]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <aliguori@us.ibm.com> | |
5832d1f2 | 9 | * Glauber Costa <gcosta@redhat.com> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
85199474 | 24 | #include "qemu-barrier.h" |
05330448 | 25 | #include "sysemu.h" |
d33a1810 | 26 | #include "hw/hw.h" |
e22a25c9 | 27 | #include "gdbstub.h" |
05330448 | 28 | #include "kvm.h" |
8369e01c | 29 | #include "bswap.h" |
a01672d3 | 30 | #include "memory.h" |
05330448 | 31 | |
d2f2b8a7 SH |
32 | /* This check must be after config-host.h is included */ |
33 | #ifdef CONFIG_EVENTFD | |
34 | #include <sys/eventfd.h> | |
35 | #endif | |
36 | ||
f65ed4c1 AL |
37 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
38 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
39 | ||
05330448 AL |
40 | //#define DEBUG_KVM |
41 | ||
42 | #ifdef DEBUG_KVM | |
8c0d577e | 43 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
44 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
45 | #else | |
8c0d577e | 46 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
47 | do { } while (0) |
48 | #endif | |
49 | ||
34fc643f AL |
50 | typedef struct KVMSlot |
51 | { | |
c227f099 AL |
52 | target_phys_addr_t start_addr; |
53 | ram_addr_t memory_size; | |
9f213ed9 | 54 | void *ram; |
34fc643f AL |
55 | int slot; |
56 | int flags; | |
57 | } KVMSlot; | |
05330448 | 58 | |
5832d1f2 AL |
59 | typedef struct kvm_dirty_log KVMDirtyLog; |
60 | ||
05330448 AL |
61 | struct KVMState |
62 | { | |
63 | KVMSlot slots[32]; | |
64 | int fd; | |
65 | int vmfd; | |
f65ed4c1 | 66 | int coalesced_mmio; |
62a2744c | 67 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 68 | bool coalesced_flush_in_progress; |
e69917e2 | 69 | int broken_set_mem_region; |
4495d6a7 | 70 | int migration_log; |
a0fb002c | 71 | int vcpu_events; |
b0b1d690 | 72 | int robust_singlestep; |
ff44f1a3 | 73 | int debugregs; |
e22a25c9 AL |
74 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
75 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
76 | #endif | |
6f725c13 GC |
77 | int irqchip_in_kernel; |
78 | int pit_in_kernel; | |
f1665b21 | 79 | int xsave, xcrs; |
d2f2b8a7 | 80 | int many_ioeventfds; |
05330448 AL |
81 | }; |
82 | ||
6a7af8cb | 83 | KVMState *kvm_state; |
05330448 | 84 | |
94a8d39a JK |
85 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
86 | KVM_CAP_INFO(USER_MEMORY), | |
87 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
88 | KVM_CAP_LAST_INFO | |
89 | }; | |
90 | ||
05330448 AL |
91 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
92 | { | |
93 | int i; | |
94 | ||
95 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 96 | if (s->slots[i].memory_size == 0) { |
05330448 | 97 | return &s->slots[i]; |
a426e122 | 98 | } |
05330448 AL |
99 | } |
100 | ||
d3f8d37f AL |
101 | fprintf(stderr, "%s: no free slot available\n", __func__); |
102 | abort(); | |
103 | } | |
104 | ||
105 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
c227f099 AL |
106 | target_phys_addr_t start_addr, |
107 | target_phys_addr_t end_addr) | |
d3f8d37f AL |
108 | { |
109 | int i; | |
110 | ||
111 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
112 | KVMSlot *mem = &s->slots[i]; | |
113 | ||
114 | if (start_addr == mem->start_addr && | |
115 | end_addr == mem->start_addr + mem->memory_size) { | |
116 | return mem; | |
117 | } | |
118 | } | |
119 | ||
05330448 AL |
120 | return NULL; |
121 | } | |
122 | ||
6152e2ae AL |
123 | /* |
124 | * Find overlapping slot with lowest start address | |
125 | */ | |
126 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
c227f099 AL |
127 | target_phys_addr_t start_addr, |
128 | target_phys_addr_t end_addr) | |
05330448 | 129 | { |
6152e2ae | 130 | KVMSlot *found = NULL; |
05330448 AL |
131 | int i; |
132 | ||
133 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
134 | KVMSlot *mem = &s->slots[i]; | |
135 | ||
6152e2ae AL |
136 | if (mem->memory_size == 0 || |
137 | (found && found->start_addr < mem->start_addr)) { | |
138 | continue; | |
139 | } | |
140 | ||
141 | if (end_addr > mem->start_addr && | |
142 | start_addr < mem->start_addr + mem->memory_size) { | |
143 | found = mem; | |
144 | } | |
05330448 AL |
145 | } |
146 | ||
6152e2ae | 147 | return found; |
05330448 AL |
148 | } |
149 | ||
9f213ed9 AK |
150 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
151 | target_phys_addr_t *phys_addr) | |
983dfc3b HY |
152 | { |
153 | int i; | |
154 | ||
155 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
156 | KVMSlot *mem = &s->slots[i]; | |
157 | ||
9f213ed9 AK |
158 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
159 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
160 | return 1; |
161 | } | |
162 | } | |
163 | ||
164 | return 0; | |
165 | } | |
166 | ||
5832d1f2 AL |
167 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
168 | { | |
169 | struct kvm_userspace_memory_region mem; | |
170 | ||
171 | mem.slot = slot->slot; | |
172 | mem.guest_phys_addr = slot->start_addr; | |
173 | mem.memory_size = slot->memory_size; | |
9f213ed9 | 174 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 175 | mem.flags = slot->flags; |
4495d6a7 JK |
176 | if (s->migration_log) { |
177 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
178 | } | |
5832d1f2 AL |
179 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
180 | } | |
181 | ||
8d2ba1fb JK |
182 | static void kvm_reset_vcpu(void *opaque) |
183 | { | |
184 | CPUState *env = opaque; | |
185 | ||
caa5af0f | 186 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 187 | } |
5832d1f2 | 188 | |
6f725c13 GC |
189 | int kvm_irqchip_in_kernel(void) |
190 | { | |
191 | return kvm_state->irqchip_in_kernel; | |
192 | } | |
193 | ||
194 | int kvm_pit_in_kernel(void) | |
195 | { | |
196 | return kvm_state->pit_in_kernel; | |
197 | } | |
198 | ||
05330448 AL |
199 | int kvm_init_vcpu(CPUState *env) |
