]> git.proxmox.com Git - mirror_qemu.git/blame - kvm-all.c
Fix harmless if statements with empty body, spotted by clang
[mirror_qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448
AL
28#include "kvm.h"
29
f65ed4c1
AL
30/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31#define PAGE_SIZE TARGET_PAGE_SIZE
32
05330448
AL
33//#define DEBUG_KVM
34
35#ifdef DEBUG_KVM
36#define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38#else
39#define dprintf(fmt, ...) \
40 do { } while (0)
41#endif
42
34fc643f
AL
43typedef struct KVMSlot
44{
c227f099
AL
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
34fc643f
AL
48 int slot;
49 int flags;
50} KVMSlot;
05330448 51
5832d1f2
AL
52typedef struct kvm_dirty_log KVMDirtyLog;
53
05330448
AL
54struct KVMState
55{
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
f65ed4c1 59 int coalesced_mmio;
62a2744c
SY
60#ifdef KVM_CAP_COALESCED_MMIO
61 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
62#endif
e69917e2 63 int broken_set_mem_region;
4495d6a7 64 int migration_log;
a0fb002c 65 int vcpu_events;
b0b1d690 66 int robust_singlestep;
e22a25c9
AL
67#ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
69#endif
6f725c13
GC
70 int irqchip_in_kernel;
71 int pit_in_kernel;
05330448
AL
72};
73
74static KVMState *kvm_state;
75
76static KVMSlot *kvm_alloc_slot(KVMState *s)
77{
78 int i;
79
80 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
62d60e8c
AL
81 /* KVM private memory slots */
82 if (i >= 8 && i < 12)
83 continue;
05330448
AL
84 if (s->slots[i].memory_size == 0)
85 return &s->slots[i];
86 }
87
d3f8d37f
AL
88 fprintf(stderr, "%s: no free slot available\n", __func__);
89 abort();
90}
91
92static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
93 target_phys_addr_t start_addr,
94 target_phys_addr_t end_addr)
d3f8d37f
AL
95{
96 int i;
97
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 KVMSlot *mem = &s->slots[i];
100
101 if (start_addr == mem->start_addr &&
102 end_addr == mem->start_addr + mem->memory_size) {
103 return mem;
104 }
105 }
106
05330448
AL
107 return NULL;
108}
109
6152e2ae
AL
110/*
111 * Find overlapping slot with lowest start address
112 */
113static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
05330448 116{
6152e2ae 117 KVMSlot *found = NULL;
05330448
AL
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
122
6152e2ae
AL
123 if (mem->memory_size == 0 ||
124 (found && found->start_addr < mem->start_addr)) {
125 continue;
126 }
127
128 if (end_addr > mem->start_addr &&
129 start_addr < mem->start_addr + mem->memory_size) {
130 found = mem;
131 }
05330448
AL
132 }
133
6152e2ae 134 return found;
05330448
AL
135}
136
5832d1f2
AL
137static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
138{
139 struct kvm_userspace_memory_region mem;
140
141 mem.slot = slot->slot;
142 mem.guest_phys_addr = slot->start_addr;
143 mem.memory_size = slot->memory_size;
5579c7f3 144 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
5832d1f2 145 mem.flags = slot->flags;
4495d6a7
JK
146 if (s->migration_log) {
147 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
148 }
5832d1f2
AL
149 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
150}
151
8d2ba1fb
JK
152static void kvm_reset_vcpu(void *opaque)
153{
154 CPUState *env = opaque;
155
caa5af0f 156 kvm_arch_reset_vcpu(env);
8d2ba1fb 157}
5832d1f2 158
6f725c13
GC
159int kvm_irqchip_in_kernel(void)
160{
161 return kvm_state->irqchip_in_kernel;
162}
163
164int kvm_pit_in_kernel(void)
165{
