1055 | } | |
1056 | ||
1057 | if (!kvm_gsi_routing_enabled()) { | |
1058 | return; | |
1059 | } | |
1060 | ||
e7b20308 | 1061 | s->irq_routes->flags = 0; |
54a6c11b | 1062 | trace_kvm_irqchip_commit_routes(); |
e7b20308 JK |
1063 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); |
1064 | assert(ret == 0); | |
1065 | } | |
1066 | ||
84b058d7 JK |
1067 | static void kvm_add_routing_entry(KVMState *s, |
1068 | struct kvm_irq_routing_entry *entry) | |
1069 | { | |
1070 | struct kvm_irq_routing_entry *new; | |
1071 | int n, size; | |
1072 | ||
1073 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
1074 | n = s->nr_allocated_irq_routes * 2; | |
1075 | if (n < 64) { | |
1076 | n = 64; | |
1077 | } | |
1078 | size = sizeof(struct kvm_irq_routing); | |
1079 | size += n * sizeof(*new); | |
1080 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1081 | s->nr_allocated_irq_routes = n; | |
1082 | } | |
1083 | n = s->irq_routes->nr++; | |
1084 | new = &s->irq_routes->entries[n]; | |
0fbc2074 MT |
1085 | |
1086 | *new = *entry; | |
84b058d7 JK |
1087 | |
1088 | set_gsi(s, entry->gsi); | |
1089 | } | |
1090 | ||
cc57407e JK |
1091 | static int kvm_update_routing_entry(KVMState *s, |
1092 | struct kvm_irq_routing_entry *new_entry) | |
1093 | { | |
1094 | struct kvm_irq_routing_entry *entry; | |
1095 | int n; | |
1096 | ||
1097 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1098 | entry = &s->irq_routes->entries[n]; | |
1099 | if (entry->gsi != new_entry->gsi) { | |
1100 | continue; | |
1101 | } | |
1102 | ||
40509f7f MT |
1103 | if(!memcmp(entry, new_entry, sizeof *entry)) { |
1104 | return 0; | |
1105 | } | |
1106 | ||
0fbc2074 | 1107 | *entry = *new_entry; |
cc57407e | 1108 | |
cc57407e JK |
1109 | return 0; |
1110 | } | |
1111 | ||
1112 | return -ESRCH; | |
1113 | } | |
1114 | ||
1df186df | 1115 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 | 1116 | { |
0fbc2074 | 1117 | struct kvm_irq_routing_entry e = {}; |
84b058d7 | 1118 | |
4e2e4e63 JK |
1119 | assert(pin < s->gsi_count); |
1120 | ||
84b058d7 JK |
1121 | e.gsi = irq; |
1122 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1123 | e.flags = 0; | |
1124 | e.u.irqchip.irqchip = irqchip; | |
1125 | e.u.irqchip.pin = pin; | |
1126 | kvm_add_routing_entry(s, &e); | |
1127 | } | |
1128 | ||
1e2aa8be | 1129 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1130 | { |
1131 | struct kvm_irq_routing_entry *e; | |
1132 | int i; | |
1133 | ||
76fe21de AK |
1134 | if (kvm_gsi_direct_mapping()) { |
1135 | return; | |
1136 | } | |
1137 | ||
04fa27f5 JK |
1138 | for (i = 0; i < s->irq_routes->nr; i++) { |
1139 | e = &s->irq_routes->entries[i]; | |
1140 | if (e->gsi == virq) { | |
1141 | s->irq_routes->nr--; | |
1142 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1143 | } | |
1144 | } | |
1145 | clear_gsi(s, virq); | |
38d87493 | 1146 | kvm_arch_release_virq_post(virq); |
04fa27f5 JK |
1147 | } |
1148 | ||
1149 | static unsigned int kvm_hash_msi(uint32_t data) | |
1150 | { | |
1151 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1152 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1153 | return data & 0xff; | |
1154 | } | |
1155 | ||
1156 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1157 | { | |
1158 | KVMMSIRoute *route, *next; | |
1159 | unsigned int hash; | |
1160 | ||
1161 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1162 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1163 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1164 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1165 | g_free(route); | |
1166 | } | |
1167 | } | |
1168 | } | |
1169 | ||
1170 | static int kvm_irqchip_get_virq(KVMState *s) | |
1171 | { | |
8269fb70 | 1172 | int next_virq; |
04fa27f5 | 1173 | |
bdf02631 WM |
1174 | /* |
1175 | * PIC and IOAPIC share the first 16 GSI numbers, thus the available | |
1176 | * GSI numbers are more than the number of IRQ route. Allocating a GSI | |
1177 | * number can succeed even though a new route entry cannot be added. | |
1178 | * When this happens, flush dynamic MSI entries to free IRQ route entries. | |
1179 | */ | |
50bf31b9 | 1180 | if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { |
bdf02631 WM |
1181 | kvm_flush_dynamic_msi_routes(s); |
1182 | } | |
1183 | ||
04fa27f5 | 1184 | /* Return the lowest unused GSI in the bitmap */ |
8269fb70 WY |
1185 | next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); |
1186 | if (next_virq >= s->gsi_count) { | |
1187 | return -ENOSPC; | |
1188 | } else { | |
1189 | return next_virq; | |
04fa27f5 | 1190 | } |
04fa27f5 JK |
1191 | } |
1192 | ||
1193 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1194 | { | |
1195 | unsigned int hash = kvm_hash_msi(msg.data); | |
1196 | KVMMSIRoute *route; | |
1197 | ||
1198 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1199 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1200 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
d07cc1f1 | 1201 | route->kroute.u.msi.data == le32_to_cpu(msg.data)) { |
04fa27f5 JK |
1202 | return route; |
1203 | } | |
1204 | } | |
1205 | return NULL; | |
1206 | } | |
1207 | ||
1208 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1209 | { | |
4a3adebb | 1210 | struct kvm_msi msi; |
04fa27f5 JK |
1211 | KVMMSIRoute *route; |
1212 | ||
50bf31b9 | 1213 | if (kvm_direct_msi_allowed) { |
4a3adebb JK |
1214 | msi.address_lo = (uint32_t)msg.address; |
1215 | msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1216 | msi.data = le32_to_cpu(msg.data); |
4a3adebb JK |
1217 | msi.flags = 0; |
1218 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1219 | ||
1220 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1221 | } | |
1222 | ||
04fa27f5 JK |
1223 | route = kvm_lookup_msi_route(s, msg); |
1224 | if (!route) { | |
e7b20308 | 1225 | int virq; |
04fa27f5 JK |
1226 | |
1227 | virq = kvm_irqchip_get_virq(s); | |
1228 | if (virq < 0) { | |
1229 | return virq; | |
1230 | } | |
1231 | ||
0fbc2074 | 1232 | route = g_malloc0(sizeof(KVMMSIRoute)); |
04fa27f5 JK |
1233 | route->kroute.gsi = virq; |
1234 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1235 | route->kroute.flags = 0; | |
1236 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1237 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1238 | route->kroute.u.msi.data = le32_to_cpu(msg.data); |
04fa27f5 JK |
1239 | |
1240 | kvm_add_routing_entry(s, &route->kroute); | |
cb925cf9 | 1241 | kvm_irqchip_commit_routes(s); |
04fa27f5 JK |
1242 | |
1243 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1244 | entry); | |
04fa27f5 JK |
1245 | } |
1246 | ||
1247 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1248 | ||
3889c3fa | 1249 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1250 | } |
1251 | ||
d1f6af6a | 1252 | int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) |