200 | { | |
201 | KVMState *s = kvm_state; | |
202 | long mmap_size; | |
203 | int ret; | |
204 | ||
8c0d577e | 205 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 206 | |
984b5181 | 207 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 | 208 | if (ret < 0) { |
8c0d577e | 209 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
210 | goto err; |
211 | } | |
212 | ||
213 | env->kvm_fd = ret; | |
214 | env->kvm_state = s; | |
d841b6c4 | 215 | env->kvm_vcpu_dirty = 1; |
05330448 AL |
216 | |
217 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
218 | if (mmap_size < 0) { | |
748a680b | 219 | ret = mmap_size; |
8c0d577e | 220 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
221 | goto err; |
222 | } | |
223 | ||
224 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
225 | env->kvm_fd, 0); | |
226 | if (env->kvm_run == MAP_FAILED) { | |
227 | ret = -errno; | |
8c0d577e | 228 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
229 | goto err; |
230 | } | |
231 | ||
a426e122 JK |
232 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
233 | s->coalesced_mmio_ring = | |
234 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
235 | } | |
62a2744c | 236 | |
05330448 | 237 | ret = kvm_arch_init_vcpu(env); |
8d2ba1fb | 238 | if (ret == 0) { |
a08d4367 | 239 | qemu_register_reset(kvm_reset_vcpu, env); |
caa5af0f | 240 | kvm_arch_reset_vcpu(env); |
8d2ba1fb | 241 | } |
05330448 AL |
242 | err: |
243 | return ret; | |
244 | } | |
245 | ||
5832d1f2 AL |
246 | /* |
247 | * dirty pages logging control | |
248 | */ | |
25254bbc MT |
249 | |
250 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
251 | { | |
252 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
253 | } | |
254 | ||
255 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
256 | { |
257 | KVMState *s = kvm_state; | |
25254bbc | 258 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
259 | int old_flags; |
260 | ||
4495d6a7 | 261 | old_flags = mem->flags; |
5832d1f2 | 262 | |
25254bbc | 263 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); |
5832d1f2 AL |
264 | mem->flags = flags; |
265 | ||
4495d6a7 JK |
266 | /* If nothing changed effectively, no need to issue ioctl */ |
267 | if (s->migration_log) { | |
268 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
269 | } | |
25254bbc | 270 | |
4495d6a7 | 271 | if (flags == old_flags) { |
25254bbc | 272 | return 0; |
4495d6a7 JK |
273 | } |
274 | ||
5832d1f2 AL |
275 | return kvm_set_user_memory_region(s, mem); |
276 | } | |
277 | ||
25254bbc MT |
278 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
279 | ram_addr_t size, bool log_dirty) | |
280 | { | |
281 | KVMState *s = kvm_state; | |
282 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
283 | ||
284 | if (mem == NULL) { | |
285 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
286 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
287 | (target_phys_addr_t)(phys_addr + size - 1)); | |
288 | return -EINVAL; | |
289 | } | |
290 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
291 | } | |
292 | ||
a01672d3 AK |
293 | static void kvm_log_start(MemoryListener *listener, |
294 | MemoryRegionSection *section) | |
5832d1f2 | 295 | { |
a01672d3 AK |
296 | int r; |
297 | ||
298 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
299 | section->size, true); | |
300 | if (r < 0) { | |
301 | abort(); | |
302 | } | |
5832d1f2 AL |
303 | } |
304 | ||
a01672d3 AK |
305 | static void kvm_log_stop(MemoryListener *listener, |
306 | MemoryRegionSection *section) | |
5832d1f2 | 307 | { |
a01672d3 AK |
308 | int r; |
309 | ||
310 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
311 | section->size, false); | |
312 | if (r < 0) { | |
313 | abort(); | |
314 | } | |
5832d1f2 AL |
315 | } |
316 | ||
7b8f3b78 | 317 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
318 | { |
319 | KVMState *s = kvm_state; | |
320 | KVMSlot *mem; | |
321 | int i, err; | |
322 | ||
323 | s->migration_log = enable; | |
324 | ||
325 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
326 | mem = &s->slots[i]; | |
327 | ||
70fedd76 AW |
328 | if (!mem->memory_size) { |
329 | continue; | |
330 | } | |
4495d6a7 JK |
331 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
332 | continue; | |
333 | } | |
334 | err = kvm_set_user_memory_region(s, mem); | |
335 | if (err) { | |
336 | return err; | |
337 | } | |
338 | } | |
339 | return 0; | |
340 | } | |
341 | ||
8369e01c | 342 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
343 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
344 | unsigned long *bitmap) | |
96c1606b | 345 | { |
8369e01c | 346 | unsigned int i, j; |
aa90fec7 BH |
347 | unsigned long page_number, c; |
348 | target_phys_addr_t addr, addr1; | |
ffcde12f | 349 | unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
8369e01c MT |
350 | |
351 | /* | |
352 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
353 | * especially when most of the memory is not dirty. | |
354 | */ | |
355 | for (i = 0; i < len; i++) { | |
356 | if (bitmap[i] != 0) { | |
357 | c = leul_to_cpu(bitmap[i]); | |
358 | do { | |
359 | j = ffsl(c) - 1; | |
360 | c &= ~(1ul << j); | |
361 | page_number = i * HOST_LONG_BITS + j; | |
362 | addr1 = page_number * TARGET_PAGE_SIZE; | |
ffcde12f AK |
363 | addr = section->offset_within_region + addr1; |
364 | memory_region_set_dirty(section->mr, addr); | |
8369e01c MT |
365 | } while (c != 0); |
366 | } | |
367 | } | |
368 | return 0; | |
96c1606b AG |
369 | } |
370 | ||
8369e01c MT |
371 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
372 | ||
5832d1f2 AL |
373 | /** |
374 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
375 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
376 | * This means all bits are set to dirty. | |
377 | * | |
d3f8d37f | 378 | * @start_add: start of logged region. |
5832d1f2 AL |