166 return kvm_state->pit_in_kernel;
167}
168
169
05330448
AL
170int kvm_init_vcpu(CPUState *env)
171{
172 KVMState *s = kvm_state;
173 long mmap_size;
174 int ret;
175
176 dprintf("kvm_init_vcpu\n");
177
984b5181 178 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448
AL
179 if (ret < 0) {
180 dprintf("kvm_create_vcpu failed\n");
181 goto err;
182 }
183
184 env->kvm_fd = ret;
185 env->kvm_state = s;
186
187 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188 if (mmap_size < 0) {
189 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190 goto err;
191 }
192
193 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194 env->kvm_fd, 0);
195 if (env->kvm_run == MAP_FAILED) {
196 ret = -errno;
197 dprintf("mmap'ing vcpu state failed\n");
198 goto err;
199 }
200
62a2744c
SY
201#ifdef KVM_CAP_COALESCED_MMIO
202 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
203 s->coalesced_mmio_ring = (void *) env->kvm_run +
204 s->coalesced_mmio * PAGE_SIZE;
205#endif
206
05330448 207 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 208 if (ret == 0) {
a08d4367 209 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 210 kvm_arch_reset_vcpu(env);
8d2ba1fb 211 }
05330448
AL
212err:
213 return ret;
214}
215
5832d1f2
AL
216/*
217 * dirty pages logging control
218 */
c227f099
AL
219static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
220 ram_addr_t size, int flags, int mask)
5832d1f2
AL
221{
222 KVMState *s = kvm_state;
d3f8d37f 223 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
224 int old_flags;
225
5832d1f2 226 if (mem == NULL) {
d3f8d37f
AL
227 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
228 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 229 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
230 return -EINVAL;
231 }
232
4495d6a7 233 old_flags = mem->flags;
5832d1f2 234
4495d6a7 235 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
236 mem->flags = flags;
237
4495d6a7
JK
238 /* If nothing changed effectively, no need to issue ioctl */
239 if (s->migration_log) {
240 flags |= KVM_MEM_LOG_DIRTY_PAGES;
241 }
242 if (flags == old_flags) {
243 return 0;
244 }
245
5832d1f2
AL
246 return kvm_set_user_memory_region(s, mem);
247}
248
c227f099 249int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 250{
d3f8d37f 251 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
252 KVM_MEM_LOG_DIRTY_PAGES,
253 KVM_MEM_LOG_DIRTY_PAGES);
254}
255
c227f099 256int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 257{
d3f8d37f 258 return kvm_dirty_pages_log_change(phys_addr, size,
5832d1f2
AL
259 0,
260 KVM_MEM_LOG_DIRTY_PAGES);
261}
262
7b8f3b78 263static int kvm_set_migration_log(int enable)
4495d6a7
JK
264{
265 KVMState *s = kvm_state;
266 KVMSlot *mem;
267 int i, err;
268
269 s->migration_log = enable;
270
271 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
272 mem = &s->slots[i];
273
274 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
275 continue;
276 }
277 err = kvm_set_user_memory_region(s, mem);
278 if (err) {
279 return err;
280 }
281 }
282 return 0;
283}
284
96c1606b
AG
285static int test_le_bit(unsigned long nr, unsigned char *addr)
286{
287 return (addr[nr >> 3] >> (nr & 7)) & 1;
288}
289
5832d1f2
AL
290/**
291 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
292 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
293 * This means all bits are set to dirty.
294 *
d3f8d37f 295 * @start_add: start of logged region.
5832d1f2
AL
296 * @end_addr: end of logged region.
