]> git.proxmox.com Git - mirror_qemu.git/blame - kvm-all.c
kvm: Decouple 'irqfds usable' from 'kernel irqchip'
[mirror_qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
ebd063d1
PB
25#include "qemu-option.h"
26#include "qemu-config.h"
05330448 27#include "sysemu.h"
d33a1810 28#include "hw/hw.h"
04fa27f5 29#include "hw/msi.h"
e22a25c9 30#include "gdbstub.h"
05330448 31#include "kvm.h"
8369e01c 32#include "bswap.h"
a01672d3 33#include "memory.h"
80a1ea37 34#include "exec-memory.h"
753d5e14 35#include "event_notifier.h"
05330448 36
d2f2b8a7
SH
37/* This check must be after config-host.h is included */
38#ifdef CONFIG_EVENTFD
39#include <sys/eventfd.h>
40#endif
41
93148aa5 42/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
f65ed4c1
AL
43#define PAGE_SIZE TARGET_PAGE_SIZE
44
05330448
AL
45//#define DEBUG_KVM
46
47#ifdef DEBUG_KVM
8c0d577e 48#define DPRINTF(fmt, ...) \
05330448
AL
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50#else
8c0d577e 51#define DPRINTF(fmt, ...) \
05330448
AL
52 do { } while (0)
53#endif
54
04fa27f5
JK
55#define KVM_MSI_HASHTAB_SIZE 256
56
34fc643f
AL
57typedef struct KVMSlot
58{
c227f099
AL
59 target_phys_addr_t start_addr;
60 ram_addr_t memory_size;
9f213ed9 61 void *ram;
34fc643f
AL
62 int slot;
63 int flags;
64} KVMSlot;
05330448 65
5832d1f2
AL
66typedef struct kvm_dirty_log KVMDirtyLog;
67
05330448
AL
68struct KVMState
69{
70 KVMSlot slots[32];
71 int fd;
72 int vmfd;
f65ed4c1 73 int coalesced_mmio;
62a2744c 74 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
1cae88b9 75 bool coalesced_flush_in_progress;
e69917e2 76 int broken_set_mem_region;
4495d6a7 77 int migration_log;
a0fb002c 78 int vcpu_events;
b0b1d690 79 int robust_singlestep;
ff44f1a3 80 int debugregs;
e22a25c9
AL
81#ifdef KVM_CAP_SET_GUEST_DEBUG
82 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
83#endif
8a7c7393 84 int pit_state2;
f1665b21 85 int xsave, xcrs;
d2f2b8a7 86 int many_ioeventfds;
92e4b519
DG
87 /* The man page (and posix) say ioctl numbers are signed int, but
88 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
89 * unsigned, and treating them as signed here can break things */
90 unsigned irqchip_inject_ioctl;
84b058d7
JK
91#ifdef KVM_CAP_IRQ_ROUTING
92 struct kvm_irq_routing *irq_routes;
93 int nr_allocated_irq_routes;
94 uint32_t *used_gsi_bitmap;
4e2e4e63 95 unsigned int gsi_count;
04fa27f5 96 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
4a3adebb 97 bool direct_msi;
84b058d7 98#endif
05330448
AL
99};
100
6a7af8cb 101KVMState *kvm_state;
3d4b2649 102bool kvm_kernel_irqchip;
7ae26bd4 103bool kvm_async_interrupts_allowed;
cc7e0ddf 104bool kvm_irqfds_allowed;
05330448 105
94a8d39a
JK
106static const KVMCapabilityInfo kvm_required_capabilites[] = {
107 KVM_CAP_INFO(USER_MEMORY),
108 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
109 KVM_CAP_LAST_INFO
110};
111
05330448
AL
112static KVMSlot *kvm_alloc_slot(KVMState *s)
113{
114 int i;
115
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 117 if (s->slots[i].memory_size == 0) {
05330448 118 return &s->slots[i];
a426e122 119 }
05330448
AL
120 }
121
d3f8d37f
AL
122 fprintf(stderr, "%s: no free slot available\n", __func__);
123 abort();
124}
125
126static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
127 target_phys_addr_t start_addr,
128 target_phys_addr_t end_addr)
d3f8d37f
AL
129{
130 int i;
131
132 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
133 KVMSlot *mem = &s->slots[i];
134
135 if (start_addr == mem->start_addr &&
136 end_addr == mem->start_addr + mem->memory_size) {
137 return mem;
138 }
139 }
140
05330448
AL
141 return NULL;
142}
143
6152e2ae
AL
144/*
145 * Find overlapping slot with lowest start address
146 */
147static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
148 target_phys_addr_t start_addr,
149 target_phys_addr_t end_addr)
05330448 150{
6152e2ae 151 KVMSlot *found = NULL;
05330448
AL
152 int i;
153
154 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
155 KVMSlot *mem = &s->slots[i];
156
6152e2ae
AL
157 if (mem->memory_size == 0 ||
158 (found && found->start_addr < mem->start_addr)) {
159 continue;
160 }
161
162 if (end_addr > mem->start_addr &&
163 start_addr < mem->start_addr + mem->memory_size) {
164 found = mem;
165 }
05330448
AL
166 }
167
6152e2ae 168 return found;
05330448
AL
169}
170
9f213ed9
AK
171int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
172 target_phys_addr_t *phys_addr)
983dfc3b
HY
173{
174 int i;
175
176 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
177 KVMSlot *mem = &s->slots[i];
178
9f213ed9
AK
179 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
180 *phys_addr = mem->start_addr + (ram - mem->ram);
983dfc3b
HY
181 return 1;
182 }
183 }
184
185 return 0;
186}
187
5832d1f2
AL
188static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
189{
190 struct kvm_userspace_memory_region mem;
191
192 mem.slot = slot->slot;
193 mem.guest_phys_addr = slot->start_addr;
194 mem.memory_size = slot->memory_size;
9f213ed9 195 mem.userspace_addr = (unsigned long)slot->ram;
5832d1f2 196 mem.flags = slot->flags;
4495d6a7
JK
197 if (s->migration_log) {
198 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
199 }
5832d1f2
AL
200 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
201}
202
8d2ba1fb
JK
203static void kvm_reset_vcpu(void *opaque)
204{
9349b4f9 205 CPUArchState *env = opaque;
8d2ba1fb 206
caa5af0f 207 kvm_arch_reset_vcpu(env);
8d2ba1fb 208}
5832d1f2 209
9349b4f9 210int kvm_init_vcpu(CPUArchState *env)
05330448
AL
211{
212 KVMState *s = kvm_state;
213 long mmap_size;
214 int ret;
215
8c0d577e 216 DPRINTF("kvm_init_vcpu\n");
05330448 217
984b5181 218 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 219 if (ret < 0) {
8c0d577e 220 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
221 goto err;
222 }
223
224 env->kvm_fd = ret;
225 env->kvm_state = s;
d841b6c4 226 env->kvm_vcpu_dirty = 1;
05330448
AL
227
228 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
229 if (mmap_size < 0) {
748a680b 230 ret = mmap_size;
8c0d577e 231 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
232 goto err;
233 }
234
235 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
236 env->kvm_fd, 0);
237 if (env->kvm_run == MAP_FAILED) {
238 ret = -errno;
8c0d577e 239 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
240 goto err;
241 }
242
a426e122
JK
243 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
244 s->coalesced_mmio_ring =
245 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
246 }
62a2744c 247
05330448 248 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 249 if (ret == 0) {
a08d4367 250 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 251 kvm_arch_reset_vcpu(env);
8d2ba1fb 252 }
05330448
AL
253err:
254 return ret;
255}
256
5832d1f2
AL
257/*
258 * dirty pages logging control
259 */
25254bbc
MT
260
261static int kvm_mem_flags(KVMState *s, bool log_dirty)
262{
263 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
264}
265
266static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
5832d1f2
AL
267{
268 KVMState *s = kvm_state;