379 | * @end_addr: end of logged region. |
380 | */ | |
ffcde12f | 381 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
382 | { |
383 | KVMState *s = kvm_state; | |
151f7749 | 384 | unsigned long size, allocated_size = 0; |
151f7749 JK |
385 | KVMDirtyLog d; |
386 | KVMSlot *mem; | |
387 | int ret = 0; | |
ffcde12f AK |
388 | target_phys_addr_t start_addr = section->offset_within_address_space; |
389 | target_phys_addr_t end_addr = start_addr + section->size; | |
5832d1f2 | 390 | |
151f7749 JK |
391 | d.dirty_bitmap = NULL; |
392 | while (start_addr < end_addr) { | |
393 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
394 | if (mem == NULL) { | |
395 | break; | |
396 | } | |
5832d1f2 | 397 | |
51b0c606 MT |
398 | /* XXX bad kernel interface alert |
399 | * For dirty bitmap, kernel allocates array of size aligned to | |
400 | * bits-per-long. But for case when the kernel is 64bits and | |
401 | * the userspace is 32bits, userspace can't align to the same | |
402 | * bits-per-long, since sizeof(long) is different between kernel | |
403 | * and user space. This way, userspace will provide buffer which | |
404 | * may be 4 bytes less than the kernel will use, resulting in | |
405 | * userspace memory corruption (which is not detectable by valgrind | |
406 | * too, in most cases). | |
407 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
408 | * a hope that sizeof(long) wont become >8 any time soon. | |
409 | */ | |
410 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
411 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 412 | if (!d.dirty_bitmap) { |
7267c094 | 413 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 414 | } else if (size > allocated_size) { |
7267c094 | 415 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
416 | } |
417 | allocated_size = size; | |
418 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 419 | |
151f7749 | 420 | d.slot = mem->slot; |
5832d1f2 | 421 | |
6e489f3f | 422 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 423 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
424 | ret = -1; |
425 | break; | |
426 | } | |
5832d1f2 | 427 | |
ffcde12f | 428 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 429 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 430 | } |
7267c094 | 431 | g_free(d.dirty_bitmap); |
151f7749 JK |
432 | |
433 | return ret; | |
5832d1f2 AL |
434 | } |
435 | ||
c227f099 | 436 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
437 | { |
438 | int ret = -ENOSYS; | |
f65ed4c1 AL |
439 | KVMState *s = kvm_state; |
440 | ||
441 | if (s->coalesced_mmio) { | |
442 | struct kvm_coalesced_mmio_zone zone; | |
443 | ||
444 | zone.addr = start; | |
445 | zone.size = size; | |
446 | ||
447 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
448 | } | |
f65ed4c1 AL |
449 | |
450 | return ret; | |
451 | } | |
452 | ||
c227f099 | 453 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
f65ed4c1 AL |
454 | { |
455 | int ret = -ENOSYS; | |
f65ed4c1 AL |
456 | KVMState *s = kvm_state; |
457 | ||
458 | if (s->coalesced_mmio) { | |
459 | struct kvm_coalesced_mmio_zone zone; | |
460 | ||
461 | zone.addr = start; | |
462 | zone.size = size; | |
463 | ||
464 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
465 | } | |
f65ed4c1 AL |
466 | |
467 | return ret; | |
468 | } | |
469 | ||
ad7b8b33 AL |
470 | int kvm_check_extension(KVMState *s, unsigned int extension) |
471 | { | |
472 | int ret; | |
473 | ||
474 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
475 | if (ret < 0) { | |
476 | ret = 0; | |
477 | } | |
478 | ||
479 | return ret; | |
480 | } | |
481 | ||
d2f2b8a7 SH |
482 | static int kvm_check_many_ioeventfds(void) |
483 | { | |
d0dcac83 SH |
484 | /* Userspace can use ioeventfd for io notification. This requires a host |
485 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
486 | * support SIGIO it cannot interrupt the vcpu. | |
487 | * | |
488 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
489 | * can avoid creating too many ioeventfds. |
490 | */ | |
12d4536f | 491 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
492 | int ioeventfds[7]; |
493 | int i, ret = 0; | |
494 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
495 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
496 | if (ioeventfds[i] < 0) { | |
497 | break; | |
498 | } | |
499 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
500 | if (ret < 0) { | |
501 | close(ioeventfds[i]); | |
502 | break; | |
503 | } | |
504 | } | |
505 | ||
506 | /* Decide whether many devices are supported or not */ | |
507 | ret = i == ARRAY_SIZE(ioeventfds); | |
508 | ||
509 | while (i-- > 0) { | |
510 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
511 | close(ioeventfds[i]); | |
512 | } | |
513 | return ret; | |
514 | #else | |
515 | return 0; | |
516 | #endif | |
517 | } | |
518 | ||
94a8d39a JK |
519 | static const KVMCapabilityInfo * |
520 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
521 | { | |
522 | while (list->name) { | |
523 | if (!kvm_check_extension(s, list->value)) { | |
524 | return list; | |
525 | } | |
526 | list++; | |
527 | } | |
528 | return NULL; | |
529 | } | |
530 | ||
a01672d3 | 531 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
532 | { |
533 | KVMState *s = kvm_state; | |
46dbef6a MT |
534 | KVMSlot *mem, old; |
535 | int err; | |
a01672d3 AK |
536 | MemoryRegion *mr = section->mr; |
537 | bool log_dirty = memory_region_is_logging(mr); | |
538 | target_phys_addr_t start_addr = section->offset_within_address_space; | |
539 | ram_addr_t size = section->size; | |
9f213ed9 | 540 | void *ram = NULL; |
46dbef6a | 541 | |
14542fea GN |
542 | /* kvm works in page size chunks, but the function may be called |
543 | with sub-page size and unaligned start address. */ | |
544 | size = TARGET_PAGE_ALIGN(size); | |
545 | start_addr = TARGET_PAGE_ALIGN(start_addr); | |
46dbef6a | 546 | |
