]> git.proxmox.com Git - mirror_qemu.git/blame - kvm-all.c
qemu-char: fix tcp_get_fds
[mirror_qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
1de7afc9
PB
24#include "qemu/atomic.h"
25#include "qemu/option.h"
26#include "qemu/config-file.h"
9c17d615 27#include "sysemu/sysemu.h"
782c3f29 28#include "sysemu/accel.h"
d33a1810 29#include "hw/hw.h"
a2cb15b0 30#include "hw/pci/msi.h"
d426d9fb 31#include "hw/s390x/adapter.h"
022c62cb 32#include "exec/gdbstub.h"
9c17d615 33#include "sysemu/kvm.h"
1de7afc9 34#include "qemu/bswap.h"
022c62cb 35#include "exec/memory.h"
747afd5b 36#include "exec/ram_addr.h"
022c62cb 37#include "exec/address-spaces.h"
1de7afc9 38#include "qemu/event_notifier.h"
9c775729 39#include "trace.h"
05330448 40
135a129a
AK
41#include "hw/boards.h"
42
d2f2b8a7
SH
43/* This check must be after config-host.h is included */
44#ifdef CONFIG_EVENTFD
45#include <sys/eventfd.h>
46#endif
47
93148aa5 48/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
f65ed4c1
AL
49#define PAGE_SIZE TARGET_PAGE_SIZE
50
05330448
AL
51//#define DEBUG_KVM
52
53#ifdef DEBUG_KVM
8c0d577e 54#define DPRINTF(fmt, ...) \
05330448
AL
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56#else
8c0d577e 57#define DPRINTF(fmt, ...) \
05330448
AL
58 do { } while (0)
59#endif
60
04fa27f5
JK
61#define KVM_MSI_HASHTAB_SIZE 256
62
34fc643f
AL
63typedef struct KVMSlot
64{
a8170e5e 65 hwaddr start_addr;
c227f099 66 ram_addr_t memory_size;
9f213ed9 67 void *ram;
34fc643f
AL
68 int slot;
69 int flags;
70} KVMSlot;
05330448 71
5832d1f2
AL
72typedef struct kvm_dirty_log KVMDirtyLog;
73
9d1c35df 74struct KVMState
05330448 75{
fc02086b
EH
76 AccelState parent_obj;
77
fb541ca5
AW
78 KVMSlot *slots;
79 int nr_slots;
05330448
AL
80 int fd;
81 int vmfd;
f65ed4c1 82 int coalesced_mmio;
62a2744c 83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
1cae88b9 84 bool coalesced_flush_in_progress;
e69917e2 85 int broken_set_mem_region;
4495d6a7 86 int migration_log;
a0fb002c 87 int vcpu_events;
b0b1d690 88 int robust_singlestep;
ff44f1a3 89 int debugregs;
e22a25c9
AL
90#ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92#endif
8a7c7393 93 int pit_state2;
f1665b21 94 int xsave, xcrs;
d2f2b8a7 95 int many_ioeventfds;
3ab73842 96 int intx_set_mask;
92e4b519
DG
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
e333cd69 100 unsigned irq_set_ioctl;
aed6efb9 101 unsigned int sigmask_len;
84b058d7
JK
102#ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
4e2e4e63 106 unsigned int gsi_count;
04fa27f5 107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
4a3adebb 108 bool direct_msi;
84b058d7 109#endif
9d1c35df 110};
05330448 111
782c3f29
EH
112#define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
113
fc02086b
EH
114#define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
116
6a7af8cb 117KVMState *kvm_state;
3d4b2649 118bool kvm_kernel_irqchip;
7ae26bd4 119bool kvm_async_interrupts_allowed;
215e79c0 120bool kvm_halt_in_kernel_allowed;
69e03ae6 121bool kvm_eventfds_allowed;
cc7e0ddf 122bool kvm_irqfds_allowed;
614e41bc 123bool kvm_msi_via_irqfd_allowed;
f3e1bed8 124bool kvm_gsi_routing_allowed;
76fe21de 125bool kvm_gsi_direct_mapping;
13eed94e 126bool kvm_allowed;
df9c8b75 127bool kvm_readonly_mem_allowed;
05330448 128
94a8d39a
JK
129static const KVMCapabilityInfo kvm_required_capabilites[] = {
130 KVM_CAP_INFO(USER_MEMORY),
131 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
132 KVM_CAP_LAST_INFO
133};
134
05330448
AL
135static KVMSlot *kvm_alloc_slot(KVMState *s)
136{
137 int i;
138
fb541ca5 139 for (i = 0; i < s->nr_slots; i++) {
a426e122 140 if (s->slots[i].memory_size == 0) {
05330448 141 return &s->slots[i];
a426e122 142 }
05330448
AL
143 }
144
d3f8d37f
AL
145 fprintf(stderr, "%s: no free slot available\n", __func__);
146 abort();
147}
148
149static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
a8170e5e
AK
150 hwaddr start_addr,
151 hwaddr end_addr)
d3f8d37f
AL
152{
153 int i;
154
fb541ca5 155 for (i = 0; i < s->nr_slots; i++) {
d3f8d37f
AL
156 KVMSlot *mem = &s->slots[i];
157
158 if (start_addr == mem->start_addr &&
159 end_addr == mem->start_addr + mem->memory_size) {
160 return mem;
161 }
162 }
163
05330448
AL
164 return NULL;
165}
166
6152e2ae
AL
167/*
168 * Find overlapping slot with lowest start address
169 */
170static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
a8170e5e
AK
171 hwaddr start_addr,
172 hwaddr end_addr)
05330448 173{
6152e2ae 174 KVMSlot *found = NULL;
05330448
AL
175 int i;
176
fb541ca5 177 for (i = 0; i < s->nr_slots; i++) {
05330448
AL
178 KVMSlot *mem = &s->slots[i];
179
6152e2ae
AL
180 if (mem->memory_size == 0 ||
181 (found && found->start_addr < mem->start_addr)) {
182 continue;
183 }
184
185 if (end_addr > mem->start_addr &&
186 start_addr < mem->start_addr + mem->memory_size) {
187 found = mem;
188 }
05330448
AL
189 }
190
6152e2ae 191 return found;
05330448
AL
192}
193
9f213ed9 194int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
a8170e5e 195 hwaddr *phys_addr)
983dfc3b
HY
196{
197 int i;
198
fb541ca5 199 for (i = 0; i < s->nr_slots; i++) {
983dfc3b
HY
200 KVMSlot *mem = &s->slots[i];
201
9f213ed9
AK
202 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
203 *phys_addr = mem->start_addr + (ram - mem->ram);
983dfc3b
HY
204 return 1;
205 }
206 }
207
208 return 0;
209}
210
5832d1f2
AL
211static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
212{
213 struct kvm_userspace_memory_region mem;
214
215 mem.slot = slot->slot;
216 mem.guest_phys_addr = slot->start_addr;
9f213ed9 217 mem.userspace_addr = (unsigned long)slot->ram;
5832d1f2 218 mem.flags = slot->flags;
4495d6a7
JK
219 if (s->migration_log) {
220 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
221 }
651eb0f4
XG
222
223 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
235e8982
JJ
224 /* Set the slot size to 0 before setting the slot to the desired
225 * value. This is needed based on KVM commit 75d61fbc. */
226 mem.memory_size = 0;
227 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
228 }
229 mem.memory_size = slot->memory_size;
5832d1f2
AL
230 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
231}
232
504134d2 233int kvm_init_vcpu(CPUState *cpu)
05330448
AL
234{
235 KVMState *s = kvm_state;
236 long mmap_size;
237 int ret;
238
8c0d577e 239 DPRINTF("kvm_init_vcpu\n");
05330448 240
b164e48e 241 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
05330448 242 if (ret < 0) {
8c0d577e 243 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
244 goto err;
245 }
246
8737c51c 247 cpu->kvm_fd = ret;
a60f24b5 248 cpu->kvm_state = s;
20d695a9 249 cpu->kvm_vcpu_dirty = true;
05330448
AL
250
251 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
252 if (mmap_size < 0) {
748a680b 253 ret = mmap_size;
8c0d577e 254 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
255 goto err;
256 }
257
f7575c96 258 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
8737c51c 259 cpu->kvm_fd, 0);
f7575c96 260 if (cpu->kvm_run == MAP_FAILED) {
05330448 261 ret = -errno;
8c0d577e 262 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
263 goto err;
264 }
265
a426e122
JK
266 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
267 s->coalesced_mmio_ring =
f7575c96 268 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
a426e122 269 }
62a2744c 270
20d695a9 271 ret = kvm_arch_init_vcpu(cpu);
05330448
AL
272err:
273 return ret;
274}
275
5832d1f2
AL
276/*
277 * dirty pages logging control
278 */
25254bbc 279
235e8982 280static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
25254bbc 281{
235e8982
JJ
282 int flags = 0;
283 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
284 if (readonly && kvm_readonly_mem_allowed) {
285 flags |= KVM_MEM_READONLY;
286 }
287 return flags;
25254bbc
MT
288}
289
290static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
5832d1f2
AL
291{
292 KVMState *s = kvm_state;
25254bbc 293 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
4495d6a7
JK
294 int old_flags;
295
4495d6a7 296 old_flags = mem->flags;
5832d1f2 297
235e8982 298 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
5832d1f2
AL
299 mem->flags = flags;
300
4495d6a7
JK
301 /* If nothing changed effectively, no need to issue ioctl */