25254bbc 269 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
4495d6a7
JK
270 int old_flags;
271
4495d6a7 272 old_flags = mem->flags;
5832d1f2 273
25254bbc 274 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
5832d1f2
AL
275 mem->flags = flags;
276
4495d6a7
JK
277 /* If nothing changed effectively, no need to issue ioctl */
278 if (s->migration_log) {
279 flags |= KVM_MEM_LOG_DIRTY_PAGES;
280 }
25254bbc 281
4495d6a7 282 if (flags == old_flags) {
25254bbc 283 return 0;
4495d6a7
JK
284 }
285
5832d1f2
AL
286 return kvm_set_user_memory_region(s, mem);
287}
288
25254bbc
MT
289static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
290 ram_addr_t size, bool log_dirty)
291{
292 KVMState *s = kvm_state;
293 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
294
295 if (mem == NULL) {
296 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
297 TARGET_FMT_plx "\n", __func__, phys_addr,
298 (target_phys_addr_t)(phys_addr + size - 1));
299 return -EINVAL;
300 }
301 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
302}
303
a01672d3
AK
304static void kvm_log_start(MemoryListener *listener,
305 MemoryRegionSection *section)
5832d1f2 306{
a01672d3
AK
307 int r;
308
309 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
310 section->size, true);
311 if (r < 0) {
312 abort();
313 }
5832d1f2
AL
314}
315
a01672d3
AK
316static void kvm_log_stop(MemoryListener *listener,
317 MemoryRegionSection *section)
5832d1f2 318{
a01672d3
AK
319 int r;
320
321 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
322 section->size, false);
323 if (r < 0) {
324 abort();
325 }
5832d1f2
AL
326}
327
7b8f3b78 328static int kvm_set_migration_log(int enable)
4495d6a7
JK
329{
330 KVMState *s = kvm_state;
331 KVMSlot *mem;
332 int i, err;
333
334 s->migration_log = enable;
335
336 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
337 mem = &s->slots[i];
338
70fedd76
AW
339 if (!mem->memory_size) {
340 continue;
341 }
4495d6a7
JK
342 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
343 continue;
344 }
345 err = kvm_set_user_memory_region(s, mem);
346 if (err) {
347 return err;
348 }
349 }
350 return 0;
351}
352
8369e01c 353/* get kvm's dirty pages bitmap and update qemu's */
ffcde12f
AK
354static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
355 unsigned long *bitmap)
96c1606b 356{
8369e01c 357 unsigned int i, j;
aa90fec7
BH
358 unsigned long page_number, c;
359 target_phys_addr_t addr, addr1;
ffcde12f 360 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
3145fcb6 361 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
8369e01c
MT
362
363 /*
364 * bitmap-traveling is faster than memory-traveling (for addr...)
365 * especially when most of the memory is not dirty.
366 */
367 for (i = 0; i < len; i++) {
368 if (bitmap[i] != 0) {
369 c = leul_to_cpu(bitmap[i]);
370 do {
371 j = ffsl(c) - 1;
372 c &= ~(1ul << j);
3145fcb6 373 page_number = (i * HOST_LONG_BITS + j) * hpratio;
8369e01c 374 addr1 = page_number * TARGET_PAGE_SIZE;
ffcde12f 375 addr = section->offset_within_region + addr1;
3145fcb6
DG
376 memory_region_set_dirty(section->mr, addr,
377 TARGET_PAGE_SIZE * hpratio);
8369e01c
MT
378 } while (c != 0);
379 }
380 }
381 return 0;
96c1606b
AG
382}
383
8369e01c
MT
384#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
385
5832d1f2
AL
386/**
387 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
fd4aa979
BS
388 * This function updates qemu's dirty bitmap using
389 * memory_region_set_dirty(). This means all bits are set
390 * to dirty.
5832d1f2 391 *
d3f8d37f 392 * @start_add: start of logged region.
5832d1f2
AL
393 * @end_addr: end of logged region.
394 */
ffcde12f 395static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
5832d1f2
AL
396{
397 KVMState *s = kvm_state;
151f7749 398 unsigned long size, allocated_size = 0;
151f7749
JK
399 KVMDirtyLog d;
400 KVMSlot *mem;
401 int ret = 0;
ffcde12f
AK
402 target_phys_addr_t start_addr = section->offset_within_address_space;
403 target_phys_addr_t end_addr = start_addr + section->size;
5832d1f2 404
151f7749
JK
405 d.dirty_bitmap = NULL;
406 while (start_addr < end_addr) {
407 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
408 if (mem == NULL) {
409 break;
410 }
5832d1f2 411
51b0c606
MT
412 /* XXX bad kernel interface alert
413 * For dirty bitmap, kernel allocates array of size aligned to
414 * bits-per-long. But for case when the kernel is 64bits and
415 * the userspace is 32bits, userspace can't align to the same
416 * bits-per-long, since sizeof(long) is different between kernel
417 * and user space. This way, userspace will provide buffer which
418 * may be 4 bytes less than the kernel will use, resulting in
419 * userspace memory corruption (which is not detectable by valgrind
420 * too, in most cases).
421 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
422 * a hope that sizeof(long) wont become >8 any time soon.
423 */
424 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
425 /*HOST_LONG_BITS*/ 64) / 8;
151f7749 426 if (!d.dirty_bitmap) {
7267c094 427 d.dirty_bitmap = g_malloc(size);
151f7749 428 } else if (size > allocated_size) {
7267c094 429 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
151f7749
JK
430 }
431 allocated_size = size;
432 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 433
151f7749 434 d.slot = mem->slot;
5832d1f2 435
6e489f3f 436 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 437 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
438 ret = -1;
439 break;
440 }
5832d1f2 441
ffcde12f 442 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
8369e01c 443 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 444 }
7267c094 445 g_free(d.dirty_bitmap);
151f7749
JK
446
447 return ret;
5832d1f2
AL
448}
449
c227f099 450int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
451{
452 int ret = -ENOSYS;
f65ed4c1
AL
453 KVMState *s = kvm_state;
454
455 if (s->coalesced_mmio) {
456 struct kvm_coalesced_mmio_zone zone;
457
458 zone.addr = start;
459 zone.size = size;
7e680753 460 zone.pad = 0;
f65ed4c1
AL
461
462 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
463 }
f65ed4c1
AL
464
465 return ret;
466}
467
c227f099 468int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
469{
470 int ret = -ENOSYS;
f65ed4c1
AL
471 KVMState *s = kvm_state;
472
473 if (s->coalesced_mmio) {
474 struct kvm_coalesced_mmio_zone zone;
475
476 zone.addr = start;
477 zone.size = size;
7e680753 478 zone.pad = 0;
f65ed4c1
AL
479
480 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
481 }
f65ed4c1
AL
482
483 return ret;
484}
485
ad7b8b33
AL
486int kvm_check_extension(KVMState *s, unsigned int extension)
487{
488 int ret;
489
490 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
491 if (ret < 0) {
492 ret = 0;
493 }
494
495 return ret;
496}
497
d2f2b8a7
SH
498static int kvm_check_many_ioeventfds(void)
499{
d0dcac83
SH
500 /* Userspace can use ioeventfd for io notification. This requires a host
501 * that supports eventfd(2) and an I/O thread; since eventfd does not
502 * support SIGIO it cannot interrupt the vcpu.