92b4e489 | 1253 | { |
0fbc2074 | 1254 | struct kvm_irq_routing_entry kroute = {}; |
92b4e489 | 1255 | int virq; |
d1f6af6a PX |
1256 | MSIMessage msg = {0, 0}; |
1257 | ||
1258 | if (dev) { | |
e1d4fb2d | 1259 | msg = pci_get_msi_message(dev, vector); |
d1f6af6a | 1260 | } |
92b4e489 | 1261 | |
76fe21de | 1262 | if (kvm_gsi_direct_mapping()) { |
1850b6b7 | 1263 | return kvm_arch_msi_data_to_gsi(msg.data); |
76fe21de AK |
1264 | } |
1265 | ||
f3e1bed8 | 1266 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1267 | return -ENOSYS; |
1268 | } | |
1269 | ||
1270 | virq = kvm_irqchip_get_virq(s); | |
1271 | if (virq < 0) { | |
1272 | return virq; | |
1273 | } | |
1274 | ||
1275 | kroute.gsi = virq; | |
1276 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1277 | kroute.flags = 0; | |
1278 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1279 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1280 | kroute.u.msi.data = le32_to_cpu(msg.data); |
767a554a PF |
1281 | if (kvm_msi_devid_required()) { |
1282 | kroute.flags = KVM_MSI_VALID_DEVID; | |
1283 | kroute.u.msi.devid = pci_requester_id(dev); | |
1284 | } | |
dc9f06ca | 1285 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
9e03a040 FB |
1286 | kvm_irqchip_release_virq(s, virq); |
1287 | return -EINVAL; | |
1288 | } | |
92b4e489 | 1289 | |
54a6c11b PX |
1290 | trace_kvm_irqchip_add_msi_route(virq); |
1291 | ||
92b4e489 | 1292 | kvm_add_routing_entry(s, &kroute); |
38d87493 | 1293 | kvm_arch_add_msi_route_post(&kroute, vector, dev); |
cb925cf9 | 1294 | kvm_irqchip_commit_routes(s); |
92b4e489 JK |
1295 | |
1296 | return virq; | |
1297 | } | |
1298 | ||
dc9f06ca PF |
1299 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, |
1300 | PCIDevice *dev) | |
cc57407e | 1301 | { |
0fbc2074 | 1302 | struct kvm_irq_routing_entry kroute = {}; |
cc57407e | 1303 | |
76fe21de AK |
1304 | if (kvm_gsi_direct_mapping()) { |
1305 | return 0; | |
1306 | } | |
1307 | ||
cc57407e JK |
1308 | if (!kvm_irqchip_in_kernel()) { |
1309 | return -ENOSYS; | |
1310 | } | |
1311 | ||
1312 | kroute.gsi = virq; | |
1313 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1314 | kroute.flags = 0; | |
1315 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1316 | kroute.u.msi.address_hi = msg.address >> 32; | |
d07cc1f1 | 1317 | kroute.u.msi.data = le32_to_cpu(msg.data); |
767a554a PF |
1318 | if (kvm_msi_devid_required()) { |
1319 | kroute.flags = KVM_MSI_VALID_DEVID; | |
1320 | kroute.u.msi.devid = pci_requester_id(dev); | |
1321 | } | |
dc9f06ca | 1322 | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { |
9e03a040 FB |
1323 | return -EINVAL; |
1324 | } | |
cc57407e | 1325 | |
54a6c11b PX |
1326 | trace_kvm_irqchip_update_msi_route(virq); |
1327 | ||
cc57407e JK |
1328 | return kvm_update_routing_entry(s, &kroute); |
1329 | } | |
1330 | ||
ca916d37 VM |
1331 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, |
1332 | bool assign) | |
39853bbc JK |
1333 | { |
1334 | struct kvm_irqfd irqfd = { | |
1335 | .fd = fd, | |
1336 | .gsi = virq, | |
1337 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1338 | }; | |
1339 | ||
ca916d37 VM |
1340 | if (rfd != -1) { |
1341 | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | |
1342 | irqfd.resamplefd = rfd; | |
1343 | } | |
1344 | ||
cc7e0ddf | 1345 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1346 | return -ENOSYS; |
1347 | } | |
1348 | ||
1349 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1350 | } | |
1351 | ||
d426d9fb CH |
1352 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1353 | { | |
e9af2fef | 1354 | struct kvm_irq_routing_entry kroute = {}; |
d426d9fb CH |
1355 | int virq; |
1356 | ||
1357 | if (!kvm_gsi_routing_enabled()) { | |
1358 | return -ENOSYS; | |
1359 | } | |
1360 | ||
1361 | virq = kvm_irqchip_get_virq(s); | |
1362 | if (virq < 0) { | |
1363 | return virq; | |
1364 | } | |
1365 | ||
1366 | kroute.gsi = virq; | |
1367 | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | |
1368 | kroute.flags = 0; | |
1369 | kroute.u.adapter.summary_addr = adapter->summary_addr; | |
1370 | kroute.u.adapter.ind_addr = adapter->ind_addr; | |
1371 | kroute.u.adapter.summary_offset = adapter->summary_offset; | |
1372 | kroute.u.adapter.ind_offset = adapter->ind_offset; | |
1373 | kroute.u.adapter.adapter_id = adapter->adapter_id; | |
1374 | ||
1375 | kvm_add_routing_entry(s, &kroute); | |
d426d9fb CH |
1376 | |
1377 | return virq; | |
1378 | } | |
1379 | ||
977a8d9c AS |
1380 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
1381 | { | |
1382 | struct kvm_irq_routing_entry kroute = {}; | |
1383 | int virq; | |
1384 | ||
1385 | if (!kvm_gsi_routing_enabled()) { | |
1386 | return -ENOSYS; | |
1387 | } | |
1388 | if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { | |
1389 | return -ENOSYS; | |
1390 | } | |
1391 | virq = kvm_irqchip_get_virq(s); | |
1392 | if (virq < 0) { | |
1393 | return virq; | |
1394 | } | |
1395 | ||
1396 | kroute.gsi = virq; | |
1397 | kroute.type = KVM_IRQ_ROUTING_HV_SINT; | |
1398 | kroute.flags = 0; | |
1399 | kroute.u.hv_sint.vcpu = vcpu; | |
1400 | kroute.u.hv_sint.sint = sint; | |
1401 | ||
1402 | kvm_add_routing_entry(s, &kroute); | |
1403 | kvm_irqchip_commit_routes(s); | |
1404 | ||
1405 | return virq; | |
1406 | } | |
1407 | ||
84b058d7 JK |
1408 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1409 | ||
7b774593 | 1410 | void kvm_init_irq_routing(KVMState *s) |
84b058d7 JK |
1411 | { |
1412 | } | |
04fa27f5 | 1413 | |
d3d3bef0 JK |
1414 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1415 | { | |
1416 | } | |
1417 | ||
04fa27f5 JK |
1418 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1419 | { | |
1420 | abort(); | |
1421 | } | |
92b4e489 | 1422 | |
d1f6af6a | 1423 | int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) |
92b4e489 | 1424 | { |
df410675 | 1425 | return -ENOSYS; |
92b4e489 | 1426 | } |
39853bbc | 1427 | |
d426d9fb CH |
1428 | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) |
1429 | { | |
1430 | return -ENOSYS; | |
1431 | } | |
1432 | ||
977a8d9c AS |
1433 | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) |
1434 | { | |
1435 | return -ENOSYS; | |
1436 | } | |
1437 | ||
39853bbc JK |
1438 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1439 | { | |
1440 | abort(); | |
1441 | } | |
dabe3143 MT |
1442 | |
1443 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1444 | { | |
1445 | return -ENOSYS; | |
1446 | } | |
84b058d7 JK |
1447 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1448 | ||
1c9b71a7 EA |
1449 | int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
1450 | EventNotifier *rn, int virq) | |
39853bbc | 1451 | { |
ca916d37 VM |
1452 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), |