302 if (s->migration_log) {
303 flags |= KVM_MEM_LOG_DIRTY_PAGES;
304 }
25254bbc 305
4495d6a7 306 if (flags == old_flags) {
25254bbc 307 return 0;
4495d6a7
JK
308 }
309
5832d1f2
AL
310 return kvm_set_user_memory_region(s, mem);
311}
312
a8170e5e 313static int kvm_dirty_pages_log_change(hwaddr phys_addr,
25254bbc
MT
314 ram_addr_t size, bool log_dirty)
315{
316 KVMState *s = kvm_state;
317 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
318
319 if (mem == NULL) {
320 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
321 TARGET_FMT_plx "\n", __func__, phys_addr,
a8170e5e 322 (hwaddr)(phys_addr + size - 1));
25254bbc
MT
323 return -EINVAL;
324 }
325 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
326}
327
a01672d3
AK
328static void kvm_log_start(MemoryListener *listener,
329 MemoryRegionSection *section)
5832d1f2 330{
a01672d3
AK
331 int r;
332
333 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
052e87b0 334 int128_get64(section->size), true);
a01672d3
AK
335 if (r < 0) {
336 abort();
337 }
5832d1f2
AL
338}
339
a01672d3
AK
340static void kvm_log_stop(MemoryListener *listener,
341 MemoryRegionSection *section)
5832d1f2 342{
a01672d3
AK
343 int r;
344
345 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
052e87b0 346 int128_get64(section->size), false);
a01672d3
AK
347 if (r < 0) {
348 abort();
349 }
5832d1f2
AL
350}
351
7b8f3b78 352static int kvm_set_migration_log(int enable)
4495d6a7
JK
353{
354 KVMState *s = kvm_state;
355 KVMSlot *mem;
356 int i, err;
357
358 s->migration_log = enable;
359
fb541ca5 360 for (i = 0; i < s->nr_slots; i++) {
4495d6a7
JK
361 mem = &s->slots[i];
362
70fedd76
AW
363 if (!mem->memory_size) {
364 continue;
365 }
4495d6a7
JK
366 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
367 continue;
368 }
369 err = kvm_set_user_memory_region(s, mem);
370 if (err) {
371 return err;
372 }
373 }
374 return 0;
375}
376
8369e01c 377/* get kvm's dirty pages bitmap and update qemu's */
ffcde12f
AK
378static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
379 unsigned long *bitmap)
96c1606b 380{
c9dd46fc 381 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
5ff7fb77
JQ
382 ram_addr_t pages = int128_get64(section->size) / getpagesize();
383
384 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
8369e01c 385 return 0;
96c1606b
AG
386}
387
8369e01c
MT
388#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
389
5832d1f2
AL
390/**
391 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
fd4aa979
BS
392 * This function updates qemu's dirty bitmap using
393 * memory_region_set_dirty(). This means all bits are set
394 * to dirty.
5832d1f2 395 *
d3f8d37f 396 * @start_add: start of logged region.
5832d1f2
AL
397 * @end_addr: end of logged region.
398 */
ffcde12f 399static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
5832d1f2
AL
400{
401 KVMState *s = kvm_state;
151f7749 402 unsigned long size, allocated_size = 0;
151f7749
JK
403 KVMDirtyLog d;
404 KVMSlot *mem;
405 int ret = 0;
a8170e5e 406 hwaddr start_addr = section->offset_within_address_space;
052e87b0 407 hwaddr end_addr = start_addr + int128_get64(section->size);
5832d1f2 408
151f7749
JK
409 d.dirty_bitmap = NULL;
410 while (start_addr < end_addr) {
411 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
412 if (mem == NULL) {
413 break;
414 }
5832d1f2 415
51b0c606
MT
416 /* XXX bad kernel interface alert
417 * For dirty bitmap, kernel allocates array of size aligned to
418 * bits-per-long. But for case when the kernel is 64bits and
419 * the userspace is 32bits, userspace can't align to the same
420 * bits-per-long, since sizeof(long) is different between kernel
421 * and user space. This way, userspace will provide buffer which
422 * may be 4 bytes less than the kernel will use, resulting in
423 * userspace memory corruption (which is not detectable by valgrind
424 * too, in most cases).
425 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
426 * a hope that sizeof(long) wont become >8 any time soon.
427 */
428 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
429 /*HOST_LONG_BITS*/ 64) / 8;
151f7749 430 if (!d.dirty_bitmap) {
7267c094 431 d.dirty_bitmap = g_malloc(size);
151f7749 432 } else if (size > allocated_size) {
7267c094 433 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
151f7749
JK
434 }
435 allocated_size = size;
436 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 437
151f7749 438 d.slot = mem->slot;
5832d1f2 439
50212d63 440 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 441 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
442 ret = -1;
443 break;
444 }
5832d1f2 445
ffcde12f 446 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
8369e01c 447 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 448 }
7267c094 449 g_free(d.dirty_bitmap);
151f7749
JK
450
451 return ret;
5832d1f2
AL
452}
453
95d2994a
AK
454static void kvm_coalesce_mmio_region(MemoryListener *listener,
455 MemoryRegionSection *secion,
a8170e5e 456 hwaddr start, hwaddr size)
f65ed4c1 457{
f65ed4c1
AL
458 KVMState *s = kvm_state;
459
460 if (s->coalesced_mmio) {
461 struct kvm_coalesced_mmio_zone zone;
462
463 zone.addr = start;
464 zone.size = size;
7e680753 465 zone.pad = 0;
f65ed4c1 466
95d2994a 467 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
f65ed4c1 468 }
f65ed4c1
AL
469}
470
95d2994a
AK
471static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
472 MemoryRegionSection *secion,
a8170e5e 473 hwaddr start, hwaddr size)
f65ed4c1 474{
f65ed4c1
AL
475 KVMState *s = kvm_state;
476
477 if (s->coalesced_mmio) {
478 struct kvm_coalesced_mmio_zone zone;
479
480 zone.addr = start;
481 zone.size = size;
7e680753 482 zone.pad = 0;
f65ed4c1 483
95d2994a 484 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
f65ed4c1 485 }
f65ed4c1
AL
486}
487
ad7b8b33
AL
488int kvm_check_extension(KVMState *s, unsigned int extension)
489{
490 int ret;
491
492 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
493 if (ret < 0) {
494 ret = 0;
495 }
496
497 return ret;
498}
499
7d0a07fa
AG
500int kvm_vm_check_extension(KVMState *s, unsigned int extension)
501{
502 int ret;
503
504 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
505 if (ret < 0) {
506 /* VM wide version not implemented, use global one instead */
507 ret = kvm_check_extension(s, extension);
508 }
509
510 return ret;
511}
512
584f2be7 513static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
41cb62c2 514 bool assign, uint32_t size, bool datamatch)
500ffd4a
MT
515{
516 int ret;
517 struct kvm_ioeventfd iofd;
518
41cb62c2 519 iofd.datamatch = datamatch ? val : 0;
500ffd4a
MT
520 iofd.addr = addr;
521 iofd.len = size;
41cb62c2 522 iofd.flags = 0;
500ffd4a
MT
523 iofd.fd = fd;
524
525 if (!kvm_enabled()) {
526 return -ENOSYS;
527 }
528
41cb62c2
MT
529 if (datamatch) {
530 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
531 }
500ffd4a
MT
532 if (!assign) {
533 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
534 }
535
536 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
537
538 if (ret < 0) {
539 return -errno;
540 }
541
542 return 0;
543}
544
44c3f8f7 545static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
41cb62c2 546 bool assign, uint32_t size, bool datamatch)
500ffd4a
MT
547{
548 struct kvm_ioeventfd kick = {
41cb62c2 549 .datamatch = datamatch ? val : 0,
500ffd4a 550 .addr = addr,
41cb62c2 551 .flags = KVM_IOEVENTFD_FLAG_PIO,
44c3f8f7 552 .len = size,
500ffd4a
MT
553 .fd = fd,
554 };
555 int r;
556 if (!kvm_enabled()) {
557 return -ENOSYS;
558 }
41cb62c2
MT
559 if (datamatch) {
560 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
561 }
500ffd4a
MT
562 if (!assign) {
563 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
564 }
565 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
566 if (r < 0) {
567 return r;
568 }
569 return 0;
570}
571
572
d2f2b8a7
SH
573static int kvm_check_many_ioeventfds(void)
574{
d0dcac83
SH
575 /* Userspace can use ioeventfd for io notification. This requires a host
576 * that supports eventfd(2) and an I/O thread; since eventfd does not
577 * support SIGIO it cannot interrupt the vcpu.
578 *
579 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
580 * can avoid creating too many ioeventfds.