503 *
504 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
505 * can avoid creating too many ioeventfds.
506 */
12d4536f 507#if defined(CONFIG_EVENTFD)
d2f2b8a7
SH
508 int ioeventfds[7];
509 int i, ret = 0;
510 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
511 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
512 if (ioeventfds[i] < 0) {
513 break;
514 }
515 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
516 if (ret < 0) {
517 close(ioeventfds[i]);
518 break;
519 }
520 }
521
522 /* Decide whether many devices are supported or not */
523 ret = i == ARRAY_SIZE(ioeventfds);
524
525 while (i-- > 0) {
526 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
527 close(ioeventfds[i]);
528 }
529 return ret;
530#else
531 return 0;
532#endif
533}
534
94a8d39a
JK
535static const KVMCapabilityInfo *
536kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
537{
538 while (list->name) {
539 if (!kvm_check_extension(s, list->value)) {
540 return list;
541 }
542 list++;
543 }
544 return NULL;
545}
546
a01672d3 547static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
46dbef6a
MT
548{
549 KVMState *s = kvm_state;
46dbef6a
MT
550 KVMSlot *mem, old;
551 int err;
a01672d3
AK
552 MemoryRegion *mr = section->mr;
553 bool log_dirty = memory_region_is_logging(mr);
554 target_phys_addr_t start_addr = section->offset_within_address_space;
555 ram_addr_t size = section->size;
9f213ed9 556 void *ram = NULL;
8f6f962b 557 unsigned delta;
46dbef6a 558
14542fea
GN
559 /* kvm works in page size chunks, but the function may be called
560 with sub-page size and unaligned start address. */
8f6f962b
AK
561 delta = TARGET_PAGE_ALIGN(size) - size;
562 if (delta > size) {
563 return;
564 }
565 start_addr += delta;
566 size -= delta;
567 size &= TARGET_PAGE_MASK;
568 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
569 return;
570 }
46dbef6a 571
a01672d3
AK
572 if (!memory_region_is_ram(mr)) {
573 return;
9f213ed9
AK
574 }
575
8f6f962b 576 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
a01672d3 577
46dbef6a
MT
578 while (1) {
579 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
580 if (!mem) {
581 break;
582 }
583
a01672d3 584 if (add && start_addr >= mem->start_addr &&
46dbef6a 585 (start_addr + size <= mem->start_addr + mem->memory_size) &&
9f213ed9 586 (ram - start_addr == mem->ram - mem->start_addr)) {
46dbef6a 587 /* The new slot fits into the existing one and comes with
25254bbc
MT
588 * identical parameters - update flags and done. */
589 kvm_slot_dirty_pages_log_change(mem, log_dirty);
46dbef6a
MT
590 return;
591 }
592
593 old = *mem;
594
3fbffb62
AK
595 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
596 kvm_physical_sync_dirty_bitmap(section);
597 }
598
46dbef6a
MT
599 /* unregister the overlapping slot */
600 mem->memory_size = 0;
601 err = kvm_set_user_memory_region(s, mem);
602 if (err) {
603 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
604 __func__, strerror(-err));
605 abort();
606 }
607
608 /* Workaround for older KVM versions: we can't join slots, even not by
609 * unregistering the previous ones and then registering the larger
610 * slot. We have to maintain the existing fragmentation. Sigh.
611 *
612 * This workaround assumes that the new slot starts at the same
613 * address as the first existing one. If not or if some overlapping
614 * slot comes around later, we will fail (not seen in practice so far)
615 * - and actually require a recent KVM version. */
616 if (s->broken_set_mem_region &&
a01672d3 617 old.start_addr == start_addr && old.memory_size < size && add) {
46dbef6a
MT
618 mem = kvm_alloc_slot(s);
619 mem->memory_size = old.memory_size;
620 mem->start_addr = old.start_addr;
9f213ed9 621 mem->ram = old.ram;
25254bbc 622 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
623
624 err = kvm_set_user_memory_region(s, mem);
625 if (err) {
626 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
627 strerror(-err));
628 abort();
629 }
630
631 start_addr += old.memory_size;
9f213ed9 632 ram += old.memory_size;
46dbef6a
MT
633 size -= old.memory_size;
634 continue;
635 }
636
637 /* register prefix slot */
638 if (old.start_addr < start_addr) {
639 mem = kvm_alloc_slot(s);
640 mem->memory_size = start_addr - old.start_addr;
641 mem->start_addr = old.start_addr;
9f213ed9 642 mem->ram = old.ram;
25254bbc 643 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
644
645 err = kvm_set_user_memory_region(s, mem);
646 if (err) {
647 fprintf(stderr, "%s: error registering prefix slot: %s\n",
648 __func__, strerror(-err));
d4d6868f
AG
649#ifdef TARGET_PPC
650 fprintf(stderr, "%s: This is probably because your kernel's " \
651 "PAGE_SIZE is too big. Please try to use 4k " \
652 "PAGE_SIZE!\n", __func__);
653#endif
46dbef6a
MT
654 abort();
655 }
656 }
657
658 /* register suffix slot */
659 if (old.start_addr + old.memory_size > start_addr + size) {
660 ram_addr_t size_delta;
661
662 mem = kvm_alloc_slot(s);
663 mem->start_addr = start_addr + size;
664 size_delta = mem->start_addr - old.start_addr;
665 mem->memory_size = old.memory_size - size_delta;
9f213ed9 666 mem->ram = old.ram + size_delta;
25254bbc 667 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
668
669 err = kvm_set_user_memory_region(s, mem);
670 if (err) {
671 fprintf(stderr, "%s: error registering suffix slot: %s\n",
672 __func__, strerror(-err));
673 abort();
674 }
675 }
676 }
677
678 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 679 if (!size) {
46dbef6a 680 return;
a426e122 681 }
a01672d3 682 if (!add) {
46dbef6a 683 return;
a426e122 684 }
46dbef6a
MT
685 mem = kvm_alloc_slot(s);
686 mem->memory_size = size;
687 mem->start_addr = start_addr;
9f213ed9 688 mem->ram = ram;
25254bbc 689 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
690
691 err = kvm_set_user_memory_region(s, mem);
692 if (err) {
693 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
694 strerror(-err));
695 abort();
696 }
697}
698
50c1e149
AK
699static void kvm_begin(MemoryListener *listener)
700{
701}
702
703static void kvm_commit(MemoryListener *listener)
704{
705}
706
a01672d3
AK
707static void kvm_region_add(MemoryListener *listener,
708 MemoryRegionSection *section)
709{
710 kvm_set_phys_mem(section, true);
711}
712
713static void kvm_region_del(MemoryListener *listener,
714 MemoryRegionSection *section)
715{
716 kvm_set_phys_mem(section, false);
717}
718
50c1e149
AK
719static void kvm_region_nop(MemoryListener *listener,
720 MemoryRegionSection *section)
721{
722}
723
a01672d3
AK
724static void kvm_log_sync(MemoryListener *listener,
725 MemoryRegionSection *section)
7b8f3b78 726{
a01672d3
AK
727 int r;
728
ffcde12f 729 r = kvm_physical_sync_dirty_bitmap(section);
a01672d3
AK
730 if (r < 0) {
731 abort();
732 }
7b8f3b78
MT
733}
734
a01672d3 735static void kvm_log_global_start(struct MemoryListener *listener)
7b8f3b78 736{
a01672d3
AK
737 int r;
738
739 r = kvm_set_migration_log(1);
740 assert(r >= 0);
7b8f3b78
MT
741}
742
a01672d3 743static void kvm_log_global_stop(struct MemoryListener *listener)