a01672d3 AK |
547 | if (!memory_region_is_ram(mr)) { |
548 | return; | |
9f213ed9 AK |
549 | } |
550 | ||
a01672d3 AK |
551 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region; |
552 | ||
46dbef6a MT |
553 | while (1) { |
554 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
555 | if (!mem) { | |
556 | break; | |
557 | } | |
558 | ||
a01672d3 | 559 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 560 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 561 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 562 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
563 | * identical parameters - update flags and done. */ |
564 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
565 | return; |
566 | } | |
567 | ||
568 | old = *mem; | |
569 | ||
3fbffb62 AK |
570 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
571 | kvm_physical_sync_dirty_bitmap(section); | |
572 | } | |
573 | ||
46dbef6a MT |
574 | /* unregister the overlapping slot */ |
575 | mem->memory_size = 0; | |
576 | err = kvm_set_user_memory_region(s, mem); | |
577 | if (err) { | |
578 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
579 | __func__, strerror(-err)); | |
580 | abort(); | |
581 | } | |
582 | ||
583 | /* Workaround for older KVM versions: we can't join slots, even not by | |
584 | * unregistering the previous ones and then registering the larger | |
585 | * slot. We have to maintain the existing fragmentation. Sigh. | |
586 | * | |
587 | * This workaround assumes that the new slot starts at the same | |
588 | * address as the first existing one. If not or if some overlapping | |
589 | * slot comes around later, we will fail (not seen in practice so far) | |
590 | * - and actually require a recent KVM version. */ | |
591 | if (s->broken_set_mem_region && | |
a01672d3 | 592 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
593 | mem = kvm_alloc_slot(s); |
594 | mem->memory_size = old.memory_size; | |
595 | mem->start_addr = old.start_addr; | |
9f213ed9 | 596 | mem->ram = old.ram; |
25254bbc | 597 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
598 | |
599 | err = kvm_set_user_memory_region(s, mem); | |
600 | if (err) { | |
601 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
602 | strerror(-err)); | |
603 | abort(); | |
604 | } | |
605 | ||
606 | start_addr += old.memory_size; | |
9f213ed9 | 607 | ram += old.memory_size; |
46dbef6a MT |
608 | size -= old.memory_size; |
609 | continue; | |
610 | } | |
611 | ||
612 | /* register prefix slot */ | |
613 | if (old.start_addr < start_addr) { | |
614 | mem = kvm_alloc_slot(s); | |
615 | mem->memory_size = start_addr - old.start_addr; | |
616 | mem->start_addr = old.start_addr; | |
9f213ed9 | 617 | mem->ram = old.ram; |
25254bbc | 618 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
619 | |
620 | err = kvm_set_user_memory_region(s, mem); | |
621 | if (err) { | |
622 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
623 | __func__, strerror(-err)); | |
d4d6868f AG |
624 | #ifdef TARGET_PPC |
625 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
626 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
627 | "PAGE_SIZE!\n", __func__); | |
628 | #endif | |
46dbef6a MT |
629 | abort(); |
630 | } | |
631 | } | |
632 | ||
633 | /* register suffix slot */ | |
634 | if (old.start_addr + old.memory_size > start_addr + size) { | |
635 | ram_addr_t size_delta; | |
636 | ||
637 | mem = kvm_alloc_slot(s); | |
638 | mem->start_addr = start_addr + size; | |
639 | size_delta = mem->start_addr - old.start_addr; | |
640 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 641 | mem->ram = old.ram + size_delta; |
25254bbc | 642 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
643 | |
644 | err = kvm_set_user_memory_region(s, mem); | |
645 | if (err) { | |
646 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
647 | __func__, strerror(-err)); | |
648 | abort(); | |
649 | } | |
650 | } | |
651 | } | |
652 | ||
653 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 654 | if (!size) { |
46dbef6a | 655 | return; |
a426e122 | 656 | } |
a01672d3 | 657 | if (!add) { |
46dbef6a | 658 | return; |
a426e122 | 659 | } |
46dbef6a MT |
660 | mem = kvm_alloc_slot(s); |
661 | mem->memory_size = size; | |
662 | mem->start_addr = start_addr; | |
9f213ed9 | 663 | mem->ram = ram; |
25254bbc | 664 | mem->flags = kvm_mem_flags(s, log_dirty); |
46dbef6a MT |
665 | |
666 | err = kvm_set_user_memory_region(s, mem); | |
667 | if (err) { | |
668 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
669 | strerror(-err)); | |
670 | abort(); | |
671 | } | |
672 | } | |
673 | ||
a01672d3 AK |
674 | static void kvm_region_add(MemoryListener *listener, |
675 | MemoryRegionSection *section) | |
676 | { | |
677 | kvm_set_phys_mem(section, true); | |
678 | } | |
679 | ||
680 | static void kvm_region_del(MemoryListener *listener, | |
681 | MemoryRegionSection *section) | |
682 | { | |
683 | kvm_set_phys_mem(section, false); | |
684 | } | |
685 | ||
686 | static void kvm_log_sync(MemoryListener *listener, | |
687 | MemoryRegionSection *section) | |
7b8f3b78 | 688 | { |
a01672d3 AK |
689 | int r; |
690 | ||
ffcde12f | 691 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
692 | if (r < 0) { |
693 | abort(); | |
694 | } | |
7b8f3b78 MT |
695 | } |
696 | ||
a01672d3 | 697 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 698 | { |
a01672d3 AK |
699 | int r; |
700 | ||
701 | r = kvm_set_migration_log(1); | |
702 | assert(r >= 0); | |
7b8f3b78 MT |
703 | } |
704 | ||
a01672d3 | 705 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 706 | { |
a01672d3 AK |
707 | int r; |
708 | ||
709 | r = kvm_set_migration_log(0); | |
710 | assert(r >= 0); | |
7b8f3b78 MT |
711 | } |
712 | ||
a01672d3 AK |
713 | static MemoryListener kvm_memory_listener = { |
714 | .region_add = kvm_region_add, | |
715 | .region_del = kvm_region_del, | |