297 */
7b8f3b78
MT
298static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
299 target_phys_addr_t end_addr)
5832d1f2
AL
300{
301 KVMState *s = kvm_state;
151f7749 302 unsigned long size, allocated_size = 0;
c227f099
AL
303 target_phys_addr_t phys_addr;
304 ram_addr_t addr;
151f7749
JK
305 KVMDirtyLog d;
306 KVMSlot *mem;
307 int ret = 0;
5832d1f2 308
151f7749
JK
309 d.dirty_bitmap = NULL;
310 while (start_addr < end_addr) {
311 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
312 if (mem == NULL) {
313 break;
314 }
5832d1f2 315
151f7749
JK
316 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
317 if (!d.dirty_bitmap) {
318 d.dirty_bitmap = qemu_malloc(size);
319 } else if (size > allocated_size) {
320 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
321 }
322 allocated_size = size;
323 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 324
151f7749 325 d.slot = mem->slot;
5832d1f2 326
6e489f3f 327 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
151f7749
JK
328 dprintf("ioctl failed %d\n", errno);
329 ret = -1;
330 break;
331 }
5832d1f2 332
151f7749
JK
333 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
334 phys_addr < mem->start_addr + mem->memory_size;
335 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
96c1606b 336 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
151f7749 337 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
151f7749 338
96c1606b 339 if (test_le_bit(nr, bitmap)) {
151f7749
JK
340 cpu_physical_memory_set_dirty(addr);
341 }
342 }
343 start_addr = phys_addr;
5832d1f2 344 }
5832d1f2 345 qemu_free(d.dirty_bitmap);
151f7749
JK
346
347 return ret;
5832d1f2
AL
348}
349
c227f099 350int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
351{
352 int ret = -ENOSYS;
353#ifdef KVM_CAP_COALESCED_MMIO
354 KVMState *s = kvm_state;
355
356 if (s->coalesced_mmio) {
357 struct kvm_coalesced_mmio_zone zone;
358
359 zone.addr = start;
360 zone.size = size;
361
362 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
363 }
364#endif
365
366 return ret;
367}
368
c227f099 369int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
370{
371 int ret = -ENOSYS;
372#ifdef KVM_CAP_COALESCED_MMIO
373 KVMState *s = kvm_state;
374
375 if (s->coalesced_mmio) {
376 struct kvm_coalesced_mmio_zone zone;
377
378 zone.addr = start;
379 zone.size = size;
380
381 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
382 }
383#endif
384
385 return ret;
386}
387
ad7b8b33
AL
388int kvm_check_extension(KVMState *s, unsigned int extension)
389{
390 int ret;
391
392 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
393 if (ret < 0) {
394 ret = 0;
395 }
396
397 return ret;
398}
399
7b8f3b78
MT
400static void kvm_set_phys_mem(target_phys_addr_t start_addr,
401 ram_addr_t size,
402 ram_addr_t phys_offset)
46dbef6a
MT
403{
404 KVMState *s = kvm_state;
405 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
406 KVMSlot *mem, old;
407 int err;
408
409 if (start_addr & ~TARGET_PAGE_MASK) {
410 if (flags >= IO_MEM_UNASSIGNED) {
411 if (!kvm_lookup_overlapping_slot(s, start_addr,
412 start_addr + size)) {
413 return;
414 }
415 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
416 } else {
417 fprintf(stderr, "Only page-aligned memory slots supported\n");
418 }
419 abort();
420 }
421
422 /* KVM does not support read-only slots */
423 phys_offset &= ~IO_MEM_ROM;
424
425 while (1) {
426 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
427 if (!mem) {
428 break;
429 }
430
431 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
432 (start_addr + size <= mem->start_addr + mem->memory_size) &&
433 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
434 /* The new slot fits into the existing one and comes with
435 * identical parameters - nothing to be done. */
436 return;
437 }
438
439 old = *mem;
440
441 /* unregister the overlapping slot */
442 mem->memory_size = 0;
443 err = kvm_set_user_memory_region(s, mem);
444 if (err) {
445 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
446 __func__, strerror(-err));
447 abort();
448 }
449
450 /* Workaround for older KVM versions: we can't join slots, even not by
451 * unregistering the previous ones and then registering the larger
452 * slot. We have to maintain the existing fragmentation. Sigh.