7b8f3b78 744{
a01672d3
AK
745 int r;
746
747 r = kvm_set_migration_log(0);
748 assert(r >= 0);
7b8f3b78
MT
749}
750
80a1ea37
AK
751static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
752 bool match_data, uint64_t data, int fd)
753{
754 int r;
755
4b8f1c88 756 assert(match_data && section->size <= 8);
80a1ea37 757
4b8f1c88
MT
758 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
759 data, true, section->size);
80a1ea37
AK
760 if (r < 0) {
761 abort();
762 }
763}
764
765static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
766 bool match_data, uint64_t data, int fd)
767{
768 int r;
769
4b8f1c88
MT
770 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
771 data, false, section->size);
80a1ea37
AK
772 if (r < 0) {
773 abort();
774 }
775}
776
777static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
778 bool match_data, uint64_t data, int fd)
779{
780 int r;
781
782 assert(match_data && section->size == 2);
783
784 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
785 data, true);
786 if (r < 0) {
787 abort();
788 }
789}
790
791static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
792 bool match_data, uint64_t data, int fd)
793
794{
795 int r;
796
797 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
798 data, false);
799 if (r < 0) {
800 abort();
801 }
802}
803
804static void kvm_eventfd_add(MemoryListener *listener,
805 MemoryRegionSection *section,
753d5e14
PB
806 bool match_data, uint64_t data,
807 EventNotifier *e)
80a1ea37
AK
808{
809 if (section->address_space == get_system_memory()) {
753d5e14
PB
810 kvm_mem_ioeventfd_add(section, match_data, data,
811 event_notifier_get_fd(e));
80a1ea37 812 } else {
753d5e14
PB
813 kvm_io_ioeventfd_add(section, match_data, data,
814 event_notifier_get_fd(e));
80a1ea37
AK
815 }
816}
817
818static void kvm_eventfd_del(MemoryListener *listener,
819 MemoryRegionSection *section,
753d5e14
PB
820 bool match_data, uint64_t data,
821 EventNotifier *e)
80a1ea37
AK
822{
823 if (section->address_space == get_system_memory()) {
753d5e14
PB
824 kvm_mem_ioeventfd_del(section, match_data, data,
825 event_notifier_get_fd(e));
80a1ea37 826 } else {
753d5e14
PB
827 kvm_io_ioeventfd_del(section, match_data, data,
828 event_notifier_get_fd(e));
80a1ea37
AK
829 }
830}
831
a01672d3 832static MemoryListener kvm_memory_listener = {
50c1e149
AK
833 .begin = kvm_begin,
834 .commit = kvm_commit,
a01672d3
AK
835 .region_add = kvm_region_add,
836 .region_del = kvm_region_del,
50c1e149 837 .region_nop = kvm_region_nop,
e5896b12
AP
838 .log_start = kvm_log_start,
839 .log_stop = kvm_log_stop,
a01672d3
AK
840 .log_sync = kvm_log_sync,
841 .log_global_start = kvm_log_global_start,
842 .log_global_stop = kvm_log_global_stop,
80a1ea37
AK
843 .eventfd_add = kvm_eventfd_add,
844 .eventfd_del = kvm_eventfd_del,
72e22d2f 845 .priority = 10,
7b8f3b78
MT
846};
847
9349b4f9 848static void kvm_handle_interrupt(CPUArchState *env, int mask)
aa7f74d1
JK
849{
850 env->interrupt_request |= mask;
851
852 if (!qemu_cpu_is_self(env)) {
853 qemu_cpu_kick(env);
854 }
855}
856
3889c3fa 857int kvm_set_irq(KVMState *s, int irq, int level)
84b058d7
JK
858{
859 struct kvm_irq_level event;
860 int ret;
861
7ae26bd4 862 assert(kvm_async_interrupts_enabled());
84b058d7
JK
863
864 event.level = level;
865 event.irq = irq;
866 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
867 if (ret < 0) {
3889c3fa 868 perror("kvm_set_irq");
84b058d7
JK
869 abort();
870 }
871
872 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
873}
874
875#ifdef KVM_CAP_IRQ_ROUTING
d3d3bef0
JK
876typedef struct KVMMSIRoute {
877 struct kvm_irq_routing_entry kroute;
878 QTAILQ_ENTRY(KVMMSIRoute) entry;
879} KVMMSIRoute;
880
84b058d7
JK
881static void set_gsi(KVMState *s, unsigned int gsi)
882{
84b058d7
JK
883 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
884}
885
04fa27f5
JK
886static void clear_gsi(KVMState *s, unsigned int gsi)
887{
888 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
889}
890
84b058d7
JK
891static void kvm_init_irq_routing(KVMState *s)
892{
04fa27f5 893 int gsi_count, i;
84b058d7
JK
894
895 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
896 if (gsi_count > 0) {
897 unsigned int gsi_bits, i;
898
899 /* Round up so we can search ints using ffs */
bc8c6788 900 gsi_bits = ALIGN(gsi_count, 32);
84b058d7 901 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
4e2e4e63 902 s->gsi_count = gsi_count;
84b058d7
JK
903
904 /* Mark any over-allocated bits as already in use */
905 for (i = gsi_count; i < gsi_bits; i++) {
906 set_gsi(s, i);
907 }
908 }
909
910 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
911 s->nr_allocated_irq_routes = 0;
912
4a3adebb
JK
913 if (!s->direct_msi) {
914 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
915 QTAILQ_INIT(&s->msi_hashtab[i]);
916 }
04fa27f5
JK
917 }
918
84b058d7
JK
919 kvm_arch_init_irq_routing(s);
920}
921
e7b20308
JK
922static void kvm_irqchip_commit_routes(KVMState *s)
923{
924 int ret;
925
926 s->irq_routes->flags = 0;
927 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
928 assert(ret == 0);
929}
930
84b058d7
JK
931static void kvm_add_routing_entry(KVMState *s,
932 struct kvm_irq_routing_entry *entry)
933{
934 struct kvm_irq_routing_entry *new;
935 int n, size;
936
937 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
938 n = s->nr_allocated_irq_routes * 2;
939 if (n < 64) {
940 n = 64;
941 }
942 size = sizeof(struct kvm_irq_routing);
943 size += n * sizeof(*new);
944 s->irq_routes = g_realloc(s->irq_routes, size);
945 s->nr_allocated_irq_routes = n;
946 }
947 n = s->irq_routes->nr++;
948 new = &s->irq_routes->entries[n];
949 memset(new, 0, sizeof(*new));
950 new->gsi = entry->gsi;
951 new->type = entry->type;
952 new->flags = entry->flags;
953 new->u = entry->u;
954
955 set_gsi(s, entry->gsi);
e7b20308
JK
956
957 kvm_irqchip_commit_routes(s);
84b058d7
JK
958}
959
1df186df 960void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
84b058d7
JK
961{
962 struct kvm_irq_routing_entry e;
963
4e2e4e63
JK
964 assert(pin < s->gsi_count);
965
84b058d7
JK
966 e.gsi = irq;
967 e.type = KVM_IRQ_ROUTING_IRQCHIP;
968 e.flags = 0;
969 e.u.irqchip.irqchip = irqchip;
970 e.u.irqchip.pin = pin;
971 kvm_add_routing_entry(s, &e);
972}
973
1e2aa8be 974void kvm_irqchip_release_virq(KVMState *s, int virq)
04fa27f5
JK
975{
976 struct kvm_irq_routing_entry *e;
977 int i;
978
979 for (i = 0; i < s->irq_routes->nr; i++) {
980 e = &s->irq_routes->entries[i];
981 if (e->gsi == virq) {
982 s->irq_routes->nr--;
983 *e = s->irq_routes->entries[s->irq_routes->nr];
984 }
985 }
986 clear_gsi(s, virq);
e7b20308
JK
987
988 kvm_irqchip_commit_routes(s);
04fa27f5
JK
989}
990
991static unsigned int kvm_hash_msi(uint32_t data)
992{
993 /* This is optimized for IA32 MSI layout. However, no other arch shall
994 * repeat the mistake of not providing a direct MSI injection API. */
995 return data & 0xff;
996}
997
998static void kvm_flush_dynamic_msi_routes(KVMState *s)