e5896b12 AP |
716 | .log_start = kvm_log_start, |
717 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
718 | .log_sync = kvm_log_sync, |
719 | .log_global_start = kvm_log_global_start, | |
720 | .log_global_stop = kvm_log_global_stop, | |
7b8f3b78 MT |
721 | }; |
722 | ||
aa7f74d1 JK |
723 | static void kvm_handle_interrupt(CPUState *env, int mask) |
724 | { | |
725 | env->interrupt_request |= mask; | |
726 | ||
727 | if (!qemu_cpu_is_self(env)) { | |
728 | qemu_cpu_kick(env); | |
729 | } | |
730 | } | |
731 | ||
cad1e282 | 732 | int kvm_init(void) |
05330448 | 733 | { |
168ccc11 JK |
734 | static const char upgrade_note[] = |
735 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
736 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 737 | KVMState *s; |
94a8d39a | 738 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
739 | int ret; |
740 | int i; | |
741 | ||
7267c094 | 742 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 743 | |
e22a25c9 | 744 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 745 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 746 | #endif |
a426e122 | 747 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 748 | s->slots[i].slot = i; |
a426e122 | 749 | } |
05330448 | 750 | s->vmfd = -1; |
40ff6d7e | 751 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
752 | if (s->fd == -1) { |
753 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
754 | ret = -errno; | |
755 | goto err; | |
756 | } | |
757 | ||
758 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
759 | if (ret < KVM_API_VERSION) { | |
a426e122 | 760 | if (ret > 0) { |
05330448 | 761 | ret = -EINVAL; |
a426e122 | 762 | } |
05330448 AL |
763 | fprintf(stderr, "kvm version too old\n"); |
764 | goto err; | |
765 | } | |
766 | ||
767 | if (ret > KVM_API_VERSION) { | |
768 | ret = -EINVAL; | |
769 | fprintf(stderr, "kvm version not supported\n"); | |
770 | goto err; | |
771 | } | |
772 | ||
773 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
0104dcac AG |
774 | if (s->vmfd < 0) { |
775 | #ifdef TARGET_S390X | |
776 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
777 | "your host kernel command line\n"); | |
778 | #endif | |
db9eae1c | 779 | ret = s->vmfd; |
05330448 | 780 | goto err; |
0104dcac | 781 | } |
05330448 | 782 | |
94a8d39a JK |
783 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
784 | if (!missing_cap) { | |
785 | missing_cap = | |
786 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 787 | } |
94a8d39a | 788 | if (missing_cap) { |
ad7b8b33 | 789 | ret = -EINVAL; |
94a8d39a JK |
790 | fprintf(stderr, "kvm does not support %s\n%s", |
791 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
792 | goto err; |
793 | } | |
794 | ||
ad7b8b33 | 795 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 796 | |
e69917e2 | 797 | s->broken_set_mem_region = 1; |
14a09518 | 798 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
799 | if (ret > 0) { |
800 | s->broken_set_mem_region = 0; | |
801 | } | |
e69917e2 | 802 | |
a0fb002c JK |
803 | #ifdef KVM_CAP_VCPU_EVENTS |
804 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
805 | #endif | |
806 | ||
b0b1d690 JK |
807 | s->robust_singlestep = |
808 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 809 | |
ff44f1a3 JK |
810 | #ifdef KVM_CAP_DEBUGREGS |
811 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
812 | #endif | |
813 | ||
f1665b21 SY |
814 | #ifdef KVM_CAP_XSAVE |
815 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
816 | #endif | |
817 | ||
f1665b21 SY |
818 | #ifdef KVM_CAP_XCRS |
819 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
820 | #endif | |
821 | ||
cad1e282 | 822 | ret = kvm_arch_init(s); |
a426e122 | 823 | if (ret < 0) { |
05330448 | 824 | goto err; |
a426e122 | 825 | } |
05330448 AL |
826 | |
827 | kvm_state = s; | |
a01672d3 | 828 | memory_listener_register(&kvm_memory_listener); |
05330448 | 829 | |
d2f2b8a7 SH |
830 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
831 | ||
aa7f74d1 JK |
832 | cpu_interrupt_handler = kvm_handle_interrupt; |
833 | ||
05330448 AL |
834 | return 0; |
835 | ||
836 | err: | |
837 | if (s) { | |
db9eae1c | 838 | if (s->vmfd >= 0) { |
05330448 | 839 | close(s->vmfd); |
a426e122 JK |
840 | } |
841 | if (s->fd != -1) { | |
05330448 | 842 | close(s->fd); |
a426e122 | 843 | } |
05330448 | 844 | } |
7267c094 | 845 | g_free(s); |
05330448 AL |
846 | |
847 | return ret; | |
848 | } | |
849 | ||
b30e93e9 JK |
850 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
851 | uint32_t count) | |
05330448 AL |
852 | { |
853 | int i; | |
854 | uint8_t *ptr = data; | |
855 | ||
856 | for (i = 0; i < count; i++) { | |
857 | if (direction == KVM_EXIT_IO_IN) { | |
858 | switch (size) { | |
859 | case 1: | |
afcea8cb | 860 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
861 | break; |
862 | case 2: | |
afcea8cb | 863 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
864 | break; |
865 | case 4: | |
afcea8cb | 866 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
867 | break; |
868 | } | |
869 | } else { | |
870 | switch (size) { | |
871 | case 1: | |
afcea8cb | 872 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
873 | break; |
874 | case 2: | |
afcea8cb | 875 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
876 | break; |
877 | case 4: | |
afcea8cb | 878 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
879 | break; |
880 | } | |
881 | } | |
882 | ||
883 | ptr += size; | |
884 | } | |
05330448 AL |
885 | } |
886 | ||
73aaec4a | 887 | static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run) |
7c80eef8 | 888 | { |
bb44e0d1 | 889 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
890 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
891 | int i; | |
892 | ||
bb44e0d1 | 893 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
894 | for (i = 0; i < run->internal.ndata; ++i) { |