453 *
454 * This workaround assumes that the new slot starts at the same
455 * address as the first existing one. If not or if some overlapping
456 * slot comes around later, we will fail (not seen in practice so far)
457 * - and actually require a recent KVM version. */
458 if (s->broken_set_mem_region &&
459 old.start_addr == start_addr && old.memory_size < size &&
460 flags < IO_MEM_UNASSIGNED) {
461 mem = kvm_alloc_slot(s);
462 mem->memory_size = old.memory_size;
463 mem->start_addr = old.start_addr;
464 mem->phys_offset = old.phys_offset;
465 mem->flags = 0;
466
467 err = kvm_set_user_memory_region(s, mem);
468 if (err) {
469 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
470 strerror(-err));
471 abort();
472 }
473
474 start_addr += old.memory_size;
475 phys_offset += old.memory_size;
476 size -= old.memory_size;
477 continue;
478 }
479
480 /* register prefix slot */
481 if (old.start_addr < start_addr) {
482 mem = kvm_alloc_slot(s);
483 mem->memory_size = start_addr - old.start_addr;
484 mem->start_addr = old.start_addr;
485 mem->phys_offset = old.phys_offset;
486 mem->flags = 0;
487
488 err = kvm_set_user_memory_region(s, mem);
489 if (err) {
490 fprintf(stderr, "%s: error registering prefix slot: %s\n",
491 __func__, strerror(-err));
492 abort();
493 }
494 }
495
496 /* register suffix slot */
497 if (old.start_addr + old.memory_size > start_addr + size) {
498 ram_addr_t size_delta;
499
500 mem = kvm_alloc_slot(s);
501 mem->start_addr = start_addr + size;
502 size_delta = mem->start_addr - old.start_addr;
503 mem->memory_size = old.memory_size - size_delta;
504 mem->phys_offset = old.phys_offset + size_delta;
505 mem->flags = 0;
506
507 err = kvm_set_user_memory_region(s, mem);
508 if (err) {
509 fprintf(stderr, "%s: error registering suffix slot: %s\n",
510 __func__, strerror(-err));
511 abort();
512 }
513 }
514 }
515
516 /* in case the KVM bug workaround already "consumed" the new slot */
517 if (!size)
518 return;
519
520 /* KVM does not need to know about this memory */
521 if (flags >= IO_MEM_UNASSIGNED)
522 return;
523
524 mem = kvm_alloc_slot(s);
525 mem->memory_size = size;
526 mem->start_addr = start_addr;
527 mem->phys_offset = phys_offset;
528 mem->flags = 0;
529
530 err = kvm_set_user_memory_region(s, mem);
531 if (err) {
532 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
533 strerror(-err));
534 abort();
535 }
536}
537
7b8f3b78
MT
538static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
539 target_phys_addr_t start_addr,
540 ram_addr_t size,
541 ram_addr_t phys_offset)
542{
543 kvm_set_phys_mem(start_addr, size, phys_offset);
544}
545
546static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
547 target_phys_addr_t start_addr,
548 target_phys_addr_t end_addr)
549{
550 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
551}
552
553static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
554 int enable)
555{
556 return kvm_set_migration_log(enable);
557}
558
559static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
560 .set_memory = kvm_client_set_memory,
561 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
562 .migration_log = kvm_client_migration_log,
563};
564
05330448
AL
565int kvm_init(int smp_cpus)
566{
168ccc11
JK
567 static const char upgrade_note[] =
568 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
569 "(see http://sourceforge.net/projects/kvm).\n";
05330448
AL
570 KVMState *s;
571 int ret;
572 int i;
573
9f8fd694
MM
574 if (smp_cpus > 1) {
575 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
05330448 576 return -EINVAL;
9f8fd694 577 }
05330448
AL
578
579 s = qemu_mallocz(sizeof(KVMState));
05330448 580
e22a25c9 581#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 582 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 583#endif
05330448
AL
584 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
585 s->slots[i].slot = i;
586
587 s->vmfd = -1;
40ff6d7e 588 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
589 if (s->fd == -1) {
590 fprintf(stderr, "Could not access KVM kernel module: %m\n");
591 ret = -errno;
592 goto err;
593 }
594
595 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
596 if (ret < KVM_API_VERSION) {
597 if (ret > 0)
598 ret = -EINVAL;
599 fprintf(stderr, "kvm version too old\n");
600 goto err;
601 }
602
603 if (ret > KVM_API_VERSION) {
604 ret = -EINVAL;
605 fprintf(stderr, "kvm version not supported\n");
606 goto err;
607 }
608
609 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
610 if (s->vmfd < 0) {
611#ifdef TARGET_S390X
612 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
613 "your host kernel command line\n");
614#endif
05330448 615 goto err;
0104dcac 616 }
05330448
AL
617
618 /* initially, KVM allocated its own memory and we had to jump through
619 * hooks to make phys_ram_base point to this. Modern versions of KVM
5579c7f3 620 * just use a user allocated buffer so we can use regular pages
05330448
AL
621 * unmodified. Make sure we have a sufficiently modern version of KVM.