581 */
12d4536f 582#if defined(CONFIG_EVENTFD)
d2f2b8a7
SH
583 int ioeventfds[7];
584 int i, ret = 0;
585 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
586 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
587 if (ioeventfds[i] < 0) {
588 break;
589 }
41cb62c2 590 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
d2f2b8a7
SH
591 if (ret < 0) {
592 close(ioeventfds[i]);
593 break;
594 }
595 }
596
597 /* Decide whether many devices are supported or not */
598 ret = i == ARRAY_SIZE(ioeventfds);
599
600 while (i-- > 0) {
41cb62c2 601 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
d2f2b8a7
SH
602 close(ioeventfds[i]);
603 }
604 return ret;
605#else
606 return 0;
607#endif
608}
609
94a8d39a
JK
610static const KVMCapabilityInfo *
611kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
612{
613 while (list->name) {
614 if (!kvm_check_extension(s, list->value)) {
615 return list;
616 }
617 list++;
618 }
619 return NULL;
620}
621
a01672d3 622static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
46dbef6a
MT
623{
624 KVMState *s = kvm_state;
46dbef6a
MT
625 KVMSlot *mem, old;
626 int err;
a01672d3
AK
627 MemoryRegion *mr = section->mr;
628 bool log_dirty = memory_region_is_logging(mr);
235e8982
JJ
629 bool writeable = !mr->readonly && !mr->rom_device;
630 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
a8170e5e 631 hwaddr start_addr = section->offset_within_address_space;
052e87b0 632 ram_addr_t size = int128_get64(section->size);
9f213ed9 633 void *ram = NULL;
8f6f962b 634 unsigned delta;
46dbef6a 635
14542fea 636 /* kvm works in page size chunks, but the function may be called
f2a64032
AG
637 with sub-page size and unaligned start address. Pad the start
638 address to next and truncate size to previous page boundary. */
639 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
640 delta &= ~TARGET_PAGE_MASK;
8f6f962b
AK
641 if (delta > size) {
642 return;
643 }
644 start_addr += delta;
645 size -= delta;
646 size &= TARGET_PAGE_MASK;
647 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
648 return;
649 }
46dbef6a 650
a01672d3 651 if (!memory_region_is_ram(mr)) {
235e8982
JJ
652 if (writeable || !kvm_readonly_mem_allowed) {
653 return;
654 } else if (!mr->romd_mode) {
655 /* If the memory device is not in romd_mode, then we actually want
656 * to remove the kvm memory slot so all accesses will trap. */
657 add = false;
658 }
9f213ed9
AK
659 }
660
8f6f962b 661 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
a01672d3 662
46dbef6a
MT
663 while (1) {
664 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
665 if (!mem) {
666 break;
667 }
668
a01672d3 669 if (add && start_addr >= mem->start_addr &&
46dbef6a 670 (start_addr + size <= mem->start_addr + mem->memory_size) &&
9f213ed9 671 (ram - start_addr == mem->ram - mem->start_addr)) {
46dbef6a 672 /* The new slot fits into the existing one and comes with
25254bbc
MT
673 * identical parameters - update flags and done. */
674 kvm_slot_dirty_pages_log_change(mem, log_dirty);
46dbef6a
MT
675 return;
676 }
677
678 old = *mem;
679
3fbffb62
AK
680 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
681 kvm_physical_sync_dirty_bitmap(section);
682 }
683
46dbef6a
MT
684 /* unregister the overlapping slot */
685 mem->memory_size = 0;
686 err = kvm_set_user_memory_region(s, mem);
687 if (err) {
688 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
689 __func__, strerror(-err));
690 abort();
691 }
692
693 /* Workaround for older KVM versions: we can't join slots, even not by
694 * unregistering the previous ones and then registering the larger
695 * slot. We have to maintain the existing fragmentation. Sigh.
696 *
697 * This workaround assumes that the new slot starts at the same
698 * address as the first existing one. If not or if some overlapping
699 * slot comes around later, we will fail (not seen in practice so far)
700 * - and actually require a recent KVM version. */
701 if (s->broken_set_mem_region &&
a01672d3 702 old.start_addr == start_addr && old.memory_size < size && add) {
46dbef6a
MT
703 mem = kvm_alloc_slot(s);
704 mem->memory_size = old.memory_size;
705 mem->start_addr = old.start_addr;
9f213ed9 706 mem->ram = old.ram;
235e8982 707 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
708
709 err = kvm_set_user_memory_region(s, mem);
710 if (err) {
711 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
712 strerror(-err));
713 abort();
714 }
715
716 start_addr += old.memory_size;
9f213ed9 717 ram += old.memory_size;
46dbef6a
MT
718 size -= old.memory_size;
719 continue;
720 }
721
722 /* register prefix slot */
723 if (old.start_addr < start_addr) {
724 mem = kvm_alloc_slot(s);
725 mem->memory_size = start_addr - old.start_addr;
726 mem->start_addr = old.start_addr;
9f213ed9 727 mem->ram = old.ram;
235e8982 728 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
729
730 err = kvm_set_user_memory_region(s, mem);
731 if (err) {
732 fprintf(stderr, "%s: error registering prefix slot: %s\n",
733 __func__, strerror(-err));
d4d6868f
AG
734#ifdef TARGET_PPC
735 fprintf(stderr, "%s: This is probably because your kernel's " \
736 "PAGE_SIZE is too big. Please try to use 4k " \
737 "PAGE_SIZE!\n", __func__);
738#endif
46dbef6a
MT
739 abort();
740 }
741 }
742
743 /* register suffix slot */
744 if (old.start_addr + old.memory_size > start_addr + size) {
745 ram_addr_t size_delta;
746
747 mem = kvm_alloc_slot(s);
748 mem->start_addr = start_addr + size;
749 size_delta = mem->start_addr - old.start_addr;
750 mem->memory_size = old.memory_size - size_delta;
9f213ed9 751 mem->ram = old.ram + size_delta;
235e8982 752 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
753
754 err = kvm_set_user_memory_region(s, mem);
755 if (err) {
756 fprintf(stderr, "%s: error registering suffix slot: %s\n",
757 __func__, strerror(-err));
758 abort();
759 }
760 }
761 }
762
763 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 764 if (!size) {
46dbef6a 765 return;
a426e122 766 }
a01672d3 767 if (!add) {
46dbef6a 768 return;
a426e122 769 }
46dbef6a
MT
770 mem = kvm_alloc_slot(s);
771 mem->memory_size = size;
772 mem->start_addr = start_addr;
9f213ed9 773 mem->ram = ram;
235e8982 774 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
775
776 err = kvm_set_user_memory_region(s, mem);
777 if (err) {
778 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
779 strerror(-err));
780 abort();
781 }
782}
783
a01672d3
AK
784static void kvm_region_add(MemoryListener *listener,
785 MemoryRegionSection *section)
786{
dfde4e6e 787 memory_region_ref(section->mr);
a01672d3
AK
788 kvm_set_phys_mem(section, true);
789}
790
791static void kvm_region_del(MemoryListener *listener,
792 MemoryRegionSection *section)
793{
794 kvm_set_phys_mem(section, false);
dfde4e6e 795 memory_region_unref(section->mr);
a01672d3
AK
796}
797
798static void kvm_log_sync(MemoryListener *listener,
799 MemoryRegionSection *section)
7b8f3b78 800{
a01672d3
AK
801 int r;
802
ffcde12f 803 r = kvm_physical_sync_dirty_bitmap(section);
a01672d3
AK
804 if (r < 0) {
805 abort();
806 }
7b8f3b78
MT
807}
808
a01672d3 809static void kvm_log_global_start(struct MemoryListener *listener)
7b8f3b78 810{
a01672d3
AK
811 int r;
812
813 r = kvm_set_migration_log(1);
814 assert(r >= 0);
7b8f3b78
MT
815}
816
a01672d3 817static void kvm_log_global_stop(struct MemoryListener *listener)
7b8f3b78 818{
a01672d3
AK
819 int r;
820
821 r = kvm_set_migration_log(0);
822 assert(r >= 0);
7b8f3b78
MT
823}
824
d22b096e
AK
825static void kvm_mem_ioeventfd_add(MemoryListener *listener,
826 MemoryRegionSection *section,
827 bool match_data, uint64_t data,
828 EventNotifier *e)
829{
830 int fd = event_notifier_get_fd(e);
80a1ea37
AK
831 int r;
832
4b8f1c88 833 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
052e87b0
PB
834 data, true, int128_get64(section->size),
835 match_data);
80a1ea37 836 if (r < 0) {
fa4ba923
AK
837 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
838 __func__, strerror(-r));
80a1ea37
AK
839 abort();
840 }
841}
842
d22b096e
AK
843static void kvm_mem_ioeventfd_del(MemoryListener *listener,
844 MemoryRegionSection *section,
845 bool match_data, uint64_t data,
846 EventNotifier *e)
80a1ea37 847{
d22b096e 848 int fd = event_notifier_get_fd(e);