895 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
896 | i, (uint64_t)run->internal.data[i]); | |
897 | } | |
bb44e0d1 JK |
898 | } else { |
899 | fprintf(stderr, "\n"); | |
7c80eef8 | 900 | } |
7c80eef8 MT |
901 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
902 | fprintf(stderr, "emulation failure\n"); | |
a426e122 | 903 | if (!kvm_arch_stop_on_emulation_error(env)) { |
f5c848ee | 904 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 905 | return EXCP_INTERRUPT; |
a426e122 | 906 | } |
7c80eef8 MT |
907 | } |
908 | /* FIXME: Should trigger a qmp message to let management know | |
909 | * something went wrong. | |
910 | */ | |
73aaec4a | 911 | return -1; |
7c80eef8 | 912 | } |
7c80eef8 | 913 | |
62a2744c | 914 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 915 | { |
f65ed4c1 | 916 | KVMState *s = kvm_state; |
1cae88b9 AK |
917 | |
918 | if (s->coalesced_flush_in_progress) { | |
919 | return; | |
920 | } | |
921 | ||
922 | s->coalesced_flush_in_progress = true; | |
923 | ||
62a2744c SY |
924 | if (s->coalesced_mmio_ring) { |
925 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
926 | while (ring->first != ring->last) { |
927 | struct kvm_coalesced_mmio *ent; | |
928 | ||
929 | ent = &ring->coalesced_mmio[ring->first]; | |
930 | ||
931 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 932 | smp_wmb(); |
f65ed4c1 AL |
933 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
934 | } | |
935 | } | |
1cae88b9 AK |
936 | |
937 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
938 | } |
939 | ||
2705d56a | 940 | static void do_kvm_cpu_synchronize_state(void *_env) |
4c0960c0 | 941 | { |
2705d56a JK |
942 | CPUState *env = _env; |
943 | ||
9ded2744 | 944 | if (!env->kvm_vcpu_dirty) { |
4c0960c0 | 945 | kvm_arch_get_registers(env); |
9ded2744 | 946 | env->kvm_vcpu_dirty = 1; |
4c0960c0 AK |
947 | } |
948 | } | |
949 | ||
2705d56a JK |
950 | void kvm_cpu_synchronize_state(CPUState *env) |
951 | { | |
a426e122 | 952 | if (!env->kvm_vcpu_dirty) { |
2705d56a | 953 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); |
a426e122 | 954 | } |
2705d56a JK |
955 | } |
956 | ||
ea375f9a JK |
957 | void kvm_cpu_synchronize_post_reset(CPUState *env) |
958 | { | |
959 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
960 | env->kvm_vcpu_dirty = 0; | |
961 | } | |
962 | ||
963 | void kvm_cpu_synchronize_post_init(CPUState *env) | |
964 | { | |
965 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
966 | env->kvm_vcpu_dirty = 0; | |
967 | } | |
968 | ||
05330448 AL |
969 | int kvm_cpu_exec(CPUState *env) |
970 | { | |
971 | struct kvm_run *run = env->kvm_run; | |
7cbb533f | 972 | int ret, run_ret; |
05330448 | 973 | |
8c0d577e | 974 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 975 | |
99036865 | 976 | if (kvm_arch_process_async_events(env)) { |
9ccfac9e | 977 | env->exit_request = 0; |
6792a57b | 978 | return EXCP_HLT; |
9ccfac9e | 979 | } |
0af691d7 | 980 | |
6792a57b JK |
981 | cpu_single_env = env; |
982 | ||
9ccfac9e | 983 | do { |
9ded2744 | 984 | if (env->kvm_vcpu_dirty) { |
ea375f9a | 985 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); |
9ded2744 | 986 | env->kvm_vcpu_dirty = 0; |
4c0960c0 AK |
987 | } |
988 | ||
8c14c173 | 989 | kvm_arch_pre_run(env, run); |
9ccfac9e JK |
990 | if (env->exit_request) { |
991 | DPRINTF("interrupt exit requested\n"); | |
992 | /* | |
993 | * KVM requires us to reenter the kernel after IO exits to complete | |
994 | * instruction emulation. This self-signal will ensure that we | |
995 | * leave ASAP again. | |
996 | */ | |
997 | qemu_cpu_kick_self(); | |
998 | } | |
273faf1b | 999 | cpu_single_env = NULL; |
d549db5a | 1000 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1001 | |
7cbb533f | 1002 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
9ccfac9e | 1003 | |
d549db5a | 1004 | qemu_mutex_lock_iothread(); |
273faf1b | 1005 | cpu_single_env = env; |
05330448 AL |
1006 | kvm_arch_post_run(env, run); |
1007 | ||
b0c883b5 JK |
1008 | kvm_flush_coalesced_mmio_buffer(); |
1009 | ||
7cbb533f | 1010 | if (run_ret < 0) { |
dc77d341 JK |
1011 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1012 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1013 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1014 | break; |
1015 | } | |
7b011fbc ME |
1016 | fprintf(stderr, "error: kvm run failed %s\n", |
1017 | strerror(-run_ret)); | |
05330448 AL |
1018 | abort(); |
1019 | } | |
1020 | ||
05330448 AL |
1021 | switch (run->exit_reason) { |
1022 | case KVM_EXIT_IO: | |
8c0d577e | 1023 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1024 | kvm_handle_io(run->io.port, |
1025 | (uint8_t *)run + run->io.data_offset, | |
1026 | run->io.direction, | |
1027 | run->io.size, | |
1028 | run->io.count); | |
d73cd8f4 | 1029 | ret = 0; |
05330448 AL |
1030 | break; |
1031 | case KVM_EXIT_MMIO: | |
8c0d577e | 1032 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1033 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1034 | run->mmio.data, | |
1035 | run->mmio.len, | |
1036 | run->mmio.is_write); | |
d73cd8f4 | 1037 | ret = 0; |
05330448 AL |
1038 | break; |
1039 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1040 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1041 | ret = EXCP_INTERRUPT; |
05330448 AL |
1042 | break; |
1043 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1044 | DPRINTF("shutdown\n"); |
05330448 | 1045 | qemu_system_reset_request(); |
d73cd8f4 | 1046 | ret = EXCP_INTERRUPT; |
05330448 AL |
1047 | break; |
1048 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1049 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1050 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1051 | ret = -1; |
05330448 | 1052 | break; |
7c80eef8 | 1053 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1054 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1055 | break; |