1453 | rn ? event_notifier_get_fd(rn) : -1, virq, true); | |
39853bbc JK |
1454 | } |
1455 | ||
1c9b71a7 EA |
1456 | int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, |
1457 | int virq) | |
15b2bd18 | 1458 | { |
ca916d37 VM |
1459 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, |
1460 | false); | |
15b2bd18 PB |
1461 | } |
1462 | ||
197e3524 EA |
1463 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, |
1464 | EventNotifier *rn, qemu_irq irq) | |
1465 | { | |
1466 | gpointer key, gsi; | |
1467 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1468 | ||
1469 | if (!found) { | |
1470 | return -ENXIO; | |
1471 | } | |
1472 | return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); | |
1473 | } | |
1474 | ||
1475 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, | |
1476 | qemu_irq irq) | |
1477 | { | |
1478 | gpointer key, gsi; | |
1479 | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | |
1480 | ||
1481 | if (!found) { | |
1482 | return -ENXIO; | |
1483 | } | |
1484 | return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); | |
1485 | } | |
1486 | ||
1487 | void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) | |
1488 | { | |
1489 | g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); | |
1490 | } | |
1491 | ||
8db4936b | 1492 | static void kvm_irqchip_create(MachineState *machine, KVMState *s) |
84b058d7 | 1493 | { |
84b058d7 JK |
1494 | int ret; |
1495 | ||
8db4936b PB |
1496 | if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1497 | ; | |
1498 | } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { | |
1499 | ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); | |
1500 | if (ret < 0) { | |
1501 | fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); | |
1502 | exit(1); | |
1503 | } | |
1504 | } else { | |
1505 | return; | |
84b058d7 JK |
1506 | } |
1507 | ||
d6032e06 CD |
1508 | /* First probe and see if there's a arch-specific hook to create the |
1509 | * in-kernel irqchip for us */ | |
15eafc2e | 1510 | ret = kvm_arch_irqchip_create(machine, s); |
8db4936b | 1511 | if (ret == 0) { |
15eafc2e PB |
1512 | if (machine_kernel_irqchip_split(machine)) { |
1513 | perror("Split IRQ chip mode not supported."); | |
1514 | exit(1); | |
1515 | } else { | |
1516 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1517 | } | |
8db4936b PB |
1518 | } |
1519 | if (ret < 0) { | |
1520 | fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); | |
1521 | exit(1); | |
84b058d7 JK |
1522 | } |
1523 | ||
3d4b2649 | 1524 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1525 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1526 | * interrupt delivery (though the reverse is not necessarily true) | |
1527 | */ | |
1528 | kvm_async_interrupts_allowed = true; | |
215e79c0 | 1529 | kvm_halt_in_kernel_allowed = true; |
84b058d7 JK |
1530 | |
1531 | kvm_init_irq_routing(s); | |
1532 | ||
197e3524 | 1533 | s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); |
84b058d7 JK |
1534 | } |
1535 | ||
670436ce AJ |
1536 | /* Find number of supported CPUs using the recommended |
1537 | * procedure from the kernel API documentation to cope with | |
1538 | * older kernels that may be missing capabilities. | |
1539 | */ | |
1540 | static int kvm_recommended_vcpus(KVMState *s) | |
3ed444e9 | 1541 | { |
670436ce AJ |
1542 | int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); |
1543 | return (ret) ? ret : 4; | |
1544 | } | |
3ed444e9 | 1545 | |
670436ce AJ |
1546 | static int kvm_max_vcpus(KVMState *s) |
1547 | { | |
1548 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1549 | return (ret) ? ret : kvm_recommended_vcpus(s); | |
3ed444e9 DH |
1550 | } |
1551 | ||
f31e3266 GK |
1552 | static int kvm_max_vcpu_id(KVMState *s) |
1553 | { | |
1554 | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); | |
1555 | return (ret) ? ret : kvm_max_vcpus(s); | |
1556 | } | |
1557 | ||
41264b38 GK |
1558 | bool kvm_vcpu_id_is_valid(int vcpu_id) |
1559 | { | |
1560 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
f31e3266 | 1561 | return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); |
41264b38 GK |
1562 | } |
1563 | ||
f6a1ef64 | 1564 | static int kvm_init(MachineState *ms) |
05330448 | 1565 | { |
f6a1ef64 | 1566 | MachineClass *mc = MACHINE_GET_CLASS(ms); |
168ccc11 JK |
1567 | static const char upgrade_note[] = |
1568 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1569 | "(see http://sourceforge.net/projects/kvm).\n"; | |
670436ce AJ |
1570 | struct { |
1571 | const char *name; | |
1572 | int num; | |
1573 | } num_cpus[] = { | |
1574 | { "SMP", smp_cpus }, | |
1575 | { "hotpluggable", max_cpus }, | |
1576 | { NULL, } | |
1577 | }, *nc = num_cpus; | |
1578 | int soft_vcpus_limit, hard_vcpus_limit; | |
05330448 | 1579 | KVMState *s; |
94a8d39a | 1580 | const KVMCapabilityInfo *missing_cap; |
05330448 | 1581 | int ret; |
7bbda04c | 1582 | int type = 0; |
135a129a | 1583 | const char *kvm_type; |
05330448 | 1584 | |
fc02086b | 1585 | s = KVM_STATE(ms->accelerator); |
05330448 | 1586 | |
3145fcb6 DG |
1587 | /* |
1588 | * On systems where the kernel can support different base page | |
1589 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1590 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1591 | * page size for the system though. | |
1592 | */ | |
1593 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1594 | ||
aed6efb9 JH |
1595 | s->sigmask_len = 8; |
1596 | ||
e22a25c9 | 1597 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1598 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1599 | #endif |
4c055ab5 | 1600 | QLIST_INIT(&s->kvm_parked_vcpus); |
05330448 | 1601 | s->vmfd = -1; |
40ff6d7e | 1602 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1603 | if (s->fd == -1) { |
1604 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1605 | ret = -errno; | |
1606 | goto err; | |
1607 | } | |
1608 | ||
1609 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1610 | if (ret < KVM_API_VERSION) { | |
0e1dac6c | 1611 | if (ret >= 0) { |
05330448 | 1612 | ret = -EINVAL; |
a426e122 | 1613 | } |
05330448 AL |
1614 | fprintf(stderr, "kvm version too old\n"); |
1615 | goto err; | |
1616 | } | |
1617 | ||
1618 | if (ret > KVM_API_VERSION) { | |
1619 | ret = -EINVAL; | |
1620 | fprintf(stderr, "kvm version not supported\n"); | |
1621 | goto err; | |
1622 | } | |
1623 | ||
cf0f7cf9 | 1624 | kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); |
fb541ca5 AW |
1625 | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); |
1626 | ||
1627 | /* If unspecified, use the default value */ | |
1628 | if (!s->nr_slots) { | |
1629 | s->nr_slots = 32; | |
1630 | } | |
1631 | ||
670436ce AJ |
1632 | /* check the vcpu limits */ |
1633 | soft_vcpus_limit = kvm_recommended_vcpus(s); | |
1634 | hard_vcpus_limit = kvm_max_vcpus(s); | |