622 */
ad7b8b33
AL
623 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
624 ret = -EINVAL;
168ccc11
JK
625 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
626 upgrade_note);
05330448
AL
627 goto err;
628 }
629
d85dc283
AL
630 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
631 * destroyed properly. Since we rely on this capability, refuse to work
632 * with any kernel without this capability. */
ad7b8b33
AL
633 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
634 ret = -EINVAL;
d85dc283
AL
635
636 fprintf(stderr,
168ccc11
JK
637 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
638 upgrade_note);
d85dc283
AL
639 goto err;
640 }
641
62a2744c 642 s->coalesced_mmio = 0;
f65ed4c1 643#ifdef KVM_CAP_COALESCED_MMIO
ad7b8b33 644 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
62a2744c 645 s->coalesced_mmio_ring = NULL;
f65ed4c1
AL
646#endif
647
e69917e2
JK
648 s->broken_set_mem_region = 1;
649#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
650 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
651 if (ret > 0) {
652 s->broken_set_mem_region = 0;
653 }
654#endif
655
a0fb002c
JK
656 s->vcpu_events = 0;
657#ifdef KVM_CAP_VCPU_EVENTS
658 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
659#endif
660
b0b1d690
JK
661 s->robust_singlestep = 0;
662#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
663 s->robust_singlestep =
664 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
665#endif
666
05330448
AL
667 ret = kvm_arch_init(s, smp_cpus);
668 if (ret < 0)
669 goto err;
670
671 kvm_state = s;
7b8f3b78 672 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448
AL
673
674 return 0;
675
676err:
677 if (s) {
678 if (s->vmfd != -1)
679 close(s->vmfd);
680 if (s->fd != -1)
681 close(s->fd);
682 }
683 qemu_free(s);
684
685 return ret;
686}
687
afcea8cb
BS
688static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
689 uint32_t count)
05330448
AL
690{
691 int i;
692 uint8_t *ptr = data;
693
694 for (i = 0; i < count; i++) {
695 if (direction == KVM_EXIT_IO_IN) {
696 switch (size) {
697 case 1:
afcea8cb 698 stb_p(ptr, cpu_inb(port));
05330448
AL
699 break;
700 case 2:
afcea8cb 701 stw_p(ptr, cpu_inw(port));
05330448
AL
702 break;
703 case 4:
afcea8cb 704 stl_p(ptr, cpu_inl(port));
05330448
AL
705 break;
706 }
707 } else {
708 switch (size) {
709 case 1:
afcea8cb 710 cpu_outb(port, ldub_p(ptr));
05330448
AL
711 break;
712 case 2:
afcea8cb 713 cpu_outw(port, lduw_p(ptr));
05330448
AL
714 break;
715 case 4:
afcea8cb 716 cpu_outl(port, ldl_p(ptr));
05330448
AL
717 break;
718 }
719 }
720
721 ptr += size;
722 }
723
724 return 1;
725}
726
62a2744c 727void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1
AL
728{
729#ifdef KVM_CAP_COALESCED_MMIO
730 KVMState *s = kvm_state;
62a2744c
SY
731 if (s->coalesced_mmio_ring) {
732 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
733 while (ring->first != ring->last) {
734 struct kvm_coalesced_mmio *ent;
735
736 ent = &ring->coalesced_mmio[ring->first];
737
738 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 739 smp_wmb();
f65ed4c1
AL
740 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
741 }
742 }
743#endif
744}
745
4c0960c0
AK
746void kvm_cpu_synchronize_state(CPUState *env)
747{
9ded2744 748 if (!env->kvm_vcpu_dirty) {
4c0960c0 749 kvm_arch_get_registers(env);
9ded2744 750 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
751 }
752}
753
ea375f9a
JK
754void kvm_cpu_synchronize_post_reset(CPUState *env)
755{