999{
1000 KVMMSIRoute *route, *next;
1001 unsigned int hash;
1002
1003 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1004 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1005 kvm_irqchip_release_virq(s, route->kroute.gsi);
1006 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1007 g_free(route);
1008 }
1009 }
1010}
1011
1012static int kvm_irqchip_get_virq(KVMState *s)
1013{
1014 uint32_t *word = s->used_gsi_bitmap;
1015 int max_words = ALIGN(s->gsi_count, 32) / 32;
1016 int i, bit;
1017 bool retry = true;
1018
1019again:
1020 /* Return the lowest unused GSI in the bitmap */
1021 for (i = 0; i < max_words; i++) {
1022 bit = ffs(~word[i]);
1023 if (!bit) {
1024 continue;
1025 }
1026
1027 return bit - 1 + i * 32;
1028 }
4a3adebb 1029 if (!s->direct_msi && retry) {
04fa27f5
JK
1030 retry = false;
1031 kvm_flush_dynamic_msi_routes(s);
1032 goto again;
1033 }
1034 return -ENOSPC;
1035
1036}
1037
1038static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1039{
1040 unsigned int hash = kvm_hash_msi(msg.data);
1041 KVMMSIRoute *route;
1042
1043 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1044 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1045 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1046 route->kroute.u.msi.data == msg.data) {
1047 return route;
1048 }
1049 }
1050 return NULL;
1051}
1052
1053int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1054{
4a3adebb 1055 struct kvm_msi msi;
04fa27f5
JK
1056 KVMMSIRoute *route;
1057
4a3adebb
JK
1058 if (s->direct_msi) {
1059 msi.address_lo = (uint32_t)msg.address;
1060 msi.address_hi = msg.address >> 32;
1061 msi.data = msg.data;
1062 msi.flags = 0;
1063 memset(msi.pad, 0, sizeof(msi.pad));
1064
1065 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1066 }
1067
04fa27f5
JK
1068 route = kvm_lookup_msi_route(s, msg);
1069 if (!route) {
e7b20308 1070 int virq;
04fa27f5
JK
1071
1072 virq = kvm_irqchip_get_virq(s);
1073 if (virq < 0) {
1074 return virq;
1075 }
1076
1077 route = g_malloc(sizeof(KVMMSIRoute));
1078 route->kroute.gsi = virq;
1079 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1080 route->kroute.flags = 0;
1081 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1082 route->kroute.u.msi.address_hi = msg.address >> 32;
1083 route->kroute.u.msi.data = msg.data;
1084
1085 kvm_add_routing_entry(s, &route->kroute);
1086
1087 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1088 entry);
04fa27f5
JK
1089 }
1090
1091 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1092
3889c3fa 1093 return kvm_set_irq(s, route->kroute.gsi, 1);
04fa27f5
JK
1094}
1095
92b4e489
JK
1096int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1097{
1098 struct kvm_irq_routing_entry kroute;
1099 int virq;
1100
1101 if (!kvm_irqchip_in_kernel()) {
1102 return -ENOSYS;
1103 }
1104
1105 virq = kvm_irqchip_get_virq(s);
1106 if (virq < 0) {
1107 return virq;
1108 }
1109
1110 kroute.gsi = virq;
1111 kroute.type = KVM_IRQ_ROUTING_MSI;
1112 kroute.flags = 0;
1113 kroute.u.msi.address_lo = (uint32_t)msg.address;
1114 kroute.u.msi.address_hi = msg.address >> 32;
1115 kroute.u.msi.data = msg.data;
1116
1117 kvm_add_routing_entry(s, &kroute);
1118
1119 return virq;
1120}
1121
39853bbc
JK
1122static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1123{
1124 struct kvm_irqfd irqfd = {
1125 .fd = fd,
1126 .gsi = virq,
1127 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1128 };
1129
cc7e0ddf 1130 if (!kvm_irqfds_enabled()) {
39853bbc
JK
1131 return -ENOSYS;
1132 }
1133
1134 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1135}
1136
84b058d7
JK
1137#else /* !KVM_CAP_IRQ_ROUTING */
1138
1139static void kvm_init_irq_routing(KVMState *s)
1140{
1141}
04fa27f5 1142
d3d3bef0
JK
1143void kvm_irqchip_release_virq(KVMState *s, int virq)
1144{
1145}
1146
04fa27f5
JK
1147int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1148{
1149 abort();
1150}
92b4e489
JK
1151
1152int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1153{
df410675 1154 return -ENOSYS;
92b4e489 1155}
39853bbc
JK
1156
1157static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1158{
1159 abort();
1160}
84b058d7
JK
1161#endif /* !KVM_CAP_IRQ_ROUTING */
1162
39853bbc
JK
1163int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1164{
1165 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1166}
1167
15b2bd18
PB
1168int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1169{
1170 return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
1171}
1172
39853bbc
JK
1173int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1174{
1175 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1176}
1177
15b2bd18
PB
1178int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1179{
1180 return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
1181}
1182
84b058d7
JK
1183static int kvm_irqchip_create(KVMState *s)
1184{
1185 QemuOptsList *list = qemu_find_opts("machine");
1186 int ret;
1187
1188 if (QTAILQ_EMPTY(&list->head) ||
1189 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
a24b9106 1190 "kernel_irqchip", true) ||
84b058d7
JK
1191 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1192 return 0;
1193 }
1194
1195 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1196 if (ret < 0) {
1197 fprintf(stderr, "Create kernel irqchip failed\n");
1198 return ret;
1199 }
1200
1201 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1202 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1203 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1204 }
3d4b2649 1205 kvm_kernel_irqchip = true;
7ae26bd4
PM
1206 /* If we have an in-kernel IRQ chip then we must have asynchronous
1207 * interrupt delivery (though the reverse is not necessarily true)
1208 */
1209 kvm_async_interrupts_allowed = true;
84b058d7
JK
1210
1211 kvm_init_irq_routing(s);
1212
1213 return 0;
1214}
1215
3ed444e9
DH
1216static int kvm_max_vcpus(KVMState *s)
1217{
1218 int ret;
1219
1220 /* Find number of supported CPUs using the recommended
1221 * procedure from the kernel API documentation to cope with
1222 * older kernels that may be missing capabilities.
1223 */
1224 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1225 if (ret) {
1226 return ret;
1227 }
1228 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1229 if (ret) {
1230 return ret;
1231 }
1232
1233 return 4;
1234}
1235
cad1e282 1236int kvm_init(void)
05330448 1237{
168ccc11
JK
1238 static const char upgrade_note[] =
1239 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1240 "(see http://sourceforge.net/projects/kvm).\n";
05330448 1241 KVMState *s;
94a8d39a 1242 const KVMCapabilityInfo *missing_cap;
05330448
AL
1243 int ret;
1244 int i;
3ed444e9 1245 int max_vcpus;
05330448 1246
7267c094 1247 s = g_malloc0(sizeof(KVMState));
05330448 1248
3145fcb6
DG
1249 /*
1250 * On systems where the kernel can support different base page
1251 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1252 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1253 * page size for the system though.