3ed444e9 | 1635 | |
670436ce AJ |
1636 | while (nc->name) { |
1637 | if (nc->num > soft_vcpus_limit) { | |
1638 | fprintf(stderr, | |
1639 | "Warning: Number of %s cpus requested (%d) exceeds " | |
1640 | "the recommended cpus supported by KVM (%d)\n", | |
1641 | nc->name, nc->num, soft_vcpus_limit); | |
1642 | ||
1643 | if (nc->num > hard_vcpus_limit) { | |
670436ce AJ |
1644 | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " |
1645 | "the maximum cpus supported by KVM (%d)\n", | |
1646 | nc->name, nc->num, hard_vcpus_limit); | |
9ba3cf54 | 1647 | exit(1); |
670436ce AJ |
1648 | } |
1649 | } | |
1650 | nc++; | |
7dc52526 MT |
1651 | } |
1652 | ||
135a129a | 1653 | kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); |
f1e29879 MA |
1654 | if (mc->kvm_type) { |
1655 | type = mc->kvm_type(kvm_type); | |
135a129a | 1656 | } else if (kvm_type) { |
0e1dac6c | 1657 | ret = -EINVAL; |
135a129a AK |
1658 | fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); |
1659 | goto err; | |
1660 | } | |
1661 | ||
94ccff13 | 1662 | do { |
135a129a | 1663 | ret = kvm_ioctl(s, KVM_CREATE_VM, type); |
94ccff13 TK |
1664 | } while (ret == -EINTR); |
1665 | ||
1666 | if (ret < 0) { | |
521f438e | 1667 | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, |
94ccff13 TK |
1668 | strerror(-ret)); |
1669 | ||
0104dcac | 1670 | #ifdef TARGET_S390X |
2c80e996 CH |
1671 | if (ret == -EINVAL) { |
1672 | fprintf(stderr, | |
1673 | "Host kernel setup problem detected. Please verify:\n"); | |
1674 | fprintf(stderr, "- for kernels supporting the switch_amode or" | |
1675 | " user_mode parameters, whether\n"); | |
1676 | fprintf(stderr, | |
1677 | " user space is running in primary address space\n"); | |
1678 | fprintf(stderr, | |
1679 | "- for kernels supporting the vm.allocate_pgste sysctl, " | |
1680 | "whether it is enabled\n"); | |
1681 | } | |
0104dcac | 1682 | #endif |
05330448 | 1683 | goto err; |
0104dcac | 1684 | } |
05330448 | 1685 | |
94ccff13 | 1686 | s->vmfd = ret; |
94a8d39a JK |
1687 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1688 | if (!missing_cap) { | |
1689 | missing_cap = | |
1690 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1691 | } |
94a8d39a | 1692 | if (missing_cap) { |
ad7b8b33 | 1693 | ret = -EINVAL; |
94a8d39a JK |
1694 | fprintf(stderr, "kvm does not support %s\n%s", |
1695 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1696 | goto err; |
1697 | } | |
1698 | ||
ad7b8b33 | 1699 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1700 | |
e69917e2 | 1701 | s->broken_set_mem_region = 1; |
14a09518 | 1702 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1703 | if (ret > 0) { |
1704 | s->broken_set_mem_region = 0; | |
1705 | } | |
e69917e2 | 1706 | |
a0fb002c JK |
1707 | #ifdef KVM_CAP_VCPU_EVENTS |
1708 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1709 | #endif | |
1710 | ||
b0b1d690 JK |
1711 | s->robust_singlestep = |
1712 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1713 | |
ff44f1a3 JK |
1714 | #ifdef KVM_CAP_DEBUGREGS |
1715 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1716 | #endif | |
1717 | ||
d3d3bef0 | 1718 | #ifdef KVM_CAP_IRQ_ROUTING |
50bf31b9 | 1719 | kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1720 | #endif |
4a3adebb | 1721 | |
3ab73842 JK |
1722 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1723 | ||
e333cd69 | 1724 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1725 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1726 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1727 | } |
1728 | ||
df9c8b75 JJ |
1729 | #ifdef KVM_CAP_READONLY_MEM |
1730 | kvm_readonly_mem_allowed = | |
1731 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1732 | #endif | |
1733 | ||
69e03ae6 NN |
1734 | kvm_eventfds_allowed = |
1735 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); | |
1736 | ||
f41389ae EA |
1737 | kvm_irqfds_allowed = |
1738 | (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); | |
1739 | ||
1740 | kvm_resamplefds_allowed = | |
1741 | (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); | |
1742 | ||
d0a073a1 DD |
1743 | kvm_vm_attributes_allowed = |
1744 | (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); | |
1745 | ||
35108223 JW |
1746 | kvm_ioeventfd_any_length_allowed = |
1747 | (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); | |
1748 | ||
b16565b3 | 1749 | ret = kvm_arch_init(ms, s); |
a426e122 | 1750 | if (ret < 0) { |
05330448 | 1751 | goto err; |
a426e122 | 1752 | } |
05330448 | 1753 | |
8db4936b PB |
1754 | if (machine_kernel_irqchip_allowed(ms)) { |
1755 | kvm_irqchip_create(ms, s); | |
84b058d7 JK |
1756 | } |
1757 | ||
05330448 | 1758 | kvm_state = s; |
7bbda04c | 1759 | |
8c56c1a5 PF |
1760 | if (kvm_eventfds_allowed) { |
1761 | s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; | |
1762 | s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; | |
1763 | } | |
7bbda04c PB |
1764 | s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; |
1765 | s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; | |
1766 | ||
1767 | kvm_memory_listener_register(s, &s->memory_listener, | |
38bfe691 | 1768 | &address_space_memory, 0); |
7bbda04c PB |
1769 | memory_listener_register(&kvm_io_listener, |
1770 | &address_space_io); | |
05330448 | 1771 | |
d2f2b8a7 SH |
1772 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1773 | ||
aa7f74d1 JK |
1774 | cpu_interrupt_handler = kvm_handle_interrupt; |
1775 | ||
05330448 AL |
1776 | return 0; |
1777 | ||
1778 | err: | |
0e1dac6c | 1779 | assert(ret < 0); |
6d1cc321 SW |
1780 | if (s->vmfd >= 0) { |
1781 | close(s->vmfd); | |
1782 | } | |
1783 | if (s->fd != -1) { | |
1784 | close(s->fd); | |
05330448 | 1785 | } |
7bbda04c | 1786 | g_free(s->memory_listener.slots); |
05330448 AL |
1787 | |
1788 | return ret; | |
1789 | } | |
1790 | ||
aed6efb9 JH |
1791 | void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) |
1792 | { | |
1793 | s->sigmask_len = sigmask_len; | |
1794 | } | |
1795 | ||
4c663752 PB |
1796 | static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, |
1797 | int size, uint32_t count) | |
05330448 AL |
1798 | { |
1799 | int i; | |
1800 | uint8_t *ptr = data; | |
1801 | ||
1802 | for (i = 0; i < count; i++) { | |
4c663752 | 1803 | address_space_rw(&address_space_io, port, attrs, |
5c9eb028 | 1804 | ptr, size, |
354678c5 | 1805 | direction == KVM_EXIT_IO_OUT); |
05330448 AL |
1806 | ptr += size; |
1807 | } | |
05330448 AL |
1808 | } |
1809 | ||
5326ab55 | 1810 | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) |
7c80eef8 | 1811 | { |
977c7b6d RK |
1812 | fprintf(stderr, "KVM internal error. Suberror: %d\n", |
1813 | run->internal.suberror); | |
1814 | ||
7c80eef8 MT |
1815 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1816 | int i; | |
1817 | ||