756 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
757 env->kvm_vcpu_dirty = 0;
758}
759
760void kvm_cpu_synchronize_post_init(CPUState *env)
761{
762 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
763 env->kvm_vcpu_dirty = 0;
764}
765
05330448
AL
766int kvm_cpu_exec(CPUState *env)
767{
768 struct kvm_run *run = env->kvm_run;
769 int ret;
770
771 dprintf("kvm_cpu_exec()\n");
772
773 do {
6312b928 774#ifndef CONFIG_IOTHREAD
be214e6c 775 if (env->exit_request) {
05330448
AL
776 dprintf("interrupt exit requested\n");
777 ret = 0;
778 break;
779 }
6312b928 780#endif
05330448 781
9ded2744 782 if (env->kvm_vcpu_dirty) {
ea375f9a 783 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 784 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
785 }
786
8c14c173 787 kvm_arch_pre_run(env, run);
d549db5a 788 qemu_mutex_unlock_iothread();
05330448 789 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
d549db5a 790 qemu_mutex_lock_iothread();
05330448
AL
791 kvm_arch_post_run(env, run);
792
793 if (ret == -EINTR || ret == -EAGAIN) {
cc84de95 794 cpu_exit(env);
05330448
AL
795 dprintf("io window exit\n");
796 ret = 0;
797 break;
798 }
799
800 if (ret < 0) {
801 dprintf("kvm run failed %s\n", strerror(-ret));
802 abort();
803 }
804
62a2744c 805 kvm_flush_coalesced_mmio_buffer();
f65ed4c1 806
05330448
AL
807 ret = 0; /* exit loop */
808 switch (run->exit_reason) {
809 case KVM_EXIT_IO:
810 dprintf("handle_io\n");
afcea8cb 811 ret = kvm_handle_io(run->io.port,
05330448
AL
812 (uint8_t *)run + run->io.data_offset,
813 run->io.direction,
814 run->io.size,
815 run->io.count);
816 break;
817 case KVM_EXIT_MMIO:
818 dprintf("handle_mmio\n");
819 cpu_physical_memory_rw(run->mmio.phys_addr,
820 run->mmio.data,
821 run->mmio.len,
822 run->mmio.is_write);
823 ret = 1;
824 break;
825 case KVM_EXIT_IRQ_WINDOW_OPEN:
826 dprintf("irq_window_open\n");
827 break;
828 case KVM_EXIT_SHUTDOWN:
829 dprintf("shutdown\n");
830 qemu_system_reset_request();
831 ret = 1;
832 break;
833 case KVM_EXIT_UNKNOWN:
834 dprintf("kvm_exit_unknown\n");
835 break;
836 case KVM_EXIT_FAIL_ENTRY:
837 dprintf("kvm_exit_fail_entry\n");
838 break;
839 case KVM_EXIT_EXCEPTION:
840 dprintf("kvm_exit_exception\n");
841 break;
842 case KVM_EXIT_DEBUG:
843 dprintf("kvm_exit_debug\n");
e22a25c9
AL
844#ifdef KVM_CAP_SET_GUEST_DEBUG
845 if (kvm_arch_debug(&run->debug.arch)) {
846 gdb_set_stop_cpu(env);
847 vm_stop(EXCP_DEBUG);
848 env->exception_index = EXCP_DEBUG;
849 return 0;
850 }
851 /* re-enter, this exception was guest-internal */
852 ret = 1;
853#endif /* KVM_CAP_SET_GUEST_DEBUG */
05330448
AL
854 break;
855 default:
856 dprintf("kvm_arch_handle_exit\n");
857 ret = kvm_arch_handle_exit(env, run);
858 break;
859 }
860 } while (ret > 0);
861
be214e6c
AJ
862 if (env->exit_request) {
863 env->exit_request = 0;
becfc390
AL
864 env->exception_index = EXCP_INTERRUPT;
865 }
866
05330448
AL
867 return ret;
868}
869
984b5181 870int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
871{
872 int ret;
984b5181
AL
873 void *arg;
874 va_list ap;
05330448 875
984b5181
AL
876 va_start(ap, type);
877 arg = va_arg(ap, void *);
878 va_end(ap);
879
880 ret = ioctl(s->fd, type, arg);
05330448
AL
881 if (ret == -1)
882 ret = -errno;
883
884 return ret;
885}
886
984b5181 887int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
888{
889 int ret;
984b5181
AL
890 void *arg;
891 va_list ap;
892
893 va_start(ap, type);
894 arg = va_arg(ap, void *);
895 va_end(ap);