05330448 | 1056 | default: |
8c0d577e | 1057 | DPRINTF("kvm_arch_handle_exit\n"); |
05330448 AL |
1058 | ret = kvm_arch_handle_exit(env, run); |
1059 | break; | |
1060 | } | |
d73cd8f4 | 1061 | } while (ret == 0); |
05330448 | 1062 | |
73aaec4a | 1063 | if (ret < 0) { |
f5c848ee | 1064 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1065 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1066 | } |
1067 | ||
6792a57b JK |
1068 | env->exit_request = 0; |
1069 | cpu_single_env = NULL; | |
05330448 AL |
1070 | return ret; |
1071 | } | |
1072 | ||
984b5181 | 1073 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1074 | { |
1075 | int ret; | |
984b5181 AL |
1076 | void *arg; |
1077 | va_list ap; | |
05330448 | 1078 | |
984b5181 AL |
1079 | va_start(ap, type); |
1080 | arg = va_arg(ap, void *); | |
1081 | va_end(ap); | |
1082 | ||
1083 | ret = ioctl(s->fd, type, arg); | |
a426e122 | 1084 | if (ret == -1) { |
05330448 | 1085 | ret = -errno; |
a426e122 | 1086 | } |
05330448 AL |
1087 | return ret; |
1088 | } | |
1089 | ||
984b5181 | 1090 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1091 | { |
1092 | int ret; | |
984b5181 AL |
1093 | void *arg; |
1094 | va_list ap; | |
1095 | ||
1096 | va_start(ap, type); | |
1097 | arg = va_arg(ap, void *); | |
1098 | va_end(ap); | |
05330448 | 1099 | |
984b5181 | 1100 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1101 | if (ret == -1) { |
05330448 | 1102 | ret = -errno; |
a426e122 | 1103 | } |
05330448 AL |
1104 | return ret; |
1105 | } | |
1106 | ||
984b5181 | 1107 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
1108 | { |
1109 | int ret; | |
984b5181 AL |
1110 | void *arg; |
1111 | va_list ap; | |
1112 | ||
1113 | va_start(ap, type); | |
1114 | arg = va_arg(ap, void *); | |
1115 | va_end(ap); | |
05330448 | 1116 | |
984b5181 | 1117 | ret = ioctl(env->kvm_fd, type, arg); |
a426e122 | 1118 | if (ret == -1) { |
05330448 | 1119 | ret = -errno; |
a426e122 | 1120 | } |
05330448 AL |
1121 | return ret; |
1122 | } | |
bd322087 AL |
1123 | |
1124 | int kvm_has_sync_mmu(void) | |
1125 | { | |
94a8d39a | 1126 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1127 | } |
e22a25c9 | 1128 | |
a0fb002c JK |
1129 | int kvm_has_vcpu_events(void) |
1130 | { | |
1131 | return kvm_state->vcpu_events; | |
1132 | } | |
1133 | ||
b0b1d690 JK |
1134 | int kvm_has_robust_singlestep(void) |
1135 | { | |
1136 | return kvm_state->robust_singlestep; | |
1137 | } | |
1138 | ||
ff44f1a3 JK |
1139 | int kvm_has_debugregs(void) |
1140 | { | |
1141 | return kvm_state->debugregs; | |
1142 | } | |
1143 | ||
f1665b21 SY |
1144 | int kvm_has_xsave(void) |
1145 | { | |
1146 | return kvm_state->xsave; | |
1147 | } | |
1148 | ||
1149 | int kvm_has_xcrs(void) | |
1150 | { | |
1151 | return kvm_state->xcrs; | |
1152 | } | |
1153 | ||
d2f2b8a7 SH |
1154 | int kvm_has_many_ioeventfds(void) |
1155 | { | |
1156 | if (!kvm_enabled()) { | |
1157 | return 0; | |
1158 | } | |
1159 | return kvm_state->many_ioeventfds; | |
1160 | } | |
1161 | ||
6f0437e8 JK |
1162 | void kvm_setup_guest_memory(void *start, size_t size) |
1163 | { | |
1164 | if (!kvm_has_sync_mmu()) { | |
e78815a5 | 1165 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1166 | |
1167 | if (ret) { | |
e78815a5 AF |
1168 | perror("qemu_madvise"); |
1169 | fprintf(stderr, | |
1170 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1171 | exit(1); |
1172 | } | |
6f0437e8 JK |
1173 | } |
1174 | } | |
1175 | ||
e22a25c9 AL |
1176 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
1177 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, | |
1178 | target_ulong pc) | |
1179 | { | |
1180 | struct kvm_sw_breakpoint *bp; | |
1181 | ||
72cf2d4f | 1182 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1183 | if (bp->pc == pc) { |
e22a25c9 | 1184 | return bp; |
a426e122 | 1185 | } |
e22a25c9 AL |
1186 | } |
1187 | return NULL; | |
1188 | } | |
1189 | ||
1190 | int kvm_sw_breakpoints_active(CPUState *env) | |
1191 | { | |
72cf2d4f | 1192 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1193 | } |
1194 | ||
452e4751 GC |
1195 | struct kvm_set_guest_debug_data { |
1196 | struct kvm_guest_debug dbg; | |
1197 | CPUState *env; | |
1198 | int err; | |
1199 | }; | |
1200 | ||
1201 | static void kvm_invoke_set_guest_debug(void *data) | |
1202 | { | |
1203 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 JK |
1204 | CPUState *env = dbg_data->env; |
1205 | ||
b3807725 | 1206 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); |
452e4751 GC |
1207 | } |
1208 | ||
e22a25c9 AL |
1209 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
1210 | { | |
452e4751 | 1211 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1212 | |
b0b1d690 | 1213 | data.dbg.control = reinject_trap; |
e22a25c9 | 1214 | |
b0b1d690 JK |
1215 | if (env->singlestep_enabled) { |
1216 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1217 | } | |
452e4751 | 1218 | kvm_arch_update_guest_debug(env, &data.dbg); |
452e4751 | 1219 | data.env = env; |
e22a25c9 | 1220 | |
be41cbe0 | 1221 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1222 | return data.err; |
e22a25c9 AL |
1223 | } |
1224 | ||
1225 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1226 | target_ulong len, int type) | |
1227 | { | |
1228 | struct kvm_sw_breakpoint *bp; | |
1229 | CPUState *env; | |
1230 | int err; | |
1231 | ||
1232 | if (type == GDB_BREAKPOINT_SW) { | |
1233 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1234 | if (bp) { | |
1235 | bp->use_count++; | |
1236 | return 0; | |
1237 | } | |
1238 | ||
7267c094 | 1239 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1240 | if (!bp) { |
e22a25c9 | 1241 | return -ENOMEM; |
a426e122 | 1242 | } |
e22a25c9 AL |
1243 | |
1244 | bp->pc = addr; | |
1245 | bp->use_count = 1; | |
1246 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1247 | if (err) { | |