7c80eef8 MT |
1818 | for (i = 0; i < run->internal.ndata; ++i) { |
1819 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1820 | i, (uint64_t)run->internal.data[i]); | |
1821 | } | |
1822 | } | |
7c80eef8 MT |
1823 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1824 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1825 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
878096ee | 1826 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1827 | return EXCP_INTERRUPT; |
a426e122 | 1828 | } |
7c80eef8 MT |
1829 | } |
1830 | /* FIXME: Should trigger a qmp message to let management know | |
1831 | * something went wrong. | |
1832 | */ | |
73aaec4a | 1833 | return -1; |
7c80eef8 | 1834 | } |
7c80eef8 | 1835 | |
62a2744c | 1836 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1837 | { |
f65ed4c1 | 1838 | KVMState *s = kvm_state; |
1cae88b9 AK |
1839 | |
1840 | if (s->coalesced_flush_in_progress) { | |
1841 | return; | |
1842 | } | |
1843 | ||
1844 | s->coalesced_flush_in_progress = true; | |
1845 | ||
62a2744c SY |
1846 | if (s->coalesced_mmio_ring) { |
1847 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1848 | while (ring->first != ring->last) { |
1849 | struct kvm_coalesced_mmio *ent; | |
1850 | ||
1851 | ent = &ring->coalesced_mmio[ring->first]; | |
1852 | ||
1853 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1854 | smp_wmb(); |
f65ed4c1 AL |
1855 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1856 | } | |
1857 | } | |
1cae88b9 AK |
1858 | |
1859 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1860 | } |
1861 | ||
14e6fe12 | 1862 | static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) |
4c0960c0 | 1863 | { |
20d695a9 AF |
1864 | if (!cpu->kvm_vcpu_dirty) { |
1865 | kvm_arch_get_registers(cpu); | |
1866 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1867 | } |
1868 | } | |
1869 | ||
dd1750d7 | 1870 | void kvm_cpu_synchronize_state(CPUState *cpu) |
2705d56a | 1871 | { |
20d695a9 | 1872 | if (!cpu->kvm_vcpu_dirty) { |
14e6fe12 | 1873 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); |
a426e122 | 1874 | } |
2705d56a JK |
1875 | } |
1876 | ||
14e6fe12 | 1877 | static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) |
ea375f9a | 1878 | { |
20d695a9 AF |
1879 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1880 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1881 | } |
1882 | ||
c8e2085d DH |
1883 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
1884 | { | |
14e6fe12 | 1885 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); |
c8e2085d DH |
1886 | } |
1887 | ||
14e6fe12 | 1888 | static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) |
ea375f9a | 1889 | { |
20d695a9 AF |
1890 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1891 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1892 | } |
1893 | ||
c8e2085d DH |
1894 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
1895 | { | |
14e6fe12 | 1896 | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); |
c8e2085d DH |
1897 | } |
1898 | ||
2ae41db2 PB |
1899 | #ifdef KVM_HAVE_MCE_INJECTION |
1900 | static __thread void *pending_sigbus_addr; | |
1901 | static __thread int pending_sigbus_code; | |
1902 | static __thread bool have_sigbus_pending; | |
1903 | #endif | |
1904 | ||
cf0f7cf9 PB |
1905 | static void kvm_cpu_kick(CPUState *cpu) |
1906 | { | |
1907 | atomic_set(&cpu->kvm_run->immediate_exit, 1); | |
1908 | } | |
1909 | ||
1910 | static void kvm_cpu_kick_self(void) | |
1911 | { | |
1912 | if (kvm_immediate_exit) { | |
1913 | kvm_cpu_kick(current_cpu); | |
1914 | } else { | |
1915 | qemu_cpu_kick_self(); | |
1916 | } | |
1917 | } | |
1918 | ||
18268b60 PB |
1919 | static void kvm_eat_signals(CPUState *cpu) |
1920 | { | |
1921 | struct timespec ts = { 0, 0 }; | |
1922 | siginfo_t siginfo; | |
1923 | sigset_t waitset; | |
1924 | sigset_t chkset; | |
1925 | int r; | |
1926 | ||
cf0f7cf9 PB |
1927 | if (kvm_immediate_exit) { |
1928 | atomic_set(&cpu->kvm_run->immediate_exit, 0); | |
1929 | /* Write kvm_run->immediate_exit before the cpu->exit_request | |
1930 | * write in kvm_cpu_exec. | |
1931 | */ | |
1932 | smp_wmb(); | |
1933 | return; | |
1934 | } | |
1935 | ||
18268b60 PB |
1936 | sigemptyset(&waitset); |
1937 | sigaddset(&waitset, SIG_IPI); | |
1938 | ||
1939 | do { | |
1940 | r = sigtimedwait(&waitset, &siginfo, &ts); | |
1941 | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | |
1942 | perror("sigtimedwait"); | |
1943 | exit(1); | |
1944 | } | |
1945 | ||
1946 | r = sigpending(&chkset); | |
1947 | if (r == -1) { | |
1948 | perror("sigpending"); | |
1949 | exit(1); | |
1950 | } | |
1951 | } while (sigismember(&chkset, SIG_IPI)); | |
1952 | } | |
1953 | ||
1458c363 | 1954 | int kvm_cpu_exec(CPUState *cpu) |
05330448 | 1955 | { |
f7575c96 | 1956 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1957 | int ret, run_ret; |
05330448 | 1958 | |
8c0d577e | 1959 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1960 | |
20d695a9 | 1961 | if (kvm_arch_process_async_events(cpu)) { |
c5c6679d | 1962 | atomic_set(&cpu->exit_request, 0); |
6792a57b | 1963 | return EXCP_HLT; |
9ccfac9e | 1964 | } |
0af691d7 | 1965 | |
4b8523ee JK |
1966 | qemu_mutex_unlock_iothread(); |
1967 | ||
9ccfac9e | 1968 | do { |
4c663752 PB |
1969 | MemTxAttrs attrs; |
1970 | ||
20d695a9 AF |
1971 | if (cpu->kvm_vcpu_dirty) { |
1972 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1973 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1974 | } |
1975 | ||
20d695a9 | 1976 | kvm_arch_pre_run(cpu, run); |
c5c6679d | 1977 | if (atomic_read(&cpu->exit_request)) { |
9ccfac9e JK |
1978 | DPRINTF("interrupt exit requested\n"); |
1979 | /* | |
1980 | * KVM requires us to reenter the kernel after IO exits to complete | |
1981 | * instruction emulation. This self-signal will ensure that we | |
1982 | * leave ASAP again. | |
1983 | */ | |
cf0f7cf9 | 1984 | kvm_cpu_kick_self(); |
9ccfac9e | 1985 | } |
9ccfac9e | 1986 | |
cf0f7cf9 PB |
1987 | /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. |
1988 | * Matching barrier in kvm_eat_signals. | |
1989 | */ | |
1990 | smp_rmb(); | |
1991 | ||
1bc22652 | 1992 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1993 | |
4c663752 | 1994 | attrs = kvm_arch_post_run(cpu, run); |
05330448 | 1995 | |
2ae41db2 PB |
1996 | #ifdef KVM_HAVE_MCE_INJECTION |
1997 | if (unlikely(have_sigbus_pending)) { | |
1998 | qemu_mutex_lock_iothread(); | |
1999 | kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, | |
2000 | pending_sigbus_addr); | |
2001 | have_sigbus_pending = false; | |
2002 | qemu_mutex_unlock_iothread(); | |
2003 | } | |
2004 | #endif | |
2005 | ||
7cbb533f | 2006 | if (run_ret < 0) { |
dc77d341 JK |
2007 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
2008 | DPRINTF("io window exit\n"); | |