05330448 896
984b5181 897 ret = ioctl(s->vmfd, type, arg);
05330448
AL
898 if (ret == -1)
899 ret = -errno;
900
901 return ret;
902}
903
984b5181 904int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
905{
906 int ret;
984b5181
AL
907 void *arg;
908 va_list ap;
909
910 va_start(ap, type);
911 arg = va_arg(ap, void *);
912 va_end(ap);
05330448 913
984b5181 914 ret = ioctl(env->kvm_fd, type, arg);
05330448
AL
915 if (ret == -1)
916 ret = -errno;
917
918 return ret;
919}
bd322087
AL
920
921int kvm_has_sync_mmu(void)
922{
a9c11522 923#ifdef KVM_CAP_SYNC_MMU
bd322087
AL
924 KVMState *s = kvm_state;
925
ad7b8b33
AL
926 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
927#else
bd322087 928 return 0;
ad7b8b33 929#endif
bd322087 930}
e22a25c9 931
a0fb002c
JK
932int kvm_has_vcpu_events(void)
933{
934 return kvm_state->vcpu_events;
935}
936
b0b1d690
JK
937int kvm_has_robust_singlestep(void)
938{
939 return kvm_state->robust_singlestep;
940}
941
6f0437e8
JK
942void kvm_setup_guest_memory(void *start, size_t size)
943{
944 if (!kvm_has_sync_mmu()) {
945#ifdef MADV_DONTFORK
946 int ret = madvise(start, size, MADV_DONTFORK);
947
948 if (ret) {
949 perror("madvice");
950 exit(1);
951 }
952#else
953 fprintf(stderr,
954 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
955 exit(1);
956#endif
957 }
958}
959
e22a25c9 960#ifdef KVM_CAP_SET_GUEST_DEBUG
fc5d642f
LC
961static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
962{
828566bc 963#ifdef CONFIG_IOTHREAD
a2eebe88
AS
964 if (env != cpu_single_env) {
965 abort();
fc5d642f 966 }
828566bc 967#endif
a2eebe88 968 func(data);
fc5d642f
LC
969}
970
e22a25c9
AL
971struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
972 target_ulong pc)
973{
974 struct kvm_sw_breakpoint *bp;
975
72cf2d4f 976 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
e22a25c9
AL
977 if (bp->pc == pc)
978 return bp;
979 }
980 return NULL;
981}
982
983int kvm_sw_breakpoints_active(CPUState *env)
984{
72cf2d4f 985 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
986}
987
452e4751
GC
988struct kvm_set_guest_debug_data {
989 struct kvm_guest_debug dbg;
990 CPUState *env;
991 int err;
992};
993
994static void kvm_invoke_set_guest_debug(void *data)
995{
996 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
997 CPUState *env = dbg_data->env;
998
b3807725 999 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1000}
1001
e22a25c9
AL
1002int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1003{
452e4751 1004 struct kvm_set_guest_debug_data data;
e22a25c9 1005
b0b1d690 1006 data.dbg.control = reinject_trap;
e22a25c9 1007
b0b1d690
JK
1008 if (env->singlestep_enabled) {
1009 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1010 }
452e4751 1011 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1012 data.env = env;
e22a25c9 1013
452e4751
GC
1014 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1015 return data.err;
e22a25c9
AL
1016}
1017
1018int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1019 target_ulong len, int type)
1020{
1021 struct kvm_sw_breakpoint *bp;
1022 CPUState *env;
1023 int err;
1024
1025 if (type == GDB_BREAKPOINT_SW) {
1026 bp = kvm_find_sw_breakpoint(current_env, addr);
1027 if (bp) {
1028 bp->use_count++;
1029 return 0;
1030 }
1031
1032 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1033 if (!bp)
1034 return -ENOMEM;
1035
1036 bp->pc = addr;
1037 bp->use_count = 1;
1038 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1039 if (err) {