80a1ea37
AK
849 int r;
850
4b8f1c88 851 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
052e87b0
PB
852 data, false, int128_get64(section->size),
853 match_data);
80a1ea37
AK
854 if (r < 0) {
855 abort();
856 }
857}
858
d22b096e
AK
859static void kvm_io_ioeventfd_add(MemoryListener *listener,
860 MemoryRegionSection *section,
861 bool match_data, uint64_t data,
862 EventNotifier *e)
80a1ea37 863{
d22b096e 864 int fd = event_notifier_get_fd(e);
80a1ea37
AK
865 int r;
866
44c3f8f7 867 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
052e87b0
PB
868 data, true, int128_get64(section->size),
869 match_data);
80a1ea37 870 if (r < 0) {
fa4ba923
AK
871 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
872 __func__, strerror(-r));
80a1ea37
AK
873 abort();
874 }
875}
876
d22b096e
AK
877static void kvm_io_ioeventfd_del(MemoryListener *listener,
878 MemoryRegionSection *section,
879 bool match_data, uint64_t data,
880 EventNotifier *e)
80a1ea37
AK
881
882{
d22b096e 883 int fd = event_notifier_get_fd(e);
80a1ea37
AK
884 int r;
885
44c3f8f7 886 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
052e87b0
PB
887 data, false, int128_get64(section->size),
888 match_data);
80a1ea37
AK
889 if (r < 0) {
890 abort();
891 }
892}
893
a01672d3
AK
894static MemoryListener kvm_memory_listener = {
895 .region_add = kvm_region_add,
896 .region_del = kvm_region_del,
e5896b12
AP
897 .log_start = kvm_log_start,
898 .log_stop = kvm_log_stop,
a01672d3
AK
899 .log_sync = kvm_log_sync,
900 .log_global_start = kvm_log_global_start,
901 .log_global_stop = kvm_log_global_stop,
d22b096e
AK
902 .eventfd_add = kvm_mem_ioeventfd_add,
903 .eventfd_del = kvm_mem_ioeventfd_del,
95d2994a
AK
904 .coalesced_mmio_add = kvm_coalesce_mmio_region,
905 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
d22b096e
AK
906 .priority = 10,
907};
908
909static MemoryListener kvm_io_listener = {
d22b096e
AK
910 .eventfd_add = kvm_io_ioeventfd_add,
911 .eventfd_del = kvm_io_ioeventfd_del,
72e22d2f 912 .priority = 10,
7b8f3b78
MT
913};
914
c3affe56 915static void kvm_handle_interrupt(CPUState *cpu, int mask)
aa7f74d1 916{
259186a7 917 cpu->interrupt_request |= mask;
aa7f74d1 918
60e82579 919 if (!qemu_cpu_is_self(cpu)) {
c08d7424 920 qemu_cpu_kick(cpu);
aa7f74d1
JK
921 }
922}
923
3889c3fa 924int kvm_set_irq(KVMState *s, int irq, int level)
84b058d7
JK
925{
926 struct kvm_irq_level event;
927 int ret;
928
7ae26bd4 929 assert(kvm_async_interrupts_enabled());
84b058d7
JK
930
931 event.level = level;
932 event.irq = irq;
e333cd69 933 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
84b058d7 934 if (ret < 0) {
3889c3fa 935 perror("kvm_set_irq");
84b058d7
JK
936 abort();
937 }
938
e333cd69 939 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
84b058d7
JK
940}
941
942#ifdef KVM_CAP_IRQ_ROUTING
d3d3bef0
JK
943typedef struct KVMMSIRoute {
944 struct kvm_irq_routing_entry kroute;
945 QTAILQ_ENTRY(KVMMSIRoute) entry;
946} KVMMSIRoute;
947
84b058d7
JK
948static void set_gsi(KVMState *s, unsigned int gsi)
949{
84b058d7
JK
950 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
951}
952
04fa27f5
JK
953static void clear_gsi(KVMState *s, unsigned int gsi)
954{
955 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
956}
957
7b774593 958void kvm_init_irq_routing(KVMState *s)
84b058d7 959{
04fa27f5 960 int gsi_count, i;
84b058d7 961
00008418 962 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
84b058d7
JK
963 if (gsi_count > 0) {
964 unsigned int gsi_bits, i;
965
966 /* Round up so we can search ints using ffs */
bc8c6788 967 gsi_bits = ALIGN(gsi_count, 32);
84b058d7 968 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
4e2e4e63 969 s->gsi_count = gsi_count;
84b058d7
JK
970
971 /* Mark any over-allocated bits as already in use */
972 for (i = gsi_count; i < gsi_bits; i++) {
973 set_gsi(s, i);
974 }
975 }
976
977 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
978 s->nr_allocated_irq_routes = 0;
979
4a3adebb
JK
980 if (!s->direct_msi) {
981 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
982 QTAILQ_INIT(&s->msi_hashtab[i]);
983 }
04fa27f5
JK
984 }
985
84b058d7
JK
986 kvm_arch_init_irq_routing(s);
987}
988
cb925cf9 989void kvm_irqchip_commit_routes(KVMState *s)
e7b20308
JK
990{
991 int ret;
992
993 s->irq_routes->flags = 0;
994 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
995 assert(ret == 0);
996}
997
84b058d7
JK
998static void kvm_add_routing_entry(KVMState *s,
999 struct kvm_irq_routing_entry *entry)
1000{
1001 struct kvm_irq_routing_entry *new;
1002 int n, size;
1003
1004 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1005 n = s->nr_allocated_irq_routes * 2;
1006 if (n < 64) {
1007 n = 64;
1008 }
1009 size = sizeof(struct kvm_irq_routing);
1010 size += n * sizeof(*new);
1011 s->irq_routes = g_realloc(s->irq_routes, size);
1012 s->nr_allocated_irq_routes = n;
1013 }
1014 n = s->irq_routes->nr++;
1015 new = &s->irq_routes->entries[n];
0fbc2074
MT
1016
1017 *new = *entry;
84b058d7
JK
1018
1019 set_gsi(s, entry->gsi);
1020}
1021
cc57407e
JK
1022static int kvm_update_routing_entry(KVMState *s,
1023 struct kvm_irq_routing_entry *new_entry)
1024{
1025 struct kvm_irq_routing_entry *entry;
1026 int n;
1027
1028 for (n = 0; n < s->irq_routes->nr; n++) {
1029 entry = &s->irq_routes->entries[n];
1030 if (entry->gsi != new_entry->gsi) {
1031 continue;
1032 }
1033
40509f7f
MT
1034 if(!memcmp(entry, new_entry, sizeof *entry)) {
1035 return 0;
1036 }
1037
0fbc2074 1038 *entry = *new_entry;
cc57407e
JK
1039
1040 kvm_irqchip_commit_routes(s);
1041
1042 return 0;
1043 }
1044
1045 return -ESRCH;
1046}
1047
1df186df 1048void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
84b058d7 1049{
0fbc2074 1050 struct kvm_irq_routing_entry e = {};
84b058d7 1051
4e2e4e63
JK
1052 assert(pin < s->gsi_count);
1053
84b058d7
JK
1054 e.gsi = irq;
1055 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1056 e.flags = 0;
1057 e.u.irqchip.irqchip = irqchip;
1058 e.u.irqchip.pin = pin;
1059 kvm_add_routing_entry(s, &e);
1060}
1061
1e2aa8be 1062void kvm_irqchip_release_virq(KVMState *s, int virq)
04fa27f5
JK
1063{
1064 struct kvm_irq_routing_entry *e;
1065 int i;
1066
76fe21de
AK
1067 if (kvm_gsi_direct_mapping()) {
1068 return;
1069 }
1070
04fa27f5
JK
1071 for (i = 0; i < s->irq_routes->nr; i++) {
1072 e = &s->irq_routes->entries[i];
1073 if (e->gsi == virq) {
1074 s->irq_routes->nr--;
1075 *e = s->irq_routes->entries[s->irq_routes->nr];
1076 }
1077 }
1078 clear_gsi(s, virq);
1079}
1080
1081static unsigned int kvm_hash_msi(uint32_t data)
1082{
1083 /* This is optimized for IA32 MSI layout. However, no other arch shall
1084 * repeat the mistake of not providing a direct MSI injection API. */
1085 return data & 0xff;
1086}
1087
1088static void kvm_flush_dynamic_msi_routes(KVMState *s)
1089{
1090 KVMMSIRoute *route, *next;
1091 unsigned int hash;
1092
1093 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1094 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1095 kvm_irqchip_release_virq(s, route->kroute.gsi);
1096 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1097 g_free(route);
1098 }
1099 }
1100}
1101
1102static int kvm_irqchip_get_virq(KVMState *s)
1103{
1104 uint32_t *word = s->used_gsi_bitmap;
1105 int max_words = ALIGN(s->gsi_count, 32) / 32;
1106 int i, bit;
1107 bool retry = true;
1108
1109again:
1110 /* Return the lowest unused GSI in the bitmap */
1111 for (i = 0; i < max_words; i++) {
1112 bit = ffs(~word[i]);
1113 if (!bit) {
1114 continue;
1115 }
1116
1117 return bit - 1 + i * 32;
1118 }
4a3adebb 1119 if (!s->direct_msi && retry) {
04fa27f5
JK
1120 retry = false;
1121 kvm_flush_dynamic_msi_routes(s);
1122 goto again;
1123 }
1124 return -ENOSPC;
1125
1126}
1127
1128static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1129{
1130 unsigned int hash = kvm_hash_msi(msg.data);
1131 KVMMSIRoute *route;
1132
1133 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1134 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1135 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
d07cc1f1 1136 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
04fa27f5
JK
1137 return route;
1138 }
1139 }
1140 return NULL;
1141}
1142