18268b60 | 2009 | kvm_eat_signals(cpu); |
d73cd8f4 | 2010 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
2011 | break; |
2012 | } | |
7b011fbc ME |
2013 | fprintf(stderr, "error: kvm run failed %s\n", |
2014 | strerror(-run_ret)); | |
dae02ba5 LV |
2015 | #ifdef TARGET_PPC |
2016 | if (run_ret == -EBUSY) { | |
2017 | fprintf(stderr, | |
2018 | "This is probably because your SMT is enabled.\n" | |
2019 | "VCPU can only run on primary threads with all " | |
2020 | "secondary threads offline.\n"); | |
2021 | } | |
2022 | #endif | |
a85e130e PB |
2023 | ret = -1; |
2024 | break; | |
05330448 AL |
2025 | } |
2026 | ||
b76ac80a | 2027 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
2028 | switch (run->exit_reason) { |
2029 | case KVM_EXIT_IO: | |
8c0d577e | 2030 | DPRINTF("handle_io\n"); |
80b7d2ef | 2031 | /* Called outside BQL */ |
4c663752 | 2032 | kvm_handle_io(run->io.port, attrs, |
b30e93e9 JK |
2033 | (uint8_t *)run + run->io.data_offset, |
2034 | run->io.direction, | |
2035 | run->io.size, | |
2036 | run->io.count); | |
d73cd8f4 | 2037 | ret = 0; |
05330448 AL |
2038 | break; |
2039 | case KVM_EXIT_MMIO: | |
8c0d577e | 2040 | DPRINTF("handle_mmio\n"); |
de7ea885 | 2041 | /* Called outside BQL */ |
4c663752 PB |
2042 | address_space_rw(&address_space_memory, |
2043 | run->mmio.phys_addr, attrs, | |
2044 | run->mmio.data, | |
2045 | run->mmio.len, | |
2046 | run->mmio.is_write); | |
d73cd8f4 | 2047 | ret = 0; |
05330448 AL |
2048 | break; |
2049 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 2050 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 2051 | ret = EXCP_INTERRUPT; |
05330448 AL |
2052 | break; |
2053 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 2054 | DPRINTF("shutdown\n"); |
05330448 | 2055 | qemu_system_reset_request(); |
d73cd8f4 | 2056 | ret = EXCP_INTERRUPT; |
05330448 AL |
2057 | break; |
2058 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
2059 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
2060 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 2061 | ret = -1; |
05330448 | 2062 | break; |
7c80eef8 | 2063 | case KVM_EXIT_INTERNAL_ERROR: |
5326ab55 | 2064 | ret = kvm_handle_internal_error(cpu, run); |
7c80eef8 | 2065 | break; |
99040447 PS |
2066 | case KVM_EXIT_SYSTEM_EVENT: |
2067 | switch (run->system_event.type) { | |
2068 | case KVM_SYSTEM_EVENT_SHUTDOWN: | |
2069 | qemu_system_shutdown_request(); | |
2070 | ret = EXCP_INTERRUPT; | |
2071 | break; | |
2072 | case KVM_SYSTEM_EVENT_RESET: | |
2073 | qemu_system_reset_request(); | |
2074 | ret = EXCP_INTERRUPT; | |
2075 | break; | |
7c207b90 | 2076 | case KVM_SYSTEM_EVENT_CRASH: |
d187e08d | 2077 | kvm_cpu_synchronize_state(cpu); |
7c207b90 | 2078 | qemu_mutex_lock_iothread(); |
c86f106b | 2079 | qemu_system_guest_panicked(cpu_get_crash_info(cpu)); |
7c207b90 AS |
2080 | qemu_mutex_unlock_iothread(); |
2081 | ret = 0; | |
2082 | break; | |
99040447 PS |
2083 | default: |
2084 | DPRINTF("kvm_arch_handle_exit\n"); | |
2085 | ret = kvm_arch_handle_exit(cpu, run); | |
2086 | break; | |
2087 | } | |
2088 | break; | |
05330448 | 2089 | default: |
8c0d577e | 2090 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 2091 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
2092 | break; |
2093 | } | |
d73cd8f4 | 2094 | } while (ret == 0); |
05330448 | 2095 | |
4b8523ee JK |
2096 | qemu_mutex_lock_iothread(); |
2097 | ||
73aaec4a | 2098 | if (ret < 0) { |
878096ee | 2099 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 2100 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
2101 | } |
2102 | ||
c5c6679d | 2103 | atomic_set(&cpu->exit_request, 0); |
05330448 AL |
2104 | return ret; |
2105 | } | |
2106 | ||
984b5181 | 2107 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
2108 | { |
2109 | int ret; | |
984b5181 AL |
2110 | void *arg; |
2111 | va_list ap; | |
05330448 | 2112 | |
984b5181 AL |
2113 | va_start(ap, type); |
2114 | arg = va_arg(ap, void *); | |
2115 | va_end(ap); | |
2116 | ||
9c775729 | 2117 | trace_kvm_ioctl(type, arg); |
984b5181 | 2118 | ret = ioctl(s->fd, type, arg); |
a426e122 | 2119 | if (ret == -1) { |
05330448 | 2120 | ret = -errno; |
a426e122 | 2121 | } |
05330448 AL |
2122 | return ret; |
2123 | } | |
2124 | ||
984b5181 | 2125 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
2126 | { |
2127 | int ret; | |
984b5181 AL |
2128 | void *arg; |
2129 | va_list ap; | |
2130 | ||
2131 | va_start(ap, type); | |
2132 | arg = va_arg(ap, void *); | |
2133 | va_end(ap); | |
05330448 | 2134 | |
9c775729 | 2135 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 2136 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 2137 | if (ret == -1) { |
05330448 | 2138 | ret = -errno; |
a426e122 | 2139 | } |
05330448 AL |
2140 | return ret; |
2141 | } | |
2142 | ||
1bc22652 | 2143 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
2144 | { |
2145 | int ret; | |
984b5181 AL |
2146 | void *arg; |
2147 | va_list ap; | |
2148 | ||
2149 | va_start(ap, type); | |
2150 | arg = va_arg(ap, void *); | |
2151 | va_end(ap); | |
05330448 | 2152 | |
9c775729 | 2153 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 2154 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 2155 | if (ret == -1) { |
05330448 | 2156 | ret = -errno; |
a426e122 | 2157 | } |
05330448 AL |
2158 | return ret; |
2159 | } | |
bd322087 | 2160 | |
0a6a7cca CD |
2161 | int kvm_device_ioctl(int fd, int type, ...) |
2162 | { | |
2163 | int ret; | |
2164 | void *arg; | |
2165 | va_list ap; | |
2166 | ||
2167 | va_start(ap, type); | |
2168 | arg = va_arg(ap, void *); | |
2169 | va_end(ap); | |
2170 | ||
2171 | trace_kvm_device_ioctl(fd, type, arg); | |
2172 | ret = ioctl(fd, type, arg); | |
2173 | if (ret == -1) { | |
2174 | ret = -errno; | |
2175 | } | |
2176 | return ret; | |
2177 | } | |
2178 | ||
d0a073a1 DD |
2179 | int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) |
2180 | { | |
2181 | int ret; | |
2182 | struct kvm_device_attr attribute = { | |
2183 | .group = group, | |
2184 | .attr = attr, | |
2185 | }; | |
2186 | ||
2187 | if (!kvm_vm_attributes_allowed) { | |
2188 | return 0; | |
2189 | } | |
2190 | ||
2191 | ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); | |
2192 | /* kvm returns 0 on success for HAS_DEVICE_ATTR */ | |
2193 | return ret ? 0 : 1; | |
2194 | } | |
2195 | ||
4b3cfe72 PF |
2196 | int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) |
2197 | { | |
2198 | struct kvm_device_attr attribute = { | |
2199 | .group = group, | |
2200 | .attr = attr, | |
2201 | .flags = 0, | |
2202 | }; | |
2203 | ||
2204 | return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; | |
2205 | } | |
2206 | ||
2207 | void kvm_device_access(int fd, int group, uint64_t attr, | |
2208 | void *val, bool write) | |
2209 | { | |
2210 | struct kvm_device_attr kvmattr; | |