1040 free(bp);
1041 return err;
1042 }
1043
72cf2d4f 1044 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1045 bp, entry);
1046 } else {
1047 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1048 if (err)
1049 return err;
1050 }
1051
1052 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1053 err = kvm_update_guest_debug(env, 0);
1054 if (err)
1055 return err;
1056 }
1057 return 0;
1058}
1059
1060int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1061 target_ulong len, int type)
1062{
1063 struct kvm_sw_breakpoint *bp;
1064 CPUState *env;
1065 int err;
1066
1067 if (type == GDB_BREAKPOINT_SW) {
1068 bp = kvm_find_sw_breakpoint(current_env, addr);
1069 if (!bp)
1070 return -ENOENT;
1071
1072 if (bp->use_count > 1) {
1073 bp->use_count--;
1074 return 0;
1075 }
1076
1077 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1078 if (err)
1079 return err;
1080
72cf2d4f 1081 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1082 qemu_free(bp);
1083 } else {
1084 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1085 if (err)
1086 return err;
1087 }
1088
1089 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1090 err = kvm_update_guest_debug(env, 0);
1091 if (err)
1092 return err;
1093 }
1094 return 0;
1095}
1096
1097void kvm_remove_all_breakpoints(CPUState *current_env)
1098{
1099 struct kvm_sw_breakpoint *bp, *next;
1100 KVMState *s = current_env->kvm_state;
1101 CPUState *env;
1102
72cf2d4f 1103 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1104 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1105 /* Try harder to find a CPU that currently sees the breakpoint. */
1106 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1107 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1108 break;
1109 }
1110 }
1111 }
1112 kvm_arch_remove_all_hw_breakpoints();
1113
1114 for (env = first_cpu; env != NULL; env = env->next_cpu)
1115 kvm_update_guest_debug(env, 0);
1116}
1117
1118#else /* !KVM_CAP_SET_GUEST_DEBUG */
1119
1120int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1121{
1122 return -EINVAL;
1123}
1124
1125int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1126 target_ulong len, int type)
1127{
1128 return -EINVAL;
1129}
1130
1131int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1132 target_ulong len, int type)
1133{
1134 return -EINVAL;
1135}
1136
1137void kvm_remove_all_breakpoints(CPUState *current_env)
1138{
1139}
1140#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1141
1142int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1143{
1144 struct kvm_signal_mask *sigmask;
1145 int r;
1146
1147 if (!sigset)
1148 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1149
1150 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1151
1152 sigmask->len = 8;
1153 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1154 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1155 free(sigmask);
1156
1157 return r;
1158}
ca821806
MT
1159
1160#ifdef KVM_IOEVENTFD
1161int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1162{
1163 struct kvm_ioeventfd kick = {
1164 .datamatch = val,
1165 .addr = addr,
1166 .len = 2,
1167 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1168 .fd = fd,
1169 };
1170 int r;
1171 if (!kvm_enabled())
1172 return -ENOSYS;
1173 if (!assign)
1174 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1175 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1176 if (r < 0)
1177 return r;
1178 return 0;
1179}
1180#endif