1254 */
1255 assert(TARGET_PAGE_SIZE <= getpagesize());
1256
e22a25c9 1257#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 1258 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 1259#endif
a426e122 1260 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 1261 s->slots[i].slot = i;
a426e122 1262 }
05330448 1263 s->vmfd = -1;
40ff6d7e 1264 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
1265 if (s->fd == -1) {
1266 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1267 ret = -errno;
1268 goto err;
1269 }
1270
1271 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1272 if (ret < KVM_API_VERSION) {
a426e122 1273 if (ret > 0) {
05330448 1274 ret = -EINVAL;
a426e122 1275 }
05330448
AL
1276 fprintf(stderr, "kvm version too old\n");
1277 goto err;
1278 }
1279
1280 if (ret > KVM_API_VERSION) {
1281 ret = -EINVAL;
1282 fprintf(stderr, "kvm version not supported\n");
1283 goto err;
1284 }
1285
3ed444e9
DH
1286 max_vcpus = kvm_max_vcpus(s);
1287 if (smp_cpus > max_vcpus) {
1288 ret = -EINVAL;
1289 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1290 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1291 goto err;
1292 }
1293
05330448 1294 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
1295 if (s->vmfd < 0) {
1296#ifdef TARGET_S390X
1297 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1298 "your host kernel command line\n");
1299#endif
db9eae1c 1300 ret = s->vmfd;
05330448 1301 goto err;
0104dcac 1302 }
05330448 1303
94a8d39a
JK
1304 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1305 if (!missing_cap) {
1306 missing_cap =
1307 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 1308 }
94a8d39a 1309 if (missing_cap) {
ad7b8b33 1310 ret = -EINVAL;
94a8d39a
JK
1311 fprintf(stderr, "kvm does not support %s\n%s",
1312 missing_cap->name, upgrade_note);
d85dc283
AL
1313 goto err;
1314 }
1315
ad7b8b33 1316 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 1317
e69917e2 1318 s->broken_set_mem_region = 1;
14a09518 1319 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
1320 if (ret > 0) {
1321 s->broken_set_mem_region = 0;
1322 }
e69917e2 1323
a0fb002c
JK
1324#ifdef KVM_CAP_VCPU_EVENTS
1325 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1326#endif
1327
b0b1d690
JK
1328 s->robust_singlestep =
1329 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
b0b1d690 1330
ff44f1a3
JK
1331#ifdef KVM_CAP_DEBUGREGS
1332 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1333#endif
1334
f1665b21
SY
1335#ifdef KVM_CAP_XSAVE
1336 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1337#endif
1338
f1665b21
SY
1339#ifdef KVM_CAP_XCRS
1340 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1341#endif
1342
8a7c7393
JK
1343#ifdef KVM_CAP_PIT_STATE2
1344 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1345#endif
1346
d3d3bef0 1347#ifdef KVM_CAP_IRQ_ROUTING
4a3adebb 1348 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
d3d3bef0 1349#endif
4a3adebb 1350
cad1e282 1351 ret = kvm_arch_init(s);
a426e122 1352 if (ret < 0) {
05330448 1353 goto err;
a426e122 1354 }
05330448 1355
84b058d7
JK
1356 ret = kvm_irqchip_create(s);
1357 if (ret < 0) {
1358 goto err;
1359 }
1360
05330448 1361 kvm_state = s;
7376e582 1362 memory_listener_register(&kvm_memory_listener, NULL);
05330448 1363
d2f2b8a7
SH
1364 s->many_ioeventfds = kvm_check_many_ioeventfds();
1365
aa7f74d1
JK
1366 cpu_interrupt_handler = kvm_handle_interrupt;
1367
05330448
AL
1368 return 0;
1369
1370err:
1371 if (s) {
db9eae1c 1372 if (s->vmfd >= 0) {
05330448 1373 close(s->vmfd);
a426e122
JK
1374 }
1375 if (s->fd != -1) {
05330448 1376 close(s->fd);
a426e122 1377 }
05330448 1378 }
7267c094 1379 g_free(s);
05330448
AL
1380
1381 return ret;
1382}
1383
b30e93e9
JK
1384static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1385 uint32_t count)
05330448
AL
1386{
1387 int i;
1388 uint8_t *ptr = data;
1389
1390 for (i = 0; i < count; i++) {
1391 if (direction == KVM_EXIT_IO_IN) {
1392 switch (size) {
1393 case 1:
afcea8cb 1394 stb_p(ptr, cpu_inb(port));
05330448
AL
1395 break;
1396 case 2:
afcea8cb 1397 stw_p(ptr, cpu_inw(port));
05330448
AL
1398 break;
1399 case 4:
afcea8cb 1400 stl_p(ptr, cpu_inl(port));
05330448
AL
1401 break;
1402 }
1403 } else {
1404 switch (size) {
1405 case 1:
afcea8cb 1406 cpu_outb(port, ldub_p(ptr));
05330448
AL
1407 break;
1408 case 2:
afcea8cb 1409 cpu_outw(port, lduw_p(ptr));
05330448
AL
1410 break;
1411 case 4:
afcea8cb 1412 cpu_outl(port, ldl_p(ptr));
05330448
AL
1413 break;
1414 }
1415 }
1416
1417 ptr += size;
1418 }
05330448
AL
1419}
1420
9349b4f9 1421static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
7c80eef8 1422{
bb44e0d1 1423 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
1424 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1425 int i;
1426
bb44e0d1 1427 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
1428 for (i = 0; i < run->internal.ndata; ++i) {
1429 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1430 i, (uint64_t)run->internal.data[i]);
1431 }
bb44e0d1
JK
1432 } else {
1433 fprintf(stderr, "\n");
7c80eef8 1434 }
7c80eef8
MT
1435 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1436 fprintf(stderr, "emulation failure\n");
a426e122 1437 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 1438 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 1439 return EXCP_INTERRUPT;
a426e122 1440 }
7c80eef8
MT
1441 }
1442 /* FIXME: Should trigger a qmp message to let management know
1443 * something went wrong.
1444 */
73aaec4a 1445 return -1;
7c80eef8 1446}
7c80eef8 1447
62a2744c 1448void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 1449{
f65ed4c1 1450 KVMState *s = kvm_state;
1cae88b9
AK
1451
1452 if (s->coalesced_flush_in_progress) {
1453 return;
1454 }
1455
1456 s->coalesced_flush_in_progress = true;
1457
62a2744c
SY
1458 if (s->coalesced_mmio_ring) {
1459 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
1460 while (ring->first != ring->last) {
1461 struct kvm_coalesced_mmio *ent;
1462
1463 ent = &ring->coalesced_mmio[ring->first];
1464
1465 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 1466 smp_wmb();
f65ed4c1
AL
1467 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1468 }
1469 }
1cae88b9
AK
1470
1471 s->coalesced_flush_in_progress = false;
f65ed4c1
AL
1472}
1473
2705d56a 1474static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 1475{
9349b4f9 1476 CPUArchState *env = _env;
2705d56a 1477
9ded2744 1478 if (!env->kvm_vcpu_dirty) {
4c0960c0 1479 kvm_arch_get_registers(env);
9ded2744 1480 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
1481 }
1482}
1483
9349b4f9 1484void kvm_cpu_synchronize_state(CPUArchState *env)
2705d56a 1485{
a426e122 1486 if (!env->kvm_vcpu_dirty) {
2705d56a 1487 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 1488 }
2705d56a
JK
1489}
1490
9349b4f9 1491void kvm_cpu_synchronize_post_reset(CPUArchState *env)
ea375f9a
JK
1492{
1493 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1494 env->kvm_vcpu_dirty = 0;
1495}
1496
9349b4f9 1497void kvm_cpu_synchronize_post_init(CPUArchState *env)
ea375f9a
JK
1498{
1499 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1500 env->kvm_vcpu_dirty = 0;
1501}
1502
9349b4f9 1503int kvm_cpu_exec(CPUArchState *env)
05330448
AL
1504{
1505 struct kvm_run *run = env->kvm_run;
7cbb533f 1506 int ret, run_ret;
05330448 1507
8c0d577e 1508 DPRINTF("kvm_cpu_exec()\n");
05330448 1509
99036865 1510 if (kvm_arch_process_async_events(env)) {
9ccfac9e 1511 env->exit_request = 0;
6792a57b 1512 return EXCP_HLT;
9ccfac9e 1513 }
0af691d7 1514
9ccfac9e 1515 do {
9ded2744 1516 if (env->kvm_vcpu_dirty) {
ea375f9a 1517 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 1518 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
1519 }
1520
8c14c173 1521 kvm_arch_pre_run(env, run);
9ccfac9e
JK
1522 if (env->exit_request) {
1523 DPRINTF("interrupt exit requested\n");
1524 /*
1525 * KVM requires us to reenter the kernel after IO exits to complete
1526 * instruction emulation. This self-signal will ensure that we
1527 * leave ASAP again.