2211 | int err; | |
2212 | ||
2213 | kvmattr.flags = 0; | |
2214 | kvmattr.group = group; | |
2215 | kvmattr.attr = attr; | |
2216 | kvmattr.addr = (uintptr_t)val; | |
2217 | ||
2218 | err = kvm_device_ioctl(fd, | |
2219 | write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, | |
2220 | &kvmattr); | |
2221 | if (err < 0) { | |
433672b0 MA |
2222 | error_report("KVM_%s_DEVICE_ATTR failed: %s", |
2223 | write ? "SET" : "GET", strerror(-err)); | |
7ea7d36e | 2224 | error_printf("Group %d attr 0x%016" PRIx64 "\n", group, attr); |
4b3cfe72 PF |
2225 | abort(); |
2226 | } | |
2227 | } | |
2228 | ||
c2cd627d | 2229 | /* Return 1 on success, 0 on failure */ |
bd322087 AL |
2230 | int kvm_has_sync_mmu(void) |
2231 | { | |
94a8d39a | 2232 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 2233 | } |
e22a25c9 | 2234 | |
a0fb002c JK |
2235 | int kvm_has_vcpu_events(void) |
2236 | { | |
2237 | return kvm_state->vcpu_events; | |
2238 | } | |
2239 | ||
b0b1d690 JK |
2240 | int kvm_has_robust_singlestep(void) |
2241 | { | |
2242 | return kvm_state->robust_singlestep; | |
2243 | } | |
2244 | ||
ff44f1a3 JK |
2245 | int kvm_has_debugregs(void) |
2246 | { | |
2247 | return kvm_state->debugregs; | |
2248 | } | |
2249 | ||
d2f2b8a7 SH |
2250 | int kvm_has_many_ioeventfds(void) |
2251 | { | |
2252 | if (!kvm_enabled()) { | |
2253 | return 0; | |
2254 | } | |
2255 | return kvm_state->many_ioeventfds; | |
2256 | } | |
2257 | ||
84b058d7 JK |
2258 | int kvm_has_gsi_routing(void) |
2259 | { | |
a9c5eb0d | 2260 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 2261 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
2262 | #else |
2263 | return false; | |
2264 | #endif | |
84b058d7 JK |
2265 | } |
2266 | ||
3ab73842 JK |
2267 | int kvm_has_intx_set_mask(void) |
2268 | { | |
2269 | return kvm_state->intx_set_mask; | |
2270 | } | |
2271 | ||
e22a25c9 | 2272 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 2273 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
2274 | target_ulong pc) |
2275 | { | |
2276 | struct kvm_sw_breakpoint *bp; | |
2277 | ||
a60f24b5 | 2278 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 2279 | if (bp->pc == pc) { |
e22a25c9 | 2280 | return bp; |
a426e122 | 2281 | } |
e22a25c9 AL |
2282 | } |
2283 | return NULL; | |
2284 | } | |
2285 | ||
a60f24b5 | 2286 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 2287 | { |
a60f24b5 | 2288 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
2289 | } |
2290 | ||
452e4751 GC |
2291 | struct kvm_set_guest_debug_data { |
2292 | struct kvm_guest_debug dbg; | |
452e4751 GC |
2293 | int err; |
2294 | }; | |
2295 | ||
14e6fe12 | 2296 | static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) |
452e4751 | 2297 | { |
14e6fe12 PB |
2298 | struct kvm_set_guest_debug_data *dbg_data = |
2299 | (struct kvm_set_guest_debug_data *) data.host_ptr; | |
b3807725 | 2300 | |
3c0ed2a3 | 2301 | dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, |
a60f24b5 | 2302 | &dbg_data->dbg); |
452e4751 GC |
2303 | } |
2304 | ||
38e478ec | 2305 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 | 2306 | { |
452e4751 | 2307 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 2308 | |
b0b1d690 | 2309 | data.dbg.control = reinject_trap; |
e22a25c9 | 2310 | |
ed2803da | 2311 | if (cpu->singlestep_enabled) { |
b0b1d690 JK |
2312 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
2313 | } | |
20d695a9 | 2314 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
e22a25c9 | 2315 | |
14e6fe12 PB |
2316 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, |
2317 | RUN_ON_CPU_HOST_PTR(&data)); | |
452e4751 | 2318 | return data.err; |
e22a25c9 AL |
2319 | } |
2320 | ||
62278814 | 2321 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2322 | target_ulong len, int type) |
2323 | { | |
2324 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2325 | int err; |
2326 | ||
2327 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2328 | bp = kvm_find_sw_breakpoint(cpu, addr); |
e22a25c9 AL |
2329 | if (bp) { |
2330 | bp->use_count++; | |
2331 | return 0; | |
2332 | } | |
2333 | ||
7267c094 | 2334 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
e22a25c9 AL |
2335 | bp->pc = addr; |
2336 | bp->use_count = 1; | |
80b7cd73 | 2337 | err = kvm_arch_insert_sw_breakpoint(cpu, bp); |
e22a25c9 | 2338 | if (err) { |
7267c094 | 2339 | g_free(bp); |
e22a25c9 AL |
2340 | return err; |
2341 | } | |
2342 | ||
80b7cd73 | 2343 | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
e22a25c9 AL |
2344 | } else { |
2345 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 2346 | if (err) { |
e22a25c9 | 2347 | return err; |
a426e122 | 2348 | } |
e22a25c9 AL |
2349 | } |
2350 | ||
bdc44640 | 2351 | CPU_FOREACH(cpu) { |
38e478ec | 2352 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2353 | if (err) { |
e22a25c9 | 2354 | return err; |
a426e122 | 2355 | } |
e22a25c9 AL |
2356 | } |
2357 | return 0; | |
2358 | } | |
2359 | ||
62278814 | 2360 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2361 | target_ulong len, int type) |
2362 | { | |
2363 | struct kvm_sw_breakpoint *bp; | |
e22a25c9 AL |
2364 | int err; |
2365 | ||
2366 | if (type == GDB_BREAKPOINT_SW) { | |
80b7cd73 | 2367 | bp = kvm_find_sw_breakpoint(cpu, addr); |
a426e122 | 2368 | if (!bp) { |
e22a25c9 | 2369 | return -ENOENT; |
a426e122 | 2370 | } |
e22a25c9 AL |
2371 | |
2372 | if (bp->use_count > 1) { | |
2373 | bp->use_count--; | |
2374 | return 0; | |
2375 | } | |
2376 | ||
80b7cd73 | 2377 | err = kvm_arch_remove_sw_breakpoint(cpu, bp); |
a426e122 | 2378 | if (err) { |
e22a25c9 | 2379 | return err; |
a426e122 | 2380 | } |
e22a25c9 | 2381 | |
80b7cd73 | 2382 | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 2383 | g_free(bp); |
e22a25c9 AL |
2384 | } else { |
2385 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 2386 | if (err) { |
e22a25c9 | 2387 | return err; |
a426e122 | 2388 | } |
e22a25c9 AL |
2389 | } |
2390 | ||
bdc44640 | 2391 | CPU_FOREACH(cpu) { |
38e478ec | 2392 | err = kvm_update_guest_debug(cpu, 0); |
a426e122 | 2393 | if (err) { |
e22a25c9 | 2394 | return err; |
a426e122 | 2395 | } |
e22a25c9 AL |
2396 | } |
2397 | return 0; | |
2398 | } | |
2399 | ||
1d5791f4 | 2400 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2401 | { |
2402 | struct kvm_sw_breakpoint *bp, *next; | |
80b7cd73 | 2403 | KVMState *s = cpu->kvm_state; |
dc54e252 | 2404 | CPUState *tmpcpu; |
e22a25c9 | 2405 | |
72cf2d4f | 2406 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
80b7cd73 | 2407 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
e22a25c9 | 2408 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
dc54e252 CG |
2409 | CPU_FOREACH(tmpcpu) { |
2410 | if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { | |
e22a25c9 | 2411 | break; |