7267c094 | 1248 | g_free(bp); |
e22a25c9 AL |
1249 | return err; |
1250 | } | |
1251 | ||
72cf2d4f | 1252 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1253 | bp, entry); |
1254 | } else { | |
1255 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1256 | if (err) { |
e22a25c9 | 1257 | return err; |
a426e122 | 1258 | } |
e22a25c9 AL |
1259 | } |
1260 | ||
1261 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1262 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1263 | if (err) { |
e22a25c9 | 1264 | return err; |
a426e122 | 1265 | } |
e22a25c9 AL |
1266 | } |
1267 | return 0; | |
1268 | } | |
1269 | ||
1270 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1271 | target_ulong len, int type) | |
1272 | { | |
1273 | struct kvm_sw_breakpoint *bp; | |
1274 | CPUState *env; | |
1275 | int err; | |
1276 | ||
1277 | if (type == GDB_BREAKPOINT_SW) { | |
1278 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
a426e122 | 1279 | if (!bp) { |
e22a25c9 | 1280 | return -ENOENT; |
a426e122 | 1281 | } |
e22a25c9 AL |
1282 | |
1283 | if (bp->use_count > 1) { | |
1284 | bp->use_count--; | |
1285 | return 0; | |
1286 | } | |
1287 | ||
1288 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
a426e122 | 1289 | if (err) { |
e22a25c9 | 1290 | return err; |
a426e122 | 1291 | } |
e22a25c9 | 1292 | |
72cf2d4f | 1293 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1294 | g_free(bp); |
e22a25c9 AL |
1295 | } else { |
1296 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1297 | if (err) { |
e22a25c9 | 1298 | return err; |
a426e122 | 1299 | } |
e22a25c9 AL |
1300 | } |
1301 | ||
1302 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1303 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1304 | if (err) { |
e22a25c9 | 1305 | return err; |
a426e122 | 1306 | } |
e22a25c9 AL |
1307 | } |
1308 | return 0; | |
1309 | } | |
1310 | ||
1311 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1312 | { | |
1313 | struct kvm_sw_breakpoint *bp, *next; | |
1314 | KVMState *s = current_env->kvm_state; | |
1315 | CPUState *env; | |
1316 | ||
72cf2d4f | 1317 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
e22a25c9 AL |
1318 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { |
1319 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1320 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
a426e122 | 1321 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { |
e22a25c9 | 1322 | break; |
a426e122 | 1323 | } |
e22a25c9 AL |
1324 | } |
1325 | } | |
1326 | } | |
1327 | kvm_arch_remove_all_hw_breakpoints(); | |
1328 | ||
a426e122 | 1329 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 1330 | kvm_update_guest_debug(env, 0); |
a426e122 | 1331 | } |
e22a25c9 AL |
1332 | } |
1333 | ||
1334 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1335 | ||
1336 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1337 | { | |
1338 | return -EINVAL; | |
1339 | } | |
1340 | ||
1341 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1342 | target_ulong len, int type) | |
1343 | { | |
1344 | return -EINVAL; | |
1345 | } | |
1346 | ||
1347 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1348 | target_ulong len, int type) | |
1349 | { | |
1350 | return -EINVAL; | |
1351 | } | |
1352 | ||
1353 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1354 | { | |
1355 | } | |
1356 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 MT |
1357 | |
1358 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | |
1359 | { | |
1360 | struct kvm_signal_mask *sigmask; | |
1361 | int r; | |
1362 | ||
a426e122 | 1363 | if (!sigset) { |
cc84de95 | 1364 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 1365 | } |
cc84de95 | 1366 | |
7267c094 | 1367 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
1368 | |
1369 | sigmask->len = 8; | |
1370 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1371 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
7267c094 | 1372 | g_free(sigmask); |
cc84de95 MT |
1373 | |
1374 | return r; | |
1375 | } | |
ca821806 | 1376 | |
44f1a3d8 CM |
1377 | int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) |
1378 | { | |
44f1a3d8 CM |
1379 | int ret; |
1380 | struct kvm_ioeventfd iofd; | |
1381 | ||
1382 | iofd.datamatch = val; | |
1383 | iofd.addr = addr; | |
1384 | iofd.len = 4; | |
1385 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | |
1386 | iofd.fd = fd; | |
1387 | ||
1388 | if (!kvm_enabled()) { | |
1389 | return -ENOSYS; | |
1390 | } | |
1391 | ||
1392 | if (!assign) { | |
1393 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1394 | } | |
1395 | ||
1396 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
1397 | ||
1398 | if (ret < 0) { | |
1399 | return -errno; | |
1400 | } | |
1401 | ||
1402 | return 0; | |
44f1a3d8 CM |
1403 | } |
1404 | ||
ca821806 MT |
1405 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) |
1406 | { | |
1407 | struct kvm_ioeventfd kick = { | |
1408 | .datamatch = val, | |
1409 | .addr = addr, | |
1410 | .len = 2, | |
1411 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
1412 | .fd = fd, | |
1413 | }; | |
1414 | int r; | |
a426e122 | 1415 | if (!kvm_enabled()) { |
ca821806 | 1416 | return -ENOSYS; |
a426e122 JK |
1417 | } |
1418 | if (!assign) { | |
ca821806 | 1419 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
a426e122 | 1420 | } |
ca821806 | 1421 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
a426e122 | 1422 | if (r < 0) { |
ca821806 | 1423 | return r; |
a426e122 | 1424 | } |
ca821806 | 1425 | return 0; |
98c8573e | 1426 | } |
a1b87fe0 JK |
1427 | |
1428 | int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) | |
1429 | { | |
1430 | return kvm_arch_on_sigbus_vcpu(env, code, addr); | |
1431 | } | |
1432 | ||
1433 | int kvm_on_sigbus(int code, void *addr) | |
1434 | { | |
1435 | return kvm_arch_on_sigbus(code, addr); | |
1436 | } |