1143int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1144{
4a3adebb 1145 struct kvm_msi msi;
04fa27f5
JK
1146 KVMMSIRoute *route;
1147
4a3adebb
JK
1148 if (s->direct_msi) {
1149 msi.address_lo = (uint32_t)msg.address;
1150 msi.address_hi = msg.address >> 32;
d07cc1f1 1151 msi.data = le32_to_cpu(msg.data);
4a3adebb
JK
1152 msi.flags = 0;
1153 memset(msi.pad, 0, sizeof(msi.pad));
1154
1155 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1156 }
1157
04fa27f5
JK
1158 route = kvm_lookup_msi_route(s, msg);
1159 if (!route) {
e7b20308 1160 int virq;
04fa27f5
JK
1161
1162 virq = kvm_irqchip_get_virq(s);
1163 if (virq < 0) {
1164 return virq;
1165 }
1166
0fbc2074 1167 route = g_malloc0(sizeof(KVMMSIRoute));
04fa27f5
JK
1168 route->kroute.gsi = virq;
1169 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1170 route->kroute.flags = 0;
1171 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1172 route->kroute.u.msi.address_hi = msg.address >> 32;
d07cc1f1 1173 route->kroute.u.msi.data = le32_to_cpu(msg.data);
04fa27f5
JK
1174
1175 kvm_add_routing_entry(s, &route->kroute);
cb925cf9 1176 kvm_irqchip_commit_routes(s);
04fa27f5
JK
1177
1178 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1179 entry);
04fa27f5
JK
1180 }
1181
1182 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1183
3889c3fa 1184 return kvm_set_irq(s, route->kroute.gsi, 1);
04fa27f5
JK
1185}
1186
92b4e489
JK
1187int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1188{
0fbc2074 1189 struct kvm_irq_routing_entry kroute = {};
92b4e489
JK
1190 int virq;
1191
76fe21de
AK
1192 if (kvm_gsi_direct_mapping()) {
1193 return msg.data & 0xffff;
1194 }
1195
f3e1bed8 1196 if (!kvm_gsi_routing_enabled()) {
92b4e489
JK
1197 return -ENOSYS;
1198 }
1199
1200 virq = kvm_irqchip_get_virq(s);
1201 if (virq < 0) {
1202 return virq;
1203 }
1204
1205 kroute.gsi = virq;
1206 kroute.type = KVM_IRQ_ROUTING_MSI;
1207 kroute.flags = 0;
1208 kroute.u.msi.address_lo = (uint32_t)msg.address;
1209 kroute.u.msi.address_hi = msg.address >> 32;
d07cc1f1 1210 kroute.u.msi.data = le32_to_cpu(msg.data);
92b4e489
JK
1211
1212 kvm_add_routing_entry(s, &kroute);
cb925cf9 1213 kvm_irqchip_commit_routes(s);
92b4e489
JK
1214
1215 return virq;
1216}
1217
cc57407e
JK
1218int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1219{
0fbc2074 1220 struct kvm_irq_routing_entry kroute = {};
cc57407e 1221
76fe21de
AK
1222 if (kvm_gsi_direct_mapping()) {
1223 return 0;
1224 }
1225
cc57407e
JK
1226 if (!kvm_irqchip_in_kernel()) {
1227 return -ENOSYS;
1228 }
1229
1230 kroute.gsi = virq;
1231 kroute.type = KVM_IRQ_ROUTING_MSI;
1232 kroute.flags = 0;
1233 kroute.u.msi.address_lo = (uint32_t)msg.address;
1234 kroute.u.msi.address_hi = msg.address >> 32;
d07cc1f1 1235 kroute.u.msi.data = le32_to_cpu(msg.data);
cc57407e
JK
1236
1237 return kvm_update_routing_entry(s, &kroute);
1238}
1239
ca916d37
VM
1240static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1241 bool assign)
39853bbc
JK
1242{
1243 struct kvm_irqfd irqfd = {
1244 .fd = fd,
1245 .gsi = virq,
1246 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1247 };
1248
ca916d37
VM
1249 if (rfd != -1) {
1250 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1251 irqfd.resamplefd = rfd;
1252 }
1253
cc7e0ddf 1254 if (!kvm_irqfds_enabled()) {
39853bbc
JK
1255 return -ENOSYS;
1256 }
1257
1258 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1259}
1260
d426d9fb
CH
1261int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1262{
1263 struct kvm_irq_routing_entry kroute;
1264 int virq;
1265
1266 if (!kvm_gsi_routing_enabled()) {
1267 return -ENOSYS;
1268 }
1269
1270 virq = kvm_irqchip_get_virq(s);
1271 if (virq < 0) {
1272 return virq;
1273 }
1274
1275 kroute.gsi = virq;
1276 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1277 kroute.flags = 0;
1278 kroute.u.adapter.summary_addr = adapter->summary_addr;
1279 kroute.u.adapter.ind_addr = adapter->ind_addr;
1280 kroute.u.adapter.summary_offset = adapter->summary_offset;
1281 kroute.u.adapter.ind_offset = adapter->ind_offset;
1282 kroute.u.adapter.adapter_id = adapter->adapter_id;
1283
1284 kvm_add_routing_entry(s, &kroute);
1285 kvm_irqchip_commit_routes(s);
1286
1287 return virq;
1288}
1289
84b058d7
JK
1290#else /* !KVM_CAP_IRQ_ROUTING */
1291
7b774593 1292void kvm_init_irq_routing(KVMState *s)
84b058d7
JK
1293{
1294}
04fa27f5 1295
d3d3bef0
JK
1296void kvm_irqchip_release_virq(KVMState *s, int virq)
1297{
1298}
1299
04fa27f5
JK
1300int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1301{
1302 abort();
1303}
92b4e489
JK
1304
1305int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1306{
df410675 1307 return -ENOSYS;
92b4e489 1308}
39853bbc 1309
d426d9fb
CH
1310int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1311{
1312 return -ENOSYS;
1313}
1314
39853bbc
JK
1315static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1316{
1317 abort();
1318}
dabe3143
MT
1319
1320int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1321{
1322 return -ENOSYS;
1323}
84b058d7
JK
1324#endif /* !KVM_CAP_IRQ_ROUTING */
1325
ca916d37
VM
1326int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1327 EventNotifier *rn, int virq)
39853bbc 1328{
ca916d37
VM
1329 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1330 rn ? event_notifier_get_fd(rn) : -1, virq, true);
39853bbc
JK
1331}
1332
b131c74a 1333int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
15b2bd18 1334{
ca916d37
VM
1335 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1336 false);
15b2bd18
PB
1337}
1338
84b058d7
JK
1339static int kvm_irqchip_create(KVMState *s)
1340{
84b058d7
JK
1341 int ret;
1342
36ad0e94 1343 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
d426d9fb
CH
1344 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1345 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
84b058d7
JK
1346 return 0;
1347 }
1348
d6032e06
CD
1349 /* First probe and see if there's a arch-specific hook to create the
1350 * in-kernel irqchip for us */
1351 ret = kvm_arch_irqchip_create(s);
84b058d7 1352 if (ret < 0) {
84b058d7 1353 return ret;
d6032e06
CD
1354 } else if (ret == 0) {
1355 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1356 if (ret < 0) {
1357 fprintf(stderr, "Create kernel irqchip failed\n");
1358 return ret;
1359 }
84b058d7
JK
1360 }
1361
3d4b2649 1362 kvm_kernel_irqchip = true;
7ae26bd4
PM
1363 /* If we have an in-kernel IRQ chip then we must have asynchronous
1364 * interrupt delivery (though the reverse is not necessarily true)
1365 */
1366 kvm_async_interrupts_allowed = true;
215e79c0 1367 kvm_halt_in_kernel_allowed = true;
84b058d7
JK
1368
1369 kvm_init_irq_routing(s);
1370
1371 return 0;
1372}
1373
670436ce
AJ
1374/* Find number of supported CPUs using the recommended
1375 * procedure from the kernel API documentation to cope with
1376 * older kernels that may be missing capabilities.
1377 */
1378static int kvm_recommended_vcpus(KVMState *s)
3ed444e9 1379{
670436ce
AJ
1380 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1381 return (ret) ? ret : 4;
1382}
3ed444e9 1383
670436ce
AJ
1384static int kvm_max_vcpus(KVMState *s)
1385{
1386 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1387 return (ret) ? ret : kvm_recommended_vcpus(s);
3ed444e9
DH
1388}
1389
f6a1ef64 1390static int kvm_init(MachineState *ms)
05330448 1391{
f6a1ef64 1392 MachineClass *mc = MACHINE_GET_CLASS(ms);
168ccc11
JK
1393 static const char upgrade_note[] =
1394 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1395 "(see http://sourceforge.net/projects/kvm).\n";
670436ce
AJ
1396 struct {
1397 const char *name;
1398 int num;
1399 } num_cpus[] = {
1400 { "SMP", smp_cpus },
1401 { "hotpluggable", max_cpus },
1402 { NULL, }
1403 }, *nc = num_cpus;
1404 int soft_vcpus_limit, hard_vcpus_limit;
05330448 1405 KVMState *s;
94a8d39a 1406 const KVMCapabilityInfo *missing_cap;
05330448 1407 int ret;
135a129a
AK
1408 int i, type = 0;
1409 const char *kvm_type;
05330448 1410
fc02086b 1411 s = KVM_STATE(ms->accelerator);
05330448 1412
3145fcb6
DG
1413 /*
1414 * On systems where the kernel can support different base page
1415 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1416 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1417 * page size for the system though.