a426e122 | 2412 | } |
e22a25c9 AL |
2413 | } |
2414 | } | |
78021d6d JK |
2415 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2416 | g_free(bp); | |
e22a25c9 AL |
2417 | } |
2418 | kvm_arch_remove_all_hw_breakpoints(); | |
2419 | ||
bdc44640 | 2420 | CPU_FOREACH(cpu) { |
38e478ec | 2421 | kvm_update_guest_debug(cpu, 0); |
a426e122 | 2422 | } |
e22a25c9 AL |
2423 | } |
2424 | ||
2425 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2426 | ||
38e478ec | 2427 | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) |
e22a25c9 AL |
2428 | { |
2429 | return -EINVAL; | |
2430 | } | |
2431 | ||
62278814 | 2432 | int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2433 | target_ulong len, int type) |
2434 | { | |
2435 | return -EINVAL; | |
2436 | } | |
2437 | ||
62278814 | 2438 | int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, |
e22a25c9 AL |
2439 | target_ulong len, int type) |
2440 | { | |
2441 | return -EINVAL; | |
2442 | } | |
2443 | ||
1d5791f4 | 2444 | void kvm_remove_all_breakpoints(CPUState *cpu) |
e22a25c9 AL |
2445 | { |
2446 | } | |
2447 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2448 | |
18268b60 | 2449 | static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) |
cc84de95 | 2450 | { |
aed6efb9 | 2451 | KVMState *s = kvm_state; |
cc84de95 MT |
2452 | struct kvm_signal_mask *sigmask; |
2453 | int r; | |
2454 | ||
7267c094 | 2455 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 | 2456 | |
aed6efb9 | 2457 | sigmask->len = s->sigmask_len; |
cc84de95 | 2458 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); |
1bc22652 | 2459 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2460 | g_free(sigmask); |
cc84de95 MT |
2461 | |
2462 | return r; | |
2463 | } | |
4d39892c | 2464 | |
cf0f7cf9 | 2465 | static void kvm_ipi_signal(int sig) |
18268b60 | 2466 | { |
cf0f7cf9 PB |
2467 | if (current_cpu) { |
2468 | assert(kvm_immediate_exit); | |
2469 | kvm_cpu_kick(current_cpu); | |
2470 | } | |
18268b60 PB |
2471 | } |
2472 | ||
2473 | void kvm_init_cpu_signals(CPUState *cpu) | |
2474 | { | |
2475 | int r; | |
2476 | sigset_t set; | |
2477 | struct sigaction sigact; | |
2478 | ||
2479 | memset(&sigact, 0, sizeof(sigact)); | |
cf0f7cf9 | 2480 | sigact.sa_handler = kvm_ipi_signal; |
18268b60 PB |
2481 | sigaction(SIG_IPI, &sigact, NULL); |
2482 | ||
2483 | pthread_sigmask(SIG_BLOCK, NULL, &set); | |
2484 | #if defined KVM_HAVE_MCE_INJECTION | |
2485 | sigdelset(&set, SIGBUS); | |
2486 | pthread_sigmask(SIG_SETMASK, &set, NULL); | |
2487 | #endif | |
2488 | sigdelset(&set, SIG_IPI); | |
cf0f7cf9 PB |
2489 | if (kvm_immediate_exit) { |
2490 | r = pthread_sigmask(SIG_SETMASK, &set, NULL); | |
2491 | } else { | |
2492 | r = kvm_set_signal_mask(cpu, &set); | |
2493 | } | |
18268b60 PB |
2494 | if (r) { |
2495 | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | |
2496 | exit(1); | |
2497 | } | |
2498 | } | |
2499 | ||
2ae41db2 | 2500 | /* Called asynchronously in VCPU thread. */ |
290adf38 | 2501 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2502 | { |
2ae41db2 PB |
2503 | #ifdef KVM_HAVE_MCE_INJECTION |
2504 | if (have_sigbus_pending) { | |
2505 | return 1; | |
2506 | } | |
2507 | have_sigbus_pending = true; | |
2508 | pending_sigbus_addr = addr; | |
2509 | pending_sigbus_code = code; | |
2510 | atomic_set(&cpu->exit_request, 1); | |
2511 | return 0; | |
2512 | #else | |
2513 | return 1; | |
2514 | #endif | |
a1b87fe0 JK |
2515 | } |
2516 | ||
2ae41db2 | 2517 | /* Called synchronously (via signalfd) in main thread. */ |
a1b87fe0 JK |
2518 | int kvm_on_sigbus(int code, void *addr) |
2519 | { | |
2ae41db2 | 2520 | #ifdef KVM_HAVE_MCE_INJECTION |
4d39892c PB |
2521 | /* Action required MCE kills the process if SIGBUS is blocked. Because |
2522 | * that's what happens in the I/O thread, where we handle MCE via signalfd, | |
2523 | * we can only get action optional here. | |
2524 | */ | |
2525 | assert(code != BUS_MCEERR_AR); | |
2526 | kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); | |
2527 | return 0; | |
2ae41db2 PB |
2528 | #else |
2529 | return 1; | |
2530 | #endif | |
a1b87fe0 | 2531 | } |
0a6a7cca CD |
2532 | |
2533 | int kvm_create_device(KVMState *s, uint64_t type, bool test) | |
2534 | { | |
2535 | int ret; | |
2536 | struct kvm_create_device create_dev; | |
2537 | ||
2538 | create_dev.type = type; | |
2539 | create_dev.fd = -1; | |
2540 | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | |
2541 | ||
2542 | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | |
2543 | return -ENOTSUP; | |
2544 | } | |
2545 | ||
2546 | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | |
2547 | if (ret) { | |
2548 | return ret; | |
2549 | } | |
2550 | ||
2551 | return test ? 0 : create_dev.fd; | |
2552 | } | |
ada4135f | 2553 | |
29039acf PX |
2554 | bool kvm_device_supported(int vmfd, uint64_t type) |
2555 | { | |
2556 | struct kvm_create_device create_dev = { | |
2557 | .type = type, | |
2558 | .fd = -1, | |
2559 | .flags = KVM_CREATE_DEVICE_TEST, | |
2560 | }; | |
2561 | ||
2562 | if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { | |
2563 | return false; | |
2564 | } | |
2565 | ||
2566 | return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); | |
2567 | } | |
2568 | ||
ada4135f CH |
2569 | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) |
2570 | { | |
2571 | struct kvm_one_reg reg; | |
2572 | int r; | |
2573 | ||
2574 | reg.id = id; | |
2575 | reg.addr = (uintptr_t) source; | |
2576 | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
2577 | if (r) { | |
844a3d34 | 2578 | trace_kvm_failed_reg_set(id, strerror(-r)); |
ada4135f CH |
2579 | } |
2580 | return r; | |
2581 | } | |
2582 | ||
2583 | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | |
2584 | { | |
2585 | struct kvm_one_reg reg; | |
2586 | int r; | |
2587 | ||
2588 | reg.id = id; | |
2589 | reg.addr = (uintptr_t) target; | |
2590 | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
2591 | if (r) { | |
844a3d34 | 2592 | trace_kvm_failed_reg_get(id, strerror(-r)); |
ada4135f CH |
2593 | } |
2594 | return r; | |
2595 | } | |
782c3f29 EH |
2596 | |
2597 | static void kvm_accel_class_init(ObjectClass *oc, void *data) | |
2598 | { | |
2599 | AccelClass *ac = ACCEL_CLASS(oc); | |
2600 | ac->name = "KVM"; | |
0d15da8e | 2601 | ac->init_machine = kvm_init; |
782c3f29 EH |
2602 | ac->allowed = &kvm_allowed; |
2603 | } | |
2604 | ||
2605 | static const TypeInfo kvm_accel_type = { | |
2606 | .name = TYPE_KVM_ACCEL, | |
2607 | .parent = TYPE_ACCEL, | |
2608 | .class_init = kvm_accel_class_init, | |
fc02086b | 2609 | .instance_size = sizeof(KVMState), |
782c3f29 EH |
2610 | }; |
2611 | ||
2612 | static void kvm_type_init(void) | |
2613 | { | |
2614 | type_register_static(&kvm_accel_type); | |
2615 | } | |
2616 | ||
2617 | type_init(kvm_type_init); |