1528 */
1529 qemu_cpu_kick_self();
1530 }
d549db5a 1531 qemu_mutex_unlock_iothread();
9ccfac9e 1532
7cbb533f 1533 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 1534
d549db5a 1535 qemu_mutex_lock_iothread();
05330448
AL
1536 kvm_arch_post_run(env, run);
1537
b0c883b5
JK
1538 kvm_flush_coalesced_mmio_buffer();
1539
7cbb533f 1540 if (run_ret < 0) {
dc77d341
JK
1541 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1542 DPRINTF("io window exit\n");
d73cd8f4 1543 ret = EXCP_INTERRUPT;
dc77d341
JK
1544 break;
1545 }
7b011fbc
ME
1546 fprintf(stderr, "error: kvm run failed %s\n",
1547 strerror(-run_ret));
05330448
AL
1548 abort();
1549 }
1550
05330448
AL
1551 switch (run->exit_reason) {
1552 case KVM_EXIT_IO:
8c0d577e 1553 DPRINTF("handle_io\n");
b30e93e9
JK
1554 kvm_handle_io(run->io.port,
1555 (uint8_t *)run + run->io.data_offset,
1556 run->io.direction,
1557 run->io.size,
1558 run->io.count);
d73cd8f4 1559 ret = 0;
05330448
AL
1560 break;
1561 case KVM_EXIT_MMIO:
8c0d577e 1562 DPRINTF("handle_mmio\n");
05330448
AL
1563 cpu_physical_memory_rw(run->mmio.phys_addr,
1564 run->mmio.data,
1565 run->mmio.len,
1566 run->mmio.is_write);
d73cd8f4 1567 ret = 0;
05330448
AL
1568 break;
1569 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 1570 DPRINTF("irq_window_open\n");
d73cd8f4 1571 ret = EXCP_INTERRUPT;
05330448
AL
1572 break;
1573 case KVM_EXIT_SHUTDOWN:
8c0d577e 1574 DPRINTF("shutdown\n");
05330448 1575 qemu_system_reset_request();
d73cd8f4 1576 ret = EXCP_INTERRUPT;
05330448
AL
1577 break;
1578 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
1579 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1580 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 1581 ret = -1;
05330448 1582 break;
7c80eef8 1583 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 1584 ret = kvm_handle_internal_error(env, run);
7c80eef8 1585 break;
05330448 1586 default:
8c0d577e 1587 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
1588 ret = kvm_arch_handle_exit(env, run);
1589 break;
1590 }
d73cd8f4 1591 } while (ret == 0);
05330448 1592
73aaec4a 1593 if (ret < 0) {
f5c848ee 1594 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
0461d5a6 1595 vm_stop(RUN_STATE_INTERNAL_ERROR);
becfc390
AL
1596 }
1597
6792a57b 1598 env->exit_request = 0;
05330448
AL
1599 return ret;
1600}
1601
984b5181 1602int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1603{
1604 int ret;
984b5181
AL
1605 void *arg;
1606 va_list ap;
05330448 1607
984b5181
AL
1608 va_start(ap, type);
1609 arg = va_arg(ap, void *);
1610 va_end(ap);
1611
1612 ret = ioctl(s->fd, type, arg);
a426e122 1613 if (ret == -1) {
05330448 1614 ret = -errno;
a426e122 1615 }
05330448
AL
1616 return ret;
1617}
1618
984b5181 1619int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1620{
1621 int ret;
984b5181
AL
1622 void *arg;
1623 va_list ap;
1624
1625 va_start(ap, type);
1626 arg = va_arg(ap, void *);
1627 va_end(ap);
05330448 1628
984b5181 1629 ret = ioctl(s->vmfd, type, arg);
a426e122 1630 if (ret == -1) {
05330448 1631 ret = -errno;
a426e122 1632 }
05330448
AL
1633 return ret;
1634}
1635
9349b4f9 1636int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
05330448
AL
1637{
1638 int ret;
984b5181
AL
1639 void *arg;
1640 va_list ap;
1641
1642 va_start(ap, type);
1643 arg = va_arg(ap, void *);
1644 va_end(ap);
05330448 1645
984b5181 1646 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1647 if (ret == -1) {
05330448 1648 ret = -errno;
a426e122 1649 }
05330448
AL
1650 return ret;
1651}
bd322087
AL
1652
1653int kvm_has_sync_mmu(void)
1654{
94a8d39a 1655 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1656}
e22a25c9 1657
a0fb002c
JK
1658int kvm_has_vcpu_events(void)
1659{
1660 return kvm_state->vcpu_events;
1661}
1662
b0b1d690
JK
1663int kvm_has_robust_singlestep(void)
1664{
1665 return kvm_state->robust_singlestep;
1666}
1667
ff44f1a3
JK
1668int kvm_has_debugregs(void)
1669{
1670 return kvm_state->debugregs;
1671}
1672
f1665b21
SY
1673int kvm_has_xsave(void)
1674{
1675 return kvm_state->xsave;
1676}
1677
1678int kvm_has_xcrs(void)
1679{
1680 return kvm_state->xcrs;
1681}
1682
8a7c7393
JK
1683int kvm_has_pit_state2(void)
1684{
1685 return kvm_state->pit_state2;
1686}
1687
d2f2b8a7
SH
1688int kvm_has_many_ioeventfds(void)
1689{
1690 if (!kvm_enabled()) {
1691 return 0;
1692 }
1693 return kvm_state->many_ioeventfds;
1694}
1695
84b058d7
JK
1696int kvm_has_gsi_routing(void)
1697{
a9c5eb0d 1698#ifdef KVM_CAP_IRQ_ROUTING
84b058d7 1699 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
a9c5eb0d
AG
1700#else
1701 return false;
1702#endif
84b058d7
JK
1703}
1704
fdec9918
CB
1705void *kvm_vmalloc(ram_addr_t size)
1706{
1707#ifdef TARGET_S390X
1708 void *mem;
1709
1710 mem = kvm_arch_vmalloc(size);
1711 if (mem) {
1712 return mem;
1713 }
1714#endif
1715 return qemu_vmalloc(size);
1716}
1717
6f0437e8
JK
1718void kvm_setup_guest_memory(void *start, size_t size)
1719{
1720 if (!kvm_has_sync_mmu()) {
e78815a5 1721 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1722
1723 if (ret) {
e78815a5
AF
1724 perror("qemu_madvise");
1725 fprintf(stderr,
1726 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1727 exit(1);
1728 }
6f0437e8
JK
1729 }
1730}
1731
e22a25c9 1732#ifdef KVM_CAP_SET_GUEST_DEBUG
9349b4f9 1733struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
e22a25c9
AL
1734 target_ulong pc)
1735{
1736 struct kvm_sw_breakpoint *bp;
1737
72cf2d4f 1738 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1739 if (bp->pc == pc) {
e22a25c9 1740 return bp;
a426e122 1741 }
e22a25c9
AL
1742 }
1743 return NULL;
1744}
1745
9349b4f9 1746int kvm_sw_breakpoints_active(CPUArchState *env)
e22a25c9 1747{
72cf2d4f 1748 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1749}
1750
452e4751
GC
1751struct kvm_set_guest_debug_data {
1752 struct kvm_guest_debug dbg;
9349b4f9 1753 CPUArchState *env;
452e4751
GC
1754 int err;
1755};
1756
1757static void kvm_invoke_set_guest_debug(void *data)
1758{
1759 struct kvm_set_guest_debug_data *dbg_data = data;
9349b4f9 1760 CPUArchState *env = dbg_data->env;
b3807725 1761
b3807725 1762 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1763}
1764
9349b4f9 1765int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