1418 */
1419 assert(TARGET_PAGE_SIZE <= getpagesize());
47c16ed5 1420 page_size_init();
3145fcb6 1421
aed6efb9
JH
1422 s->sigmask_len = 8;
1423
e22a25c9 1424#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 1425 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 1426#endif
05330448 1427 s->vmfd = -1;
40ff6d7e 1428 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
1429 if (s->fd == -1) {
1430 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1431 ret = -errno;
1432 goto err;
1433 }
1434
1435 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1436 if (ret < KVM_API_VERSION) {
0e1dac6c 1437 if (ret >= 0) {
05330448 1438 ret = -EINVAL;
a426e122 1439 }
05330448
AL
1440 fprintf(stderr, "kvm version too old\n");
1441 goto err;
1442 }
1443
1444 if (ret > KVM_API_VERSION) {
1445 ret = -EINVAL;
1446 fprintf(stderr, "kvm version not supported\n");
1447 goto err;
1448 }
1449
fb541ca5
AW
1450 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1451
1452 /* If unspecified, use the default value */
1453 if (!s->nr_slots) {
1454 s->nr_slots = 32;
1455 }
1456
1457 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1458
1459 for (i = 0; i < s->nr_slots; i++) {
1460 s->slots[i].slot = i;
1461 }
1462
670436ce
AJ
1463 /* check the vcpu limits */
1464 soft_vcpus_limit = kvm_recommended_vcpus(s);
1465 hard_vcpus_limit = kvm_max_vcpus(s);
3ed444e9 1466
670436ce
AJ
1467 while (nc->name) {
1468 if (nc->num > soft_vcpus_limit) {
1469 fprintf(stderr,
1470 "Warning: Number of %s cpus requested (%d) exceeds "
1471 "the recommended cpus supported by KVM (%d)\n",
1472 nc->name, nc->num, soft_vcpus_limit);
1473
1474 if (nc->num > hard_vcpus_limit) {
670436ce
AJ
1475 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1476 "the maximum cpus supported by KVM (%d)\n",
1477 nc->name, nc->num, hard_vcpus_limit);
9ba3cf54 1478 exit(1);
670436ce
AJ
1479 }
1480 }
1481 nc++;
7dc52526
MT
1482 }
1483
135a129a 1484 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
f1e29879
MA
1485 if (mc->kvm_type) {
1486 type = mc->kvm_type(kvm_type);
135a129a 1487 } else if (kvm_type) {
0e1dac6c 1488 ret = -EINVAL;
135a129a
AK
1489 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1490 goto err;
1491 }
1492
94ccff13 1493 do {
135a129a 1494 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
94ccff13
TK
1495 } while (ret == -EINTR);
1496
1497 if (ret < 0) {
521f438e 1498 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
94ccff13
TK
1499 strerror(-ret));
1500
0104dcac
AG
1501#ifdef TARGET_S390X
1502 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1503 "your host kernel command line\n");
1504#endif
05330448 1505 goto err;
0104dcac 1506 }
05330448 1507
94ccff13 1508 s->vmfd = ret;
94a8d39a
JK
1509 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1510 if (!missing_cap) {
1511 missing_cap =
1512 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 1513 }
94a8d39a 1514 if (missing_cap) {
ad7b8b33 1515 ret = -EINVAL;
94a8d39a
JK
1516 fprintf(stderr, "kvm does not support %s\n%s",
1517 missing_cap->name, upgrade_note);
d85dc283
AL
1518 goto err;
1519 }
1520
ad7b8b33 1521 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 1522
e69917e2 1523 s->broken_set_mem_region = 1;
14a09518 1524 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
1525 if (ret > 0) {
1526 s->broken_set_mem_region = 0;
1527 }
e69917e2 1528
a0fb002c
JK
1529#ifdef KVM_CAP_VCPU_EVENTS
1530 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1531#endif
1532
b0b1d690
JK
1533 s->robust_singlestep =
1534 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
b0b1d690 1535
ff44f1a3
JK
1536#ifdef KVM_CAP_DEBUGREGS
1537 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1538#endif
1539
f1665b21
SY
1540#ifdef KVM_CAP_XSAVE
1541 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1542#endif
1543
f1665b21
SY
1544#ifdef KVM_CAP_XCRS
1545 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1546#endif
1547
8a7c7393
JK
1548#ifdef KVM_CAP_PIT_STATE2
1549 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1550#endif
1551
d3d3bef0 1552#ifdef KVM_CAP_IRQ_ROUTING
4a3adebb 1553 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
d3d3bef0 1554#endif
4a3adebb 1555
3ab73842
JK
1556 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1557
e333cd69 1558 s->irq_set_ioctl = KVM_IRQ_LINE;
8732fbd2 1559 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
e333cd69 1560 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
8732fbd2
PM
1561 }
1562
df9c8b75
JJ
1563#ifdef KVM_CAP_READONLY_MEM
1564 kvm_readonly_mem_allowed =
1565 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1566#endif
1567
69e03ae6
NN
1568 kvm_eventfds_allowed =
1569 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1570
cad1e282 1571 ret = kvm_arch_init(s);
a426e122 1572 if (ret < 0) {
05330448 1573 goto err;
a426e122 1574 }
05330448 1575
84b058d7
JK
1576 ret = kvm_irqchip_create(s);
1577 if (ret < 0) {
1578 goto err;
1579 }
1580
05330448 1581 kvm_state = s;
f6790af6
AK
1582 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1583 memory_listener_register(&kvm_io_listener, &address_space_io);
05330448 1584
d2f2b8a7
SH
1585 s->many_ioeventfds = kvm_check_many_ioeventfds();
1586
aa7f74d1
JK
1587 cpu_interrupt_handler = kvm_handle_interrupt;
1588
05330448
AL
1589 return 0;
1590
1591err:
0e1dac6c 1592 assert(ret < 0);
6d1cc321
SW
1593 if (s->vmfd >= 0) {
1594 close(s->vmfd);
1595 }
1596 if (s->fd != -1) {
1597 close(s->fd);
05330448 1598 }
fb541ca5 1599 g_free(s->slots);
05330448
AL
1600
1601 return ret;
1602}
1603
aed6efb9
JH
1604void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1605{
1606 s->sigmask_len = sigmask_len;
1607}
1608
b30e93e9
JK
1609static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1610 uint32_t count)
05330448
AL
1611{
1612 int i;
1613 uint8_t *ptr = data;
1614
1615 for (i = 0; i < count; i++) {
354678c5
JK
1616 address_space_rw(&address_space_io, port, ptr, size,
1617 direction == KVM_EXIT_IO_OUT);
05330448
AL
1618 ptr += size;
1619 }
05330448
AL
1620}
1621
5326ab55 1622static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
7c80eef8 1623{
977c7b6d
RK
1624 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1625 run->internal.suberror);
1626
7c80eef8
MT
1627 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1628 int i;
1629
7c80eef8
MT
1630 for (i = 0; i < run->internal.ndata; ++i) {
1631 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1632 i, (uint64_t)run->internal.data[i]);
1633 }
1634 }
7c80eef8
MT
1635 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1636 fprintf(stderr, "emulation failure\n");
20d695a9 1637 if (!kvm_arch_stop_on_emulation_error(cpu)) {
878096ee 1638 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 1639 return EXCP_INTERRUPT;
a426e122 1640 }
7c80eef8
MT
1641 }
1642 /* FIXME: Should trigger a qmp message to let management know
1643 * something went wrong.
1644 */
73aaec4a 1645 return -1;
7c80eef8 1646}
7c80eef8 1647
62a2744c 1648void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 1649{
f65ed4c1 1650 KVMState *s = kvm_state;
1cae88b9
AK
1651
1652 if (s->coalesced_flush_in_progress) {
1653 return;
1654 }
1655
1656 s->coalesced_flush_in_progress = true;
1657
62a2744c
SY
1658 if (s->coalesced_mmio_ring) {
1659 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
1660 while (ring->first != ring->last) {
1661 struct kvm_coalesced_mmio *ent;
1662
1663 ent = &ring->coalesced_mmio[ring->first];
1664
1665 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 1666 smp_wmb();
f65ed4c1
AL
1667 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1668 }
1669 }
1cae88b9
AK
1670
1671 s->coalesced_flush_in_progress = false;
f65ed4c1
AL
1672}
1673
20d695a9 1674static void do_kvm_cpu_synchronize_state(void *arg)
4c0960c0 1675{
20d695a9 1676 CPUState *cpu = arg;
2705d56a 1677
20d695a9
AF
1678 if (!cpu->kvm_vcpu_dirty) {
1679 kvm_arch_get_registers(cpu);
1680 cpu->kvm_vcpu_dirty = true;
4c0960c0
AK
1681 }
1682}
1683
dd1750d7 1684void kvm_cpu_synchronize_state(CPUState *cpu)
2705d56a 1685{
20d695a9
AF
1686 if (!cpu->kvm_vcpu_dirty) {
1687 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
a426e122 1688 }
2705d56a
JK
1689}
1690
c8e2085d 1691static void do_kvm_cpu_synchronize_post_reset(void *arg)
ea375f9a 1692{
c8e2085d
DH
1693 CPUState *cpu = arg;
1694
20d695a9
AF
1695 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1696 cpu->kvm_vcpu_dirty = false;
ea375f9a
JK
1697}
1698
c8e2085d
DH
1699void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1700{
1701 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1702}
1703
1704static void do_kvm_cpu_synchronize_post_init(void *arg)
ea375f9a 1705{
c8e2085d
DH
1706 CPUState *cpu = arg;
1707
20d695a9
AF
1708 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1709 cpu->kvm_vcpu_dirty = false;
ea375f9a
JK
1710}
1711
c8e2085d
DH
1712void kvm_cpu_synchronize_post_init(CPUState *cpu)
1713{
1714 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1715}
1716
de9d61e8
MT
1717void kvm_cpu_clean_state(CPUState *cpu)
1718{
1719 cpu->kvm_vcpu_dirty = false;
1720}
1721
1458c363 1722int kvm_cpu_exec(CPUState *cpu)
05330448 1723{
f7575c96 1724 struct kvm_run *run = cpu->kvm_run;
7cbb533f 1725 int ret, run_ret;
05330448 1726
8c0d577e 1727 DPRINTF("kvm_cpu_exec()\n");
05330448 1728
20d695a9 1729 if (kvm_arch_process_async_events(cpu)) {
fcd7d003 1730 cpu->exit_request = 0;
6792a57b 1731 return EXCP_HLT;
9ccfac9e 1732 }
0af691d7 1733
9ccfac9e 1734 do {
20d695a9
AF
1735 if (cpu->kvm_vcpu_dirty) {
1736 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1737 cpu->kvm_vcpu_dirty = false;
4c0960c0
AK
1738 }
1739
20d695a9 1740 kvm_arch_pre_run(cpu, run);
fcd7d003 1741 if (cpu->exit_request) {
9ccfac9e
JK
1742 DPRINTF("interrupt exit requested\n");
1743 /*
1744 * KVM requires us to reenter the kernel after IO exits to complete
1745 * instruction emulation. This self-signal will ensure that we
1746 * leave ASAP again.
1747 */
1748 qemu_cpu_kick_self();
1749 }
d549db5a 1750 qemu_mutex_unlock_iothread();
9ccfac9e 1751
1bc22652 1752 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
9ccfac9e 1753
d549db5a 1754 qemu_mutex_lock_iothread();
20d695a9 1755 kvm_arch_post_run(cpu, run);
05330448 1756
7cbb533f 1757 if (run_ret < 0) {
dc77d341
JK
1758 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1759 DPRINTF("io window exit\n");
d73cd8f4 1760 ret = EXCP_INTERRUPT;
dc77d341
JK
1761 break;
1762 }
7b011fbc
ME
1763 fprintf(stderr, "error: kvm run failed %s\n",
1764 strerror(-run_ret));
a85e130e
PB
1765 ret = -1;
1766 break;
05330448
AL
1767 }
1768
b76ac80a 1769 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
05330448
AL
1770 switch (run->exit_reason) {
1771 case KVM_EXIT_IO:
8c0d577e 1772 DPRINTF("handle_io\n");
b30e93e9
JK
1773 kvm_handle_io(run->io.port,
1774 (uint8_t *)run + run->io.data_offset,
1775 run->io.direction,
1776 run->io.size,
1777 run->io.count);
d73cd8f4 1778 ret = 0;
05330448
AL
1779 break;
1780 case KVM_EXIT_MMIO:
8c0d577e 1781 DPRINTF("handle_mmio\n");
05330448
AL
1782 cpu_physical_memory_rw(run->mmio.phys_addr,
1783 run->mmio.data,
1784 run->mmio.len,
1785 run->mmio.is_write);
d73cd8f4 1786 ret = 0;
05330448
AL
1787 break;
1788 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 1789 DPRINTF("irq_window_open\n");
d73cd8f4 1790 ret = EXCP_INTERRUPT;
05330448
AL
1791 break;
1792 case KVM_EXIT_SHUTDOWN:
8c0d577e 1793 DPRINTF("shutdown\n");
05330448 1794 qemu_system_reset_request();
d73cd8f4 1795 ret = EXCP_INTERRUPT;
05330448
AL
1796 break;
1797 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
1798 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1799 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 1800 ret = -1;
05330448 1801 break;
7c80eef8 1802 case KVM_EXIT_INTERNAL_ERROR:
5326ab55 1803 ret = kvm_handle_internal_error(cpu, run);
7c80eef8 1804 break;
99040447
PS
1805 case KVM_EXIT_SYSTEM_EVENT:
1806 switch (run->system_event.type) {
1807 case KVM_SYSTEM_EVENT_SHUTDOWN:
1808 qemu_system_shutdown_request();
1809 ret = EXCP_INTERRUPT;
1810 break;
1811 case KVM_SYSTEM_EVENT_RESET:
1812 qemu_system_reset_request();
1813 ret = EXCP_INTERRUPT;
1814 break;
1815 default:
1816 DPRINTF("kvm_arch_handle_exit\n");
1817 ret = kvm_arch_handle_exit(cpu, run);
1818 break;
1819 }
1820 break;
05330448 1821 default:
8c0d577e 1822 DPRINTF("kvm_arch_handle_exit\n");
20d695a9 1823 ret = kvm_arch_handle_exit(cpu, run);
05330448
AL
1824 break;
1825 }
d73cd8f4 1826 } while (ret == 0);
05330448 1827
73aaec4a 1828 if (ret < 0) {
878096ee 1829 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
0461d5a6 1830 vm_stop(RUN_STATE_INTERNAL_ERROR);
becfc390
AL
1831 }
1832
fcd7d003 1833 cpu->exit_request = 0;
05330448
AL
1834 return ret;
1835}
1836
984b5181 1837int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1838{
1839 int ret;
984b5181
AL
1840 void *arg;
1841 va_list ap;
05330448 1842
984b5181
AL
1843 va_start(ap, type);
1844 arg = va_arg(ap, void *);
1845 va_end(ap);
1846
9c775729 1847 trace_kvm_ioctl(type, arg);
984b5181 1848 ret = ioctl(s->fd, type, arg);
a426e122 1849 if (ret == -1) {
05330448 1850 ret = -errno;
a426e122 1851 }
05330448
AL
1852 return ret;
1853}
1854
984b5181 1855int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1856{
1857 int ret;
984b5181
AL
1858 void *arg;
1859 va_list ap;
1860
1861 va_start(ap, type);
1862 arg = va_arg(ap, void *);
1863 va_end(ap);
05330448 1864
9c775729 1865 trace_kvm_vm_ioctl(type, arg);
984b5181 1866 ret = ioctl(s->vmfd, type, arg);
a426e122 1867 if (ret == -1) {
05330448 1868 ret = -errno;
a426e122 1869 }
05330448
AL
1870 return ret;
1871}
1872
1bc22652 1873int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
05330448
AL
1874{
1875 int ret;
984b5181
AL
1876 void *arg;
1877 va_list ap;
1878
1879 va_start(ap, type);
1880 arg = va_arg(ap, void *);
1881 va_end(ap);
05330448 1882
9c775729 1883 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
8737c51c 1884 ret = ioctl(cpu->kvm_fd, type, arg);
a426e122 1885 if (ret == -1) {
05330448 1886 ret = -errno;
a426e122 1887 }
05330448
AL
1888 return ret;
1889}
bd322087 1890
0a6a7cca
CD
1891int kvm_device_ioctl(int fd, int type, ...)