e22a25c9 1766{
452e4751 1767 struct kvm_set_guest_debug_data data;
e22a25c9 1768
b0b1d690 1769 data.dbg.control = reinject_trap;
e22a25c9 1770
b0b1d690
JK
1771 if (env->singlestep_enabled) {
1772 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1773 }
452e4751 1774 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1775 data.env = env;
e22a25c9 1776
be41cbe0 1777 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1778 return data.err;
e22a25c9
AL
1779}
1780
9349b4f9 1781int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1782 target_ulong len, int type)
1783{
1784 struct kvm_sw_breakpoint *bp;
9349b4f9 1785 CPUArchState *env;
e22a25c9
AL
1786 int err;
1787
1788 if (type == GDB_BREAKPOINT_SW) {
1789 bp = kvm_find_sw_breakpoint(current_env, addr);
1790 if (bp) {
1791 bp->use_count++;
1792 return 0;
1793 }
1794
7267c094 1795 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1796 if (!bp) {
e22a25c9 1797 return -ENOMEM;
a426e122 1798 }
e22a25c9
AL
1799
1800 bp->pc = addr;
1801 bp->use_count = 1;
1802 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1803 if (err) {
7267c094 1804 g_free(bp);
e22a25c9
AL
1805 return err;
1806 }
1807
72cf2d4f 1808 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1809 bp, entry);
1810 } else {
1811 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1812 if (err) {
e22a25c9 1813 return err;
a426e122 1814 }
e22a25c9
AL
1815 }
1816
1817 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1818 err = kvm_update_guest_debug(env, 0);
a426e122 1819 if (err) {
e22a25c9 1820 return err;
a426e122 1821 }
e22a25c9
AL
1822 }
1823 return 0;
1824}
1825
9349b4f9 1826int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1827 target_ulong len, int type)
1828{
1829 struct kvm_sw_breakpoint *bp;
9349b4f9 1830 CPUArchState *env;
e22a25c9
AL
1831 int err;
1832
1833 if (type == GDB_BREAKPOINT_SW) {
1834 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1835 if (!bp) {
e22a25c9 1836 return -ENOENT;
a426e122 1837 }
e22a25c9
AL
1838
1839 if (bp->use_count > 1) {
1840 bp->use_count--;
1841 return 0;
1842 }
1843
1844 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1845 if (err) {
e22a25c9 1846 return err;
a426e122 1847 }
e22a25c9 1848
72cf2d4f 1849 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
7267c094 1850 g_free(bp);
e22a25c9
AL
1851 } else {
1852 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1853 if (err) {
e22a25c9 1854 return err;
a426e122 1855 }
e22a25c9
AL
1856 }
1857
1858 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1859 err = kvm_update_guest_debug(env, 0);
a426e122 1860 if (err) {
e22a25c9 1861 return err;
a426e122 1862 }
e22a25c9
AL
1863 }
1864 return 0;
1865}
1866
9349b4f9 1867void kvm_remove_all_breakpoints(CPUArchState *current_env)
e22a25c9
AL
1868{
1869 struct kvm_sw_breakpoint *bp, *next;
1870 KVMState *s = current_env->kvm_state;
9349b4f9 1871 CPUArchState *env;
e22a25c9 1872
72cf2d4f 1873 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1874 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1875 /* Try harder to find a CPU that currently sees the breakpoint. */
1876 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1877 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1878 break;
a426e122 1879 }
e22a25c9
AL
1880 }
1881 }
1882 }
1883 kvm_arch_remove_all_hw_breakpoints();
1884
a426e122 1885 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1886 kvm_update_guest_debug(env, 0);
a426e122 1887 }
e22a25c9
AL
1888}
1889
1890#else /* !KVM_CAP_SET_GUEST_DEBUG */
1891
9349b4f9 1892int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
e22a25c9
AL
1893{
1894 return -EINVAL;
1895}
1896
9349b4f9 1897int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1898 target_ulong len, int type)
1899{
1900 return -EINVAL;
1901}
1902
9349b4f9 1903int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
e22a25c9
AL
1904 target_ulong len, int type)
1905{
1906 return -EINVAL;
1907}
1908
9349b4f9 1909void kvm_remove_all_breakpoints(CPUArchState *current_env)
e22a25c9
AL
1910{
1911}
1912#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95 1913
9349b4f9 1914int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
cc84de95
MT
1915{
1916 struct kvm_signal_mask *sigmask;
1917 int r;
1918
a426e122 1919 if (!sigset) {
cc84de95 1920 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1921 }
cc84de95 1922
7267c094 1923 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
cc84de95
MT
1924
1925 sigmask->len = 8;
1926 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1927 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
7267c094 1928 g_free(sigmask);
cc84de95
MT
1929
1930 return r;
1931}
ca821806 1932
4b8f1c88
MT
1933int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1934 uint32_t size)
44f1a3d8 1935{
44f1a3d8
CM
1936 int ret;
1937 struct kvm_ioeventfd iofd;
1938
1939 iofd.datamatch = val;
1940 iofd.addr = addr;
4b8f1c88 1941 iofd.len = size;
44f1a3d8
CM
1942 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1943 iofd.fd = fd;
1944
1945 if (!kvm_enabled()) {
1946 return -ENOSYS;
1947 }
1948
1949 if (!assign) {
1950 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1951 }
1952
1953 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1954
1955 if (ret < 0) {
1956 return -errno;
1957 }
1958
1959 return 0;
44f1a3d8
CM
1960}
1961
ca821806
MT
1962int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1963{
1964 struct kvm_ioeventfd kick = {
1965 .datamatch = val,
1966 .addr = addr,
1967 .len = 2,
1968 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1969 .fd = fd,
1970 };
1971 int r;
a426e122 1972 if (!kvm_enabled()) {
ca821806 1973 return -ENOSYS;
a426e122
JK
1974 }
1975 if (!assign) {
ca821806 1976 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1977 }
ca821806 1978 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1979 if (r < 0) {
ca821806 1980 return r;
a426e122 1981 }
ca821806 1982 return 0;
98c8573e 1983}
a1b87fe0 1984
9349b4f9 1985int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
a1b87fe0
JK
1986{
1987 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1988}
1989
1990int kvm_on_sigbus(int code, void *addr)
1991{
1992 return kvm_arch_on_sigbus(code, addr);
1993}