1892{
1893 int ret;
1894 void *arg;
1895 va_list ap;
1896
1897 va_start(ap, type);
1898 arg = va_arg(ap, void *);
1899 va_end(ap);
1900
1901 trace_kvm_device_ioctl(fd, type, arg);
1902 ret = ioctl(fd, type, arg);
1903 if (ret == -1) {
1904 ret = -errno;
1905 }
1906 return ret;
1907}
1908
bd322087
AL
1909int kvm_has_sync_mmu(void)
1910{
94a8d39a 1911 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1912}
e22a25c9 1913
a0fb002c
JK
1914int kvm_has_vcpu_events(void)
1915{
1916 return kvm_state->vcpu_events;
1917}
1918
b0b1d690
JK
1919int kvm_has_robust_singlestep(void)
1920{
1921 return kvm_state->robust_singlestep;
1922}
1923
ff44f1a3
JK
1924int kvm_has_debugregs(void)
1925{
1926 return kvm_state->debugregs;
1927}
1928
f1665b21
SY
1929int kvm_has_xsave(void)
1930{
1931 return kvm_state->xsave;
1932}
1933
1934int kvm_has_xcrs(void)
1935{
1936 return kvm_state->xcrs;
1937}
1938
8a7c7393
JK
1939int kvm_has_pit_state2(void)
1940{
1941 return kvm_state->pit_state2;
1942}
1943
d2f2b8a7
SH
1944int kvm_has_many_ioeventfds(void)
1945{
1946 if (!kvm_enabled()) {
1947 return 0;
1948 }
1949 return kvm_state->many_ioeventfds;
1950}
1951
84b058d7
JK
1952int kvm_has_gsi_routing(void)
1953{
a9c5eb0d 1954#ifdef KVM_CAP_IRQ_ROUTING
84b058d7 1955 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
a9c5eb0d
AG
1956#else
1957 return false;
1958#endif
84b058d7
JK
1959}
1960
3ab73842
JK
1961int kvm_has_intx_set_mask(void)
1962{
1963 return kvm_state->intx_set_mask;
1964}
1965
6f0437e8
JK
1966void kvm_setup_guest_memory(void *start, size_t size)
1967{
1968 if (!kvm_has_sync_mmu()) {
e78815a5 1969 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1970
1971 if (ret) {
e78815a5
AF
1972 perror("qemu_madvise");
1973 fprintf(stderr,
1974 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1975 exit(1);
1976 }
6f0437e8
JK
1977 }
1978}
1979
e22a25c9 1980#ifdef KVM_CAP_SET_GUEST_DEBUG
a60f24b5 1981struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
e22a25c9
AL
1982 target_ulong pc)
1983{
1984 struct kvm_sw_breakpoint *bp;
1985
a60f24b5 1986 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1987 if (bp->pc == pc) {
e22a25c9 1988 return bp;
a426e122 1989 }
e22a25c9
AL
1990 }
1991 return NULL;
1992}
1993
a60f24b5 1994int kvm_sw_breakpoints_active(CPUState *cpu)
e22a25c9 1995{
a60f24b5 1996 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1997}
1998
452e4751
GC
1999struct kvm_set_guest_debug_data {
2000 struct kvm_guest_debug dbg;
a60f24b5 2001 CPUState *cpu;
452e4751
GC
2002 int err;
2003};
2004
2005static void kvm_invoke_set_guest_debug(void *data)
2006{
2007 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725 2008
a60f24b5
AF
2009 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2010 &dbg_data->dbg);
452e4751
GC
2011}
2012
38e478ec 2013int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
e22a25c9 2014{
452e4751 2015 struct kvm_set_guest_debug_data data;
e22a25c9 2016
b0b1d690 2017 data.dbg.control = reinject_trap;
e22a25c9 2018
ed2803da 2019 if (cpu->singlestep_enabled) {
b0b1d690
JK
2020 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2021 }
20d695a9 2022 kvm_arch_update_guest_debug(cpu, &data.dbg);
a60f24b5 2023 data.cpu = cpu;
e22a25c9 2024
f100f0b3 2025 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
452e4751 2026 return data.err;
e22a25c9
AL
2027}
2028
62278814 2029int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
2030 target_ulong len, int type)
2031{
2032 struct kvm_sw_breakpoint *bp;
e22a25c9
AL
2033 int err;
2034
2035 if (type == GDB_BREAKPOINT_SW) {
80b7cd73 2036 bp = kvm_find_sw_breakpoint(cpu, addr);
e22a25c9
AL
2037 if (bp) {
2038 bp->use_count++;
2039 return 0;
2040 }
2041
7267c094 2042 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 2043 if (!bp) {
e22a25c9 2044 return -ENOMEM;
a426e122 2045 }
e22a25c9
AL
2046
2047 bp->pc = addr;
2048 bp->use_count = 1;
80b7cd73 2049 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
e22a25c9 2050 if (err) {
7267c094 2051 g_free(bp);
e22a25c9
AL
2052 return err;
2053 }
2054
80b7cd73 2055 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
2056 } else {
2057 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 2058 if (err) {
e22a25c9 2059 return err;
a426e122 2060 }
e22a25c9
AL
2061 }
2062
bdc44640 2063 CPU_FOREACH(cpu) {
38e478ec 2064 err = kvm_update_guest_debug(cpu, 0);
a426e122 2065 if (err) {
e22a25c9 2066 return err;
a426e122 2067 }
e22a25c9
AL
2068 }
2069 return 0;
2070}
2071
62278814 2072int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
2073 target_ulong len, int type)
2074{
2075 struct kvm_sw_breakpoint *bp;
e22a25c9
AL
2076 int err;
2077
2078 if (type == GDB_BREAKPOINT_SW) {
80b7cd73 2079 bp = kvm_find_sw_breakpoint(cpu, addr);
a426e122 2080 if (!bp) {
e22a25c9 2081 return -ENOENT;
a426e122 2082 }
e22a25c9
AL
2083
2084 if (bp->use_count > 1) {
2085 bp->use_count--;
2086 return 0;
2087 }
2088
80b7cd73 2089 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
a426e122 2090 if (err) {
e22a25c9 2091 return err;
a426e122 2092 }
e22a25c9 2093
80b7cd73 2094 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
7267c094 2095 g_free(bp);
e22a25c9
AL
2096 } else {
2097 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 2098 if (err) {
e22a25c9 2099 return err;
a426e122 2100 }
e22a25c9
AL
2101 }
2102
bdc44640 2103 CPU_FOREACH(cpu) {
38e478ec 2104 err = kvm_update_guest_debug(cpu, 0);
a426e122 2105 if (err) {
e22a25c9 2106 return err;
a426e122 2107 }
e22a25c9
AL
2108 }
2109 return 0;
2110}
2111
1d5791f4 2112void kvm_remove_all_breakpoints(CPUState *cpu)
e22a25c9
AL
2113{
2114 struct kvm_sw_breakpoint *bp, *next;
80b7cd73 2115 KVMState *s = cpu->kvm_state;
dc54e252 2116 CPUState *tmpcpu;
e22a25c9 2117
72cf2d4f 2118 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
80b7cd73 2119 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
e22a25c9 2120 /* Try harder to find a CPU that currently sees the breakpoint. */
dc54e252
CG
2121 CPU_FOREACH(tmpcpu) {
2122 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
e22a25c9 2123 break;
a426e122 2124 }
e22a25c9
AL
2125 }
2126 }
78021d6d
JK
2127 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2128 g_free(bp);
e22a25c9
AL
2129 }
2130 kvm_arch_remove_all_hw_breakpoints();
2131
bdc44640 2132 CPU_FOREACH(cpu) {
38e478ec 2133 kvm_update_guest_debug(cpu, 0);
a426e122 2134 }
e22a25c9
AL
2135}
2136
2137#else /* !KVM_CAP_SET_GUEST_DEBUG */
2138
38e478ec 2139int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
e22a25c9
AL
2140{
2141 return -EINVAL;
2142}
2143
62278814 2144int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
2145 target_ulong len, int type)
2146{
2147 return -EINVAL;
2148}
2149
62278814 2150int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
2151 target_ulong len, int type)
2152{
2153 return -EINVAL;
2154}
2155
1d5791f4 2156void kvm_remove_all_breakpoints(CPUState *cpu)
e22a25c9
AL
2157{
2158}
2159#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95 2160
491d6e80 2161int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
cc84de95 2162{
aed6efb9 2163 KVMState *s = kvm_state;
cc84de95
MT
2164 struct kvm_signal_mask *sigmask;
2165 int r;
2166
a426e122 2167 if (!sigset) {
1bc22652 2168 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
a426e122 2169 }
cc84de95 2170
7267c094 2171 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
cc84de95 2172
aed6efb9 2173 sigmask->len = s->sigmask_len;
cc84de95 2174 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1bc22652 2175 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
7267c094 2176 g_free(sigmask);
cc84de95
MT
2177
2178 return r;
2179}
290adf38 2180int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
a1b87fe0 2181{
20d695a9 2182 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
a1b87fe0
JK
2183}
2184
2185int kvm_on_sigbus(int code, void *addr)
2186{
2187 return kvm_arch_on_sigbus(code, addr);
2188}
0a6a7cca
CD
2189
2190int kvm_create_device(KVMState *s, uint64_t type, bool test)
2191{
2192 int ret;
2193 struct kvm_create_device create_dev;
2194
2195 create_dev.type = type;
2196 create_dev.fd = -1;
2197 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2198
2199 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2200 return -ENOTSUP;
2201 }
2202
2203 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2204 if (ret) {
2205 return ret;
2206 }
2207
2208 return test ? 0 : create_dev.fd;
2209}
ada4135f
CH
2210
2211int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2212{
2213 struct kvm_one_reg reg;
2214 int r;
2215
2216 reg.id = id;
2217 reg.addr = (uintptr_t) source;
2218 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2219 if (r) {
2220 trace_kvm_failed_reg_set(id, strerror(r));
2221 }
2222 return r;
2223}
2224
2225int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2226{
2227 struct kvm_one_reg reg;
2228 int r;
2229
2230 reg.id = id;
2231 reg.addr = (uintptr_t) target;
2232 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2233 if (r) {
2234 trace_kvm_failed_reg_get(id, strerror(r));
2235 }
2236 return r;
2237}
782c3f29
EH
2238
2239static void kvm_accel_class_init(ObjectClass *oc, void *data)
2240{
2241 AccelClass *ac = ACCEL_CLASS(oc);
2242 ac->name = "KVM";
0d15da8e 2243 ac->init_machine = kvm_init;
782c3f29
EH
2244 ac->allowed = &kvm_allowed;
2245}
2246
2247static const TypeInfo kvm_accel_type = {
2248 .name = TYPE_KVM_ACCEL,
2249 .parent = TYPE_ACCEL,
2250 .class_init = kvm_accel_class_init,
fc02086b 2251 .instance_size = sizeof(KVMState),
782c3f29
EH
2252};
2253
2254static void kvm_type_init(void)
2255{
2256 type_register_static(&kvm_accel_type);
2257}
2258
2259type_init(kvm_type_init);